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Abstract

While large language models (LLMs) have
achieved remarkable performance in various
tasks including mathematical reasoning, their
development typically demands prohibitive
computational resources. Recent advancements
have reduced costs for training capable mod-
els, yet even these approaches rely on high-end
hardware clusters. In this paper, we demon-
strate that a single average gaming GPU can
train a solid mathematical reasoning model, by
integrating reinforcement learning and mem-
ory optimization techniques. Specifically, we
train a 1.5B parameter mathematical reason-
ing model on RTX 3080 Ti of 16GB mem-
ory that achieves comparable or better per-
formance on mathematical reasoning bench-
marks than models several times larger, in
resource-constrained environments. Our results
challenge the paradigm that state-of-the-art
mathematical reasoning necessitates massive
infrastructure, democratizing access to high-
performance Al research. https://github.
com/shinandrew/YouronMath

1 Introduction

Large language models (LLMs) have shown re-
markable success in mathematical reasoning, a task
requiring logical precision and contextual under-
standing (Shao et al., 2024; Yang et al., 2024).
These models, capable of step-by-step reasoning
akin to human problem-solving, hold promise for
real-world quantitative applications. However,
training such high-performing LLMs typically de-
mands extensive computational resources, such as
clusters of high-end GPUs consuming tens of thou-
sands of GPU-hours, leading to significant finan-
cial costs and a substantial environmental footprint
due to energy-intensive operations. This places
state-of-the-art LLM development out of reach for
individuals and small organizations, limiting it to
well-funded entities with massive infrastructure.
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Recent efforts have sought to lower these bar-
riers, democratizing access to LLM training by
reducing the computational budget. DeepSeek-R 1
(DeepSeek-Al et al., 2025) pioneered this move-
ment by introducing efficient training techniques
that drastically cut resource requirements, achiev-
ing competitive performance with significantly less
costs than traditional approaches. Similar endeav-
ors have followed (Muennighoff et al., 2025; Team,
2025; Pan et al., 2025), demonstrating that capable
models could be trained with reduced overhead, if
training is performed in clever and efficient ways.
However, even these works still rely on high-end
GPUs in parallel configurations to manage mem-
ory and throughput demands, thereby exceedig the
capabilities of typical consumer hardware.

Gaming GPUs like NVIDIA RTX series are typ-
ically considered unsuitable for training LLMs due
to limited memory (8-24 GB GDDR6), lower com-
putational throughput, and lack of deep learning op-
timizations. Unlike data-center GPUs with 40—80
GB of high-bandwidth memory and tensor cores for
mixed-precision, gaming GPUs prioritize graphics
performance over matrix operations. LLMs, with
billions of parameters, require substantial memory
not only for weights but also for activations, gradi-
ents, and optimizer states, easily exceeding a single
gaming GPU’s capacity. The absence of fast in-
terconnects like NVLink also hampers multi-GPU
scaling, and poor double-precision performance
can affect convergence. As a result, models often
do not fit without major optimization, and even
when they do, training becomes impractically slow
due to constrained batch sizes and throughput.

In this work, we challenge this paradigm by
training a 1.5B-parameter mathematical reason-
ing model on a single NVIDIA RTX 3080 Ti of
16GB memory, using various techniques from re-
inforcement learning and memory optimization.
Our approach achieves comparable or better perfor-
mance than larger mathematical reasoning mod-
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els on benchmarks within consumer-grade con-
straints. By reducing the computational and en-
ergy demands of LLM training, our results not only
democratize access for individuals and small orga-
nizations but also offer a step toward alleviating
the environmental impact of massive GPU usage,
promoting sustainable Al research.

2 Related Works

The advancement of LLMs for mathematical
reasoning has been exemplified by models like
DeepSeekMath (Shao et al., 2024) designed to
excel on benchmarks through extensive pretrain-
ing on mathematical corpora followed by instruc-
tion tuning with chain-of-thought (CoT) reason-
ing (Wei et al., 2022), achieving state-of-the-art
performance among models of its size. Build-
ing on this, DeepSeek-R1 (DeepSeek-Al et al.,
2025) introduced a significant reduction in compu-
tational cost by employing Grouped Relative Policy
Optimization (GRPO) that optimizes LLMs more
efficiently than traditional supervised fine-tuning.
GRPO operates by grouping training samples into
batches and using a reward model, often based on
correctness and reasoning quality, to guide gradi-
ent updates, reducing the need for exhaustive data
passes and lowering GPU-hour requirements by or-
ders of magnitude compared to conventional meth-
ods. Similarly, Qwen2.5-Math (Yang et al., 2024)
demonstrates remarkable performance on mathe-
matical reasoning benchmarks with optimized CoT
prompting. Other notable models, such as Minerva
(Lewkowycz et al., 2022) and ol (OpenAl, 2024b),
have also pushed mathematical reasoning forward,
often relying on larger architectures and extensive
computational resources, further highlighting the
need for cost-effective alternatives.

Efforts to further democratize LLM training have
emerged, though they often still rely on high-end
hardware. S1 (Muennighoff et al., 2025), for in-
stance, utilizes knowledge distillation, where a
smaller student model learns from a larger teacher
model’s outputs, achieving competitive perfor-
mance on language tasks. S1 was trained on 16
NVIDIA H100 GPUs in under 30 minutes for
approximately $50, showcasing a rapid and cost-
effective pipeline. Sky-T1-32B (Team, 2025), a
32B-parameter model, was developed for $450 by
generating training data with QwQ-32B-Preview
(Team, 2024) and refining it with GPT-40-mini
(OpenAl, 2024a), before training on § H100 GPUs

for 19 hours. This model surpasses ol on math and
coding benchmarks, highlighting the potential of
curated synthetic data. TinyZero (Pan et al., 2025),
meanwhile, replicates DeepSeek-R1’s GRPO ap-
proach to implement a countdown task, training a
model for under $30 with 10 H100 hours. Despite
these advancements, they still depend on parallel
high-end GPUs, rendering them inaccessible to re-
searchers without access to such clusters.

Notable methods have been proposed for train-
ing in resource-constrained environments, which
underpin our model. Low-Rank Adaptation
(LoRA) (Hu et al., 2021) reduces the computa-
tional burden of fine-tuning by freezing the pre-
trained model’s weights and training only low-rank
updates to specific layers. This approach shrinks
the number of trainable parameters by orders of
magnitude. Flash Attention 2 (Dao, 2023) speeds
up and reduces the memory usage of transformer
models, especially for large-scale training. It fuses
several operations into a single GPU kernel, re-
ducing memory access overhead, while support-
ing multi-query attention and variable sequence
lengths, making it more flexible. Reinforcement
learning from verifiable rewards (Lambert et al.,
2024) employs a reward signal such as answer cor-
rectness to refine the model’s outputs, avoiding the
need for large-scale supervised datasets or exten-
sive gradient computations.

3 Model

Our approach focuses on training a mathematical
reasoning model using a single NVIDIA RTX 3080
Ti GPU with 16 GB of memory. We leverage
Qwen2.5-Math 1.5B parameter model as the base
architecture, configured with FP16 precision and
Flash Attention 2 (Dao, 2023) for memory-efficient
attention computation. To operate within the con-
straints of consumer-grade hardware, we integrate
LoRA (Hu et al., 2021) to adapt the pre-trained
model without full-weight updates, enabling effi-
cient training on limited resources. LoRA is ap-
plied with a rank » = 16 and an alpha scaling
factor a = 32, targeting the query, key, value, and
output projection layers of the transformer archi-
tecture. This reduces the trainable parameters to
approximately 18 million, or roughly 1.1% of the
total 1.5B parameters. For a transformer layer with
weight matrix W € Rémose Xdmosel T, o0RA decom-
poses the update as:

AW — ABT7 A c I&dmodchT7 B c Rdmndclxr’



where r < dnodel, and the adapted weight becomes
W' =W + « - AW. This configuration ensures
the model fits within the 16 GB memory budget
of the RTX 3080 Ti, requiring approximately 3
GB for weights, with the remainder allocated to
activations, gradients, and optimizer states.

The LoRA-adapted model is fine-tuned using
GRPO with reinforcement learning from verifi-
able rewards, following (Jafari, 2025), which tar-
gets improving base models without reliance on
pre-trained reward models. We pre-process the
GSMBSK training data to construct prompts and
completions. Each example is formatted as “Ques-
tion: [question] Solution: Let’s think step by
step. [reasoning] #### The final answer is
Lanswer]”, where [question] is the problem
statement, [reasoning] is the step-by-step solu-
tion, and [answer] is the numerical result from
the dataset’s annotations. To ensure memory effi-
ciency, input prompts are truncated to a maximum
length of 128 tokens, and completions are limited
to 150 tokens. Few-shot prompting is employed
by including examples within each input prompt,
establishing the desired data pattern and facilitat-
ing reinforcement learning from verifiable rewards
without explicit <think> or <answer> tags.

Training employs a dual reward system with two
components:

* Correctness Reward: R ot = 1 if the pre-
dicted answer matches the ground truth, O oth-
erwise.

* Format Reward: Ry, = 0.5 if the output
adheres to the format “#### The final answer
is {number}”, O otherwise.

The total reward is defined as:
Riotal = Reorrect + Rformats
with Ry € [0, 1.5]. This incentivizes both accu-
racy and consistent output formatting, aligning with
the evaluation metric on GSM8K. The reward func-
tion guides the GRPO optimization, where the pol-
icy my (parameterized by the LoRA-adapted model)
is updated to maximize the expected reward:
J(G) = Eﬂ'g [Rtotal]-

We fine-tune our model for one epoch, which takes
slightly over 24 hours on RTX 3080 Ti. We find
that a single pass with GRPO effectively refines
the model, as our preliminary examination with
more epochs showed only marginal gains at the
cost of longer training. The training setup uses a
batch size of 1 with gradient accumulation over 4
steps, simulating an effective batch size of 4 to fit

within memory constraints. We employ AdamW
optimizer (Loshchilov and Hutter, 2017) with a
learning rate of 5 x 10~°, weight decay of 0.01, and
a warmup period of 100 steps. This configuration
achieves a memory footprint of approximately 14
GB during training on RTX 3080 Ti.

4 Experiments

4.1 Setting

We trained our model on the training split of
GSMB8K (Cobbe et al., 2021), consisting of over 8k
grade-school math problems with human-written
solutions, and evaluate it on the test split of
GSM8K and MMLU-STEM (Hendrycks et al.,
2020), using 8-shot and 4-shot prompting respec-
tively. The k-shot prompt is constructed by ran-
domly sampling eight examples from the GSM8K
train split. Each example follows the format de-
scribed in Section 3, and is concatenated into a
single prompt. For each test sample, we append
the new question as “Question: [question] Solu-
tion: Let’s think step by step.” to the 8-shot prompt,
tokenize it with a maximum length of 2,048 to-
kens with padding to ensure the full context fits
within memory constraints. The model generates
responses with a maximum of 512 tokens, using
top-k sampling with £ = 50 and a temperature of
0.7 to balance exploration and coherence in the
outputs, and the pad token is set to align with the
tokenizer configuration.

4.2 Results & Discussion

Table 1 shows the results from our models and
baseline models for comparison. Our model
(YouronMath-L16) boosts the performance of base
Qwen2.5-Math-1.5B for over 2% on GSMSK.
While our locally reproduced results tend to be
lower than the reported results in respective papers
presumably due to difference in prompting strategy,
we apply consistent setting across all models for
unbiased fairness, and all variations of our model,
whose details are described later, achieve compa-
rable or better performance than the models of
much larger sizes, including DeepSeekMath-Base-
7B and Internlm2-Math-Base-20B. On GSMS8K,
our models surpass not only locally reproduced re-
sults, but the reported results as well. While it is
largely attributed to the base model outperforming
those models, it is nonetheless encouraging that a
model trained on a single gaming GPU can surpass
models several times larger, while enhancing the



Table 1: Evaluation results with comparison to other reasoning models. Our models are referred to as YouronMath.
L8/16/32 refer to the rank of LoRA. Numbers without parenthesis indicate our locally reproduced results, while
the numbers in parenthesis indicate the reported accuracies. While locally reproduced results tend to be lower
than reported results due to change in prompting strategy, we apply consistent settings across all models, ensuring
unbiased comparisons, and our models demonstrate comparable or better performance. Note that we were not able
to reproduce DeepSeekCoder-V2-Lite-Base and Internlm2-Math-Base-20B for GSMS8K as it takes prohibitively

long, i.e., over 1k hours, in our setting.

Model GSMSK (8-shot) | MMLU-STEM (4-shot)
DeepSeekMath-Base-7B 58.38 (64.2) 41.89 (56.5)
DeepSeekCoder-V2-Lite-Base (68.3) 47.57 (59.5)
Internlm2-Math-Base-20B (68.2) 37.84 (63.0)
Qwen2.5-Math-1.5B 71.65 (76.8) 45.41 (51.3)
YouronMath-L8 71.49 4541
YouronMath-L.16 73.69 45.95
YouronMath-L16-Augmented 71.80 45.95
YouronMath-1.32 73.77 46.20

Table 2: Example questions from GSMS8K and answers generated by our model.

Question

Response

Eliza’s rate per hour for the first 40 hours she works each
week is $10. She also receives an overtime pay of 1.2 times
her regular hourly rate. If Eliza worked for 45 hours this
week, how much are her earnings for this week?

40 hours at $10/hour = $«40%10=400»400 5 hours at
1.2%#$10/hour = $«5*10*1.2=60»60 Her total earnings for
the week are $400+$60 = $«400+60=460»460 #### The
final answer is 460

John drives for 3 hours at a speed of 60 mph and then turns
around because he realizes he forgot something very impor-
tant at home. He tries to get home in 4 hours but spends the
first 2 hours in standstill traffic. He spends the next half-hour
driving at a speed of 30mph, before being able to drive the
remaining time of the 4 hours going at 80 mph. How far is
he from home at the end of those 4 hours?

John drives for 3 hours at a speed of 60 mph, so he travels
3*60 = 180 miles. He then spends the next 2 hours in stand-
still traffic, so he doesn’t travel any distance. He then drives
for the next half-hour at a speed of 30 mph, so he travels
0.5%30 = 15 miles. He then drives for the remaining 1.5
hours at a speed of 80 mph, so he travels 1.5%80 = 120 miles.
Therefore, John is 180 + 15 + 120 = 315 miles from home.
#### The final answer is 315

base model itself. Table 2 shows example questions
from GSMS8K and the responses generated.

Impact of LoRA: We investigated how the per-
formance changes depending on the rank of LoRA
by training separate models with rank 8 and 32.
Intuitively, higher rank is likely to lead to better
performance at the cost of increased memory us-
age and computational complexity, as it allows for
more expressive updates to the pretrained weights
by increasing the dimensionality of the low-rank
matrices. Our results confirm this trend, as shown
in Table 1, where the model with LoRA rank &
under-performs rank 16, which is in turn outper-
formed by rank 32. In particular, rank 8 shows
lower accuracy than the base model, suggesting
that overly constrained adaptation capacity can ac-
tually hurt the model’s ability to generalize, espe-
cially in tasks requiring substantial deviation from
the pretrained distribution. In contrast, ranks 16
and 32 offer a more balanced trade-off, suggesting
that increasing the rank allows the model to lever-
age more expressive parameter shifts while still
maintaining the efficiency advantages of low-rank
tuning. However, the diminishing returns from rank
16 to 32 indicate a saturation point where additional
rank provides marginal benefits.

Hybrid Fine-tuning: we explored a hybrid

fine-tuning approach by augmenting the GSMSK
dataset with 10k teacher-generated responses from
DeepSeekMath-7B. The resulting model slightly
outperformed the base Qwen2.5-Math-1.5B, but
fell short of the model fine-tuned on GSM8K alone.
This suggests that while the teacher responses may
have introduced additional reasoning patterns, they
mostly diluted the model’s focus, potentially intro-
ducing noise or inconsistencies, due to occasional
incorrect answers or limited diversity in question
templates, that disrupted alignment with the tar-
get task. This suggests a necessity for further in-
vestigation into data quality, correctness, and va-
riety, when employing teacher-student approach
with synthetic training data (He et al., 2025).

5 Conclusion

We demonstrated that it is possible to train a math-
ematical reasoning model on a single gaming GPU,
with comparable performance to models of larger
sizes, using efficient training strategy and memory
optimization. This work demonstrates potentials
not only for democratizing access to advanced Al
development but also for reducing the environmen-
tal impact of GPU-intensive training, paving the
way for sustainable, high-performance Al research
on consumer hardware.



Limitations

This study has several limitations that affect the
generalizability and robustness of our findings.
First, the fine-tuning process relied solely on the
GSMBSK dataset, which focuses on grade-school-
level mathematics. While this enabled strong per-
formance on similar tasks, it likely over-specialized
the model, limiting its ability to generalize to
broader STEM domains. Second, our training lever-
aged LoRA, which, while computationally efficient,
may not capture the full expressivity of full fine-
tuning. This could constrain the model’s adaptation
to more complex reasoning tasks. Additionally, the
training dataset size of 8k samples is modest com-
pared to larger pre-training corpora, potentially lim-
iting robustness. Finally, computational constraints
restricted extensive hyperparameter tuning and in-
termediate evaluations during training.

Ethics Statement

The development and deployment of reasoning
models as ours carry the potential for both posi-
tive and negative societal impacts. On the positive
side, demonstrating that a mathematical reasoning
model can be trained on a single gaming GPU has
a potential to both expand high-end Al research to
individuals and small organizations and to allevi-
ate environmental concerns, such as energy con-
sumption and carbon emissions, caused by massive
usage of high-end GPU clusters.

We also ensured responsible use by adhering
to open-source datasets (GSM8K, MMLU-STEM)
and models (Qwen2.5-Math-1.5B, DeepSeekMath-
Base-7B) under their respective licenses, avoiding
proprietary or sensitive data. No human subjects or
personal data were involved, minimizing privacy
risks. Transparency in reporting our methods, re-
sults, and limitations, along with open-sourcing our
code and models, aims to foster trust and encourage
ethical scrutiny in future iterations.

Improving mathematical reasoning in language
models can also support educational tools, aiding
students and educators in problem-solving and con-
cept mastery. However, over-reliance on such mod-
els risks undermining critical thinking skills if users
defer to Al without understanding underlying prin-
ciples. Bias in training data is another concern.
GSMBS8K, while carefully curated, reflects grade-
school math problems primarily in English, poten-
tially embedding cultural or linguistic biases that
limit applicability to diverse populations.
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