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1 Abstract

Feature engineering is a vital stage in machine learning pipelines that greatly affects the performance,
interpretability, and general efficacy of models. Filter, wrapper, and embedded techniques are common
ways to choose and change features, but they often need manual heuristics and subject knowledge. They
also don’t work well in environments with a lot of dimensions and complexity. Recent studies have
investigated automated methods that make use of large language models and reinforcement learning in
order to overcome these constraints. A comprehensive and critically synthesized survey of state of the
art works covering RL-based feature selection, RL-driven feature generation, and LLM-guided feature
optimization is presented in this paper.

Three main paradigms of methodology are identified. In the first, feature selection is framed as a
cooperative or guided decision making problem using interactive and multi-agent reinforcement learning
techniques. These techniques allocate agents to features and maximize long-term rewards according
to domain-specific significance, redundancy, or model accuracy. Combinatorial Multi-Armed Bandits
(CMAB), a computationally lightweight alternative that provides scalable and effective feature selection
with little learning overhead, is part of the second paradigm [1]. For the third group, LLMs are used to
either learn successful reward functions or make new features. They do this by using reasoning-based
prompts, external knowledge bases, and prototypical alignment.

This work also address open challenges in bias control, compute overhead, and generalization to
unseen domains as well as underexplored gaps including the need of hybrid frameworks combining
RL’s exploration efficiency with LLMs’s semantic reasoning.

2 Introduction

In machine learning, the building of the input feature space through either selection of relevant features
or creation of new ones is often more impactful than model architecture or training method. Though
conventional techniques including filter, wrapper, and embedded approaches have great success, they
have shortcomings including poor scalability, weak interpretability, and dependence on hand heuris-
tics [5]. Demand for automated, adaptive, and explainable feature engineering techniques has grown
significantly as datasets get more highly dimensionally, sparse, and multimodally.

Recent studies have tackled this difficulty by characterizing feature optimization as a learning prob-
lem unto itself. Using task specific reward functions, reinforcement learning (RL) techniques model
features as decision making agents that over time maximize selection strategies. Some effectively ex-
plore and exploit subsets of features using lightweight variants including multi-armed bandits (MAB)
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[1]. Though they provide adaptability and flexibility, these approaches might find it difficult to generalize
outside the numerical domain or with semantic understanding.

Large language models (LLMs) have shown an increasing importance in feature generation and
evaluation concurrently by using natural language reasoning and domain knowledge. LLM-based sys-
tems can suggest relevant, explainable features informed by text metadata, external corpora, or human
preferences by means of tools including Tree-of- Thought prompting, Retrieval-Augmented Generation
(RAG), and few-shot reward modeling [2, 3].

Focusing on techniques that automate feature selection or generation using RL and LLMs, this paper
offers a consistent survey of various works across several paradigms. We group them by architectural
and methodological themes instead of summarizing every one separately, compare their design trade-
offs, and examine their strengths in useful applications. This paper point up important gaps such as
fairness, cost-efficiency, and lack of hybridization.

3 Previous Work

Previously, feature engineering has been hands-on manual process based on statistical heuristics, do-
main knowledge, and iterative processes based on error. Filter, wrapper, and embedded methods were
first used to try to automate this work, but they weren’t very flexible in environments that were changing
quickly or had a lot of dimensions. Using reinforcement learning (RL) and information-theoretic formu-
lations to sequentially choose subsets under reward signals linked to model accuracy and redundancy,
recent work has reinterpreted feature selection as a learning problem. Though they often operate in a
black-box with limited post-hoc interpretability, techniques like INVASE [6] and L2X [7] advanced this
line by introducing instance-wise feature selection using actor-critic and mutual information approxi-
mations.

Many studies have also extended RL-based automation outside of selection into generation. Al-
though Khurana et al.[8] put forth one of the first RL-based AutoFE models, their system needed man-
ually created transformation templates and lacked semantic understanding. More recent efforts like
AutoML-Zero [9] aim toward learning feature construction logic from scratch, but they are computa-
tionally demanding and lack the reasoning framework required for interpretable output. By combining
structured reasoning with neural operators, neural-symbolic systems such as AutoFeature [10] seek to
close this distance.

Leveraging domain knowledge that exists in natural language, large language models (LLMs) pro-
vide a semantic abstraction layer to this space. Many LLM based generators, on the other hand depend
just on task-level accuracy as the indication of success. According to this paper, this kind of input is in-
sufficient thus feature traceability and redundancy should also serve as guiding principles for generation.
In order to provide both semantic depth and optimization rigor, hybrid systems where LLMs propose
and RL agents verify are becoming increasingly crucial.

4 Methodologies

The recent surge in automated feature engineering research reflects a transition away from static, man-
ual heuristics toward models that can reason, adapt, and learn transformations or selections. Across the
works surveyed, we identify three major methodological archetypes that define how features are opti-
mized: (i) reinforcement learning for feature selection, (ii) reinforcement learning for feature generation,
and (iii) LLM-guided feature optimization. These categories reflect not just different architectures, but
fundamentally distinct views on how to represent decision processes over the feature space.
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Using reinforcement learning (RL) for feature selection, the first group presents the work as a se-
quential decision-making issue. In this context, the aim is to train agents capable of determining which
features should be maintained or deleted so optimizing downstream model performance. Every feature,
for instance, is modeled as an independent agent in the multi-agent RL framework proposed by Liu et
al [5] receiving feedback in the form of task accuracy, redundancy penalties, and other reward signals.
Gao et al.[11] build on this with external direction from KBest filters and decision trees. Differentiat-
ing ”hesitant” from ”assertive” agents improves interpretability and convergence by providing the latter
focused guidance during early training rounds. Li et al. [1] model the problem using combinatorial
multi-armed bandits (CMAB), so avoiding the complexity of full reinforcement learning by a lighter
approach. This formulation lets fast and scalable feature selection by including built-in mechanisms for
balancing mutual information-based relevance and redundancy.

By means of mathematical transformations, the second group of works generates new features rather
than selecting ones. These approaches are driven by the belief that hidden structure in the data can be
revealed by fresh representations created by operations including addition, logarithmic transformation,
or interaction. Three cascading RL agents consecutively choose two feature groups and an operation
to apply between them to introduce GRFG, a group-wise feature generator. Mathematical similarity
and mutual information direct these actions. InHRecon, proposed by Zhang et al. [12] creates a hier-
archical agent structure whereby transformation, feature targeting, and operation selection are modular-
ized. Their model guarantees that the produced interactions reflect real second-order effects by using
H-statistics, so allowing more interpretability.

For semantic reasoning and text-informed feature engineering, the third methodological class turns
away from numerical modeling and instead employs large language models (LLMs). Still, LLMs serve
several purposes across these systems. In Large language model based Feature Generation [2] and Text
Informed Feature Generation [3],the LLM mostly functions as a feature generator suggesting changes
depending on stimuli, metadata, or acquired knowledge. Proto-RM [4] learns preference-aligned scoring
systems from minimal input using LLMs as part of the reward modeling pipeline instead. Understanding
their capacity and constraints depends on this difference between LLMs as agents (actively generating
features) versus LLMs as tools (evaluating or aligning outputs). While TIFG adds retrieval to ground
the LLM’s proposals, LFG uses Tree-of- Thought prompting with Monte Carlo Tree Search (MCTS) to
refine generation. Conversely, Proto-RM substitutes human-aligned prototypical reasoning for conven-
tional reward shaping. Evaluating scalability, reasoning depth, and deployment costs should take these
functional roles into account.

These methodological clusters offer a more relevant prism for comparison than do paper-by–paper
summaries. Every group shows trade-offs in generalization, interpretability, computation cost, and appli-
cability to practical problems. Although sensitive to reward shaping, RL-based selectors are modular and
light weight. Though they can be computationally costly, generative agents efficiently record interac-
tions. Although they inject domain reasoning, LLM-guided models present difficulties with repeatability
and bias reduction.

4.1 RL-Based Feature Selection

Reinforcement learning-based automated feature selection is a logical progression from static filter-
based or wrapper-based techniques to dynamic, feedback-driven selection. The main concept is to rep-
resent the process of choosing a feature subset as a sequential decision-making task in which the learner
observes a state (the chosen feature subset) and is rewarded with delayed rewards (such as downstream
accuracy) when they finish it. This area gives rise to three unique approaches, each of which tackles the
issues of reward sparsity, interpretability, and scalability.

Reward Formulation: Across most RL-based selectors, the reward is commonly structured as a
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weighted combination of accuracy, redundancy, and relevance [5, 1]:

R = λ1 · Accuracy − λ2 · Redundancy + λ3 · Relevance (1)

Mutual information (MI) is commonly used in computation of redundancy and relevance. In partic-
ular, redundancy penalizes overlapping features in the chosen subset, whereas relevance favors features
consistent with the target label.:

Redundancy =
1

|S|2
∑
i,j∈S

I(fi; fj) (2)

Relevance =
1

|S|
∑
i∈S

I(fi; y) (3)

These metrics help guide the learning process toward informative and diverse subsets, balancing
model performance and interpretability.

In multi-agent reinforcement learning, the first representative work models each as an autonomous
agent. Every agent learns a policy by a shared environment evaluating the combined subset on a down-
stream activity and makes binary decisions such as select or drop. Particularly in early peroid, this
arrangement suffers from delayed and sparse rewards even if it is intrinsically parallelizable and encour-
ages distributed exploration. The authors use group-level normalisation and correlation aware reward
components to lower feature redundancy and so help to mitigate this.

Figure 1: Reinforcement learning loop for automated feature selection.

Upper Confidence Bound (UCB): The CMAB approach uses UCB to balance exploration and
exploitation. The reward estimate for feature arm i at time t is computed as [1]:

Scorei = µi +

√
2 log t

ni
(4)

Here, µi is the mean reward of arm i, ni is the number of times it has been selected, and t is the total
time steps. This formulation encourages selection of promising but under-explored features.

Building on the limits of pure MARL, a second method uses interaction with conventional models
to include external monitoring into the RL loop. Agents in this design are labeled as ”assertive” or
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Table 1: Comparison of RL-Based Feature Selection Methods

Method Agent Architecture Reward Signal Strengths Limitations

MARL One agent per fea-
ture

Global accuracy + re-
dundancy

Flexible coordination of fea-
ture agents

Sparse/delayed rewards

Interactive RL Agents with trainer
support

Model-based + task
accuracy

Fast convergence, inter-
pretable decisions

Requires external model feed-
back

CMAB (CUCB, GFS) Feature-as-arm MI + accuracy-based
reward

Low compute, strong baseline
performance

Limited to additive feature in-
teractions

”hesitant” based on their trust levels. Hesitant agents get help from traditional trainers like decision
trees or statistical filters. Particularly in low-data conditions, this yields faster convergence, better se-
lection quality, and more stable learning. The system dynamically moves from supervised guidance to
autonomous policy learning, so fusing modern RL flexibility with classical interpretability.

Unlike the agent-heavy formulations above, a third direction frames each feature as an indepen-
dent arm [1], so simplifying the decision structure by combinatorial multi-armed bandits (CMAB).
Different from complete RL methods, these techniques do not reflect environment state or long-term
policy trajectories. Rather, CMAB maximizes feature subset selection based on short-term reward esti-
mates—typically via generative Beta sampling or confidence upper bounds. Although CMAB models
are substantially faster to train, easier to interpret, and more robust in low-resource or latency-sensitive
environments, their lack of state transitions causes CMAB to be less expressive than deep RL in se-
quential decision problems. They also simplify tuning and honor reward design effort. CMAB is still a
good choice for tabular datasets where feature independence is assumed or accepted even if it lacks the
adaptability to model inter-feature dependencies across timesteps. Much of the differences in method
design between MARL and bandit-based approaches are driven by this contrast in expressiveness and
efficiency. These models differ substantially in agent architecture, reward granularity, and computational
requirements. A comparative summary is provided in Table 1.

4.2 RL-Based Feature Generation

While feature generating techniques synthesize new attributes by mathematical or statistical transfor-
mations, feature selection techniques concentrate on selecting an ideal subset of current features. A
methodical approach to automatically guide agents across operations including addition, multiplication,
or log transformations is offered by reinforcement learning (RL). These methods preserve a degree of
interpretability in addition to enhancing model performance by tracking each produced feature back to
its original constituents.

Group-wise Reinforced Feature Generation (GRFG) [12] presents a representative method in this
regard and generates a cascade of three RL agents. While the third agent choose a transformation opera-
tion (e.g., addition, logarithmic transform, or cross-product), the first two agents choose sets of original
features. The group-wise interaction of GRFG is novel it combines two feature groups instead of ag-
gregating two individual features so producing several new features in one step. This layout accelerates
training and enhances reward feedback quality. Mutual information and cosine similarity guide the
agents to guarantee both relevance and diversity.

By means of a hierarchical reinforcement learning framework, InHRecon [13] breaks out feature
generation into three sequential decisions: choosing the transformation operation, spotting the first fea-
ture, and subsequently the second. The framework uses H-statistics to estimate the strength of second-
order interactions and feature type checks numeric vs categorical to guarantee appropriate operations.
These design decisions are especially fit for fields where higher-order interactions are otherwise difficult
to find manually and expert knowledge is rare. InHRecon balances interpretability with generalization
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power by assessing both transformation validity and interaction quality.

Feature Interaction Strength: To measure the second-order interaction between features, InHRe-
con uses Friedman’s H-statistic [13]:

H2 =
V [E[Y | X1, X2]− E[Y | X1]− E[Y | X2]]

V[Y ]
(5)

This quantifies the proportion of label variance attributable to interaction effects, ensuring that the
generated features reflect meaningful dependencies rather than additive noise.

Both GRFG and InHRecon aim to maximize downstream model performance through structured and
interpretable feature construction. However, their differences in agent orchestration, guidance signals,
and feedback granularity yield unique trade-offs, summarized below in Table 2.

Table 2: Comparison of RL-Based Feature Generation Methods

Method Agent Design Feature
Construction
Strategy

Guidance
Signal Used

Strengths Limitations

GRFG Cascaded agents
(Group1 → Op
→ Group2)

Crosses feature
groups using
selected
operation

Mutual info +
Cosine similarity

Efficient
multi-feature
generation;
better reward
signal

Requires
clustering;
sensitive to
group quality

InHRecon Hierarchical
agents (Op → f1
→ f2)

Builds pairwise
interactions
through staged
ops

H-statistics +
Type-aware rules

Fine-grained
control over
feature
interaction

More sequential
steps; higher
agent
coordination

In GRFG, the term cascaded agents refers to a sequential reinforcement learning setup where each
agent makes a decision that feeds into the next stage of the feature generation pipeline.

• Here Group1 and Group2 refer to clusters or subsets of original features selected by the first two
agents.

• Op represents the operation (e.g., addition, multiplication, log, etc.) selected by the third agent to
apply elementwise between Group1 and Group2.

This design enables batch generation of cross features such as log(Age × Income) or CreditScore
/ SpendingRate, while maintaining modular control over each decision point.

In contrast, InHRecon employs a hierarchical agent structure, where:

• The first agent selects a valid transformation operation (Op) appropriate to the feature types (Exam-
ple numerical, categorical).

• The second and third agents choose specific features (f1 and f2) to serve as operands in the interac-
tion.

This staged design allows finer-grained control over feature construction and supports second order
interaction modeling guided by statistical criteria like H-statistics.
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Table 3: Comparison of LLM-Guided Feature Generation and Evaluation Methods

Method Core Role Toolset / Strategy Used Strengths Limitations

LFG Feature generation via rea-
soning

Tree-of-Thought + MCTS Reasoned transformations; min-
imal labeled data

Sensitive to prompt quality;
compute-intensive

TIFG Knowledge-informed genera-
tion

Retrieval-Augmented Genera-
tion

Domain-aware features;
grounded in external text

Depends on corpus quality; hard
to reproduce

Proto-RM Preference-aligned evaluation Prototypical Reward Modeling Data-efficient reward learning
for LLM outputs

Requires curated comparisons;
less generation

4.3 LLM-Guided Feature Generation

Large language models (LLMs) present a fundamentally different paradigm—semantic reasoning while
reinforcement learning based methods explore feature space via reward-optimized exploration. LLM-
guided systems propose, evaluate, or rank new features using language, metadata, and external knowl-
edge rather than depending just on numerical correlations or task-specific rewards. These models shine
in bringing contextual awareness to tabular data and in encoding expert like logic. Three recent works
show three distinct roles LLMs can perform preference based reward modeling (Proto-RM), knowledge-
informed augmentation (TIFG), and feature generation (LFG).

Every feature transformation is seen by the LFG framework [2] as a reasoning task. Tree-of-
Thought (ToT) prompting is used by several LLM agents to create candidate features, explain their rea-
soning, and edit depending on downstream comments. Layer on top a Monte Carlo Tree Search (MCTS)
mechanism to help choose the best thinking paths depending on model performance (e.g., F1 score or
accuracy). This approach combines symbolic reasoning with probabilistic search to enable LLMs to
investigate several transformations—e.g., log(income), weight × age—while avoiding redundant or in-
coherent proposals. With little labeled supervision, LFG performs well across models including KNN,
MLP, and Random Forest.

TIFG [3] expands on the theory that real-world characteristics sometimes have semantic connections
hidden in their names or dataset metadata. Retrieval-Augmented Generation (RAG) searches Wikipedia
or other corpora for task-relevant concepts, then asks the LLM to synthesize features like ”density =
population / land area,” or ”BMI = weight / height2.” Financial, and healthcare datasets where domain
knowledge is not ingrained in the raw numerical data benefit especially from this method. TIFG supports
multi-round thinking and justification, so producing features with both interpretability and novelty.

Proto-RM [4] turns attention from feature generation to feature evaluation and alignment. It trains a
prototypical reward model whereby prototype vectors are generated from feedback from a small number
of human comparisons (selected against rejected features or outputs). Then based on their resemblance
to these acquired prototypes, new examples get scores. Especially for LLM output alignment, preference
modeling, or safety tuning in chat systems, this model enhances reward accuracy in low-label settings.

Prototype-Guided Loss Function: Proto-RM optimizes a composite loss to align model outputs
with human preference [4]:

Ltotal = Lreward + ρd · Ldiversity (6)

In this formula, Lreward encourages the model to assign higher scores to preferred outputs typically based
on pairwise comparisons, such as human preference rankings or correct classifications. The Ldiversity
term promotes variation among learned prototype representations, which helps prevent mode collapse
and improves generalization to diverse input types. The hyperparameter ρd controls the trade-off be-
tween alignment precision and representation spread.
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5 Applications Across Domains

Implementing the diversity in design between RL-based and LLM-guided feature engineering tech-
niques directly results in different strengths in practical fields. Every approach from policy and prefer-
ence modeling to healthcare and finance showcases fit for particular operational restrictions, data struc-
tures, and interpretability requirements.

Particularly suited for healthcare data pipelines are joint feature-instance selection models including
the one presented in [14]. Along with redundant features, these databases sometimes feature noisy or
irrelevant samples that is, mislabeled or outlier patient records. Proposed in DAIRS, the dual-agent rein-
forcement learning system helps both axes features and instances to be selectively filtered, so enhancing
generalization and clinical robustness. Furthermore in line with regulatory needs for interpretability in
healthcare applications is the ability to track selection decisions.

Transformer-based architectures for feature weighting, such those applied in high-cardinality tabular
domains, are naturally extensible to financial risk modeling and fraud detection chores. These settings
call for dynamic reweighting of over time credit history, transaction patterns, and behavior metrics.
Although the transformer paper itself was not included in this survey, feature relevance modeling using
structured agents as explored in GRFG [12] offers equivalent value for these kinds of financial tabular
tasks.

Text-enhanced, semantically grounded features often help policy and insurance-related usage cases.
TIFG [3] shows this by producing features informed by external corpora such as Wikipedia or internal
documentation, so enabling applications including risk profiling or policy scoring from both numerical
attributes and textual descriptions. When domain knowledge is buried in unstructured forms, these
methods especially help.

Lastly, methods like Proto-RM [4] help preference aligned tasks including chatbot tuning and re-
inforcement learning from human feedback (RLHF) benefit from Learning strong reward models from
few samples is absolutely crucial in low-label or sparse-feedback systems. Prototypical based architec-
ture of Proto-RM is especially pertinent in dialog agents, educational platforms, and interactive ranking
systems where feedback is often implicit or noisy.

6 Challenges

Although automated feature optimization shows great potential, present techniques have several impor-
tant problems that restrict their practical relevance. Lack of standardized benchmark datasets especially
meant for assessing feature generation and selection techniques is one recurring restriction. Most tech-
niques evaluate on UCI tabular datasets or domain-specific collections, which lack consistent ground
truth for produced feature quality. Fair comparison of algorithms across fields and research groups
becomes challenging without generally agreed upon benchmarks.

The close integration of reinforcement learning with language model-based thinking also reveals
another significant disparity. Few systems really combine structured exploration and optimization from
RL methods with semantic generalization and knowledge retrieval from LLMs. Usually choosing one
paradigm, current models neglect the advantages of the other. Hybrid models in which LLMs suggest or
defend changes while RL agents validate and improve those decisions over time could help future work.

Additionally mostly omitted are bias and fairness. Particularly in text-informed or feedback-guided
environments like TIFG [3] or Proto-RM [4], produced features may embed implicit society biases from
outside corpora or training distributions. In high-stakes fields including hiring, lending, or healthcare,
this begs grave questions. One could find great direction in including adversarial debiassing or fairness
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constraints into the reward model.

Computational cost is ultimately still a non-trivial barrier particularly for models such as GRFG [12]
and LFG [2], which depend on cascaded agents or several rounds of LLM reasoning. Low-resource set-
tings or time-sensitive applications could find these methods unworkable. Policy distillation, curriculum
learning, or surrogate modeling can help to lower overhead and increase their deployability. These chal-
lenges taken together highlight the need of more modular, efficient, and ethically conscious frameworks
that can adapt across sectors while keeping interpretability and computational practicality.

7 Future Work
Recent developments in automated feature engineering point toward more integrated, semantically aware
systems combining the generative reasoning of large language models with the structured optimization
of reinforcement learning. Although RL-based approaches have made progress in feature selection [5, 1]
and transformation [12, 13], they frequently lack semantic context. Conversely, LLM-guided systems
such as TIFG and LFG [3, 2] can domain -aware reasoning but demand expensive feedback cycles.
Future studies could investigate hybrid architectures whereby RL agents validate features proposed by
LLMs using reward-guided learning based on domain knowledge. Although it needs extension to mul-
timodal tasks, prototype-based alignment [4] shows promise in low-label environments. Still vitally
important are addressing generalization across datasets, energy cost, and bias propagation. For inter-
pretable and effective feature space construction, the next generation of methods must ultimately unite
symbolic reasoning, statistical learning, and ethical constraints.

8 Conclusion

The present work investigated recent advancements in automated feature space building under the prism
of reinforcement learning and large language models. The study arranged methods into three method-
ological archetypes one is RL-based selection, second is RL-guided generation, and third is LLM-driven
semantic reasoning instead of viewing present efforts as isolated. Every class offers different trade-off
between generalization, scalability, and interpretability. While generative RL agents expose higher-order
interactions, multi-agent systems and bandit-based selectors offer modular control over relevance and
redundancy. Though they usually only use task-level feedback and incur large computational overhead,
LLM-guided approaches improve semantic alignment even more.

Many of these techniques remain domain fragile, sensitive to hyperparameter tuning, and com-
putationally expensive in practice even if their predictive performance and adaptation show clear im-
provements. Few systems today combine symbolic reward modeling with knowledge grounded feature
construction. Bias, traceability, and evaluation consistency are also understudied. To automate feature
design across multiple fields, a more comprehensive approach is required, one that makes use of statis-
tical decision procedures and semantic abstraction. Future feature engineering will be shaped by hybrid
systems that combine semantic reasoning and symbolic exploration, fusing the intuition of LLMs with
the rigor of RL.
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