Mathematical Physics

1006 Submissions

[13] viXra:1006.0070 [pdf] submitted on 30 Jun 2010

Causal Set Theory and the Origin of Mass-ratio

Authors: Carey R Carlson
Comments: 16 pages.

Quantum theory is reconstructed using standalone causal sets. The frequency ratios inherent in causal sets are used to define energy-ratios, implicating the causal link as the quantum of action. Space-time and its particle-like sequences are then constructed from causal links. A 4-D time-lattice structure is defined and then used to model neutrinos and electron clouds, which together constitute a 4-D manifold. A 6-D time-lattice is used to model the nucleons. The integration of the nucleus with its electron cloud affords calculation of the mass-ratio of the proton (or the neutron) with respect to the electron. Arrow diagrams, along with several ball-and-stick models, are used to streamline the presentation.
Category: Mathematical Physics

[12] viXra:1006.0052 [pdf] submitted on 21 Jun 2010

Handbook of Functions Errata

Authors: Fredy Zypman
Comments: 2 pages

Formulas connecting toroidal functions and elliptical functions are useful in various areas of physics. In solving a problem in electrostatics we run across an error in the Handbook of mathematical functions of Abramowitz and Stegun. In this paper we report the details.
Category: Mathematical Physics

[11] viXra:1006.0042 [pdf] replaced on 2012-01-30 21:36:44

The Geometry of CP2 and its Relationship to Standard Model

Authors: Matti Pitkänen
Comments: 13 Pages.

This appendix contains basic facts about CP2 as a symmetric space and Kähler manifold. The coding of the standard model symmetries to the geometry of CP2, the physical interpretation of the induced spinor connection in terms of electro-weak gauge potentials, and basic facts about induced gauge fields are discussed
Category: Mathematical Physics

[10] viXra:1006.0041 [pdf] replaced on 2012-01-30 21:40:48

Could the Dynamics of Kähler Action Predict the Hierarchy of Planck Constants?

Authors: Matti Pitkänen
Comments: 5 Pages.

The original justification for the hierarchy of Planck constants came from the indications that Planck constant could have large values in both astrophysical systems involving dark matter and also in biology. The realization of the hierarchy in terms of the singular coverings and possibly also factor spaces of CD and CP2 emerged from consistency conditions. It however seems that TGD actually predicts this hierarchy of covering spaces. The extreme non-linearity of the field equations defined by Kähler action means that the correspondence between canonical momentum densities and time derivatives of the imbedding space coordinates is 1-to-many. This leads naturally to the introduction of the covering space of CD x CP2, where CD denotes causal diamond defined as intersection of future and past directed light-cones.
Category: Mathematical Physics

[9] viXra:1006.0040 [pdf] replaced on 2012-01-30 21:49:56

Weak Form of Electric-Magnetic Duality and Its Implications

Authors: Matti Pitkänen
Comments: 25 Pages.

The notion of electric magnetic duality emerged already two decades ago in the attempts to formulate the Kähler geometry of the "world of classical worlds". Quite recently a considerable step of progress took place in the understanding of this notion. This concept leads to the identification of the physical particles as string like objects defined by magnetic charged wormhole throats connected by magnetic ux tubes. The second end of the string contains particle having electroweak isospin neutralizing that of elementary fermion and the size scale of the string is electro-weak scale would be in question. Hence the screening of electro-weak force takes place via weak confinement. This picture generalizes to magnetic color confinement. Electric-magnetic duality leads also to a detailed understanding of how TGD reduces to almost topological quantum field theory. A surprising outcome is the necessity to replace CP2 Kähler form in Kähler action with its sum with S2 Kähler form.
Category: Mathematical Physics

[8] viXra:1006.0039 [pdf] replaced on 2012-01-30 21:53:06

How to Define Generalized Feynman Diagrams?

Authors: Matti Pitkänen
Comments: 16 Pages.

Generalized Feynman diagrams have become the central notion of quantum TGD and one might even say that space-time surfaces can be identified as generalized Feynman diagrams. The challenge is to assign a precise mathematical content for this notion, show their mathematical existence, and develop a machinery for calculating them. Zero energy ontology has led to a dramatic progress in the understanding of generalized Feynman diagrams at the level of fermionic degrees of freedom. In particular, manifest finiteness in these degrees of freedom follows trivially from the basic identifications as does also unitarity and non-trivial coupling constant evolution. There are however several formidable looking challenges left.

  1. One should perform the functional integral over WCW degrees of freedom for fixed values of on mass shell momenta appearing in the internal lines. After this one must perform integral or summation over loop momenta.
  2. One must define the functional integral also in the p-adic context. p-Adic Fourier analysis relying on algebraic continuation raises hopes in this respect. p-Adicity suggests strongly that the loop momenta are discretized and ZEO predicts this kind of discretization naturally.
In this article a proposal giving excellent hopes for achieving these challenges is discussed.
Category: Mathematical Physics

[7] viXra:1006.0038 [pdf] replaced on 2012-01-30 21:55:27

Physics as Generalized Number Theory: Infinite Primes

Authors: Matti Pitkänen
Comments: 38 Pages.

The focus of this book is the number theoretical vision about physics. This vision involves three loosely related parts.

  1. The fusion of real physic and various p-adic physics to a single coherent whole by generalizing the number concept by fusing real numbers and various p-adic number fields along common rationals. Extensions of p-adic number fields can be introduced by gluing them along common algebraic numbers to reals. Algebraic continuation of the physics from rationals and their their extensions to various number fields (generalization of completion process for rationals) is the key idea, and the challenge is to understand whether how one could achieve this dream. A profound implication is that purely local p-adic physics would code for the p-adic fractality of long length length scale real physics and vice versa, and one could understand the origins of p-adic length scale hypothesis.
  2. Second part of the vision involves hyper counterparts of the classical number fields defined as subspaces of their complexifications with Minkowskian signature of metric. Allowed space-time surfaces would correspond to what might be called hyper-quaternionic sub-manifolds of a hyper-octonionic space and mappable to M4× CP2 in natural manner. One could assign to each point of space-time surface a hyper-quaternionic 4-plane which is the plane defined by the modified gamma matrices but not tangent plane in general. Hence the basic variational principle of TGD would have deep number theoretic content.
  3. The third part of the vision involves infinite primes identifiable in terms of an infinite hierarchy of second quantized arithmetic quantum fields theories on one hand, and as having representations as space-time surfaces analogous to zero loci of polynomials on the other hand. Single space-time point would have an infinitely complex structure since real unity can be represented as a ratio of infinite numbers in infinitely many manners each having its own number theoretic anatomy. Single space-time point would be in principle able to represent in its structure the quantum state of the entire universe. This number theoretic variant of Brahman=Atman identity would make Universe an algebraic hologram.

    Number theoretical vision suggests that infinite hyper-octonionic or -quaternionic primes could could correspond directly to the quantum numbers of elementary particles and a detailed proposal for this correspondence is made. Furthermore, the generalized eigenvalue spectrum of the Chern-Simons Dirac operator could be expressed in terms of hyper-complex primes in turn defining basic building bricks of infinite hyper-complex primes from which hyper-octonionic primes are obtained by dicrete SU(3) rotations performed for finite hyper-complex primes.

Besides this holy trinity I will discuss loosely related topics. Included are possible applications of category theory in TGD framework; TGD inspired considerations related to Riemann hypothesis; topological quantum computation in TGD Universe; and TGD inspired approach to Langlands program.


Category: Mathematical Physics

[6] viXra:1006.0037 [pdf] replaced on 2012-01-30 21:56:36

Physics as Generalized Number Theory: Classical Number Fields

Authors: Matti Pitkänen
Comments: 28 Pages.

Physics as a generalized number theory program involves three threads: various p-adic physics and their fusion together with real number based physics to a larger structure, the attempt to understand basic physics in terms of classical number fields discussed in this article, and infinite primes whose construction is formally analogous to a repeated second quantization of an arithmetic quantum field theory. In this article the connection between standard model symmetries and classical number fields is discussed. The basis vision is that the geometry of the infinite-dimensional WCW ("world of classical worlds") is unique from its mere existence. This leads to its identification as union of symmetric spaces whose Kähler geometries are fixed by generalized conformal symmetries. This fixes space-time dimension and the decomposition M4 x S and the idea is that the symmetries of the Kähler manifold S make it somehow unique. The motivating observations are that the dimensions of classical number fields are the dimensions of partonic 2-surfaces, space-time surfaces, and imbedding space and M8 can be identified as hyper-octonions- a sub-space of complexified octonions obtained by adding a commuting imaginary unit. This stimulates some questions. Could one understand S = CP2 number theoretically in the sense that M8 and H = M4 x CP2 be in some deep sense equivalent ("number theoretical compactification" or M8 - H duality)? Could associativity define the fundamental dynamical principle so that space-time surfaces could be regarded as associative or co-associative (defined properly) sub-manifolds of M8 or equivalently of H. One can indeed define the associativite (co-associative) 4-surfaces using octonionic representation of gamma matrices of 8-D spaces as surfaces for which the modified gamma matrices span an associate (co-associative) sub-space at each point of space-time surface. Also M8 - H duality holds true if one assumes that this associative sub-space at each point contains preferred plane of M8 identifiable as a preferred commutative or co-commutative plane (this condition generalizes to an integral distribution of commutative planes in M8). These planes are parametrized by CP2 and this leads to M8 - H duality. WCW itself can be identified as the space of 4-D local sub-algebras of the local Clifford algebra of M8 or H which are associative or co-associative. An open conjecture is that this characterization of the space-time surfaces is equivalent with the preferred extremal property of Kähler action with preferred extremal identified as a critical extremal allowing infinite-dimensional algebra of vanishing second variations.
Category: Mathematical Physics

[5] viXra:1006.0036 [pdf] replaced on 2012-01-30 21:58:07

Physics as Generalized Number Theory: P-Adic Physics and Number Theoretic Universality

Authors: Matti Pitkänen
Comments: 51 Pages.

Physics as a generalized number theory program involves three threads: various p-adic physics and their fusion together with real number based physics to a larger structure, the attempt to understand basic physics in terms of classical number fields (in particular, identifying associativity condition as the basic dynamical principle), and infinite primes whose construction is formally analogous to a repeated second quantization of an arithmetic quantum field theory. In this article p-adic physics and the technical problems relates to the fusion of p-adic physics and real physics to a larger structure are discussed. The basic technical problems relate to the notion of definite integral both at space-time level, imbedding space level and the level of WCW (the "world of classical worlds"). The expressibility of WCW as a union of symmetric spacesleads to a proposal that harmonic analysis of symmetric spaces can be used to define various integrals as sums over Fourier components. This leads to the proposal the p-adic variant of symmetric space is obtained by a algebraic continuation through a common intersection of these spaces, which basically reduces to an algebraic variant of coset space involving algebraic extension of rationals by roots of unity. This brings in the notion of angle measurement resolution coming as Δφ = 2π/pn for given p-adic prime p. Also a proposal how one can complete the discrete version of symmetric space to a continuous p-adic versions emerges and means that each point is effectively replaced with the p-adic variant of the symmetric space identifiable as a p-adic counterpart of the real discretization volume so that a fractal p-adic variant of symmetric space results. If the Kähler geometry of WCW is expressible in terms of rational or algebraic functions, it can in principle be continued the p-adic context. One can however consider the possibility that that the integrals over partonic 2-surfaces defining ux Hamiltonians exist p-adically as Riemann sums. This requires that the geometries of the partonic 2-surfaces effectively reduce to finite sub-manifold geometries in the discretized version of δM+4. If Kähler action is required to exist p-adically same kind of condition applies to the space-time surfaces themselves. These strong conditions might make sense in the intersection of the real and p-adic worlds assumed to characterized living matter.
Category: Mathematical Physics

[4] viXra:1006.0035 [pdf] replaced on 2012-01-30 22:01:55

Construction of Configuration Space Spinor Structure

Authors: Matti Pitkänen
Comments: 95 Pages.

There are three separate approaches to the challenge of constructing WCW Kähler geometry and spinor structure. The first approach relies on a direct guess of Kähler function. Second approach relies on the construction of Kähler form and metric utilizing the huge symmetries of the geometry needed to guarantee the mathematical existence of Riemann connection. The third approach discussed in this article relies on the construction of spinor structure based on the hypothesis that complexified WCW gamma matrices are representable as linear combinations of fermionic oscillator operator for the second quantized free spinor fields at space-time surface and on the geometrization of super-conformal symmetries in terms of spinor structure. This implies a geometrization of fermionic statistics. The basic philosophy is that at fundamental level the construction of WCW geometry reduces to the second quantization of the induced spinor fields using Dirac action. This assumption is parallel with the bosonic emergence stating that all gauge bosons are pairs of fermion and antifermion at opposite throats of wormhole contact. Vacuum function is identified as Dirac determinant and the conjecture is that it reduces to the exponent of Kähler function. In order to achieve internal consistency induced gamma matrices appearing in Dirac operator must be replaced by the modified gamma matrices defined uniquely by Kähler action and one must also assume that extremals of Kähler action are in question so that the classical space-time dynamics reduces to a consistency condition. This implies also super-symmetries and the fermionic oscillator algebra at partonic 2-surfaces has intepretation as N = 1 generalization of space-time supersymmetry algebra different however from standard SUSY algebra in that Majorana spinors are not needed. This algebra serves as a building brick of various super-conformal algebras involved. The requirement that there exist deformations giving rise to conserved Noether charges requires that the preferred extremals are critical in the sense that the second variation of the Kähler action vanishes for these deformations. Thus Bohr orbit property could correspond to criticality or at least involve it. Quantum classical correspondence demands that quantum numbers are coded to the properties of the preferred extremals given by the Dirac determinant and this requires a linear coupling to the conserved quantum charges in Cartan algebra. Effective 2-dimensionality allows a measurement interaction term only in 3-D Chern-Simons Dirac action assignable to the wormhole throats and the ends of the space-time surfaces at the boundaries of CD. This allows also to have physical propagators reducing to Dirac propagator not possible without the measurement interaction term. An essential point is that the measurement interaction corresponds formally to a gauge transformation for the induced Kähler gauge potential. If one accepts the weak form of electric-magnetic duality Kähler function reduces to a generalized Chern-Simons term and the effect of measurement interaction term to Kähler function reduces effectively to the same gauge transformation. The basic vision is that WCW gamma matrices are expressible as super-symplectic charges at the boundaries of CD. The basic building brick of WCW is the product of infinite-D symmetric spaces assignable to the ends of the propagator line of the generalized Feynman diagram. WCW Kähler metric has in this case "kinetic" parts associated with the ends and "interaction" part between the ends. General expressions for the super-counterparts of WCW ux Hamiltoniansand for the matrix elements of WCW metric in terms of their anticommutators are proposed on basis of this picture.
Category: Mathematical Physics

[3] viXra:1006.0034 [pdf] replaced on 2012-01-30 22:03:21

Construction of Configuration Space Geometry from Symmetry Principles

Authors: Matti Pitkänen
Comments: 26 Pages.

There are three separate approaches to the challenge of constructing WCW Kähler geometry and spinor structure. The first one relies on a direct guess of Kähler function. Second approach relies on the construction of Kähler form and metric utilizing the huge symmetries of the geometry needed to guarantee the mathematical existence of Riemann connection. The third approach relies on the construction of spinor structure assuming that complexified WCW gamma matrices are representable as linear combinations of fermionic oscillator operator for the second quantized free spinor fields at space-time surface and on the geometrization of super-conformal symmetries in terms of spinor structure. In this article the construction of Kähler form and metric based on symmetries is discussed. The basic vision is that WCW can be regarded as the space of generalized Feynman diagrams with lines thickned to light-like 3-surfaces and vertices identified as partonic 2-surfaces. In zero energy ontology the strong form of General Coordinate Invariance (GCI) implies effective 2-dimensionality and the basic objects are pairs partonic 2-surfaces X2 at opposite light-like boundaries of causal diamonds (CDs). The hypothesis is that WCW can be regarded as a union of infinite-dimensional symmetric spaces G/H labeled by zero modes having an interpretation as classical, non-quantum uctuating variables. A crucial role is played by the metric 2-dimensionality of the light-cone boundary δM+4 + and of light-like 3-surfaces implying a generalization of conformal invariance. The group G acting as isometries of WCW is tentatively identified as the symplectic group of δM+4 x CP2 localized with respect to X2. H is identified as Kac-Moody type group associated with isometries of H = M+4 x CP2 acting on light-like 3-surfaces and thus on X2. An explicit construction for the Hamiltonians of WCW isometry algebra as so called ux Hamiltonians is proposed and also the elements of Kähler form can be constructed in terms of these. Explicit expressions for WCW ux Hamiltonians as functionals of complex coordinates of the Cartesisian product of the infinite-dimensional symmetric spaces having as points the partonic 2-surfaces defining the ends of the the light 3-surface (line of generalized Feynman diagram) are proposed.
Category: Mathematical Physics

[2] viXra:1006.0033 [pdf] replaced on 2012-01-30 22:05:03

Identification of the Configuration Space Kähler Function

Authors: Matti Pitkänen
Comments: 29 Pages.

There are two basic approaches to quantum TGD. The first approach, which is discussed in this article, is a generalization of Einstein's geometrization program of physics to an infinitedimensional context. Second approach is based on the identification of physics as a generalized number theory. The first approach relies on the vision of quantum physics as infinite-dimensional Kähler geometry for the "world of classical worlds" (WCW) identified as the space of 3-surfaces in in certain 8-dimensional space. There are three separate approaches to the challenge of constructing WCW Kähler geometry and spinor structure. The first approach relies on direct guess of Kähler function. Second approach relies on the construction of Kähler form and metric utilizing the huge symmetries of the geometry needed to guarantee the mathematical existence of Riemann connection. The third approach relies on the construction of spinor structure based on the hypothesis that complexified WCW gamma matrices are representable as linear combinations of fermionic oscillator operator for second quantized free spinor fields at space-time surface and on the geometrization of super-conformal symmetries in terms of WCW spinor structure. In this article the proposal for Kähler function based on the requirement of 4-dimensional General Coordinate Invariance implying that its definition must assign to a given 3-surface a unique space-time surface. Quantum classical correspondence requires that this surface is a preferred extremal of some some general coordinate invariant action, and so called Kähler action is a unique candidate in this respect. The preferred extremal has intepretation as an analog of Bohr orbit so that classical physics becomes and exact part of WCW geometry and therefore also quantum physics. The basic challenge is the explicit identification of WCW Kähler function K. Two assumptions lead to the identification of K as a sum of Chern-Simons type terms associated with the ends of causal diamond and with the light-like wormhole throats at which the signature of the induced metric changes. The first assumption is the weak form of electric magnetic duality. Second assumption is that the Kähler current for preferred extremals satisfies the condition jK ^ djK = 0 implying that the ow parameter of the ow lines of jK defines a global space-time coordinate. This would mean that the vision about reduction to almost topological QFT would be realized. Second challenge is the understanding of the space-time correlates of quantum criticality. Electric-magnetic duality helps considerably here. The realization that the hierarchy of Planck constant realized in terms of coverings of the imbedding space follows from basic quantum TGD leads to a further understanding. The extreme non-linearity of canonical momentum densities as functions of time derivatives of the imbedding space coordinates implies that the correspondence between these two variables is not 1-1 so that it is natural to introduce coverings of CD x CP2. This leads also to a precise geometric characterization of the criticality of the preferred extremals.
Category: Mathematical Physics

[1] viXra:1006.0032 [pdf] replaced on 2012-01-30 22:06:21

Physics as Infinite-dimensional Geometry and Generalized Number Theory: Basic Visions

Authors: Matti Pitkänen
Comments: 33 Pages.

There are two basic approaches to the construction of quantum TGD. The first approach relies on the vision of quantum physics as infinite-dimensional Kähler geometry for the "world of classical worlds" identified as the space of 3-surfaces in in certain 8-dimensional space. Essentially a generalization of the Einstein's geometrization of physics program is in question. The second vision is the identification of physics as a generalized number theory. This program involves three threads: various p-adic physics and their fusion together with real number based physics to a larger structure, the attempt to understand basic physics in terms of classical number fields (in particular, identifying associativity condition as the basic dynamical principle), and infinite primes whose construction is formally analogous to a repeated second quantization of an arithmetic quantum field theory. In this article brief summaries of physics as infinite-dimensional geometry and generalized number theory are given to be followed by more detailed articles.
Category: Mathematical Physics