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Abstract:

This thesis introduces a novel mathematical framework linking the discrete, vector-based 2D 
Quanta lattice to the geometric Amplituhedron—suggesting that spacetime and quantum probability 
are dual projections of an underlying vectorial logic.  The accompanying diagrams reveal a multi-
layered correspondence between quantized vector patterns, light-cone geometry, and emergent 
spacetime curvature. It is proposed that by interpreting vector summations within a normalized ±1 
space, an emergent geometric field structure mirrors the shape and behavior of the Amplituhedron.  
When extended, this may offer a bridge between quantum probability amplitudes and the 
continuous curvature of spacetime, thereby approaching a unification between quantum 
mechanics and general relativity. 

⸻

1. Introduction:

Classical physics assumes continuity, while quantum mechanics introduces discreteness.
The triangular lattice of 2D vector quanta reveals symmetrical dualities centered on a normalized 
zero point—suggesting a discrete informational structure that reflects the geometry of the 
Amplituhedron bounded by ±1. The visual and numerical alignment of these patterns with the 
Amplituhedron suggests a deeper structural analogy: quantized information geometry (Arkani-
Hamed & Trnka, 2014).

This framework resonates with Tegmark’s Mathematical Universe Hypothesis, which posits that 
physical reality is not just described by mathematics but is mathematics—specifically, a 
mathematical structure existing independently of human interpretation (Tegmark, 2008). By 
modeling both spacetime curvature and quantum amplitudes through a discrete combinatorial 
system, the 2D Quanta lattice may serve as a concrete realization of such a mathematical substrate, 
in which reality emerges from a vectorial arithmetic.

⸻



2. The 2D Quanta Framework:

The 2D Quanta framework conceptualizes spacetime not as a smooth continuum, but as a lattice 
composed of discrete, directional interactions. At each node within this lattice, unit vectors 
propagate along fixed orientations governed by quantized constraints. These vectors operate within 
a ±1 normalized field—meaning that the magnitude of any individual vector component is bounded 
between -1 and +1. This constraint reflects the conservation of directional amplitude and can be 
thought of as an energy-normalized space, analogous to quantum amplitude spaces where total 
probability is conserved.
Each vector in the 2D Quanta framework below contributes to a discrete yet structured field defined 
by:



2.1 Cross-current Vectors

Cross-current vectors are defined by their diagonal propagation across the 2D Quanta lattice—
moving at 45-degree angles relative to the horizontal and vertical grid axes. These diagonals 
intersect the quantized vector space in a pattern that generates symmetrical formations.

As illustrated, these 45-degree vector paths establish a dual-current structure that mirrors the 
symmetry of light cones in relativistic spacetime. This directional behavior aligns with the properties 
of null geodesics in general relativity, which represent the path that light takes through curved 
spacetime (Einstein, 1916).

By mapping these diagonal movements within the normalized ±1 vector field, the lattice simulates 
light-like propagation at discrete intervals—suggesting that these cross-currents may serve as 
fundamental carriers of information or energy, similar to photons in quantum electrodynamics.

The following formula is a compact representation of how the 2D-quantized lattice encodes 45-
degree (light-like) vector propagation using orthogonal base vectors of equal magnitude. The 
mathematical underpinning of the cross-current concept shows how such vectors simulate null 
geodesics and propagate energy/information within the discrete vector field:



⸻

3. Time Dilation and Angular Geometry

The diagram below illustrates how the angular composition of vector fields within the 2D Quanta 
lattice gives rise to relativistic effects such as time dilation and light deflection.

In this framework, diagonal trajectories—referred to as cross-currents—are formed by the vector 
summation of orthogonal components Vₓ and Vᵧ, representing horizontal and vertical motions within 
a quantized lattice. These vectors combine to produce a resultant:

Cₓᵧ = Vₓ + Vᵧ

This relationship operates under the normalization condition:

|Vₓ| + |Vᵧ| = 1

As described, diagonal paths in the lattice—called cross-currents—arise from summing orthogonal 
vector components:



This constraint ensures that the resulting diagonal lies along a light-like trajectory within the lattice. 
When both components are equal (e.g., |Vₓ| = |Vᵧ| = 0.5), the path follows a perfect 45° diagonal—
representing the invariant speed of light across all reference frames, as described by Einstein’s 
theory of special relativity (Einstein, 1916). When the components are asymmetrical (e.g., |Vₓ| = 0.1, 
|Vᵧ| = 0.9), the trajectory becomes steeper, simulating the angular deflection of light near a 
gravitational source, similar to predictions from general relativity (Misner, Thorne, & Wheeler, 1973).

These variations in horizontal-to-vertical weighting mimic the bending of light due to spacetime 
curvature.  A steeper slope represents greater temporal elongation (time dilation), while a 
compressed horizontal component simulates spatial contraction or gravitational lensing—concepts 
central to relativistic physics.

⸻



Significance of Cross-Current Summation and Normalization

The normalization condition:

|Vₓ| + |Vᵧ| = 1

is more than a constraint—it encodes the conservation of energy within the discrete field, echoing 
fundamental principles of field theory and relativity (Peskin & Schroeder, 1995). When cross-
currents sum to unity, each component represents a fraction of a quantized energy packet moving 
through the lattice, akin to discrete units of light-like propagation.

Examples include:

• |Vₓ| = 0.1, |Vᵧ| = 0.9
→ A steep diagonal, nearly vertical, representing a highly time-dilated frame—analogous to objects 
under intense gravitational influence.

• |Vₓ| = 0.5, |Vᵧ| = 0.5
→ A 45° diagonal, modeling the idealized path of light—a null geodesic.

• |Vₓ| = 0.9, |Vᵧ| = 0.1
→ A shallow, nearly horizontal path, representing minimal time dilation and rapid spatial 
propagation.

By maintaining the summation to 1, the system ensures that all trajectories adhere to a light-like 
framework, while the internal ratios determine the angular orientation. This discrete mechanism 



models relativistic curvature and energy dynamics using simple geometric logic, aligning closely 
with how null geodesics operate in curved spacetime (Ambjorn, Jurkiewicz, & Loll, 2009).

⸻

Discrete Geometry and the Emergence of the Number 45

The triangular diagram representing all normalized cross-current vector combinations within a 9×9 
lattice reveals a profound structural insight: the total number of distinct vector pairings sums to 45. 
This value emerges from the triangular number formula:

1 + 2 + 3 + … + 9 = 45

or equivalently:

(9 × 10) / 2 = 45

Interestingly, 45 emerges as more than a numerological artifact—it represents the full set of energy-
conserving propagation states within the field. This result geometrically encodes the number of 
light-like, energy-conserving vector interactions possible within the bounded lattice region. Each 
node represents a valid configuration obeying |Vₓ| + |Vᵧ| = 1, and the full triangle constitutes the 
complete discrete spectrum of angular propagations.

The number 45 is not arbitrary—it reflects:

• The total count of cross-current states under a single quantization constraint.

• A geometric analogue to volume in amplitude space, much like the role of volume in the 
Amplituhedron (Arkani-Hamed & Trnka, 2014).



• A symbolic measure of combinatorial completeness, bridging vector-based modeling and 
quantum amplitude structures.

Thus, the internal summation of 45 becomes a quantized geometric amplitude—a discrete stand-
in for path integral calculations in quantum field theory (Witten, 2004). It implies that the lattice 
does more than simulate motion: it encodes the underlying probabilistic and geometric logic of 
both spacetime curvature and quantum interaction through structured, finite summation.

Cross-current vectors are therefore not just directional—they are relational, relativistic, and 
summative. They encode the flow of time and space, conserve light-like energy, and—through their 
aggregate count—encode emergent structures akin to geometric amplitudes. This positions the 2D 
Quanta lattice as a candidate for simulating relativistic and quantum phenomena through purely 
discrete, combinatorial geometry.

⸻—-

Time Dilation as Angular Steepness in the 2D Quanta Field

Following the combinatorial geometry and cross-current summation explored previously, this next 
diagram visualizes how vector slope encodes relativistic time dilation, directly reflecting the 
Lorentz factor:

This core principle of special relativity (Einstein, 1916) states that as an object’s velocity 
approaches the speed of light, its experienced time slows relative to a stationary observer. The 
following diagram titled “Time Dilation” visualizes this phenomenon using the angular structure of 
vector fields within the 2D Quanta lattice.



Diagram Interpretation:

• The vertical axis represents quantized elapsed time, ascending from 0.1 to 0.9 in red dashed 
intervals.

• The horizontal axis represents discrete spatial intervals, extending symmetrically from a 
central origin point.

• Field steepness—visualized by the rising black vertical vectors—corresponds to the degree of 
time dilation, with steeper slopes reflecting longer durations per unit of space.

• The dashed red time contours above the origin encode increasing temporal depth, aligned 
with higher Lorentz dilation values.

This structure shows that as the vector field steepens, more time “accumulates” per unit of spatial 
displacement, simulating observers in slower frames (low velocity or strong gravitational fields). 
Conversely, as the slope flattens, less time accrues per unit space, modeling frames with greater 
relative velocity and time dilation.



These visual elements illustrate a central claim of the 2D Quanta framework: relativistic time 
emerges geometrically from vectorial steepness.

⸻

Geometric Time from Directional Propagation

Whereas classical relativity treats time dilation as a byproduct of velocity or gravity within a 
continuous manifold, this framework proposes a discrete, angular origin for time dilation—generated 
by directional weighting in the field itself.

This interpretation echoes approaches in loop quantum gravity and causal dynamical triangulations, 
where spacetime geometry is built from discrete, combinatorially defined elements (Ambjorn, 
Jurkiewicz, & Loll, 2009). It also aligns with twistor-based formulations of quantum field theory 
(Witten, 2004), where geometry and causality are deeply entangled.

In this model:

• The geometry of direction defines the flow of time.
• The quantized steepness of propagation defines temporal intervals.

• The field itself is not passive—it actively generates proper time through angular 
constraint.

By using simple vector relations within the 2D Quanta lattice, this framework models relativistic time 
dilation without requiring smooth manifolds or continuous fields. Instead, it encodes relativistic 
behavior directly into the combinatorics of directional vector addition, bridging quantum and 
relativistic regimes with a single geometric grammar (Arkani-Hamed & Trnka, 2014).



Together, these two diagrams reveal a critical insight:

The geometry of relativistic time and the shape of quantum amplitude space emerge from the 
same underlying lattice structure.

The time dilation field translates directly into the geometry of quantum amplitudes, suggesting 
that space, time, and quantum interaction amplitudes are not distinct phenomena, but rather 
different projections of the same discrete vectorial logic—a concept supported by twistor theory 
(Witten, 2004), causal triangulations (Ambjorn, Jurkiewicz, & Loll, 2009), and geometric amplitude 
formulations (Arkani-Hamed & Trnka, 2014).

• Time dilation is encoded in angular steepness, echoing the Lorentz factor from special 
relativity (Einstein, 1916), where steep vector fields represent longer proper time.

• Probability amplitude is encoded in combinatorial area or volume, reflecting how scattering 
processes can be derived not from Feynman diagrams, but from emergent geometric regions like 
the Amplituhedron (Arkani-Hamed & Trnka, 2014).

• Both phenomena emerge from a unified 2D Quanta substrate, operating under conservation-
based summation (i.e., |Vₓ| + |Vᵧ| = 1), which discretely encodes null trajectories and vector 
coherence within a flat combinatorial field.

This duality reinforces the central proposition: the Amplituhedron is not merely an abstract 
mathematical tool, but a geometric hologram of a deeper, vectorially-governed physical reality—
a unified structure where relativistic geometry and quantum probability are derived from the same 
angular foundations.

⸻

4. Vector Summation as Probability Amplitudes

In contemporary quantum field theory, probability amplitudes—which govern the likelihood of 
particle interactions—are often derived from geometric constructions rather than traditional 
spacetime-based Feynman diagrams (Feynman, 1949). Again, one of the most elegant formulations 
of this approach is the Amplituhedron, the multidimensional geometric object that encodes 
scattering amplitudes as abstract volumes in a constrained amplitude space (Arkani-Hamed & 
Trnka, 2014).



Within the 2D Quanta framework, we uncover a discrete analog to this structure: the quantized 
summation of directional vectors within a triangular region. These vector sums produce a scalar 
area whose value corresponds to the magnitude of a quantum amplitude—not metaphorically, but 
geometrically and combinatorially.

Triangular Summation as Primitive Geometry

The total number of quantized vector contributions in a triangular domain is governed by the 
triangular number formula:

This expression, while elementary, takes on profound significance when applied to the 
combinatorics of directional vectors under the constraint:

|Vₓ| + |Vᵧ| = 1

Here, each integer i in the summation represents a horizontal cross-section of quantized vector 
pairings at a given angular configuration. For example, in a 9×9 lattice, the total number of valid 
summation states is:

This “area” is not merely a count—it is a quantized surface of amplitude, where each unit reflects a 
geometrically valid energy-preserving interaction. Unlike previous sections that focused on 
directional steepness and time dilation, here the emphasis is on cumulative summation as a 
geometric analog to amplitude magnitude.

Correspondence with the Amplituhedron

When this discrete triangular surface is visualized in projection, it can be seen to curve upward into 
a volumetric geometry—one that resembles the Amplituhedron in both form and function. The 
central axis anchors a region of maximal vector balance (Vₓ = Vᵧ), while the ±1 bounds represent 
polarized, light-like propagation. The resulting “folded field” defines a volume in abstract space, 



consistent with how the Amplituhedron encodes probability through geometric constraint (Witten, 
2004; Arkani-Hamed & Trnka, 2014).

Unlike Feynman diagrams, which trace paths over spacetime, the Amplituhedron operates without 
spacetime entirely. Similarly, this 2D Quanta lattice does not require a background metric—it 
generates amplitude purely through angular alignment and quantized summation. The analogy is 
not coincidental; it is structural.

⸻
In this framework:

• Amplitude arises as area, not as an abstract wavefunction.

• Volume emerges from vector coherence, not integration over paths.

• The Amplituhedron becomes a holographic projection of vectorial interactions within a flat, 
two-dimensional lattice.

This perspective allows us to reinterpret quantum probabilities not as abstract statistical effects, 
but as geometric results of directional symmetry and conserved interaction logic—unfolding 
through combinatorial summation rather than field-theoretic integrals (Peskin & Schroeder, 1995).



⸻

5. Synthesizing Quantum and Relativistic Geometry: Toward a Unified Field Interpretation

Having established that both vector summation and angular curvature can be discretely modeled 
within the 2D Quanta lattice, we now turn toward synthesis. This section explores how quantum 
amplitudes (traditionally computed via geometric volume in abstract space) and spacetime 
curvature (defined by differential geometry) can both be described by the same combinatorial 
vector system—paving the way for a unified interpretation of quantum and gravitational behavior, 
and unifying the amplitude-based formulations of quantum theory with the curvature-dependent 
geometry of general relativity.

⸻

5.1 In Quantum Mechanics

• The Amplituhedron encodes particle scattering amplitudes without reliance on spacetime 
locality. Instead, it computes probability magnitudes from constrained geometric volumes in 
abstract twistor-like spaces (Arkani-Hamed & Trnka, 2014; Witten, 2004).

• Within the 2D Quanta lattice, vector summation defines a discrete geometry that mirrors these 
amplitude calculations. Each normalized vector pairing contributes to a bounded, combinatorial area 
whose structure reflects quantum amplitude magnitudes.

• This logic builds upon Penrose’s early attempts to replace spacetime-based quantum 
dynamics with combinatorial geometry, where causal structure is emergent from directional 
relations (Penrose, 1971).

In short, quantum amplitudes emerge from summation geometry, not space-time continuity.



5.2 In General Relativity

The curvature of spacetime is defined by the Einstein Field Equations (Einstein, 1916), which 
relate the curvature tensor to the stress-energy tensor:

Lattice Interpretation:

If local curvature can be interpreted as emerging from vector density or directional skew—as 
visually encoded in the 2D Quanta diagrams—then these patterns may mimic the effects of stress-
energy on curvature.

For example, an imbalance in vector flow—such as a higher concentration of steep, time-dilating 
vectors—produces a bending of the overall lattice angle, analogous to a curved geodesic path in 
spacetime.

Thus, in the 2D Quanta model:

• Vector summation regions function analogously to localized energy-momentum tensors.
• The aggregate angular deviation of the field corresponds to spacetime curvature, as in 
general relativity.

This interpretation parallels discrete gravity approaches such as causal dynamical triangulations, 
where curved manifolds emerge from the statistical weighting of local geometric elements 
(Ambjorn, Jurkiewicz, & Loll, 2009).



5.3 Toward Unification

The insights from Sections 5.1 and 5.2 converge in a powerful way:

• In quantum theory, the volume of allowable vector summations defines probability 
amplitudes.

• In general relativity, the directional skew of local vector configurations defines spacetime 
curvature.

Both amplitude and curvature—two seemingly distinct phenomena—are now seen as emergent from 
the same conserved lattice structure, governed by:

• Angular composition and divergence

• Triangular and volumetric geometry

This perspective offers a candidate for discrete unification, where spacetime and quantum 
behavior emerge from vectorial constraint and symmetry—without requiring a continuous 
manifold.

⸻

6. Unification Proposal: From 2D Quanta to the Amplituhedron

It is propose that the Amplituhedron may be interpreted not merely as a computational 
replacement for Feynman diagrams (Feynman, 1949), but as a higher-dimensional projection of 
structured vector behavior within a 2D Quanta lattice. In this interpretation, local vector 
configurations, cross-current summations, and angular density encode both quantum 
probability amplitudes and relativistic curvature, uniting two previously disparate geometrical 
frameworks.



Each triangular summation region within the lattice acts as a discrete geometric microstate. Its 
orientation and combinatorial area correspond to:

• Quantum amplitudes, emerging from the cumulative structure of normalized vector pairings 
(Witten, 2004; Arkani-Hamed & Trnka, 2014), and

• Spacetime curvature, modeled by angular deviation, directional skew, and vector density—
paralleling the influence of stress-energy in general relativity (Einstein, 1916; Misner, Thorne, & 
Wheeler, 1973).
⸻

The synthesized formulation suggests that:

• Quantum behavior, as encoded by the Amplituhedron, arises from primitive vector 
interactions. Each triangle in the 2D Quanta lattice represents a volumetric unit of amplitude 
space, governed by symmetric, energy-conserving summation rules (|Vₓ| + |Vᵧ| = 1) (Penrose, 1971; 
Peskin & Schroeder, 1995).

• Gravitational curvature, described classically by the Einstein Field Equations:

emerges as a macroscopic manifestation of localized vector skew and summation imbalance, 
analogous to how mass-energy curves spacetime (Ambjorn, Jurkiewicz, & Loll, 2009).

⸻

A Unified Substrate

Rather than viewing quantum and relativistic geometry as mutually incompatible, this framework 
suggests they are dual projections of the same underlying vectorial substrate. The 2D Quanta 
lattice offers a candidate for this substrate—one in which:



• Geometry arises from directional summation,

• Probability emerges from combinatorial structure,

• Curvature is the angular echo of vector imbalance.

This view aligns with discrete quantum gravity models, such as causal dynamical triangulations, 
where continuum behavior emerges from combinatorial coherence (Ambjorn et al., 2009).

⸻
A Discrete Geometric Grammar

If validated, this model offers a novel unifying language—a discrete, visual, and vectorial grammar 
that bridges amplitude-based quantum models with curvature-based relativistic ones. The 
Amplituhedron becomes not an abstract computational artifact, but a geometric holograph of a 
deeper reality—one rooted in 2D combinatorial geometry, where amplitude and curvature are 
emergent consequences of vectorial constraint.
⸻

7. Implications and Future Research

The synthesis of quantum amplitude geometry and relativistic curvature within a discrete vector 
framework opens a new landscape of inquiry. The 2D Quanta lattice, initially conceived as a 
symbolic geometric construct, may serve as a foundational substrate—capable of expressing core 
physical phenomena through vectorial summation, angular modulation, and combinatorial structure.

Several lines of research naturally follow:

• Unitary Evolution and Quantum Logic: The stepwise transformation of vector states within the 
lattice may be interpreted as discrete analogs of unitary evolution operators—with potential 
applications in modeling quantum gates, decoherence, and entanglement structure (Peskin & 
Schroeder, 1995).

• Gravitational Lensing as Vector Skew: Gravitational lensing, typically modeled as curvature of 
spacetime by mass, could be reinterpreted as a vectorial skewing of cross-current pathways 
within the lattice—producing observable deflection patterns consistent with general relativity 
(Misner, Thorne, & Wheeler, 1973).



• Resonant Harmonics and Quantized Geometry: Patterns of constructive interference among 
cross-currents may reveal harmonic resonances—potentially corresponding to quantized 
curvature states or standing-wave structures akin to early lattice gauge theory approaches to 
gravity (Kogut, 1979).

• Spin Networks and Loop Quantum Gravity: The angular connections and combinatorial joins 
of vector fields in the 2D Quanta model may reflect the logic of spin networks used in loop 
quantum gravity—where quantum states of geometry are defined by discrete links and nodes rather 
than continuous fields (Rovelli & Smolin, 1995; Ambjorn, Jurkiewicz, & Loll, 2009).

These research paths suggest that space, time, and curvature may all be secondary constructs—
emerging from deeper patterns of directional coherence and combinatorial constraint within a 
discrete vector space.

⸻
Conclusion

This thesis has shown that quantum probabilities and spacetime curvature are not separate 
phenomena but discrete emergent expressions of a unified vectorial structure.

I propose that 2D Quanta lattices are not merely illustrative abstractions, but potential candidates 
for a foundational geometric substrate from which both quantum mechanics and general 
relativity can emerge. Through the combinatorics of directional vector summation and the 
constraint:



the lattice encodes both quantum amplitudes—via geometric area and probabilistic coherence 
(Witten, 2004; Arkani-Hamed & Trnka, 2014)—and spacetime curvature, as angular deviation and 
vector skew that mirror the influence of stress-energy tensors in Einstein’s field equations (Einstein, 
1916; Misner, Thorne, & Wheeler, 1973).

In this view, space, time, and probability are not fundamental—they are emergent properties of a 
deeper, directional grammar.

By reinterpreting the Amplituhedron as a higher-dimensional projection of discrete vector 
structures within the 2D Quanta lattice, this model bridges quantum field theory and general 
relativity through a shared geometric language. It does not attempt to unify these domains by 
forcefully reconciling their equations, but rather by revealing their common origin in vectorial and 
combinatorial structure (Penrose, 1971; Rovelli & Smolin, 1995).

This framework offers a compelling path toward the unification of quantum mechanics and 
general relativity—not through continuous fields or higher-dimensional strings, but through 
discrete, recursive, and geometrically grounded symmetries (Ambjorn, Jurkiewicz, & Loll, 2009; 
Peskin & Schroeder, 1995).

This discrete lattice-based approach not only supports emerging theories of quantum geometry but 
may also fulfill Tegmark’s mathematical universe hypothesis by revealing spacetime itself as an 
emergent projection of vectorial arithmetic (Tegmark, 2008).

Ultimately, this thesis points to a new physical language—symbolic, structural, and universal—in 
which probability and curvature are revealed to be dual projections of a single vectorial logic.

⸻
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