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1 Introduction

In previous articles, we explored how gravity acts as a quantum background
for quantum matter and as a classical background for classical matter. In this
article, we aim to go a step further and attempt to unify matter, force, and
spacetime. This should be regarded as a proposal rather than a verified the-
ory. Our approach begins with constructing an appropriate conceptual model,
followed by a mathematical framework to support this model.

2 Three-Layer Model

As discussed in earlier work, spacetime superpositions can be understood as
superpositions of particle fields combined with mass-energy. Now, let us consider
matter and force as fields that permeate all of spacetime. We propose that these
three components—matter, force, and spacetime—form three interwoven layers,
such that an excitation in one layer can randomly affect the other two.

It is understood that massless force carriers do not directly influence space-
time. Based on this, we introduce the three-layer model, which will guide our
attempt at unification. Matter and force are already established as fields within
quantum field theory (QFT). In this model, we extend that framework by treat-
ing spacetime itself as a field—one that not only responds quantum mechanically
but also accumulates and integrates the effects of the other fields.

3 Mathematical framework

So, If we say force, matter and spacetime as three layers then mathematically
we can write as follow:

Ltotal = Lmatter + Lforce + Lgravity + Linteraction (1)

Where:

• Lmatter is the Lagrangian of matter.

• Lforce is the Lagrangian of the force fields.
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• Lgravity is the Lagrangian of spacetime or gravity (e.g., Einstein-Hilbert
action).

• Linteraction represents the interaction terms between different fields.

Where the Lagrangian of matter is:

Lmatter =
1

2

(
∂µϕ∂

µϕ−m2ϕ2
)
+ ψ̄(iγµ∂µ −m)ψ

The Lagrangian of the gauge (force) field is:

Lforce = −1

4
FµνF

µν

The Lagrangian for gravity (Einstein-Hilbert action) is:

Lgravity =
1

2

√
−g R

In this theory, we preserve both local gauge invariance and general covariance
(diffeomorphism invariance). The cross-layer interaction Lagrangian are given
below:

1. Gravity–Gauge Field Coupling

L(1)
int =

√
−g ξ

M2
RFµνF

µν

Here, R is the Ricci scalar, Fµν is the field strength tensor of the gauge field, ξ
is a dimensionless coupling constant, and M is a high-energy scale (e.g., Planck
scale). This term is both gauge-invariant and diffeomorphism-invariant.

2. Gauge Field–Scalar Field Coupling

Lscalar =
√
−g

[
(Dµϕ)

†(Dµϕ)− V (ϕ)
]

Dµ = ∂µ − igAµ

This is the standard gauge-invariant and generally covariant kinetic term for
a scalar field coupled to a gauge field. Optionally, we can add a non-minimal
coupling term:

L(2)
int =

√
−g ξRϕ†ϕ

This term can be motivated by conformal symmetry or appear in effective field
theory.

3. Gravity–Fermion Coupling

Lfermion =
√
−g ψ̄(iγµ∇µ −m)ψ

This is the standard generally covariant Dirac Lagrangian, where ∇µ includes
the spin connection.
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Origin of Cross-Layer Coupling Terms

All interaction terms in this theory are constructed to respect local gauge in-
variance and general covariance. Below we outline the derivation or motivation
for each coupling:

1. Gravity–Gauge Field Coupling

The term

L(1)
int =

√
−g ξ

M2
RFµνF

µν

is dimension-6 and appears in the low-energy effective action of quantum gravity
and string theory. It respects both diffeomorphism and gauge invariance. It may
arise from loop corrections or higher-dimensional operators in compact theories.

2. Gauge–Scalar Field Coupling

The minimal coupling term:

L =
√
−g (Dµϕ)

†(Dµϕ)

is derived from demanding invariance under local gauge transformations ϕ →
eiα(x)ϕ. The curvature coupling term ξRϕ†ϕ arises in conformal scalar field
theory and in non-minimal inflation models.

3. Gravity–Fermion Coupling

The Dirac term:
L =

√
−g ψ̄(iγµ∇µ −m)ψ

is required by local Lorentz invariance and general covariance. The additional
term η

MRψ̄ψ can arise from integrating out heavy fields or as a curvature cor-
rection in effective theories.

4 Introduction

In this section, we will derive the Euler-Lagrange equation for a scalar field ϕ
from the Lagrangian of the form:

Lscalar =
√
−g

[
(Dµϕ)

†(Dµϕ)− V (ϕ)
]

where Dµ is the covariant derivative, and V (ϕ) is the potential for the scalar
field ϕ.
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5 Euler-Lagrange equation

The Euler-Lagrange equation for the field ϕ is given by:

∂L
∂ϕ

− ∂µ

(
∂L

∂(∂µϕ)

)
= 0

Our goal is to calculate each term in this equation.

6 Step 1: Compute ∂L
∂ϕ

From the Lagrangian Lscalar, we know that ϕ only appears in two places: inside
the covariant derivative Dµ and in the potential V (ϕ). Thus:

∂L
∂ϕ

= −
√
−g ∂V (ϕ)

∂ϕ

7 Step 2: Compute ∂L
∂(∂µϕ)

Now, we compute the term ∂L
∂(∂µϕ)

. From the covariant derivative, we know:

Dµϕ = ∂µϕ− igAµϕ

The derivative of the Lagrangian with respect to ∂µϕ is:

∂L
∂(∂µϕ)

=
√
−g

[
(Dµϕ)†

]
=

√
−g ∂µϕ

8 Step 3: Compute ∂µ

(
∂L

∂(∂µϕ)

)
Next, we calculate the divergence of the term we found in Step 2:

∂µ

(
∂L

∂(∂µϕ)

)
= ∂µ

(√
−g ∂µϕ

)
This term involves the covariant derivative due to the presence of

√
−g, and

can be written as:

∂µ
(√

−g ∂µϕ
)
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9 Step 4: Euler-Lagrange Equation for Scalar
Field

Substituting the results of Steps 1 and 2 into the Euler-Lagrange equation, we
get:

−
√
−g ∂V (ϕ)

∂ϕ
− ∂µ

(√
−g ∂µϕ

)
= 0

This simplifies to:

∂µ
(√

−g ∂µϕ
)
= −

√
−g ∂V (ϕ)

∂ϕ

10 Conclusion

This is the equation of motion for the scalar field ϕ, which describes how the
scalar field propagates in spacetime, influenced by the gauge field and the po-
tential V (ϕ).

11 Introduction

In this section, we derive the Euler-Lagrange equations for the gravity-gauge
field coupling term from the interaction Lagrangian:

L(1)
int =

√
−g ξ

M2
RFµνF

µν

where R is the Ricci scalar, Fµν is the field strength tensor of the gauge field,
ξ is a dimensionless coupling constant, and M is a high-energy scale.

12 Variation of the Lagrangian

The variation of the interaction Lagrangian with respect to the metric gµν is
given by:

δ

(√
−g ξ

M2
RFµνF

µν

)
=

ξ

M2
δ
(√

−gRFµνF
µν
)

We now compute the variation of the terms involving the Ricci scalar R and
the determinant g.

The variation of
√
−g is:

δ
√
−g =

1

2

√
−g gµνδgµν

The variation of the Ricci scalar R is:
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δR = Rµνδgµν −∇α∇βδg
αβ

Thus, the total variation becomes:

δL(1)
int =

ξ

M2

[√
−g (RµνFµν +RFµνδg

µν)
]

13 Field Equations

The field equations corresponding to the variation of the metric gµν will contain
terms involving the Einstein tensor Gµν . The resulting equation for the metric
will be:

Gµν ∼ ξ

M2
FµνFµν

The corresponding equation for the gauge field Aµ can be derived similarly
by varying the Lagrangian with respect to Aµ.

14 Embedding General Relativity into the Stan-
dard Model Framework

In the Standard Model of particle physics, all known particles are described
as excitations of underlying quantum fields. To achieve a unified theoretical
framework, we extend this principle to gravity by modeling spacetime itself as
a field capable of excitation, rather than as a background geometry composed
of discrete particles like gravitons.

This approach allows gravity to emerge naturally from the interaction be-
tween the spacetime field and matter-energy distributions, in accordance with
the Einstein field equations. For the purpose of integrating General Relativity
within the Standard Model, we consider the effect of the lightest known mas-
sive particle—the neutrino—on spacetime curvature. Neutrinos have incredibly
small but nonzero rest masses, with the lightest eigenstate estimated to be be-
low 0.01 eV. The spacetime curvature induced by such a low-mass excitation
provides a practical and theoretically clean test case for quantifying how even
minimal mass-energy distributions deform the spacetime field.

In this framework, excitations of the spacetime field correspond to dynamic
curvature, and the interplay between the matter field and spacetime curva-
ture becomes fundamental to unification. Just as the Standard Model treats
the photon as the smallest excitation of the electromagnetic field, we propose
that quantum fluctuations in curvature—while not particle-like—represent the
minimal excitations of the spacetime field, and can be described in terms of
expectation values in a quantum geometric background. This method respects
both general covariance and quantum superposition, and lays the foundation
for incorporating gravity as a quantized yet non-particle-based field within the
Standard Model.
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15 Research and experiment

Recent experimental proposals, such as the Bose–Marletto–Vedral (BMV) scheme,
aim to test whether gravity can exhibit quantum superposition by placing two
massive particles in spatial superpositions and observing whether they become
entangled via their mutual gravitational interaction. This setup effectively tests
whether the gravitational field — and by extension, spacetime curvature — can
exist in a quantum superposition. While not directly based on the framework
proposed here, such experiments serve as potential empirical validation of the
central idea in this work: that mass-energy in quantum superposition induces
a corresponding superposition in spacetime curvature. The observation of en-
tanglement mediated purely by gravity would strongly support the notion that
spacetime itself participates in quantum phenomena.

16 Conclusion

In this work, we have proposed a conceptual and mathematical framework that
attempts to unify matter, force, and gravity as interacting quantum fields. Un-
like conventional approaches that either quantize gravity via hypothetical gravi-
tons or treat spacetime as a fixed classical background, our model introduces
gravity as an excitation of a spacetime field that exists alongside matter and
gauge fields. By interpreting the stress-energy tensor and spacetime curvature
as superposable quantum quantities, we bridge general relativity with quantum
mechanics through expectation values and energy eigenstates.

The core of this proposal is the three-layer model, in which matter, force,
and spacetime are treated as dynamically coupled layers. Through a unified
Lagrangian that preserves gauge invariance and diffeomorphism symmetry, we
establish interaction terms that reflect how excitations in one layer can influ-
ence the others. These include non-minimal curvature couplings and quantum
corrections that hint at deeper structural relationships.

It is our hope that this layered field-based view of unification offers a concep-
tually consistent and mathematically extensible step toward reconciling gravity
with the Standard Model. [1] [2] [3] [4] [5] [6] [7] [8]
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