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Abstract—We propose a novel Graph Continuous Thought
Machine (Graph CTM) architecture that integrates a simu-
lated prefrontal cortex to enable adaptive problem-solving and
decision-making. The Graph CTM leverages graph neural net-
works to process complex data streams, while the simulated
prefrontal cortex modulates node activity to selectively focus on
relevant information. Through reinforcement learning, the model
navigates graph space to converge on optimal solutions, guided by
the information contained in learnt node property vectors. The
simulated prefrontal cortex regulates the flow of information by
adjusting the disposition of nodes to lead to the next instantiation
of the graph network. The Graph CTM incorporates an attention
mechanism that integrates the internal state of the graph as
input, which is modulated by outputs from the model’s neural
synchronization matrix. This modulation enables the algorithm to
selectively focus on specific subgraphs or node subsets,correlating
them with the input, effectively emulating short-term and long-
term memory mechanisms when attending to both the input and
internal representation. By dynamically weighting the importance
of different graph components, the model can adaptively process
and retain relevant information, facilitating more accurate and
context-dependent decision-making.

I. INTRODUCTION

Continuous Thought Machines (CTMs) represent a cutting-
edge advancement in artificial intelligence, designed to em-
ulate human-like thought processes through uninterrupted,
dynamic neural network operations. Unlike traditional AI
systems that rely on discrete inputs and outputs, CTMs operate
on a continuous spectrum, processing information in a fluid,
real-time manner akin to human cognition.

The key characteristics of the CTM are, continuous pro-
cessing: CTMs integrate inputs and generate outputs with-
out interruption, enabling seamless interaction with dynamic
environments. Adaptive Learning: These machines utilize an
advanced neural network architecture that adapts and evolves
based on continuous feedback loops, enhancing its predictive
and decision-making capabilities.

The architecture of a traditional CTM comprises several key
components that work in tandem to process and transform
input data. The components are organized in a hierarchical
structure, enabling the CTM to capture complex patterns and
relationships in the data.

Encoder: The input vector is first transformed by an encoder,
facilitating subsequent processing.

Attention Mechanism: The encoded input is then passed
through an attention mechanism, which selectively weights the
input features, highlighting the most relevant information. The
output of the attention mechanism is subsequently fed into a
synapse model .

Synapse Model: The synapse model, typically implemented
using a U-Net neural algorithm, processes the output from the
attention mechanism, generating a feature representation that
captures both spatial and temporal dependencies in the data

Neuron-Level Models: The output from the synapse model
is then fed into neuron-level models, which are complete
neural networks with their own weights and biases. These
models process the incoming data, leveraging both the current
input and a stored history of previous signals.

Memory Mechanism: A critical aspect of the CTM design
is the incorporation of a memory mechanism, which stores a
history of incoming signals. This stored history is fed into the
neuron-level models, along with the current input, enabling
the CTM to capture temporal dependencies and contextual
relationships in the data. The combined input is then processed
to produce an output, denoted as z. This vector of z’s is also
used as input to the synapse model together with the output
of the encoder block at the next time step.

By integrating these components, traditional CTMs can ef-
fectively process complex data streams, capturing both spatial
and temporal patterns, and generating meaningful outputs.

In addition to processing current inputs, the Continuous
Thought Machine (CTM) also leverages historical output data
to inform its decision-making processes. A history of outputs
is maintained, which is utilized to calculate the Neural Syn-
chronization Matrix (S). The S matrix is a critical component
of the CTM, enabling the model to capture complex relation-
ships between different outputs and identify patterns in the
data.

The S matrix is calculated using the following equation:

S = Z ∗ ZT

where: Z is the matrix composed of the collection of z
outputs, each representing a specific state or feature of the
system.



ZT is the transpose of the Z matrix.

The dot product of Z and ZT yields the S matrix, which
represents the similarity between different outputs and captures
the synchronization patterns between them. This matrix can be
used to identify clusters, correlations, and other relationships
between outputs, enabling the CTM to make more informed
predictions and decisions.

The Continuous Thought Machine (CTM) operates in a
phased manner, producing outputs in discrete steps referred
to as ”ticks.” Each tick represents a specific point in the
processing pipeline, where the CTM generates an output based
on the current input and its internal state. The CTM’s loss
function plays a crucial role in determining when to termi-
nate the processing. Specifically, the loss function takes into
account the confidence of the output at each tick, evaluating
the model’s certainty in its predictions. This confidence-based
approach enables the CTM to adaptively determine when to
stop processing, rather than relying on a fixed number of ticks
or iterations.

Following the calculation of the Neural Synchronization
Matrix (S), the Continuous Thought Machine (CTM) employs
a randomized selection process to generate two vectors from
the S matrix entries. These vectors are then utilized in the final
stages of output generation.

The CTM randomly selects entries from the S matrix to
form two vectors:

Vector 1: This vector is fed into the attention block, which
consists of the output from the input encoder. The attention
mechanism selectively weights the input features, leveraging
the information captured in the S matrix to focus on the most
relevant aspects of the input data.

Vector 2: This vector is fed into a decoder, which generates
the final output of the CTM. The decoder processes the vector,
incorporating the contextual information and relationships
captured in the S matrix, to produce a meaningful and accurate
output.

II. GRAPH CTM

This paper introduces a significant enhancement to the
Continuous Thought Machine (CTM) framework, which we
term the Graph CTM. The proposed update involves replacing
the traditional Synapse model and neuron-level models with
a Graph Convolutional Network (GCN) integrated with an
attention mechanism.

The Graph CTM architecture leverages the strengths of
GCNs in processing complex graph-structured data, enabling
the model to capture nuanced relationships and dependencies

between different nodes or entities. By incorporating an atten-
tion mechanism, the Graph CTM can selectively focus on the
most relevant nodes and edges in the graph, further enhancing
its ability to extract meaningful insights.

The Graph CTM consists of the following key components:

Graph Convolutional Network (GCN): The GCN replaces
the traditional Synapse model and neuron-level models, en-
abling the Graph CTM to process graph-structured data and
capture complex relationships between nodes.

Attention Mechanism: The attention mechanism is inte-
grated with the GCN, allowing the model to selectively focus
on the most relevant nodes and edges in the graph.

The proposed Graph Continuous Thought Machine (CTM)
architecture features a hierarchical structure, where the output
of each Graph Convolutional Network (GCN) layer is another
graph, generated at each processing step or ”tick.”

The overarching picture can be conceptualized as there
being a three-dimensional tensor block of potential neurons,
or a dispositional neural model,where each presentation of the
graph represents an instantiation of only those neurons that
are currently active, denoted by the nodes of the graph.Where
the nodes in the current graph over lay on the dispositional
neural model, whith the nodes of the graph identifying with
the indices of the dispositional neural model tensor.

Each node in the graph is represented by a learnable
property vector, which encodes the knowledge and experiences
accumulated by that node. This property vector captures two
essential aspects:

Learned representations: The node’s property vector repre-
sents what the neuron has learned from previous experiences,
encoding patterns and relationships in the data.

Disposition to cause subsequent node activations: The
node’s property vector also influences the activation of nodes
in the next graph , representing the connections and rela-
tionships between nodes across different layers within the
dispositional neural model.

The Graph CTM’s hierarchical architecture enables dynamic
node instantiation, where only the neurons (nodes) in the dis-
positional neural model that are currently firing are instantiated
at each processing step.

The Graph Convolutional Network (GCN) is initialized
with a random instantiation of neurons at the commencement
of each algorithmic run. This random initialization allows
the model to explore different regions of the graph space,
enabling the discovery of novel solutions.To optimize the
GCN’s performance, a reinforcement learning framework is



employed. The model navigates through the graph space,
searching for a path that best represents the solution to the
problem at hand. Through trial and error, the model adapts
its traversal strategy, learning to identify the most promising
paths and converging on an optimal solution.

In the proposed Graph Continuous Thought Machine (CTM)
architecture, each node in every graph is associated with a
value z, distinct from its property vector, representing the
node’s output at a given processing step or ”tick.” A compre-
hensive history of these outputs is maintained for each node
across the entire 3D tensor of dispositional neurons.The history
of node outputs is utilized to construct the Z matrix, which
is subsequently used to compute the S neural synchronization
matrix.

As in the traditional CTM, following the computation of the
S matrix, entries are randomly selected to form two vectors.
One vector is fed into the input of the Graph Convolutional
Network (GCN) with attention, while the other vector is fed
into a decoder to produce the final output. This process enables
the model to leverage the complex relationships and patterns
captured in the S matrix, generating accurate and meaningful
outputs.

A key innovation in the updated Continuous Thought Ma-
chine (CTM) is the incorporation of a prefrontal cortex-
inspired mechanism within the dispositional neural network.
This mechanism is designed to determine when a solution has
been reached, effectively serving as a stopping criterion for
the neurons in this network.

The stopping criterion is based on two complementary
approaches:

Confidence-based stopping: The algorithm terminates when
the confidence level reaches its maximum value, indicating
that the solution has been identified with high certainty.

Reward-based stopping: In reinforcement learning regimens,
the agent’s expected reward is used as a stopping criterion. The
algorithm terminates when the agent reaches a state with the
highest expected reward, signifying that the optimal solution
has been attained.

To do this, we leveraged the learnable property vectors
of the nodes in this network. Specifically, we mapped the
dimensions of these property vectors to the numbers in the
cyclic group Z12, a mathematical structure commonly used in
music theory.

The learning process for these property vectors was con-
strained to produce what would be meaningful musical chords,
represented as multiclass vectors were they in fact keys indices
on a musical keyboard. This can be achieved by incorporating
a plugin that computes the perceptual consonance of these

property vectors, quantifying the degree to which the resulting
chords are musically coherent. The consonance value would
then be included in the loss function, guiding the learning
process towards producing property vectors that correspond to
musically meaningful chords.

We needed to learn two things for this to work. Firstly, each
of the property vectors of the nodes in the dispositional neural
network should be associated with a meaningful musical
chord. Secondly Once the algorithm was very confident of
the solution or had reached a state with the highest expected
reward, the property vectors of all of the currently firing nodes
should harmonize.

III. ANALYSIS

A. Self Design of Neural Pathways

In the traditional Continuous Thought Machine (CTM), the
encoder generates an encoding that is subsequently processed
by an attention block. This attention block operates on the
encoding in conjunction with a vector comprising random
entries from the neural synchronization matrix. The integration
of this random vector enables the algorithm to modulate
the attention mechanism, allowing it to adaptively focus on
specific aspects of the encoder’s output that are most relevant
to solving the task at hand.

The modulation of attention facilitated by the neural syn-
chronization matrix allows the model to selectively concen-
trate on different parts of the input data. In the context of
image classification, for example, this might involve scanning
through relevant regions of the image to gather information
necessary for increasing confidence in the correct class label.

In the Graph Continuous Thought Machine (Graph CTM),
the modulation of attention is extended beyond the traditional
encoder-attention framework to also encompass the internal
state of the dispositional neural model. This means that as the
model learns, it can selectively focus on specific areas of the
dispositional network, effectively building a model of memory.

The internal attention mechanism in the Graph CTM allows
the model to attend to specific nodes or regions of the
dispositional neural network, which can be thought of as a
form of ”internal spotlight” that shines on the most relevant
information. This internal attention mechanism is modulated
by the neural synchronization matrix, which enables the model
to selectively concentrate on specific aspects of its internal
state.

B. Prefrontal cortex

A key innovation in the proposed algorithm is the incorpo-
ration of a simulated prefrontal cortex within the dispositional
neural model. This novel component plays a crucial role in



regulating the algorithm’s traversal through graph space, en-
abling more efficient and effective exploration of the solution
space.Through the use of reinforcement learning, the path
traced out by the algorithm in graph space is guided by the
information contained in the property vectors of the nodes in
the simulated prefrontal cortex. These property vectors capture
relevant patterns and relationships in the data, allowing the
algorithm to adaptively navigate the graph and converge on
optimal solutions.

Solution states would correlate with high levels of harmony
within the prefrontal cortex nodes of the dispositional neural
network. The simulated prefrontal cortex in the graph neural
model is designed to mimic the functionality of the prefrontal
cortex in the human brain, where it regulates the activity of
other neurons through a gating mechanism. In the graph neural
model, this functionality is achieved through the modulation
of node activity, where the prefrontal cortex influences which
nodes in the dispositional network fire,leading to the next
graph, effectively controlling the flow of information.

IV. CONCLUSIONS

In conclusion, the proposed Graph Continuous Thought
Machine with a simulated prefrontal cortex offers a novel and
promising approach to adaptive problem-solving and decision-
making. By integrating graph neural networks with a simulated
prefrontal cortex and attention modulation, the model can
effectively process complex data streams, selectively focus on
relevant information, and adaptively navigate graph space to
converge on optimal solutions. The incorporation of a simu-
lated prefrontal cortex and neural synchronization matrix en-
ables the model to emulate short-term and long-term memory
mechanisms, facilitating more accurate and context-dependent
decision-making. Further research and development of this
model may lead to significant breakthroughs in creating more
sophisticated and human-like artificial intelligence systems.

REFERENCES

[1] Continuous Thought Machines Luke Darlow, Ciaran Regan, Sebastian
Risi, Jeffrey Seely, Llion Jones

[2] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[3] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region
policy optimization,” in International conference on machine learning.
PMLR, 2015, pp. 1889–1897.

[4] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[5] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D.
Silver, and K. Kavukcuoglu, “Asynchronous methods for deep reinforce-
ment learning,” in International conference on machine learning. PMLR,
2016, pp. 1928–1937.

[6] Symbol Based Self Guided Neural Architecture Search
in a Spiking Neural Network Authors: Tofara Moyo
https://www.vixra.rxiv.org/abs/2410.0160

[7] Discovery of Novel STEM Documents Authors: Tofara Moyo
https://rxiv.org/abs/2411.0124


