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Abstract 

This work presents a reinterpretation of gravity within the Theory of the Four-Dimensional 

Electromagnetic Universe (4DEU), where the universe is modeled as a four-dimensional 

hypersphere expanding at a constant rate equal to c along a real fourth spatial dimension, 

perceived as the flow of time. In this framework, the fundamental entities are Temporal Waves 

(TWs): standing electromagnetic waves oscillating exclusively along the temporal dimension. 

According to the Restricted Holographic Principle of the 4DEU theory, physical phenomena 

occurring along the temporal dimension manifest within the three-dimensional spatial 

hypersurface (our observable universe, where we exist) in a qualitatively transformed but 

quantitatively proportional manner. A central consequence is that TW energy manifests as mass 

quanta in 3D space. Moreover, the net radiation pressure from TWs, perpendicular to the 3D 

hypersurface, drives the expansion of the entire 4D universe. 

Gravity is proposed to result from local variations in TW density within the 4D universe. Higher 

TW density corresponds to greater mass in 3D, implying stronger localized TW radiation 

pressure that induces increased spatial curvature. 

Although conceptually distinct from General Relativity (GR), the weak-field predictions of the 

4DEU framework are in exact agreement with it. This equivalence rigorously accounts for all 

experimentally verified gravitational phenomena—including gravitational redshift, light 

deflection, Shapiro time delay, and perihelion precession—arising independently of the GR 

formalism, but from a real 4D universe curved only in its spatial (3D) portion. The 4DEU theory 

is thus fully consistent with current gravitational observations in all domains where GR has 

been tested. 
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1. Introduction 

1.1 Theoretical Background: From General Relativity to the 4DEU Theory 

General Relativity (GR), formulated by Einstein in 1915, describes gravity as the "curvature" 

of a four-dimensional pseudo-Riemannian spacetime caused by the presence of mass-energy. 

This "curvature" governs the motion of objects and the propagation of light, leading to well-

verified predictions such as gravitational time dilation, redshift, and lensing [1]. 

Despite its empirical success, GR presents unresolved conceptual and theoretical challenges. 

Its incompatibility with quantum mechanics, the need for hypothesized graviton, and the 

absence of a fundamental explanation for why mass-energy "curves" spacetime all suggest that 

a deeper framework may be required [2]. 

The Theory of the Four-Dimensional Electromagnetic Universe (4DEU) [3,4,5] offers a 

radically different perspective, based on the existence of a real four-dimensional (4D) 

hypersphere. The fundamental reference system in 4DEU is the privileged reference frame, 

centered at the Big Bang, with coordinates (0,0,0,0). In this system, all physical quantities are 

expressed in their privileged form, meaning that they are measured relative to this absolute 

frame, rather than being dependent on the observer’s motion as in General Relativity (GR) [3]. 

A key distinction between 4DEU and GR lies in the nature of the fourth dimension. In GR, time 

is treated as an imaginary coordinate in the Minkowski metric, making spacetime a pseudo-

Riemannian manifold. In contrast, in 4DEU, the fourth dimension is a real spatial coordinate, 

which we perceive as time. This coordinate also represents the radius of the 4D hypersphere 

that constitutes the universe [3]. The expansion of the universe occurs along this fourth spatial 

dimension at a constant rate c, and we perceive this expansion as the passage of time, following 

the relation: 

𝑇 =
𝑅

𝑐
                                                                   (1.1) 

where R is the radius of the universe, T is the privileged time, and c is the velocity of light in 

vacuum. 

 

More than a velocity in the sense of motion through time, Equation (1.1) expresses a 

fundamental equivalence between space and time established by Postulate 2 (the Restricted 

Holographic Principle) [3] of the 4DEU theory, in which c acts as a mere conversion factor 

between the two units historically used to measure spatial and temporal intervals. In this respect, 

the role of c is analogous to its function in the well-known equation 𝐸 = 𝑚𝑐2, where 𝑐2 serves 

as a conversion factor between mass and energy. 
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This formulation implies that the privileged time remains invariant throughout the entire 4D 

universe, including its 3D portion where we exist. The expansion of the universe along the 

fourth dimension occurs at a constant rate equal to the speed of light, meaning that every 

approximately 3  ×  108 meters of expansion, along the fourth dimension, correspond to exactly 

one second of privileged time. Since, as postulated in 4DEU theory, the entire universe expands 

at rate c, this implies that at any point within the 4D universe, including its 3D portion, the 

privileged time always flows at the same rate. This invariance holds throughout the 4D universe, 

including within black holes. In other words, the privileged time numerically coincides with the 

proper time experienced by any observer, whether inertial, non-inertial or gravitational, since 

the 4DEU metric is postulated to preserve a flat temporal component. 

In order to formulate a unified treatment valid for both General Relativity and the 4DEU theory, 

we adopt the following general definition: proper time is the time measured by a clock located 

in the same local reference frame, whether inertial, accelerated, or subject to a gravitational 

field, in which the events to be measured occur. 

This operational and frame-local definition allows proper time to be treated consistently in both 

frameworks. In GR, it corresponds to the time along an observer’s worldline, as classically 

defined in the literature [2], while in 4DEU it naturally coincides with the global privileged 

time T, which flows uniformly throughout the 4D universe. By avoiding reliance on trajectories 

or coordinate-dependent quantities, this definition remains fully compatible with the geometric 

structure of both theories. 

For this reason, in the present work we denote the privileged time by T. This notation reflects 

both its physical interpretation, as the proper time experienced by any observer, and its 

geometric meaning as the extrinsic radial coordinate (𝑙) of the 4D hypersphere, that is, the 

coordinate along the real time dimension that coincides with the radius of the universe. In 

contrast to General Relativity, where the proper time 𝜏 is defined only along specific 

trajectories, T represents a universal temporal parameter that increases uniformly throughout 

the entire universe, independently of reference frame or gravitational field.  

For example, if two observers—one near a black hole, the other far away—each measure 1 

second on their own clock, then in 4DEU both have experienced the same privileged time 

interval 𝑇 = 1 s. This means that for both, the universe has physically expanded by c kilometers 

along the fourth spatial dimension (the real Time dimension). 
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In General Relativity, the same two observers also measure 𝜏 = 1 s locally on their clocks. 

However, these measurements are not globally comparable: the same unit of proper time for 

one observer may correspond to a longer or shorter interval when viewed from the other’s 

frame. This reflects the relativity of time in Einstein’s framework. 

Throughout this work, we refer to the “3D hypersurface” as the three-dimensional spatial 

boundary of the real four-dimensional universe defined in the 4DEU theory. This hypersurface 

corresponds to the portion of the universe that we can observe, and in which we live, at a given 

value of the privileged time T. It represents the domain in which all physical phenomena are 

perceived and quantitatively measured by us as observers, through our experimental apparatus. 

For stylistic variety, we also use equivalent expressions such as “3D part” or “3D portion of the 

real 4D universe” to denote the same concept. The adjective “real” emphasizes that the fourth 

dimension in the 4DEU model is not a pseudo-temporal and imaginary coordinate, as in 

standard relativistic spacetime, but a true spatial direction along which the universe expands at 

a constant rate c. 

1.2 The Restricted Holographic Principle and Its Consequences 

At the heart of the 4DEU theory lies the Restricted Holographic Principle (Postulate 2 in [3]), 

which states that any physical phenomenon occurring along the fourth spatial dimension 

manifests in the 3D hypersurface of the universe in a qualitatively transformed but 

quantitatively proportional manner. 

One of the fundamental consequences of this principle is our perception of mass, time, and 

charge. 

The expansion of the 4D universe along its fourth spatial dimension appears, in the 3D part of 

the universe where we live, as the passage of time. The energy of TWs, which are standing 

electromagnetic waves oscillating exclusively along the fourth spatial dimension, is perceived 

in 3D space as mass quanta [4]. This implies that mass is not an intrinsic property, but rather 

the 3D manifestation of TW energy. Additionally, the phase states of TWs (±90°) are perceived 

in 3D as electric charge and magnetic poles, providing a natural origin for electromagnetism 

[4]. 

1.3 Cosmic Expansion in the 4DEU Framework 

A fundamental aspect of 4DEU is that the expansion of the universe is driven by the radiation 

pressure of TWs acting upon the 3D portion of the 4D universe. Unlike the standard ΛCDM 

model, which postulates an unknown dark energy component, 4DEU attributes cosmic 
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expansion to the net negative radiation pressure exerted by TWs perpendicularly to the 3D 

spatial hypersurface. This pressure drives the universe's expansion, sustains the universe’s 

expansion at a constant rate equal to c. 

1.4 Gravitational Extension of the 4DEU Theory: Weak-Field Regime 

n this work, we present the first gravitational extension of the 4DEU theory. While the theory 

has previously been developed to account for time, mass, and electromagnetism as projections 

of TWs within a four-dimensional Euclidean universe, it has so far lacked any treatment of 

gravitational dynamics. 

We address this gap by deriving an effective three-dimensional spatial metric generated by 

mass, based on localized variations in TW radiation pressure. This spatial deformation, 

interpreted through the Restricted Holographic Principle, gives rise to gravitational effects 

without invoking curvature of the temporal dimension. 

Our analysis is carried out in the weak-field regime, where gravitational fields are sufficiently 

small to permit linear approximations. Within this limit, we demonstrate that the 4DEU 

framework reproduces the standard predictions of General Relativity—such as perihelion 

precession and gravitational redshift—solely through spatial curvature. The case of strong 

gravitational fields, although of fundamental interest, lies beyond the scope of the present study. 

In the sections that follow, we develop the mathematical framework of the gravitational 4DEU 

model, derive the corresponding metric, and apply it to test-particle motion near a central mass, 

recovering the key results of relativistic orbital dynamics. 

 

2. Theoretical Framework 

In this section, we develop the theoretical structure that enables gravitational dynamics to 

emerge within the 4DEU framework. This construction is based on Corollary 3 to Postulate 2, 

which formalizes a direct consequence of the Restricted Holographic Principle [3], as applied 

to local asymmetries in the radiation pressure exerted by TWs within the 4D universe. These 

asymmetries produce spatially localized deformations in the 3D geometry that manifest as 

gravitational effects. 

Whereas General Relativity (GR) models time as an imaginary coordinate within a pseudo-

Riemannian spacetime, the 4DEU theory treats it as a real and flat spatial dimension along 

which the universe expands. Consequently, all gravitational phenomena must originate from 
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spatial curvature alone. We begin by deriving the effective three-dimensional spatial metric 

associated with a spherically symmetric mass distribution. This metric is directly constructed 

from the postulates of the 4DEU theory and subsequently compared to the Schwarzschild 

solution of GR in the weak-field limit. 

Using this spatial metric, and treating the privileged time T as both proper time and affine 

parameter, we derive the equations of motion for test particles and light rays. This provides the 

foundation for analyzing classical relativistic effects—such as Mercury’s perihelion precession, 

gravitational redshift, and the Shapiro time delay—entirely from spatial curvature, without 

invoking any temporal curvature. 

The goal is to demonstrate that the 4DEU framework, while conceptually distinct from GR, 

yields equivalent predictions for experimentally verified gravitational phenomena, thereby 

supporting its viability as a physically meaningful alternative theory of gravity. 

2.1 Corollary 3 to Postulate 2: Gravity as Spatial Curvature Induced by TW Radiation 

Pressure Associated with Mass 

This corollary to Postulate 2 states that gravity arises as a secondary effect of local variations 

in TW density within the 4D universe. These variations, via the Restricted Holographic 

Principle, produce spatially localized changes in TW-induced radiation pressure, leading to 

curvature in the 3D spatial geometry. These deformations are what we perceive as gravitational 

effects. 

According to the Restricted Holographic Principle, any physical phenomenon that occurs along 

the temporal dimension of the 4D universe must be perceived in its 3D spatial portion as a 

qualitatively transformed yet quantitatively coherent manifestation. In particular, mass appears 

as the 3D manifestation of the energy carried by TWs, which oscillate exclusively along the 

temporal dimension. Electric charge and magnetic polarity, in turn, correspond to specific phase 

values of these TWs: a phase of +π/2 gives rise to positive electric charge and magnetic north 

polarity, while a phase of −π/2 corresponds to negative electric charge and magnetic south 

polarity. These fundamental physical properties, as observed in 3D, can thus be interpreted as 

distinct projections of the intrinsic characteristics of TWs in the four-dimensional 

electromagnetic structure of the universe. 

Building on this foundation, Corollary 3 asserts that a higher local TW density corresponds, via 

the Restricted Holographic Principle, to a greater mass concentration and a stronger TW-

induced 3D radiation pressure in the spatial portion of the 4D universe. 
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This radiation pressure acts perpendicularly to the 3D portion of the universe and remains 

entirely confined within spatial geometry. Consequently, regions with greater TW density, i.e. 

greater mass, exert a higher local radiation pressure than adjacent regions with lower density 

(or no mass), creating a differential pressure field. 

These local differences in TW-induced radiation pressure result in spatial deformations within 

the 3D portion of the universe, which manifest as gravitational effects. This mechanism is 

illustrated in highly simplified schematic form in Figure 1. 

 

Fig.1 Schematic illustration of how high-density TW-induced radiation pressure 

generates spatial curvature in the 4DEU framework. 

This highly idealized diagram illustrates how a locally increased density of TWs leads to a 

corresponding increase in radiation pressure acting perpendicular to the 3D portion of the 4D 

universe (labeled “space” in the figure), where we reside. According to the Restricted 

Holographic Principle [3], the energy carried by these TWs appears as mass (M) within the 3D 

part of the 4D universe. This locally enhanced radiation pressure induces a purely spatial 

curvature in the 3D geometry, giving rise to the gravitational effects described by the 4DEU 

theory. In the figure, the three-dimensional spatial geometry is schematically represented along 

a single spatial dimension for illustrative purposes. 

 

The causal chain proceeds as follows: a higher density of Temporal Waves results in a greater 

mass concentration in 3D, which in turn generates a stronger local TW-induced radiation 

pressure. This increased pressure causes a more pronounced spatial curvature within the 3D 

hypersurface, ultimately leading to a stronger gravitational effect. This leads to a fundamental 

conceptual distinction between the two theories. In General Relativity, gravity originates from 

the curvature of four-dimensional spacetime produced by mass-energy. In contrast, within the 

4DEU theory, gravity emerges from the curvature of the three-dimensional spatial geometry of 

the 4D universe, resulting from local density variations in TW-induced 3D radiation pressure. 

Despite this conceptual divergence, both theories yield equivalent observable predictions in all 

experimentally tested domains. Phenomena such as gravitational redshift, light deflection, 

Shapiro time delay, and Mercury’s perihelion precession can all be derived within the 4DEU 

framework solely from spatial curvature, without invoking a curved time coordinate. 
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This reinterpretation of gravity not only preserves the predictive success of General Relativity 

but also provides a deeper and more unified physical explanation. Within the 4DEU framework, 

gravity, like mass, charge, and time itself, is not fundamental, but rather a spatial consequence 

of the intrinsic electromagnetic properties of the underlying four-dimensional structure. 

More than just an alternative gravitational model, 4DEU provides a deeper understanding of 

why these gravitational effects emerge in the first place. A new theory must not merely 

reproduce known results; it should also provide a deeper explanation of the mechanisms behind 

them. his approach challenges conventional views on the nature of gravity and highlights the 

conceptual distinctiveness of the 4DEU framework with respect to General Relativity.  

 

2.2 Derivation of the 3D Metric in 4DEU and Comparison with General Relativity 

2.2.1 Constructing the 3D Metric of the 4D Universe 

In the Four-Dimensional Electromagnetic Universe (4DEU), the universe is modeled as a 4D 

hypersphere with radius 𝑅𝑡 = 𝑐𝑡 = 𝑎(𝑇) where T represents the privileged time coordinate, 

interpreted as the radial expansion of the universe along its fourth spatial dimension. 

The intrinsic metric, meaning one not defined relative to a 5D space, of a 4D hypersphere can 

be described using Cartesian coordinates (𝑥1, 𝑥2, 𝑥3, 𝑥4) that satisfy the equation: 

𝑥1
2 + 𝑥2

2 + 𝑥3
2 + 𝑥4

2 = 𝑅2                                                  (2.1)  

It can be expressed in Cartesian coordinates via the differential line element: 

𝑑𝑠4𝐷
2 = 𝑑𝑥1

2 + 𝑑𝑥2
2 + 𝑑𝑥3

2 + 𝑑𝑥4
2                                            (2.2) 

or, in 4D hyperspherical coordinates (see its derivation in Appendix A), as: 

𝑑𝑠4𝐷
2 = 𝑑𝑙2 + 𝑙2𝑑𝜃2 + 𝑙2 sin2 𝜃  𝑑𝜙2 + 𝑙2 sin2 𝜃 sin2𝜙  𝑑𝜓2                  (2.3) 

Here, 𝑙 is the radial coordinate, representing the distance from the center of the 4D hypersphere, 

varying from 0 to R, representing the radius of the hypersphere, which defines the outer 

boundary. 

𝜽 is the first angular coordinate, measuring the inclination from a reference axis, and ranging 

from 0 ≤ 𝜃 ≤ 𝜋. 

𝝓 is the second angular coordinate, specifying the position within a meridional plane, ranging 

from 0 ≤ ϕ ≤ π. 

𝝍 is the third angular coordinate, describing the azimuthal orientation around the hypersphere, 

ranging from 0 ≤ ψ ≤ 2π. 

Finally, 𝑑𝑠4𝐷 is the infinitesimal line element of the 4D hypersphere, measuring the distance 

between two neighboring points in the intrinsically Euclidean four-dimensional space. 

Using the metric of the unit 3D hypersurface 𝑑Ω3
2 of the 4D hypersphere, given by: 
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𝑑𝛺3
2 = 𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃  𝑑𝜙2 + 𝑠𝑖𝑛2 𝜃 𝑠𝑖𝑛2 𝜙  𝑑𝜓2                               (2.4) 

where 𝑑𝛺3
2 denotes the line element of the three-dimensional spatial portion (3-sphere) of a 4D 

hypersphere with unit radius 𝑅 = 1,  

 

the full line element of the 4D hypersphere can be written as 

𝑑𝑠4𝐷
2 = 𝑑𝑙2 + 𝑙2𝑑𝛺3

2                                                        (2.5) 

2.2.2 The 4D Euclidean Universe and its 3D Hypersurface 

The four-dimensional universe in the 4DEU model is intrinsically Euclidean, meaning that it 

does not require embedding in a higher-dimensional space. Accordingly, we define the 4D 

space as follows: 

ℳ4𝐷 = ℝ
4 =  {(𝑥, 𝑦, 𝑧, 𝑟)  |  (𝑥2 + 𝑦2 + 𝑧2 + 𝑙2)  = 𝑅2}                   (2.6) 

where ℳ4𝒟 coincides with the Euclidean space ℝ4, with an intrinsic constraint defining a 4D 

hypersphere of radius R. 

 

A specific submanifold of ℳ4𝒟 is the 3D hypersurface, obtained by fixing the extrinsic radial 

coordinate l to its maximum value, i.e., 𝑙 = 𝑅. This resulting in the submanifold: 

ℳ3𝐷 =ℳ4𝐷 ∩ {𝑟 = 𝑅} = {(𝑥, 𝑦, 𝑧, 𝑅 ) | (𝑥
2 + 𝑦2 + 𝑧2 + 𝑙2)  = 𝑅2}       (2.7) 

Since ℳ3𝒟 is a 3D submanifold of ℳ4𝒟, all its points lie within the full 4D space, but with the 

additional constraint that 𝑙 = 𝑅 is fixed. As a result, the radius differential vanishes (𝑑𝑙 = 0), 

and the metric (see Eq.2.5) reduces to: 

𝑑𝑠3𝐷
2 = 𝑅2𝑑𝛺3

2                                                               (2.8)  

Where 𝑑𝑠3𝐷 is the infinitesimal line element of the 3D hypersurface of the 4D universe. It 

represents the infinitesimal distance along the intrinsically curved 3D hypersurface of the 4D 

universe. 

This metric describes a curved geometry, as it is restricted to the 3D hypersurface of a 4D 

hypersphere. This means it is valid only for points belonging to the submanifold ℳ3𝒟, that is: 

𝑑𝑠3𝐷 ∈ ℳ3𝒟  

whereas the Euclidean nature of the metric applies when: 

𝑑𝑠4𝐷 ∈ ℳ4𝒟  with 𝑑𝑠4𝐷 ∉ ℳ3𝒟 

In other words, the Euclidean nature of the full 4D metric is preserved only if at least one of the 

points involved in the measurement lies outside the 3D hypersurfaceℳ3𝒟. 
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Conversely, if the measurement is entirely confined to ℳ3𝒟, then distances are constrained to 

the curved geometry of the hypersphere. 

Since the 3D metric does not include the radial term 𝑑𝑙2, it describes only distances between 

points that remain confined to the hypersurface at fixed radius R in the 4D space. These 

distances are measured along the curved 3D surface, rather than across the embedding 4D  

Euclidean space. The resulting geometry is therefore intrinsically curved and corresponds to 

the induced metric of the 3D hypersphere, which forms the outer boundary of the 4D universe. 

Since 𝑑Ω3
2 represents the line element of a unit 3D hypersurface, we expand it in terms of a 

radial coordinate r, different from l, and angular components: 

𝑑𝛺3
2 =

𝑑𝑟2

1−𝑘𝑟2
+ 𝑟2𝑑𝛺2

2                                                         (2.9) 

Where 𝑑𝛺2
2 represents the line element of a unit 2-sphere (a standard 2D spherical surface), 

given by 𝑑𝛺2
2 = 𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃𝑑𝜙2, and r that represents a radial coordinate relative to the 3D 

hypersurface itself that do not correspond to the 4D radius coordinate 𝑙 and k is the spatial 

curvature parameter of the 3D hypersphere. 

  

Substituting Eq.2.9 into the 3D metric (Eq.2.8), we obtain: 

𝑑𝑠3𝐷
2 = 𝑅2 (

𝑑𝑟2

1−𝑘𝑟2
+ 𝑟2𝑑𝛺2

2)                                                  (2.10) 

Furthermore, in a 4D hypersphere, the spatial curvature of its 3D hypersurface of radius R is 

given by: 

𝑘𝑅 =
1

𝑅2
                                                                 (2.11) 

Since the angular part 𝑑Ω3
2 describes a 3D hypersurface of radius R, we can express: 

𝑅2 =
1

𝑘𝑅
                                                                (2.12) 

Substituting this relation into the previous 3D metric equation (Eq.2.8) gives: 

𝑑𝑠3𝐷
2 =

1

𝑘𝑅
𝑑𝛺3

2                                                          (2.13) 

These equations apply to the metric of the actual 4D universe and its 3D spatial portion, where 

physical observers (like us) reside. This 3D part corresponds to a 3D hypersurface located at a 

distance 𝑅𝑡 from the center of the 4D universe, identified with the Big Bang. Therefore, for the 

entire 4D universe, the metric is: 

𝑑𝑠4𝐷
2 = 𝑑𝑙2 + 𝑙2𝑑𝛺3

2                                                      (2.14) 
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while for its 3D portion at privileged time T, the corresponding metrics are: 

𝑑𝑠3𝐷
2 = 𝑅𝑇

2𝑑𝛺3
2  or  𝑑𝑠3𝐷

2 =
1

𝑘𝑅𝑇
𝑑𝛺3

2                                     (2.15) 

Where 𝑘𝑅𝑡 = 1 𝑅𝑇
2⁄  

Finally, substituting 𝑑𝛺3
2 of eq.2.9 into the equation 2.15, we obtain: 

𝑑𝑠3𝐷
2 =

1

𝑘𝑅𝑇
(

𝑑𝑟2

1−𝑘𝑅𝑇𝑟
2 + 𝑟

2𝑑𝛺2
2)                                            (2.16) 

Note that in these equations, r is a comoving radial coordinate intrinsic to the 3D portion of the 

4D universe. It is distinct from the extrinsic coordinate l, which varies along the fourth spatial 

dimension and whose maximum value defines the 4D radius R. 

Now, considering the intrinsic geometry of the 3D hypersurface, we remove the global scaling 

factor 𝑅2. This is justified by the fact that the expression: 

𝑑𝑟2

1−𝑘𝑟2
+ 𝑟2𝑑𝛺2

2                                                        (2.17) 

describes the intrinsic geometry of a unit 3-sphere, independent of the physical radius R of the 

4D hypersphere. By factoring out 𝑅2, we express all spatial distances in units normalized to the 

hypersphere’s radius. This simplification allows us to focus on the curvature properties of 

space, without loss of generality, and is analogous to the FLRW metric in comoving coordinate, 

where the scale factor 𝑎(𝑇) is treated separately and can be reintroduced later for physical 

interpretation. We, thus, obtain: 

𝑑𝑠3𝐷
2 =

𝑑𝑟2

1−𝑘𝑟2
+ 𝑟2𝑑𝛺2

2                                              (2.18) 

This equation represents the intrinsic metric of the 3D hypersurface of the 4D universe, 

describing its spatial curvature at a given time. 

It also corresponds to the spatial part of the intrinsic Friedmann-Lemaître-Robertson-Walker 

(FLRW) metric, which defines how distances are measured within 3D space at a fixed cosmic 

instant. The FLRW metric is a solution to Einstein’s field equations that describes the large-

scale structure of the universe under the assumption of homogeneity and isotropy, meaning that, 

on sufficiently large scales, the universe appears the same in all directions and at every location. 
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2.2.3 Geometric Interpretation 

To clarify why two distinct metrics describe the 3D part and the full 4D universe, it is helpful 

to employ an analogy with a 2D circle, where the circle represents the 4D universe, and its 

circumference represents the 3D part where we exist (see figure 2). The radius R of the circle 

corresponds to the privileged time coordinate in the 4DEU theory, which increases uniformly 

at the rate c. The figure illustrates a static snapshot of the universe at the privileged time 𝑇 =

𝑅/𝑐, corresponding to a fixed radius of the 4D hypersphere. Any point within the circle 

represents a location in the 4D universe outside its 3D part. 

 

Fig.2 Geometric analogy for a static 4DEU universe. 

Schematic representation of the 4DEU universe using a 2D analogy. The interior of the circle 

represents the full four-dimensional (4D) Euclidean universe, while the circumference 

corresponds to its three-dimensional (3D) portion where physical observers reside. The radius 

R denotes the privileged temporal coordinate in 4DEU, increasing uniformly at the rate c. Points 

A and B lie on the 3D part (𝑙 =  𝑅), while points C and D lie within the 4D interior (𝑙 <  𝑅). 

The curved arc 𝐴𝐵̂ represents a distance computed using the 3D metric, whereas the straight 

segments between internal and boundary points correspond to Euclidean distances in 4D 

 

The diagram illustrates a static universe at the privileged time 𝑇 = 𝑅/𝑐, i.e., at a fixed radius 

of the 4D hypersphere. The figure shows that distances measured along the circumference (e.g., 

A–B) follow curved 3D geometry (computed via Eq. 2.18), whereas all other segments are 

Euclidean (computed via Eq. 2.5). 

Note that 𝑟𝐴 and 𝑟𝐵, the radial coordinates of points A and B, are both equal to R, while those 

of points D and C are smaller than R, because these points lie inside the circle. In this analogy, 
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the arc distance 𝐴𝐵̂ corresponds to the curved 3D metric, while the distances 𝐴𝐶̅̅ ̅̅ , 𝐵𝐶̅̅ ̅̅  and 𝐶𝐷̅̅ ̅̅ , 

are all Euclidean. 

This analogy clearly illustrates three key points. First, distances between points belonging to 

the 3D part of the 4D universe must be calculated using the curved 3D metric. Second, distances 

between an internal point (i.e., a point outside the 3D part) and a point on the 3D part are 

described by the Euclidean metric. Third, if both points are within the 4D space, the full 

Euclidean metric applies as well. 

It is important to note that in the 4DEU theory, real point-events exist inside the 4D universe 

because a real temporal-spatial dimension exists. These points represent past events relative to 

the present but remain causally inaccessible, as the 4D universe expands along the temporal 

dimension at the rate c. In contrast, in the 𝜆𝐶𝐷𝑀 model, such internal points do not actually 

exist, since there is no real temporal dimension, but merely a mathematical construct. 

2.3 Comparison with the Schwarzschild Metric in General Relativity 

In General Relativity (GR), the Schwarzschild metric is the exact solution to Einstein’s field 

equations describing the gravitational field of a spherically symmetric, non-rotating, uncharged 

mass in vacuum: 

𝑑𝑠2 = −(1 −
2𝐺𝑀

𝑐2𝑟
) 𝑐2𝑑𝑡2 +

𝑑𝑟2

1−
2𝐺𝑀

𝑐2𝑟

+ 𝑟2𝑑𝛺2
2                                   (2.19) 

where r is the radial coordinate measured from the center of the mass M, and the dimensionless 

quantity 
2𝐺𝑀

𝑐2𝑟
 represents the ratio of the Schwarzschild radius 𝑟𝑠 =

2𝐺𝑀

𝑐2
 (i.e., the radius of the 

event horizon for a black hole) [2,6] and the radial coordinate r. This term expresses the local 

intensity of the gravitational field and determines the deviation from flat spacetime. 

 

This solution is widely employed to describe the gravitational field around astrophysical bodies 

approximately spherically symmetric, such as planets, stars, and non-rotating black holes. It 

provides an excellent approximation for massive astronomical bodies where rotational effects 

are negligible compared to the dominant gravitational field. 

The spatial part of the Schwarzschild metric, obtained by setting 𝑑𝑡 = 0, is: 

𝑑𝑠3𝐷(𝑆𝑐ℎ𝑤𝑎𝑟𝑧.)
2 =

𝑑𝑟2

1−
2𝐺𝑀

𝑐2𝑟

+ 𝑟2𝑑𝛺2
2                                             (2.20) 
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2.3.1 The Schwarzschild Metric as a Local Solution to Einstein’s Equations 

Standard general relativity textbooks state that the Schwarzschild metric is a local vacuum 

solution, applicable in regions where cosmic expansion can be neglected. Birkhoff’s theorem 

ensures that any spherically symmetric vacuum solution is necessarily static, leading to the 

Schwarzschild metric [7]. This solution is used to model spacetime around massive objects like 

stars and black holes, where the influence of large-scale cosmological expansion is insignificant 

[8]. The absence of the scale factor 𝑎(𝑡) results from solving Einstein’s equations under the 

assumption of asymptotic flatness, which implies that the spacetime becomes indistinguishable 

from Minkowski space at large distances from the source. In such conditions, the effects of 

cosmic expansion vanish locally, and the gravitational field is fully determined by the mass 

distribution itself. 

Several studies highlight that the Schwarzschild metric neglects cosmic expansion because it 

models a local, isolated mass. For instance, Nandra, Lasenby, Hobson (2012) explicitly state 

that “the Schwarzschild solution ignores the dynamical expanding background in which the 

mass resides” [9]. Similarly, Bonnor (1996) concludes that "the cosmic expansion seems to 

exert no influence on local orbital motion," confirming that the Schwarzschild metric provides 

a valid approximation for planetary systems [10]. 

Recent analyses reinforce this distinction: Faraoni et al. (2014) assert that Schwarzschild 

solution “describes the gravitational field outside a [mass] ... with the cosmological constant 

set to zero” [11]. Carrera & Giulini (2010) clarify that local gravitational dynamics remain 

unaffected by cosmic expansion unless an explicit coupling is introduced [12]. 

Thus, the Schwarzschild metric does not include a scale factor because, as a local solution, it 

describes a region where cosmic expansion plays no role. The same reasoning applies to the 

FLRW model: in local contexts, the global scale factor 𝑎(𝑡) can be neglected. Similarly, in the 

4DEU framework, the spatial metric of the universe initially includes a global scale factor 𝑅𝑇 

related to the expansion of the 4D hypersphere. However, in the vicinity of a localized mass, 

this global factor does not contribute to the intrinsic curvature experienced locally. As in GR, 

where the Schwarzschild solution omits 𝑎(𝑡) to isolate the gravitational field of an object from 

cosmological effects, the 4DEU model also removes 𝑅𝑇 to obtain a purely intrinsic spatial 

metric. This structural analogy is developed further in the following subsection. 
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2.3.2 Local Application of the Metric in the 4DEU Framework  

Analogously to General Relativity, where the Schwarzschild metric excludes the cosmological 

scale factor 𝑎(𝑡) in the description of local gravitational fields, the 4DEU theory likewise omits 

the global scale factor 𝑅𝑇 when formulating its local spatial metric. In the cosmological 

formulation of the 4DEU model, the 3D hypersurface of the universe evolves with a scale factor 

proportional to 𝑅𝑇, such that the full spatial metric includes a multiplicative term 𝑅𝑇
2, analogous 

to 𝑎2(𝑡) in the FLRW framework. This global factor reflects the large-scale expansion of the 

four-dimensional universe along its privileged spatial coordinate. 

However, when focusing on the gravitational field generated by a localized mass distribution, 

this global expansion can be neglected. The rationale is the same as in GR: in regions 

sufficiently close to an isolated mass, and over privileged time intervals that are short compared 

to cosmological timescales, the effects of background expansion do not contribute to the local 

intrinsic curvature. Under these conditions, the geometry of space is governed exclusively by 

local physical phenomena, specifically by the anisotropic radiation pressure of TWs, which 

manifest as mass 

Accordingly, the global factor 𝑅𝑇
2 is removed to obtain the normalized intrinsic spatial metric 

of the 3D hypersurface: 

𝑑𝑠3𝐷
2 =

𝑑𝑟2

1−𝑘𝑟2
+ 𝑟2𝑑𝛺2

2                                                      (2.21) 

More generally, according to the 4DEU model, any localized increase in the density of TWs, 

whose energy propagates along the temporal dimension and manifests as mass in 3D, induces 

spatial curvature via anisotropic radiation pressure [3] 

This metric describes the geometry of 3D space in the absence of local energy concentrations. 

According to Postulate 6 of the 4DEU theory, gravity is not a manifestation of spacetime 

curvature as in GR but arises purely from deformations in the 3D spatial hypersurface induced 

by local variations in TW density. These variations increase the local radiation pressure 

perpendicular to the 3D space, causing it to curve. 

For a spherical symmetric, static mass distribution, this curvature becomes a function of the 

radial coordinate. In analogy with the Schwarzschild solution, it is expressed as: 

𝑘 =
2𝐺𝑀

𝑐2𝑟
                                                                   (2.22) 

While in GR this curvature affects both the spatial and temporal components of the metric, in 

the 4DEU framework the temporal dimension remains flat, Euclidean, and universal. The entire 
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gravitational effect is encoded in the spatial geometry. Substituting the expression for k into 

Eq. (2.21), we obtain the effective intrinsic spatial metric in the presence of a central mass: 

𝑑𝑠3𝐷
2 =

𝑑𝑟2

1−
2𝐺𝑀

𝑐2𝑟

+ 𝑟2𝑑𝛺2
2                                                       (2.23) 

This expression is formally identical to the spatial sector of the Schwarzschild metric but 

originates from entirely different assumptions. In General Relativity, this curvature arises from 

the solution to Einstein’s equations in curved spacetime; in the 4DEU theory, it emerges as a 

secondary geometric effect of the radiation pressure produced by localized Temporal Waves. 

The gravitational field is thus the manifestation of a purely spatial deformation, with time 

maintaining its universal and invariant character throughout the 4D hypersphere. 

In the 4DEU framework, the spatial curvature associated with a localized mass is 

mathematically intrinsic, as it is fully encoded in the three-dimensional metric experienced by 

observers confined to the 3D portion of the 4D universe. However, its physical origin lies in an 

extrinsic mechanism: the curvature emerges from anisotropic radiation pressure exerted by 

TWs, defined as standing electromagnetic waves that oscillate solely along the real fourth 

spatial dimension. This distinction emphasizes that, although the curvature is entirely described 

by the intrinsic 3D metric, its causal origin is extrinsic: it arises from the embedding of the 3D 

hypersurface within the 4D Euclidean space, the anisotropic radiation pressure applied along 

the fourth dimension.  

According to the Restricted Holographic Principle, local increases in TW density, which 

manifest in 3D as mass, generate directional radiation pressure that deforms the spatial 

geometry from outside the 3D portion. Thus, while the gravitational field is entirely described 

by the intrinsic geometry of space, its causal origin involves a dynamical interaction with the 

higher-dimensional structure of the 4DEU universe. 

The removal of the scale factor 𝑅𝑇 in this context is not a simplifying assumption but a 

theoretically consistent step, grounded in the same physical reasoning that underlies the neglect 

of 𝑎(𝑡) in GR. Both frameworks converge in predicting the same local curvature structure near 

a mass, while differing fundamentally in their interpretation of time, geometry, and the physical 

origin of gravity. 
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3 Derivation of Gravitational Redshift, Shapiro Delay, Light Deflection, 

and Mercury’s Perihelion Precession in the 4DEU Theory 

In this section, we derive the classical relativistic effects of gravitational redshift, Shapiro time 

delay, Mercury’s Perihelion Precession, and light deflection in the context of 4DEU. These 

results are derived analytically from the intrinsic curvature of 3D space alone, without invoking 

time dilation, temporal curvature, or imaginary time coordinates. 

Remarkably, despite the conceptual and geometric differences between General Relativity (GR) 

and 4DEU, the predictions derived in the weak-field regime coincide with those of GR. This 

equivalence demonstrates that the observed gravitational phenomena, traditionally attributed to 

spacetime curvature in GR, emerge as purely spatial effects within the four-dimensional 

universe postulate in the 4DEU theory.  

These results support the predictive validity of the 4DEU framework while offering a distinct 

physical interpretation: gravity arises from local variations in radiation pressure due to TWs, 

rather than from the curvature of a pseudo-Riemannian spacetime manifold. 

3.1 Gravitational Redshift in the 4DEU Theory 

Gravitational redshift is a key prediction of relativistic gravity theories. It refers to the variation 

in the frequency of electromagnetic radiation as it travels through a gravitational field: light 

emitted deeper in a gravitational well is observed at a lower frequency by an observer at higher 

gravitational potential. In General Relativity (GR), this phenomenon is attributed to 

gravitational time dilation resulting from the curvature of the time coordinate. In contrast, the 

4DEU theory posits that time is a privileged, flat dimension. Consequently, any observed 

gravitational redshift must result solely from the curvature of 3D space. 

In this section, we first review the classical result in General Relativity, then derive the 

gravitational redshift in the 4DEU framework, showing that the same observational formula 

arises from purely spatial effects. 

3.1.1 Gravitational Redshift in General Relativity 

We briefly review here the standard derivation of gravitational redshift in the context of General 

Relativity. The steps leading to the final formula are detailed in standard references such as [2] 

and [6]. 
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In General Relativity, the spacetime surrounding a static, spherically symmetric, non-rotating 

mass M is described by the Schwarzschild metric. In spherical coordinates (𝑡, 𝑟, 𝜃, 𝜙), the line 

element is: 

𝑑𝑠2 = −(1 −
2𝐺𝑀

𝑐2𝑟
) 𝑐2𝑑𝑡2 + (1 −

2𝐺𝑀

𝑐2𝑟
)
−1

𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 𝑠𝑖𝑛2 𝜃  𝑑𝜙2  

This can be expressed through the corresponding metric tensor 𝑔μν: 

𝑔𝜇𝜈 =

[
 
 
 
 
 − (1 −

2𝐺𝑀

𝑐2𝑟
) 0 0 0

0 (1 −
2𝐺𝑀

𝑐2𝑟
)
−1

0 0

0 0 𝑟2 0
0 0 0 𝑟2 𝑠𝑖𝑛2 𝜃]

 
 
 
 
 

                         (3.1) 

The 𝑔𝑡𝑡 component determines the gravitational time dilation. The proper time 𝑑𝜏 measured by 

a clock at radial coordinate r is related to the coordinate time dt by: 

𝑑𝜏 = √−𝑔𝑡𝑡(𝑟) 𝑑𝑡 = √1 −
2𝐺𝑀

𝑐2𝑟
 𝑑𝑡                                      (3.2) 

Since frequency is the inverse of proper time, the ratio of frequencies of a light signal emitted 

radial coordinate 𝑟𝑒 and received at 𝑟𝑜 is: 

𝑓𝑒

𝑓𝑜
=
𝑑𝜏(𝑟𝑜)

𝑑𝜏(𝑟𝑒)
                                                           (3.3) 

For an observer located far from the source (𝑟𝑜 → ∞), where 𝑔𝑡𝑡(𝑟𝑜) → 1, the gravitational 

redshift becomes: 

𝑍 =
1

√1−
2𝐺𝑀

𝑐2𝑟𝑒

− 1                                                 (3.4) 

3.1.2 Gravitational Redshift from Spatial Curvature in the 4DEU Theory 

In the 4DEU framework, the temporal coordinate T is treated as a real and privileged dimension 

that remains flat and coincides with the proper time experienced by all observers. 

According to Corollary 3 to Postulate 2 (Section 1.4), the presence of mass corresponds to a 

localized increase in TW density, which enhances the radiation pressure exerted on the 3D 

spatial hypersurface and induces curvature in the local spatial geometry. 

As a result, the gravitational redshift in the 4DEU theory emerges entirely from the deformation 

of the 3D spatial metric near mass concentrations. In analogy with the Schwarzschild solution, 
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the effective 3D spatial metric governing light propagation in the vicinity of a spherically 

symmetric mass M is given by eq. 2.23: 

𝑑𝑠3𝐷
2 =

𝑑𝑟2

1−
2𝐺𝑀

𝑐2𝑟

+ 𝑟2𝑑𝛺2
2                                           (3.5) 

Here, 𝑑𝛺2
2 represents the standard line element on the unit 2-sphere: 

𝑑𝛺2
2 = 𝑑𝜃2 + sin2 θ  𝑑ϕ2                                     (3.6) 

Substituting Eq. (3.6) into Eq. (3.5), we obtain the explicit form of the 3D spatial line element 

used in the 4DEU theory: 

𝑑𝑠3𝐷
2 =

𝑑𝑟2

1−
2𝐺𝑀

𝑐2𝑟

+ 𝑟2 𝑑θ2 + 𝑟2 sin2 θ  𝑑ϕ2                           (3.7) 

The corresponding spatial metric tensor 𝑔𝑖𝑗
(4𝐷𝐸𝑈)

 is: 

𝑔𝑖𝑗 = [
(1 −

2𝐺𝑀

𝑐2𝑟
)
−1

0 0

0 𝑟2 0
0 0 𝑟2 𝑠𝑖𝑛2 𝜃

]                                    (3.8) 

Where 𝑔𝑟𝑟 = (1 −
2𝐺𝑀

𝑐2𝑟
)
−1

 corresponds the component along the radial coordinate r, 𝑔𝜃𝜃 = 𝑟
2 

is the component along the polar angle 𝜃, and 𝑔ϕϕ = 𝑟
2 sin2 𝜃 the component along the 

azimuthal angle 𝜙. 

As postulated in the 4DEU theory, the temporal dimension is not curved. The privileged time 

T coincides with the proper time τ experienced by any observer, so: 

𝑑𝜏 = 𝑑𝑇 = 𝑑𝑡                                                    (3.9) 

Thus, unlike in GR, gravitational time dilation is not possible, since time flows uniformly in 

the 4DEU theory. Nevertheless, when a photon propagates through a curved 3D space, the 

deformation of the radial geometry modifies the effective energy and frequency observed. 

This geometric effect can be interpreted analogously to the GR redshift but now derived from 

the radial component of the spatial metric, rather than the temporal component. 

Let a photon be emitted at radial coordinate 𝑟𝑒 and received at radial coordinate 𝑟𝑜, 𝑟𝑜 → ∞ (i.e., 

in asymptotically flat space). The spatial curvature affects the energy transfer between the 

emitter and the receiver, and the ratio of frequencies is assumed to follow: 
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𝑓𝑒

𝑓𝑜
= √

𝑔𝑟𝑟(𝑟𝑜)

𝑔𝑟𝑟(𝑟𝑒)
                                                  (3.10) 

From Eq. (3.8), we identify: 

𝑔𝑟𝑟(𝑟) = (1 −
2𝐺𝑀

𝑐2𝑟
)
−1

                                       (3.11) 

Assuming that the observer is located far from the gravitational source, i.e. 𝑟𝑜 → ∞, then 

𝑔𝑟𝑟(𝑟𝑜) → 1, and Eq. (3.10) simplifies to: 

𝑓𝑒

𝑓𝑜
=

1

√1−
2𝐺𝑀

𝑐2𝑟𝑒

                                                 (3.12) 

Solving for the observed frequency: 

𝑓𝑜 = 𝑓𝑒√1 −
2𝐺𝑀

𝑐2𝑟𝑒
                                              (3.13) 

The gravitational redshift Z is defined as: 

𝑍 =
𝑓𝑒−𝑓𝑜

𝑓𝑜
                                                    (3.14) 

Substituting Eq. (3.13) into Eq. (3.14), we obtain: 

Z =
fe−fe√1−

2GM

c2re

fe√1−
2GM

c2re

                                                     (3.15) 

And simplifying: 

𝑍 =
1−√1−

2𝐺𝑀

𝑐2𝑟𝑒

√1−
2𝐺𝑀

𝑐2𝑟𝑒

=
1

√1−
2𝐺𝑀

𝑐2𝑟𝑒

− 1                            (3.16) 

This result, derived purely from spatial curvature encoded by the radial component 𝑔𝑟𝑟, is 

identical to the standard gravitational redshift formula of General Relativity (see eq.3.4), which 

is instead obtained from the temporal component 𝑔𝑡𝑡. This confirms that the same observable 

effect arises in the 4DEU framework without invoking temporal curvature. 

3.1.3 Photon Energy Conservation in the 4DEU Theory 

To clarify how the 4DEU theory yields an explicit expression for the photon's radial velocity, 

consider the spatial line element near a static, spherically symmetric mass. As given in Eq. (3.7), 

the 3D spatial metric in the equatorial plane 𝜃 =  π/2 is: 
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𝑑𝑠3𝐷
2 =

𝑑𝑟2

1−
2𝐺𝑀

𝑐2𝑟

+ 𝑟2𝑑𝜙2                                            (3.17) 

Assuming radial motion only (i.e., 𝑑𝜙 =  0), the line element reduces to: 

𝑑𝑠3𝐷 =
𝑑𝑟

√1−
2𝐺𝑀

𝑐2𝑟

                                                   (3.18) 

Substituting into the fundamental relation 𝑑𝑠3𝐷 = 𝑐𝑑𝑇, (a relation further formalized in 

Eq. (3.27)), which expresses that light propagates through the 3D curved spatial manifold at 

speed c with respect to the privileged time T, and assuming that the light signal is emitted from 

a radial coordinate 𝑟 = 𝑟𝑒, we obtain: 

𝑑𝑟

√1−
2𝐺𝑀

𝑐2𝑟𝑒

= 𝑐 𝑑𝑇 ⇒  
𝑑𝑟

𝑑𝑇
= 𝑐√1 −

2𝐺𝑀

𝑐2𝑟𝑒
                             (3.19) 

Considering that the Schwarzschild radius, the radial distance from a mass M at which the 

escape velocity equals the speed of light c, is given by: 

𝑟𝑠 =
2𝐺𝑀

𝑐2
                                                      (3.20) 

we can simplify the previous expression accordingly. 

𝑑𝑟

𝑑𝑇
= 𝑐√1 −

𝑟𝑠

𝑟𝑒
                                                (3.21) 

According to the restricted holographic principle (Postulate 2), electromagnetic waves (EMVs) 

are spatiotemporal entities whose propagation is characterized by a spatial velocity component 

in 3D space (𝑣𝑠) and a temporal velocity component 𝑣𝑡 = 𝑐, the latter arising from the 

expansion of the 4D universe along the time dimension. In the absence of mass, the 

spatiotemporal velocity vector of an EMV wave has spatial and temporal components of equal 

magnitude, and the total spatiotemporal velocity (𝑣𝑆𝑇) has a maximum value of √2 𝑐 (see 

Eq. (4) of [3]). In the presence of mass-induced curvature, the spatial component 𝑣𝑠 decreases, 

while the temporal component 𝑣𝑡 = 𝑐 remains constant, as it passively follows the uniform 

expansion of the 4D universe along its real time dimension T. The angle between the vector 𝑣𝑆𝑇⃗⃗⃗⃗ ⃗⃗  

and the spatial axis is 𝜋/4, and the motion is equally projected onto the spatial and temporal 

axes (see Fig. 2 in [3]). According to postulate 2 of 4DEU theory derives that the spatial 

projection corresponds to the wave-like nature of the EMW, while the temporal projection 

represents its corpuscular aspect. These two components are not independent phenomena, but 

inseparable manifestations of a single, unified spatiotemporal motion. 
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Consider now a photon emitted radially outward, i.e., in the direction opposite to the 

gravitational source, by an emitter located precisely at the Schwarzschild radius 𝑟𝑒 = 𝑟𝑠 of a 

mass M. In this case, the extreme curvature of the 3D space causes the spatial component of the 

light’s velocity to vanish (𝑣𝑠 = 0). Geometrically, the spatiotemporal velocity vector 𝑣𝑆𝑇⃗⃗⃗⃗ ⃗⃗  

rotates toward the temporal axis, with the angle tending to π/2, indicating that the photon’s 

propagation becomes entirely temporal. In fact, as given by Eq. (33) of [3]: 

𝛼 = 𝑡𝑎𝑛−1 (
𝑐

𝑣𝑠
)  ⟹  𝑙𝑖𝑚

𝑣𝑠→0+
𝛼 =

𝜋

2
                               (3.22) 

Accordingly, the photon loses its wave-like (spatial) behavior and becomes purely corpuscular. 

This is reflected in the disappearance of its spatial frequency components 𝑓𝑠 (𝑓𝑠0and 𝑓𝑠𝑒), as a 

direct consequence of Eq. (3.13), which describes the redshift of spatial frequency in curved 3D 

space. Specifically: 

𝑓𝑠0 = 𝑓𝑠𝑒√1 −
𝑟𝑠

𝑟𝑒
 ⇒  𝑓𝑠0 = 0 for 𝑟𝑒 = 𝑟𝑠                    (3.23) 

In this expression, the subscript s emphasizes that both 𝑓𝑠0 and 𝑓𝑠𝑒  (the observed and emitted 

frequencies, respectively), within the 4DEU framework, represent spatial frequencies, which 

are the only frequencies directly accessible to observation in 3D space by observers. 

This equation shows that, for a distant observer, the spatial frequency of light emitted radially 

from radial coordinate 𝑟𝑒 decreases with increasing gravitational curvature. In the limit 𝑟𝑒 → 𝑟𝑠, 

the observed spatial frequency 𝑓𝑠0 → 0, indicating a complete vanishing of the wave-like 

component. Meanwhile, the temporal frequency 𝑓𝑡 remains the same as that of the initial 

spatiotemporal frequency (𝑓𝑆𝑇) defined at emission that corresponds to the emitted spatial 

frequency (𝑓𝑠𝑒) in flat space. 

Since, in the 4DEU framework, the spatiotemporal frequency is invariant [3], the total energy 

of the photon does not decrease but remains constant, is fully transferred to the temporal 

dimension. Therefore, the energy at emission is not lost, but is entirely converted into equivalent 

mass m. Specifically: 

𝑚 =
ℎ𝑓𝑠𝑒

𝑐2
=
ℎ𝑓𝑡

𝑐2
=
ℎ𝑓𝑆𝑇

𝑐2
                                          (3.24) 

The light emitted from 𝑟𝑠 does not escape but is entirely absorbed by the black hole in its purely 

corpuscular form, a fully mass-equivalent photon. 



24 

This mechanism guarantees exact energy conservation: The electromagnetic wave is not 

destroyed but transitions into a pure particle state (photon) that propagates exclusively along 

the temporal dimension. 

In the more general case where the photon is emitted from a radial coordinate 𝑟𝑒 > 𝑟𝑠, the 

transition from wave-like to corpuscular behaviour is not yet complete but gradually unfolds as 

the photon climbs the gravitational well. The spatial component of the photon's velocity 

decreases progressively due to the curvature of 3D space, while the temporal component 

correspondingly increases, causing the spatiotemporal velocity vector to rotate toward the 

temporal axis. This set of behaviors, covering all physically meaningful emission radii (𝑟𝑒 ≤ 𝑟𝑠,

𝑟𝑒 > 𝑟𝑠, 𝑟𝑒 ≫ 𝑟𝑠), is schematically illustrated in Figure 3. 

 

Fig.3 Geometric representation of the spatiotemporal velocity of an electromagnetic wave 

emitted radially from a static, spherically symmetric mass, in the 4DEU framework. 

The figure illustrates the evolution of the spatial (𝑣𝑟) and temporal (𝑣𝑡 = 𝑐) components of the 

spatiotemporal velocity 𝑣𝑆𝑇  of an electromagnetic wave emitted from various radial coordinates 

𝑟𝑒. At the Schwarzschild radius 𝑟𝑠, the spatial velocity vanishes, and the trajectory becomes 

purely temporal (𝛼 → 𝜋/2), corresponding to a photon whose behavior becomes entirely 

corpuscular. For 𝑟𝑒 ≫ 𝑟𝑠, the propagation angle is α =  π/4, indicating equal spatial and 

temporal components (𝑣𝑠 = 𝑣𝑡 = 𝑐), with maximal spatiotemporal velocity 𝑣𝑆𝑇 = √2𝑐. This 

geometric mechanism illustrates the progressive conversion of the wave-like character of light 

into pure mass and ensures total energy conservation within the 4DEU framework. 

 

Throughout this process, the total spatiotemporal frequency 𝑓𝑆𝑇 which, according to Eq. (14) of 

[3], remains equal to both the spatial frequency 𝑓𝑠 and the temporal frequency 𝑓𝑡, is invariant. 

However, only the spatial frequency 𝑓𝑠, being the projection of 𝑓𝑆𝑇 along the spatial axis, is 

directly accessible to measurement by 3D observers. As the photon is emitted from positions 

closer to the horizon, this observable frequency decreases according to Eq. (3.13), indicating a 

weakening of its wave-like character. 



25 

The photon's energy remains conserved during this evolution, as it continues to propagate with 

spatiotemporal velocity 𝑣𝑆𝑇 = √𝑣𝑠2 + 𝑣𝑡
2 (as defined in Eq.(4) of [3]), which transitions from 

𝑐√2 in flat space to c at the event horizon, where the motion becomes purely temporal. The 

decreasing contribution of the spatial component implies that a portion of the photon's energy 

is no longer available for spatial propagation and is instead transferred to the gravitational 

source, effectively increasing its mass. In this sense, gravitational redshift in 4DEU is not only 

a manifestation of spatial curvature, but also a geometric mechanism for redistributing energy 

between radiation and gravitating matter. 

This result describes the complete and final step in the gravitational redshift process: a purely 

geometric conversion from radiation into matter, occurring precisely at the horizon, in full 

accordance with the structure of the 4DEU theory as developed in [3–5]. In this framework, the 

horizon does not destroy the electromagnetic wave but marks the geometric limit of its 

transformation into a purely corpuscular entity. As wave-like behavior becomes unobservable, 

its energy does not vanish but remains fully encoded in the resulting gravitational curvature. 

Thus, the 4DEU theory ensures total energy conservation and resolves the black hole 

information loss paradox by preserving all physical information in the form of increased mass 

and curvature, in agreement with the restricted holographic principle. 

3.2 Light Deflection in the 4DEU Theory 

In this section, as in the cases of gravitational redshift and Shapiro delay, we adopt an analytical 

strategy borrowed from General Relativity, specifically the approach used in the study of 

photon trajectories within the Schwarzschild field (Carroll, 2004 [6]). This methodology is 

adapted to the geometric structure of the 4-dimensional universe postulated by the 4DEU 

theory, wherein the time coordinate T is privileged, flat, and uniform, and all curvature is 

confined solely to the three-dimensional spatial manifold. 

In contrast to General Relativity, in which light follows null geodesics of a 4-dimensional 

spacetime, in the 4DEU theory, photons propagate along real and measurable trajectories within 

3D space, characterized by an infinitesimal length 𝑑𝑠3𝐷 = 𝑐 𝑑𝑇. Consequently, the evolution 

of photon trajectories depends solely on observables defined on the 3D spatial part of 4D 

universe, while preserving the formal structure of the associated constants of motion. 

Using the same formal tools as in General Relativity—such as the conservation of constants of 

motion and the variable transformation 𝑢 = 1/𝑟 —we obtain the differential equation 

governing photon trajectories, known as the Binet equation. This equation is subsequently 
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solved perturbatively, yielding predictions for angular deflection that coincide with those of 

General Relativity in the weak-field limit. 

We begin with the intrinsic spatial metric derived in the 4DEU theory for a static, spherically 

symmetric mass distribution, as given in Eq. (2.23): 

𝑑𝑠3𝐷
2 =

𝑑𝑟2

1−
2𝐺𝑀

𝑐2𝑟

+ 𝑟2 𝑑θ2 + 𝑟2 sin2 θ  𝑑ϕ2                             (3.25) 

Due to spherical symmetry, the photon motion can be restricted to the equatorial plane, that is: 

𝜃 = 𝜋 2⁄ . 

Therefore, 𝑠𝑖𝑛 𝜃 = 1 and 𝑑𝜃 =  0 from which the metric (Eq.3.25) reduces to: 

𝑑𝑠3𝐷
2 =

𝑑𝑟2

1−
2𝐺𝑀

𝑐2𝑟

+ 𝑟2𝑑𝜙2                                               (3.26) 

In the 4DEU framework, photons propagate at constant speed c through the curved 3D space 

and simultaneously evolve in the privileged time coordinate T at the same speed. This implies 

that their spatial trajectory satisfies the following conditions: 

𝑑𝑠3𝐷 = 𝑐 𝑑𝑇 ⇒ 𝑑𝑠3𝐷
2 = 𝑐2𝑑𝑇2                                          (3.27) 

This corresponds to the first postulate of the 4DEU theory. 

Differential Equation for Radial Motion 

In the 4DEU framework, the affine parameter 𝜆 along geodesics coincides with the privileged 

time coordinate: 𝜆 = 𝑇. This implies that all derivatives along geodesics are expressed directly 

with respect to privileged time. 

The spatial geodesic condition for a massless particle, derived from the intrinsic 3D metric (Eq. 

3.26) together with the condition expressed in Eq. 3.27, reads: 

𝑑𝑟2

1−
2𝐺𝑀

𝑐2𝑟

+ 𝑟2𝑑𝜙2 = 𝑐2𝑑𝑇2                                             (3.28) 

Dividing both sides by 𝑑𝑇2, we obtain: 

1

1−
2𝐺𝑀

𝑐2𝑟

(
𝑑𝑟

𝑑𝑇
)
2

+ 𝑟2 (
𝑑𝜙

𝑑𝑇
)
2

= 𝑐2                                          (3.29) 

Since 𝜙 is a cyclic coordinate in the spatial metric, the associated conserved quantity is the 

angular momentum (L) , defined as: 

𝐿 = 𝑟2
𝑑ϕ

𝑑𝑇
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This constant of motion is well-defined and measures the speed at which the photon trajectory 

rotates per unit of privileged time. It replaces the affine angular momentum as defined in 

General Relativity (GR), which is expressed with respect to an arbitrary affine parameter 𝜆. 

From which: 

𝑑𝜙

𝑑𝑇
=

𝐿

𝑟2
                                                         (3.30) 

Squaring Eq. (3.30), we obtain: 

(
𝑑𝜙

𝑑𝑇
)
2

=
𝐿2

𝑟4
                                                     (3.31) 

Substituting Eq. (3.31) into Eq. (3.29), we obtain the differential expression governing radial 

motion: 

(
𝑑𝑟

𝑑𝑇
)
2

= (1 −
2𝐺𝑀

𝑐2𝑟
) (𝑐2 −

𝐿2

𝑟2
)                                         (3.32) 

Transformation to 𝒅𝒓 𝒅𝝓⁄  

To obtain a practical form of the equation of motion, it is convenient to express the radial 

derivative with respect to the angle 𝜙 rather than the privileged time T. This leads to a purely 

spatial equation describing the trajectory of the photon. This transformation relies on the 

conservation of angular momentum L, allowing the system to be rewritten in terms of the 

angular coordinate only. 

Specifically, we use the relationship: 

𝑑𝑟

𝑑𝜙
=

𝑑𝑟

𝑑𝑇
⋅ (
𝑑𝜙

𝑑𝑇
)
−1

  

Substituting the Eq.3.30 into the above, we obtain:  

𝑑𝑟

𝑑𝜙
=

𝑑𝑟

𝑑𝑇
⋅
𝑟2

𝐿
⟹

𝑑𝑟

𝑑𝑇
=

𝑑𝑟

𝑑𝜙
⋅
𝐿

𝑟2
                                            (3.33) 

Squaring both sides of Eq. (3.33): 

(
𝑑𝑟

𝑑𝑇
)
2

=
𝐿2

𝑟4
(
𝑑𝑟

𝑑𝜙
)
2

                                                    (3.34) 

Substituting Eq.(3.34) into Eq.(3.32), we find: 

𝐿2

𝑟4
(
𝑑𝑟

𝑑𝜙
)
2

= (1 −
2𝐺𝑀

𝑐2𝑟
) (𝑐2 −

𝐿2

𝑟2
)  

Isolating (𝑑𝑟 𝑑𝜙⁄ )2, we obtain: 
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(
𝑑𝑟

𝑑ϕ
)
2

= (1 −
2𝐺𝑀

𝑐2𝑟
) (𝑐2 −

𝐿2

𝑟2
) ⋅

𝑟4

𝐿2
                                     (3.35) 

Expanding the product in parentheses: 

(
𝑑𝑟

𝑑ϕ
)
2

= (1 −
2𝐺𝑀

𝑐2𝑟
) (

𝑐2𝑟4

𝐿2
−
𝑟4

𝑟2
)                                      (3.35a) 

(
𝑑𝑟

𝑑ϕ
)
2

= (1 −
2𝐺𝑀

𝑐2𝑟
) (

𝑐2𝑟4

𝐿2
− 𝑟2)                                      (3.35b) 

Factorizing 𝑟2: 

(
𝑑𝑟

𝑑ϕ
)
2

= (1 −
2𝐺𝑀

𝑐2𝑟
) 𝑟2 (

𝑐2𝑟2

𝐿2
− 1)                                      (3.36) 

Introduction of the Impact Parameter 

We introduce the standard definition of the impact parameter b, which relates the angular 

momentum per unit mass to the asymptotic trajectory of the photon: 

𝑏 =
𝐿

𝑐2
                                                        (3.37a) 

Form which: 

𝑐2

𝐿2
=

1

𝑏2
                                                       (3.37b) 

Substituting Eq.(3.37a) into the Eq.3.34, we obtain: 

(
𝑑𝑟

𝑑𝜙
)
2

= (1 −
2𝐺𝑀

𝑐2𝑟
) 𝑟2 (

𝑟2

𝑏2
− 1)                                         (3.38) 

The differential equation obtained in Eq. (3.38) can also be written in integral form to describe 

the angular trajectory of the photon. Specifically, the angular displacement from the point of 

closest approach 𝑟 = 𝑟𝑚𝑖𝑛 to spatial infinity is given by: 

Δ𝜙 = ∫
𝑑𝑟

√(1−
2𝐺𝑀

𝑐2𝑟
)(
𝑟2

𝑏2
−1)

∞

𝑟𝑚𝑖𝑛

                                            (3.39) 

This integral represents the angular displacement of the photon from 𝑟 = 𝑟𝑚𝑖𝑛 to 𝑟 = ∞. Due 

to symmetry, the photon undergoes the same angular displacement while approaching from 

infinity to 𝑟𝑚𝑖𝑛. 

Although Eq. (3.39) provides an exact expression for the photon trajectory, the integral cannot 

be evaluated analytically, owing to the nonlinear nature of the metric. In practice, the deflection 

angle is computed using a perturbative approach, valid in the weak-field limit. 
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The total gravitational deflection angle, measured as the deviation from a straight-line 

propagation, is thus given by: 

𝛥𝜙 = 2𝜙∞ − 𝜋                                                      (3.40) 

where 𝜙∞ denotes the result of the integral in Eq.(3.39). 

Change of Variable 𝒖 = 𝟏/𝒓 

To simplify the equation and make the equation analytically tractable, we introduce the inverse 

radial coordinate: 

𝑢 =
1

𝑟
 ⇒  𝑟 =

1

𝑢
,  

𝑑𝑟

𝑑𝜙
= −

1

𝑢2
𝑑𝑢

𝑑𝜙
                                       (3.41) 

Squaring both sides gives: 

(
𝑑𝑟

𝑑𝜙
)
2

=
1

𝑢4
(
𝑑𝑢

𝑑𝜙
)
2

                                                     (3.42) 

Substituting into Eq.(3.35) gives: 

1

𝑢4
(
𝑑𝑢

𝑑𝜙
)
2

= (1 −
2𝐺𝑀𝑢

𝑐2
) (

1

𝑏2𝑢4
−

1

𝑢2
)                                       (3.43) 

Multiplying both sides by 𝑢4, we eliminate denominators: 

(
𝑑𝑢

𝑑𝜙
)
2

= (1 −
2𝐺𝑀𝑢

𝑐2
) (

1

𝑏2
− 𝑢2)                                         (3.44) 

Expanding this expression yields: 

(
𝑑𝑢

𝑑𝜙
)
2

=
1

𝑏2
− 𝑢2 −

2𝐺𝑀𝑢

𝑐2𝑏2
+
2𝐺𝑀

𝑐2
𝑢3                                      (3.45) 

To obtain a perturbatively solvable form, we neglect the nonlinear term in 𝑢3. This is because, 

in the weak-field regime where 𝑢 = 1/𝑟 ≪ 1/𝑟𝑠, the cubic term 𝑢3 becomes negligible 

compared to the linear term in u. The Eq.(3.45) the simplifies to: 

(
𝑑𝑢

𝑑𝜙
)
2

≈
1

𝑏2
− 𝑢2 +

2𝐺𝑀

𝑐2𝑏2
𝑢                                                (3.46) 

Differentiating both sides with respect to 𝜙, (see appendix B), we obtain: 

𝑑2𝑢

𝑑𝜙2
=

𝐺𝑀

𝑐2𝑏2
− 𝑢                                                  (3.47) 

This equation represents the linearized photon trajectory equation derived within the 4DEU 

framework. It describes the light path as a function of the angular coordinate 𝜙, and it is valid 

in the weak-field approximation. 
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Approximate Solution and Calculation of Angular Deflection 

The perturbative solution to Eq. (3.47) is derived in Appendix C and takes the form: 

𝑢(𝜙) ≈
1

𝑏
𝑐𝑜𝑠 𝜙 +

𝐺𝑀

𝑐2𝑏2
                                           (3.48) 

To determine the asymptotic angle 𝜙∞, the angle at which the trajectory tends asymptotically 

to spatial infinity  (𝑟 → ∞), we impose the condition 𝑢(𝜙∞) = 0: 

𝑢(𝜙∞) = 0 ⟹ 𝑐𝑜𝑠 𝜙∞ +
𝐺𝑀

𝑐2𝑏2
= 0                                   (3.49) 

Since the minimum approach occurs symmetrically at 𝜙 = 𝜋 2⁄ , we assume the asymptotic 

angle 𝜙∞ differs only slightly from this value. We define: 

𝜙 =
𝜋

2
+ 𝛿𝜙,  with    𝛿𝜙 ≪ 1                                        (3.50) 

Expanding the cosine function around 𝛿𝜙 using a Taylor series approximation (𝛿𝜙 ∈ (−𝜀, 𝜀), 

with 𝜀 ≪ 1), we have: 

𝑐𝑜𝑠 (
𝜋

2
+ 𝛿𝜙) = −𝑠𝑖𝑛(𝛿𝜙) ≈ −𝛿                                    (3.51) 

These approximations are justified by their first-order Taylor expansions around 𝛿𝜙 = 0: 

𝑐𝑜𝑠(𝛿𝜙) = 1 −
1

2
𝛿𝜙2 +⋯ ≈ 1, 𝑐𝑜𝑠 (

𝜋

2
+ 𝛿𝜙) = −𝛿𝜙 +⋯ ≈ −𝛿𝜙       (3.52) 

Substituting these approximations into equation 3.49, we obtain: 

−𝛿𝜙 +
𝐺𝑀

𝑐2𝑏
≈ 0                                                        (3.53) 

Solving for 𝛿𝜙: 

𝛿𝜙 ≈
2𝐺𝑀

𝑐2𝑏
                                                         (3.54) 

This value represents the angular deviation between the actual asymptotic direction of the light 

ray and the direction it would have followed in the absence of gravitational influence, measured 

relative to the point of closest approach at 𝜙 =  0. 

Therefore, the total angular deflection of the light ray, including contributions from both the 

incoming and outgoing branches of the trajectory, is: 

𝛥𝜙4DEU = 𝛿𝜙total = 2𝛿𝜙 ≈
2𝐺𝑀

𝑐2𝑏
× 2 =

4𝐺𝑀

𝑐2𝑏
                                   (3.55)  

This result reproduces with the prediction of General Relativity in the weak-field limit.  

 



31 

3.3 Mercury’s Perihelion Precession in the 4DEU theory  

In the 4DEU framework, gravity is not interpreted as spacetime curvature, as in General 

Relativity (GR) [1,6], but rather as curvature of the only spatial 3D part of the 4D universe in 

which we reside. In the presence of a static, spherically symmetric mass distribution, the spatial 

part of the 4DEU metric is assumed to take the form of Eq.(2.23): 

𝑑𝑠3𝐷
2 = (1 −

2𝐺𝑀

𝑐2𝑟
)
−1

𝑑𝑟2 + 𝑟2𝑑Ω2
2 

Restricting the motion to the equatorial plane (i.e., θ =  π/2), the metric becomes: 

𝑑𝑠3𝐷
2 = (1 −

2𝐺𝑀

𝑐2𝑟
)
−1

𝑑𝑟2 + 𝑟2𝑑𝜙2                                       (3.56) 

The fundamental postulate governing light propagation in 4DEU states that the spatial path 

length covered by light with respect to the cosmic privileged time satisfies: 

𝑑𝑠3𝐷 = 𝑐 𝑑𝑇 

where T is the privileged time coordinate. Substituting into the metric yields: 

(
𝑑𝑟

𝑑𝑇
)
2

(1 −
2𝐺𝑀

𝑐2𝑟
)
−1

+ 𝑟2 (
𝑑𝜙

𝑑𝑇
)
2

= 𝑐2                                     (3.57) 

Let us define the conserved angular momentum per unit mass as: 

ℎ = 𝑟2
𝑑𝜙

𝑑𝑇
 ⇒  

𝑑𝜙

𝑑𝑇
=

ℎ

𝑟2
                                          (3.57a) 

Substituting Eq.(3.57a) into Eq.(3.57) we obtain: 

(
𝑑𝑟

𝑑𝑇
)
2

(1 −
2𝐺𝑀

𝑐2𝑟
)
−1

+ 𝑟2 (
ℎ

𝑟2
)
2

= 𝑐2                               (3.57b) 

Expanding the squared term (
ℎ

𝑟2
)
2

 and simplifying, we have: 

(
𝑑𝑟

𝑑𝑇
)
2

(1 −
2𝐺𝑀

𝑐2𝑟
)
−1

+
ℎ2

𝑟2
= 𝑐2                                         (3.57c) 

Finally, multiplying both sides of Eq.(3.57c) by (1 −
2𝐺𝑀

𝑐2𝑟
), we obtain: 

(
𝑑𝑟

𝑑𝑇
)
2

+ (1 −
2𝐺𝑀

𝑐2𝑟
)
ℎ2

𝑟2
= 𝑐2 (1 −

2𝐺𝑀

𝑐2𝑟
)                                 (3.58) 

We define the inverse radial coordinate as: 

𝑢 = 1 𝑟⁄  
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Differentiating with respect to 𝜙, we obtain: 

𝑑𝑟

𝑑ϕ
=

𝑑

𝑑ϕ
(
1

𝑢
) = −

𝑑𝑢

𝑢2𝑑ϕ
                                          (3.58a) 

To express the radial derivative with respect to the privileged time T, we apply the chain rule: 

𝑑𝑟

𝑑𝑇
=

𝑑𝑟

𝑑ϕ
⋅
𝑑ϕ

𝑑𝑇
                                                   (3.58b) 

From the definition of the conserved angular momentum (see Eq. 3.57a), we have: 

𝑑ϕ

𝑑𝑇
=

ℎ

𝑟2
                                                          (3.58c) 

Since 𝑟 = 1 𝑢⁄ , it follows that 𝑟2 = 1 𝑢2⁄ , substituting into Eq.(3.58c) we obtain: 

𝑑ϕ

𝑑𝑇
= ℎ𝑢2                                                        (3.58d) 

Substituting Eq.(3.58a) and Eq.(3.58d) into Eq.(3.58b), we have: 

𝑑𝑟

𝑑𝑇
= −

𝑑𝑢

𝑢2𝑑ϕ
ℎ𝑢2 = −ℎ

𝑑𝑢

𝑑𝜙
                                           (3.58e) 

Squaring both sides, we obtain: 

(
𝑑𝑟

𝑑𝑇
)
2

= ℎ2 (
𝑑𝑢

𝑑ϕ
)
2

                                                    (3.59) 

Substituting this expression into Eq. (3.58), and recalling that 𝑟 = 1 𝑢⁄ , we obtain: 

ℎ2

𝑢4
(
𝑑𝑢

𝑑𝜙
)
2

+ (1 −
2𝐺𝑀𝑢

𝑐2
) ℎ2𝑢2 = 𝑐2 (1 −

2𝐺𝑀𝑢

𝑐2
)                        (3.60) 

Dividing both sides of Eq. (3.60) by ℎ2, we get: 

1

𝑢4
(
𝑑𝑢

𝑑𝜙
)
2

+ (1 −
2𝐺𝑀𝑢

𝑐2
) 𝑢2 =

𝑐2

ℎ2
(1 −

2𝐺𝑀𝑢

𝑐2
)                           (3.61) 

Multiplying both sides of Eq. (3.61) by 𝑢4, we obtain: 

(
𝑑𝑢

𝑑𝜙
)
2

+ (1 −
2𝐺𝑀𝑢

𝑐2
) 𝑢6 =

𝑐2

ℎ2
(1 −

2𝐺𝑀𝑢

𝑐2
) 𝑢4                        (3.62) 

Finally, dividing both sides by 𝑢2, we simplify to: 

(
𝑑𝑢

𝑑𝜙
)
2

+ (1 −
2𝐺𝑀𝑢

𝑐2
) 𝑢2 =

𝑐2

ℎ2
(1 −

2𝐺𝑀𝑢

𝑐2
)                           (3.63) 

To derive the orbital equation, we differentiate both sides of the Eq.(3.63) with respect to 𝜙. 
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Applying the chain rule to the first term yields: 

𝑑

𝑑𝜙
[(
𝑑𝑢

𝑑𝜙
)
2

] = 2
𝑑𝑢

𝑑𝜙
⋅
𝑑2𝑢

𝑑𝜙2
                                      (3.64) 

For the second term, we differentiate the product (1 −
2𝐺𝑀𝑢

𝑐2
) 𝑢2: 

𝑑

𝑑𝜙
[(1 −

2𝐺𝑀𝑢

𝑐2
) 𝑢2] = (−

2𝐺𝑀

𝑐2
𝑢2 + 2𝑢 (1 −

2𝐺𝑀𝑢

𝑐2
))

𝑑𝑢

𝑑𝜙
= (2𝑢 −

6𝐺𝑀

𝑐2
𝑢2)

𝑑𝑢

𝑑𝜙
 (3.65) 

Differentiating the right-hand side of Eq.(3.63): 

𝑑

𝑑𝜙
[
𝑐2

ℎ2
(1 −

2𝐺𝑀𝑢

𝑐2
)] = −

2𝐺𝑀

ℎ2
⋅
𝑑𝑢

𝑑𝜙
                             (3.66) 

Putting all terms together: 

2
𝑑𝑢

𝑑𝜙
⋅
𝑑2𝑢

𝑑𝜙2
+ (2𝑢 −

6𝐺𝑀

𝑐2
𝑢2)

𝑑𝑢

𝑑𝜙
= −

2𝐺𝑀

ℎ2
⋅
𝑑𝑢

𝑑𝜙
                   (3.67) 

We assume 
𝑑𝑢

𝑑𝜙
≠ 0 and divide through by 2

du

dϕ
, which yields: 

𝑑2𝑢

𝑑ϕ2
+ 𝑢 = −

𝐺𝑀

ℎ2
+
3𝐺𝑀

𝑐2
𝑢2                                 (3.68) 

This is the orbital equation in the 4DEU framework. It shows that the correction term is 

proportional to 𝑢2 arises naturally from the curvature of the purely spatial portion of the 4D 

universe, rather than from spacetime curvature as in General Relativity. 

Assuming the privileged time T as affine parameter [3–6], the same orbital equation can also 

be recovered using a spatial Lagrangian constructed from the 3D metric in the equatorial plane. 

The result fully agrees with the geometric derivation presented here (data not shown) 

Perturbative Solution and Precession 

We treat the relativistic term 
3𝐺𝑀

𝑐2
𝑢2 as a small perturbation to the Newtonian orbit. In analogy 

with the procedure adopted in General Relativity [2,6,15], this term emerges in 4DEU from the 

spatial metric and plays the same functional role as the relativistic correction in GR, despite 

arising from 3D curvature only. 

The zeroth-order (Newtonian) solution satisfies: 

𝑑2𝑢0

𝑑𝜙2
+ 𝑢0 = −

𝐺𝑀

ℎ2
 ⇒  𝑢0(𝜙) = −

𝐺𝑀

ℎ2
(1 + 𝑒 𝑐𝑜𝑠 𝜙)                   (3.69) 

We now compute the square of Newtonian solution 𝑢0: 
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𝑢0
2 = (

𝐺𝑀

ℎ2
)
2
(1 + 2𝑒 𝑐𝑜𝑠 𝜙 + 𝑒2𝑐𝑜𝑠2𝜙)                              (3.70) 

Using the identity cos2 𝜙 =
1+cos2𝜙

2
, we get: 

𝑢0
2 = (

𝐺𝑀

ℎ2
)
2

(1 + 2𝑒 cos𝜙 +
𝑒2

2
+
𝑒2

2
cos 2𝜙)                          (3.71) 

Substituting Eq. (3.71) into the full orbital equation (3.60), we obtain: 

𝑑2𝑢

𝑑𝜙2
+ 𝑢 = −

𝐺𝑀

ℎ2
+
3𝐺3𝑀3

𝑐2ℎ4
(1 + 2𝑒 𝑐𝑜𝑠 𝜙 +

𝑒2

2
+
𝑒2

2
𝑐𝑜𝑠 2𝜙)              (3.72) 

Subtracting the Newtonian equation gives the differential equation for the perturbation δ𝑢: 

𝑑2𝛿𝑢

𝑑𝜙2
+ 𝛿𝑢 =

3𝐺3𝑀3

𝑐2ℎ4
(1 + 2𝑒 𝑐𝑜𝑠 𝜙 +

𝑒2

2
+
𝑒2

2
𝑐𝑜𝑠 2𝜙)                    (3.73) 

Resonant Term Identification 

We now analyze the structure of the inhomogeneous term in the differential equation for the 

perturbation δ𝑢 (Eq.3.76): 

This is a second-order linear inhomogeneous differential equation with constant coefficients, 

and it can be treated using standard methods from classical mechanics [13]. 

 The corresponding homogeneous equation is: 

𝑑2𝛿𝑢

𝑑𝜙2
+ 𝛿𝑢 = 0                                                    (3.74) 

whose general solution is: 

𝛿𝑢hom(𝜙) = 𝐴 cos𝜙 + 𝐵 sin𝜙                                       (3.75) 

The inhomogeneous term on the right-hand side of the differential equation can be decomposed 

into a sum of distinct Fourier components, each corresponding to a specific harmonic 

contribution. Explicitly, the forcing function, Eq.(3.73), can be written as: 

𝑓(𝜙) ∼ 1 +
𝑒2

2⏟  
constant

+ 2𝑒 𝑐𝑜𝑠 𝜙⏟    
resonant

+
𝑒2

2
𝑐𝑜𝑠 2𝜙⏟      

higher harmonic

                          (3.76) 

Each component plays a different role in the behavior of the particular solution. The constant 

term contributes to a static shift in the mean orbit, while the term proportional to 𝑐𝑜𝑠2𝜙 

represents a higher harmonic that affects the orbit's shape but not its long-term evolution. The 

most significant contribution arises from the term proportional to 𝑐𝑜𝑠ϕ, which is resonant with 

the homogeneous solution (as established in standard perturbation theory [13,14]). 
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Among these, the term proportional to 𝑐𝑜𝑠 𝜙 is resonant with the homogeneous solution, since 

it shares the same frequency and lies in the kernel of the differential operator. This resonance 

leads to a secular response in the particular solution. 

Specifically, from Eq. (3.76), the coefficient multiplying 𝑐𝑜𝑠 𝜙 in the forcing term is: 

 𝐴 =
3𝐺3𝑀3

𝑐2ℎ4
2𝑒 =

6𝐺3𝑀3𝑒

𝑐2ℎ4
                                              (3.77) 

We define A as the resonant coefficient, since it multiplies the resonant harmonic 𝑐𝑜𝑠 𝜙 in the 

forcing term. This produces the resonant part of the particular solution: 

𝛿𝑢res(𝜙) =
𝐴

2
𝜙 sin𝜙 =

3𝐺3𝑀3𝑒

𝑐2ℎ4
𝜙 sin𝜙                              (3.78) 

This secular term does not repeat with a period 2π, but increases with each cycle, indicating 

that the orbit does not return to its initial configuration after one revolution. The full solution 

can be written as the sum of a particular and a homogeneous component: 

𝑢(𝜙) = 𝑢𝑝(𝜙) + 𝑢ℎ(𝜙)                                          (3.79) 

The particular solution 𝑢𝑝(ϕ) contains constant and oscillatory terms from the non-resonant 

forcing components, while the homogeneous part is given by: 

𝑢ℎ(𝜙) = 𝜖 cos[(1 − 𝛿)𝜙]                                        (3.80) 

Here, denotes the amplitude of the homogeneous oscillation, which is related to the orbital 

parameters, particularly eccentricity. It reflects the magnitude of the unperturbed component of 

the motion. 

The parameter 𝛿 ≪ 1 represents a small deviation from the orbital frequency of the Newtonian 

solution. In the Newtonian case, where no perturbation is present, the frequency is exactly 1: 

𝑢ℎ
(Newton)(𝜙) = 𝜖𝑐𝑜𝑠𝜙                                          (3.81) 

In the presence of relativistic corrections (here emerging from 4DEU geometry), the angular 

frequency becomes slightly smaller than 1. Consequently, the radial function completes a full 

oscillation only when: 

1 − 𝛿(1 − 𝛿)𝜙 = 2𝜋 ⇒  𝜙 =
2𝜋

1−𝛿
                                  (3.82) 

Since 𝛿 ≪ 1, we expand the expression 
1

1−𝛿
 in a Taylor series around 𝛿 =  0 (first-order 

expansion valid in the small 𝛿 regime [13,14]): 

1

1−𝛿
= 1 + 𝛿 + 𝛿2 +⋯ ≈ 1 + 𝛿                                       (3.83) 
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Keeping only the linear term in 𝛿, we obtain: 

𝜙 ≈ 2𝜋(1 + 𝛿)                                                (3.84) 

which implies that the radial motion completes a full cycle after an angle slightly greater than 

2𝜋. Therefore, the perihelion shifts forward by: 

𝛥𝜙 =  𝜙 −  2𝜋 =  2𝜋𝛿                                         (3.85) 

which represents the perihelion precession per orbit, that is, the angular advance of the closest 

approach point (the perihelion) after each revolution, as derived in standard relativistic orbital 

mechanics [15]. 

To express this in terms of the orbital parameters, we recall that, in Newtonian mechanics, the 

orbit of a test particle under a central inverse-square force is an ellipse described by: 

𝑢(𝜙) =
𝐺𝑀

ℎ2
(1 + 𝑒 cos𝜙)                                       (3.86) 

where h is the conserved angular momentum per unit mass. The minimum and maximum values 

of 𝑟 correspond to perihelion and aphelion, respectively, and the semi-major axis a, and 

eccentricity e satisfy: 

𝑎 =
𝑟max+𝑟min

2
,  𝑒 =

𝑟max−𝑟min

𝑟max+𝑟min
                                        (3.87) 

Using these geometric relations and comparing them with the Newtonian solution, one obtains: 

ℎ2 = 𝐺𝑀𝑎(1 − 𝑒2)  ⇒  ℎ4 = 𝐺2𝑀2𝑎2(1 − 𝑒2)2                  (3.88) 

Substituting this into the Eq.(3.77) for the resonant coefficient A, we have: 

𝐴 =
6𝐺3𝑀3𝑒

𝑐2ℎ4
=

6𝐺𝑀𝑒

𝑐2𝑎2(1−𝑒2)2
                                            (3.89) 

We define: 

𝛼 =
3𝐺𝑀𝑒

𝑐2𝑎2(1−𝑒2)2
                                                         (3.90) 

This allows us to write the resonant part of the particular solution as: 

𝛿𝑢res(𝜙) = 𝛼𝜙 sin 𝜙                                               (3.91) 

This term leads to a shift in the orbital frequency, and the homogeneous solution takes the form: 

𝑢ℎ(𝜙) = 𝜖 𝑐𝑜𝑠[(1 − 𝛿)𝜙] ⇒ 𝛥𝜙 = 2𝜋𝛿                               (3.92) 

Finally, we compute the parameter 𝛿 in terms of the orbital parameters: 
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𝛿 =
3𝐺𝑀

𝑐2𝑎(1−𝑒2)
                                                            (3.93) 

From which: 

𝛥𝜙 = 2𝜋 ⋅ 𝛿 = 2𝜋 ⋅
3𝐺𝑀

𝑐2𝑎(1−𝑒2)
=

6𝜋𝐺𝑀

𝑎(1−𝑒2)𝑐2
                                 (3.94) 

This is the total precession of the perihelion per orbit and exactly reproduces the result predicted 

by General Relativity, despite the purely spatial origin of the correction in the 4DEU 

framework. 

3.3.1 On the Negative Newtonian Term 

In Equation (3.68), the Newtonian term appears with a negative sign: 

𝑑2𝑢

𝑑ϕ2
+ 𝑢 = −

𝐺𝑀

ℎ2
+
3𝐺𝑀

𝑐2
𝑢2 

This sign naturally arises from the geometric structure of the 3D spatial portion of the 4D 

universe in the 4DEU theory. Unlike General Relativity (GR), where gravitational attraction is 

associated with the curvature of four-dimensional spacetime and the Newtonian potential 

appears as a positive contribution to the effective force equation in a Lorentzian manifold 

[6,15], the 4DEU framework attributes gravitational effects solely to spatial curvature, with 

time remaining a privileged and flat coordinate. 

The presence of the negative Newtonian term reflects a key conceptual shift: in the 4DEU 

framework, gravity does not result from a classical attractive force or from spacetime curvature, 

but rather from an intrinsic geometric curvature of the 3D spatial manifold. This deformation 

is induced by local variations in radiation pressure from TWs, which act perpendicularly to the 

3D hypersurface along the privileged temporal dimension. 

Despite the reversed sign convention compared to GR, the dynamics remain attractive. The 

negative sign in the equation ensures that the curvature of space leads to bound, elliptical orbits 

consistent with Newtonian gravity. In fact, the Newtonian solution derived from this equation 

describes the same class of symmetric orbits predicted by classical mechanics. The difference 

lies solely in the mathematical representation and geometric interpretation: the coordinate 

origin (𝜙 =  0) is chosen such that the perihelion lies at the point of closest approach, resulting 

in a cosine term with a positive sign. If the coordinate system were rotated by 𝜙 = 𝜋, the same 

orbit would be described with a minus sign in front of the cosine. 
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Therefore, this sign is a matter of convention and does not affect the physical predictions of the 

model. Crucially, when relativistic corrections are included, the 4DEU equation yields the same 

perihelion precession as predicted by General Relativity, despite relying solely on spatial 

curvature. Although the orbital equation derived in the 4DEU framework takes a different form, 

most notably with a negative Newtonian term, the physical predictions remain equivalent to 

those of General Relativity in the weak-field limit. This equivalence arises not because 4DEU 

seeks to reproduce GR, but because it starts from a fundamentally distinct geometrical 

foundation, based on purely spatial curvature induced by anisotropic radiation pressure from 

TWs, and nonetheless arrives at the same first-order correction to orbital motion. The negative 

sign in the Newtonian term reflects a shift in the angular origin rather than a reversal in the 

direction of gravitational attraction. Consequently, the predicted perihelion precession 

coincides with that of General Relativity, despite emerging from a fundamentally different 

physical mechanism. 

3.4 Shapiro Delay in the 4DEU Framework 

The Shapiro delay is a prediction of General Relativity, which states that the travel time of a 

light or radar signal increases when the signal passes near a massive body. This delay originates 

from both gravitational time dilation, associated with the temporal component 𝑔𝑡𝑡, and from 

spatial curvature in the radial direction, associated wit 𝑔𝑟𝑟, as described by the Schwarzschild 

metric: 

𝑔𝜇𝜈 =

[
 
 
 
 
 − (1 −

2𝐺𝑀

𝑐2𝑟
) 0 0 0

0 (1 −
2𝐺𝑀

𝑐2𝑟
)
−1

0 0

0 0 𝑟2 0
0 0 0 𝑟2 𝑠𝑖𝑛2 𝜃]

 
 
 
 
 

                       (3.95) 

where G is the gravitational constant, M is the mass of the central body, c is the speed of light, 

and (𝑟, 𝜃, 𝜙) are standard spherical coordinates. 

 

The components 𝑔𝑡𝑡 and 𝑔𝑟𝑟 are responsible for the primary contributions to the time delay 

experienced by the signal. The angular components 𝑔𝜃𝜃 and 𝑔𝜙𝜙 are not directly involved in 

the derivation of the Shapiro delay, as the trajectory is nearly radial and confined to the 

equatorial plane. 

A detailed derivation of the relativistic correction to the Newtonian light travel time is 

presented in Hartle [15]. The purely relativistic contribution to the coordinate time delay, due 

to the curvature of spacetime, is given by: 
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𝛥𝑡 = 2𝑀 𝑙𝑛(
𝑟+√𝑟2−𝑟𝑡

2

𝑟𝑡
)                                                   (3.96) 

where r is a generic radial coordinate along the signal’s path, and 𝑟𝑡 is the radial coordinate at 

the point of closest approach, which corresponds to the impact parameter b in the weak-field 

approximation.  

 

This expression must be evaluated for both the emitter and receiver positions, and the total 

excess delay is obtained by summing the contributions from two endpoints. 

To compute the total relativistic delay for a signal propagating from an emitter at radial 

coordinate 𝑟1 to a receiver at 𝑟2, the expression must be evaluated at both endpoints and 

summed. Restoring physical units by substituting𝑀 = 𝐺𝑀/𝑐2 and replacing 𝑟𝑡 = 𝑏, the 

resulting coordinate time delay becomes: 

𝛥𝑡excess =
2𝐺𝑀

𝑐3
𝑙𝑛 (

(𝑟1+√𝑟1
2−𝑏2)(𝑟2+√𝑟2

2−𝑏2)

𝑏2
)                                (3.97) 

This expression constitutes the represents GR prediction for the Shapiro time delay in the weak-

field limit and will be used as a reference for comparison with the corresponding formulation 

derived in the 4DEU framework. 

3.4.1 Derivation of Shapiro Delay in the 4DEU Framework 

In the 4DEU theory, time is treated as a privileged and non-curved coordinate, denoted by T. 

Consequently, the temporal component of the metric, 𝑔𝑡𝑡, does not contribute to the 

gravitational delay. Instead, an equivalent delay effect arises entirely from the curvature of the 

spatial three-dimensional hypersurface, which modifies the geodesic path of a light signal as it 

propagates near a massive body. This section derives the Shapiro time delay within the 4DEU 

framework. The computation is based solely on the 3D spatial metric tensor that describes the 

curved spatial geometry, assuming that the signal propagates entirely within the equatorial 

plane (𝜃 = 𝜋/2). 

The 3D spatial metric tensor in spherical coordinates (𝑟, 𝜃, 𝜙) is given by: 

𝑔𝑖𝑗 = [
(1 −

2𝐺𝑀

𝑐2𝑟
)
−1

0 0

0 𝑟2 0
0 0 𝑟2 𝑠𝑖𝑛2 𝜃

]                                      (3.98) 

leading to the spatial line element: 
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𝑑𝑠2 = (1 −
2𝐺𝑀

𝑐2𝑟
)
−1

𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 𝑠𝑖𝑛2 𝜃  𝑑𝜃2                           (3.99) 

Restricting to the equatorial plane where 𝜃 =  𝜋/2, so that sin2 𝜃 = 1 and 𝑑𝜃 =  0, this 

becomes: 

𝑑𝑠2 =
𝑑𝑟2

1−
2𝐺𝑀

𝑐2𝑟

+ 𝑟2𝑑𝜙2                                               (3.100) 

Assuming the signal propagates at constant spatial speed c, the total travel time is: 

Δ𝑡 =
1

𝑐
∫𝑑𝑠 =

1

𝑐
∫√

𝑑𝑟2

1−
2𝐺𝑀

𝑐2𝑟

+ 𝑟2𝑑𝜙2                            (3.101) 

In the weak-field limit 
2𝐺𝑀

𝑐2𝑟
≪ 1, the dominant gravitational effect arises from the radial 

component of the spatial metric. 

Expanding 1/ (1 −
2𝐺𝑀

𝑐2𝑟
) to first order yields: 

1

1−
2𝐺𝑀

𝑐2𝑟

≈ 1 +
2𝐺𝑀

𝑐2𝑟
                                                     (3.102) 

Substituting into (3.104), the travel time becomes: 

Δ𝑡 =
1

𝑐
∫√𝑑𝑟2 (1 +

2𝐺𝑀

𝑐2𝑟
) + 𝑟2𝑑𝜙2                                       (3.103) 

Expanding the integrand: 

𝑑𝑟2 (1 +
2𝐺𝑀

𝑐2𝑟
) + 𝑟2𝑑𝜙2 = 𝑑𝑟2 + 𝑟2𝑑𝜙2 +

2𝐺𝑀

𝑐2𝑟
𝑑𝑟2                         (3.104) 

Thus, the square root becomes: 

√𝑑𝑟2 + 𝑟2𝑑𝜙2 +
2𝐺𝑀

𝑐2𝑟
𝑑𝑟2  

Since 2𝐺𝑀/(𝑐2𝑟) ≪ 1, we expand the square root to first order using: 

√𝐴 + 𝜖 ≈ √𝐴 (1 +
𝜖

2𝐴
)   (𝜖 ≪ 𝐴)  

Where 𝐴 = 𝑑𝑟2 + 𝑟2𝑑ϕ2 and 𝜖 =
2𝐺𝑀

𝑐2𝑟
𝑑𝑟2. 

Applying this expansion: 
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√𝑑𝑟2 + 𝑟2𝑑𝜙2 +
2𝐺𝑀

𝑐2𝑟
𝑑𝑟2 ≈ √𝑑𝑟2 + 𝑟2𝑑𝜙2 (1 +

𝐺𝑀

𝑐2𝑟

𝑑𝑟2

𝑑𝑟2+𝑟2𝑑𝜙2
)          (3.105) 

Thus, the infinitesimal travel time element becomes: 

𝑑𝑡 ≈
1

𝑐
[√𝑑𝑟2 + 𝑟2𝑑𝜙2 +

𝐺𝑀

𝑐2𝑟

𝑑𝑟2

√𝑑𝑟2+𝑟2𝑑𝜙2
]                             (3.106) 

The first term represents the flat-space travel time, while the second term yields the 

gravitational delay. 

In order to evaluate the integral, it is important to notice that along a nearly radial trajectory, 

the radial displacement dominates over the angular displacement. 

Since the light path passes very close to the central mass at its closest approach but then extends 

radially toward infinity, the radial motion dr is much larger than the angular contribution rdϕ 

over most of the trajectory. 

Thus, 𝑑𝑟 ≫ 𝑟𝑑𝜙 almost everywhere except in a very small angular region near the closest 

approach. 

This allows us to approximate: 

𝑑𝑟2 + 𝑟2𝑑𝜙2 ≈ 𝑑𝑟2                                              (3.107) 

so that: 

√𝑑𝑟2 + 𝑟2𝑑𝜙2 ≈ 𝑑𝑟                                                (3.108) 

and 

𝑑𝑟2

√𝑑𝑟2+𝑟2𝑑𝜙2
≈ 𝑑𝑟                                                   (3.109) 

Substituting Eq.(3.108) and Eq.(3.109) into (3.109), the infinitesimal gravitational contribution 

simplifies to: 

𝑑𝑡grav ≈
𝐺𝑀

𝑐3𝑟
  

Integrating along the light path, the gravitational delay can be written generically as: 

𝛥𝑡grav.
4𝐷𝐸𝑈 ≈

𝐺𝑀

𝑐3
∫
𝑑𝑟

𝑟
                                               (3.110) 

Considering both legs of the signal’s journey — from the emitter at 𝑟1 to the point of closest 

approach b, and from b to the receiver at 𝑟2 — the gravitational delay can be written as: 

From b to 𝑟1: 
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𝛥𝑡grav,1
4𝐷𝐸𝑈 =

𝐺𝑀

𝑐3
∫

𝑑𝑟

𝑟

𝑟1
𝑏

=
𝐺𝑀

𝑐3
𝑙𝑛 (

𝑟1+√𝑟1
2−𝑏2

𝑏
)                            (3.111) 

and similarly, for the second segment (from b to 𝑟2): 

𝛥𝑡grav,2
4𝐷𝐸𝑈 =

𝐺𝑀

𝑐3
∫

𝑑𝑟

𝑟

𝑟2
𝑏

=
𝐺𝑀

𝑐3
𝑙𝑛 (

𝑟2+√𝑟2
2−𝑏2

𝑏
)                               (3.112) 

Thus, the total one-way gravitational delay is the sum: 

Δ𝑡grav
4𝐷𝐸𝑈 = Δ𝑡grav,1

4𝐷𝐸𝑈 + Δ𝑡grav,2
4𝐷𝐸𝑈  

which takes the explicit form: 

𝛥𝑡grav
4𝐷𝐸𝑈 =

𝐺𝑀

𝑐3
𝑙𝑛 (

𝑟1+√𝑟1
2−𝑏2

𝑏
) +

𝐺𝑀

𝑐3
𝑙𝑛 (

𝑟2+√𝑟2
2−𝑏2

𝑏
)                    (3.113) 

Combining the two terms, we have: 

𝛥𝑡grav
4𝐷𝐸𝑈 =

𝐺𝑀

𝑐3
𝑙𝑛 (

(𝑟1+√𝑟1
2−𝑏2)(𝑟2+√𝑟2

2−𝑏2)

𝑏2
)                                 (3.114) 

Finally, since the measurement involves a signal that travels from the emitter to the receiver 

and then returns along the same path, the total gravitational delay must be doubled to account 

for the full round-trip journey: 

𝛥𝑡grav
4𝐷𝐸𝑈 =

2𝐺𝑀

𝑐3
𝑙𝑛 (

(𝑟1+√𝑟1
2−𝑏2)(𝑟2+√𝑟2

2−𝑏2)

𝑏2
)                                 (3.115) 

Using the limit 𝑟1, 𝑟2 ≫ 𝑏, we observe that: 

√𝑟𝑖
2 − 𝑏2 ≈ 𝑟𝑖  (𝑖 = 1,2) 

thus: 

𝑟𝑖 +√𝑟𝑖
2 − 𝑏2 ≈ 2𝑟𝑖                                             (3.116) 

Substituting Eq.(3.116) into the logarithmic term of Eq.(3.115), we have the full round-trip 

gravitational delay: 
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𝛥𝑡grav
4𝐷𝐸𝑈 ≈

2𝐺𝑀

𝑐3
𝑙𝑛 (

4𝑟1𝑟2

𝑏2
)                                          (3.117) 

Finally, by accounting for both the outbound journey from the emitter to the receiver and the 

return journey along the same path, the full round-trip gravitational delay is obtained as twice 

the one-way delay given by Eq. (3.120). 

𝛥𝑡grav
4𝐷𝐸𝑈 ≈

4𝐺𝑀

𝑐3
𝑙𝑛 (

4𝑟1𝑟2

𝑏2
)                                            (3.118) 

Thus, within the weak-field approximation, the 4DEU framework exactly reproduces the 

Shapiro delay formula as predicted by General Relativity, despite the fundamentally different 

geometric structure of the underlying theory. 

This completes the derivation of the Shapiro delay in the 4DEU framework. Although the delay 

arises solely from spatial curvature (via 𝑔𝑟𝑟) and not from gravitational time dilation, the final 

result coincides with that of General Relativity. This confirms the observational equivalence of 

the two approaches in weak gravitational fields, while highlighting the distinct conceptual 

structure of the 4DEU model. 

 

4. Discussion and Conclusions 

In this work, we have derived the main weak-field gravitational effects—gravitational redshift, 

light deflection, Mercury's perihelion precession, and Shapiro time delay—within the 

framework of the Theory of the Four-Dimensional Electromagnetic Universe (4DEU). These 

results have been obtained solely from the spatial curvature of the three-dimensional portion of 

the 4DEU universe, where all physical processes and observers are confined, without invoking 

temporal curvature or null spacetime paths. 

In contrast to General Relativity (GR), where light follows null geodesics of a four-dimensional 

pseudo-Riemannian spacetime manifold, the 4DEU framework postulates that electromagnetic 

waves propagate along real, physical trajectories within the curved three-dimensional part of 

the 4DEU universe, at the constant speed c with respect to the privileged time coordinate T. 

While null paths in General Relativity, though mathematically well-defined, imply a vanishing 

proper length—yet electromagnetic waves are physically observed to propagate through space, 

covering measurable distances and requiring finite time to travel between two points. This 

creates a conceptual inconsistency between geometric abstraction and the observed physical 

phenomenon. 
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As discussed in Section 1.1, the privileged time T functions as a universal and invariant 

temporal coordinate, tied to the radial expansion of the hyperspherical universe, and perceived 

as proper time by all observers regardless of gravitational context. 

The 4DEU theory thereby avoids the need for curved time coordinates or null intervals: 

electromagnetic waves move physically through curved three-dimensional space. In this 

context, the temporal component of the motion corresponds precisely to following the 

expansion of the temporal dimension at the constant privileged speed c. 

Despite its conceptual differences from General Relativity, the weak-field predictions of the 

4DEU theory are in exact agreement with those of GR. This equivalence is not superficial: it 

rigorously covers all experimentally verified gravitational phenomena in the weak-field regime, 

including gravitational redshift, light deflection, Shapiro time delay, and perihelion precession, 

and is not the result of a formal resemblance to GR equations, but rather a genuine consequence 

of a spatially curved universe governed by real temporal expansion. 

Thus, the 4DEU theory is fully consistent with current gravitational observations in the domains 

where General Relativity has been tested. 

This observational agreement confirms the viability of 4DEU as an alternative gravitational 

theory while offering a potentially deeper and more intuitive interpretation of mass, radiation, 

privileged time, and gravitation. The strong-field regime is beyond the scope of the present 

work and will be investigated in future studies. 

This study provides a consistent explanation of gravitational phenomena within a spatially 

curved universe governed by the dynamics of Temporal Waves, without resorting to curvature 

of an imaginary time dimension or null spacetime intervals. The gravitational field emerges 

exclusively from spatial curvature, yielding predictions in full agreement with observational 

data in the weak-field regime. 

Future work will extend this investigation to the strong-field regime and explore further 

observational implications. 
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Appendix A. Derivation of the 4D Euclidean Metric in Spherical Coordinates 

We begin with the expression for the line element in Cartesian coordinates: 

𝑑𝑠4𝐷
2 = 𝑑𝑥1

2 + 𝑑𝑥2
2 + 𝑑𝑥3

2 + 𝑑𝑥4
2                                               (A.1) 

he transformation from Cartesian to four-dimensional hyperspherical coordinates is given by: 

𝑥1 = 𝑙  𝑐𝑜𝑠 𝜃                                                                    (A.2) 

𝑥2 = 𝑙  𝑠𝑖𝑛 𝜃  𝑐𝑜𝑠 𝜙                                                        (A.3) 

𝑥3 = 𝑙  𝑠𝑖𝑛 𝜃  𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜓                                             (A.4) 

𝑥4 = 𝑙  𝑠𝑖𝑛 𝜃  𝑠𝑖𝑛 𝜙 𝑠𝑖𝑛 𝜓                                              (A.5) 

To compute the differentials 𝑑𝑥1, 𝑑𝑥2, 𝑑𝑥3, 𝑑𝑥4, we apply the total derivative rule to the 

coordinate transformations. Each differential is expressed as the sum of partial derivatives with 

respect to the hyperspherical coordinates, multiplied by the corresponding differentials. 

As an example, we show the full derivation for 𝑑𝑥1. We start from the relation: 

dx1 = d(𝑙 𝑐𝑜𝑠 𝜃)                                                (A.6) 

Applying the total derivative, we compute the two partial derivatives with respect to l and 𝜃: 

∂

∂l
(𝑙 𝑐𝑜𝑠 𝜃) = co s θ,        

∂

∂θ
(𝑙 𝑐𝑜𝑠 𝜃) = −l sin θ                  (A.7) 

Summing the contributions from the partial derivatives, we obtain: 

𝑑𝑥1 =
𝜕𝑥1

𝜕𝑙
𝑑𝑙 +

𝜕𝑥1

𝜕𝜃
𝑑𝜃 = 𝑐𝑜𝑠 𝜃  𝑑𝑙 − 𝑙  𝑠𝑖𝑛 𝜃  𝑑𝜃                    (A.8) 

Applying the same method to the remaining coordinates, we obtain: 

𝑑𝑥2 = 𝑠𝑖𝑛 𝜃  𝑐𝑜𝑠 𝜙  𝑑𝑙 + 𝑙  𝑐𝑜𝑠 𝜃  𝑐𝑜𝑠 𝜙  𝑑𝜃 − 𝑙  𝑠𝑖𝑛 𝜃  𝑠𝑖𝑛 𝜙  𝑑𝜙                              (A.9) 

𝑑𝑥3 = 𝑑(𝑙 𝑠𝑖𝑛 𝜃  𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜓) = 𝑠𝑖𝑛 𝜃  𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜓  𝑑𝑙 + 𝑙  𝑐𝑜𝑠 𝜃  𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜓  𝑑𝜃 

+ 𝑙  𝑠𝑖𝑛 𝜃  𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝜓  𝑑𝜙 − 𝑙  𝑠𝑖𝑛 𝜃  𝑠𝑖𝑛 𝜙 𝑠𝑖𝑛 𝜓  𝑑𝜓                                      (A.10) 

𝑑𝑥4 = 𝑑(𝑙 𝑠𝑖𝑛 𝜃  𝑠𝑖𝑛 𝜙 𝑠𝑖𝑛 𝜓) = 𝑠𝑖𝑛 𝜃  𝑠𝑖𝑛 𝜙 𝑠𝑖𝑛 𝜓  𝑑𝑙 + 𝑙  𝑐𝑜𝑠 𝜃  𝑠𝑖𝑛 𝜙 𝑠𝑖𝑛 𝜓  𝑑𝜃 

+ 𝑙  𝑠𝑖𝑛 𝜃  𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝜓  𝑑𝜙 + 𝑙  𝑠𝑖𝑛 𝜃  𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜓  𝑑𝜓                                     (A.11) 

These equations provide the necessary differentials to express the infinitesimal variations of 

Cartesian coordinates in terms of 4D hyperspherical coordinates. 
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Now, we compute the squared line element using Eq.(A.1). 

Substituting the expressions for the differentials into Eq. (A.1) and simplifying, we recover 

Eq.(2.4): 

𝑑𝑠4𝐷
2 = 𝑑𝑙2 + 𝑙2𝑑𝜃2 + 𝑙2 sin2 𝜃  𝑑𝜙2 + 𝑙2 sin2 𝜃 sin2 𝜙  𝑑𝜓2 

This is the 4D Euclidean metric in hyperspherical coordinates. 

his metric can also be expressed more compactly using the line element of a three-dimensional 

hypersphere: 

𝑑𝛺3
2 = 𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃  𝑑𝜙2 + 𝑠𝑖𝑛2 𝜃 𝑠𝑖𝑛2 𝜙  𝑑𝜓2 

Thus, the metric simplifies to: 

𝑑𝑠4𝐷
2 = 𝑑𝑙2 + 𝑙2𝑑𝛺3

2 

That corresponds to the Eq.(2.5) 
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Appendix B. Derivation of the Photon Trajectory Equation in the 4DEU 

Framework 

We derive here the second-order differential equation governing the photon trajectory, which 

is presented as Eq. (3.46) in the main text. Starting from the first-order relation: 

(
𝑑𝑢

𝑑𝜙
)
2

≈
1

𝑏2
− 𝑢2 +

2𝐺𝑀

𝑐2𝑏2
𝑢                                    (B.1) 

We differentiate both sides with respect to 𝜙, obtaining: 

Left-hand side. 

Applying the chain rule to the square of the derivative on the left-hand side: 

𝑑

𝑑𝜙
[(
𝑑𝑢

𝑑𝜙
)
2

] = 2
𝑑𝑢

𝑑𝜙
⋅
𝑑2𝑢

𝑑𝜙2
                                            (B.2) 

Right-hand side. 

Differentiating each term on the right-hand side: 

𝑑

𝑑𝜙
(
1

𝑏2
− 𝑢2 +

2𝐺𝑀

𝑐2𝑏2
𝑢) = −2𝑢 ⋅

𝑑𝑢

𝑑𝜙
+
2𝐺𝑀

𝑐2𝑏2
𝑑𝑢

𝑑𝜙
= 2

𝑑𝑢

𝑑𝜙
(
𝐺𝑀

𝑐2𝑏2
− 𝑢)             (B.3) 

Equating Eq.(B.2) and Eq.(B.3) and assuming 
𝑑𝑢

𝑑𝜙
≠ 0: 

2
𝑑𝑢

𝑑𝜙
⋅
𝑑2𝑢

𝑑𝜙2
= 2

𝑑𝑢

𝑑𝜙
(
𝐺𝑀

𝑐2𝑏2
− 𝑢)                                      (B.4)   

Dividing both sides by 2
𝑑𝑢

𝑑𝜙
: 

𝑑2𝑢

𝑑𝜙2
=

𝐺𝑀

𝑐2𝑏2
− 𝑢                                                        (B.5) 

This is the photon trajectory equation in the 4DEU framework, as stated in Eq. (3.47) of the 

main text. 
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Appendix C. Perturbative Solution of the Linearized Photon Trajectory 

Equation in the 4DEU Framework 

We consider the linearized photon trajectory equation derived in the 4DEU framework 

(Eq. 3.47): 

𝑑2𝑢

𝑑𝜙2
+ 𝑢 =

𝐺𝑀

𝑐2𝑏2
                                                         (C.1) 

This is a second-order linear inhomogeneous differential equation, where 𝑢(𝜙) = 1/𝑟(𝜙) 

represents the inverse radial coordinate of the photon. The right-hand side corresponds to the 

gravitational influence of a central mass M, treated as a small perturbation 

To solve Eq. (C.1), we apply the standard method of linear differential equations: we first 

determine the general solution of the associated homogeneous equation, the find a particular 

solution to the nonhomogeneous equation, and finally combine them to obtain the complete 

solution. 

C.1 Homogeneous Solution. 

The homogeneous part of Eq. (C.1) is: 

𝑑2𝑢

𝑑𝜙2
+ 𝑢 = 0                                                        (C.2)  

Its general solution is: 

𝑢hom(𝜙) = 𝐴 𝑐𝑜𝑠 𝜙 + 𝐵 𝑠𝑖𝑛𝜙                                       (C.3) 

We choose the angular origin such that the point of closest approach occurs at 𝜙 = 0,  

corresponding to the maximum of 𝑢(𝜙). This implies that the trajectory is symmetric, and 𝑢(𝜙) 

must be an even function. As 𝑠𝑖𝑛 𝜙 is odd, we set 𝐵 = 0, yielding: 

𝑢hom(𝜙) = 𝐴 𝑐𝑜𝑠 𝜙                                          (C.4) 

In the absence of gravity, the unperturbed photon trajectory is described by: 

𝑢(𝜙) =
1

𝑟(𝜙)
=
𝑐𝑜𝑠𝜙

𝑏
                                           (C.5) 

Comparing with Eq.(C.4), we fix 𝐴 = 1 𝑏⁄ , and obtain: 

𝑢hom(𝜙) =
𝑐𝑜𝑠𝜙

𝑏
                                              (C.6) 

C.2 Particular Solution 

Since the right-hand side of Eq. (C.1) is constant, we seek a particular solution of constant form: 
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𝑢part(𝜙) = 𝑎                                                 (C.7) 

Substituting into the differential equation: 

0 + 𝑎 =
𝐺𝑀

𝑐2𝑏2
 ⇒  𝑎 =

𝐺𝑀

𝑐2𝑏2
                                         (C.8) 

Thus, the particular solution is: 

𝑢part(𝜙) =
𝐺𝑀

𝑐2𝑏2
                                                    (C.9) 

C.3 General Solution 

The complete solution is the sum of the homogeneous and particular components: 

𝑢(𝜙) = 𝑢hom(𝜙) + 𝑢part(𝜙) =
𝑐𝑜𝑠𝜙

𝑏
+

𝐺𝑀

𝑐2𝑏2
                              (C.10) 

This expression describes the perturbed photon trajectory in the weak-field limit, as predicted 

by the 4DEU framework. The gravitational term 
𝑮𝑴

𝒄𝟐𝒃𝟐
  induces a slight inward displacement 

from the unperturbed path. 

 


