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Abstract  

The general solution of the equations of the gravitational field of the galaxy with 
an additional variable parameter n is found. The additional variable parameter n 
determines in General Relativity the distribution of the average mass density main-
ly in the friable galactic nucleus. The velocity of the orbital motion of stars is close 
to Keplerian one only for n > 2

25
. At n < 2

15
, it is slightly less than the highest 

possible velocity even at the edge of the galaxy. According to the Relativistic 
Gravithermodynamics (RGTD) equations, the configuration of the dynamic gravita-
tional field of a galaxy in a quasi-equilibrium state is standard (canonical in RGTD). 
That is because it is not determined at all by the spatial distribution of the average 
mass density of its non-continuous matter. After all, this spatial distribution of the 
average mass density of the galaxy's matter is itself determined by the standard con-
figuration of its dynamic gravitational field. The standard value of the average 
mass density of matter at the edge of a galaxy is determined by the cosmologi-
cal constant Λ and the difference between unity and the maximum value of the 
parameter bc. And it is a non-zero standard value, despite the gravitational ra-
dius at the edge of a galaxy takes the zero value. Therefore, in Relativistic 
Gravithermodynamics, in contrast to General Relativity, there can be no shortage 
of baryonic mass. 

 

Keywords: General Relativity, Kepler's law, galaxy, gravitational potential, non-
baryonic dark matter, orbital velocity, Relativistic Gravithermodynamics.  

 

1. Logarithmic gravitational potential 
 

Physical laws are based only on increments of metrical distances and not on increments of co-

ordinates. Therefore, gravitational field strength k is determined via its gravitational potential 

φ in the following way: 
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where: Λ=3H
2
c

-2
 is cosmological constant, H is Hubble constant, a is square of the ratio be-

tween increment of metrical segment and increment of radial coordinate r, and rg is gravita-

tional radius of astronomical body, from where observation takes place. 

Nowadays, the following gravitational potential is used in General Relativity (GR) and in 

practical calculations: 

rrccv gcvj /−== 12ϕ , 

where: vcv is the coordinate vacuum velocity of light. 



When Λ=0 that potential forms the same spatial distribution of gravitational field strength 

as in classical physics: 
222 2/ −−=−= GMrrrck g  ( 22 −= GMcrg ). 

However, it does not correspond to Einstein’s opinion that free fall of bodies in gravita-

tional field is inertial motion. According to this potential the kinetic energy of falling body is 

less that the difference between rest energies of the body in the starting point of the falling 

and in the point of its instantaneous disposition. Wrong opinion that gravitational field has 

own energy corresponds to that gravitational potential [1]. 

In contrast to this potential, the potential that is in a form of logarithm of the rest inert 

free energy of matter corresponds to inertial motion of freely falling body [2] with the conser-

vation of Lagrangian L of its ordinary internal energy cvjgrcvjj vcmcmvcWW // 3
00

2
0000 === , 

and of Hamiltonian H of its inert free energy cvjincvjj cvmcmcvEE 00
2

0000 === /  [3]: 
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Such representation of potential is based on the possibility of proportional synchroniza-

tion of all quantum clocks and on proportionality of pseudo-forces of inertia and gravitation to 

the Hamiltonian of matter. This is in good correspondence with the principle of mass and en-

ergy equivalence. Such representation also makes the proof of equivalence of inert and gravi-

tational masses redundant. Logarithmic gravitational potential forms the following spatial dis-

tribution of gravitational field strength: 
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The equivalent value of strength of gravitational field adjusted to the inert mass of rest of 

the body that is moving in gravitational field will be as follows: 
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According to this the effective value of gravitational parameter (”constant”), where z is 

redshift: 
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tends to infinity while approaching the event pseudo-horizon as well as the Schwarzschild 

sphere and is continuously decreasing while distancing from the gravity center. And, of 

course, this should successfully prevent the false conclusions about the deficit of baryonic 

matter in the centers of the galaxies. 

Usage of logarithmic gravitational potential does not require the adjustment of the values 

of mass of the Sun and the planets. If gravitational radius of Sun is 2.95 km then its mass 

should be decreased on just two millionth parts of it. It is 35 times less than the determination 

error of Sun mass. On the Mercury orbit the strength of Sun gravitational field should be de-

creased on just 20 billionth parts of it. The Earth itself has very small gravitational radius 

0,887 cm. Due to this fact Earth mass should be decreased on just one billionth part of it. At 

the same time, Earth mass determination error is 100000 bigger. Unlike for the Solar System, 

the usage of logarithmic gravitational potential can be very essential for the far galaxies.  

 



2. The inconsistency of the motion of galaxies with Kepler's laws  
 

Laws of motion of single astronomical objects, found by Kepler, are based on gravitational in-

fluence of mainly central massive body. According to those laws, the velocity of rotation of 

galactic objects should decrease in inverse ratio to the square root of the distance to galaxy 

center. However, observations reveal the different picture: this velocity remains quasi con-

stant on quite far distance from galaxy center for many galaxies, including ours [4]. 

When single objects and their aggregates form big collection (cluster) their total mass can 

essentially exceed the mass of central astronomical body (supermassive neutron star or qua-

sar). The attraction of astronomical objects of the internal spherical layers of the galaxy can 

be much stronger than the attraction to the central body of the galaxy. Then, their collective 

gravitational influence can essentially distort the correspondence of the motion of peripheral 

astronomical objects to Kepler's laws. And, therefore, according to astronomical observations 

the velocities of rotation of galaxy’s peripheral astronomical objects required for prevention 

of joint collapse of all matter of the galaxy are much higher than the velocities of rotation of 

the separate peripheral astronomical objects required for prevention of the independent fall of 

those objects onto the central astronomical body. 

 

 
Figure: Dependencies of velocity of rotation of astronomical objects on the distance to gravi-

ty center: a) our Milky Way galaxy [4, 5], b) comparing to prognosed Keplerian velocities 

[6]. 

The quite close dependency to the observed one is the following dependence of really 

metrical value 
cvvvcbvv // ==

)
 of galactic velocity of rotation v of astronomical objects on 

the distance to the galaxy center. It is determined by the common galactic clock when the ra-

dial distribution of the average relativistic density of corrected relativistic mass of matter in 

the galaxy is the following: 
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where:   ∫ 
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μ0, re, rm, σ is constants. 

In this case on the large distances to the central astronomical body with the radius re 

(r>>re) the parameter η is only weakly sinusoidally modulated. And, also, the square of ve-

locity of orbital rotation of astronomical objects of the galaxy, that can be found from the 

condition of equality of centrifugal pseudo force of inertion racvin /H /2122 −−=
)

F and pseudo 

force of gravity Fgr=Lc
-2

a
-1/2

d[ln(vcv/c)]/dr: 
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very slightly depends on r1>>re due to the smallness of exp(-r/re), pressure p in the outer 

space of the galaxy and cosmological constant Λ. And its value can only slightly increase to-

gether with increasing of r due to the gradual increasing of the parameter η. 

Here “galactic” value of coordinate velocity of light 
u
vcvg≡

u
vl=cb

1/2
, Lagrangian and Ham-

iltonian    sgrgr bbcvcvcmcm H//)H()(L / =−=−== −− 2221222
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and increment of the metric radial distance dř=a
1/2

dr are determined by the parameters b, 

a=1/(1-η-Λr
2
/3) and )/()/( 222 1 −−== cvbcvb lss

)
 of the equations of GR gravitational field: 

( ) bcbcparabrb in //// 2
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22 11 κγµκγµκ ===Λ+−−′ −
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)](/[)/()()/(/ 222222222
0

22 1111 vcbvccvcvpcarraa inin

)))) −+=−+=Λ−−+′ −−− γκµµκ , 

)/()/()/()/()/()(/])[ln( 224
00

224224 1 vccbbvccbvccbarba ingr

)))
−+=−+=−+=′ γκµγκµγκµ . 

However, instead of eigenvalues of density of the mass 
00µ  and pressure 

00p  their coordinate 

values in FR are used in tensor of energy-momentum bin 000 µµ =  and bpp /00=  

( )(// rcpcp gr const=== γµµ 2
0000

2
0 ). This is related to temporal invariance of really metrical 

mechanical and thermodynamic parameters and characteristics of matter. An insufficient amount of 

the mass in the Universe denotes the fact that not only in RGTD but also in GR the tensor of energy-

momentum should be based on the ordinary internal energy of matter that includes not only inert 

free energy but also bound energy of matter. 

The defined by the same spatial distribution (3) average relativistic density of corrected rela-

tivistic mass of galaxy matter in GR has the following form: 
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 Here and further, we consider the minimum radial distance r from the center of the galaxy to the point on the 

trajectory of rotation of the astronomical object at which equilibrium is achieved, and therefore, its radial dis-

placement is absent (dr/dt=0). 



V is volume of matter; m00=min0b
-1/2

=mgr0b
1/2

 is intrinsic value of the mass of matter that corre-

sponds to “critical” equilibrium value of the ordinary internal energy of matter (b=1), and 

vl≡vcv is maximum possible (extreme) value of velocity of matter in the outer space of the gal-

axy. 

As we can see, exactly the logarithmic potential of gravitational field and the spatial dis-

tribution of gravitational strength defined by it in the extremely filled by stellar substance 

space of the galaxy correspond to these astronomical observations. The quite significant de-

creasing of the average density of matter when distancing from the center of the galaxy to-

wards the periphery also corresponds to these astronomical observations. Together with the 

deepening into cosmological past (τp<τe) the average density of matter in the 

gravithermodynamic frame of reference of spatial coordinates and time (GT-FR) of the galaxy 

is decreasing on its periphery proportionally to the square of radial coordinate rp. In the pic-

ture plane of astronomical observation this radial decreasing of the density of matter is even 

more significant: 

[ ])(3exp)](3exp[)/( 22
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3

00 eppegrpecpgrpobsppgrcpobsgr rrrrHrr −Λ−=−−== −µττµµµ , 

since, in contrast to GT-FR of the central astronomical object of the observed galaxy, in GT-

FR of terrestrial observer all other astronomical objects of this galaxy belong to the same 

moment of cosmological time τp=τe. 

And, therefore, the quantity of baryonic matter currently present in galaxies can be quite 

enough for examined here justification for observed velocities of astronomical objects of gal-

axies. The one more contributing fact is that having the same quantity of matter (m00p=m00e) its 

inertial mass of rest min0=m00b
1/2 on the galaxy periphery is bigger than in its center since 

bp>be. 

The GR gravitational field equations de facto correspond to spatially inhomogeneous 

thermodynamic states of only utterly cooled down matter. The similar to them equations of 

relativistic gravithermodynamics (RGTD) [3, 7, 8] correspond to spatially inhomogeneous 

thermodynamic states of gradually cooling down matter. Therefore, in RGTD for matter that 

cools quasi-equilibrially, the four-momentum must obviously be formed in the extended 

system not by enthalpy, but by the intranuclear Gibbs free energy (which in RGTD is an 

alternative to the inert free energy). The Lagrangian of the ordinary internal energy of the 

matter (the multiplicative component of its total energy) forms the four-momentum not with 

the Hamiltonian momentum, but with the Lagrangian momentum The GR gravitational field 

equations de facto correspond to spatially inhomogeneous thermodynamic states of only utter-

ly cooled down matter. In addition, in RGTD, unlike GR, bodies that move by inertia in a 

gravitational field, influence (by their movement) the configuration of the dynamic gravita-

tional field surrounding them. At the same time, in equilibrial processes, along with the usage 

of ordinary Hamiltonians and Lagrangians, in RGTD it is also possible to use GT-

Hamiltonians and GT-Lagrangians. Therefore, in RGTD for matter that cools quasi-

equilibrially, the Hamiltonian (GT-Hamiltonian) four-momentum must obviously be formed 

in the extended system not by enthalpy, but by the inert free energy, and Lagrangian (GT-

Lagrangian) four-momentum must obviously be formed by the multiplicative component of 

total energy and also by the Gibbs free energy (which in RGTD is an alternative to the inert 

free energy). The GT-Lagrangian of the ordinary internal energy of the matter (the multiplica-

tive component of its total energy): 
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forms the four-momentum not with the GT-Hamiltonian momentum, but with the GT-

Lagrangian momentum: 
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inv==−+=−=−−−= 222222222222222 )()())(()()()()()()()( dtbclddtvvlddtcbzdydxddtvds lclcc

)))))
, 

cllcc vvcvvcvbv Γ=== − ˆ//ˆ / 21 , 21221 /)(ˆ −+=Γ lc vv , )(tvvvbccbv lclc const=+=+== 222222
, 

)()(ˆ tcvcvbcvvbb lclcc const==+=+=Γ= −−− 22222222
. 

And therefore, the condition of equilibrium precisely in the dynamic gravitational field of 

the galaxy of all its objects moving by inertia leads to both the absence of relativistic decel-

eration of the flow of their own time and the invariance of their own time with respect to rela-

tivistic transformations. The spatial homogeneity of the rate of flow of proper time in entire 

gravithermodynamically bound matter is consistent with the single frequency of change of its 

collective spatially inhomogeneous Gibbs microstates, which is not affected by either a de-

crease (during approaching gravity center) in the frequency of intranuclear interaction or a in-

crease (during approaching gravity center) in the frequency of extranuclear intermolecular in-

teractions. Moreover, this is ensured even without conformal transformations of the space-

time interval s. Therefore, like the parameters vl, vlc, b and Γm in thermodynamics [3], the pa-

rameter bc (or its analogous parameter bs) in the RGTD is a hidden internal parameter of the 

moving matter. And the usage of this parameter in the equations of the dynamic gravitational 

field of the RGTD allows us not to additionally use the velocity of matter in those equations, 

as in the equations of thermodynamics. 

A similar dependence of the parameter vlc on the velocity also occurs for distant galaxies 

that are in the state of free fall onto the pseudo-event horizon of the expanding Universe: 
2222 vvcv lglcg +=≡ . After all, according to Hubble's law and the Schwarzschild solution of 

the gravitational field equations with a non-zero value of the cosmological constant 
223 −=Λ cH E  and a zero value of the gravitational radius: 

22222222 31 gElg vcrHcrcv −=−=Λ−= )/( . 

The use of the parameter )()//( tcvbcvbbb lsss const==−=Γ= −− 22222 1 2, built on the ba-

sis of relativistic size shrinkage 21221 /)( −−−=Γ ls vv , in the equations of the dynamic gravita-

tional field of the RGTD is also possible. However, in order to ensure the absence of decelera-

tion of the flow of the proper time of matter moving in a gravitational field by inertia, it will 

be necessary to use conformal Lorentz transformations (instead of the usual Lorentz transfor-

mations) of the increments of spatial coordinates and time. The solutions of the equations of 

dynamic gravitational field of the RGTD do not depend on the usage of the parameter bc or 

the parameter bs in them. The only parameters that will differ are the parameters of hypothet-

ical static gravitational fields (which are reproduced on the basis of those parameters bc and 

bs). 

According to this, in the tensor of energy-momentum of the RGTD not only intranuclear 

pressure pN but also intranuclear temperature TN is taken into account (where SN is intranuclear 

entropy, VN is intranuclear volume [3]): 

( ) VVbbcVсmmVVpSTarrbab ccingrNNNNcccc /)/(/)(/)(// 00
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where: cb  and ac are the parameters of the dynamic gravitational field equations of the non-

continuous matter of the galaxy; 22 cmcmbEVp inpVNgrpVNcpVNNV βββ
~~~

=== , )(
~

rpVN const≠β , 

)(// rTcmTcmS NgrN const=== 00
2
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2

, )(rbTT cNN const==00 , )(/ rbmbmm cincgr const===00 , 

                                                 
2
 Apparently, this parameter is inherent only to the equilibrial (pseudo-inertial uniform) motion of matter of bod-

ies that are evolutionarily self-contracting in the frame of references of spatial coordinates and time which is 

comoving with the expanding Universe. 



)(/ rVm const≠= 0000µ , )(// rbVbm сincgr const≠== µµ 00 , )(/ rVbm cin const≠= 00µ , 

)(rV const≠  is volume of matter. 

In addition, according to the RGTD equations, the configuration of the dynamic gravita-

tional field of a galaxy in a quasi-equilibrium state is standard (canonical in RGTD). That is 

because it is not determined at all by the spatial distribution of the average mass density of its 

non-continuous matter. After all, this spatial distribution of the average mass density of the 

galaxy's matter is itself determined by the standard configuration of its dynamic gravitational 

field:  
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where the parameter S can be conditionally considered as the distance from the event pseudo-

horizon. 

The trivial solution of this equation, which takes place at: 
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does not correspond to physical reality. After all, because of 032 2 ≠Λ−Λ−=′ )/( ecec rrbb  at r≠0, 

the solution does not imply the presence of event pseudo-horizon in the FR of matter. And the 

parameter bc, unlike the parameter ac, does not depend on the gravitational radius rg. And 

therefore, gravity is absent in the FR corresponding to this trivial solution. 

According to the non-identity of the gravitational and inert masses of matter we find the 

square of the rotation velocity of astronomical object relatively to the galaxy center according 

to the equations (5, 6) of dynamic gravitational field of RGTD: 
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As we can see, at the same radial distribution of the average density of the mass 

Vm /0000 =µ  of baryonic matter the circular velocities of rotation of astronomical objects rel-

atively to the galaxy center are much bigger in RGTD than in GR. And this is, of course, re-

lated to the fact that: 

pbbcVcmmVVpST ccingrNNNN >>−=−≡− )/(/)(/)( 12
00

2 µ . 

Therefore, we can get rid of the imaginary necessity of dark non-baryonic matter in gal-

axies that follows from the equations of GR gravitational field if we analyze the motion of 

their astronomical objects using the equations of gravitational field of RGTD. 

If we do not take into account local peculiarities of distribution of average density of the 

mass in galaxies and examine only the general tendency of typical dependence of the orbital 

velocity of their objects on radial distance to the galaxy center, then the following dependencies 

of this velocity on parameter bc and, thus on radial distance r, can be matched with the graphs 

on Fig.:  
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where: (dv/dbc)e=(dv/dr)e=0. 

In the first approximate dependence [3, 8], the evolutionary self-contraction of matter in 

infinite fundamental space of CFREU is conditionally not taken into account. And therefore, 

there is no limitation of the galaxy's intrinsic space by the pseudo-event horizon in it. After 

all, according to it, the coordinate velocity of light continuously increases along with the in-

crease in the radial coordinate r at the gravitational radius of the galaxy: 
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3
 Here and below, definite integrals are equal to unity when the upper limit of integration is equal to the lower 

limit. (bc=bce). 
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Herein according to (4, 7) and similarly to diffeomorphically-conjugated forms [9]: 
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and: re is radius of the conventional friable galactic nucleus, on the surface of which the cor-

rected value v̂  of the orbital velocity of objects can take its maximum possible value 

cvvbvbvv elceeecee /ˆ)(ˆ/

max ==≡ 21
; rg and rge

4 are the gravitational radii of any layer of the galaxy 

and its loose core, respectively. 

Thus, the gravitational radius rge of the loose core of the galaxy together with re, be and n is an 

indicator of the power of the galaxy. Theoretically finding the values of all these indicators is prob-

lematic. And it is even impossible in the case of the formation of the loose core of the galaxy by an-

timatter (i.e. when, due to the mirror symmetry of the antimatter-matter intrinsic space, r>re not only 

outside, but also inside the loose core [10]). 

                                                 
4
 The gravitational radius *

ger corresponds to a loose nucleus, which at 0=edRdr )/(  contains only antimatter. 



Moreover, even for distant objects in the galaxy rg>2Λr
3
/3, and bc<1-Λr

2
=1-3He

2
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2
. And 

therefore, these objects are "affected" by pseudo-forces of repulsion that are three times greater than 

the Hubble pseudo-forces. 

Therefore: 
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Apparently, all this is connected with the simplification of the considered FR of the gal-

axy. Because in this FR, unlike the FR of galaxies´ individual astronomical objects, there is 

no pseudo-event horizon on which bc=0. After all, the value of bc can only grow continuously 

with the growth of the radial coordinate r (dbc/bcdr≠0 at all points of its infinite space). 

The second dependence, on the contrary, ensures the presence of a pseudo-event horizon. 

But according to it, more complex mutual dependencies of the gravitational parameters of the 

galaxy take place and analytical integration of these dependencies is impossible: 
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μgrst  is standard value of the gravitational mass  density  of  the  galaxy  matter,  μgrpst=4,8596 

10
-27

/(1-bcmax) is non-zero standard value at the edge of the galaxy (rp=Λ
-1/2

=1,1664 10
26

 

[m]=3,78 [Gpc]) of the gravitational mass density of the galaxy matter still held by the galaxy 

in quasi-equilibrium, despite the zero value of the gravitational radius at its boundary (rgp=0, 

0=′
cpb ). 

The dependence of the gravitational radii of a galaxy on the radial coordinate is determined 

from the following differential equation: 
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At u=-1 ( 2/cve = ) this solution of the standard equation of the dynamic gravitational field of 

the galaxy allegedly degenerates. After all, in this case the value of the gravitational radius of the 

galaxy becomes proportional to the cosmological constant Λ, and therefore to the Hubble constant:  
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But in fact, like the parameter bc, the cosmological constant is a hidden parameter of matter. 

And it is thanks to it that at )//()( 311 22
eece rrb Λ−Λ−>  and at 222 /−−= vcu  the radial gravita-

tional radii rg(r) of the galaxy become larger than at u=0. 

The trivial solution of the equation takes place both at u=0 and at a negative value of the pa-

rameter 222 /−−= vcu . And therefore, when )//()( 311 22
eece rrb Λ−Λ−> , the smaller the maxi-

mum orbital velocity 2/cve <  of astronomical objects in the galaxy, the greater in the latter case 

the value of the gravitational radius on the surface of its loose nucleus will be.  

Also what is important is that even in an incredibly weak gravitational field (when u=0) and 

even at large radial distances, astronomical objects will rotate around the center of the galaxy with 

orbital velocities very close to the maximum possible speed [4 – 6]. 



Moreover, it is precisely thanks to )//()( 311 22
eece rrb Λ−Λ−>  that this takes place at 

222 /−−= vcu  at very large distances from the center of the galaxy. After all, the radial distances 

to the objects of the galaxy at the same value of the parameter bc become much greater than at 

u=0: 
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The transition from the dynamic to the hypothetical static gravitational field of the galaxy is 

carried out as follows: 
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The gravitational force acting in a static gravitational field on a conditionally stationary body is 

greater than the gravitational force acting in a dynamic gravitational field on the same body that is 

moving. And this is not only due to the decrease in the gravitational mass of the body due to its 

movement. After all, in a space saturated with rapidly moving bodies, the intensity of the dynamic 

gravitational field also decreases. That is why it is necessary to use precisely the dynamic gravita-

tional field instead of a static one in calculations of the rotational motion of galactic objects. 

Thus, in the equations of the dynamic gravitational field of RGTD, as in the equations of 

thermodynamics, not only gravitational, but also relativistic indicators are internal hidden pa-

rameters of the RGTD-state of matter in motion. And that is why in RGTD, unlike orthodox 

GR, the use of an external relativistic description of the state of matter in motion is not always 

required. 

The large value 
cecb bbk /= corresponds to the larger value n of the index of density of fri-

able galactic nucleus on the same big radial distances. However, only when values are ex-

tremely large n>>2
34

 the significantly lesser average density of matter beyond the friable ga-

lactic nucleus takes place and that is why the dependence of orbital velocities of galactic ob-

jects on radial distances can be close to Keplerian. For example, when n=2
40

 (kb
n
=16,780) the 

orbital velocity of peripheral objects of the galaxy is less than half of the maximum velocity 

(when rp/re=20, 
ep vv 4610,= ), while when n=2

45
 (kb

n
=535) it is already significantly smaller of 

maximum velocity (
ep vv 0860,= ). However, not only in the weak gravitational fields (n<<2

34
, 

kb
n
<<1,1391), but even in quite strong gravitational field (n=2

34
, kb

n
<1,1391, 

kbp=1,00000000000758) the orbital velocities of extra-nuclear objects (when be=1,12656·10
-6

) 

are, according to (8), quite close to their maximum values 225≈≡ evvmax
 km/s (Fig. 2 b)) on 

quite big radial distances r/re<20 (even when u=0): 

[ ]{ } ]/[,)]//()/ln[(
/

skmvcrrrrcvvvv eeeee 950332
414423335 ≤+Λ−Λ−−≈−=∆

−
−

. 

The FR that is almost equivalent to this FR of observed galaxy is its intrinsic GT-FR0, in 

which when bcp0=1 and 2415
00 22443838708 ,,ln/ln ≈=≈= cpbcpbcp nbkknn  (n=2

34
, 139110 ,=n

bpk ): 

[ ] 00000336613323321 2415
1

33222416332444832
000 ,)]//()/ln[()]//()/[(ln/ ,,, =Λ−Λ−+Λ−Λ−+== −−

eeeeeeсeсpbp rrrrcvrrrrcvbbk , 



[ ]{ } ]/[,)/()]//()/ln[(
/

, skmvcrrrrcvvvv eeeee 950332
414

0
2332416

0000 ≤+Λ−Λ−−≈−=∆
−

. 

Not only the GT-Lagrangian of ordinary internal energy and equivalent to it gravitational 

mass of matter, but also the following relations are invariant under such a transformation: 

inv== ee vvvv // 00 ,          inv== bb knkn lnln 00
      [ )1()1( 00 −≈− bb knkn ]. 

This, of course, is related to the fact that big gradients of gravitational field on the periph-

ery of such galaxies are formed not by their nuclei but by all large set of their objects. This is 

also related to the fact that the coordinate value of GT-Hamiltonian of inert free energy of 

matter is significantly smaller than the coordinate value of GT-Lagrangian of its ordinary in-

ternal energy when bce=2,253·10
-6

 ( skmv /3377,0max = ). 

The following dependence of the orbital velocity of objects of galaxies on parameter bс0 

and, thus on radial distance r, can be matched to these objects in intrinsic GT-FRg0 of galaxy 

[3]: 
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According to the dependence inv== bb knkn lnln 00
 in intrinsic GT-FR0 of the galaxy there is 

stronger gravitational field than in FR of distant external observer: 
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where: LL0=  due to the fact that GT-Lagrangian of ordinary internal energy of inertially moving 

matter does not depend on galactic rates of gravithermodynamical (astronomical) time [3]. 

This, of course, is related to the fact that big gradients of gravitational field on the periph-

ery of such galaxies are formed not by their nuclei but by all large set of their objects. 

In centric intrinsic GT-FRg0 of the galaxy when 222
/

−−= vcu  the following typical (stand-

ard) radial distribution of the average density of gravitational mass of the matter in the galaxy 

takes place: 
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According to which, when at the edge of the galaxy (rp=Λ
-1/2

=1,1664 10
26

 [m]=3,78 [Gpc]) 

the gravitational mass density of matter still held by the galaxy in quasi-equilibrium, despite 

the zero value of the gravitational radius at its boundary (rg0p=0, 00 =′
pcb , bc0p=bc0max 

00
233

0 =Λ=−
pgppg rrr / ), becomes non-zero standard )(/)(/ maxmax cEcgrst bGHbc −=−Λ= 14132 00

22 πκµ . 

 

 



3. Conclusions  
According to the RGTD equations, the configuration of the dynamic gravitational field of a galaxy 

in a quasi-equilibrium state is standard (canonical in RGTD). That is because it is not determined at 

all by the spatial distribution of the average mass density of its non-continuous matter. After all, this 

spatial distribution of the average mass density of the galaxy's matter is itself determined by the 

standard configuration of its dynamic gravitational field. In the equations of the dynamic gravita-

tional field of RGTD, as in the equations of thermodynamics, not only gravitational, but also relativ-

istic indicators are internal hidden parameters of the RGTD-state of matter in motion. And that is 

why in RGTD, unlike orthodox GR, the use of an external relativistic description of the state of mat-

ter in motion is not always required. The general solution of the equations of the gravitational 

field of the galaxy with an additional variable parameter n is found. The additional variable 

parameter n determines in GR and RGTD the distribution of the average mass density mainly 

in the friable galactic nucleus. The velocity of the orbital motion of stars is close to the Keple-

rian one only for n > 225. At n < 215, it is slightly less than the highest possible velocity even 

at the edge of the galaxy. The standard value of the average mass density of matter at the edge 

of a galaxy is determined by the cosmological constant Λ and the difference between unity 

and the maximum value of the parameter bc. And it is a non-zero standard value, despite the 

gravitational radius at the edge of a galaxy takes the zero value. Therefore, in relativistic 

gravithermodynamics, in contrast to GR, there can be no shortage of baryonic mass in princi-

ple. And, therefore, the presence of non-baryonic dark matter in the Universe is not necessary. 

The most significant fact is the absence of relativistic dilatation of intrinsic time of galaxies 

according to received transformations. And this confirms the correspondence of the orbital 

motion of galactic astronomical objects to GT-Lagrangians and GT-Hamiltonians or to Lor-

entz-conformal transformation of increments of metrical intervals and metrical time for the 

galaxies [3, 8]. 
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