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Abstract

The nonlinear Schrödinger equation is derived for the electron which is
represented with the closed circular string. The energies for the stationary
states of such system is derived and the corresponding frequencies of the emitting
photons are determined.

1 Introduction

One of the fundamental dichotomies of the particle physics is

electron(quark) is a point− like particle (1)

electron(quark) is not a point− like particle. (2)

While for many years it has been supposed that electron(quark) is a point-like particle,
now, the attention to be concentrated on the electron(quark) as a composite particle. One
of the possibilities how to decide whether electron, or, quark is a composite is to investigate
their excited states. Such possibility has been discussed since the first proposal given by
Low (1965) and later several estimations of masses of the excited leptons and quarks has
been obtained (Renard, 1983). In the present article we will concentrate only on the
excited states of an electron.The natural reaction leading to such states are obviously the
following ones:

p+ e− → p+ e−∗ + γ → p+ e− + γ (3)

γ + p→ p+ e+ + e−∗ + γ → p+ e− + e+ + γ (4)

e+ + e− → e+ + e−∗ → e+ + e− + γ. (5)
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and so on (Renard, 1983).
The coupling between excited spin 1/2 fermions, light fermions and photons is usually

in literature considered in the form of the magnetic type with the effective Lagrangian
(Kühn et al., 1985):

L =
ef

2m∗
ē∗σµνF

µνeL + h.c., (6)

where m∗ denotes the mass of the excited electron e−∗, f is some coupling constant eL
is the left handed component of the electron wave function. It is possible also to use the
right component eR.

Similar Lagrangian has been considered for decay of bosons W−,W+, Z0 decaying into
the excited particles (Rubbia, 1985).

During the 1983 run, the UA2 group reported an event of the type

Z0 → e+ + e− + γ (7)

with a resolved e − γ pair. This has promoted the speculations that one might have
observed e new excited lepton e−∗ → e− + γ Similarly a search for

W → e−∗ + ν → e− + ν + γ (8)

exists, however no event has been found so far (Rubbia, 1985). Nevertheless, the question
of the excited states of leptons is attractive an it needs attention.

While the description of the excited lepton states is usually involved in the effective
Lagrangians, we will solve this problem by supposing the specific internal structure of an
electron. In other words, we will suppose, an electron has a form of the closed string.
The motivation for a such model is based on the present situation in the particle physics,
where strings and the string theory form the fundamental mathematical objects in the
particle physics (Artru, 1983).

On the basis of the string model of the electron we will show that the string motion is
described by the nonlinear Schrödinger equation, and we will derive an equation for the
stationary states. Because of the strong non linearity of the derived equation, we solve the
problem of the stationary states only approximately using a method which is described
in the Migdal book (Migdal, 1975). To our knowledge, the results obtained in the present
article are original.

2 The quantum mechanics of the closed string

Early than we formulate the Schrödinger equation for the open and closed string, let us
remember the many-particle interpretation of the Ψ-function.

If we put

Ψ =
√
%e

i
h̄
S, (9)

where % and S are real functions, into the original Schrödinger equation

ih̄
∂Ψ

∂t
= − h̄2

2m
∆Ψ + VΨ (10)

we get after separation of the real and imaginary part of the solution, the hydrodynamical
equation and the equation of continuity (Wilhelm, 1970; Rosen, 1974). It means that the
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Schrödinger equation describes not only the behavior a single particle, but at the same
time the system of particles moving in the potential field V . The many-particle description
of the physical reality was for instance successful used in the superconductivity (Feynman,
1972) and now the question arises, how to apply it for the motion of the string.

Let us replace the string by the linear chain consisting of the massive points with
masses m, which are at the equilibrium state at points xk = k.a, where a is the lattice
constant of the chain and the left end of the chain is fixed at point x0 = 0. Then the
potential energy of the chain is

V =
1

2
κ
∑
i=1

(ηi − ηi−1)2; η0 = 0, (11)

where κ is some elasticity constant and ηi is deflection of a mass point with index i from
the equilibrium position.

Let us the equilibrium length of the chain is l0 = k.a and l is is length of the uniformly
stretched chain. Then we have

ηi − ηi−1 = δi = δ =
l − l0
N

(12)

and

V =
1

2
κNδ2 =

1

2
κN

(
1

%
− 1

%0

)2

, (13)

where % and %0 are densities of of points of the stretched and equilibrium chain.
It is easy to see that it follows from eq. (13) that for the string with the limit N →∞,

the potential energy is of the form:

V =

(
α

%
− β

)2

(14)

and the corresponding Schrödinger equation of the one-dimensional string is as follows:

ih̄
∂Ψ

∂t
= − h̄2

2m
∆Ψ + VΨ +

(
α

%
− β

)2

Ψ. (15)

3 The stationary states of the string

Inserting

Ψ = ϕ(x)e−
i
h̄
Et, (16)

into eq. (15), we get

ϕ′′ = f(ϕ), (17)

where

f(ϕ) = −ω2
0ϕ+

2m

h̄2

(
α

%
− β

)2

ϕ (18)

and
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ω2
0 =

2mE

h̄2
. (19)

We get also instead of eq.(17)

dϕ′2 = 2f(ϕ)dϕ, (20)

or,

ϕ′2 = 2(ϕ)dϕ+ C, (21)

or,

x =
∫ dϕ

(2
∫
f(ϕ)dϕ+ C)1/2

+D, (22)

where C and D are some constants of integration. It is easy to see that the integral in
eq. (22) cannot be evaluated by the elementary methods. This is why we approach the
solving the problem by some approximate method.

It holds good V (%0) for the equilibrium state of the string, where %0 = α/β.
Furthermore we have

V ′(%0) = 0 (23)

and therefore

V ≈ V ′(%0)

2!
%20 =

β4

α2
%20 (24)

Now, we have instead of eq. (17) the following equation

ϕ′′ = −ω2
0ϕ+

2m

h̄2
β4

α2
ϕ5, (25)

or,

ϕ′′ + ω2
0ϕ = Aϕ5; A =

2m

h̄2
β4

α2
(26)

The first iteration equation corresponding to eq.(26) is obviously

ϕ′′1 + ω2
0ϕ1 = Aϕ5

0, (27)

where

ϕ0 = a sin(ω0x) (28)

is the solution of the homogenous equation (26). After some modification, we have instead
of eq. (27) the following equation:

ϕ′′1 + ω2ϕ1 =
Aa5

16
(10 sin(ω0x)− 5 sin(3ω0x) + sin(5ω0x)) . (29)

However, function sin(ω0x) forms the resonance solution of eq. (29), which means we
are forced to modify the iteration method. We use here the prescription of the method
described in the Migdal book (Migdal, 1975) and write instead of eq. (26)
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ϕ′′ + ω2ϕ = Aϕ5 + (ω2 − ω2
0)ϕ, (30)

where ω 6= ω0 and the equation of the iteration is now of the form:

ϕ′′1 + ω2ϕ1 =
Aa5

16
(10 sin(ωx)− 5 sin(3ωx) + sin(5ωx)) + [a sin(ωx)] (ω2 − ω2

0), (31)

where ω must be determined in order to get no resonance solution. Or,

ω2 = ω2
0 −

5a4

8
A. (32)

Now, it is obvious that the solution of eq. (31) is of the form:

ϕ1 = c1 sin(3ωx) + c2 sin(5ωx), (33)

where constant c1, c2 can be easily determined as

c1 =
5

128

1

ω2
Aa5 (34)

c2 = − 1

384

1

ω2
Aa5. (35)

4 The stationary states of the closed string

The stationary states of the closed string are determined by the so called Born-Kármán
periodicity conditions

ϕ(x) = ϕ(x+ L); ϕ(x, ω) = ϕ0(x, ω) + ϕ1(x, ω), (36)

where L is the length of the perimeter of the string.
After inserting of eq. (33) into eq. (36) we get that condition (36) is fulfilled only for

the specific ωn. Namely for

ωn =
2π

L
n; n = 1, 2, 3, .... (37)

Using eq. (32) and eq. (19),we get for the stationary states of the closed string the
following formula:

En =
h̄2

2m

(
ω2
n +

5a4

8
A

)
. (38)

5 The excited states of an electron

We identify the electron with closed string. It means that the excited states of the electron
are the excited states of the closed string. It is usually suppose, in quantum physics, that
the change of the stationary state is accompanied by the emission, or, absorption of photon
with frequency

ω =
En − Em

h̄
; En > Em. (39)
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and it means that we can await a signal represented by photons, which will inform us
about the existence of the excited states of electron. The processes (3–5) which can be
possible in the high-temperature plasma of protons, electrons and positrons will probably
give us the evidence of the new physical reality.

6 Discussion

In the preceding text we exhibited the model of non-point-like electron in the form of
the closed string. The model enables the existence of the excited states which is the
measurement problem for particle physics. In general, composites models can be ones
in explanation for the observed three generations of standard model (SM) particles.
Observation concerns the all excited leptons and excited muons.

At the LHC such particles could be produced in pp collisions under the assumption
that leptons are composite objects. Produced excited leptons are expected to transition
to their corresponding SM lepton partner via gauge or via contact interaction. CMS has
performed a search for such excited states. While no signal was observed, the exclusion
results provide the best limits to date (Hoepfner et al., 2021)

The problem can be generalized for the situation with the Dirac equation and using
the relativistic methods of quantum electrodynamics (Akhiezer et al., 1965; Berestetskii
et al., 1982).

The article is some modification of the original contribution at the international
conference on the hadron physics in Prague (Pardy, 1988).
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Bechyně, Czechoslovakia, 26 June - 1 July, 1988,
(Edited by J. Fischer, P. Kolář and V. Kundrát).
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