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Abstract

This paper documents a systematic study into the variance growth of transformed twin prime values
k= (p+1)/6 for twin prime pairs (p,p 4 2). Initial observations suggested anomalous growth (~ N'-!),
conflicting with theoretical expectations. Through systematic analysis, we resolved this paradox by
identifying normalization artifacts, ultimately demonstrating quadratic growth (~ N?) of raw variance.
The study highlights the importance of careful data interpretation in numerical number theory and
provides new empirical insights into twin prime distribution.

1 Introduction

The distribution of twin primes—prime pairs (p, p + 2)—has fascinated mathematicians since Euclid. While
the twin prime conjecture (the infinitude of such pairs) remains open, Hardy-Littlewood’s k-tuple conjecture
provides heuristics for their density:
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where Cs =~ 0.66016 is the twin prime constant.
Our investigation focuses on the transformed variable:
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which centers and scales the lower twin prime p. We examine the variance Var(k) over increasing bounds
N, initially observing perplexing growth patterns that ultimately led to deeper insights.

2 Methodology

2.1 Data Generation

We employed a high-performance sieve algorithm to generate twin primes up to N = 10°:

1. Implemented segmented sieve of Eratosthenes in Python

2. Identified twin pairs (p,p + 2) with p > 3

w

. Computed k-values for all valid pairs

4. Stored results for batch processing



2.2 Variance Computation

For each upper bound N, we calculated:

Var(k; N) = 1 Z (kp — ]:IN)Q
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where T is the set of twin primes up to N and ky is the mean k-value.

2.3 Analysis Techniques
e Log-log regression to estimate growth exponents

e Pointwise slope analysis: a(N) = ddl?rx%r

e Comparative analysis of raw vs. normalized variance

3 Empirical Observations

Table 1: Variance Growth with Increasing N

N Var(k) Var(k)/N?

105 2.15 x 108 0.0215
106 2.78 x 1010 0.0278
107 3.02 x 10*2 0.0302
108 3.17 x 1014 0.0317
109 3.28 x 106 0.0328
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Figure 1: Log-log plot of raw variance Var(k) versus upper bound N for twin primes (p,p + 2). The dashed
red line shows a quadratic fit (Var(k) ~ 0.033N?2), with the empirical constant ¢ ~ 0.033 derived from Table

1.



4 The Paradox and Resolution

4.1 Initial Anomaly

Early analysis of normalized variance suggested:

Var (k)
T

~ Nl.l

(4)

This contradicted the expected linear growth suggested by uniform distribution heuristics in prime gaps.

4.2 The Breakthrough

Plotting raw variance revealed the true relationship:

Var(k) ~ ¢cN?  with ¢~ 0.033

The apparent anomaly arose from the growth rate of twin prime counts:
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4.3 Pointwise Analysis
The local growth exponent:
dIn Var
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Pointwise Slope Estimates of Variance Growth
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Figure 2: Convergence of pointwise exponents to 2, confirming quadratic growth



5 Mathematical Interpretation

The quadratic growth emerges naturally from the scaling of k:

p+1 N
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This theoretical prediction (4—18 ~ 0.0208) aligns reasonably with our empirical constant (= 0.033), with
the difference attributable to non-uniform twin prime distribution.
5.1 Reconciling the Variance Constants

The two theoretical approaches yield:

. g—;: From direct integration of E[k?] (Sec. 5.2)

. %: From scaling k ~ N/6 (Eq. 9)

The discrepancy arises because the first method treats E[k]? as negligible for large N, while the second

accounts for its exact value —(&)2. The correct asymptotic constant is ¢ = with empirical deviations

12 48
(c ~ 0.033) reflecting:
e Non-uniform twin prime clustering

e Lower-order terms in E[k?]

e Finite-N effects in our data (N < 10%)

5.2 Theoretical Derivation of the Variance Constant

We model the variable

for twin primes (p,p + 2) where p < N, and study the asymptotic growth of the variance
Var(k) = E[k?] — E[k]%.

Assuming twin primes are distributed with density proportional to the Hardy-Littlewood estimate,

roodt
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we model their distribution using the continuous density
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The expected value of k2 becomes
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where Z(N) = f2N (1()‘;71;)2 serves as the normalizing constant.
Using known asymptotic estimates:
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we obtain:
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Since Z(N) ~ ﬁ, we find:
N2
E[k?] ~ % + lower-order terms.

Similarly, the expectation of k is

1 N dp 1 N
B = 5200 . ) on? ™ 6 <<1ogN>2 * 1) ’

N2
[k ?~ 1 A0
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which is asymptotically negligible compared to E[k?].
Thus, the variance satisfies

so that

N2
Var(k) ~ % (upper bound),
while the exact calculation in Eq. (9) yields 11—82. The difference arises because this derivation neglects the
—E[k]? term’s higher-order contributions.
The empirical ¢ =~ 0.033 exceeds both values, suggesting:

e Stronger clustering than predicted by Hardy-Littlewood
e Non-trivial correlations in twin prime gaps

e Finite-IV effects dominating below N — oo

6 Conclusion

Our investigation yielded several key insights:
e The variance of k-values grows quadratically as ~ 0.033N2
e Initial anomalous scaling resulted from improper normalization
e Twin prime counting modulates normalized variance behavior
e The methodology serves as a case study in numerical verification

This work demonstrates how careful empirical analysis can both resolve apparent paradoxes and reveal
new patterns in prime number theory. More broadly, it serves as a cautionary example for number-theoretic
statistics: normalization by sparse counts (e.g., |Tn| ~ N/(log N)?) can systematically distort perceived
scaling laws, necessitating raw-variance comparisons and null-model tests. Future directions could explore
the following:

e Higher moments of the k-distribution

e Comparisons with other prime constellations
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