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The band-degeneracy points in the Brillouin zones of chiral crystals exist in multiple avatars, with
the high-symmetry points being able to host multifold nodes of distinct characters. A class of such
crystals, assisted by the spin-orbit coupling, harbours fourfold degeneracy in the form of Rarita-
Schwinger-Weyl node (RSWN) at the Γ-point. Our aim is to explore the nature of longitudinal
magnetoconductivity, arising from applying collinear electric and magnetic fields, for such systems.
Adjusting the chemical potential to lie near the intrinsic energy-location of the RSWN, the multifold
nature of the RSWN is revealed by an interplay of intraband and interband scatterings, which would
not arise in twofold degeneracies like the conventional Weyl nodes. The current study fills up the
much-needed gap in obtaining the linear response from an exact computation, rather than the
insufficient relaxation-time approximation employed earlier.
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I. INTRODUCTION

The unprecedented advancement on the experimental fronts, coupled with the DFT studies of materials, have put
forward numerous generalisations of the archetypal Weyl semimetal (WSM) of the three-dimensional (3d) variety[1–3].
The excitement surrounding these so-called semimetallic systems mainly stems form the fact that their Brillouin zones
(BZs) harbour nodal points, which, in turn, furnish the momentum space with the mathematical properties of topology
[4–7], when viewed as closed manifolds. Physical properties like the Berry curvature (BC) and the orbital magnetic
moment (OMM) quantify the topological properties lurking beneath, which are detectable in transport experiments [8–
18]. Generalising the simplest prototype of an isotropic and linear-in-momentum twofold band-crossing, a pseudospin-3/2
Rarita-Schwinger-Weyl node (RWSN) [19–30] represents a fourfold band-crossing at a high-symmetry point of the BZ of
a chiral crystal [19, 31, 32]. Adding to the cornucopia of transport properties that can reflect the exquisite character of
RSWNs [15, 26, 28–30, 33, 34], we investigate here the longitudinal magnetoconductivity arising from an isolated node
[35].
The perks of invoking the analogy of the BC (existing in the momentum space) to a magnetic field (existing in the

momentum space) is that we conjure up the intuitive picture of nonzero BC monopoles sitting at the nodal points [36, 37],
acting as the sources and sinks of the vector field of the BC-flux. Utilising the mathematical machinery of algebraic
topology, the monopoles’ charges also represent the so-called Chern numbers about the nodal points. The sign of C is
pictured as the chirality (χ) of the node, conferring a notion of handedness or chirality on the quasiparticles populating
the bands converging there. Appropriately, they are termed as right-handed or left-handed quasipartcles, depending on
whether χ = 1 or χ = −1.
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(a) (b)

FIG. 1. Schematics of the energy bands meeting at an isotropic RSWN: (a) Bare dispersion (E) for s = ±1/2 (light red) and
s = ±3/2 (light blue) bands against the kxky-plane (or, equivalently, kykz- and kzkx-planes). The yellow plane depicts a positive
chemical potential (µ) cutting the s = 1/2 and s = 3/2 bands, giving rise to two concentric Fermi surfaces. (b) Fermi-surface
projections in the the kxky-plane, when B (green arrow) is applied along the z-axis. To provide an eye-estimate, the dotted curves
show the unperturbed projections in the absence of an external magnetic field.

The appearance of chirally-charged nodes in 3d crystal-lattices is governed by the Nielsen-Ninomiya theorem [38], which
is physically reflected by the fact that the sum of the Chern numbers over the entire BZ must yield zero. For nodes arising
in achiral crystals (e.g., TaAs family [39]), such conjugate partners are typically (almost) degenerate in energy, due to the
presence of mirror or other roto-inversion symmetries. Therein, charge-pumping is an important internode phenomenon in
the presence of collinear external electric (E) and magnetic (B) fields. The phenomenon in question is an embodiment of
the chiral anomaly in the arena of condensed matter physics [14, 34, 40, 41], where the analog of the well-known concept
of spacetime chirality (of relativistic fermions) is realised in the momentum space. It provides a sharp contrast with the
oppositely-charged chiral nodes in chiral crystals, where they need not be degenerate in energy, because the conjugate
nodes are not related by crystal symmetries. In fact, they are observed to have discernible separations in energy and
momenta, with a isolated nodes sitting at their intrinsic chemical potentials [31, 42, 43]. The inevitable outcome is that
the internode-scattering induced charge pumping gets irrelevant. However, at the same time, the energy-offset between
the nodes of opposite chiralities fulfills the requisite conditions for observing other important phenomena like quantised
circular photogalvanic effect [19, 31, 44–48] and circular dichroism [26, 49].
In our recent works, we have addressed the pertinent problem of computing longitudinal magnetoconductivity in systems

where multiple bands contribute to transport at a particular node, encompassing the cases of chirally-conjugate nodes
[17] and isolated Kramers-Weyl nodes [35] (the latter arising exclusively in chiral crystals [50, 51]). In this paper, we take
up a similar problem where an isotropic RSWN (sitting at the Γ-point) is the system under consideration. As pointed
out earlier, only the isolated RWSN will be relevant here for computing the linear response, since we will consider tuning
the external chemical potential to lie near the intrinsic energy of the concerned nodal point, safely assuming that the
chirally-conjugate node is sufficiently separated in energy and momenta. For example, in RhSi, there exist fourfold- and
sixfold-degenrate nodes at the Γ- and R-points of the BZ, carrying Chern numbers of ±4, and featuring the largest possible
momentum-separation between the nodal-points’ locations [43, 52]. While the former represents an RSWN, the bands at
the latter are doubly-degenerate, featuring a pair of pseudospin-1 triple-point fermions (TPFs). The energy-offset between
these nodes is ∼ 0.4 eV. All these make it possible to observe really long Fermi arcs, spanning the distance constrained
by the separation of the multiply-degenerate bulk-nodes, and topologically protected by their bulk chiral charges. Other
examples of chiral crystals include AlPt [53], RhGe (with the energy-separatation between RSWN and the TPFs being
∼ 0.21 eV) [54], sanchez [52] Li2Pd3B [55], Li2Pt3B [55], and CoSi [24, 52].
A typical RSWN is depicted schematically in Fig. 1, with the four bands visualised near the degeneracy point. Exploiting

the universal applicability of the Boltzmann equations as the kinetic theory for transport [56, 57], we will carry out the
exercise of computing the longitudinal conductivity exactly, arising from applying collinear electromagnetic fields (E ∥ B).
The framework will be limited to the realm of weak (implying nonquantising) magnetic fields, so that the splitting of the
dispersion into discrete Landau-levels can be ignored. Improving on our earlier ventures along similar lines [33, 34], we
will go beyond the relaxation-time approximation, thereby solving the semimeclassical Boltzmann equations exactly. To
elaborate on the context further, we would like to point out that the nature of in-plane and out-of-plane components of
conductivity in planar-Hall set-ups have been derived in Refs. [33, 34], within the simplifying framework of the relaxation-
time approximation, considered the aspects of intranode [33] and internode [34] scatterings. The current calculations will
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help us fix the shortcomings arising from the assumption of a momentum-independent relaxation-time.

The paper is organised as follows: In Sec. II, we describe the explicit form of the low-energy effective Hamiltonian in the
vicinity of an RSWN node, and the emerging topological properties. Sec. III is devoted to deriving the equations leading
to the final values of the longitudinal magnetoconductivity. The results are discussed in Sec. III C therein, illustrated by
representative plots. Finally, we end with a summary and some future perspectives in Sec. IV. In all our expressions,
we will adopt the natural units, which involves setting the reduced Planck’s constant (ℏ), the speed of light (c), and the
Boltzmann constant (kB) to unity. Additionally, the electric charge has no units. Despite the fact that the magnitude (e)
of a single unit of electrons’ charge is unity, we will retain it in our expressions solely for the purpose of book-keeping.

II. MODEL

The widely used method of linearising the k · p Hamiltonian about a fourfold degeneracy at the Γ-point of a chiral
crystal leads us to the generic forms of the RWSN nodes [43, 58]. Adopting the isotropic version for the sake of simplicity,
we use the model Hamiltonian captured by

H(k) = vF (kx Jx + ky Jy + kz Jz) , (1)

where J = {Jx, Jy, Jz} represents the vector operator whose three components comprise the the angular momentum
operators in the spin-3/2 representation of the SU(2) group. We choose the commonly-used representation with

Jx =
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 . (2)

The energy eigenvalues are found to be

εs(k) = s vF k , s ∈
{
±1

2
,±3

2

}
, (3)

where k =
√
k2x + k2y + k2z . Thus, each of the four bands demonstrates an isotropic linear-in-momentum dispersion like a

Weyl cone [cf. Fig. 1(a)]. The signs of “+” and “−” give us the dispersion relations for the conduction and valence bands,
respectively, with respect to the nodal point. The corresponding group velocities of the quasiparticles are given by

vs(k) = ∇kεs(k) =
s vF k

k
. (4)

The isotropy of H dictates that the simplicity of the spherical-polar coordinates can be employed by using the transfor-
mations of

kx = k sin θ cosϕ , ky = k sin θ sinϕ , kz = k cos θ , (5)

where k ∈ [0,∞), ϕ ∈ [0, 2π), and θ ∈ [0, π].

A. Eigenvectors

For an orthonormal set of eigenvectors, {ψs(k)}, the explicit forms of the positive-energy bands are given by

ψ1/2(k) =
[
−

√
3 e−3 i ϕ(1−cos2 θ) csc( θ

2 )
4

e−2 i ϕ cos( θ
2 )(3 cos θ−1)

2

e−i ϕ sin( θ
2 ) (3 cos θ+1)

2

√
3 sin( θ

2 ) sin θ

2

]T
and ψ3/2(k) =

[
e−3 i ϕ cos3

(
θ
2

) √
3 e−2 i ϕ sin2 θ csc( θ

2 )
4

√
3 e−i ϕ sin( θ

2 ) sin θ

2 sin3
(
θ
2

)]T
. (6)

This will be used to determine the strength of the scattering cross-sections and, also, an ansatz for the nonequilibirum
quasiparticle-distributions.
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B. Topological quantities

Due to a nontrivial topology of the bandstructure, we need to compute the BC and the OMM, using the starting
expressions of [5, 59]

Ωs(k) = i [∇kψs(k)]
† × [∇kψs(k)] and ms(k) =

− i e

2
[∇kψs(k)]

† ×
[
{H(k)− εs(k)} {∇kψs(k)}

]
, (7)

respectively. Evaluating these expressions for the RSW node described by H(k), we get [33, 60]

Ωs(k) =
− sk

k3
and ms(k) =

− e vF Gs k

k2
, where {G±1/2, G±3/2} =

{
7

4
,
3

4

}
. (8)

Since Ωs(k) and ms(k) are the intrinsic properties of the bandstructure, they depend only on the wavefunctions.
A nonzero BC manifests itself primarily via modifying the phase-space volume element, incorporated through the factor

of [6, 15, 33, 56, 57, 61]

Ds(k) = [1 + e {B ·Ωs(k)}]−1
. (9)

This, in turn, it affects the explicit forms of the Hamilton’s equations, which we will discuss In Sec. III. On the other
hand, the OMM distorts the Fermi surfaces along the direction of B, by adding the term

ε(m)
s (k) = −B ·ms(k) , (10)

as schematically depicted in Fig. 1(b). Consequently, in addition to affecting the Fermi-Dirac distributions functions, it
causes modifications of the group-velocities via adding

v(m)
s (k) ≡ ∇kε(σ)(k) (11)

to vs(k).

III. CONDUCTIVITY

In this section, we will review the step-by-step procedure to compute the electric conductivity, applying the machinery
of semiclassical Boltzmann equations [6, 12, 15, 17, 33, 56, 57, 61]. Although this has been demonstrated multiple times
in our earlier works [17, 35], it is primarily needed here to set the notations. The main line of arguments for obtaining
the final equations was developed in Ref. [12], which we adapt and generalise for our system under study.

A. Kinetic equations driven by electromagnetic fields

The equilibrium Fermi-Dirac distribution,

f0
(
ξs(k), µ, T

)
= [1 + exp {(ξs(k)− µ) /T}]−1

, (12)

where T is the temperature, contains the effective energy,

ξs(k) = εs(k) + ε(m)
s (k) . (13)

While using f0 in various equations, we will be suppressing its µ- and T -dependence for uncluttering of notations. Fur-
thermore, in what follows, we will perform our calculations by setting T = 0.
The Hamilton’s equations of motion for the electronic quasiparticles, occupying a given Bloch band, are described by

[6, 15, 33, 56, 57, 61]

ṙ = ∇k ξs − k̇ × Ωs(k) and k̇ = − e (E + ṙ × B)

⇒ ṙ = Ds(k) [ws(k) + eE ×Ωs(k) + e {Ωs ·ws(k)}B] and k̇ = − eDs(k) [E +ws(k)×B + e (E ·B)Ωs(k)] , (14)

where

ws(k) = vs(k) + v(m)
s (k) . (15)

They reflect the nontrivial role played by a nonzero BC, as compared to the scenarios when the BC vanishes (see, for

example, the systems discussed in Refs. [62, 63]). In particular, an extra term in the form of −k̇ × Ωs represents an
anomalous velocity, with the BC playing the counterpart of the magnetic field, albeit in the momentum space.
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The bare-bones kinetic equation, arising out of the fundamental Boltzmann’s transport formalism, is expressed as

[∂t +ws(k) · ∇r − e {E +ws(k)×B} · ∇k] fs(r,k, t) = Icoll[fs(k)] , (16)

where fs(r,k, t) represents the nonequilibrium quasipaticle-distribution function associated with the band s. A slight
deviation from f0(ξs(k)) is parametrised by δfs(r,k, t) ≡ fs(r,k, t) − f0(ξs(k)), caused by the the probe electric field,
and is assumed to be of the same order of smallness as |E| (say, δς). Here, we restrict ourselves to spatially-uniform and
time-independent electromagnetic fields. Consequently, fs must must also be independent of position and time, so that
δfs(r,k, t) = δfs(k). When we retain terms upto linear-order-in-δς, we restrict ourselves to the so-called linear-response
regime. The collision integral, Icoll[fs(k)], takes care of the relevant scattering processes instrumental in relaxing fs(k)
towards the equilibrium value of f0(ξs(k)).
For elastic point-scattering mechanisms, the collision integral takes the form of

Icoll[fs(k)] =
∑
s̃

∫
k′
Ms,s̃(k,k

′) [fs̃(k
′))− fs(k)] , where

∫
k

≡
∫

d3k

(2π)3 Ds̃(k′)
(17)

symbolises the 3d momentum-space integral, incorporating the modified phase-space factor due to the BC. The scattering
rate, not involving any energy-dissipation, is a direct consequence of the Fermi’s golden rule, reflected by

Ms,s̃(k,k
′) =

2π ρimp

V

∣∣∣ {ψs̃(k
′)}† Vs,s̃(k,k

′) ψs(k)
∣∣∣2 δ(ξs̃(k′)− ξs(k)

)
, (18)

Here, ρimp embodies the impurity-concentration (acting as the scattering centres), V denotes the system’s spatial vol-
ume, and Vs,s̃(k,k

′) represents the scattering-potential matrix. Restricting to elastic and spinless scatters, Vs,s̃(k,k
′) =

I2×2 Vs,s̃, reducing to an identity matrix in the spinor space sans any momentum dependence. Thus, finally we can use
the equation,

Ms,s̃(k,k
′) =

2π ρimp |Vs,s̃|2

V

∣∣∣ {ψs̃(k
′)}† ψs(k)

∣∣∣2 δ(ξχ̃,s̃(k′)− ξχ,s(k)
)
, (19)

assisted by Eq. (6). Assuming a symmetric interband-scattering between the s = 1/2 and s = 3/2 bands, we parametrise
the scattering strengths via two paremeters, expressed as∣∣V1/2,1/2

∣∣2 ≡ 16× 2π

ρimp
β
1/2,1/2
intra ,

∣∣V3/2,3/2

∣∣2 ≡ 16× 2π

ρimp
β
3/2,3/2
intra , and

∣∣Vs,s̃

∣∣2∣∣∣
s̸=s̃

≡ 16× 2π

ρimp
βinter . (20)

Here, the subscripts “intra” and “inter” indicate the strengths of intraband and interband scatterings, respectively. In
what follows, we will assume a pocitive chemical potential, µ > 0, being applied to the node, so that the bands with
s = 1/2 and s = 3/2 contribute to transport at T → 0.

B. Linearised Boltzmann equation and its solutions

Gathering all the ingredients of the preceding subsections, we are now ready to solve the linearised Boltzmann equation,
embodied by

− eDs(k)

[{
ws(k) + e

(
Ωs(k) ·ws(k)

)
B
}
·E ∂f0(ξs(k))

∂ξs(k)
+ {ws(k)×B} · ∇k δfs(k)

]
= Icoll[fs(k)] . (21)

For the sake of definiteness, we choose the set-up comprising B = B ẑ and E = E ẑ. We parametrise the deviation in the
particles’ distribution-functions as

δfs(k) = − e
∂f0(ξs)

∂ξs
E ·Λs(k) = − e

∂f0(ξs(k))

∂ξs(k)
E Λz

s(k) , (22)

where Λs(k) is the vectorial mean-free path. Because of our specific choice of coordinates, only the z-component of Λs(k)
[i.e., Λz

s(k)] emerges as the nontrivial component as a result of the probe electric field. Consequently, the only equation
that needs to be solved turns out to be

wz
s(k) + eB [Ωs(k) ·ws(k)]− eB [ws(k)× ẑ(k)] · ∇kΛ

z
s(k) = D−1

s (k)
∑
χ̃,s̃

∫
k′
Ms,s̃(k,k

′) [Λz
s̃(k

′)− Λz
s(k)] . (23)

Looking at the structure of the terms on both the sides, we infer that Λz
s ≡ Λz

s(µ, θ) at an energy µ. In other words,δfs(k)
can depend only on the polar angle, θ, and the chemical potential, µ, because the integral over the full momentum
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space effective gets substitutes by an integral over the Fermi surface at energy ξs(k) = µ. Essentially, the dependence
on the azimuthal angle ϕ drops out because of the residual rotational symmetry of the system about the z-axis. This
makes the momentum-space integrals reduce to the respective Fermi surfaces, ξs(k

s
F , θ) = µ, with the θ-dependent radii

of {ksF (θ)} (parametrising the local Fermi momenta). Overall, the justification of assuming the ϕ-independent forms of
{Λz

s ≡ Λz
s(µ, θ)} is evident from the self-consistency — [Ωs(k) ·ws(k)] is ϕ-independent and [ws(k)× ẑ] · ∇kΛ

z
s(µ, θ)

reduces to zero.
Making use of the above arguments, we can now compute the spinor overlaps,

∣∣ {ψs̃(k
′)}† ψs(k)

∣∣2, with the help of
Eq. (6). Knowing that the dependence of the azimuthal angles, ϕ and ϕ′, will disappear once we perform the azimuthal-
angle integrations, we list the overlap-functions as

Ts,s̃(θ, θ′) =
[
5− 3 cos2 θ′ + cos θ

(
17 cos θ′ − 27 cos3 θ′

)
+ cos2 θ

(
9 cos2 θ′ − 3

)
+ 9 cos3 θ cos θ′

(
5 cos2 θ′ − 3

)]
β1,1
intra

+
[
5− 3 cos2 θ′ + cos θ

(
9 cos θ′ − 3 cos3 θ′

)
+ cos2 θ

(
9 cos2 θ′ − 3

)
+ cos3 θ

(
5 cos3 θ′ − 3 cos θ′

)]
β3,3
intra

+
[
3 + 3 cos2 θ′ + cos3 θ

(
9 cos θ′ − 15 cos3 θ′

)
+ cos θ

(
9 cos3 θ′ − 3 cos θ′

)
+ cos2 θ

(
3− 9 cos2 θ′

)]
βinter . (24)

Here, the answer contains the results obtained after already performing the trivial ϕ-integrals. We are now ready to solve
Eq. (23), starting from its simplified version of

hs(µ, θ) =
∑
s̃

V

∫
k′

Ms,s̃(k,k
′) Λz

s̃(µ, θ
′)− Λz

s(µ, θ)

τs(µ, θ)
, (25)

where

τ−1
s (µ, θ) =

∑
s̃

V

∫
k′
Ms,s̃(k,k

′) , hs(µ, θ) = Ds(k) [w
z
s(k) + eB {Ωs(k) ·ws(k)}] . (26)

Incorporating the energy-conservation restrictions, which reduce the integrals to the respective Fermi surfaces at energy
µ, we simply it even further to

hs(µ, θ) +
Λz
s(µ, θ)

τs(µ, θ)
=

∑
s̃

ρimp |Vs,s̃|2

16× 4π

∫
dθ′

sin θ′ (k′)
3 D−1

s̃ (k′)

|k′ ·ws(k′)|
Ts,s̃(θ, θ′) Λz

s̃(µ, θ
′)
∣∣∣
k′=ks̃

F

. (27)

We note that the factor (k′)
3
sin θ′ arises as the Jacobian for switching to the spherical polar coordinates. Tacking the

initial factor of δ
(
ξs̃(k

′) − µ
)
needs re-expressing it in the language of δ(k′ − ks̃F ), which sources the appearance of the

other multiplicative factor of ∣∣k̂′ · ∇k′ξs(k
′)
∣∣−1

= k′/|k′ ·ws(k
′)| .

As a final step, observing the powers of cos θ in (24)], we set forth an ansatz of

Λz
s(µ, θ) = τs(µ, θ)

[
λs − hs + as cos θ + bs cos

2 θ + cs cos
3 θ

]
. (28)

In total we have 8 undetermined coefficients so determine, denoted as the set {λs, as, bs, cs}. We have 8 linear equations
at our disposal, extracted from Eq. (27) by equating the coefficients of 1, cos θ, cos2 θ, and cos3 θ on both the sides for
each value of s. This system of linear equations can be expressed compactly as a matrix equation, captured by

AN = Υ , where N =
[
λ1/2 a1/2 b1/2 c1/2 λ3/2 a3/2 b3/2 c3/2

]T
. (29)

But there is a catch: the eight equations represented above are not linearly independent. This is because A’s rank is lower
than 8. It is actually well and good since it prevents from the system from becoming overdetermined, as we must also
employ the constraint of the electron-number conservation, embodied by∑

s

∫
k

δfs(k) = 0 . (30)

Plugging in the solutions obtained, the charge-current density along the z-direction is computed as

J tot
z = − e

V

∑
s

∫
k

(ṙ · ẑ) δfs(k) , (31)

finally leading to the desired longitudinal magnetoconductivity,

σtot
zz =

∑
s

σs
zz , σs

zz = − e2

V

∫
d3k

(2π)3
[wz

s(k) + eB {Ωs(k) ·ws(k)}] δ
(
ξs(k)− µ

)
Λz
s(µ, θ) . (32)
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(a)

(b)

FIG. 2. δσzz(s) from each of the bands considering no interband interactions, with βs,s
intra set to unity: While subfigure (a) depicts

the variation of the full conductivity with B (in eV2) when OMM is taken into account appropriately, subfigure (b) represents the
conductivity versus B characteristics when OMM is turned off. Here, µ is in eV.

C. Results and discussions

The solutions of Eq. (27) are obtained numerically for a given set of parameter-values. In our illustrations, we resort to
plotting

δσzz(s) ≡ σs
zz(B)/σs

zz(B = 0)− 1,

where the residual conductivity at B = 0 (i.e., the Drude part) is subtracted off. The parameter values have been taken
from Ref. [58]. There, ℏvF = 1.23 eV Å, which translates into

vF =
1.23× 10−10 m eV

6.58× 10−16 eV s
= 0.1869× 106 m/s ≃ 0.06× 10−2 c ,

where c is the speed of light. Therefore, in natural units, we set the value of vF to 6× 10−4.
To start with, we attempt to make sense of the response-characteristics for the scenarios when there is no interband

scattering, i.e., βinter is set to zero. This leads to the reduction of A into the direct sum of the two matrices, A1 and
A2, each of them being a 4 × 4 matrix. In every case, we find that they have rank 3 (instead of 4), with

∫
k
δfs(k) = 0

providing the necessary extra equation. Fig. 2 captures such a scenario. Curiously, the parabolic-shaped response-profiles
curve in opposite ways for s = 1/2 and s = 3/2. In order to gauge the nature of the OMM-contributions, the lower panel
represent the behaviour bbtained by switching off the OMM. It leads to the conclusion that (I) the OMM-parts come
with a positive sign and are strong enough to flip the BC-only response into the positive domain for s = 1/2; (II) the
OMM-contributions have a negative sign which assist in increasing the magnitude of the already negative-valued response
(from the BC-only parts) for s = 3/2.
Fig. 3 shows the generic situations when the quasiparticles populating both the bands can scatter with each other. The

8× 8 matrix A is found to have rank 7, ensuring the internal consistency of the available equations. As discussed earlier,
this means that the charge-conservation provides the remaining linearly independent equation [viz., Eq. (30)]. From the
data presented here as well as our scans of the parameter space (not shown here), we find that for βinter/β

s,s
intra greater

than some small threshold value, the curves for s = 3/2 are turned upside down (into the negative domain), while the
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(a)

(b)

FIG. 3. δσzz(s) from each of the bands considering both intraband and interband interactions. While subfigure (a) depicts the
variation of the full conductivity with respect to B (in eV2) when OMM is taken into account appropriately, subfigure (b) represents
the conductivity-versus-B profiles when OMM is switched off. The three numbers in each plot-legend indicate the values in the set

{β1/2,1/2
intra , β

3/2,3/2
intra , βinter}. Here, µ is in eV.

s = 1/2 continuing to curve upwards (remaining positive). To probe into the role of the OMM-sourced parts, we plot the
nature of the curves by switching off the OMM (lower panel of Fig. 3). Intriguingly, the curves for s = 1/2 and s = 3/2
behave in an opposite nature, the former always remaining negatve and curving downward, irrespective of the values of
βinter. Overall, comparing the upper and the lower panels, we conclude that, while the OMM-parts have a positive sign
and are strong enough to flip the BC-only response into the positive domain for s = 1/2, the OMM-contributions have a
negative sign and try to pull the positive-valued response (from the BC-only parts) towards lower values for s = 3/2
Overall, σs

zz(B) comprises only even powers of B, which is in agreement with the Onsager-Casimir reciprocity relation,

σ
intra(inter)
zz (B) = σ

intra(inter)
zz (−B) [64–66]. From analysing the generic features, we conclude that there is little wisdom to

be gained from the βinter = 0 to infer anything regarding the βinter ̸= 0 case. The only thing that matches between the
two separate analyses is regarding the signs and strengths of the OMM-sourced parts. Albeit, the rationale behind not
to try to extract similarities between the two cases is that the charge conservation equation(s) that come into picture are
distinctly different — (I) for a single band with βinter = 0, the charge conservation must be satisfied individually for that
particular band; (II) a nonzero interband-coupling demands that the net charge, from summing over the two bands, must
be conserved. The observations serve to reinforce the recurrent phenomenon that the response from a single isolated band
is fundamentally different from the case when the quasiparticles are free to scatter with those populating other bands. In
fact, the same thing has been onserved for the two bands of an isolated Kramers-Weyl node [35], where downward-curved
parabolas morph into upward-curved ones for each of the bands, as soon as βinter is turned on.

IV. SUMMARY AND OUTLOOK

In the current piece of work, we have ventured into determining the nature of the linear response in the form of
longitudinal magnetoconductivity, focussing on on isolated RSWN. We have attempted to include both the BC and the
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OMM in a cohesive manner, as the necessary topological ingredients in the semiclassical Boltzmann equations. A major
stride forward has been to solve the linearised (in the strength of the probe field) equations exactly, not limiting to
the relaxation-time approximation with a constant phenomenological time (τ). Needless to say, our results quantify the
serious drawbacks of using momentum-independent relaxation times and neglecting the angle-dependent spinor-overlaps
in the collision integrals (see Refs. [33, 34] for the analytical expressions). By comparing the nontrivial results with those
obtained in our earlier works [33, 34], we do identify the inadequacies of dropping the angular-dependence in τ and the
ramifications of the nontrivial spinor-structures, as the exact answers turn out to be fundamentally different. Of course,
in Ref. [33], we did not account for interband scatterings, and neither shall we attempt to do so anymore, because we have
already successfully implemented the generic formalism without resorting to any approximation. Another point is that, a
linear-in-momentum term accompanying the identity matrix (in the operator space for the four-component spinors), is not
allowed in the most generic Hamiltonian for the RSWNs [58] derived from group-theoretical arguments. Consequently,
tilting is completely irrelevant for the RSWNs, preventing the possibility of having odd powers of B. We note that tilting
is a ubiquitous feature of the WSMs [9, 11, 13, 67, 68], because the conventional Weyl nodes generically appear at the
low-symmetry points of the BZs (not limited to those of chiral crystals).

In the future, it will be a rewarding enterprise to redo the calculations of linear response at finite temperatures [8, 9,
11, 15, 16, 33, 63, 69], which will also enable us to compute the temperature-dependent linear-response coefficients like
the thermoelectric and thermal-conductivity tensors. Another avenue worth exploring is to investigate the effects of strain
[8, 11, 33, 70], which breaks the rotational symmetry and can lead to pseudomagnetic fields (B5). A nonzero B5 makes
it possible for odd powers of B to show up in the response.
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[53] N. B. M. Schröter, D. Pei, M. G. Vergniory, Y. Sun, K. Manna, F. de Juan, J. A. Krieger, V. Süss, M. Schmidt, P. Dudin,
B. Bradlyn, T. K. Kim, T. Schmitt, C. Cacho, C. Felser, V. N. Strocov, and Y. Chen, Chiral topological semimetal with
multifold band crossings and long Fermi arcs, Nature Physics 15, 759 (2019).

[54] S. Mardanya, M. Kargarian, R. Verma, T.-R. Chang, S. Chowdhury, H. Lin, A. Bansil, A. Agarwal, and B. Singh, Unconventional
superconducting pairing in a B20 multifold Weyl fermion semimetal, Phys. Rev. Mater. 8, L091801 (2024).

[55] Z. S. Gao, X.-J. Gao, W.-Y. He, X. Y. Xu, T. K. Ng, and K. T. Law, Topological superconductivity in multifold fermion metals,
Quantum Frontiers 1, 3 (2022).

[56] N. Ashcroft and N. Mermin, Solid State Physics (Cengage Learning, 2011).
[57] I. Mandal and K. Saha, Thermoelectric response in nodal-point semimetals, Ann. Phys. (Berlin) 536, 2400016 (2024).
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