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Abstract

The general solution of the equations of the gravitational field of the galaxy with
an additional variable parameter n is found. The additional variable parameter n
determines in General Relativity the distribution of the average mass density main-
ly in the friable galactic nucleus. The velocity of the orbital motion of stars is close
to Keplerian one only for n > 2. At n < 2", it is slightly less than the highest
possible velocity even at the edge of the galaxy. According to the Relativistic
Gravithermodynamics (RGTD) equations, the configuration of the dynamic gravita-
tional field of a galaxy in a quasi-equilibrium state is standard (canonical in RGTD).
That is because it is not determined at all by the spatial distribution of the average
mass density of its non-continuous matter. After all, this spatial distribution of the
average mass density of the galaxy's matter is itself determined by the standard con-
figuration of its dynamic gravitational field. The standard value of the average
mass density of matter at the edge of a galaxy is determined by the cosmologi-
cal constant A and the difference between unity and the maximum value of the
parameter b.. And it is a non-zero standard value, despite the gravitational ra-
dius at the edge of a galaxy takes the zero value. Therefore, in Relativistic
Gravithermodynamics, in contrast to General Relativity, there can be no shortage
of baryonic mass.

Keywords: General Relativity, Kepler's law, galaxy, gravitational potential, non-
baryonic dark matter, orbital velocity, Relativistic Gravithermodynamics.

1. Logarithmic gravitational potential

Physical laws are based only on increments of metrical distances and not on increments of co-
ordinates. Therefore, gravitational field strength & is determined via its gravitational potential

¢ in the following way:
B 1 o0p_ / 7, Ar’ 0
k=—grad(p)= Jaor ! r 3 or’

where: A=3H?c is cosmological constant, H is Hubble constant, a is square of the ratio be-
tween increment of metrical segment and increment of radial coordinate 7, and r, is gravita-
tional radius of astronomical body, from where observation takes place.

Nowadays, the following gravitational potential is used in General Relativity (GR) and in

practical calculations:
p=cv,, :cz,H—rg Ir,
where: v,, is the coordinate vacuum velocity of light.




When A=0 that potential forms the same spatial distribution of gravitational field strength
as in classical physics:

k=—c? r,/ 2r’=—GMr™ (rg:ZGMc’2 ).

However, it does not correspond to Einstein’s opinion that free fall of bodies in gravita-
tional field is inertial motion. According to this potential the kinetic energy of falling body is
less that the difference between rest energies of the body in the starting point of the falling
and in the point of its instantaneous disposition. Wrong opinion that gravitational field has
own energy corresponds to that gravitational potential [1].

In contrast to this potential, the potential that is in a form of logarithm of the rest inert
free energy of matter corresponds to inertial motion of freely falling body [2] with the conser-

vation of Lagrangian L of its ordinary internal energy W,, =Wy,c/v,,, =m grocz =my,c® /v

cvj 2

and of Hamiltonian H of its inert free energy E,; = Eyv,,, /¢ = m, o’ = MyCV,,; [3]:

cvj
@, =—c*In(Wy, I Wyy) =c?In(Ey, | Eqg) =c*In(v,,; /c)=c*Inb, /2 (1)

Such representation of potential is based on the possibility of proportional synchroniza-
tion of all quantum clocks and on proportionality of pseudo-forces of inertia and gravitation to
the Hamiltonian of matter. This is in good correspondence with the principle of mass and en-
ergy equivalence. Such representation also makes the proof of equivalence of inert and gravi-
tational masses redundant. Logarithmic gravitational potential forms the following spatial dis-
tribution of gravitational field strength:
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The equivalent value of strength of gravitational field adjusted to the inert mass of rest of
the body that is moving in gravitational field will be as follows:

F m 2 4 G,(NM ., —Hr® /b
keq: gr zkkzﬂk:%k:_chrad(anw):— j( ) g2rO E r )
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According to this the effective value of gravitational parameter (’constant’), where z is
redshift:

Gy =(?IV2)G, = b2 Gy = k(2. 11,) G ~ (14 2)* (14 22) 2 Gy 2)
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tends to infinity while approaching the event pseudo-horizon as well as the Schwarzschild
sphere and is continuously decreasing while distancing from the gravity center. And, of
course, this should successfully prevent the false conclusions about the deficit of baryonic
matter in the centers of the galaxies.

Usage of logarithmic gravitational potential does not require the adjustment of the values
of mass of the Sun and the planets. If gravitational radius of Sun is 2.95 km then its mass
should be decreased on just two millionth parts of it. It is 35 times less than the determination
error of Sun mass. On the Mercury orbit the strength of Sun gravitational field should be de-
creased on just 20 billionth parts of it. The Earth itself has very small gravitational radius
0,887 cm. Due to this fact Earth mass should be decreased on just one billionth part of it. At
the same time, Earth mass determination error is 100000 bigger. Unlike for the Solar System,
the usage of logarithmic gravitational potential can be very essential for the far galaxies.



2. The inconsistency of the motion of galaxies with Kepler's laws

Laws of motion of single astronomical objects, found by Kepler, are based on gravitational in-
fluence of mainly central massive body. According to those laws, the velocity of rotation of
galactic objects should decrease in inverse ratio to the square root of the distance to galaxy
center. However, observations reveal the different picture: this velocity remains quasi con-
stant on quite far distance from galaxy center for many galaxies, including ours [4].

When single objects and their aggregates form big collection (cluster) their total mass can
essentially exceed the mass of central astronomical body (supermassive neutron star or qua-
sar). The attraction of astronomical objects of the internal spherical layers of the galaxy can
be much stronger than the attraction to the central body of the galaxy. Then, their collective
gravitational influence can essentially distort the correspondence of the motion of peripheral
astronomical objects to Kepler's laws. And, therefore, according to astronomical observations
the velocities of rotation of galaxy’s peripheral astronomical objects required for prevention
of joint collapse of all matter of the galaxy are much higher than the velocities of rotation of
the separate peripheral astronomical objects required for prevention of the independent fall of
those objects onto the central astronomical body.
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Figure: Dependencies of velocity of rotation of astronomical objects on the distance to gravi-
ty center: a) our Milky Way galaxy [4, 5], b) comparing to prognosed Keplerian velocities
6].
! The quite close dependency to the observed one is the following dependence of really
metrical value v =v/+/b =vc/v,, of galactic velocity of rotation v of astronomical objects on
the distance to the galaxy center. It is determined by the common galactic clock when the ra-
dial distribution of the average relativistic density of corrected relativistic mass of matter in
the galaxy is the following:
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Lo, Tes ', 0 1S CONstants.

In this case on the large distances to the central astronomical body with the radius r,
(r>>r,) the parameter # is only weakly sinusoidally modulated. And, also, the square of ve-
locity of orbital rotation of astronomical objects of the galaxy, that can be found from the
condition of equality of centrifugal pseudo force of inertion F, =Hv?c2a™"?/r and pseudo

force of gravity Fg,ZLc'za'l/zd[ln(vcv/c)]/dr:
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very slightly depends on 7'>>r, due to the smallness of exp(-r/r.), pressure p in the outer
space of the galaxy and cosmological constant A. And its value can only slightly increase to-
gether with increasing of » due to the gradual increasing of the parameter .

Here “galactic” value of coordinate velocity of light ”vcng“vl=cb1/2, Lagrangian and Ham-

iltonian L= mgrc2 = mgroc2 (1-v?c?)"? =H(1-v?*c®)/b=H/b,),
H:minCZ: inOCZ(l_GZC—Z —1/2:W%OCZbl/Z(l_‘;ZC—Z)—I/Z
and increment of the metric radial distance di=a"’dr are determined by the parameters b,
a=1/(1-n-Ar*/3) and b, = (v, /c)* =b/(1-v*c"?) of the equations of GR gravitational field:
b'/abr—r2(1-1/a)+ A = kp = kyu,c* /b = Ky’ INb,
dla’r+r?(1-1/a)— A = x(u,,c* + pv°c ) (A=vc?) = ku [+ w° 1 b(c® —v7)],

[In@a)] /ar=&u, (b+y)c* [ —v) = kpg, (1+ /b)Y I =97) = kg (b +y INB)E* (® —v7).

However, instead of eigenvalues of density of the mass ,, and pressure p,, their coordinate
values in FR are used in tensor of energy-momentum = yOOJZ and p=p,,/ Vb
(p/ ugrocz = Poo / Moo’ = 7 =const(r)). This is related to temporal invariance of really metrical

mechanical and thermodynamic parameters and characteristics of matter. An insufficient amount of
the mass in the Universe denotes the fact that not only in RGTD but also in GR the tensor of energy-
momentum should be based on the ordinary internal energy of matter that includes not only inert
free energy but also bound energy of matter.

The defined by the same spatial distribution (3) average relativistic density of corrected rela-
tivistic mass of galaxy matter in GR has the following form:

Mo = Lo ND[1+ 2 /b(c? —72)],

r 3/2
v, 1|, & pmya rdr
where: Poo = Vﬂoocz s \/E__l—_[l I 2 29| ,Uoo:moo/ V;

! Here and further, we consider the minimum radial distance r from the center of the galaxy to the point on the
trajectory of rotation of the astronomical object at which equilibrium is achieved, and therefore, its radial dis-
placement is absent (dr/dt=0).



V is volume of matter; mOOZminob'l/ 2=mgrobl/2 1s intrinsic value of the mass of matter that corre-
sponds to “critical” equilibrium value of the ordinary internal energy of matter (b=1), and
V=V, 1S maximum possible (extreme) value of velocity of matter in the outer space of the gal-
axy.

As we can see, exactly the logarithmic potential of gravitational field and the spatial dis-
tribution of gravitational strength defined by it in the extremely filled by stellar substance
space of the galaxy correspond to these astronomical observations. The quite significant de-
creasing of the average density of matter when distancing from the center of the galaxy to-
wards the periphery also corresponds to these astronomical observations. Together with the
deepening into cosmological past (r,<z.) the average density of matter in the
gravithermodynamic frame of reference of spatial coordinates and time (GT-FR) of the galaxy
is decreasing on its periphery proportionally to the square of radial coordinate ,. In the pic-
ture plane of astronomical observation this radial decreasing of the density of matter is even
more significant:

lugVOCpobszlugrOp (rp /rpobs)3:ﬂgr0cp eXp [_3H(Te_rp)]:ﬂgr0”f”;2 eXp— \Y 3A(I"p —I’;)] ,

since, in contrast to GT-FR of the central astronomical object of the observed galaxy, in GT-
FR of terrestrial observer all other astronomical objects of this galaxy belong to the same
moment of cosmological time z,=7,,

And, therefore, the quantity of baryonic matter currently present in galaxies can be quite
enough for examined here justification for observed velocities of astronomical objects of gal-
axies. The one more contributing fact is that having the same quantity of matter (7o, =mqq.) its
inertial mass of rest m=mqb"? on the galaxy periphery is bigger than in its center since
b,>be.

The GR gravitational field equations de facto correspond to spatially inhomogeneous
thermodynamic states of only utterly cooled down matter. The similar to them equations of
relativistic gravithermodynamics (RGTD) [3, 7, 8] correspond to spatially inhomogeneous
thermodynamic states of gradually cooling down matter. Therefore, in RGTD for matter that
cools quasi-equilibrially, the four-momentum must obviously be formed in the extended
system not by enthalpy, but by the intranuclear Gibbs free energy (which in RGTD is an
alternative to the inert free energy). The Lagrangian of the ordinary internal energy of the
matter (the multiplicative component of its total energy) forms the four-momentum not with
the Hamiltonian momentum, but with the Lagrangian momentum The GR gravitational field
equations de facto correspond to spatially inhomogeneous thermodynamic states of only utter-
ly cooled down matter. In addition, in RGTD, unlike GR, bodies that move by inertia in a
gravitational field, influence (by their movement) the configuration of the dynamic gravita-
tional field surrounding them. At the same time, in equilibrial processes, along with the usage
of ordinary Hamiltonians and Lagrangians, in RGTD it is also possible to use GT-
Hamiltonians and GT-Lagrangians. Therefore, in RGTD for matter that cools quasi-
equilibrially, the Hamiltonian (GT-Hamiltonian) four-momentum must obviously be formed
in the extended system not by enthalpy, but by the inert free energy, and Lagrangian (GT-
Lagrangian) four-momentum must obviously be formed by the multiplicative component of
total energy and also by the Gibbs free energy (which in RGTD is an alternative to the inert
free energy). The GT-Lagrangian of the ordinary internal energy of the matter (the multiplica-
tive component of its total energy):

L, = mg,c2 = mgroc2 A+v, )" = myyc® /v, = H/b(1+v°c?) =H_/b(1+v*v;?) =H_/ b,
forms the four-momentum not with the GT-Hamiltonian momentum, but with the GT-

Lagrangian momentum:

_ 2 2\-1/2 _ _ 2 2\-12 _ N
P, =m,ov(1+ v ") =myoev/vy, = mggve(vy +v7) 7 =mygve /v, =myv,

2

where: W7 =12+ c*v,2 P2 = mZ,c®v, % I(1+ v, 2) + mi,c®v V2 11+ V2, %) = miyc®v,?

_ 2 4
- mgroc ’



(ds,)? = V2 (dt)? —(dx)? — (dy)? —(dz)? = b,c?(dt)? —(dI )* = (V2 +V*)(d1)? = (d] )? = bc?(dt)? = inv
b=vb V2 =ve/v, =ve/vE,, T. =1+ 22, v2 =bc® =bc® +v* =v? +v° = const (1),
b, =bI? = (V2 +v*)c 2 =b+vc? =vic™? = const(?).

And therefore, the condition of equilibrium precisely in the dynamic gravitational field of
the galaxy of all its objects moving by inertia leads to both the absence of relativistic decel-
eration of the flow of their own time and the invariance of their own time with respect to rela-
tivistic transformations. The spatial homogeneity of the rate of flow of proper time in entire
gravithermodynamically bound matter is consistent with the single frequency of change of its
collective spatially inhomogeneous Gibbs microstates, which is not affected by either a de-
crease (during approaching gravity center) in the frequency of intranuclear interaction or a in-
crease (during approaching gravity center) in the frequency of extranuclear intermolecular in-
teractions. Moreover, this is ensured even without conformal transformations of the space-
time interval s. Therefore, like the parameters v, v,, b and I';, in thermodynamics [3], the pa-
rameter b, (or its analogous parameter by) in the RGTD is a hidden internal parameter of the
moving matter. And the usage of this parameter in the equations of the dynamic gravitational
field of the RGTD allows us not to additionally use the velocity of matter in those equations,
as in the equations of thermodynamics.

A similar dependence of the parameter v;. on the velocity also occurs for distant galaxies
that are in the state of free fall onto the pseudo-event horizon of the expanding Universe:

v,zcg =c’ = v,zg +v? . After all, according to Hubble's law and the Schwarzschild solution of
the gravitational field equations with a non-zero value of the cosmological constant
A =3H?2c™? and a zero value of the gravitational radius:

vlzg202(1—Ar2/3)=cz—H§r2:cz—vs.

The use of the parameter b, = bI'> =b/(1—v’c?/b)=v’c™ = const(¢)?, built on the ba-

)""2 in the equations of the dynamic gravita-

sis of relativistic size shrinkage T, = (1-v%,?
tional field of the RGTD is also possible. However, in order to ensure the absence of decelera-
tion of the flow of the proper time of matter moving in a gravitational field by inertia, it will
be necessary to use conformal Lorentz transformations (instead of the usual Lorentz transfor-
mations) of the increments of spatial coordinates and time. The solutions of the equations of
dynamic gravitational field of the RGTD do not depend on the usage of the parameter b, or
the parameter b, in them. The only parameters that will differ are the parameters of hypothet-
ical static gravitational fields (which are reproduced on the basis of those parameters b, and
by).

According to this, in the tensor of energy-momentum of the RGTD not only intranuclear
pressure pybut also intranuclear temperature 7y is taken into account (where Sy is intranuclear
entropy, Vy is intranuclear volume [3]):

bllabr—r?(1-1/a, )+ A=x(T\S, — pyV\) IV =x(m, —m,)c’ 1V = Ktooc2 (1 Jb, =B Weo 1V > (5)
alatr+r2(1-1/a,)~A=wm,c* IV = kppoc®\B.Voo IV,
[In®,a,)]'/a,r =6V IV =tm,c* |V =ktyc*Voo I \[B.V ,

where: b, and a. are the parameters of the dynamic gravitational field equations of the non-

continuous matter of the galaxy; p,V, =g, E=>bp,,m,c* =B, m,c>, EPVN # const(r),

Sy =m,c? /Ty =myc? | Tyy = const(r), Toyy = TN\/Z =ConSt(r), my, =m, b, =m, /\Jb, = const(r),

2 Apparently, this parameter is inherent only to the equilibrial (pseudo-inertial uniform) motion of matter of bod-
ies that are evolutionarily self-contracting in the frame of references of spatial coordinates and time which is
comoving with the expanding Universe.



Loo =Moo/ V #const(r), g, =mgy,/ \/E V=uw,l/b #const(r), u,= moo\/b_c /'V # const(r),
V' # const(r) is volume of matter.

In addition, according to the RGTD equations, the configuration of the dynamic gravita-
tional field of a galaxy in a quasi-equilibrium state is standard (canonical in RGTD). That is
because it is not determined at all by the spatial distribution of the average mass density of its
non-continuous matter. After all, this spatial distribution of the average mass density of the

galaxy's matter is itself determined by the standard configuration of its dynamic gravitational
field:

_dlrla,(1=b)] V=ri=Ar* (r=r,=A/3) ,  bS +(1_A,,2)

Sl — b [
ar A-b) (b -y -y ©
—r,—A"°/3 - —Ar?
S = d _ITh =exp bdr X J. ( Arz) ex J. bdr dr,
a,(1-b,) 1-b, (1-)r | (1-b.) (1-b.)r

where the parameter S can be conditionally considered as the distance from the event pseudo-
horizon.
The trivial solution of this equation, which takes place at:

b —p 3 Ar? _r=AC3_(r=APIBB-AY) :(1—bc)rgeexp’i bdr  _
e B-A?) Y 1-b, 3-AP-b,B3-A7) f (1-b) r(1-b,)

Vg(,

(=b)r,  2b,In(r/r,)—(=Ar?/3){In[r* +(B3/A-r?)/b, —3/A]-In[(1/ b, — NGB/ A-r?)]}
= X >
(1-b,.,) P 21-Ar?/3-b,)
does not correspond to physical reality. After all, because of b’ =-2b_Ar/(3-Ar?)=0 at r#0,

the solution does not imply the presence of event pseudo-horizon in the FR of matter. And the
parameter b., unlike the parameter a., does not depend on the gravitational radius r,. And
therefore, gravity is absent in the FR corresponding to this trivial solution.

According to the non-identity of the gravitational and inert masses of matter we find the
square of the rotation velocity of astronomical object relatively to the galaxy center according
to the equations (5, 6) of dynamic gravitational field of RGTD:

_Frodn(v,/c) Frb. ca,

[ e = - S 2 =% (=170 + k2 (1 b, =B v = A2} 7210 ()

As we can see, at the same radial distribution of the average density of the mass
Uy =My, |V of baryonic matter the circular velocities of rotation of astronomical objects rel-

c

atively to the galaxy center are much bigger in RGTD than in GR. And this is, of course, re-
lated to the fact that:

(TySy = V)V = (my —m, )e? IV = pogc®(113[b, =) >> p.

Therefore, we can get rid of the imaginary necessity of dark non-baryonic matter in gal-
axies that follows from the equations of GR gravitational field if we analyze the motion of
their astronomical objects using the equations of gravitational field of RGTD.

If we do not take into account local peculiarities of distribution of average density of the
mass in galaxies and examine only the general tendency of typical dependence of the orbital
velocity of their objects on radial distance to the galaxy center, then the following dependencies
of this velocity on parameter b. and, thus on radial distance 7, can be matched with the graphs
on Fig.:
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In the first approximate dependence [3, 8], the evolutionary self-contraction of matter in
infinite fundamental space of CFREU is conditionally not taken into account. And therefore,
there is no limitation of the galaxy's intrinsic space by the pseudo-event horizon in it. After
all, according to it, the coordinate velocity of light continuously increases along with the in-
crease in the radial coordinate r at the gravitational radius of the galaxy:
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Here and below, definite integrals are equal to unity when the upper limit of integration is equal to the lower
limit. (b=b,.).



where actually:
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Herein according to (4, 7) and similarly to diffeomorphically-conjugated forms [9]:
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(Hoo =mey / Vg = const(r)),
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A=2m?c?In(r/r,), 1a,=1-r,/r—Ar?/3, v, = jrg'dr, r, =rge+jrg'dr,

and: r, is radius of the conventional friable galactic nucleus, on the surface of which the cor-
rected value v of the orbital velocity of objects can take its maximum possible value
v, =v,=b"?D (b)=v,.7,/c; rq and rg,’ are the gravitational radii of any layer of the galaxy
and its loose core, respectively.

Thus, the gravitational radius 7, of the loose core of the galaxy together with 7., be and 7 is an
indicator of the power of the galaxy. Theoretically finding the values of all these indicators is prob-
lematic. And it is even impossible in the case of the formation of the loose core of the galaxy by an-

timatter (i.e. when, due to the mirror symmetry of the antimatter-matter intrinsic space, 7>7, not only
outside, but also inside the loose core [10]).

4 The gravitational radius rg* _corresponds to a loose nucleus, which at (dr/dR), =0 contains only antimatter.



Moreover, even for distant objects in the galaxy rg>2Ar3/3 and b<l-Ar*=1-3H,c**. And
therefore, these objects are "affected" by pseudo-forces of repulsion that are three times greater than
the Hubble pseudo-forces.

Therefore:
by o (b = \BI(b./b)" + (b 1,)']
% 4v2(r? —A) ’
43(r % -A
“, = My v, (r )

\/7/ we* (1=b)[(b, /b)) + (b, /b,)"]

Apparently, all this is connected with the simplification of the considered FR of the gal-
axy. Because in this FR, unlike the FR of galaxies” individual astronomical objects, there is
no pseudo-event horizon on which b.=0. After all, the value of 5. can only grow continuously
with the growth of the radial coordinate » (db./b.dr+0 at all points of its infinite space).

The second dependence, on the contrary, ensures the presence of a pseudo-event horizon.
But according to it, more complex mutual dependencies of the gravitational parameters of the
galaxy take place and analytical integration of these dependencies is impossible:
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Ugrs 15 standard value of the gravitational mass density of the galaxy matter, tg,s=4,8596
10?7/(1-bemax) is non-zero standard value at the edge of the galaxy (rp=A 122 =1,1664 10°°
[m]=3,78 [Gpc]) of the gravitational mass density of the galaxy matter still held by the galaxy
in quasi-equilibrium, despite the zero value of the gravitational radius at its boundary (74,=0
b, =0).

The dependence of the gravitational radii of a galaxy on the radial coordinate is determined
from the following differential equation:
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Atu=-1(v,=c/ \/2) this solution of the standard equation of the dynamic gravitational field of

the galaxy allegedly degenerates. After all, in this case the value of the gravitational radius of the
galaxy becomes proportional to the cosmological constant A, and therefore to the Hubble constant:

r’2A(34,—A;f)(1—b(_)exp[j b,dr } jr (b, + v 2(1=b)((b, /b,)" + (b, /b,)" 14 p{ & {[bj[bj}j b.dr }dbc
¢ 9 (A=b)yr| (1-Ar*)(1-5,)° 4m? |\ b, b, (1-b)r

2

4nv?

But in fact, like the parameter 5., the cosmological constant is a hidden parameter of matter.
And it is thanks to it that at b, >(1— Ar?)/(1- Ar? /3) and at u=—c?v?/2 the radial gravita-
tional radii 7,(7) of the galaxy become larger than at u=0.

The trivial solution of the equation takes place both at #=0 and at a negative value of the pa-
rameter u =—c®v?/2. And therefore, when b, >(1— Ar?)/(1- Ar? /3), the smaller the maxi-

mum orbital velocity v, < ¢/ V2 of astronomical objects in the galaxy, the greater in the latter case

the value of the gravitational radius on the surface of its loose nucleus will be.

Also what is important is that even in an incredibly weak gravitational field (when ©=0) and
even at large radial distances, astronomical objects will rotate around the center of the galaxy with
orbital velocities very close to the maximum possible speed [4 — 6].



Moreover, it is precisely thanks to b, >(1-Ar?)/(1- Ar?/3) that this takes place at
u=—c?v?/2 atvery large distances from the center of the galaxy. After all, the radial distances

to the objects of the galaxy at the same value of the parameter b. become much greater than at
u=0:
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The transition from the dynamic to the hypothetical static gravitational field of the galaxy is
carried out as follows:

Ar3
3

2 2 n 2
b:bc(1_";2cf2):bc _v2cf2 =b vmax(bc/b(‘e) =b Ve N
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2.6 2
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b=b, /(1+v?b.c?)=b[(b, /b)) + (b, /b, ) 1/{[(b, /b)) +(b /b, )" 1+2vZb.c?}.

The gravitational force acting in a static gravitational field on a conditionally stationary body is
greater than the gravitational force acting in a dynamic gravitational field on the same body that is
moving. And this is not only due to the decrease in the gravitational mass of the body due to its
movement. After all, in a space saturated with rapidly moving bodies, the intensity of the dynamic
gravitational field also decreases. That is why it is necessary to use precisely the dynamic gravita-
tional field instead of a static one in calculations of the rotational motion of galactic objects.

Thus, in the equations of the dynamic gravitational field of RGTD, as in the equations of
thermodynamics, not only gravitational, but also relativistic indicators are internal hidden pa-
rameters of the RGTD-state of matter in motion. And that is why in RGTD, unlike orthodox
GR, the use of an external relativistic description of the state of matter in motion is not always
required.

The large value k, = b, /b, corresponds to the larger value n of the index of density of fri-

able galactic nucleus on the same big radial distances. However, only when values are ex-
tremely large n>>2* the significantly lesser average density of matter beyond the friable ga-
lactic nucleus takes place and that is why the dependence of orbital velocities of galactic ob-
jects on radial distances can be close to Keplerian. For example, when n=2" (k,"=16,780) the
orbital velocity of peripheral objects of the galaxy is less than half of the maximum velocity
(when r,/r=20, v, = 0,461v,), while when n=2"% (ky"=535) it is already significantly smaller of
maximum velocity (v, =0,086v, ). However, not only in the weak gravitational fields (n<<2**,
ky'<<1,1391), but even in quite strong gravitational field (n=234, ky'<1,1391,

ky,=1,00000000000758) the orbital velocities of extra-nuclear objects (when b.~1,12656- 10
are, according to (8), quite close to their maximum values v_ =v, ~225 km/s (Fig. 2 b)) on

max

quite big radial distances 7/7,<20 (even when u=0):

35 3 3 R
Av=v,—v=v,—c\2” In[(r—Ar’/3)/(r, — Ar, /3)]] +cv, < 0,95 [km/s].
The FR that is almost equivalent to this FR of observed galaxy is its intrinsic GT-FRy, in
which when bey=1 and ny = nink,, /Ink, . ~ nb,, = 38708 24438 ~ 2% (n=2", k7 =11391):

bep

1
ko =boo /by = [\/1 +2%28 8 2 [(r = Ar® 1 3) [(r, = Ar2 1 3]+ 2% V2 In[(r = Ar® /3) (1, — Ar] /3)]] 1524 =1,000003366 »



Avy = v —vo = vio — | 2% In[(r— AP 13) (.~ Ar® IB)F + (e/vg) ] < 0.95 [hmis].
Not only the GT-Lagrangian of ordinary internal energy and equivalent to it gravitational
mass of matter, but also the following relations are invariant under such a transformation:
Vo !V, =Vv/v, =inv, nyInk,,=nlnk,=inv  [n,(k,,—)=n(k,-1)].
This, of course, is related to the fact that big gradients of gravitational field on the periph-
ery of such galaxies are formed not by their nuclei but by all large set of their objects. This is

also related to the fact that the coordinate value of GT-Hamiltonian of inert free energy of
matter is significantly smaller than the coordinate value of GT-Lagrangian of its ordinary in-

ternal energy when b.=2,253-10° (v, =0,3377 km/s).

The following dependence of the orbital velocity of objects of galaxies on parameter b,
and, thus on radial distance 7, can be matched to these objects in intrinsic GT-FRg of galaxy

[3]:
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According to the dependence n,lnk,,=nlnk, =inv in intrinsic GT-FR, of the galaxy there is

max

stronger gravitational field than in FR of distant external observer:
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" 2fa, dr  mg2fa, dr  my 7 Gy O b

where: L,=L due to the fact that GT-Lagrangian of ordinary internal energy of inertially moving

matter does not depend on galactic rates of gravithermodynamical (astronomical) time [3].

This, of course, is related to the fact that big gradients of gravitational field on the periph-
ery of such galaxies are formed not by their nuclei but by all large set of their objects.

In centric intrinsic GT-FRgo of the galaxy when u = —c*v? /2 the following typical (stand-
ard) radial distribution of the average density of gravitational mass of the matter in the galaxy
takes place:

My, v (1= Ar®)(r? —rgor_s —-A/3) 2A/3—rg0f3
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According to which, when at the edge of the galaxy (r,=A""*=1,1664 10%° [m]=3,78 [Gpc])

the gravitational mass density of matter still held by the galaxy in quasi-equilibrium, despite
the zero value of the gravitational radius at its boundary (r40,=0, b/, ,=0, beop=bcomax

)=H?/47G,(1-b

cmax) *

ro,r = A%, =0), becomes non-zero standard 5, =2A/3xc*(1-5

g ¢ max



3. Conclusions

According to the RGTD equations, the configuration of the dynamic gravitational field of a galaxy
in a quasi-equilibrium state is standard (canonical in RGTD). That is because it is not determined at
all by the spatial distribution of the average mass density of its non-continuous matter. After all, this
spatial distribution of the average mass density of the galaxy's matter is itself determined by the
standard configuration of its dynamic gravitational field. In the equations of the dynamic gravita-
tional field of RGTD, as in the equations of thermodynamics, not only gravitational, but also relativ-
istic indicators are internal hidden parameters of the RGTD-state of matter in motion. And that is
why in RGTD, unlike orthodox GR, the use of an external relativistic description of the state of mat-
ter in motion is not always required. The general solution of the equations of the gravitational
field of the galaxy with an additional variable parameter » is found. The additional variable
parameter n determines in GR and RGTD the distribution of the average mass density mainly
in the friable galactic nucleus. The velocity of the orbital motion of stars is close to the Keple-
rian one only for n > 225. At n <215, it is slightly less than the highest possible velocity even
at the edge of the galaxy. The standard value of the average mass density of matter at the edge
of a galaxy is determined by the cosmological constant A and the difference between unity
and the maximum value of the parameter .. And it is a non-zero standard value, despite the
gravitational radius at the edge of a galaxy takes the zero value. Therefore, in relativistic
gravithermodynamics, in contrast to GR, there can be no shortage of baryonic mass in princi-
ple. And, therefore, the presence of non-baryonic dark matter in the Universe is not necessary.
The most significant fact is the absence of relativistic dilatation of intrinsic time of galaxies
according to received transformations. And this confirms the correspondence of the orbital
motion of galactic astronomical objects to GT-Lagrangians and GT-Hamiltonians or to Lor-
entz-conformal transformation of increments of metrical intervals and metrical time for the
galaxies [3, 8].
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