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ABSTRACT

In this research, we will discuss the three basic approaches to building autonomous driving systems,
namely modular pipeline, end-to-end, and large models for language, vision and multi-modal models.
focusing on the challenges and shortcomings of each approach and how they are solved by another,
then presenting several in-depth reviews and summaries focused on the system architecture of example
systems built using large models, delivering superior performance, and solving the problems of the
previous two approaches. In addition to a short analysis of the most used models and datasets in
developing autonomous driving systems, besides other aspects of the reviewed systems.
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1 Introduction

Recently, autonomous driving has become one of the most complex studies in artificial intelligence (AI) and robotics,
where an autonomous vehicle can be interpreted as a robot that needs to be in motion with precise positioning with
respect to the road lanes, and other objects, besides the navigation and autonomous driving system readings. From that
perspective, an autonomous driving application can take one of three forms as found in the literature: simulation, a
Proof of Concept, or a real-life vehicle.

The concept of automating vehicles has been developed for a long time now, and when it started, it had nothing to do
with AI, but starting from the driver without assistance, it has improved to having an optional acceleration and braking
control, which was referred to as Adaptive cruise control. and developing to the fifth level of automation, which is the
fully autonomous vehicle in which the driver has no tasks at all regarding the vehicle motion, and as the following
description for the five levels 2 3 of automation [1] [2]:

1. Level 0 (No driving automation): In this level, the driver performs all aspects of the driving task, such as
driving conventional automobiles.

2. Level 1 (Driver assistance): The automation system provides sustained assistance with either steering or
acceleration/braking, and an example of the system is adaptive cruise control [3] and lane-keeping assistance [4].
At this level, the automation system consists mainly of a controller such as a feed forward controller or a
Proportional-Integral-Derivative (PID) controller [5], which could be designed using for example the Root
Locus method [6], and it is most useful for a car operating on a slope by controlling the speed or preventing
confusion by keeping the lane during a road turn.

∗Not affiliated at the time of research
2https://www.sae.org/standards/content/j3016_202104/
3https://medium.com/@samiratra95/autonomous-driving-modular-pipeline-vs-end-to-end-and-llms-642ca7f4ef89

https://www.sae.org/standards/content/j3016_202104/
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3. Level 2 (Partial driving automation): An upgrade for the system at level 1 by providing both types of sustained
assistance, steering and acceleration/braking. Examples of automation systems at this level are the Tesla
Autopilot 4, Cadillac Super Cruise 5, and Ford BlueCruise 6. We do not know how the companies are building
the system, but from experience in systems and control, the goal can be achieved by implementing a controller
for each task and keeping both operational at the same time.

4. Level 3 (Conditional driving automation): A system at this level has a big difference from the previous
level, where the system performs all aspects of the driving tasks within its Operational Design Domain
(ODD) 7 [7] [8], with driver intervention expected upon request. Examples of systems at this level are the
Audi Traffic Jam Pilot 8 and the Mercedes-Benz Drive Pilot 9. The system, in this case, has a more complex
structure, starting from sensors (LiDARs, Ultra Sonic), in addition to algorithms to process the sensor input
and output control signals from the vehicle controllers. The link in the footnote shows a video of a demo for
the Audi Traffic Jam Pilot 10

5. Level 4 (High Driving Automation): The system at this level performs all aspects of the driving task within its
ODD, without expecting driver intervention. Some examples of these systems are Waymo’s Robotaxis 11 and
NAVYA’s Shuttles 12. At this point, the system is intelligent because it is in one or more parts using AI for
processing and extracting information from cameras, LiDARs and other sensors or to predict the best trajectory
for the vehicle, and the main difference between this system from a system of level 5 is that it is for a specific
ODD and not built for all possible roads and driving scenarios.

6. Level 5 (Full driving automation): At this level, the system is built to deliver an improved performance
compared to a human driver, where the system performs all aspects of the driving task under all conditions
without expecting driver intervention. An example of this is a concept vehicle without a steering wheel or
pedals, like the Tesla Cybercab 13.

and as shown in the table in appendix A [1], a more detailed view of the automated vehicle functions in each level.

A lot of technologies has been built to improve the performance of the land vehicle autonomous driving systems, and
there are mainly three approaches [9] [10] [11]:

• Modular pipeline.

• End-to-end.

• Large language Models and Multi-modal language models.

Each of the approaches listed addresses a group of the issues facing the one before it and introduces a group of possible
improvements. The following sections will address the challenges of each approach and the solution suggested by the
one after it, with a focus on the last approach and the improvements it shows, then provide summaries for a group
of research papers that suggest large language models, vision language models, and multi-modal language models as
solutions for the problems by replacing the full autonomous driving system or part of it while redesigning the rest of the
system.

The following section of this research are Section 2, Modular pipeline and end-to-end, Section 3, MP and E2E challenges
and LLM solutions, Section 4, Example systems, Section 5 Analysis, and Section 6, Conclusion.

After large models, the modularized end-to-end systems have delivered the best results in autonomous driving, and as
will be clarified in the examples part of the research that the large models are some times improving a module of the
system or substituting it, in other cases combining two or three modules but not always substituting and delivering the
full system functionality.

4https://www.tesla.com/support/autopilot
5https://www.cadillac.com/technology/super-cruise?srsltid=AfmBOoreWh2WLT4WNRX0EYAvVE2Z9cSAsY3-vzOghbYBXf31VaCFt8Eq
6https://www.ford.com/technology/bluecruise/
7https://www.sae.org/standards/content/j3259/
8https://magazine.audi.com.au/article/audi-ai-traffic-jam-pilot
9https://www.mercedes-benz.nl/passengercars/technology/drive-pilot.html?srsltid=

AfmBOoo8iNXoLpZ8xQRonozBIw8w1Nh2PKpWh5noIshDEtztlwci9Ip_
10https://www.audi-mediacenter.com/en/videos/video/footage-audi-a8-audi-ai-traffic-jam-pilot-3785?

source=post_page-----642ca7f4ef89---------------------------------------
11https://waymo.com/
12https://www.navya.tech/en/solutions/moving-people/self-driving-shuttle-for-passenger-transportation/
13https://youtu.be/Qfj4urMF8CU

2

https://www.tesla.com/support/autopilot
https://www.cadillac.com/technology/super-cruise?srsltid=AfmBOoreWh2WLT4WNRX0EYAvVE2Z9cSAsY3-vzOghbYBXf31VaCFt8Eq
https://www.ford.com/technology/bluecruise/
https://www.sae.org/standards/content/j3259/
https://magazine.audi.com.au/article/audi-ai-traffic-jam-pilot
https://www.mercedes-benz.nl/passengercars/technology/drive-pilot.html?srsltid=AfmBOoo8iNXoLpZ8xQRonozBIw8w1Nh2PKpWh5noIshDEtztlwci9Ip_
https://www.mercedes-benz.nl/passengercars/technology/drive-pilot.html?srsltid=AfmBOoo8iNXoLpZ8xQRonozBIw8w1Nh2PKpWh5noIshDEtztlwci9Ip_
https://www.audi-mediacenter.com/en/videos/video/footage-audi-a8-audi-ai-traffic-jam-pilot-3785?source=post_page-----642ca7f4ef89---------------------------------------
https://www.audi-mediacenter.com/en/videos/video/footage-audi-a8-audi-ai-traffic-jam-pilot-3785?source=post_page-----642ca7f4ef89---------------------------------------
https://waymo.com/
https://www.navya.tech/en/solutions/moving-people/self-driving-shuttle-for-passenger-transportation/
https://youtu.be/Qfj4urMF8CU


A PREPRINT - APRIL 22, 2025

2 Modular pipeline and end-to-end

In this section will review the two classical approaches, the modular pipeline and the end-to-end, where in the later
sections, the use and implementation of large language and vision models will be discussed on the basis of these two
approaches.

2.1 Modular pipeline

This is the more traditional approach for creating autonomous driving systems, and it is not preferred today, mainly
because of:

• Its complexity of design.

• The separation of each part of the system into different software and hardware.

which results in big challenges in optimizing the system and synchronizing every part of it. Though understanding it
can give a great advantage when learning about more recent and popular approaches nowadays, since many approaches
upgrade one module of the system, the modular pipeline approach breaks down the task of the autonomous driving
system into four major parts (modules), and these are as follows.

2.1.1 Perception module

At this module, the vehicle collects, processes, comprehends and interprets the vehicle’s surrounding environmental
information by leveraging onboard sensors such as LiDAR, camera, radar, and event-based camera to extract as much
information as possible about the road and surrounding objects such as other vehicles. Perception is a process that
produces large amounts of data in the form of images, videos, point clouds and other formats [12]. The tasks and
technologies of the perception module are mainly part of a computer vision system, such as 2D and 3D object detection,
segmentation, object tracking, and sensor fusion [9]. For these tasks, algorithms like YOLO [13], Faster R-CNN [14],
and VoxelNet [15] are implemented. In [16], the tasks of the perception module is defined in more detail, by introducing
three categories:

• Object detection and identification.

• Depth estimation.

• Simultaneous location and mapping (SLAM).

where both the depth estimation and SLAM have three sensor options, the monocular, stereo and RGB-D.

For example [16], a Tesla vehicle uses:

1. A Wide-angle camera has a view angle of about 150 degrees responsible for recognising objects.

2. The medium-focal length camera has a view angle of 50 degrees, responsible for recognizing lane lines and
close-by objects.

3. Telephoto cameras (Long-focus) have a view angle of 35 degrees and recognition distance of 200-250m

Some of the types of the features extracted from the images are categorized in the list:

• Edge features: Canny operator [17], Prewitt operator [18], Sobel operator [19], Laplacian operator [20], and
Roberts operator.

• Appearance features: edges, contours, textures, dispersion, and topological characteristics.

• Statistical features: mean, variance, energy, entropy, autocorrelation coefficient and covariance.

• Transformation Coefficient Features: Fourier transformation, Hough transformation, Wavelet transformation,
Gabor transformation, Hadamard transformation, and K-L transformation.

• Other features: the color type (greyscale, RGB) and color intensity.

Then the information and features from this module are passed to the Prediction module.
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2.1.2 Prediction module

Built upon the real-time information received from the perception module, to function in analysing the past and current
trajectories of the road users, such as pedestrians and other vehicles, then trying to predict the future short-term and
long-term trajectories and behaviors of the road users to understand the future road conditions and ensure safety and
stability [10]. Models for prediction tasks have four types according to [21]listed here:

• Feature encoding: where the trajectory is taken as sequential data, and many models are suggested for this
case, such as RNN, Transformers [22], VectorNet [23] and MTP [24].

• Interaction modeling: where a module for the interaction between different vehicles, pedestrians and road
elements is modeled, using transformers [25].

• Prediction head: where the probability of each trajectory is calculated by one of the previous two types, some
of the approaches are using RNN [26] or take the prediction as a regression process and use MLP [27], besides
other approaches.

• Generative model: such as [28] and [29].

2.1.3 Planning module

This module is responsible for generating the best path and trajectory from the current location to the target destination,
based on the vehicle state (Position, speed, acceleration, direction) and environmental information received from the
prediction and perception modules [9]. It has two types:

• Global planning: which is concerned with finding the best route from the starting point to the destination on
the map using algorithms like A* and Dijkstra.

• Local planning: which involves real-time adjustments in speed and direction based on the current vehicle
situation concerning the surroundings, common methods are RRT and deep learning-based planners.

In [30], the decision planning process was broken down into four layers. In this subsection will mention three of them,
since according to the categorization of this paper, the fourth belongs to the next module, which is the control module,
These three layers are:

• Route planning: Is done by finding the shortest path on the map from the current position to the destination.
• Behavioral layer: Makes instantaneous decisions about the way the vehicle should interact with the surround-

ing environment, and predicts the intentions and the behavior of the other objects around the vehicle. And that
is done by machine learning.

• Motion planning: Based on the behavior decided a trajectory needs to be found for the vehicle. Using, for
example, graph search methods.

And the fourth layer is the local feedback control layer, where the controller generates the actuator signal to deliver the
trajectory.

2.1.4 Control module

This part of the system takes charge of executing the trajectory and the path received from the planning module, and it
takes into account the vehicle dynamics model and environmental conditions to generate a range of control signals, such
as acceleration/braking and steering. The more popular controller used at this step is the Model Predictive Controller
(MPC) [31] [32].

2.2 End-to-end

A driving system that interprets the autonomous driving task as a singular learning task, by integrating separate
components into a unified system, where it takes raw sensor signals as input and produces a plan as output [9]. This
type of autonomous driving system provides more safety and reliability compared to the previous one. Besides other
advantages [33] for end-to-end:

1. Simplicity: the system is simpler than the modular pipeline because it combines perception, prediction and
planning in a single model that can be jointly trained.

2. Optimization: the possibility to optimize the system towards the ultimate task as a whole, including its
intermediate representations.
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3. Shared backbones: which increases computational efficiency.
4. Data-driven optimization: which improves the system by scaling the training resources.

The most popular methods for end-to-end systems are:

2.2.1 Imitation Learning

This refers to learning by demonstration and works by training the end-to-end algorithm to learn the functionality
required by imitating the behavior of an expert algorithm [33] or a human driver. Even though it might be similar in
concept, it is still so different from knowledge distillation in large language models [34] in application. This process
requires a dataset containing trajectories collected from the expert algorithm while running, where each trajectory
consists of a state-action pair, and the goal is for the end-to-end algorithm to learn to produce the same trajectories as
the expert. Imitation learning has two types:

1. Behavior cloning: [35] This works by minimizing the loss as supervised learning over the dataset [36], the
most commonly used method is the deep learning neural networks, such as the model suggested in [37],
which is built of a convolutional neural network that can learn to steer a commercial vehicle on highways and
residential roads. This approach has two shortcomings: Covariant shift and causal confusion, which can be
tackled using techniques such as data augmentation [38] and data diversification [39] [40].

2. Inverse Optimal Control (IOC): [41] Also referred to as inverse reinforcement learning (IRL), in this
approach the IOC algorithm learns an unknown reward function from experts demonstrations [33], for example
a human is driving a vehicle and trying to optimize some unknown function with their actions, and the
algorithm will be learning to behave similarly given the same state or situation on the road by watching the
human driver. Approaches of this type include maximum entropy inverse reinforcement learning.

2.2.2 Reinforcement learning

This approach is based on trial-and-error, so the model usually gets built in a simulation environment such as
CARLA [42] and Waymax [43] and then implemented to a real-size vehicle, while in case of building the model on a
real-life vehicle a driver need to be present to take over as a safety measure. This approach requires significantly more
data than imitation learning and training time.

Besides that, one approach to reduce the time required by the reinforcement learning algorithms while delivering
similar results, the RL algorithm can be trained with imitation learning and then fine-tune it with reinforcement
learning [44] [33].

Some of the algorithms used in this type are the Actor-Critic network and Deep Deterministic Policy Gradients.
From [45] can find the steps of building a reinforcement learning system clearly defined, and as listed:

1. State space representation definition: which includes selecting the relevant sensor inputs and vehicle dynamics.
2. Designing the reinforcement learning architecture: which will make decisions for the vehicle motion, such as

Deep Q-Network, and Proximal Policy Optimization (PPO).
3. Reward function design: which guides the reinforcement learning process to follow the safety guidelines and

the traffic rules.
4. Uncertainty estimation and risk awareness: to enable the model to make risk-aware decisions and account for

sensor noise and other errors, using algorithms such as Bayesian neural networks and Monte Carlo Dropout.
5. Simulation and real-world experiments: where the model gets trained on realistic scenarios in a simulation

environment, for it to then be implemented in a real-world scenario.

In the next section will discuss some of the shortcomings of the two previously mentioned approaches and suggest
another that will work as a solution, and improve the autonomous driving system.

3 Modular pipeline and end-to-end challenges and LLM solutions

Some of the challenges that faced the two previous approaches are generalization, interpretability, causal confusion, and
robustness 14 [9]. Many research works have addressed these challenges and provided improvements for the autonomous
driving system capabilities by adding an LLM or a VLM to the system [9] [33] [46] [47] [48]

14https://open.substack.com/pub/samerattrah/p/autonomous-driving-with-llms-vlms?r=2nuo7w&utm_
campaign=post&utm_medium=web&showWelcomeOnShare=false
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3.1 Challenges

1. The modularized pipeline approach challenges only:

• Difficulty in integrating the different parts of the system, which mainly consists of four separate parts.
• Unavoidable gaps between the system modules, in terms of time delays and accuracy of results, which

result in bigger problems and a lack of performance going deeper into the system.

2. End-to-end approach challenges only [33]:

• The information channels from one end of the system to the other are very long, which results in a waste
of some information and delay.

• The network structure is so complex, and that makes it difficult to debug or optimize the system.
• The information and driving performance of the networks lack the human driver’s common sense.

3. Explainability: where the results, actions and states of the algorithm in both approaches are unpredictable and
understandable by humans in many scenarios [44].

4. Human-vehicle interaction: The human experience of interacting with the vehicle and the stability of the
self-driving algorithm are lacking a lot of possible improvements and can be greatly improved.

5. Data scarcity: The recording of road data and creating datasets for autonomous vehicles with the correct type
of annotation has not always been an easy process, which makes training models with higher performance
more challenging.

3.2 Solutions

Some of the challenges of the modular pipeline have been solved by the end-to-end approach a long time ago, such as
the separation and difficult synchronization between different parts of the system, where an end-to-end system solves
the autonomous driving task as a single deliverable.

While the delay and accuracy of the system are challenges that still can be improved in all approaches, end-to-end also
delivered a higher performance than the modular pipeline in overall results.

Some of the solutions that were provided by LLMs, VLMs and MLLMs to the challenges that were facing the end-to-end
approach, in addition to the modular pipeline, are as follows: [46]

1. Perception: by demonstrating great performance and delivering tasks such as object referring and tracking, and
open-vocabulary traffic environment perception, besides having improved performance in perception when
data is scarce by relying on their few-shot learning characteristics [49] [50] [51].

2. Planning: In this field, the large models have shown great performance in open-world reasoning, and there are
two types of large models [52] [53] [54]:

• Fine-tuning pre-trained models: where there are many approaches and datasets to use for fine-tuning a
large model to improve its performance in autonomous driving, some of the approaches are:
(a) Parameter-efficient fine-tuning, such as low-rank adaptation [55] [56] [57].
(b) Prompt tuning. such as learnable continuous vectors or soft prompts [58].
(c) Instruction tuning [59] [49].
(d) Reinforcement learning from human feedback [60].

• Prompt engineering: Some methods tried to use the full reasoning potential with carefully engineered
prompts, for example, using the chain-of-thought method to guide the reasoning process of the large
model and get the best possible and accurate result [61].

3. Question answering: This use case improves the explainability of the model actions and provides a better
human-vehicle-interaction, and understandability for the user, which could result in improved dataset generation
and the possibility of optimizing the model [62] [63] [51] [64].

4. Generation: large models can use their generative ability to create videos for driving scenarios, and caption
them, besides generating question-answer pairs or descriptions of driving scenes [65] [66] [67].

4 Example systems

In this section, we will mention a few examples for autonomous driving systems and large models implementations,
and discuss there most significant strengths and differences in the architecture from the base model used in building the
system and each one as the details mentioned in the research paper.
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The systems will be categorized according to the improved functions they perform, and as the solutions list above
shows, in addition to a few examples of end-to-end systems.

4.1 Perception

This subsection will mention the models, with special focus on their perception parts and architectures.

• BEVFusion [68]: This research presents a new sensor fusion approach, delivering improved results compared
to the previous ones. Sensor fusion is the process of concatenating the features generated by several types of
sensors, such as camera, LiDAR, and radar, into a single format, for it to be easily processed by the system
parts that come after the perception module. Traditional sensor fusion approaches are:

– Point-level fusion: this is an object-centric approach that usually paints image semantic features onto
foreground LiDAR points and performs LiDAR-based detection on the decorated point cloud inputs.

– Proposal-level fusion: which is also object-centric and works by creating object-proposals and projecting
them to extract Regions of Interest (RoIs), one shortcoming of this approach is that it cannot trivially
generalize to other tasks.

BEVFusion delivers a big improvement on these approaches, and it works as follows:
1. Apply modality-specific encoders to extract features.
2. Transform multi-modal features to a unified BEV presentation that preserves both the geometric and

semantic information.
3. Apply pre-computation, which associates each point in the camera feature point cloud with a BEV grid.
4. Interval reduction, which aggregates the features within each BEV grid by some symmetric function. and

apply a specialized GPU kernel to accelerate the aggregation process.
5. Apply a convolution-based BEV encoder to the unified BEV features.
6. Append a few task-specific heads to support different 3D tasks.

Figure 1: BEVFusion overview

As in the Figure 1, the network is built by using Swin transformer [69] for images and VoxelNet [15] for
LiDAR, and applies a Feature Pyramid Network FPN to fuse them. Then, apply grid sampling with bilinear
interpolation before each task-specific head to meet the output needs of any application task.

• EMMA [49]: Presenting an End-to-end multimodal model for autonomous driving. In which the model
directly maps the camera sensor data into outputs, including planner trajectories, detected objects, and road
graph elements. The model is built on top of Gemini [70], treating it as a first-class citizen of the system. The
inputs to the model are:

– Surrounded-view camera videos, to be processed for the perception tasks:
1. 3D Object detection.
2. Road graph estimation.
3. Scene understanding.

– High-level intent command.
– A set of historical ego status.

The model is trained using the chain-of-thought method, which improves the meta-decisions and critical object
identification performance. The main functionalities of EMMA:

– Generalizability.
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– Predictive driving.
– Obstacle avoidance.
– Adaptive behavior.
– Accurate 3D detection.
– Reliable road graph estimation.

• CarLLaVA [51]: This paper presents a novel system which has a unique architecture from perception to
control. The system uses the vision encoder from the LLaVA-NeXT [71] model, pre-trained on internet-scale
vision data. for high-resolution images.
The model takes camera images, the next two target points and the vehicle speed as input and gives time-
conditioned waypoints with a PID controller for longitudinal control and space-conditioned waypoints with a
PID controller for lateral motion as output.
In the next stage, using a VLM, concatenate the features resulting from the vision encoder, then, using an
adapter, downsample the feature map, and apply linear projection before generating the embeddings for the
features.
The system uses the LLaMA [72] architecture as a decoder, where mean squared error loss is used to monitor
the waypoint generation optimization at training. and as in Figure 2

Figure 2: CarLLaVA architecture

The system includes the following properties and advantages:

– Camera only, without expensive labels such as BEV or depth.
– Vision language pre-training, which delivers an improvement on training from scratch.
– High resolution input images, to improve driving quality.
– Reduced training time.
– Semi-disentangled output representation.

This model is using the LLM and VLM as an end-to-end system to take images as input and produce trajectories
as output, and needs to be connected to a PID controller. Besides that, this system is built to run on the CARLA
simulator [42], and can be upgraded slightly to work on real-life vehicle driving.

8
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4.2 Planning

This subsection will discuss the research papers that present the models built to deliver planning trajectories as output,
focusing on what makes each one of them different in architecture and functionalities.

• GPTDriver [52]: This paper presents a model that represents the planner’s inputs and outputs as language
tokens instead of taking images and outputting trajectories like other systems, and it leverages the GPT-
3.5 [73] [74] [75] LLM API to generate driving trajectories through a language description of coordinate
positions. In addition to the model, it defines three motion planning approaches:

– Rule-based: uses pre-defined rules to determine future driving trajectories.
– Optimisation-based: formulate control planning as an optimal control problem.
– Learning based: handle complex driving scenarios by learning from large-scale human driving data,

which is the one used in this system implementation.

One of the improvement aspects of this model implementation is the high interpretability, where it uses a
chain-of-thought [76] reasoning strategy, which works in three steps:

1. The planner identifies the critical objects from the perception results.
2. By analyzing the future motions of these critical objects, the planner should infer when, where, and how

this critical object may influence the ego vehicle.
3. Using the insights gained from the previous analyses, the planner draws a high-level driving decision and

converts it into a planned trajectory.

Another main difference for this model from the others is that it uses the model API, instead of using the
model implementation, and editing the architecture to build a complete autonomous driving system.

• MTD-GPT [53]: The model is built to manage multiple driving tasks specifically in unsignalized intersections.
It introduces a pipeline to build a model by (1) training a group of single-task reinforcement learning expert
models using PPO algorithm [77], (2) sampling data from the expert model’s performance in the environment,
and (3) utilising the mixed multi-task dataset created from stacking the expert samples to train a GPT-2 [78]
model offline, and the final step (4) GPT evaluation.

• VLM-AD [54]: This research suggests integrating a VLM, where the one used is GPT-4o [75], into a modular
pipeline system in a knowledge distillation approach [34] to improve its planning module performance, where
it uses the VLM as a teacher to provide extra supervision, that will enhance the features and therefore the
trajectory produced by the planning module.
The VLM is used for training only, not inference, and that is because using the LLM or VLM directly to
reason is time and resource-consuming since the language representation is difficult to transfer into a control
command or a planned trajectory, as in Figure 3 (b)

Figure 3: VLM-AD architecture [54]

The process of training this system starts when the VLM model receives the images from around the vehicle
and provides an annotation for the state of the vehicle, then the VLM model gets prompted with questions to
further explain the state and decision and provide further information and reasoning to enrich the understanding
of the traditional trajectory model.
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In the next step, the auxiliary heads shown in the Figure 3 receive the ego information from the traditional
trajectory model, and align it with the language instructions from the VLM to get an improved decision. and
the network used for the heads is a language model such as CLIP [79].

• LanguageMPC [80]: This paper implements the LLM [73] [74] [75] to function as the brain of the AD system.
Which takes a prompt and the environment perception information, and uses them to make the high-level
decisions and creates a low-level mathematical representation to be input into a Model-Predictive-Controller
(MPC) [81]. In addition to planning for vehicle driving, it presents a chain-of-thought framework [76] for the
driver to have a conversation with the LLM to improve interoperability of the driving decisions.

Figure 4: LaguageMPC architecture [80]

The model functions as follows: the LLM gather information, reasons, and renders judgments. Then, from left
to right branches in the center of Figure 4 (a), the LLM will:

– Identify the vehicles requiring attention in the surrounding environment.
– Evaluate the situation.
– Offer action guidance for the ego vehicle.

And the results from all the processes, the LLM gives attention to each vehicle separately and determines if
they pose a conflict or not. And from the attention it creates the observation matrix. The weight matrix defines
a situation (acceleration and steering) that a vehicle could be in, while the bias, as shown as the action bias
matrix, is the value of the steering or acceleration as scalar values.

• OccLLaMA [82]: This research paper presents a unified multi-modal vocabulary, for vision, language and
action (VLA), to unify the VLA-related tasks, including but not limited to scene understanding, planning and
4D occupancy forecasting. using a model based on LLaMA [72] [83] and a VQVAE-like [84] architecture as a
tokenizer while using occupancy mapping as perception.
At training time, after a few steps of processing to get the point cloud features and aggregate them using a
pillar embedding, and employ a Swin Transformer block [69] to obtain the BEV feature map. It uses vector
quantization to obtain discrete representations. After quantization, the decoder restores 3D voxel features by
stacking a convolution block and an upsampling layer.
For the training process, it utilizes three loss functions similar to [85]:

– Cross-entropy for geometry.
– Lovasz-softmax for semantics.
– Embedding loss for codebook learning.

This system uses the LLM as an end-to-end solution to the autonomous driving problem.
• DriveVLM [86]: This research paper presents a model plan for the vehicle motion and provide explanation by

the chain-of-thought process, which has three modules:
– Scene description: Linguistically describe the environment and critical objects.
– Scene analysis: describes the critical objects and their influence on the ego vehicle.
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– Hierarchical planning: formulates plans from meta-actions to waypoints.

Figure 5: DriveVLM structure.

As shown in the Figure 5, the model has two parts: DriveVLM and DriveVLM-Dual, where the latter
incorporates, in addition to the VLM functions, a 3D-perception module and trajectory planning refinement.
The VLM used is Qwen-VL [87] consists of a vision transformer encoder, an attention-based extractor and an
LLM.
The scene description module identifies critical objects, which are analyzed in three stages:

– Static attributes: describe inherent properties, such as a truck’s cargo which could cause a hazard.
– Motion states: describe object dynamics, such as position and speed.
– Particular behaviors: describe special actions.

The scene analysis dives into the details of the objects, then the hierarchical planning module generates the
plan.

• DriveMM [88]: The model takes images and videos in addition to a user instruction as input, and gets
pretrained using the curriculum learning [89] method. to deliver outputs in three tasks: perception, prediction,
and planning.
It adapts LLaVA [90], which has three parts:

– Vision encoder, such as SigLIP [91].
– Projector.
– LLM, such as LLaMA 3.1 [92].

The training process of the system is divided into four steps:
1. Language-image alignment.
2. Single-image pre-training.
3. Multi-capacity pre-training.
4. Driving fine-tuning.

4.3 Explainability

This section will discuss the autonomous driving systems with attention to the details of the explainability of the
applications and architecture of the models used.

• Agent Driver [62]: Discusses an LLM-based autonomous driving system [52], which introduces:
– A versatile tool library that has four modules:

* Detection [93].
* Prediction [94].
* Occupancy [95].
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* Mapping [96].
– A cognitive memory of common sense contains two sub-memories:

* Commonsense memory.
* Experience memory.

– A reasoning engine capable of chain-of-thought reasoning consists of four core components:

* Chain-of-thought reasoning: it helps learning by generating a text output for each object in the
environment.

* Task planning: produce high-level driving planning.
* Motion planning: generates a text-based trajectory.
* Self-reflection: it is a collision check and optimization approach.

Figure 6: Interpretability of Agent-Driver [62]

These three components are coordinated by LLMs. The driving process starts when the system takes sensory
data, process them with neural networks, then the output from the neural networks using a tool library get
processed by and LLM to generate text messages for each driving scenario, then the LLM output get used
as query for the cognitive memory to retrieve any relevant traffic rules or previous experiences, after that a
reasoning engine takes the perception and traffic rules as input, and generate a trajectory.
As in Figure 6, the output messages of LLMs from the tool library, cognitive memory, and reasoning engine
are recorded during system execution. And because of this, the whole driving decision-making process is
interpretable and explainable.

• DriveMLM [63]: The system suggested in this research paper consists of a model built to run on simulators
such as CARLA [42]. And to be easily integrated with modular AD systems, it standardizes the motion states
and introduces a motion (behavior) planning module, which takes input from (1) Driving rules, (2) User
commands, and (3) Sensors such as a camera and a LiDAR.
Most notable about this research is that it introduces a data engine to predict motion decisions, explain them,
and generate annotated datasets.
The topology of the framework has three parts:

– Behavioral planning states alignment: aligns an LLM with a pre-trained behavior planning module. to be
able to use the LLM as a behavior planner.
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Figure 7: Comparison of the DriveMLM system structure with classical approaches [63]

– MLLM planner: consists of a tokenizer to generate tokens from the input and a decoder to generate
control signals from the tokens.

– Data collection strategy.

As shown in the Figure 7, the tokenizer for the images input used is the QFormer [97]. For LiDAR data, the
Sparse pyramid transformer [98] is used as a feature extractor, which gets input to QFormer to get embeddings

• LingoQA [99]: The research introduces a benchmark, to test video question answering and a dataset in
addition to a vision language model for autonomous driving.

The model is trained to answer questions about driving scenes as well as general knowledge. The research
paper defines an evaluation metric called Lingo Judge, in contrast to the GPT Judge [100]. which delivers a
0.950 Spearman and 0.993 Pearson correlation coefficient. and built on a learned text classifier.

Figure 8: LingoQA architecture

As shown in Figure 8, the image encoder used is CLIP [79], and from that, the features are input into a
Q-former initialized from Blip-2 [97], to transform the vision features into language features. and then get
inputted into LLaMA-2 [72] model initialized on Vicuna v1.5 7B [101].
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4.4 Data generation

One application for the large vision language models is generating videos and images for driving scenarios, which
could be used to create new datasets for training autonomous driving systems or improve and expand existing datasets.

• VQA-Diff [66]: The research presents a model that improves the quality of the images generated by diffusion
models by adding fine definitions to the vehicles and generated environment, such as the face features of the
pedestrians, the car manufacturers, and the model of the vehicle running on the street. The system is built of a
group of diffusion models and an LLM able to learn from an in-the-wild observation, with zero-shot learning
prediction.
The system has three parts:

– VQA large language model text-to-text [97]: generates the necessary information about the view.
– Multi-expert diffusion models [102]: generate a multi-view structures of the vehicle.
– Edge-to-image ControlNet [103] [104]: renders the multi-view structures into photorealistic novel view.

Figure 9: VQA-diff [66] framework

The system works as shown in Figure 9 by:
1. Inputting the LLM [97] response with the subject image into a text-to-image [105] diffusion model.
2. Using the output of the text-to-image diffusion, which is a single image with four scenes of the same

vehicle, and it get split to four images with a quarter of the area of the first one, and inputted to four
image-to-image diffusion models [102] to generate multi-view images from the same subject.

3. Inputting a prompt, subject image, and 16 views structure condition generated from the group of image-
to-image diffusion models into ControlNet [103] [104].

4. Using the output of ControlNet, which is a photorealistic surround view in a downstream task.
• GAIA-1 [65]: In this paper, a generative system is reported where the system has three inputs: video, text, and

action, that get encoded into a shared space, as shown in Figure 10. GAIA-1 works by partitioning the model
into two parts:

– The world model [106]: reason about the scene components and dynamics, casts the world modeling as
an unsupervised sequence modeling problem. using an autoregressive transformer network.

– The video diffusion decoder [107]: translates the latent representations into high-quality representations.
It is a 3D U-Net with factorized spatial and temporal attention layers.

The model works as follows:
1. Tokenize the three inputs each according to a specific criterion. where the image tokenizer has a trade-off

between the vocabulary size and the sequence length. And for text, there are two choices: character or
word level tokenization.

2. Tokenizing the video input can be done using a discrete image autoencoder on two stages:
(a) Compress the information from low pixels.
(b) Guides the process towards meaningful representation.

3. The discrete image autoencoder is a fully convolutional 2D U-Net [108], and the losses used to train it
are:
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Figure 10: GAIA-1 architecture [65]

– Image reconstruction loss.
– Quantization loss.
– Inductive bias loss.

• GAIA-2 [109]: This research paper is based on GAIA-1 [65] and delivers improvements in performance,
where this model gives improved control to the environment and the ego vehicle in comparison to the previous
one. GAIA-1 used a discrete latent variable while GAIA-2 uses a continuous latent space.

Figure 11: GAIA-2 video tokenizer [109]

The model has two main parts:

– Video tokenizer as in Figure 11. The video encoder compresses the input videos into a compact continuous
latent space for the world model to learn from them, predicting the future latent states. and it is made of a
space-time factorized transformer, with an asymmetric encoder-decoder architecture.

– Latent world model: as in the Figure 12, which is a time-space factorized transformer trained using flow
matching. and takes the inputs as:

* Past latents.
* Actions.
* Conditioning inputs: which includes dynamic agent properties, camera configurations.

• SimBEV [67]: This research paper presents a generative model and a dataset in the form of Bird’s Eye View
(BEV), and suggests that BEV perception is interesting for two main reasons:

– Conductive to the fusion of information from different modalities.
– BEV Segmentation offers a concise view of the environment.

The model relies on the CARLA simulator [42] with a custom content library. At the time of generating the
dataset, the model runs on CARLA to generate videos of a car’s surrounding view, and offers two types of
annotation:

– 3D object bounding boxes.
– BEV ground truth, for models like BEVFusion [68] to be trained on.

It works by randomizing (within some bounds) as many simulation parameters as possible.
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Figure 12: GAIA-2 world model

4.5 End-to-end

• LMDrive [50]: This model processes and integrates inputs from multi-modal sensor (camera - LiDAR) data
with natural language instructions. And the output of the model is control signals for the vehicles.
LMDrive consists of two parts:

– Vision encoder generates visual tokens. The one used is designed differently from CLIP, which is the best
way to align vision and language, and it works as follows:

* Implements a ResNet [110] backbone to extract visual features and, after a few steps of processing,
get the point clouds that will be aggregated into Bird’s Eye View (BEV) queries.

* BEV decoder that will process the visual features into tokens of three types:
1. BEV tokens.
2. Waypoint tokens.
3. Traffic light tokens.

– LLM, uses LLaMA [72], with its associated parts (tokenizer [72], Q-former [97], and adapters) that take
the vision tokens and natural language instructions, then generate control commands from them. And as
the Figure 13 shows:

Figure 13: LMDrive architecture
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The training process of the complete system has two stages:

1. Vision encoder pre-training stage. Training the encoder is in three parts:
(a) Object detection.
(b) Future waypoint prediction.
(c) Traffic light status classification.

2. Instruction fine-tuning stage.

While the LLM weights stay frozen at all stages of the training and inference. From the model details and the
Figure 13 can find that the model is implementing the LLM as an end-to-end system.

• DriveGPT4 [111]: Presenting a multi-modal LLM based on LLaVA [90] capable of processing multi-frame
video captured by a front-view camera as input and textual queries.
The output of the model is the prediction of the control signal for the next step, besides a natural language
answer to the text query.

Figure 14: DriveGPT4 architecture

DriveGPT4 consists of:

– Video tokenizer: consists of a visual encoder (CLIP) [79] and a projector, converts video frames into text
domain tokens.

– LLaMA-2 [72] as LLM.
– De-tokenizer inspired from RT-2 [112].

The training process for the model is in two stages:

– The pre-training stage focused on video-text alignment, using CC3M and WebVid-2M [113] datasets,
where only the projector is trained and the encoder and LLM weights are fixed.

– The mix-finetuning stage aimed at training the model for question answering, and the part trained is the
LLM alongside the projector.

• RAG-Driver [114]: This research presents a generalist model that delivers state-of-the-art performance and
exhibits exceptional zero-shot performance by the usage of the Retrieval Augmented Generation (RAG) [115]
method to improve the end-to-end autonomous driving system. The model addresses the following challenges:

1. Explainability.
2. Data scarcity.
3. Expensive training requirements.
4. Forgetting.

The model delivers three outputs:

– Action explanation.
– Action justification.
– Next control signal prediction.
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Figure 15: RAGDriver overview

RAG-driver has two main components that interact through a retrieval engine:

– Unified perception and planning unit, built on MLLM backbone, which is Vicuna 1.5 7B [101].
– Memory unit: built upon a hybrid vector and textual database and the retrieval engine.

5 Analysis

Considering the research papers discussed and the models being used in implementing an autonomous driving system,
can find that the models of interest are mainly three:

1. LLaVA [71] [90].

2. LLaMA [72] [83] [92].

3. GPT [52] [73] [74] [75].

While there are others, such as Gemini [70] and Vicuna [101], they are not used often by researchers in this field.

Another notice is that the planning module is the most researched and suggested for improvement, but the largest
change and the approach that might have the biggest potential for delivering an improved autonomous driving system is
the end to end system that is mentioned in the examples LMDrive, DriveGPT4, and RAG-Driver, where they take the
perception information as input and produce the control signals as output, and that is because the improvement of the
large models is still an actively searched subject, to improve the capabilities of the models while keeping the same size
or decreasing it.

In addition to the mentioned models and architectures, a group of the most popular and used datasets are in Ta-
ble 1 [9] [44]

6 Conclusion

The systems that include large language models and large vision models can be a solution for many challenges for the
previous approaches, and some of them can deliver improvements to the modular pipeline and end-to-end systems, in
addition to possibly replacing them fully or partially.

The LLMs enable the building of a new type of system, which is more inclusive than end-to-end, where, in contrast to
the traditional end-to-end, it does not need a controller after the last step but delivers the controller signal as output after
taking the perception information as input.
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Dataset Task
KITTI [116] 3D & 2D Object Detection, Semantic Segmentation, Object Tracking

Cityscapes [117] 3D & 2D Object Detection, Semantic Segmentation
CityFlow [118] Object Tracking, Re-Identification
nuScenes [119] 3D & 2D Object Detection, 3D & 2D Semantic Segmentation, Object Tracking, Motion Planning

BDD100K [120] 2D Object Detection, 2D Semantic Segmentation, Object Tracking
Waymo [121] 3D & 2D Object Detection, 2D Semantic Segmentation, Object Tracking
BDD-X [122] 2D Object Detection, 2D Semantic Segmentation, Object Tracking, Action Explanation

NuPrompt [123] Multiple Object referring and tracking
Talk2BEV [124] Visual question Answering,
DRAMA [125] Image Captioning, Visual Question Answering

DeepDrive-X [122] Global Navigation Satellite system, Text annotation
Table 1: Datasets and their supported tasks

In addition to that, the LLMs enable data generation, which is a task that was not addressed by the modular pipeline and
the classical end-to-end, since video, images, and text datasets are scarce in usual, so generating and simulating driving
environments would be a great addition to the autonomous driving industry.

Explainability is another application for large vision and language models that did not exist as part of the other
two approaches, it improves the possibility of optimizing the systems further by understanding their behavior and
communicating with some of them.

So we can notice that large language models and large vision models can transform the autonomous driving system into
a more similar experience to a human driver.

References

[1] Eilat Navon Nathan. Challenging the silences: An analysis of sae j3016 as a classification system. 2024.

[2] Debbie Hopkins and Tim Schwanen. Talking about automated vehicles: What do levels of automation do?
Technology in Society, 64:101488, 2021.

[3] Yangsheng Jiang, Hongwei Cong, Hongyu Chen, Yunxia Wu, and Zhihong Yao. Adaptive cruise control design
for collision risk avoidance. Physica A: Statistical Mechanics and its Applications, 640:129724, 2024.

[4] Sijie Wei, Peter E. Pfeffer, and Johannes Edelmann. State of the art: Ongoing research in assessment methods
for lane keeping assistance systems. IEEE Transactions on Intelligent Vehicles, 2023.

[5] Khaled Sailan, Klaus Dieter Kuhnert, et al. Modeling and design of cruise control system with feedforward for
all terrian vehicles. Computer Science & Information Technology (CS & IT), 1(2):339–349, 2013.

[6] M Manju Prasad and MA Inayathullah. Root locus approach in design of pid controller for cruise control
application. In Journal of Physics: Conference Series, volume 2115, page 012023. IOP Publishing, 2021.

[7] Thor Myklebust, Tor Stålhane, and Dorthea Mathilde Kristin Vatn. Definition of the system, operational design
domain, and concept of operation. In The AI Act and The Agile Safety Plan, pages 19–27. Springer, 2025.

[8] Marcel Aguirre Mehlhorn, Andreas Richter, and Yuri AW Shardt. Ruling the operational boundaries: A survey
on operational design domains of autonomous driving systems. IFAC-PapersOnLine, 56(2):2202–2213, 2023.

[9] Xingcheng Zhou, Mingyu Liu, Ekim Yurtsever, Bare Luka Zagar, Walter Zimmer, Hu Cao, and Alois C Knoll.
Vision language models in autonomous driving: A survey and outlook. IEEE Transactions on Intelligent Vehicles,
2024.

[10] Xu Wang, Mohammad Ali Maleki, Muhammad Waqar Azhar, and Pedro Trancoso. Moving forward: A review
of autonomous driving software and hardware systems. arXiv preprint arXiv:2411.10291, 2024.

[11] Yuxuan Zhu, Shiyi Wang, Wenqing Zhong, Nianchen Shen, Yunqi Li, Siqi Wang, Zhiheng Li, Cathy Wu,
Zhengbing He, and Li Li. Will large language models be a panacea to autonomous driving? arXiv preprint
arXiv:2409.14165, 2024.

[12] Yun Li, Kai Katsumata, Ehsan Javanmardi, and Manabu Tsukada. Large language models for human-like
autonomous driving: A survey. In 2024 IEEE 27th International Conference on Intelligent Transportation
Systems (ITSC), pages 439–446. IEEE, 2024.

19



A PREPRINT - APRIL 22, 2025

[13] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified, real-time object
detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 779–788,
2016.

[14] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection with
region proposal networks. IEEE transactions on pattern analysis and machine intelligence, 39(6):1137–1149,
2016.

[15] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud based 3d object detection. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4490–4499, 2018.

[16] Fei Liu, Zihao Lu, and Xianke Lin. Vision-based environmental perception for autonomous driving. Proceedings
of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 239(1):39–69, 2025.

[17] Geng Hao, Luo Min, and Hu Feng. Improved self-adaptive edge detection method based on canny. In 2013 5th
International Conference on Intelligent Human-Machine Systems and Cybernetics, volume 2, pages 527–530.
IEEE, 2013.

[18] Weijie Zhou, Xiaoyu Du, and Senhao Wang. Techniques for image segmentation based on edge detection. In
2021 IEEE International Conference on Computer Science, Electronic Information Engineering and Intelligent
Control Technology (CEI), pages 400–403. IEEE, 2021.

[19] Theodora Sanida, Argyrios Sideris, and Minas Dasygenis. A heterogeneous implementation of the sobel edge
detection filter using opencl. In 2020 9th International conference on modern circuits and systems technologies
(MOCAST), pages 1–4. IEEE, 2020.

[20] Liang Pei, Zhiwei Xie, and Jiguang Dai. Joint edge detector based on laplacian pyramid. In 2010 3rd International
Congress on Image and Signal Processing, volume 2, pages 978–982. IEEE, 2010.

[21] Jianbang Liu, Xinyu Mao, Yuqi Fang, Delong Zhu, and Max Q.-H. Meng. A survey on deep-learning approaches
for vehicle trajectory prediction in autonomous driving. 2021 IEEE International Conference on Robotics and
Biomimetics (ROBIO), pages 978–985, 2021.

[22] Jiacheng Pan, Hongyi Sun, Kecheng Xu, Yifei Jiang, Xiangquan Xiao, Jiangtao Hu, and Jinghao Miao. Lane-
attention: Predicting vehicles’ moving trajectories by learning their attention over lanes. 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 7949–7956, 2019.

[23] Jiyang Gao, Chen Sun, Hang Zhao, Yi Shen, Dragomir Anguelov, Congcong Li, and Cordelia Schmid. Vectornet:
Encoding hd maps and agent dynamics from vectorized representation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 11525–11533, 2020.

[24] Henggang Cui, Vladan Radosavljevic, Fang-Chieh Chou, Tsung-Han Lin, Thi Nguyen, Tzu-Kuo Huang,
Jeff Schneider, and Nemanja Djuric. Multimodal trajectory predictions for autonomous driving using deep
convolutional networks. In 2019 international conference on robotics and automation (icra), pages 2090–2096.
IEEE, 2019.

[25] Yicheng Liu, Jinghuai Zhang, Liangji Fang, Qinhong Jiang, and Bolei Zhou. Multimodal motion prediction with
stacked transformers. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
7573–7582, 2021.

[26] Haoran Song, Wenchao Ding, Yuxuan Chen, Shaojie Shen, Michael Yu Wang, and Qifeng Chen. Pip: Planning-
informed trajectory prediction for autonomous driving. In European Conference on Computer Vision, 2020.

[27] Hang Zhao, Jiyang Gao, Tian Lan, Chen Sun, Benjamin Sapp, Balakrishnan Varadarajan, Yue Shen, Yi Shen,
Yuning Chai, Cordelia Schmid, Congcong Li, and Dragomir Anguelov. Tnt: Target-driven trajectory prediction.
In Conference on Robot Learning, 2020.

[28] Namhoon Lee, Wongun Choi, Paul Vernaza, Christopher Bongsoo Choy, Philip H. S. Torr, and Manmohan
Chandraker. Desire: Distant future prediction in dynamic scenes with interacting agents. 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 2165–2174, 2017.

[29] Sriram Narayanan, Buyu Liu, F. Pittaluga, and Manmohan Chandraker. Smart: Simultaneous multi-agent
recurrent trajectory prediction. In European Conference on Computer Vision, 2020.
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Function Level 0 (No
automation)

Level 1 (Driv-
ing assistant)

Level 2 (Par-
tial automa-
tion)

Level 3
(Conditional
automation)

Level 4 (High
automation)

Level 5 (Full
automation)

Steering con-
trol

Human driver Human driver Automation
system

Automation
system

Automation
system

Automation
system

Acceleration
and Decelera-
tion

Human driver Automation
system

Automation
system

Automation
system

Automation
system

Automation
system

Braking Human driver Automation
system

Automation
system

Automation
system

Automation
system

Automation
system

Lane keeping Human driver Human driver Automation
system

Automation
system

Automation
system

Automation
system

Lane chang-
ing

Human driver Human driver Human driver Automation
system

Automation
system

Automation
system

Navigation
and Route
planning

Human driver Human driver Human driver Human driver Automation
system

Automation
system

Traffic sign
and signal
recognition

Human driver Human driver Automation
system

Automation
system

Automation
system

Automation
system

Object detec-
tion and re-
sponse

Human driver Human driver Automation
system

Automation
system

Automation
system

Automation
system

Parking Human driver Human driver Automation
system

Automation
system

Automation
system

Automation
system

Monitoring
vehicle sys-
tem

Human driver Human driver Human driver Automation
system

Automation
system

Automation
system

Emergency re-
sponse

Human driver Human driver Automation
system

Automation
system

Automation
system

Automation
system

Adaptive
cruise control

Human driver Automation
system

Automation
system

Automation
system

Automation
system

Automation
system

Environmental
perception

Human driver Human driver Human driver Automation
system

Automation
system

Automation
system

Vehicle-to-
everything
(V2X) com-
munication

Human driver Human driver Human driver Automation
system

Automation
system

Automation
system

Driver Moni-
toring (Semi-
autonomous
Vehicles)

Not applicable Not applicable Human driver Human driver Not applicable Not applicable

Table 2: 15 functions of vehicle automation, that indicate who has authority at each stage of automation [1]
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