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Introduction

The Special Theory of Relativity (SR) has aroused much controversy since the very beginning. Even today,
although most physicists consider it a classic on a par with mechanics and electrodynamics, not all are entirely
convinced by it. Since the Internet has become a free forum of expression, it is clear that despite the century that
has passed since the theory was first developed, it is still not accepted indiscriminately. However, the mainstream
science does not take these voices seriously, and scientific journals do not publish articles critical of SR. The
current theory took a long time to develop, has a strong mathematical structure and has survived for 100 years,
therefore it cannot be fundamentally wrong. A century is long enough time to see the SR from a distance. One can
risk a claim that the SR is a prosthesis whose creators, in a very general formalism, have lost some details, without
which the theory allows for erroneous conclusions euphemistically referred to as paradoxes. This monograph is
the result of almost 40 years of work on creating a mathematical basis for an alternative theory which is, however,
in line with Einstein’s postulates. Finding a parallel path was possible thanks to the discovery by the author of
a transformation invariant for the wave equation, previously unknown1, because it does not belong to the Lorentz
group.

Historical outline, or a few words about original sins

At the turn of the 19th and 20th centuries, an explosion of discoveries took place in physics. Hypotheses
were made and new theories developed. Forty years earlier, James Clerk Maxwell had put the laws of electricity
together, finding out that they were combined into a wave equation, the domain of which is time and space:
real time and 3-dimensional Euclidean space, because at such time and in such space Coulomb, Faraday,
Ampere, Hertz and many other outstanding experimenters conducted experiments and formulated the laws of
physics. It was an era when mathematicians had already thoroughly studied mechanics and they knew that by
analysing the laws of physics with mathematical methods, a lot of knowledge can still be obtained. Thus, they
got down to electrodynamics. The basic problem was to define the universality of the newly discovered laws,
and it quickly turned out that transformations that are invariant to mechanics change electrodynamics. The
mathematicians concluded, therefore, that either the transformations were bad or the laws of electrodynamics
did not deserve that ranking. Meanwhile, Albert Michelson and Eduard Morley, while searching for the ether,
found that the speed of light in the vacuum was always the same. From this they concluded that ether didn’t
exist. For mathematicians, the constant speed of light in the vacuum meant that the wave equation should be
invariant under the boost, because the speed of light is closely related to the solution of the homogeneous wave
equation. This led them to a transformation that was later named after its most eminent discoverer, Hendrik
Lorentz. The Lorentz transformation (LT), which is interpreted as a transfer of an observer between frames
moving relative to each other at a speed comparable to light, does not change the form of the wave equation
and thus preserves the speed of the electromagnetic wave. This resolved the contradictions that arose. The
application of the Lorentz transformation in other areas of physics, in particular in mechanics, resulted in the
creation of a completely new field of theoretical physics - Special Theory of Relativity.

The Special Theory of Relativity was one of these theories that changed the perception of the world. It
showed to people a world that they had not known until recently - the world of particles moving at enormous
speeds. The theoretical physicists had their hands full. The mathematics they had used to describe certain

1As it turned out later, the transformation was known to researchers of Clifford Algebras, but it was not tested for use in SR.
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phenomena has become insufficient. It was necessary to extend the geometry created in antiquity with an
additional dimension - time. Formulas devised by researchers have become more and more expanded. In order
to write them down in a concise form, a tensor calculus was used. The concepts of vector and scalar, which
were the basis of didactics, have disappeared. Tensor calculus combined them into one form and hid them
behind meaningless indexes. The level of abstraction created a barrier to intuitive understanding of physical
phenomena. Someone may ask: Was the direction taken by relativists 100 years ago correct? Is it not possible to
create a different, more intuitive language to describe objects that move at the highest speeds? Popular
publications show that the topic has not been dealt with. The presented interpretations are full of paradoxes
and are contrary to common sense. The scientific mainstream has passed over this by stating that this is what
modern physics is like and must be accepted as it is.

Although relativists have adopted tensor calculus as the basic language for the mathematical
description of the theory, attempts are still being made to find a more intuitive tool based on imaginable
geometric concepts. The most interesting direction is the constantly developing Geometric Algebra (GA),
initiated by David Hestenes, based on concepts derived from Grassmann Algebra. William Baylis went in a
similar direction, combining scalars with multivectors into complex paravectors and on them he built his
Algebra of Physical Space (APS). Both theories apply a different formalism, but they are equivalent to each
other and describe the problems of the current Special Theory of Relativity in a specific way. William Baylis
showed that the Lorentz transformation can be represented by the relation X ′ = ΛX Λ∗, where Λ is an
orthogonal paravector. We study the transformation X ′ = ΛX , which does not belong to the Lorentz group
because it requires complex spacetime.

Elegant and friendly formalism is of great importance in didactics. The assessment of elegance depends
on the individual sense of aesthetics, which is influenced not only by education but also by deeply
subconscious intuition. If a person doesn’t like something, it doesn’t appeal to them. He may learn formulas by
heart, but will never be convinced by them. An example of well-understood mathematical aesthetics are
Maxwell’s equations, which are commonly presented not in their original form or in tensor or matrix notation,
but in Heaviside operator notation. Thanks to differential operators, they are the most elegant, i.e. simple,
aesthetic, and most importantly – imaginable notation. Aesthetics, a seemingly irrational concept, is of great
importance in mathematics. Richard Feynman, discussing Maxwell’s equations in his Lectures, repeatedly
admired their mathematical beauty. Symmetry has always been associated with the natural order and beauty of
nature. It was probably such a sense of aesthetics that prompted Dirac to search for a magnetic monopole. He
was not the only one to look for the elements missing to the symmetry of the equations in the theory of
electromagnetism. It has come to the point that when browsing contemporary theoretical literature, one can
get the impression that magnetic charges exist not only in literature but also in nature. Many recognized
textbooks on the theory of electricity, such as Classical Electrodynamics by J.D. Jackson, have chapters on this
topic. And although these theoretical considerations date back well over half a century, and research
possibilities have changed significantly during this time, no magnetic charge has been detected. So far it is
known that the magnetic field is generated by moving electric charges.

The scope of the issues raised

The Special Theory of Relativity originated from the study of electric field equations, therefore the content
of this monograph largely applies to this branch of physics. The idea of this paper is to search for the possibility of
building a theory alternative to the current SR. Its leitmotif is the analysis of the field equations of moving electric
charges. The language used to describe the problems is the paravector calculus, which seems to be natural for
space-time phenomena. The properties of paravectors are similar to vectors, which helps a lot in understanding
problems and controlling calculations.

The presented reflections are consistent with the assumptions and the direction chosen by the authors
of the current STR, and yet the results differ from the textbook knowledge. Why? The creators of STR, apart
from the famous two Einstein’s postulates, informally made one more assumption, which affected the direction
in which the theory developed. This assumption is: Space-time is a real structure (in terms of real numbers),
so they only found such transformations that work inside real space-time. A long time ago, the author found
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a different transformation that meets the postulates, but requires complex space-time. An investigation of the
properties of this transformation, which is an equivalent to the Lorentz transformation, showed that it is much
more elegant than LT. A question arises: Could space-time be more compound than we think? Today, after years
of work, I can say with certainty that this is indeed the case, of which I will try to convince the reader.

In our study, we talk about physical and mathematical concepts. Simply put, physical concepts include
those that can be measured. The others can only be classified as mathematical concepts. Of fundamental
importance in the adopted reasoning is the separation of the concepts of time into time, which is the fourth
dimension of the mathematical structure of space-time, which can be called prototime, and the proper time of
a physical object, which is directed into the future and is discrete. For this reason, time intervals and
space-time intervals will appear in the formulas. Discrete time is closer to the natural sense of time measured
by the ticking of a clock. We will see that despite the use of complex transformations, the rectilinear motion of
an inertial object in any frame is described by equations known as the Galilean transformation. The complex
transformation as well as LT meets the correspondence principle, i.e. for non-relativistic approximations it
evolves into the Galilean transformation. We will check the invariants of the electric field theory and special
relativity, and we’ll show the compatibility and differences of the constructed theory and of the classical one. In
complex space-time, we will reduce the four Maxwell’s equations to the one in which the imaginary part of the
electric field is interpreted as a magnetic field, and the existence of a magnetic field excludes the existence of
magnetic charges. Although the presented proposal of an alternative SR is consistent with the postulates of the
classical theory, they are not equivalent. Based on the results of William Baylis we will show that the classical
Lorentz transformation is one of several variants of complex transformations’ combination.

The only information carrier is energy which is a fundamental physical concept and which is always real.
It is for this reason that energy can undergoes the classical Lorentz transformation, but in our opinion it is not,
as discussed in Chapter 10. We will make references to STR in Chapter 12 on the basis of the work of professor
William Baylis of Windsor University, Canada. His Algebra of Physical Space is very well suited to describe space-
time phenomena. The reader does not need to know it, and maybe it is even better if he does not, because then it
will be easier for him to assimilate our formalism. Finally, we will outline the idea of the mathematical structure
of space-time in which these considerations are possible.

Chapter 1 shows mathematically the origins of Lorentz transformation and explains why it is very
important to know the transformations preserving the form of the electromagnetic wave equation. The method
of checking the invariance of the wave equation under the classical Lorentz transformation is presented,
together with some critical remarks on LT. Finally a linear complex transformation is presented, which also
preserves the wave equation, and which, according to the author, is more general and mathematically much
more elegant than Lorentz transformation.

Chapters 2 and 4 provide the mathematical basis for describing physical problems. Chapter 2 presents
the language of the paravector algebra. The short Chapter 4 proves the identities with which it is possible to
quickly change formulas containing space-time differentiation operators that underwent transformations
described by paravectors. Chapter 3 prepares the reader for the problems of mathematical analysis involving
differential equations containing space-time differentiation operators, showing how clear paravector notation
of the laws of electric field theory looks. A thorough reading of these chapters is necessary to understand the
considerations presented in the further part of the monograph.

Chapter 5 is devoted to explaining the concept of a phase interval, which extends the concept of time
interval to the movement of objects in space-time. The analysis of the various examples of phase intervals in
Chapters 5 and 6 will allow the reader to intuitively imagine relativistic phenomena in complex space-time and
to understand the idea of space-time, which is not a space of points (affine space) but an interval space (vector
space).

Equipped with the knowledge obtained so far, in Chapter 7 we will return to the electric field and we will
see that Maxwell’s equations in complex space-time require the removal of the current density (Ampere’s law)
from them, which was postulated during J.C.Maxwell’s lifetime.

Chapter 8 hypothesizes on why we see the world as real despite the fact that the simplicity of the complex
notation indicates that it is more compound. A transformation interpreted as a projection of phenomena from
the complex space-time onto the real space-time of the observer, which we called realisation, is shown. This
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transformation is based on the hypothesis that energy is real in any frame of reference, and the only information
carrier in nature is energy.

In Chapter 9 the basic issues of electric field theory after modifying Maxwell’s equations are examined
and it is shown there that despite this correction, the paravector equations still describe the electric field well.

In Chapter 10, we return to the geometric issues. By examining the relation between three objects, we
find a relation corresponding to the metric, which allows us to specify the structure of complex space-time. We
postulate that the metric is not a property of geometric space, but concerns only physical objects. We present
the covariant equation of the motion of a charged particle in an electric field, and finally we show that complex
space-time does not contradict the current relativistic theoretical mechanics or quantum mechanics.

Chapter 11 organizes the results obtained in the previous chapters to outline the structure of complex
space-time.

Side-stories that the reader will surely come across, and whose explanation will facilitate understanding
of the idea of complex space-time, are discussed in the appendices.

Assumptions valid throughout the monograph and notes that the reader
should bear in mind when s/he has trouble locating considerations in the
structure of space-time

To simplify the calculations, the following assumptions are made:

1. Physical issues are dealt with in a vacuum

2. The discussed problems concern inertial systems only

3. Prototime is continious, but a proper time of the physical object is a discrete quantity2

4. To simplify the formulas involving the elimination of the physical constants present in Maxwell’s equations,
it is assumed that the formulas are written in the natural system of Planck units, i.e.:

- permittivity ε0 and permeability µ0 of free space are equal to 1.

- velocities are dimensionless quantities and their values are relative to the speed of light. The modulus
of the velocity of light vector is equal to 1, i.e. the change of formulas from natural units to SI units
occurs by conversion:

Table 1: Symbol replacement table
Natural units system SI units system

velocity v v/c
time t ct
mass m mc2

momentum p cp
charge density ρ ρ

p
ε0

current density j j/
p
ε0

scalar potential ϕ ϕ/
p
ε0

vector potential A A/pµ0

electric field intensity E E
p
ε0

magnetic field induction B B/pµ0

paravector of light speed (1, c), where |c|= 1 (c, c)

2A brief explanation is given in Appendix 1
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In cases where we will check what the obtained formula looks like for non-relativistic velocity (checking
the correspondence rule), we will change the units system to SI.

5. Throughout the work, efforts were made to follow the rule that real quantities (numbers, vectors,
paravectors) are marked with Roman letters, and complex ones with Greek letters. This does not apply to
physical quantities marked with letters commonly used in the literature.

From the author

While developing this monograph, a plan I adopted that the mathematical structure of physical
space-time would be shown at the end as a natural effect of the presented arguments. Perhaps the
mathematical considerations would be simpler if I started with presenting the conditions that complex
space-time meets, because it would be clear to the reader in which field he is located, but showing the structure
of space-time at the beginning would give the impression that artificial assumptions have been made, which
the reader would have the right not to trust. The discussions that I conducted electronically with Professor
Zbigniew Oziewicz showed that preliminary remarks are necessary to emphasize that the considerations are
not conducted in affine space-time (space of places) but in the space of motion, i.e. in the vector space. This is
due to the assumption of the quantum nature of time. Although the real space of places (without time) is affine
(points), the movement in this space does not take place continuously, which is conditioned by the advancing
progress of time. This assumption is consistent with the methodology of time measurement and cannot be
experimentally denied, to the contrary: it is impossible to prove that time runs continuously. Vector space-time
makes it easy to assign imaginary components to real vectors, which cannot be done with the coordinates of
points. The assumption that time is a discrete quantity is the same as saying that the basic concept is the while.
Each longer distance of time is called an interval. The while is the shortest interval. An interval starts at one
moment and ends at another, so like in geometry, an interval is an ordered pair of moments, but it is the
intervals that define the moments, not the other way around. So it is better to define the moment like this: In
the moment one interval ends and another begins. The reader should remember about this philosophical
assumption while studying this monograph.

I hope that the reader will be interested in a different view on the electric field theory, on special
relativity and, above all, on space-time. I would also like to draw the attention of the reader to a useful and
simple mathematical apparatus designed to describe them. I think that the presented theory is already
developed enough to inspire an inquisitive reader to work on its verification and further expansion. I ask the
orthodox followers of the classical SR to treat the book as a curiosity or a mathematical game, while I would like
to support the doubters and show them the directions of possible research. To both, I would like to remind that
science is not a religion, and doubt is not a sin.

Please send your opinions, comments and all correspondence to: c4spacetime@gmail.com
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Chapter 1

Invariance of the wave equation

In this chapter, the importance of transformations preserving the invariance of physics laws is
presented. Invariance of the wave equation with respect to the Lorentz transformation is checked. A
complex linear transformation is presented, which does not belong to the Lorentz group but which
also preserves the invariance of the wave equations system.

Most of the laws of physics are described by differential equations. In the mathematical sense, the
universality of the laws of physics means the equations representing these laws are invariant, regardless of the
system in which they are written. The main issue is to find transformations that preserve the mathematical
formula of the law under analysis. An electromagnetic wave observed from any frame of reference is always an
electromagnetic wave, so it should always have a similar formula. The electromagnetic wave in a vacuum is
described by a homogeneous wave equation.

∂ 2ϕ (t , x)
c 2∂ t 2

−∇2ϕ (t , x) = 0 (1.1)

Since d’Alembert it is known that the most general solution to this equation has the following form

ϕ(t , x) = f (x− ct ) + g (x+ ct ) (1.2)

where f and g are any double differentiable functions and the vector c is interpreted as the wave velocity. We
can see that if we find a transformation of (t , x)→ (t ′, x′) that does not change the form of the wave equation,
neither will it change the speed of the wave, so it will meet the demand for a constant speed of light.

Maxwell’s equations transferred to potentials using Lorenz gauge condition make up a system of wave
equations

∂ 2ϕ (t , x)
c 2∂ t 2

−∇2ϕ (t , x) =
ρ (t , x)
ε0

(1.3)

∂ 2A (t , x)
c 2∂ t 2

−∇2A (t , x) =
j (t , x)
ε0c 2

One of the transformations that preserves invariance of this system of equations is the Lorentz transformation.
While in a one-dimensional space where the Lorentz transformation takes the form of

t ′ =
t − v x/c 2

p

1− (v /c )2
, x ′ =

x − v t
p

1− (v /c )2
(1.4)

the proof is obvious, in the three-dimensional space it seems that it was a bit stretched. One has the impression
that the 1-dimensional transformation ’forcibly’ fits into the 3-dimensional space, and the vector formula (Fock)

t ′ =
t −vx/c 2

p

1− (v /c )2
, x′ = x−v

�

xv

v 2

�

1−
1
p

1− (v /c )2

�

+
t
p

1− (v /c )2

�

(1.5)
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is not very elegant.

Although most textbooks in the STR chapters talk about the invariance of the wave equation, or the
covariance of the Maxwell’s equations with respect to the Lorentz transformation, they rarely prove this,
although it is essential. A proof made using tensor calculus can be found in W.A.Ugarow’s textbook [19]. Since
the manipulation of tensor indexes is not convincing enough for everyone, we will check it using the rules of
well known differentiation calculus. Without losing generality, we assume that c = 1, which we get when we
write the physical formulas in the natural units system. In this system, the one-dimensional Lorentz
transformation takes the form of

t ′ =
t − v x
p

1− v 2
, x ′ =

x − v t
p

1− v 2
(1.6)

1.1 Proof of invariance of the wave equation under the Lorentz
transformation

1.1.1 One-dimensional space

We start from the simplest case, i.e. the wave equation in 1-dimensional space:

∂ 2 f (t , x )
∂ t 2

−
∂ 2 f (t , x )
∂ x 2

= 0, (1.7)

where f is a double-differentiable function. In the above equation, we will replace the unprimed arguments with
primed ones, according to the equations (1.6) and we expect that by going to the primed frame we should get the
equations in the form of:

∂ 2 f ′

∂ t ′2
−
∂ 2 f ′

∂ x ′2
= 0, (1.8)

where prime denotes a function with the same values as the f function, but on primed arguments f ′ = f (t ′, x ′).

Proof.

By differentiating (1.6) over time, we get

∂ t ′

∂ t
=

1
p

1− v 2
,

∂ x ′

∂ t
=−

v
p

1− v 2

which, substituted into the formula for partial derivatives of a compound function

∂ ϕ′

∂ t
=
∂ ϕ′

∂ t ′
∂ t ′

∂ t
+
∂ ϕ′

∂ x ′
∂ x ′

∂ t

gives
∂ f ′

∂ t
=
∂ f ′

∂ t ′
1

p
1− v 2

−
∂ f ′

∂ x ′
v

p
1− v 2

.

By differentiating again for t we get:

∂ 2 f ′

∂ t 2
=

1
p

1− v 2

∂

∂ t

�

∂ f ′

∂ t ′
− v
∂ f ′

∂ x ′

�

=

=
1

p
1− v 2

�

∂ 2 f ′
∂ t ′2

∂ t ′

∂ t
+
∂ 2 f ′

∂ t ′∂ x ′
∂ x ′

∂ t
− v

∂ 2 f ′

∂ x ′∂ t ′
∂ t ′

∂ t
− v
∂ 2 f ′

∂ x ′2
∂ x ′

∂ t

�

=

=
1

1− v 2

�

∂ 2 f ′
∂ t ′2
− v

∂ 2 f ′

∂ t ′∂ x ′
− v

∂ 2 f ′

∂ x ′∂ t ′
+ v 2 ∂

2 f ′

∂ x ′2

�

=

=
1

1− v 2

�

∂ 2 f ′

∂ t ′2
−2v

∂ 2 f ′

∂ t ′∂ x ′
+ v 2 ∂

2 f ′

∂ x ′2

�
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By differentiating (1.6) for x we get:

∂ t ′

∂ x
=−

v
p

1− v 2
,

∂ x ′

∂ x
=

1
p

1− v 2

By acting in an analogous way, we get:

∂ ϕ′

∂ x
=
∂ ϕ′

∂ x ′
∂ x ′

∂ x
+
∂ ϕ′

∂ t ′
∂ t ′

∂ x
=

1
p

1− v 2

�

∂ ϕ′

∂ x ′
− v
∂ ϕ′

∂ t ′

�

,

hence the second derivative is:

∂ 2 f ′

∂ x 2
=

1
p

1− v 2

∂

∂ x

�

∂ f ′

∂ x ′
− v
∂ f ′

∂ t ′

�

=

=
1

p
1− v 2

�

∂ 2 f ′
∂ x ′2

∂ x ′

∂ x
+
∂ 2 f ′

∂ t ′∂ x ′
∂ t ′

∂ x
− v

∂ 2 f ′

∂ x ′∂ t ′
∂ x ′

∂ x
− v
∂ 2 f ′

∂ t ′2
∂ t ′

∂ x

�

=

=
1

1− v 2

�

∂ 2 f ′
∂ x ′2
− v

∂ 2 f ′

∂ x ′∂ t ′
− v

∂ 2 f ′

∂ t ′∂ x ′
+ v 2 ∂

2 f ′

∂ t ′2

�

=

=
1

1− v 2

�

∂ 2 f ′

∂ x ′2
−2v

∂ 2 f ′

∂ t ′∂ x ′
+ v 2 ∂

2 f ′

∂ t ′2

�

.

After subtracting the second derivatives from both sides, we get

∂ 2 f ′

∂ t 2
−
∂ 2 f ′

∂ x 2
=
∂ 2 f ′

∂ t ′2
−
∂ 2 f ′

∂ x ′2
,

which means that if we convert the coordinates according to the formulas of the one-dimensional Lorentz
transformation, the form of the wave equation does not change which was to be proved.

1.1.2 Three-dimensional space

At the beginning, the simplest case was selected for calculations, where the velocity vector is parallel to
the X axis. In this case the proof of invariance of the wave equation was obtained, so we decided to check it for
any velocity direction. For this purpose, a vector transformation was selected which, according to the literature
[17] [19], has the form

t ′ =
t −vx
p

1− v 2
, x′ = x−v
�

xv

v 2

�

1−
1

p
1− v 2

�

+
t

p
1− v 2

�

, (1.9)

where v 2 = v 2
x + v 2

y + v 2
z . In this case, the proof also came out OK, although it was very laborious.

For the general case, Ugarow [19] derives invariance of d’Alembertian from 4-divergence invariance,
which in turn he proves using tensor calculus. Since for the velocity v = (v, 0, 0) the proof of 4-divergence
invariance is not laborious, it was checked in the same way as above and we got the result:

∂ A = ∂ ′A′, when A transforms like a 4-vector,

which means that the 4-divergence of the 4-vector field is invariant.

Everything looks fine. An electromagnetic wave in any frame is an electromagnetic wave, so it must be
described by a similar equation. In the tensor notation it looks even more simple and aesthetic.

For x ′α = aβα xβ , ∂ α∂αAβ = 0 ⇒ ∂ ′α∂ ′αA′β = 0 (1.10)

However, unlike vector notation, tensor formulas are completely unintuitive, as they do not show the difference
between the quantities behind the indexes. And yet, time and space have completely different physical
properties because time is constantly moving forward, while in space one can stand still or, for example, return
home after work.
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1.2 Complex relativistic transformation

By analysing a system of wave equations

∂ 2ϕ (t , x)
∂ t 2

−∇2ϕ (t , x) = 0 (1.11)

∂ 2A (t , x)
∂ t 2

−∇2A (t , x) = 0

one can check that it is invariant under the transformation:

t ′ =
t +vx
p

1− v 2
, x′ =

x+vt ± i v×x
p

1− v 2
, (1.12)

where i =
p
−1, and v 2 = vv= v 2

x + v 2
y + v 2

z .

Note that in a special 1-dimensional case (in the spatial sense), this transformation is equivalent to the
1-dimensional Lorentz transformation.

We will prove the invariance of the wave equation system in the same way as before.

Proof. In the equation (1.11), we convert non-primed arguments to primed ones according to (1.12)

∂ 2ϕ′

∂ t 2
−
∂ 2ϕ′

∂ x 2
−
∂ 2ϕ′

∂ y 2
−
∂ 2ϕ′

∂ z 2
= 0,

where, as before,ϕ′ andρ′mean the same scalar functions on primed arguments (ϕ′ =ϕ(t ′, x′) andρ′ =ρ(t ′, x′)),
and ϕ is a double-differentiable function.

We obtain:

∂ 2ϕ′

∂ t 2
=

1
p

1− v 2

∂

∂ t

�

∂ ϕ′

∂ t ′
+v∇′ϕ′
�

=
1

1− v 2

�

∂ 2ϕ′

∂ t ′2
+ v 2

x

∂ 2ϕ′

∂ x ′2
+ v 2

y

∂ 2ϕ′

∂ y ′2
+ v 2

z

∂ 2ϕ′

∂ z ′2

�

+

+
2

1− v 2

�

vx vy
∂ 2ϕ′

∂ x ′∂ y ′
+ vx vz

∂ 2ϕ′

∂ x ′∂ z ′
+ vy vz

∂ 2ϕ′

∂ y ′∂ z ′
+ vx

∂ 2ϕ′

∂ t ′∂ x ′
+ vy

∂ 2ϕ′

∂ t ′∂ y ′
+ vz

∂ 2ϕ′

∂ t ′∂ z ′

�

∂ 2ϕ′

∂ x 2
=

1
p

1− v 2

∂

∂ x

�

vx
∂ ϕ′

∂ t ′
+
∂ ϕ′

∂ x ′
+ i vz

∂ ϕ′

∂ y ′
− i vy

∂ ϕ′

∂ z ′

�

=

=
1

1− v 2

�

v 2
x

∂ 2ϕ′

∂ t ′2
+
∂ 2ϕ′

∂ x ′2
− v 2

z

∂ 2ϕ′

∂ y ′2
− v 2

y

∂ 2ϕ′

∂ z ′2

�

+
2

1− v 2

�

vx
∂ 2ϕ′

∂ t ′∂ x ′
+ vy vz

∂ 2ϕ′

∂ y ′∂ z ′

�

+

+
2i

1− v 2

�

vx vz
∂ 2ϕ′

∂ t ′∂ y ′
− vx vy

∂ 2ϕ′

∂ t ′∂ z ′
+ vz

∂ 2ϕ′

∂ x ′∂ y ′
− vy

∂ 2ϕ′

∂ x ′∂ z ′

�

∂ 2ϕ′

∂ y 2
=

1

1− v 2

�

v 2
y

∂ 2ϕ′

∂ t ′2
+
∂ 2ϕ′

∂ y ′2
− v 2

z

∂ 2ϕ′

∂ x ′2
− v 2

x

∂ 2ϕ′

∂ z ′2

�

+
2

1− v 2

�

vy
∂ 2ϕ′

∂ t ′y x ′
+ vx vz

∂ 2ϕ′

∂ x ′∂ z ′

�

+

+
2i

1− v 2

�

vx vy
∂ 2ϕ′

∂ t ′∂ z ′
− vz vy

∂ 2ϕ′

∂ t ′∂ x ′
+ vx

∂ 2ϕ′

∂ z ′∂ y ′
− vz

∂ 2ϕ′

∂ x ′∂ y ′

�

∂ 2ϕ′

∂ z 2
=

1

1− v 2

�

v 2
z

∂ 2ϕ′

∂ t ′2
+
∂ 2ϕ′

∂ z ′2
− v 2

y

∂ 2ϕ′

∂ x ′2
− v 2

x

∂ 2ϕ′

∂ y ′2

�

+
2

1− v 2

�

vz
∂ 2ϕ′

∂ t ′∂ z ′
+ vx vy

∂ 2ϕ′

∂ x ′∂ y ′

�

+

+
2i

1− v 2

�

vz vy
∂ 2ϕ′

∂ t ′∂ x ′
− vx vz

∂ 2ϕ′

∂ t ′∂ y ′
+ vy

∂ 2ϕ′

∂ z ′∂ x ′
− vx

∂ 2ϕ′

∂ z ′∂ y ′

�

By subtracting the above equations from both sides, we get the result:

∂ 2ϕ′

∂ t 2
−
∂ 2ϕ′

∂ x 2
−
∂ 2ϕ′

∂ y 2
−
∂ 2ϕ′

∂ z 2
=
∂ 2ϕ′

∂ t ′2
−
∂ 2ϕ′

∂ x ′2
−
∂ 2ϕ′

∂ y ′2
−
∂ 2ϕ′

∂ z ′2

We act similarly, for each of the components of the vector function A (t , x) .
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The reader may be surprised at first by the fact that although the transformation is described by
a complex equation, we differentiate using the rules of the calculus of real functions. In our case, however, we
not only can, but we must do this, because with constant transformation parameters (the assumption about
inertial frames) the transformation of {X }o n−→{X }′ should be mutually unique. The sets {X } ⊂ R 4 and {X ′} are
contained in some subset of the set C 4, about which we know nothing yet. Nevertheless, we will conduct
further research to determine the set that is the domain we are looking for, which is space-time. If
a contradiction is encountered, the result will also have cognitive value, as it will confirm that there is no other
model than the classical SR.

The equation (1.12) can be written using a slightly modified notation used in [1]- [3] as follows:

�

t ′

x′

�

=
1

p
1− v 2

�

1
v

��

t
x

�

=
1

p
1− v 2

�

t +vx
x+vt + i v×x

�

(1.13)

The expressions in parentheses are matrices that are paravectors, but this is discussed in the next chapter, which
is the key to understanding our idea.
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Chapter 2

Algebra of paravectors

Presented here is the basic information about paravectors, their algebraic structure and geometric
properties. The structure of the ring makes paravectors similar to numbers, but after introducing the
concept of an integrated product, paravectors obtain geometrical properties and become similar to
vectors. The concepts of parallelism, perpendicularity and angles between paravectors look the same
as their vector equivalents known from the Euclidean geometry. The concept of a paravector
determinant, which is a complex number, is introduced. Due to the properties of the determinant,
paravectors are divided into three groups. The matrix representation of the paravectors has been
presented, thanks to which many properties become obvious and do not require any proofs.
Particular attention is paid to showing the similarity of the geometrical properties of the paravectors
to vectors in the Euclidean geometry.

The reader who has had contact with Clifford Algebras, W. Baylis’ Physical Space Algebra, D. Hestenes’
Geometric Algebra or Grassmann Algebra, should read Appendix 2, which explains the relationship between our
formalism and some formalisms that are used by other authors.

2.1 Basic definitions

Definition 2.1.1. The term paravector means a pair consisting of a complex number (α) and a vector (βββ )
belonging to a three-dimensional complex space.

Γ =:

�

α
βββ

�

=

�

a + i d
b+ i c

�

(2.1)

The number is called a scalar. Paravectors will be denoted with capital letters, e.g.: A, X ,Γ . Greek letters will
mean a complex size, and Roman letters - a real one. We will use column notation to separate the scalar part
from the vector part of the paravector. Sometimes the scalar component of paravector Γ will be denoted with
index ’S’, and the vector component with ’V’, i.e.: ΓS =α and ΓV =βββ .

Definition 2.1.2. A reversed element of paravector (2.1) is the paravector

Γ− =:

�

a + i d
−b−i c

�

Definition 2.1.3. A conjugated element of paravector (2.1) is the paravector

Γ ∗ =:

�

a − i d
b−i c

�
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Definition 2.1.4. of summation:
�

α1

βββ 1

�

+

�

α2

βββ 2

�

=:

�

α1+α2

βββ 1+βββ 2

�

Conclusion 2.1.1. A neutral element under addition (null element) is the paravector

�

0
0

�

Definition 2.1.5. An opposite element of paravector (2.1) with respect to the addition is

−Γ =:

�

−α
−βββ

�

Definition 2.1.6. of the multiplication:

�

α1

βββ 1

��

α2

βββ 2

�

=:

�

α1α2+βββ 1βββ 2

α2βββ 1+α1βββ 2+ iβββ 1×βββ 2

�

where βββ 1βββ 2 is a dot product, and βββ 1×βββ 2 is a cross product of vectors.

Conclusion 2.1.2. A neutral element under multiplication is the paravector

�

1
0

�

Note: There is no difference whether we write number α or paravector

�

α
0

�

.

Conclusion 2.1.3. The operation of multiplication is associative but not commutative, because the vector
product is non-commutative.

Note: Paravectors have the same structure as complex quaternions (biquaternions), they only differ in their
multiplication. In the vector part of the quaternions product, there is no imaginary one i at the vector product,
so the biquaternion multiplication is not associative unlike the paravector multiplication.

Definition 2.1.7. We call an outcome of multiplication of any paravector Γ by the element conjugate Γ ∗ the vigor
of paravector:

vigΓ := Γ Γ ∗

Conclusion 2.1.4. To each paravector we can assign a vigor which is a real paravector and its scalar component
is a positive number.

Proof.

Γ Γ ∗ =

�

α
βββ

��

α∗

β ∗β ∗β ∗

�

=

�

αα∗+ββββββ ∗

αβββ ∗+α∗βββ + iβββ ×βββ ∗

�

=

=

�

(a + i d )(a − i d ) + (b+ i c)(b− i c)
(a + i d )(b− i c) + (a − i d )(b+ i c) + i (b+ i c)× (b− i c)

�

=

�

a 2+ b 2+ c 2+d 2

+2(a b+d c+b× c)

�

Definition 2.1.8. We call an outcome of multiplication of any paravector Γ by the reverse element Γ− the
determinant of a paravector

detΓ := Γ Γ− = Γ−Γ

Conclusion 2.1.5. Each paravector has a determinant which is a complex number.

22



Proof.

Γ Γ− =

�

α
βββ

��

α
−βββ

�

=

�

α2−β 2

αβββ −αβββ − iβββ ×βββ

�

=

�

(a + i d )2− (b+ i c)2

0

�

=

�

a 2− b 2+ c 2−d 2+2i (a d −bc)
0

�

Conclusion 2.1.6. The reversion and conjugation have the following properties:

Reversion Conjugation

1 (Γ−)− = Γ (Γ ∗)∗ = Γ
2 (Γ +Ψ)− = Γ−+Ψ− (Γ +Ψ)∗ = Γ ∗+Ψ∗

3 (ΓΨ)− =Ψ−Γ− (ΓΨ)∗ =Ψ∗Γ ∗

4 Γ Γ− ∈C Γ Γ ∗ ∈R+×R 3

5 (Γ−)∗ = (Γ ∗)−

Conclusion 2.1.7. A set of pravectors together with an operation of summation forms an Abelian group, and with
multiplication forms a semigroup. Therefore, we can conclude that a set of paravectors together with operations
of summation and multiplication gives a ring with multiplicative identity.

Definition 2.1.9. We call the paravector Γ proper if detΓ ∈R+ \ {0} (the determinant is a positive real number).

Definition 2.1.10. We call the paravector Γ singular if detΓ = 0.

By definition of the determinant it follows:

Conclusion 2.1.8. Each proper or singular paravector (2.1) must fulfil the following condition:

a d = bc

Note: It is advisable to remember the above equation, because it will be used in many proofs.

Conclusion 2.1.9. Let Γ1, Γ2 be paravectors, then the following statements are true:

• det(Γ1Γ2) = detΓ1 detΓ2

• detΓ− = detΓ

• detΓ ∗ = (detΓ )∗

Definition 2.1.11. For each non-singular paravector Γ , there exists an inverse element under multiplication:

Γ−1 :=
Γ−

detΓ

Conclusion 2.1.10. A set of non-singular paravectors together with multiplication is a non-commutative group.

Conclusion 2.1.11. A set of proper paravectors together with multiplication is a non-commutative group.

Definition 2.1.12. For each proper and/or singular paravector we define a module of paravector:

|Γ | :=
p

detΓ

Conclusion 2.1.12. The module of paravector (proper or singular) satisfies the following conditions:

1. |s Γ |= |s | |Γ | where s ∈R
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2. |Γ1| |Γ2|= |Γ1Γ2|

Definition 2.1.13. We call the paravector Λ orthogonal if detΛ= 1, or equivalently:

Λ :=
Γ
p

detΓ
, where Γ is a proper paravector

Directly from the above definition it follows:

Conclusion 2.1.13. If Λ is an orthogonal paravector, then

Λ−1 =Λ−

Definition 2.1.14. We call the paravector Γ special if Γ− = Γ ∗, or equivalently:

Γ =

�

a
i c

�

, where a ∈R , and c ∈R 3

Definition 2.1.15. We call the paravector Γ unitary if Γ Γ ∗ = 1

To summarize the current knowledge about paravectors, we can say that very little is missing so that a set
of paravectors with summation and multiplication operations becomes a field: multiplication of paravectors
is not commutative, and the role of the null element under multiplication is played by singular paravectors.
Multiplying any paravector by a singular one, we get a singular paravector. Note that although there are many
null elements under multiplication, only one element is neutral with respect to summation.

Conclusion 2.1.14. The set of special paravectors together with operations summation and multiplication is
a division ring.

Figure 2.1: The ring of paravectors with some substructures

The black point means zero, and the blue point is one.

A set of proper paravectors together with multiplication is a noncommutative group.
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A set of orthogonal paravectors together with multiplication is a subgroup of a proper paravectors group.

Note: To avoid misunderstandings, we specify the following names which we will use:

Γ− - The paravector reverse of Γ

Γ−1 - The paravector inverse of Γ

2.2 Integrated product of two paravectors

Synge [18] defines the scalar product of complex quaternions as
�

Γ1Γ
−
2 + Γ2Γ

−
1

�

/2, Hestenes [11] as a scalar

part of the product of multivectors Γ1Γ2. Baylis [6] defines the scalar product of paravectors as



p q̄
�

S
= (p q̄ +

q p̄ )/2. Analysing the expression Γ1Γ
−
2 , we can see that it plays a similar but more universal role in the paravectors

algebra as the dot product in vector space. Properties of its scalar component are the generalised properties of
the scalar product of vectors, and its vector part corresponds to the cross product of vectors. The trouble is that
there can be two different products which have the same properties (the second one is Γ−1 Γ2), so we define two
integrated products:

Definition 2.2.1. A right integrated product of paravectors we call an expression

(Γ1,Γ2〉 := Γ1Γ−2

or (Γ1,Γ2〉= Γ1Γ−2 =
�

α1

βββ 1

��

α2

−βββ 2

�

=

�

α1α2−βββ 1βββ 2

−α1βββ 2+α2βββ 1− iβββ 1×βββ 2

�

(2.2)

Definition 2.2.2. A left integrated product of paravectors we call an expression

〈Γ1,Γ2) := Γ
−
1 Γ2

or 〈Γ1,Γ2) = Γ
−
1 Γ2 =

�

α1

−βββ 1

��

α2

βββ 2

�

=

�

α1α2−βββ 1βββ 2

α1βββ 2−α2βββ 1− iβββ 1×βββ 2

�

(2.3)

In both cases, the scalar part is the same, therefore

Definition 2.2.3. The scalar component of an integrated product of paravectors Γ1 and Γ2 is called a scalar
product of paravectors. The scalar product will be denoted 〈Γ1,Γ2〉, which is equivalent to 〈Γ1,Γ2)S or (Γ1,Γ2〉S .

Definition 2.2.4. The vector component of an integrated product we call a vector product of paravectors.

It is necessary to distinguish the orientation of a vector product, like in the case of an integrated product.
Therefore, we denote

Right vector product (Γ1,Γ2}=−α1βββ 2+α2βββ 1− iβββ 1×βββ 2

Left vector product {Γ1,Γ2) =α1βββ 2−α2βββ 1− iβββ 1×βββ 2

For further considerations it is of little importance if a product is right or left, so talking about an integrated
product we will mean the right product. This could be the left product as well, but it is important to use only one
product consistently. Hence the integrated product can be denoted as follows:

(Γ1,Γ2〉=
�

〈Γ1,Γ2〉
(Γ1,Γ2}

�

(2.4)

and
det(Γ1,Γ2〉= 〈Γ1,Γ2〉2− (Γ1,Γ2}2 = detΓ1detΓ2 (2.5)

Theorem 2.2.1. An integrated product of paravectors has the following properties:
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Left integrated product Right integrated product

1 Integrated product is a paravector
2 〈Γ1+ Γ2,Γ3) = 〈Γ1,Γ3) + 〈Γ2,Γ3) (Γ1+ Γ2,Γ3〉= (Γ1,Γ3〉+ (Γ2,Γ3〉
3 〈αΓ1,Γ2) =α 〈Γ1,Γ2) = 〈Γ1,αΓ2) (αΓ1,Γ2〉=α (Γ1,Γ2〉= (Γ1,αΓ2〉
4 〈Γ1,Γ2)

− = 〈Γ2,Γ1) (Γ1,Γ2〉− = (Γ2,Γ1〉
5 〈Γ ,Γ ) = (Γ ,Γ 〉= detΓ ∈C
6 det 〈Γ1,Γ2) = det (Γ1,Γ2〉= detΓ1 detΓ2

Conclusion 2.2.1. Let Γ1,Γ2 and Γ3 be any paravectors, then the following table shows the properties of the scalar
product of paravectors compared to the properties of the scalar product of vectors in Euclidean space:

Scalar product of paravectors Scalar product of vectors

1 〈Γ1,Γ2〉 ∈C 〈x1, x2〉 ∈R
2 〈Γ1+ Γ2,Γ3〉= 〈Γ1,Γ3〉+ 〈Γ2,Γ3〉 same
3 〈αΓ1,Γ2〉=α 〈Γ1,Γ2〉= 〈Γ1,αΓ2〉 same
4 〈Γ1,Γ2〉= 〈Γ2,Γ1〉 same
5 〈Γ ,Γ 〉 ∈C 〈x, x〉 ∈R+
6 If 〈Γ ,Γ 〉= 0, then Γ is singular If 〈x, x〉= 0, then x= 0

Rows 5 and 6 of Table 2.1 show a fundamental difference between the definition of the scalar product
of paravectors and known algebraic definitions. These properties made me consider giving another name to
a scalar product. However, the traditional name remained, because:

1. the value of the product is a scalar,

2. the role which the scalar product plays in the Paravector Algebra corresponds completely to the role of the
dot product of vectors in Euclidean Geometry,

3. for spatial proper/singular paravectors (ΓS = 0 and detΓ ≥ 0), the scalar product of paravectors becomes
the scalar product of vectors.

Theorem 2.2.2. For any two paravectors it is true that (Γ1,Γ2〉∗ =



Γ ∗1 ,Γ ∗2
�−

Proof. (Γ1,Γ2〉∗ = (Γ1,Γ−2 )
∗ = Γ−∗2 Γ

∗
1 =
�

Γ−∗1 ,Γ ∗2
�−
=



Γ ∗1 ,Γ ∗2
�−

2.3 Geometrical properties of paravectors

When studying an integrated product of paravectors, anyone can see a close similarity between
paravectors and vectors in Euclidean space. Using an integrated product we introduce geometric concepts into
the algebra of paravectors, which contributes to its intuitive understanding.

2.3.1 Parallelism and perpendicularity relations

Definition 2.3.1. Non-singular paravectors Γ1 and Γ2 are parallel (Γ1 ∥ Γ2) if the vector product (Γ1,Γ2}= 0.

Theorem 2.3.1. Two non-singular paravectors Γ1 and Γ2 are parallel if and only if there exists a numberλ ̸= 0 that
Γ1 =λΓ2.

Proof.

Parallelism means that Γ1Γ
−
2 =α, where α is a complex number. We multiply this equation on the right by

paravector Γ2
Γ1(Γ
−
2 Γ2) =αΓ2
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Since Γ2 is non-singular then Γ−2 Γ2 =β is a non-zero complex number. Hence we get Γ1 =λΓ2, where λ=α/β .

The above theorem shows that

Conclusion 2.3.1. The parallelism satisfies the conditions of equivalence relation.

Definition 2.3.2. Two non-singular paravectors Γ1 and Γ2 are perpendicular (Γ1 ⊥ Γ2) if the scalar product 〈Γ1,Γ2〉=
0.

The perpendicularity of paravectors has the same properties as the perpendicularity of vectors in
Euclidean space.

Theorem 2.3.2. For each non-singular paravector:

1. ∽ (Γ ⊥ Γ )

2. If Γ1 ⊥ Γ2, then Γ2 ⊥ Γ1

3. If Γ1 ⊥ Γ2 and Γ2 ∥ Γ3, then Γ1 ⊥ Γ3

Proof.

1. It follows by definition of perpendicularity.

2. It follows by the fact that the scalar product is symmetrical (〈Γ1,Γ2〉= 〈Γ2,Γ1〉 and 〈Γ1,Γ2〉= 0).

3. Γ1 ⊥ Γ2 ⇐⇒ (Γ1,Γ2〉=
�

0
ωωω

�

Γ2 ∥ Γ3 ⇐⇒ (Γ2,Γ3〉=λ,

hence (Γ1,Γ3〉= Γ1Γ−3 = Γ1Γ
−1
2 Γ2Γ

−
3 =

λ
detΓ2
Γ1Γ
−
2 =

�

0
λωωω

detΓ2

�

Conclusion 2.3.2. For each paravector

1. the scalar component is perpendicular to the spatial one,

2. a paravector is perpendicular to itself if and only if it is singular,

3. paravectors mutually reversed (inversed) are not parallel,

4. orthogonal paravectors are parallel if and only if they are equal or opposite.

Proof.

1. Let Γ =

�

α
βββ

�

and ΓS =

�

α
000

�

and ΓV =

�

0
βββ

�

, then 〈ΓS ,ΓV 〉=α ·0−000 ·βββ = 0

2. It follows by assumption and definition of the singular paravector.

3. (Γ ,Γ−〉= Γ Γ =
�

α
βββ

��

α
βββ

�

=

�

α2+β 2

2αβββ

�

4. Parallelism means that Λ1Λ
−
2 =λ, hence detΛ1 detΛ2 =λ2. Paravectors are orthogonal hence λ=±1. From

the first equality it follows that Λ1 =Λ2 or Λ1 =−Λ2.
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Conclusion 2.3.3. Let Γ1 and Γ2 be proper paravectors and Γ1 ∥ Γ2, then Γ1/|Γ1|= Γ2/|Γ2|.

Proof. From the definition of parallelism of proper paravectors it follows that their integrated product is
a number λ ̸= 0.

Γ1
|Γ1|
=

Γ1Γ
−
2 Γ2
Æ

Γ1Γ
−
1 detΓ2

=
λ
Æ

Γ1Γ
−
1 Γ2Γ

−
2

Γ2
|Γ2|
=

λ
Æ

Γ1λΓ
−
2

Γ2
|Γ2|
=
λ
p
λ2

Γ2
|Γ2|
=
Γ2
|Γ2|

Theorem 2.3.3. For any non-singular paravectors Γ1 and Γ2 it occurs that:

1. If Γ1 ⊥ Γ2, then Γ ∗1 ⊥ Γ
∗
2

2. If Γ1 ∥ Γ2, then Γ ∗1 ∥ Γ
∗
2

3. If Γ1 ∥ Γ2, then vigΓ1 ∥ vigΓ2

Proof.

1. 〈Γ1,Γ2〉= 0 =⇒ 〈Γ2,Γ1〉= 0, so



Γ ∗1 ,Γ ∗2
�

= 〈Γ2,Γ1〉∗ = 0

2. (

�

α1

βββ 1

��

α2

−βββ 2

�

)V =−α1βββ 2+α2βββ 1− iβββ 1×βββ 2 = 0

Since complex vectors are governed by the same laws as real ones, so it must be:

α2βββ 1−α1βββ 2 =000 and βββ 1×βββ 2 = 0

On the other hand, we have
�

Γ ∗1 ,Γ ∗2
�

= 〈Γ2,Γ1)
∗ = (

�

α2

−βββ 2

��

α1

βββ 1

�

)∗

hence, under the assumption

(

�

α2

−βββ 2

��

α1

βββ 1

�

)V =α2βββ 1−α1βββ 2− iβββ 2×βββ 1 = 0

3.
�

Γ1Γ
∗
1 ,Γ2Γ

∗
2

�

= Γ1Γ ∗1 (Γ2Γ
∗
2 )
− = Γ1Γ ∗1 Γ

∗−
2 Γ
−
2 = Γ1(Γ

−
2 Γ1)

∗Γ−2

Under the assumption, the product in parentheses is a number, so we can move it in front of the product

λ∗ (Γ1,Γ2〉=λ∗λ

Theorem 2.3.4. For any paravectors Γ1 and Γ2 polarization identity occurs:

det(Γ1+ Γ2) = detΓ1+2 〈Γ1,Γ2〉+detΓ2

Proof.

det(Γ1+ Γ2) = (Γ1+ Γ2)(Γ1+ Γ2)− = Γ1Γ−1 + Γ1Γ
−
2 + Γ2Γ

−
1 + Γ2Γ

−
2 =

= detΓ1+ (Γ1,Γ2〉+ (Γ2,Γ1〉+detΓ2 = detΓ1+2 〈Γ1,Γ2〉+detΓ2

Conclusion 2.3.4. Let paravectors Γ1 and Γ2 be perpendicular, then the determinant of these paravectors sum
equals the sum of their determinants:

det(Γ1+ Γ2) = detΓ1+detΓ2
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This conclusion complies with the Pythagorean theorem in Euclidean geometry.

Conclusion 2.3.5. For any paravectors Γ1 and Γ2 the parallelogram law occurs:

det (Γ1+ Γ2) +det (Γ1− Γ2) = 2detΓ1+2detΓ2

The parallelogram identity gives the structure we are building the character of a metric space.

Definition 2.3.3. Two paravectors

�

α1

βββ 1

�

and

�

α2

βββ 2

�

are spatially parallel if βββ 1×βββ 2 = 0

Theorem 2.3.5. If two non-singular paravectors are parallel, they are also spatially parallel.

Proof.

Γ1 ∥ Γ2 ⇐⇒ α1βββ 2−α2βββ 1− iβββ 1×βββ 2 = 0

First we multiply the above equation by α1βββ 2, and then by α2βββ 1. Hence we get two equations:
�

α1βββ 2

�2−α1α2βββ 1βββ 2 = 0

α1α2βββ 1βββ 2−
�

α2βββ 1

�2
= 0

The difference of the above equations yields
�

α1βββ 2−α2βββ 1

�2
= 0, which is true when α1βββ 2 =α2βββ 1.

Hence it follows that βββ 1×βββ 2 = 0

As a consequence, we can say that

Conclusion 2.3.6. Spatial parallelism is an equivalence relation.

Conclusion 2.3.7. The spatial parallelism of paravectors is weaker than parallelism, i.e.: If two paravectors are
parallel, they must be spatially parallel, too, but in the opposite direction, the implication does not have to occur.

Definition 2.3.4. We call two singular non-zero paravectors Γ1 and Γ2 singularly parallel if

(Γ1,Γ2〉= 0

The following conclusions are easy to prove:

Conclusion 2.3.8. .

1. If two paravectors are non-zero and singularly parallel, then they are singular.

2. Singular parallelism is an equivalence relation.

3. The set of singularly parallel paravectors is an ideal of the ring of paravectors.

2.3.2 Angles

Definition 2.3.5. The term right angle between two proper paravectors, denoted by ∠(Γ1,Γ2〉, is used for the
paravector:

Φ=∠(Γ1,Γ2〉 :=
(Γ1,Γ2〉
|Γ1| |Γ2|

:=

�

cosiΦ
dexΦ

�

,

where we call the scalar component cosinis, and the vector component – dextis of angle Φ.
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Definition 2.3.6. The term left angle between two proper paravectors is used for the paravector:

Φ=∠〈Γ1,Γ2) :=
〈Γ1,Γ2)
|Γ1| |Γ2|

:=

�

cosiΦ
siniΦ

�

,

where we call the scalar component cosinis, and the vector component – sinis of angle Φ.

These names are derived from Latin. Sinistram means left, and dextram means right.

Note - Please note that the angle components are not trigonometric (hyperbolic) functions - these are just names,
given because angle components have the same properties as the well-known trigonometric functions which
makes them easier to imagine and to remember.

In paravector space (which has not been defined yet!) as well as in Euclidean space, we should identify
a positive orientation. We don’t do this in this chapter, not to impose any restrictions. It seems that it will sooner
or later be necessary, but not now.

Definition 2.3.7. We call an angle Φ=Φ1Φ2 the composition of (left) angles Φ1 and Φ2.

Φ1Φ2 =

�

cosiΦ1

siniΦ1

��

cosiΦ2

siniΦ2

�

=

=

�

cosiΦ1cosiΦ2+ siniΦ1siniΦ2

cosiΦ1siniΦ2+ cosiΦ2siniΦ1+ i siniΦ1× siniΦ2

�

=

=

�

cosi(Φ1Φ2)
sini(Φ1Φ2)

�

=

�

cosiΦ
siniΦ

�

=Φ

We can write an analogous composition for the right angles.

As a consequence, we can see further analogy with Euclidean trigonometry:

Conclusion 2.3.9. The explement of an angle is:

∠〈Γ1,Γ2)
− =∠〈Γ2,Γ1) for the left angle

or ∠(Γ1,Γ2〉− =∠(Γ2,Γ1〉 for the right angle, (2.6)

which gives

• cosiΦ− = cosiΦ

• siniΦ− = −siniΦ

• dexΦ− = −dexΦ

The left and right angles have an opposite orientation in space and they are not explementary.

∠〈Γ1,Γ2) =
Γ−1 Γ2

|Γ1||Γ2|
, ∠(Γ1,Γ2〉=

Γ1Γ
−
2

|Γ1||Γ2|
,

hence the composition of these angles is:

∠〈Γ1,Γ2)∠(Γ1,Γ2〉=
Γ−1 Γ2Γ1Γ

−
2

det(Γ1Γ2)
̸= 1

The explement of the left angle ∠〈Γ1,Γ2) is the left angle ∠〈Γ2,Γ1), and the same occurs for the right angle.

In Table 2.3.1 there are shown the properties of left angle components in order to simply and intuitively
justify the names chosen for them. The right angle has analogous formulas.
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Tab. 2.3.1 General recurrence formulas for cosi and sini components of the left angle.

Φ - Orthogonal paravector cosiΦ ∈C and siniΦ ∈C 3

detΦ cosi2Φ - sini2Φ= 1
Doubling cosi(Φ2) = cosi2Φ + sini2Φ
the angle sini(Φ2) = 2cosiΦsiniΦ
Angles cosi(Φ1Φ2) = cosiΦ1cosiΦ2+ siniΦ1siniΦ2

composition sini(Φ1Φ2) = cosiΦ1siniΦ2+ cosiΦ2siniΦ1+ i siniΦ1× siniΦ2

Angle cosiΦ− = cosiΦ
explement siniΦ− = −siniΦ

Conclusion 2.3.10. If I m (cosiΦ) = 0 and I m (siniΦ) = 0, then the nature of angleΦ is hyperbolic. If I m (cosiΦ) = 0
and R e (siniΦ) = 0, then the nature of the angle is trigonometric, which is shown by the determinant of this angle.

2.3.3 Similarity and rotation

Definition 2.3.8. Two paravectors Γ1 and Γ2 are similar if there exists a non-singular paravector Φ, such that
ΦΓ1 = Γ2Φ. We call the paravector Φ an axis of similarity.

The similarity can be shown in another way as Γ ′ =Φ−1ΓΦ, which is how many authors define the rotation.
We would like to unequivocally associate the rotation with the angle between the rotated paravector and its image
after the turning. If the paravector Φ is improper, then it’s impossible to determine this angle. For this reason, it
was necessary to clarify the definition of rotation.

Definition 2.3.9. A similarity whose axis is a proper paravector is called the rotation.

We also need to orient the rotation in accordance with the angles, therefore we will distinguish left and
right rotations. The left rotation will take the form of Γ ′ = Φ−1ΓΦ, and the right: Γ ′ = ΦΓΦ−1. Since the paravector
Φ is proper, then the module |Φ| exists. So, we can exhibit the rotation in the following form:

Γ ′ =Λ−ΓΛ, (2.7)

where paravector Λ= Φ/|Φ| is the axis of rotation and also determines the value of rotation. The axis of rotation
in space is determined by the spatial component of paravector Λ.

The properties of rotations in the space built by us are so general that we cannot restrict them to the
rotation in Euclidean sense only. In cases where cosiΛ is a real number, and siniΛ is an imaginary vector (or

angle Λ is a special paravector), we deal with an Euclidean rotation. For the paravector Λ =

�

cosϕ
i n sinϕ

�

we have

spatial rotation by 2ϕ angle about the axis defined by vector n. Hereϕ is a traditional angle, and sine/cosine are
trigonometric functions. We can see that the paravector angle (despite the similarities) is something other than
the Euclidean angle by examining the right angle between Γ and its rotated image Γ ′ = Λ−ΓΛ. The right angle
between paravectors Γ and Γ ′ can be denoted as

∠(Γ ,Γ ′〉=
Γ (Λ−ΓΛ)−

detΓ
=
(ΓΛ−)(Γ−Λ)

detΓ
=∠(Γ ,Λ〉∠〈Γ ,Λ) (2.8)

Conclusion 2.3.11. In the complex space the angle between any proper paravector and its image after turning
is a combination of the right and left angles between this paravector and the axis of rotation paravector.

In the case when the axis of rotation is a real paravector, W. Baylis says that such a rotation is a Lorentz
transformation of the electric field.

Below we show the obvious properties of similarity:

Theorem 2.3.6. For each similar paravector:
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1. Similar paravectors must have the same scalar components. In other words, similarity is a spatial
relationship.

2. If any paravectors are spatially parallel to the axis of similarity and they are similar, then they are identical.

3. Parallel axes represent the same similarity.

4. Similarity is an equivalence relation.

Proof.

1. Φ−1ΓΦ= 1
α2−β 2

�

α
βββ

��

τ
ϖϖϖ

��

α
−βββ

�

= 1
α2−β 2

� �

α2−β 2
�

τ
�

α2−β 2
�

ϖ−ϖ−ϖ−2
�

iβββ ×ϖϖϖ+βββ ×
�

βββ ×ϖϖϖ
��

�

=

=

�

τ
ϖϖϖ− 2

(α2−β 2)
�

iβββ ×ϖϖϖ+βββ ×
�

βββ ×ϖϖϖ
��

�

2. It follows from the previous property because βββ ×ϖϖϖ= 0

3. Let Φ1 =λΦ2

1
detΦ1

Φ−1 ΓΦ1 =
1

λ2 detΦ2
λ2Φ−2 ΓΦ2 =

1
detΦ2

Φ−2 ΓΦ2

4. The proof is simple, so we leave it to the reader.

By the theorem 2.3.6 we draw the following conclusions for rotations:

Conclusion 2.3.12. For each rotated paravector:

1. Rotation does not change the scalar component. In other words, rotation is a spatial relationship.

2. Rotation does not change the paravector which is spatially parallel to the axis of this rotation.

3. Parallel axes represent the same rotation.

Using paravectors, we can easily introduce Euler angles, or the composition of angles on the planes with normal
n1 and n2

�

cosα
i n sinα

�

=

�

cosα1

i n1 sinα1

��

cosα2

i n2 sinα2

�

(|ni |= 1) (2.9)

Note: Please note that the above angles ϕ and functions have a trigonometric sense in real Euclidean space!

Any vector in the space can be denoted as a paravector

�

0
i w

�

(imaginary vector, because if it were real,

then the paravector would not have a module). The angle between two vectors w1 and w2, is

1

|w1|

�

0
−i w1

�

1

|w2|

�

0
i w2

�

=

� w1w2
|w1 ||w2 |

i w1×w2
|w1 ||w2 |

�

=

�

cos x
i n sin x

�

(2.10)

In this case we have

cosi∠〈
�

0
i w1

�

,

�

0
i w2

�

) = cos x and sini∠〈
�

0
i w1

�

,

�

0
i w2

�

) = i n sin x ,

where x is an Euclidean angle between vectors w1 and w2.
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Definition 2.3.10. Mirror symmetry with respect to the plane of normal n is called conversion such that:
�

0
i n

��

a
w

��

0
i n

�

(2.11)

Let n be a vector normal to plane N. Take any non-zero vector w. This vector can be decomposed into
a vector parallel to n and perpendicular (orthogonal projection of vector w on plane N), respectively:

n (wn) and w−n (wn) =n2w−n (wn) = (n×w)×n,

hence vector w=n (wn)+ (n×w)×n

Mirror symmetry changes the sign of the component perpendicular to the plane of symmetry (parallel to
n), but when we take a non-zero scalar, we get:

�

0
i n

��

a
w

��

0
i n

�

=

�

−a
−n (wn) + (n×w)×n

�

Hence we see that mirror symmetry is not similarity in the meaning of definition 2.3.8, because it changes the
sign of a scalar.

Mirror symmetry can be generalized to complex paravectors:

1

−ω2

�

0
ωωω

��

α
βββ

��

0
ωωω

�

=

�

−α
ω−2[−ωωω
�

βωβωβω
�

+
�

ωωω×βββ
�

×ω]ω]ω]

�

(2.12)

As was to be expected, rotation can be presented in the form of a composition of two mirror symmetries. A
paravector parallel to both planes of symmetry sets the axis of rotation.

1

ω2
1ω

2
2

�

0
ωωω2

��

0
ωωω1

��

α
βββ

��

0
ωωω1

��

0
ωωω2

�

=
1

(ωωω1ωωω2)
2+ (ωωω1×ωωω2)

2

�

ωωω1ωωω2

−iωωω1×ωωω2

��

α
βββ

��

ωωω1ωωω2

iωωω1×ωωω2

�

Axial symmetry is nothing else but a straight angle rotation around theωωω vector

1

ω2

�

0
−iωωω

��

α
βββ

��

0
iωωω

�

=

�

α
ω−2[ωωω
�

βωβωβω
�

−
�

ωωω×βββ
�

×ω]ω]ω]

�

(2.13)

From the above discussion we can see that paravectors, despite their complex construction and lack of vector
metrics, have geometrical features of vectors, so that they become imaginable.

2.4 Matrix representation of paravectors

Based on the definition of paravectors multiplication (2.1.6), the equation

X2 = ΓX1 =

�

α2

βββ 2

�

=

�

α
βββ

��

α1

βββ 1

�

(2.14)

can be described as
�

α2

βββ 2

�

=

�

αα1+ββββββ 1

αβββ 1+α1βββ + iβββ ×βββ 1

�

(2.15)

The above equation is a system of linear equations, which can be exhibited in a matrix form







α2

β2x

β2y

β2z






=







α βx βy βz

βx α −iβz iβy

βy iβz α −iβx

βz −iβy iβx α













α1

β1x

β1y

β1z






(2.16)
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Anyone can see that the above equation is equivalent to






α2 β2x β2y β2z

β2x α2 −iβ2z iβ2y

β2y iβ2z α2 −iβ2x

β2z −iβ2y iβ2x α2






=

=







α βx βy βz

βx α −iβz iβy

βy iβz α −iβx

βz −iβy iβx α













α1 β1x β1y β1z

β1x α1 −iβ1z iβ1y

β1y iβ1z α1 −iβ1x

β1z −iβ1y iβ1x α1






(2.17)

Therefore, each paravector Γ =

�

α
βββ

�

is equivalent to a matrix







α βx βy βz

βx α −iβz iβy

βy iβz α −iβx

βz −iβy iβx α






(2.18)

The determinant of the above matrix is
�

α2−β 2
�2
= (Γ Γ−)2 = (detΓ )2 , hence paravector Γ−1 = Γ−/detΓ

corresponds to the matrix inverse to the above one. Since the inverse paravector should correspond to the
transposed matrix, we were considering naming it a transposed paravector. But this transposition is not
complete because the first row and the first column are not subject to transposition:

Γ =







α βx βy βz

βx α −iβz iβy

βy iβz α −iβx

βz −iβy iβx α






Γ− =







α −βx −βy −βz

−βx α iβz −iβy

−βy −iβz α iβx

−βz iβy −iβx α






(2.19)

The geometric meaning of this paravector corresponds to the reverse direction in space, so it was decided to
leave the name: reverse paravector.

Conclusion 2.4.1. Some of the matrix counterparts:

1. A singular paravector corresponds to a singular matrix.

2. A conjugate paravector corresponds to a Hermitian conjugate matrix.

Proof. of the 2nd point.








α∗ β ∗x β ∗y β ∗z
β ∗x α∗ −iβ ∗z iβ ∗y
β ∗y iβ ∗z α∗ −iβ ∗x
β ∗z −iβ ∗y iβ ∗x α∗









=







a − i d bx − i cx by − i cy bz − i cz

bx − i cx a − i d −i bz − cz i by + cy

by − i cy i bz + cz a − i d −i bx − cx

bz − i cz −i by − cy i bx + cx a − i d






=

=







a + i d bx + i cx by + i cy bz + i cz

bx + i cx a + i d i bz − cz −i by + cy

by + i cy −i bz + cz a + i d i bx − cx

bz + i cz i by − cy −i bx + cx a + i d







∗

=

=







a + i d bx + i cx by + i cy bz + i cz

bx + i cx a + i d i (bz + i cz ) −i (by + i cy )
by + i cy −i (bz + i cz ) a + i d i (bx + i cx )
bz + i cz i (by + i cy ) −i (bx + i cx ) a + i d







∗

=

=







α βx βy βz

βx α −iβz iβy

βy iβz α −iβx

βz −iβy iβx α







∗T
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2.5 Orthogonal transformations

Definition 2.5.1. A linear transformation represented by a non-singular paravector will be called a paravector
transformation.

Definition 2.5.2. A paravector transformation is called orthogonal if it preserves the scalar product of each
paravector pair.

Conclusion 2.5.1. A paravector transformation is orthogonal if its determinant is equal to 1.

From the condition of orthogonal transformation it can be seen that its paravector must be proper
(def.2.1.9), and thus it has a module (def.2.1.12). Hence,

Conclusion 2.5.2. An orthogonal transformation is represented by paravector:

Λ=
1
p

α2−β 2

�

α
βββ

�

=
1

p
a 2− b 2+ c 2−d 2

�

a + i d
b+i c

�

(2.20)

such that a d = bc

Definition 2.5.3. A transformation which preserves determinants is called an isometric transformation.

Conclusion 2.5.3. An orthogonal transformation is isometric.

Example 2.5.1. A paravector transformation does not change the shape of a sphere.

An equation of the sphere of r radius can be written in the following way:

r 2− x 2 =

�

r
x

��

r
−x

�

=

�

r
x

��

r
x

�−

= 0 (2.21)

Since the sphere equation is the determinant of a singular paravector

�

r
x

�

, in the complex space the spherical

shape must be invariant with respect to the discussed transformation.

Theorem 2.5.1. Let Λ be a orthogonal paravector, then transformation Γ ′ =ΛΓ preserves a scalar product of the
vigors.

Proof.

By definition vigΓ = Γ Γ ∗

Let Γ ′ =ΛΓ and detΛ= 1



vigΓ ′1, vigΓ ′2
�

=
�

Γ ′1Γ
′∗
1 (Γ
′
2Γ
′∗
2 )
−
�

S
= [ΛΓ1(ΛΓ1)∗[ΛΓ2(ΛΓ2)∗]−]S =

=
�

ΛΓ1Γ
∗
1Λ
∗Λ∗−Γ ∗−2 Γ

−
2 Λ
−]S = [Λ(Γ1Γ ∗1 )(Γ2Γ

∗
2 )
−Λ−
�

S
=



vigΓ1, vigΓ2
�

which completes the proof, since based on the conclusion 2.3.12.1, a rotation does not change the scalar
component of the rotated paravector.

Conclusion 2.5.4. A paravector transformation preserves the parallelism of vigors

2.6 Discussion

During school courses physical quantities are always divided into scalars and vectors. Their natural
generalization are paravectors which have both the characteristics of integers (a ring), and the geometric
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properties of vectors. The properties of the analyzed structure of paravectors indicate that it is similar to
a unitary space, but it is not such a space, because there are such paravectors for which the norm cannot be
defined. Since paravectors together with the operation of summation form an Abelian group and there the
scalar product of paravectors is defined, we can say that paravectors form a unitary space over the complex
numbers field. However, there is a significant difference between the definition of the scalar product of
paravectors and the definitions commonly known, because the product of any paravector with itself cannot be
a real number. The conclusion is that space of paravectors is not normed, but we can define the function whose
some properties are the same as the square of the norm. This function is a determinant which fulfills the
parallelogram law and the polarization equation. Unfortunately, the determinant is not enough to introduce
the ordering relation, because its values are complex numbers, and complex numbers are not ordered. The
concept of a norm can only be entered for proper and singular paravectors (a module of paravector). The
trouble is that set of proper paravectors together with the addition operation is not a group. As can be seen, the
issue is so wide that its solution will be presented at the end of this monograph.

By exploring various properties of paravectors we have found that different groups of them have
different properties, in spite of having the same construction. Some of them act as vectors, and other as
matrices, therefore:

• Additive paravectors (i.e. coordinates or field functions), denoted in parentheses, are traditionally called
four-vectors.

X :=

�

∆t + i s
∆x+ i y

�

∈C 4 (2.22)

• Paravectors which are not additive (transformation parameters i.e. speed or rotation) are denoted in
brackets:

Γ :=

�

α
β

�

=

�

a + i d
b+ i c

�

and A =

�

a
b

�

(2.23)

Besides, we also distinguish:

• Coordinates of points in space-time, which we will denote with capital letters X or Y

X =

�

t
x

�

∈R 4 (2.24)

where x is not a vector, but represents three coordinates of the point in real space.

• Differentiation operators

∂ =

�

∂
∂ t
∇

�

∂ − =

�

∂
∂ t
−∇

�

(2.25)

A note is needed here, which is too early to explain. The problem will be discussed in the chapter on the structure
of complex space-time. In general, the four-vector X can be complex in contrast to the coordinates of points X ,
so not always X = ∆X . The equation ∆X = X2 − X1 only makes sense if ∆X ∈ R 4. The imaginary coordinates
of points in space-time make no sense, but the complex interval does make sense. The definition of (2.22) says
∆t and∆x to make it clear that it is about the space-time interval.

To understand the following chapters it is necessary to have a good understanding of the paravector
algebra, so we recommend that the reader read this chapter several times. To facilitate an intuitive
understanding of complex space-time, we tried to show the similarity of paravectors to vectors in Euclidean
space.
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Chapter 3

Paravectors in physics

In this chapter, the orthogonal transformation (POT) in the real space-time and the geometric
interpretation of the velocity paravector are presented. The electric field equations, the basic
electrodynamics equations in the paravector notation, and the way POT impacts these equations are
shown. POTs were divided into three groups of transformations and a preliminary study of the
domain in which the theory will be built has been carried out.

To make the considerations understandable and relevant to textbook physics, the domain will be real
space-time, and the boost will be represented by a real orthogonal paravector whose scalar component is equal
to one. Although the results will be very similar to those we know from the current STR, it must be remembered
that the idea of complex space is different. The Lorentz transformation can be represented by a composition of
orthogonal paravector transformations, which is shown in Chapter 12.

3.1 Relativistic boost in a real space-time

In a rest frame, the described object only ages (∆t ∈R+). The same object seen from a frame moving at v
speed, moves according to the formula:

�

∆t
0

�

=
1

p
1− v 2

�

1
−v

��

∆t ′

∆x′

�

=
1

p
1− v 2

�

∆t ′−v∆x′

∆x′−v∆t ′− i v×∆x′

�

. (3.1)

From the vector part of the above formula, we get the equations

∆x′−v∆t ′ = 0 and v×∆x′ = 0 ,

hence we get x′1 = x′0+v∆t ′ and
�

x′1−x′0
�

×v= 0, which is obvious for the inertial motion.

It should be noted that the obtained primed coordinates are still real, and the equation of motion in the
primed frame has the form of a Galilean transformation despite the fact that we started from a complex
orthogonal transformation. We also see that for the description of motion in a given frame it does not matter
whether the speed is close to light speed or not. There is no Lorentz factor in the obtained formulas, which was
reduced because only the spatial component was transformed, since for observer in their primed frame only
their primed time and their primed space are important. For a non-relativistic approximation, which will be
better visible when we go to the SI system (i.e. we explicitly enter the speed of light as c ) the formula (3.1) has
the following form

�

c∆t
0

�

=
1
Æ

1− (v /c )2

�

1
−v/c

��

c∆t ′

∆x′

�

=
1
Æ

1− (v /c )2

�

c∆t ′−∆x′v/c
∆x′−v∆t ′− i v×∆x′/c

�

. (3.2)

When v ≪ c we get approximate equations:
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- scalar c∆t = c∆t ′

- and vector 0=∆x′−v∆t ′.

Thus, placing the origin of the experience at the definite point in space-time
�

t ′0, x′0
�

, we have a Galilean
transformation

∆t = ∆t ′

x′1 = x′0+v∆t ′.

As can be seen, for low speeds the POT turns into Galilean transformation. Everything looks fine.

The v vector in the orthogonal paravector

V =
1

p
1− v 2

�

1
v

�

, where v ∈R 3 and 0⩽ v 2 < 1 (3.3)

is a velocity of the object in the observer’s real space-time.

Definition 3.1.1. The paravector (3.3) will be called a velocity paravector and the transformation (3.1) will be
called boost in real space-time.

As a result of composition of such paravectors, we obtain a complex paravector

1
Æ

1− v 2
1

�

1
v1

�

1
Æ

1− v 2
2

�

1
v2

�

=
1

r

1−
� v1+v2

1+v1v2

�2
+
� v1×v2

1+v1v2

�2

�

1
v1+v2+i v1×v2

1+v1v2

�

(3.4)

From the above formula it can be seen that in the one-dimensional case (v1 ∥ v2) the compound velocity is v =
(v1+v2)/(1+v1v2), which is in compliance with the classic SR.

Now let’s take a closer look at speed. In the rest frame, the described point rests for the ∆t time, which

in our notation means X =
�

∆t
000

�

. In a moving frame this point moves and its coordinates are described by a

4-vector

X′ =
�

∆t ′

∆x′

�

=
1

p
1− v 2

�

1
v

��

∆t
000

�

=V X, (3.5)

hence ∆t ′
�

1
∆x′

∆t ′

�

= ∆tp
1−v 2

�

1
v

�

, that is, again we get the results consistent with the classic theory

∆t ′

∆t
=

1
p

1− v 2
and v=

∆x′

∆t ′
.

Let us once again go to the formula (3.5), from which it follows that V =X′X−/ |X|2, and since the velocity
paravector is orthogonal, then four-vectors X and X′ have the same module, i.e.

V =
X′X−

|X′| |X|
=∠
�

X′,X
�

(3.6)

Therefore, the velocity paravector can be interpreted as the paravector angle between the four-vector in the rest
frame and its image in the moving frame. The above interpretation is consistent with the assumption that the
speed of material objects is lower than the speed of light. From the mathematical analysis point of view,
derivatives in space-time must be directional because 4-vectors of the position changes of physical objects
cannot take any values, but only such values where these 4-vectors are proper. Otherwise, they would not have
a module. It is allowed to differentiate only on the proper coordinates. In the simplest case (3.5), we interpret
the velocity as the space-time deviation of the observer’s time axis (t ′) from the time axis of the observed
object’s proper time (t ).

∆2t ′−∆2x′ =∆2t , v=
∆x′

∆t ′
= cosα= sinβ (3.7)

38



Figure 3.1: Interpretation of speed paravector in a real space-time

3.2 Four-vectors

While studying the algebra of paravectors, we introduced many concepts known from Euclidean
geometry. We will first look at parallelism and check to what extent the parallelism of the four vectors differs
from the parallelism of the Euclidean vectors.

We assume that X1 and X2 4-vectors are both real and proper, which means that
detX1, detX2 ∈R+ \ {0} and are parallel to each other, hence

−∆t1∆x2+∆t2∆x1 = 0

If we divide the above equation by ∆t1∆t2, we get that v1 = v2, where v1 = ∆x1/∆t1 and v2 = ∆x2/∆t2. The
parallelism of the four-vectors describing the position of two objects in space-time means that these objects
are moving at the same speed and in the same direction. It is easy to check that 4-vectors of the position of
objects moving in the same direction but with different velocities are not parallel. The same goes for velocity
paravectors before and after elastic collision perpendicular to an obstacle. It is obvious, because parallelism in
space-time should be an invariant feature, and when switching to a moving frame, in both cases the paths of
particle motion cease to be parallel. When dealing with purely geometric vectors (scalar component equal to 0),
paravector parallelism is equivalent to Euclidean parallelism.

The perpendicularity of the four-vectors from the previous example means the dot product 〈X1,X2〉= 0,

or ∆t1∆t2−∆x1∆x2 = 0

If we divide the above equation by ∆t1∆t2 as before, it turns out that the dot product of velocity vectors
v1v2 = 1. Since the velocity of objects with mass is less than 1, the position 4-vectors of the objects are never
perpendicular to each other. However, this does not mean that the 4-vectors determining the mutual position
of various physical objects in space-time cannot be perpendicular, but by conducting such geometric
considerations we are leaving the realm of physics.
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3.3 Electric field equations in vacuum and the equations of motion of an
electrically charged particle in a paravector notation

Chapter 1 shows that the system of wave equations

∂ 2ϕ (t , x)
∂ t 2

−∇2ϕ (t , x) =ρ (t , x) (3.8)

∂ 2A (t , x)
∂ t 2

−∇2A (t , x) = j (t , x)

does not change under the complex linear transformation

t ′ =
t +vx
p

1− v 2
, x′ =

x+vt ± i v×x
p

1− v 2
, where v = |v| (3.9)

which is correct in terms of calculations but is embedded in an unknown domain, which we will try to define
at the end of the paper. In the special 1-dimensional case (in a spatial sense) this transformation is equivalent
to the 1-dimensional Lorentz transformation. Let us remind you that we agreed to call the transformation (3.9)
paravector orthogonal transformation (POT) and write it down in the form of paravectors:

�

t ′

x′

�

=
1

p
1− v 2

�

1
v

��

t
x

�

=
1

p
1− v 2

�

t +vx
x+vt + i v×x

�

(3.10)

In the formula (3.10) we have a plus sign for a vector product, but according to (3.9) there can be a minus sign,
which in paravector notation means:

�

t ′

x′

�

=
1

p
1− v 2

�

t
x

��

1
v

�

=
1

p
1− v 2

�

t +vx
x+vt − i v×x

�

(3.11)

In the same notation, the equations of the electric and magnetic fields can be represented:

�

∂
∂ t
∇

��

0
E+ i B

�

=

�

ρ
−j

�

and

�

∂
∂ t
−∇

��

ϕ
−A

�

=

�

0
E+ i B

�

=E (3.12)

or
�

∂
∂ t
−∇

��

0
−E+ i B

�

=

�

ρ
j

�

and

�

∂
∂ t
∇

��

ϕ
A

�

=

�

0
−E+ i B

�

=E1 =E−∗ (3.13)

On the right side we have gauge conditions and on the left side Maxwell’s equations in the paravector form.

�

∇E+ i∇B
∂ E
∂ t −∇×B+ i ( ∂ B

∂ t +∇×E)

�

=

�

ρ
−j

�

(3.14)

or

∇E=ρ (3.15)

∇B= 0 (3.16)

∇×B−
∂ E

∂ t
= j (3.17)

∇×E+
∂ B

∂ t
= 0 (3.18)

The system of equations (3.8) can also be described using the space-time differentiation operators in two ways:

• according to the equations (3.12)
�

∂
∂ t
−∇

��

∂
∂ t
∇

��

ϕ
−A

�

=

�

ρ
−j

�

(3.19)
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• according to the equations (3.13)
�

∂
∂ t
∇

��

∂
∂ t
−∇

��

0
A

�

=

�

ρ
j

�

(3.20)

The field energy density is presented by the following formulas:

W =

�

w
S

�

=
EE∗

2
=

1

2

�

0
E+ i B

��

0
E− i B

�

=

�

E2+B2

2
E×B

�

(3.21)

or

W1 =

�

w1

S1

�

=
E∗1E1

2
=

1

2

�

0
−E− i B

��

0
−E+ i B

�

=
E−E−∗

2
=

�

E2+B2

2
E×B

�

=W (3.22)

In order to obtain the formulas for the field energy and Poyting’s vector from equations (3.12) according to the
classical theory, one has to multiply the paravectors EE∗, and in the case of the equations (3.13) the order of
multiplication is reverse: E∗1E1. However, these dependencies are equivalent to each other.

Let’s write down both systems of equations in a symbolic form:

Equations (3.12)

�

∂ −A− =E
∂ E= J− and wave equation ∂ ∂ −A− = J− (3.23)

Equations (3.13)

�

∂ A=E−∗
∂ −E−∗ = J and wave equation ∂ −∂ A= J (3.24)

Since ∂ ∂ − = ∂ −∂ is a scalar operator, the equations (3.24) can be obtained by reverting 1 equations (3.23). This
proves that the equations (3.12) and (3.13) are equivalent. It is a matter of convention which equations we choose,
so we choose the equations (3.12) (3.19) for dealing with the electric field later in this paper.

Non-relativistic equations of motion [12] for a particle with charge q in external electric E and magnetic
B fields

d T

d t
= q vE (3.25)

d p

d t
= q
�

E+
v

c
×B
�

(3.26)

are the real part of the paravector equation
�

d
c d t
0

��

T
c p

�

= q

�

0
E+ i B

��

1
v/c

�

(3.27)

In the current STR, if the equations of motion are described by the Minkowski equation2

F0 = m0γc
dγ

d t
(3.28)

F = m0γ
d (γv)

d t
, (3.29)

then kinetic energy and momentum of a particle with m0 mass are components of one 4-vector

T =
1

2[1− (v /c )2]
(m0c 2+m0v 2) (3.30)

p =
m0v

1− (v /c )2
(3.31)

1In the sense of the definition 2.1.2
2The commonly used Planck’s equation of motion is F= d (m0γv)/d t because it is consistent with Einstein’s equation E =m c 2. However,

it is not covariant with LT, a fact that is left unsaid. The Minkowski’s equation of motion, covariant with LT, is in line with our theory. The subtle
difference has serious consequences because in the first case the energy of a rest body is E =m0c 2, and in the second case it is E =m0c 2/2.
The problem is described in detail in the article [14].
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The above equations in the paravector notation take the form of:

�

T
c p

�

=
m0c 2

2[1− (v /c )2]

�

1
v/c

��

1
v/c

�

=m0c 2 V V

2
, where V =

1
p

1− (v /c )2

�

1
v/c

�

(3.32)

It can be seen from the above that the calculus of paravectors can be easily applied to write the valid equations
of physics. Moreover, the formulas in the paravector notation are much clearer than the same formulas in the
tensor form.

3.4 Discussion

The textbook physics formulas described in paravector notation look transparent, which encourages
further research. However, there is a problem: the composition of velocity paravectors is not a velocity
paravector, but a complex orthogonal paravector. The solution to this problem will be presented later.

When analysing transformations that preserve the wave equation invariance, we set ourselves new tasks
to be solved. The most important of these is to specify the domain. Ideally, space-time should be real, but
research into the complex domain is the most general and mathematically the easiest. The main course of our
considerations will go in this direction. At this stage, we are not sure yet whether this is the right direction.
Everything seems to indicate that physical objects cannot assume any position in space-time, but only such
that four-vectors of their positions are proper or singular paravectors (detX ∈ R+). Within this assumption,
three domains can be selected.

1. X is complex paravector X→X′ : X′ =ΛX and detΛ= 1
2. X is real paravector X→X′ : X′ =ΛXΛ∗ and detΛ= 1
3. X is special paravector X→X′ : X′ =ΛX and Λ is special and detΛ= 1

There is still the X→X′ : X′ =ΛXΛ−1, transformation but we will omit it because it is a rotation that
does not change the scalar.

The second transformation has a huge advantage - it is inner in real space-time. This transformation
has been studied by Professor William Baylis of the University of Windsor in Canada, and many accessibly
written works on the subject can be found at his website. According to Professor Baylis’s articles, this is
a classical Lorentz transformation presented in the paravector formalism. Chapter 12 will devote to this issue.
My research has moved towards the first transformation, which requires complex space-time. Although one
can also distinguish special paravectors (3th case), which transform real space-time (strictly speaking,
quasi-real space equinumerous to it) on itself, but in my opinion this is a dead end, because too many results
are in contradiction with the textbook knowledge, which is shown in Appendix 3.
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Chapter 4

Spatio-temporal differential operators

Four identities containing the spatio-temporal differentiation operators ∂ ± = [∂ /∂ t ,±∇] are derived.
Using the proven identities, the invariance of the wave equation under orthogonal transformations,
such as boost and rotation, is shown.

The previous chapter showed that the electric field equations can be presented concisely and
transparently with the spatio-temporal ∂ differential operators. It was also shown that the wave equation is
invariant under the orthogonal paravector transformation, so it has become necessary to determine how these
transformations affect differential operators. The identities we present below contain a four-dimensional
differential operator called para-divergence or 4-divergence. Their proofs are not complicated but a bit tedious,
so we will derive only the first equality in detail. For the next ones, we will present the results only. However, it
is recommended that the reader prove the remaining identities on their own to gain confidence in the
presented formulas, especially since they are of fundamental importance in the theory of the electric field. The
paravector function should be understood as a function whose values belong to the subset of paravectors.
Since we don’t know the restrictions that should be imposed on the differentiation so that it does not contradict
physics, we assume that the domain of the paravector function is complex space-time (set C 1+3). The fact that
some additional assumptions are needed is indicated, for example, by the fact that time differentiation should
have different rules then space differentiation, because time does not move back - time has a strictly defined
direction. Determining when, why, and what restrictions should be imposed still requires careful examination,
therefore we choose the most general case, where the domain is complex space-time, but the differentiation is
directional due to the condition (d t )2− (d x)2 ∈R+.

4.1 Transformational identities of the spatio-temporal differentiation
operators

Theorem 4.1.1. Suppose that A(X ) is a paravector analytic function (field) defined on the set C 1+3 and let the
non-singular paravector Γ determines the automorphism in the set C 1+3 such that X ′ = ΓX , then the following
identities are true:

∂ A(X ) = ∂ ′ΓA(Γ−1X ′) (4.1)

∂ −A (X ) = Γ−∂ ′−A
�

Γ−1X ′
�

(4.2)
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Proof.

Let’s expand the equation X ′ = ΓX :

t ′ =αt + xβx + yβy + zβz

x ′ = tβx +αx − i yβz + i zβy

y ′ = tβy + i xβz +αy − i zβx

z ′ = tβz − i xβy + i yβx +αz

We transform the differential expression ∂ A(X )

∂ A(X ) = ∂ A(Γ−1ΓX ) = ∂ A(Γ−1X ′) =

�

∂
∂ t
∇

��

ϕ(Γ−1X ′)
ΦΦΦ(Γ−1X ′)

�

=

�

∂ ϕ′

∂ t +∇ΦΦΦ′
∂ ΦΦΦ′

∂ t +∇ϕ′+ i∇×ΦΦΦ′

�

(4.3)

where prime at the symbol of function means that phase Γ−1X ′ is an argument. Using the formula for the
derivative of a composite function we get:

∂ ϕ′

∂ t
=
∂ ϕ′

∂ t ′
∂ t ′

∂ t
+
∂ ϕ′

∂ x ′
∂ x ′

∂ t
+
∂ ϕ′

∂ y ′
∂ y ′

∂ t
+
∂ ϕ′

∂ z ′
∂ z ′

∂ t
=
∂ ϕ′

∂ t ′
α+
∂ ϕ′

∂ x ′
βx +

∂ ϕ′

∂ y ′
βy +

∂ ϕ′

∂ z ′
βz =

=
∂ ϕ′

∂ t ′
α+βββ∇′ϕ′ (4.4)

∇ΦΦΦ′ = ∂ Φ
′
x

∂ t ′
∂ t ′

∂ x + ∂ Φ
′
x

∂ x ′
∂ x ′

∂ x + ∂ Φ
′
x

∂ y ′
∂ y ′

∂ x + ∂ Φ
′
x

∂ z ′
∂ z ′

∂ x +

+
∂ Φ′y
∂ t ′

∂ t ′

∂ y +
∂ Φ′y
∂ x ′

∂ x ′

∂ y +
∂ Φ′y
∂ y ′

∂ y ′

∂ y +
∂ Φ′y
∂ z ′

∂ z ′

∂ y +

+ ∂ Φ
′
z

∂ t ′
∂ t ′

∂ z + ∂ Φ
′
z

∂ x ′
∂ x ′

∂ z + ∂ Φ
′
z

∂ y ′
∂ y ′

∂ z + ∂ Φ
′
z

∂ z ′
∂ z ′

∂ z =

= ∂ Φ
′
x

∂ t ′ βx + ∂ Φ
′
x

∂ x ′ α +iβz
∂ Φ′x
∂ y ′ −iβy

∂ Φ′x
∂ z ′ +

+
∂ Φ′y
∂ t ′ βy −iβz

∂ Φ′y
∂ x ′ +

∂ Φ′y
∂ y ′ α +iβx

∂ Φ′y
∂ z ′ +

+ ∂ Φ
′
z

∂ t ′ βz +iβy
∂ Φ′z
∂ x ′ −iβx

∂ Φ′z
∂ y ′ + ∂ Φ

′
z

∂ z ′ α=

=βββ
∂ ΦΦΦ′

∂ t ′
+α∇′ΦΦΦ′− iβββ
�

∇′×ΦΦΦ′
�

=βββ
∂ ΦΦΦ′

∂ t ′
+α∇′ΦΦΦ′+∇′i
�

βββ ×ΦΦΦ′
�

(4.5)

∇ϕ′ =







∂ ϕ′

∂ t ′
∂ t ′

∂ x +
∂ ϕ′

∂ x ′
∂ x ′

∂ x +
∂ ϕ′

∂ y ′
∂ y ′

∂ x +
∂ ϕ′

∂ z ′
∂ z ′

∂ x
∂ ϕ′

∂ t ′
∂ t ′

∂ y +
∂ ϕ′

∂ x ′
∂ x ′

∂ y +
∂ ϕ′

∂ y ′
∂ y ′

∂ y +
∂ ϕ′

∂ z ′
∂ z ′

∂ y
∂ ϕ′

∂ t ′
∂ t ′

∂ z +
∂ ϕ′

∂ x ′
∂ x ′

∂ z +
∂ ϕ′

∂ y ′
∂ y ′

∂ z +
∂ ϕ′

∂ z ′
∂ z ′

∂ z






=







∂ ϕ′

∂ t ′ βx +
∂ ϕ′

∂ x ′ α+ iβz
∂ ϕ′

∂ y ′ − iβy
∂ ϕ′

∂ z ′
∂ ϕ′

∂ t ′ βy − iβz
∂ ϕ′

∂ x ′ +
∂ ϕ′

∂ y ′ α+ iβx
∂ ϕ′

∂ z ′
∂ ϕ′

∂ t ′ βz + iβy
∂ ϕ′

∂ x ′ − iβx
∂ ϕ′

∂ y ′ +
∂ ϕ′

∂ z ′ α






=

=βββ
∂ ϕ′

∂ t ′
+α∇′ϕ′+ i
�

∇′ϕ′
�

×βββ =βββ
∂ ϕ′

∂ t ′
+α∇′ϕ′+ i∇′×

�

βββϕ′
�

(4.6)

∂ ΦΦΦ′

∂ t
+ i∇×ΦΦΦ′ =

∂ ΦΦΦ′

∂ t
+ i







∂ Φ′z
∂ y −

∂ Φ′y
∂ z

∂ Φ′x
∂ z −

∂ Φ′z
∂ x

∂ Φ′y
∂ x −

∂ Φ′x
∂ y






=

=







∂ Φ′x
∂ t ′

∂ t ′

∂ t +
∂ Φ′x
∂ x ′

∂ x ′

∂ t +
∂ Φ′x
∂ y ′

∂ y ′

∂ t +
∂ Φ′x
∂ z ′

∂ z ′

∂ t
∂ Φ′y
∂ t ′

∂ t ′

∂ t +
∂ Φ′y
∂ x ′

∂ x ′

∂ t +
∂ Φ′y
∂ y ′

∂ y ′

∂ t +
∂ Φ′y
∂ z ′

∂ z ′

∂ t
∂ Φ′z
∂ t ′

∂ t ′

∂ t +
∂ Φ′z
∂ x ′

∂ x ′

∂ t +
∂ Φ′z
∂ y ′

∂ y ′

∂ t +
∂ Φ′z
∂ z ′

∂ z ′

∂ t






+
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+i







∂ Φ′z
∂ t ′

∂ t ′

∂ y +
∂ Φ′z
∂ x ′

∂ x ′

∂ y +
∂ Φ′z
∂ y ′

∂ y ′

∂ y +
∂ Φ′z
∂ z ′

∂ z ′

∂ y −
∂ Φ′y
∂ t ′

∂ t ′

∂ z −
∂ Φ′y
∂ x ′

∂ x ′

∂ z −
∂ Φ′y
∂ y ′

∂ y ′

∂ z −
∂ Φ′y
∂ z ′

∂ z ′

∂ z
∂ Φ′x
∂ t ′

∂ t ′

∂ z +
∂ Φ′x
∂ x ′

∂ x ′

∂ z +
∂ Φ′x
∂ y ′

∂ y ′

∂ z +
∂ Φ′x
∂ z ′

∂ z ′

∂ z −
∂ Φ′z
∂ t ′

∂ t ′

∂ x −
∂ Φ′z
∂ x ′

∂ x ′

∂ x −
∂ Φ′z
∂ y ′

∂ y ′

∂ x −
∂ Φ′z
∂ z ′

∂ z ′

∂ x
∂ Φ′y
∂ t ′

∂ t ′

∂ x +
∂ Φ′y
∂ x ′

∂ x ′

∂ x +
∂ Φ′y
∂ y ′

∂ y ′

∂ x +
∂ Φ′y
∂ z ′

∂ z ′

∂ x −
∂ Φ′x
∂ t ′

∂ t ′

∂ y −
∂ Φ′x
∂ x ′

∂ x ′

∂ y −
∂ Φ′x
∂ y ′

∂ y ′

∂ y −
∂ Φ′x
∂ z ′

∂ z ′

∂ y






=

=







∂ Φ′x
∂ t ′ α+

∂ Φ′x
∂ x ′ βx +

∂ Φ′x
∂ y ′ βy +

∂ Φ′x
∂ z ′ βz

∂ Φ′y
∂ t ′ α+

∂ Φ′y
∂ x ′ βx +

∂ Φ′y
∂ y ′ βy +

∂ Φ′y
∂ z ′ βz

∂ Φ′z
∂ t ′ α+

∂ Φ′z
∂ x ′ βx +

∂ Φ′z
∂ y ′ βy +

∂ Φ′z
∂ z ′ βz






+

+i







∂ Φ′z
∂ t ′ βy − iβz

∂ Φ′z
∂ x ′ +

∂ Φ′z
∂ y ′ α+ iβx

∂ Φ′z
∂ z ′ −

∂ Φ′y
∂ t ′ βz − iβy

∂ Φ′y
∂ x ′ + iβx

∂ Φ′y
∂ y ′ −

∂ Φ′y
∂ z ′ α

∂ Φ′x
∂ t ′ βz + iβy

∂ Φ′x
∂ x ′ − iβx

∂ Φ′x
∂ y ′ +

∂ Φ′x
∂ z ′ α−

∂ Φ′z
∂ t ′ βx −

∂ Φ′z
∂ x ′ α− iβz

∂ Φ′z
∂ y ′ + iβy

∂ Φ′z
∂ z ′

∂ Φ′y
∂ t ′ βx +

∂ Φ′y
∂ x ′ α+ iβz

∂ Φ′y
∂ y ′ − iβy

∂ Φ′y
∂ z ′ −

∂ Φ′x
∂ t ′ βy + iβz

∂ Φ′x
∂ x ′ −

∂ Φ′x
∂ y ′ α− iβx

∂ Φ′x
∂ z ′






=

=α
∂ ΦΦΦ′

∂ t ′
+ iα∇′×ΦΦΦ′− i

∂ ΦΦΦ′

∂ t ′
×βββ +∇′(βΦβΦβΦ′) +∇′× (ΦΦΦ′×βββ ) (4.7)

Substituting partial results (4.4)-(4.7) into the equation (4.3) we receive

�

∂ (αϕ′+βΦΦΦβΦΦΦβΦΦΦ′)
∂ t ′ +∇′
�

βββϕ′+αΦΦΦ′+ iβββ ×ΦΦΦ′
�

∂
∂ t ′

�

βββϕ′+αΦΦΦ′+ iβββ ×ΦΦΦ′
�

+∇′
�

αϕ′+βΦβΦβΦ′
�

+ i∇′×
�

βββϕ′+αΦΦΦ′+ iβββ ×ΦΦΦ′
�

�

=

=

�

∂
∂ t ′

∇′

�

(

�

α
βββ

��

ϕ′

ΦΦΦ′

�

)

which completes the proof of the 1st identity.

To prove the 2nd identity (4.2)
∂ −A (X ) = Γ−∂ ′−A

�

Γ−1X ′
�

,

we have to use the formulas (4.4) - (4.6), and instead of (4.7) we prove that:

∂ ΦΦΦ′

∂ t
− i∇×ΦΦΦ′ =α

∂ ΦΦΦ′

∂ t ′
− iα∇′×ΦΦΦ′− iβββ ×

∂ ΦΦΦ′

∂ t ′
+βββ (∇′ΦΦΦ′) +βββ × (∇′×ΦΦΦ′)

For the transformation X ′ = X Γ we have analogous identities.

Theorem 4.1.2. Suppose that A(X ) is a paravector analytic function defined on the set C 1+3 and let the non-
singular paravector Γ determine the automorphism in the set C 1+3 so that X ′ = X Γ , then the following identities
are true:

∂ A (X ) = Γ∂ ′A
�

X ′Γ−1
�

(4.8)

∂ −A (X ) = ∂ ′−Γ−A
�

X ′Γ−1
�

(4.9)

Proofs of the above identities are left to the readers.

Theorem 4.1.3. Let A(X ) be an analytic paravector function defined on the set C 1+3, then for each paravector Γ
it is true that:

[∂ A (X )]Γ = ∂ [A (X )Γ ] (4.10)
�

∂ −A (X )
�

Γ = ∂ − [A (X )Γ ] (4.11)

Proof. of the equation (4.10)

∂ [A (X )Γ ] =

�

∂
∂ t
∇

�

(

�

ϕ(X )
ΦΦΦ(X )

��

α
βββ

�

) =

�

∂
∂ t
∇

��

αϕ(X ) +ΦΦΦ(X )βββ
αΦΦΦ(X ) +βββϕ(X ) + iΦΦΦ(X )×βββ

�

=
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=

�

α ∂ ϕ(X )∂ t +βββ ∂ ΦΦΦ(X )∂ t +α∇ΦΦΦ(X ) +βββ∇ϕ(X ) + i∇[ΦΦΦ(X )×βββ ]
α ∂ ΦΦΦ(X )∂ t +βββ

∂ ϕ(X )
∂ t +α∇ϕ(X ) + i [ ∂ ΦΦΦ(X )∂ t ×βββ +α∇×ΦΦΦ(X ) +∇ϕ(X )×βββ ] +∇[ΦΦΦ(X )βββ ]−∇× [ΦΦΦ(X )×βββ ]

�

=

hence, under property of the nabla operator we obtain

=

�

[ ∂ ϕ(X )∂ t +∇ΦΦΦ(X )]α+ [ ∂ ΦΦΦ(X )∂ t +∇ϕ(X ) + i∇×ΦΦΦ(X )]βββ
[ ∂ ΦΦΦ(X )∂ t +∇ϕ(X ) + i∇×ΦΦΦ(X )]α+ [ ∂ ϕ(X )∂ t +∇ΦΦΦ(X )]βββ + i [ ∂ ΦΦΦ(X )∂ t +∇ϕ(X ) + i∇×ΦΦΦ(X )]×βββ

�

=

= [∂ A (X )]Γ

The reader can prove the equation (4.11) in a similar way as above.

Formulas of transformation of the field by the rotation of reference system X ′ = ΓX Γ−1 follow from above
results, where the rotation means a more general transformation then Euclidean rotation (definition 2.3.9)

Example 4.1.1. Rotation of the observer in the field

Let Λ be an orthogonal paravector (ie. det Λ= 1) and let the fields A(X ) and B (X ) satisfy the relationship
∂ A(X ) = B (X ), where X ∈C 1+3. The observer rotates:

∂ A(Λ−X ′Λ) = B (Λ−X ′Λ) , where X ′ =ΛX Λ−

In the turned frame the above equation has the following form (by Theorems 4.1.1 and 4.1.2)

Λ−∂ ′ΛA(Λ−X ′Λ) = B (Λ−X ′Λ)

Multiplying this equation on the left-side by Λ and on the right-side by Λ−, on the basis of the Theorem
4.1.3, we obtain an equation of the field after rotation.

∂ ′[ΛA(Λ−X ′Λ)Λ−] =Λ[B (Λ−X ′Λ)]Λ− (4.12)

Similarly for the reversed operator (4-gradient).

∂ ′−
�

ΛA
�

Λ−X ′Λ
�

Λ−
�

=Λ
�

B
�

Λ−X ′Λ
��

Λ− (4.13)

The conclusion is obvious: If the observer turns to one side, the field around them will turn by the same
amount in the opposite direction.

4.2 Invariance of wave equation under orthogonal transformation

Using theorems 4.1.1 - 4.1.3, we can easily demonstrate the invariance of the wave equation□A(X ) = B (X )
under the transformation represented by the orthogonal paravector. We narrow down the formulas (4.1), (4.2)
and (4.8), (4.9) by replacing the non-singular paravector Γ with the orthogonal paravectorΛ. It is visible that with
the orthogonal transformation we can transform the wave equation □A(X ) = B (X ) in four ways:

1. □A(X ) = ∂ −∂ A(X ) = ∂ ′−Λ−Λ∂ ′A(X ′Λ−) =□′A(X ′Λ−) = B (X ′Λ−), hence

□A(X ) = B (X ) ⇐⇒ □′A(X ′Λ−) = B (X ′Λ−) (4.14)

2. □A(X ) = ∂ ∂ −A(X ) =Λ∂ ′∂ ′−[Λ−A(X ′Λ−)] =Λ□′[Λ−A(X ′Λ−)] = B (X ′Λ−), hence

□A(X ) = B (X ) ⇐⇒ □′[Λ−A(X ′Λ−)] =Λ−B (X ′Λ−) (4.15)
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3. □A(X ) = ∂ −∂ A(X ) =Λ−∂ ′−∂ ′ [ΛA (Λ−X ′)] =Λ−□′[ΛA(Λ−X ′)] = B (Λ−X ′), hence

□A(X ) = B (X ) ⇐⇒ □′[ΛA(Λ−X ′)] =ΛB (Λ−X ′) (4.16)

4. □A(X ) = ∂ ∂ −A(X ) = ∂ ′ΛΛ−∂ ′−A(Λ−X ′) =□′A(Λ−X ′) = B (Λ−X ′), hence

□A(X ) = B (X ) ⇐⇒ □′A(Λ−X ′) = B (Λ−X ′) (4.17)

From the above relationships it can be seen that further discussion can be carried out in different directions. In
points 1 and 4 both the equation and the value of the function are invariant.

A′ = A and B ′ = B

In points 2 and 3 the form of wave equation is invariant, while the values of the function of a field undergo
changes:

• contravariant
A′ =Λ−A and B ′ =Λ−B

• or covariant
A′ =ΛA and B ′ =ΛB

We encounter an interesting problem that goes beyond the scope of this chapter, and enters the field of
physics, so its analysis will be presented further.

As for the rotation of the observer in the field meeting the wave equation, we get the same result as in
example 4.1.1.

□A(X ) = B (X ) ⇐⇒ □′Λ[A(Λ−X ′Λ)]Λ− =Λ[B (Λ−X ′Λ)]Λ−

4.3 Discussion

The wave equation is one of the most important relationships in physics. It underlies the theory of the
electromagnetic field and relativistic quantum mechanics, and is applicable in all fields of physics. The
considerations presented above and the simplicity of calculation show that the paravector calculus fits into this
equation naturally, and thus it is also natural for relativistic physics. In the following chapters, we will continue
to convince the reader of the parawector calculus and show that with its help one can look at seemingly
well-known physical phenomena differently.
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Chapter 5

Phase interval

In this chapter, the concept of phase interval, which is invariant and equal to proper time interval, is
introduced. Solutions of the wave equation in the form of a plane and a spherical wave are analysed.
The concept of complex velocity is explored.

In Chapter 3 we made the assumption that the relativistic transformation is a linear transformation in
the space of physical objects whose coordinates are proper or singular paravectors. An object in space-time is
defined by its state, i.e. the coordinates of the change of position in time and the parameters characterizing this
motion, e.g. velocity. All these parameters for inertial motion are described by a pair of paravectors connected
by a V −Xmultiplication operation.

Definition 5.0.1. We call a pair V −X=∆t a phase interval.

The theory of relativity describes objects in motion at speeds comparable to the speed of light. For
dynamic phenomena it is important what happens in the time interval. This explains where the assumption we
made in the introduction that time is a discrete quantity, had come.

The phase interval is a non-negative real number and it is equivalent to the proper time interval.

Definition 5.0.2. The following expression is called the phase interval in real space-time

∆Θ =
1

p
1− v 2

�

1
−v

��

∆t ′

∆x′

�

=

�

∆t
0

�

(5.1)

The individual elements of the phase interval are called:

•

�

∆t ′

∆x′

�

- space-time interval (which is a four-vector)

• v - phase velocity. The direction of this vector determines the phase direction.

In the case when the above phase interval relates to an object whose motion is described in relation to
several independent objects, individual elements of the phase interval can be complex. Then it has the form:

∆Θ =Λ−X=
1

p
a 2− b 2+ c 2−d 2

�

a + i d
−b− i c

��

∆t ′+ i s
∆x′+ i y

�

=

�

∆t
0

�

∈R+ (5.2)

The imaginary components of the space-time interval are interpreted as dynamic properties of the real
4-vector (∆t ,∆x) imaginable in the real affine space-time of the observer. We are used to minimizing the
number of coordinates to such a number that they are all independent of each other. In our case, complex
variables t , x 1, x 2, x 3 are independent, but their imaginary and real parts depend on each other. So we consider
issues in a special 4-dimensional complex space. Our aim is not to consider the most general considerations,
but to achieve computational simplicity and physical interpretability. The results obtained so far confirm the
sense of this idea.
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5.1 Wave

As can easily be checked, the solution of a homogeneous wave equation is fulfilled by any
double-differentiable function:

A(

�

α
βββ

��

t
x

�

) or A(

�

t
x

��

α
βββ

�

) (5.3)

such that the value of A is a paravector and paravector

�

α
βββ

�

is singular.

Conclusion 5.1.1. In the case when α= 1, βββ =−c ∈ R 3 and |c|= 1, the c vector is interpreted as the speed of the
wave, that is the speed of light in real space-time, and it is d’Alembert’s canonical solution.

If we are talking about a wave front, then we have to impose a phase agreement condition:
�

1
−c

��

t − t0

x−x0

�

=C −X= 0 (5.4)

We talk of a plane wave when the c vector is given. When a point with the coordinates x0 is given and c
has any direction then we talk of a spherical wave.

The argument of the wave function is a pair of paravectors connected with each other by the operation
of multiplication which, due to its similarity to the appropriate combination in the classical theory of the
electric field and to the definition used in the theory of control, we called the phase. It is invariant in a
paravector orthogonal transformation (relativistic boost). We say the coordinates are implicit in a phase. When
examining this class of problems, we can use properties of singular parallelism, presented in section 2.3, from
which it follows:

Conclusion 5.1.2. For the periodic function f (C −X) 4-vector T is the period of f if and only if T is singularly
parallel to paravector C .

Proof.

The function is periodic with the period Twhen f (C −(X+T)) = f (C −X), and this is when 〈C ,T) = 0.

The order of the paravectors does not matter in this case, because if (T, C 〉= 0 then also 〈C ,T) = 0.

It follows from the above conclusion that if 〈C ,T) =
�

1
−c

��

T
p

�

= 0 then











T = cp

c= p/T

c×p= 0

where T is the period and p is the wavelength. The last equations are self-explanatory. If the function (5.3) is
periodic and we extract the period T from the phase, then we get a different phase

Θ =

�

1/T
−c/T

��

t
x

�

=

�

ω
−k

��

t
x

�

We transform this phase with an orthogonal transformation:

Θ =

�

ω
−k

��

t
x

�

=
1

p
1− v 2

�

ω
−k

��

1
−v

��

t ′

x′

�

=

�

ω′

−k′

��

t ′

x′

�

,

then
�

ω′

−k′

�

=
1

p
1− v 2

�

ω+vk
−(k+ωv+ i v×k)

�

(5.5)

We obtain Doppler law in the paravector notation.
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5.2 Complex velocity of light

Below we will check what the image of the speed of light C paravector looks like in the frame moving with
speedX′ =V X in relation to the light source. Passing to the frame moving at the speed of−v, the phase function
arguments (5.4) of the field function transform according to the formula:

�

1
−c

��

∆t
∆x

�

= 0 →
1

p
1− v 2

�

1
−c

��

1
−v

�

1
p

1− v 2

�

1
v

��

∆t
∆x

�

= (5.6)

=
1

p
1− v 2

�

1+vc
−v− c− i v× c

��

∆t ′

∆x′+ i y′

�

= 0

After extracting time and scalar 1+ vc, we get the condition that must be met by the complex speed of light in
relation to the speed of light in the rest frame.

�

1
− v+c+i v×c

1+vc

��

1
v′+ i w′

�

= 0 where v′+ i w′ = c′ (5.7)

We conclude from this that:

c′ =
v+ c+ i v× c

1+vc
and c ′2 = 1 (5.8)

Note that although the real part of the vector of light velocity c′ may be greater than 1, the complex vector
always has a length of 1. There is no contradiction with the Michelson-Morley experiment. Remember that the
Michelson-Morley experiment only tells us that there is no aether and that it is performed in a light source
frame. The complex model we are creating apparently gives the possibility of exceeding the speed of light,
while being in line with the results of the Michelson-Morley experiment.

The problem is how to interpret the imaginary part of a velocity vector? From the computational side, the
imaginary component of a vector is an element needed to properly balance the vector’s coordinates so that its
length is equal to 1. From the physical side, one can look at the real velocity vector as if it be twisting, because
the imaginary vector perpendicular to the plane defined by vectors v and c gives the real vector such a feature.
However, this is not a twist in space ... but we will talk about it many more times, because this is the key to
understanding complex space-time.

5.3 Complex velocity

Now we will try to interpret complex vectors. We will start with the simplest cases and see what simple
phases look like after the transformation:

5.3.1 Time interval

�

∆t
0

�

=
1

p
1− v 2

�

1
−v

��

∆t ′

∆x′

�

(5.9)

hence
∆x′−v∆t ′ = 0 and v×∆x′ = 0,

that is, we get the classical Galilean result x′1 = x′0+v∆t ′.

As observers in the primed frame, we have our own time and during this time we observe a moving
object. The relation between the times of both frames is represented by the following relationship:
∆t = (∆t ′ − v∆x′)/

p
1− v 2. And here we need to make note that contributes a lot to the understanding of the

essence of the so-called time dilation. Calculating the time in the primed frame from the last formula, it would
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appear that the time is shorter than in the non-primed frame. This would mean that the life of a moving
particle is shorter than that of a rest particle, while the opposite is actually true. Let us return to formula (5.9),
which after moving the velocity paravector to the left side has the following form:

1
p

1− v 2

�

1
v

��

∆t
0

�

=

�

∆t ′

∆x′

�

,

where we get another relationship between ∆t ′ = (∆t )/
p

1− v 2, which is the correct result. But there is no
contradiction in this. A paravector is also a matrix, so we cannot transform a part of a paravector equation, we
can only do so with the entire equation. This results in a very important and obvious conclusion confirming the
compliance of our theory with the postulates of the classical STR: no inertial frame is privileged. If from the
primed frame we see that time in the non-primed frame is slower, then the observer from the non-primed
frame sees time in the primed frame in the same way. In other words: the so-called time dilation is
symmetrical. Therefore, one should treat it as an illusion, and not draw the conclusion that in two frames
moving in relation to each other, time flows at a different pace.

5.3.2 Space-time interval

Let’s complicate the exercise and check what the space-time interval will look like when viewed from
a moving frame, i.e. what the combination of two velocities looks like.

�

∆t
0

�

=
1

Æ

1− v 2
1

Æ

1− v 2
2
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1
−v1

��

1
−v2
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∆t ′′
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= (5.10)

=
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Æ

1− v 2
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Æ

1− v 2
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1+v1v2

−v1−v2+ i v1×v2

��

∆t ′′

∆x′′+ i y′′

�

After transforming the above equation, we get

1
Æ

1− v 2
1

Æ

1− v 2
2

�

1+v1v2

v1+v2− i v1×v2

��

∆t
0

�

=

�

∆t ′′

∆x′′+ i y′′

�

, (5.11)

and since ∆t is a positive real number, time ∆t ′′ > 0. We divide both sides of the last equation by the real (1+
v1v2)∆t , and on the right we pull out∆t ′′ before the 4-vector.

1
Æ

1− v 2
1

Æ

1− v 2
2

�

1
v1+v2−i v1×v2

1+v1v2

�

=
∆t ′′

(1+v1v2)∆t

�

1
v′′

�

(5.12)

Hence we get the complex resultant velocity

v′′ =
v1+v2− i v1×v2

1+v1v2
(5.13)

and the dilatation factor
∆t ′′

∆t
=

(1+v1v2)
Æ

1− v 2
1

Æ

1− v 2
2

=
1
q

1− v ′′2r e + v ′′2i m

(5.14)

Real coordinates of the velocity vector

R e v′′ =
v1+v2

1+v1v2

are obvious to us, as learned from Descartes. However, vectors have imaginary components

I mv′′ =−
v1×v2

1+v1v2

How to interpret them? If you think about it, there is nothing strange in it! In a similar way, we ’see’ a moving
electric charge - through the imaginary component of its electric field - the magnetic field. If we are on the
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straight path of the charge, we do not ’see’ the magnetic field, but the real electric field only. If we move away
from the wire, we will ’see’ that the charge has a real electric field and an imaginary magnetic field. The magnetic
field is a dynamic property of the electric field. Likewise, an imaginary vector is a dynamic property of a real
vector in space-time due to the fact that time does not stand still.

We will try to allow for situations in which it is possible for a physical object to exceed the speed of light
in real space, but only such that in the complex space the complex speed is not greater than c. Then, the whole
problem is to find meaningful interpretations of the imaginary components. For now, we treat the imaginary
coordinates of vectors as dependent on real ones, related to relativistic motion, and needed to balance the
calculations.

5.4 Summary of the considerations so far and setting directions for the
future

Summing up the considerations on the phase interval so far, we can say that the orthogonal
transformation is a paravector transformation of the four-vectors ΛX = X′ which maintains the phase interval,
i.e. Γ−X= Γ ′−X′ (orXΓ− =X′Γ ′−), whereX andX′ ∈C 1+3 and Λ is an orthogonal paravector and Γ is a proper or a
singular one. Ideally, all the paravectors should be real. So we will conduct the research as if the boost be
represented by the velocity paravector and the position coordinates be real, because they are physically
interpretable. On the other hand, we are looking for a transformation that makes a complex orthogonal
paravector to a velocity paravector real and also has a physical justification. However, we should not be
concerned with the coordinates of the points in spacetime itself. In the phenomena under consideration,
motion is of fundamental importance, i.e. changes in coordinates (∆x) over time (∆t ) and the constraints
imposed on these quantities are important. Note that in the calculations so far, there were no object
coordinates, but their differences, i.e. vectors. Mathematically, this means that we are dealing with a vector
space, not an affine space. The field disturbances move in space at the speed of light, or in other words: the
arguments of the field function are phase intervals, which are also concepts of the vector space. For this reason,
all the time we talk about frames, and not coordinate systems.

If we want the components of phase intervals to describe physical phenomena, it seems obvious that the
paravectors that represent them must be proper, that is, such that have a module. If there was a superluminal
speed, its paravector would have a negative determinant, so it would be improper and it would not be possible
to present it unequivocally in the form of an orthogonal paravector. We should stick to this direction because it
gives us a mathematical confirmation of an empirical fact:

In physical phenomena there is no speed greater than the speed of light.

Since it is difficult for us to accept complex vectors, for the sake of simplicity we assume that in the
future we will be able to find such a physically interpretable transformation of X → X′ that X ∈ C 1+3 and
X′ ∈ R 1+3. For now, we will be checking how the electric field and STR change as a result of adopting the
relativistic transformation described by the real velocity paravector, as such considerations will be
understandable. On the other hand, we will extend the knowledge about paravector transformations on
complex paravectors, because they are complex by nature. Later, we will try to reconcile the complex model of
mathematical structure with (mathematically) real physical phenomena.

We wrote above thatX ∈R 1+3 and not R 4 for example. However, it seems necessary to separate the scalar
part from the spatial one in the position four-vector even more, because the scalar part is time and time does not
run backwards. The time structure along with the addition should be a monoid. On the other hand, the spatial
part is a 3-dimensional vector space.
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Chapter 6

First steps in complex space-time

In this chapter the transformation of the spatial vector, proper and improper four-vectors, and
selected space-time phenomena are explained through simple examples. It has been shown that
simultaneity in a rest frame does not have to correspond to simultaneity in a moving frame, and
imaginary vectors are the spatial effect of this desynchronization. A hypothesis is made on how to
understand the imaginary components of vectors and time.

So far, there has been talk of the movement of the electromagnetic wave front and electric charges, i.e.
objects possessing energy. According to the STR postulates, these objects can move at a speed not exceeding
light, which mathematically means that state paravectors describing such motion must have real non-negative
determinants.

Imagine an eruption on the Sun taking place right now. We do not know anything about it yet, because
the flash will reach Earth in a few minutes. It does not matter for us at this moment, but the wave front is already
approaching and we want to note this distance. A zero-time paravector has a negative determinant, so it makes
no physical sense, but it does have a geometric significance. In this chapter, we will extend our discussion of
coordinates without restricting their determinants.

6.1 Spatial vector

The problem presented below is a completely theoretical one, because the vectors in question are outside
of time, so it is a geometric problem, not a physical one.

In the OX frame, in the same moment (∆t = 0) we have two different points. These points determine

a vector∆x, which we denote as a 4-vector X=
�

0
∆x

�

.

To make the presentation more vivid, although we are talking about one vector, we show a bunch of
vectors with a common origin (the cross) and equal lengths (the dot ends). The ends of these vectors form a
circle. After passing to a frame that moves at the −v speed, the above 4-vector transforms:

X′ =
�

∆t ′

∆x′+ i y′

�

=
1

p
1− v 2

�

1
v

��

0
∆x

�

=
1

p
1− v 2

�

v∆x
∆x+ i v×∆x

�

(6.1)

In this example we are not dealing with the imaginary vector yet, we are only concerned with the
interpretation of the temporal component. We assume that the imaginary vector is an auxiliary quantity used
to balance the calculations - the dependent variable.

The last equation shows that the time (∆t ′) between the beginning and the end of each of the vectors∆x′

is proportional to v∆x. The time interval is positive when the end time comes after the start time. If the moment
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Figure 6.1: An image of a bunch of vectors

of vector’s end is before the moment of its beginning, then the time interval between its end and its beginning
is negative. If the vectors v and ∆x are opposite, then their dot product is negative. This means that the end
of the vector ∆x′ is before its beginning. In Fig 6.1 times are marked with different shades of red. The ends of
the vectors that are in the front in the direction of the observer’s movement precede their common beginning.
Negative time obviously has no physical significance because energy cannot move in this way. If we assume that
the point of reference is the center of the sphere (at time 0), then from the equation (6.1) we know which points
occur earlier and which later. The delays we are talking about occur on a cosmic scale, because after switching
to the SI (6.2) system it turns out that they are scaled inversely to the square of the speed of light.

Below (Fig 6.2) is shown an image of a ’flashing’ disk as seen from a frame moving at relativistic speed.
The real vector tells us about the shape. So we can say that the image of a circle (sphere) is a larger circle
(sphere) whose points are shifted in time. Segment points are simultaneous1 . We can see that the simultaneity
in the OX frame does not correspond to the simultaneity in the OX’ frame. The use of the ’we see’ is a bit of an
abuse, because seeing involves the eye receiving light that is moving at a certain speed. When we use the ’we
see’ expression, we mean mathematical formulas.

Figure 6.2: Mathematical image of a flashing disk

1Relation simultanity of two events X1 and X2 holds when a scalar coordinate of four-vector X = X2 − X1 is equal to 0, that is XS =
(X2 −X1)S = 0
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From the real vector part we conclude that if the observed object does not change its shape over time,
that relativistic transformation scales the objects with the dilation factor without deforming it. At this point, we
will turn to the SI system for a moment and see what the formula (6.1) looks like in this units system.

X′ =
�

c∆t ′

∆x′+ i y′

�

=
1
p

1− (v /c )2

�

v∆x/c
∆x+ i v×∆x/c

�

(6.2)

It can be seen from the above that for non-relativistic velocities, the imaginary time and vector components
disappear. The segment travel speed in Figure 6.2 is

w

c
=
∆x′

c∆t ′
=

c∆x

v∆x
, (6.3)

which in the natural system gives: w = ∆x ′/∆t ′ = 1/v > 1, and in the SI system: ∆x ′/∆t ′ = c 2/v > c . So not
only is the speed of the moving segment higher than the speed of light, but it is also inversely proportional to the
relative speed of the disk and the observer. Therefore, the phenomenon is not a physical one, but a geometric
one. Considering the physical problems, we can assume that a purely spatial vector corresponds to a vector
scaled by the dilation factor. We also assume that a flashing disk corresponds to a blurry flashing disk. The
higher the speed of the disk, the more blurry the disk is.

In the above examples we pay attention to the scalar component v∆x, which indicates spatial
desynchronization of phenomena observed from the moving frame. We’ll deal with the imaginary vector later!

6.2 Growing vector

In the next example, we will complicate our considerations. We have two points A and B in the rest frame.
At the initial t0 moment both points overlap, then point B moves away at a constant relativistic speed w from
point A, which is still stationary. We will describe this phenomenon in the OX’ frame that moves at the speed of
-v in relation to the rest frame (OX). Since simultaneity in both frames does not coincide, we will calculate the
equations of point B motion in two ways:

1. simultaneously in a moving (primed) frame, i.e. as the observer sees,

2. so that the description in the moving frame corresponds to simultaneity in the rest one.

In the OX frame the coordinates of the four-vector (Fig. 6.3) determined by both points can be written down in
the following way:

Point A: XA =

�

∆t
0

�

Point B: XB =

�

∆t
∆xB

�

, whose coordinates are related by the dependence

�

∆t 0

0

�

= 1p
1−w 2

�

1
−w

��

∆t
∆xB

�

X=XB −XA =

�

0
∆x

�

(6.4)

Since the A point is resting, then AB vector∆x=∆xB .

Point B moves according to the formula
�

1
−w

��

∆t
∆xB

�

=

�

p
0

�

, (6.5)

where p is a positive real number - a parameter proportional to time. The dilation factor has been omitted
because it only makes sense when reference is made to the coordinates of the second frame (in this case, the
proper time of the object named ’B point’).
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Figure 6.3: Vector∆x increasing at w velocity in the rest frame.

The first way. Vector AB in a moving OX’ frame, where points A and B are simultaneous.
After relocating to the frame moving at the −v speed the observer gets an image as in Fig. 6.4.

In the primed frame, the movement of point B will be described by the following relationship:

X′B =
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1
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(6.6)

The observer has moved to the primed frame, so he can observe the world only in this frame. Since the time
t ′ applies in the OX’ frame, he sees the point B primed coordinates changes at this time. Therefore, the above
equation should be transformed in such a way as to obtain a proportional dependence of∆x′ on t ′. We transfer
all redundant factors to the other side of the equality and replace them with the pB parameter.
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The motion of point B in the primed frame is determined by the vector equation, hence
�

∆x′B −w′r e∆t ′B −w′i m ×y′ = 0
y′+w′i m∆t ′B = 0

(6.10)

After substituting y’ from the second equation to the first one, the third term disappears and we obtain

∆x′B =
v+w

1+vw
∆t ′B (6.11)

Point A in the OX frame is resting, which in the OX’ frame is visible as a movement according to the formula
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In the primed frame, the same as before, we calculate the dependence∆x′A on∆t ′A .
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(6.13)
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Figure 6.4: The real component of the AB vector in a frame moving at the speed -v. Simultaneous interpretation.

from above we get the dependence of interest to us

∆x′A = v∆t ′A (6.14)

In the primed frame, the observer sees points A and B simultaneously, i.e. ∆t ′A =∆t ′B =∆t ′. Simultaneity in both
frames does not correspond, but in this case we do not care. The movement of points A and B in the primed
frame is determined by the formulas

∆x′B =
v+w

1+vw
∆t ′ , ∆x′A = v∆t ′ (6.15)

The image of a real vector is a complex vector consisting of parts

real ∆x′ =
w−v(vw)

1+vw
∆t ′ and imaginary y′ =

v×w

1+vw
∆t ′. (6.16)

Simultaneous points in a moving frame are shifted in time in the rest frame.

X′ =
�

0
∆x′+ i y′

�

=
1

p
1− v 2

�

1
v

��

∆t
∆x

�

=
1

p
1− v 2

�

∆t +v∆x
∆x+v∆t + i v×∆x

�

(6.17)

The scalar equation shows that∆t =−v∆x. After substituting them into the vector equation, we get

∆x′ =
1

p
1− v 2

[∆x−v(v∆x)] (6.18)

After obtaining a dot and cross product of the above formula from multiplication by the vector v, we get two
conditions that the∆x′ and∆x vectors must satisfy:

∆x′v = (∆xv)
p

1− v 2

∆x′×v =
∆x×v
p

1− v 2

Analysing the above system of equations, one might think that the image of an object in motion may be deformed.
However, the relation of parallelism and perpendicularity to the direction of motion is preserved (If∆x⊥ v, then
∆x′ ⊥ v and if∆x ∥ v, then∆x′ ∥ v). Still, we must remember that we always have an imaginary path and shifts in
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time, and we may perceive spherical points as a sphere. We do not know this at this point, but we will explain it
further when we consider more compound systems.

The second way. The AB vector described in the OX’ frame at the assumption of the simultaneity of the
vector ends in the OX frame.

Let us describe the phase interval between these points in the OX system and the corresponding interval
in the OX’ system. For point B it is the following relationship:

X′B =
�

∆t ′B
∆x′B + i yB

�

=
1

p
1− v 2
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1
v
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∆t
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�
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∆xB +v∆t + i v×∆xB

�

(6.19)

After taking∆t out, we get the complex velocity of point B in the moving frame, which is the same as before.

X′B =
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= (6.20)
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∆t
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�

,

where g is the new dilation factor. We did not write the factor γ adopted in the textbooks, due to the assumption
made at the beginning of the monograph that we reserve Greek letters for complex quantities.

Point A in the OX frame is standing, which in the OX’ frame is visible as movement according to the
formula

X′A =
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(6.21)

We calculate an image of the intervalX=XB −XA . In the original frame it is a spatial vector! Although it moves in
time and grows simultaneously, the beginning and the end of it are at the same moment (they are simultaneous),
so it is a purely spatial vector, and thus its determinant is negative.

XB −XA =
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∆t
∆xB
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0

�
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�

0
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(6.22)

Starting from the above formulas, we get the vector image in the OX’ frame:

X′ =X′A −X
′
B =V (XA −XB )

or

X′ =
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∆t ′B −∆t ′A
∆x′B −∆x′A + i y′

�

=

�

∆t ′AB
∆x′+ i y′

�

=
1

p
1− v 2

�

1
v

��

0
∆x

�

=
1

p
1− v 2

�

v∆x
∆x+ i v×∆x

�

(6.23)

Here we see (Fig. 6.5) that the image of the space vector, as before, is the space-time interval (the beginning
and the end may be at a different moment). It has a purely geometric sense. As in the previous example, we
emphasize that it has no physical significance because its determinant is negative.

If v⊥∆x then

X′ =
1

p
1− v 2

�

0
∆x+ i v×∆x

�

, (6.24)

and if v ∥∆x then

X′ =
1

p
1− v 2

�

v∆x
∆x

�

(6.25)

The real vector of the image is traditionally interpreted as the difference between the coordinates of two
points and it is proportional (with the dilation factor) to the original vector. The scalar is time. We also see that
the ends of the vectors ∆x′ (A points) are not at the same moment. At the same moment as B point there are
points lying on the plane containing B and perpendicular to the direction of motion of B point. The ends that
are before the common onset are time lagged, while those that are behind it, precede it in time. We also get an
imaginary vector, which is a property of a real vector related to its dynamics.
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Figure 6.5: The real component of the AB vector in a frame moving at the speed -v

6.3 Swelling spheres

Let us now pass to the third case (Fig. 6.6). In the rest frame, from the point O(x0) at the t0 moment a
soap bubble (sphere) pops out and its radius grows steadily with the relativistic speed of w = 0,4. The observer
describes the movement of the points up to a moment t .

Figure 6.6: Swelling real sphere

In the OX rest frame, coordinates of four-vectors [point A(t , x) - origin of sphere O (t0, x0)] are

X=
�

∆t
∆x

�

=

�

t − t0

x−x0

�

, where
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1
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0
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. (6.26)

In the OX’ frame moving at relativistic speed v (v = 0.8) we denote the right equation as:
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, where p ′ = p
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1− v 2 (6.27)
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In the OX’ frame we describe the sphere at t ′ time, so we are not interested in the scalar equation as a reference to
t time. We are interested in the real part of the vector equation. After replacing the compound velocity paravector
to the right side, we have:

�

∆t ′

∆x′+ i y′

�

=
p ′

(1+vw)2− (v+w)2+ (v×w)2

�

1+vw
v+w+ i v×w

�

(6.28)

From the scalar formula we calculate the dependence of p ′ on∆t ′ and we insert it into the vector formula, from
where we get

∆x′+ i y′ =
v+w+ i v×w

1+vw
∆t ′ (6.29)

For a bundle of vectors w and a constant vector v, the ends of the real vectors∆x′, proportional to
w′ = (v+w)/(1+vw), form a flattened sphere (Fig. 6.7).

Figure 6.7: The real components of the resultant velocities on the X’O’Y’ plane

However, it should be remembered that the deformation of the real component does not mean that the
complex sphere is deformed because, as we remember from the parawector algebra, scalar product is invariant.
Vectors that have not undergone relativistic deformation are marked in red. Additionally, Figure 6.7 is not a
photograph because the points on the ellipsoid are shifted in time. So it is possible that if we took a photo,
we would see... a ball in it. And it is indeed so, the difference being that the points we photographed in the
moving frame were not simultaneous in the rest one. For this example the image of the distribution of imaginary
components of compound velocities depending on the angle between the w and v vectors is shown in Figure 6.8.
Note that all imaginary vectors lie in one direction perpendicular to the plane defined by the v and w vectors.

Let’s go even further. In the rest frame, from point O (t , x0) another bubble pops out after the first one
and they both grow steadily at the relativistic speed of w = 0.4 (Fig. 6.9). The first bubble (a ) popped out at a t0

moment and the second one (b ) a little later, at t1. The observer writes the equation at t2 moment. In the OX
rest frame, the first sphere (a ) is described by the equation

Xa =
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, where
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, and ∆ta = t2− t0 (6.30)

The second sphere (b ) is similarly described by the equation:
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, where
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, and ∆tb = t2− t1 and t0 < t1 < t2 (6.31)
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Figure 6.8: Imaginary components of resultant velocities in the O’Z’ axis

Figure 6.9: Concentrically swelling spheres in a rest frame

The segment between points A and B moving in the same direction and at the same moment is described by the
following equation
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(6.32)

where:
�

t2− t0

x2−x0

�

- are coordinates of the moving point A,

�

t2− t1

x1−x0

�

- are coordinates of the moving point B,

�

t1− t0

0

�

- is the waiting time for b bubble to pop out,

xO 0 = xO 1 = xO 2 = x0, because the O point is standing still.
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Going to the OX’ frame moving at the speed of −v, we transform the above equation:
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Figure 6.10: The image in the OX’ moving frame of the real components of the spheres that were concentric in
the rest frame

The formula (6.34) shows that in the OX’ frame the∆x′d vectors are the same 2 as in the OX frame (6.32),
but the beginnings and ends of these vectors in the OX frame were simultaneous, while in the OX’ frame they
differ in time! The time difference between the end and the beginning of the ∆x′d vector is proportional to the
product of (xA2 − xB 2)v. So, there was a deformation over time - getting out of sync. Thus Figure 6.10 does not
show the image that would be seen by an experimenter taking a photograph in a moving frame. The observer in
the OX frame ’photographs’ what he ’sees’ and he ’sees’ the same points but at a different time than the observer
from the OX frame. The ’photograph’ of the prime observer seems to show a spatial deformation consisting in
the mutual shift of the a and b spheres, because the camera is not able to ’see’ at the same moment what is not
simultaneous.

Thus, NOTE !: What the O and O’ observers ’photograph’ is not the same.

The desynchronization takes place along the direction of the observer’s movement, but it can be seen
from the drawing that the AB line was twisted in the perpendicular directions. The real space deformation took

place and it is related to the spatial imaginary component v×∆x. The direction of the
−→
AB vector follows the

speed w, and the direction of the
−−→
A′B ′ vector follows the w′ velocity. The twist of the

−−→
A′B ′ vector in relation to

the
−→
AB vector is proportional to the vector product w′×w= (w+v)×w= v×w. The deformation is all the more

interesting as it concerns not only space but also time. As we said before, the points that we ’see’ simultaneously

2We ignore the dilation factor, because the (6.32) and (6.34) formulas are equivalent to each other, and by analysing the spatial image in
the primed frame, we calculate the formula (6.34) where this factor is reduced
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in a moving frame are not simultaneous in a rest frame. The deformation is temporal and spatial, but note that
no deformation occurred in the complex space-time because the scalar product remains unchanged. So what
is the interpretation of the imaginary vector? Since we think in terms of real space, we can assume that the
imaginary vector is related to real quantities deformation. By observing a single point, we are not able to see it.
We see it only by observing the vectors and doing it in time. We will explain this in detail with an example in the
next section.

6.4 Movement of a point with elastic rebound

Let us imagine we have a sphere shaped laboratory. The wall of the laboratory is perforated (it is a sieve).
In the very center of the laboratory we place an explosive charge. At the t0 moment the charge explodes. The
particles dissipate evenly in all directions at the w = 0.4 velocity. Some of them bounce elastically from the walls
and return to the center of the sphere, and some of them fly freely into space through the holes in the wall. We
end the observation when the rebounded particles meet in the center of the sphere. We will show how the real
image of the experiment will look like when viewed from a frame moving at v = 0.8 speed. Figure 6.11 shows the
experiment observed in the laboratory frame. Some of the particles bounce elastically and return towards the
center (purple dashed lines), while others (which have passed through the sieve) escape into space (red dashed
lines). The hitting of the walls is simultaneous and it leaves a green mark.

Figure 6.11: An explosion inside a perforated sphere in a rest frame

In Figure 6.11 the directions every 30 degrees have been distinguished in order to show how in the moving
frame the time shift of the simultaneous phenomenon in the rest frame, such us an impact against the laboratory
wall, ’is seen’. Note: In Figures 6.12 - 6.17 only real vectors are plotted.

The gray ellipse on the left shows the real part of the laboratory at the moment of the explosion (at t0).
The lab at the tn moment is shown by black ellipses. Continuous red lines mark the paths of movement of the
selected particles before the rebound. Tracks after the rebound are purple dashed lines. Paths of the particles
that passed through the sieve are dashed red lines. The continuous part of the ellipse in red represents the wave
front before reaching the laboratory wall. The dashed red line shows the particles that have passed through the
sieve. The dashed purple line shows the blast front rebounded from the wall. The dashed green line marks the
trace of particles bouncing off the laboratory wall. As time passes, the line draws a circle and points from A1

to A7 appear. We end the observation when the rebounded part of the blast front concentrates in the center of
the laboratory, i.e. at the t f moment. The lines were drawn with AutoCAD allowing for high precision, and the
necessary calculations were made using formula (6.29). It should be noted that despite the deformation of the
actual laboratory and the wave front, the trace of the collision of particles with the wall does not indicate any
spatial deformation of our laboratory. We can therefore adopt a different interpretation of the obtained results:
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Figure 6.12: Moments t1 and t2. In the moving frame the first particles are reaching the laboratory wall.

Figure 6.13: Moments t3 and t4
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Figure 6.14: Moment t5

Figure 6.15: Moment t6
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Figure 6.16: The last particles reach the wall. Moment t7

Figure 6.17: All the particles that bounced off the wall meet in the center of the laboratory. Moment t f
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The shape does not deform, but the individual fragments of the observed laboratory shift in time, that is, the
deformation of the shape can be treated as an illusion resulting from our understanding of simultaneity. The
moving observer should see the collision point moving in time and space, but is unable to do so because the
collision point (as shown at the beginning of the chapter) travels faster than the speed of light. We emphasize
here that we are not talking about a material point, but a geometric point. Each of the particles (material points)
moves in a straight line at a speed lower than light. What the observer is able to register is the trace after the
rebound, and it is an undeformed sphere. Once again, it has been confirmed that there is no deformation in
complex space-time, but there is a definite necessity to abandon the use of the concept of simultaneity.

An attentive reader must have noticed that we use the words ’we observe’, ’we see’, ’we photograph’. These
activities are related to the reception of light energy by an eye or a photographic film. We describe mathematical
formulas with these words. We are aware of this enormous inaccuracy, but in some intuitive way we must name
the theoretical results corresponding to the well known concept. The inaccuracy is even greater as the energy
(which is the information carrier) not only moves at a limited speed, but is also always real, while we consider
complex concepts. To indicate that we mean theoretical concepts, we mark them with apostrophes.

6.5 Apparent exceeding the speed of light

We will now consider a simple example that will show us that in complex space it is possible to apparently
exceed the speed of light, but an observer performing measurements and located at the light source is unable to
prove it.

Let’s imagine a situation where we have two sources of directional light. One lamp OR determines the
origin of the rest frame. The second O lamp moves in the direction of the X axis and is in the center of the moving
frame. In the rest frame, the A observer is on the Y axis. In the moving frame, the mirror M is on the Y axis. When
the lamps pass each other, both lamps emit a light-beam directed toward the Y axis. Using the POT formulas, we
will calculate how A observer will describe the motion of the light-beam sent from O lamp.

Figure 6.18: At the moment of meeting, lamps O and O1 emit light-beams in the direction perpendicular to the
movement of O lamp
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The paravector equation of motion of a light-beam in the A traveler’s frame
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��

∆t
∆x

�

= 0 (6.35)

which is equivalent to a system of equations

∆t − c∆x= 0 (6.36)

∆x− c∆t = 0 (6.37)

c×∆x= 0 (6.38)

This is a system of dependent equations because det
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= 0. This system cannot be solved, but its

elements can be interpreted.

The observer moves in the traveler’s frame according to the equation
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Since the vectors v and∆x are parallel, I don’t write a cross product of vectors c and v.

Below, I describe and comment on all the steps one by one.

I move the equation (6.35) to the observer frame.
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or

∆t ′ = γ(∆t +v∆x) (6.42)

∆x′ = γ(∆x+v∆t ) (6.43)

y′ = γv×∆x (6.44)

The equation (6.40) takes the form
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I remove the Lorentz factor because it is not valid in the relationship between x’ and t’, and the observer describes
the experiment in such coordinates.

An important note here(!): Getting rid of the Lorentz factor is not possible in classical SR, because it does
not act on all coordinates (contraction). In complex space-time this factor scales all of coordinates equally, so it
has no significance for the relationships between these coordinates.
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70



Figure 6.19: The position of the light-beams as the O lamp moves away from OR the lamp

The paravector
�

1
−c′

�

=

�

1
−(c+v) + i c×v
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(6.48)

is singular, so |(c+v) + i c×v|= 1.

In this case, observer A will only see the flash of the lamp placed in his frame OR and will not see the O
lamp, and the light-beam from O lamp reflected from the M mirror will return to the source. Just like in Euclidean
geometry, despite the fact that we are in agreement with the postulate of the constant speed of light. All thanks
to imaginary dimensions, which are not independent of real dimensions, but complement them in such a way
that the calculations balance out.

What is the imaginary component of the path? It is not the real path to be taken, so it is appropriately
called ’imaginary path’. If we look around, we can find an analogy of our example with a well-known physical
phenomenon. Let’s imagine that the light beam is an electric charge, then an observer at point O with
instruments for measuring electric and magnetic fields will measure the electric field of the receding charge but
will not detect a magnetic field, whereas observer A will detect the presence of both electric and magnetic
fields. The magnetic field is the electric field of this charge in the imaginary dimension.

6.6 Discussion

From the examples above, it can be seen that there are no mathematical contraindications to describe
objects in complex space-time in a simply way. The problem is to accept that high velocity space-time is not
real. By observing a single object, we are able to see neither complex space nor complex time. We should look
for interpretations of imaginary spatial components by observing the relations between two mutually moving
objects. We can find the imaginary time component only by examining the issues concerning at least three
objects. But for now it is too early to explain this hypothesis. From the calculations done so far, it is obvious that
the imaginary coordinate components are not independent of their real parts. Although the notation of
transformation in complex space-time seems complicated, it can explain phenomena whose explanation in the
classical STR led to paradoxes. The spatial deformation of the described objects is a consequence of the
variability of time in the Lorentz transformation. In complex space-time, the relativistic transformation does
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not introduce any deformation. It was only in the twentieth century that people began to study phenomena
taking place at speeds close to light, which is why they were beyond their imagination. Real space-time, which
is rigid, is enough to properly describe slow phenomena. Complex space-time seems to be much more flexible
and the description of the observed phenomenon can always be chosen so that it is orthogonal. Describing
relativistic phenomena in real space-time has become very complicated, which rightly creates distrust in many
people. The complex description, although completely foreign, is mathematically very simple, and most
importantly: the relativistic transformations in complex space-time are orthogonal. However, we live and think
in rigid real dimensions, so we should check if there is any way to reduce the complex description to the
observer’s real space-time - a way to project complex phenomena onto the observer’s local real space-time.
We’ll cover this idea in more detail in Chapter 8.
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Chapter 7

Maxwell’s equations

In this chapter, several variants of the relativistic transformation of the wave equation system are
analysed in terms of their application in the electric field theory, from which one variant is selected
for further analysis. Inconsistencies with textbook physics are shown. Hypotheses are formulated on
the Maxwell’s equations and on the possibility of reducing complex orthogonal paravectors to real
velocity paravectors.

Chapter 4 shows that the wave equation can be transformed in four basic ways (4.14)-(4.17), which makes
it possible to take further discussion in different directions. However, we want to remain as close as possible to
the formulas adopted in the electric field theory, so we will only consider equations (4.14) and (4.17) because
only in these cases the wave equation is invariant due to POT and we obtain the magnetic field as a result of
the transformation of the electric field. Looking at the obtained results, we can see that they are not entirely
consistent with the classical theory because the potential and charge density are invariant quantities. For these
two cases, a magnetic field can be interpreted, but something arises that does not exist according to the Lorenz
gauge condition.

The transformation of equations (4.15) and (4.16) results in the invariance of the electric field intensity
(the magnetic field has no mathematical justification!), but we obtain values such as a current density and vector
potential. Also, the Lorenz gauge condition is justified. In order to obtain all the quantities occurring in TEM and
satisfy the condition of invariance of the wave equation, we could multiply the equation (4.14) on the right hand
by V − which, however, would be an artificial move because we would obtain senseless Maxwell’s equations.
Besides, we could do this multiplication with any orthogonal paravector and we would get a mathematically
correct expression, but with no physical sense. For example:

∂ −(V −E) =ρ / ·V −1 hence ∂ −(V −EV −1 ) =ρV −1

Conclusion: In our theory, it is impossible to reconcile the concepts of magnetic field with the current density
in Maxwell’s equations!

Seeing such a drastic difference from the official theory, we could stop the search at this point and do
something else, yet we will continue, curious about the next results. After all, these are just mathematical
considerations. Scientists assume the existence of magnetic charges or superluminal velocities, which so far
could not be determined. Why could we not try to modify the classical theories a bit, while sticking to the
principles? In such a situation, we have no choice but to assume that there is no current density in Maxwell’s
equations. Consequently, we also have to give up the vector potential and the Lorenz gauge condition, which
simplifies the theory very much. However, we are forced to introduce the scalar component of the
intensity-induction 4-vector of the field. To make this task easier, let us note that such assumptions have
historical and intuitive justification:

1. The vector potential was introduced in the search for general solutions to the wave equation when space
seemed to be Euclidean, and only later it was given a physical meaning. In this work we assume that this
structure is unknown. Only at the end will we try to define it.
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2. We chose variants in which there is no vector potential in the field equations, but neither is there current
density in Maxwell’s equations. Looking at the transformation formulas known from STR, we come to the
conclusion that it would not be bad if this was the case, because the charge density should be invariant
just like the charge, since the shape would also be invariant.

3. The Lorenz gauge condition is a purely theoretical assumption used to define the abstract concept of
electric field potential in such a way that the field is described by a wave equation. Since we are starting
from the wave equation and the Lorenz gauge bothers us, we have a legitimate right to omit this
assumption.

4. Experimentally, only the quantities related to the transmitted energy are available, because this is the
information carrier, all other quantities are an abstraction used to build a transparent mathematical
model.

Chapter 1 shows the system of electric field wave equations (1.3). It should be noted that it has a certain
inaccuracy. Namely, the ϕ(t , x) and ρ(t , x) functions have their values at the same t and x, but the source of
this field is in a different time and place. The placement of the same (t , x) arguments for the charge density
and potential functions is inaccurate. In the field equations it should always be specified that the space-time
distanceX= X −X0 is between the source and the place of the given value of the field function, and it should be
the argument, not the place in space-time itself.

The electrostatic field equations have the following form:

∂ ϕ (X−X0) =

�

0
−E (X−X0)

�

and ∂ −
�

0
−E (X−X0)

�

=ρ (X −X0) (7.1)

or

∂ −ϕ (X−X0) =

�

0
E (X−X0)

�

and ∂

�

0
E (X−X0)

�

=ρ (X −X0) , (7.2)

where X0 is the place in space-time at which the source of the field is located, and X is the place where the field
has a value specified by the function. These coordinates are related to each other by the following relationship:

X= X −X0 =

�

t − t0

x−x0

�

=∆t

�

1
c

�

, where |c|= 1 (7.3)

In other words: X is a singular four-vector. In formulas (7.1) and (7.2) the straight letter denotes the coordinates
of the point directly affects by the function value. The above formulas should be understood in the following
way: E(X− X0) is the strength of the field at the point x and at t moment produced by charge ρ (X −X0) located
at the t0 moment and at the point x0. The reader should always remember that the source of the field, as well as
potentials, are spread over the entire space, but the domain is not the coordinates of the points, but their
differences. From the mathematical point of view, only the space-time distance is important, that is the
difference between coordinates as well as the condition that it should be a singular 4-vector.

At this point, further clarifications are needed to explain the notation we use. The 4-vector X = X − X0

should be understood as the difference between the coordinates of points in space-time only when these points
are at rest relative to each other and the observer. In case the points are moving, we will write X = ∆X + i y
and here X is a complex 4-vector. Such a distinction is necessary because everything seems to indicate that the
coordinates of the points do not have imaginary components, while 4-vectors do. For this reason, it should be
borne in mind that time is a quantum quantity and the mathematical structure of the space-time of motion is
not an affine space. To simplify the considerations and facilitate the interpretation of the results, we assume for

the time being that the velocity is described by the velocity paravector, i.e. it has a form of V = 1p
1−v 2

�

1
v

�

.

The field described by the formulas (7.1) transforms according to the transformation X′ = XV (see the
formula (4.14)):
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Table 7.1 Rest frame Moving frame

Charge density ρ(X) ∈R invariant
Field strength E(X) ∈ {0}×R 3 E′(X′V −) =V −E(X′V −) ∈R ×C 3

Potential ϕ(X) ∈R invariant

Potential energy density ϕ(X)ρ(X)
2 ∈R invariant

Field energy density E∗(X)E(X)
2 ∈R+

E′∗(X′V −)E′(X′V −)
2 = E

∗(X′V −)V −V −E(X′V −)
2 ∈R+×R 3

However, field (7.2) transforms according to X′ =V X (see formula (4.17)):

Table 7.2 Rest frame Moving frame

Charge density ρ(X) ∈R invariant
Field strength E(X) ∈ {0}×R 3 E′(V −X′) =V E(V −X′) ∈R ×C 3

Potential ϕ(X) ∈R invariant

Potential energy density ϕ(X)ρ(X)
2 ∈R invariant

Field energy density E(X)E∗(X)
2 ∈R+

E′(V −X′)E′∗(V −X′)
2 = V E(V −X′)E∗(V −X′)V

2 ∈R+×R 3

It is worth noting that the expressions in the above tables were selected in such a way that by inserting them
according to the formulas (7.1) or (7.2) one gets Maxwell equations (modified without the Ampere part!).

First, we select the values from Table 7.2 and substitute them into the formula (7.2)

∂ E0 =

�

∂
∂ t
∇

��

0
E0 (X)

�

=

�

ρ (X)
0

�

(7.4)

Based on formula (4.17), we have Maxwell’s equations in the new frame

∂ ′E′ =
�

∂
∂ t ′

∇′

�

(
1

p
1− v 2

�

1
v

��

0
E0 (V −X′)

�

) =

�

ρ (V −X′)
0

�

,

where
1

p
1− v 2

�

1
v

��

0
E′0

�

=
1

p
1− v 2

�

vE′0
E′0+ i v×E′0

�

=

�

e ′

E′+ i B′

�

,

and ’prime’ means the new coordinates. The modified Maxwell equations follow from the above

�

∂
∂ t
∇

��

e
E+ i B

�

=

�

ρ
0

�

(7.5)

which gives
∂ e
∂ t +∇E = ρ ∇B = 0
∇×B− ∂ E

∂ t = ∇e ∂ B
∂ t +∇×E = 0

Being in the new system, we give up the ’prime’ signs, which helped to precisely describe the mathematical
operations. We will call size e a scalar induction (by analogy to the vector potential) and it is ’the thing’ which,
according to the Lorenz gauge condition, does not exist in the current theory of the electric field. In Tables 7.1 and
7.2, the transformation formulas have real speeds. In the general case, where velocity is described by a complex
orthogonal paravector, the scalar induction is a scalar complex function.

An energy density of the field is:

W =
1

2
EE∗ =

1

2

�

e
E+ i B

��

e
E− i B

�

=

�

e 2+E 2+B 2

2
e E+E×B

�

(7.6)

So, we can write the above equation in the following form:

W =
1

2
EE∗ =

V E0(V E0)∗

2
=

V E0E∗0V ∗

2
=V W0V ∗ (7.7)
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We do the same with the values from Table 7.1 and the formula (7.1).

∂ −
�

0
−E0 (X′V −)

�

=

�

ρ (X′V −)
0

�

(7.8)

Thus, by virtue of (4.14) we get
�

∂
∂ t ′

−∇′

�

(
1

p
1− v 2

�

1
−v

��

0
−E0 (X′V −)

�

) =

�

ρ (X′V −)
0

�

,

where
1

p
1− v 2

�

1
−v

��

0
−E′0

�

=
1

p
1− v 2

�

vE′0
−E′0+ i v×E′0

�

=

�

e ′

−E′+ i B′

�

In paravector form, the modified Maxwell equations are as follows:
�

∂
∂ t
−∇

��

e
−E+ i B

�

=

�

ρ
0

�

, (7.9)

which, after breaking down into ingredients, gives the same formulas as before:

∂ e
∂ t +∇E = ρ ∇B = 0
∇×B− ∂ E

∂ t = ∇e ∂ B
∂ t +∇×E = 0

and the energy density

W =
1

2
E∗E=

1

2

�

e
−E− i B

��

e
−E+ i B

�

=

�

e 2+E 2+B 2

2
−e E+E×B

�

(7.10)

In Chapter 3 it was showed that the equations (7.5) and (7.9) are equivalent to each other. Above, it has
been confirmed once again, so in order not to complicate our reasoning, we will follow the equations described
in Table 7.2. It should be noted that the conventionally obtained equations, corresponding to Maxwell’s ones,
do not contain current density(!). We will return to this difference from the classical theory in Chapter 9, where
it will be shown that the revised Maxwell’s equations also describe the electromagnetic field well. Interpretation
of the obtained formulas is like wandering around blindfolded and composing in your head an image of a room
after accidentally touching some objects. One has to come back to the same place many times to create an image
of the room in their mind.

Let’s go back to the field around stationary charges (7.2). The strength of this field, seen from the frame
moving at the speed of −v, is described by the function:

E
�

V −X′
�

=
1

p
1− v 2

�

1
v

��

0
E (V −X′)

�

(7.11)

The field’s energy density is E′E′∗/2, that is

W
�

V −X′
�

=
1

2 (1− v 2)

�

1
v

��

0
E (V −X′)

��

0
E (V −X′)

��

1
v

�

=
E′2

2 (1− v 2)

�

1+ v 2

2v

�

(7.12)

The product of the electric field strength four-vectors is a scalar, so it can be factored out of the product of the
velocity paravectors.

For now, the transformations CRT described by the real paravector, which was interpreted as velocity,
were considered. But, which is easy to check, as a result of a composition of such paravectors (velocity
composition) we obtain paravectors including the complex components which represent paravector
orthogonal transformations (POT).

For the composed velocity represented by the orthogonal paravector Λwe have:

W =
1

2
Λ

�

0
E

��

0
E

�

Λ∗ =
E2

2
ΛΛ∗ (7.13)
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Looking at the equations (7.12) and (7.13), one can find a way to reduce any orthogonal paravector representing

a compound velocity to the real velocity paravector V = 1p
1−v 2

�

1
v

�

, which we called a realisation. In the next

chapter this will be explained in detail.
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Chapter 8

Realisation of the orthogonal paravector to
the real velocity paravector

The misleading impression that space-time is real results from two facts: 1) the information carrier is
energy that is always real; 2) a space-time is real locally in any observer’s frame. This chapter shows
how the complex space-time phenomena can be seen by the observer in his/her real coordinate
system. The concept of the realisation of the complex orthogonal paravector, which represents a
compound (complex) boost, to the form of the real velocity paravector has been introduced on the
basis of energy equivalence. Mathematical properties of realisation are examined here, and an
attempt is made to apply realisation to describing states of physical objects. The possibility of
realisation of scalar coordinates only is shown, too.

So far, the transformations described by the real paravector, interpreted as velocity, have been
considered. As we know, as a result of the multiplication of such paravectors (velocity composition) we obtain
complex paravectors. By acting with a complex orthogonal paravector on real coordinates, we obtain complex
time. Since no interpretation for the imaginary time component could be found, the idea arose that since
energy as a product of interconnected quantities is real, there should be a way to reduce the complex velocity to
its real form, so that the energy remains the same regardless of the notation.

People experience the world around them through received energy stimuli. What they hear is the energy
of the sound waves received by their ears. They see that their eye receptors receive the energy of electromagnetic
waves. It works similarly with heat or touch. The same applies to laboratory tests. Measuring instruments record
a piece of energy proportional to the tested quantity, strengthen it and transform it into information. The only
information carrier is energy, and this is always real. This gives us the impression that the surrounding world is
real (in the mathematical sense). As a result of the above considerations a doubt arises: is not the World perhaps
more compound than we think?

8.1 Realisation, that is a projection of phenomena from the complex
space-time onto the real space-time of the observer

We hypothesize that even if the description of relativistic phenomena was complex, there should be some
way of ’projecting’ it onto the real space available to our cognition. We have termed this ’projection’ of complex
paravectors onto real space-time realisation.

As it was shown in the previous chapter, the electric field strength seen from a car moving at speed −v is

E
�

V−X
�

=
1

p
1− v 2

�

1
v

��

0
E (V−X)

�

(8.1)
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The proper energy density of this field is EE∗/2, or

W
�

V−X
�

=
1

2
V

�

0
E (V−X)

��

0
E (V−X)

�

V ∗ =
E2 (V−X)
2 (1− v 2)

�

1+ v 2

2v

�

(8.2)

We shifted the electric field energy density (of the stationary charges) as a scalar before the product of the velocity
paravectors. For a complex velocity represented by a complex orthogonal paravector Λ= Γ |Γ |−1 we have

W
�

Λ−X
�

=
1

2

Γ

|Γ |

�

0
E (Λ−X)

��

0
E (Λ−X)

�

Γ ∗

|Γ |
=

E2 (Λ−X)
2

Γ Γ ∗

detΓ
(8.3)

As it appears from the formula (8.2) the energy density 4-vector of the field coming from the charge in-motion
is the product of scalar energy density of a rest field and the V V ∗ paravector associated with the motion. If we
inserted any other orthogonal paravector in place of V , the value of energy density would not change if

V V =ΛΛ∗ =
Γ Γ ∗

detΓ
(8.4)

We arrive at a similar result when we take the formula for mechanical energy (3.32) and instead of the velocity
paravector we insert any orthogonal paravector Λ

�

E
p

�

=
m0

2
ΛΛ∗ =

m0

2
V V (8.5)

Definition 8.1.1. We call the (right) realisation of any orthogonal paravector the transformation that assigns

to it the velocity paravector V= 1p
1−v 2

�

1
v

�

according to the following relation

�

�

�

�

Γ

|Γ |
:=V ⇐⇒ VV=

Γ Γ ∗

detΓ
(8.6)

Definition 8.1.2. We call the left realisation of any orthogonal paravector the transformation that assigns to it

the velocity paravector V= 1p
1−v 2

�

1
v

�

according to the relation

Γ

|Γ |

�

�

�

�

:=V ⇐⇒ VV=
Γ ∗Γ

detΓ
(8.7)

As it is not difficult to show for the paravector Γ
|Γ | =

1p
a 2−b 2+c 2−d 2

�

a + i d
b+ i c

�

the left realisation is the transformation:

Γ

|Γ |

�

�

�

�

=
1

p
1− v 2

�

1
v

�

where v=
a b+d c−b× c

a 2+ c 2
, (8.8)

and in accordance with the right realisation it is

v=
a b+d c+b× c

a 2+ c 2
. (8.9)

Then, in both cases

v 2 =
b 2+d 2

a 2+ c 2
. (8.10)

Proof. We start from the definition 8.1.2

1

1− v 2

�

1
v

��

1
v

�

=
1

a 2− b 2+ c 2−d 2

�

a − i d
b− i c

��

a + i d
b+ i c

�
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The above equality is transformed into the form of:

1+ v 2

1− v 2

�

1
2v

1+v 2

�

=
1+ b 2+d 2

a 2+c 2

1− b 2+d 2

a 2+c 2





1
2 a b+d c−b×c

a 2+c 2

1+ b 2+d 2

a 2+c 2





So, if we assume that v= (a b+d c−b× c)/(a 2+ c 2), then we can check that v 2 = (b 2+d 2)/(a 2+ c 2).

For formality’s sake, we have to check that v 2 < 1.

Proof.

From the equation (8.10) it follows that v 2
�

a 2+ c 2
�

= b 2+d 2

Subtracting a 2+ c 2 from both sides of the above equation and dividing the result by a 2+ c 2 we get

v 2−1=
−a 2+ b 2− c 2+d 2

a 2+ c 2
,

hence

v 2 = 1−
a 2− b 2+ c 2−d 2

a 2+ c 2

Since the paravector Γ is proper (i.e. a 2−b 2+ c 2−d 2 > 0) and a 2−b 2+ c 2−d 2 < a 2+ c 2, on the right of the last
equality we have a real non-negative number which is less then one.

To facilitate remembering, in which case we write the ’-’ sign before the vector product, and in which case
’+’, we give the following rule:

• the underscore is directed towards negative numbers (left) for the left realisation and before the vector
product we write the ’-’ sign,

• the underscore is directed towards the right (positive numbers) for the right realisation and before the
vector product we write the ’+’ sign.

Orthogonal paravectors are equivalent if they realise to the same velocity paravector. So we can create
equivalence classes in the set of orthogonal paravectors because of the realisation. We choose the velocity
paravector (V ) as a physically interpretable representative of each class.

Let us get back to the definition of the left realisation

1

1− v 2

�

1
v

��

1
v

�

=
1

a 2− b 2+ c 2−d 2

�

a − i d
b− i c

��

a + i d
b+ i c

�

(8.11)

1

1− v 2

�

1+ v 2

2v

�

=
1

1− b 2+d 2

a 2+c 2

�

1+ b 2+d 2

a 2+c 2

2 a b+d c−b×c
a 2+c 2

�

Since v 2 = (b 2+d 2)/(a 2+ c 2), then we reduce the factors and we obtain
�

1+ v 2

2v

�

=

�

1+ b 2+d 2

a 2+c 2

2 a b+d c−b×c
a 2+c 2

�

In view of the above, we can extend the definition of the realisation onto singular paravectors and we can define
their left and right realisations

Ω| :=
�

1
r u+s w−u×w

r 2+w 2

�

|Ω :=

�

1
r u+s w+u×w

r 2+w 2

�

(8.12)
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where

Ω=

�

r + i s
u+ i w

�

and r 2−u 2+w 2− s 2 = 0

As a result of the realisation of the complex paravector representing the compound speed of light, we obtain the
real vector of the speed of light

c=
r u+ s w−u×w

r 2+w 2
=

r u+ s w−u×w

s 2+u 2
(8.13)

8.2 Properties of realisation

Theorem 8.2.1. Let Λ be an orthogonal paravector, that is

Λ=
1

p
a 2− b 2+ c 2−d 2

�

a + i d
b+ i c

�

and a d = bc, (8.14)

then the realisation of the orthogonal paravector has the following properties:

1. |Λ− = Λ|− or (|Λ )− = Λ−|

2. |Λ∗ = Λ| or Λ∗|= |Λ

3. Λ|Λ = Λ|Λ or |ΛΛ=ΛΛ|

4. Λ1Λ2|= |Λ2Λ1

5. For any orthogonal paravector Λ1Λ2|= Λ1|Λ2

�

�

�

Note! The order of realisation is important. First we realise the ’earlier’ paravectors (with a lower index)
and then the next ones towards the ’last’ one. If the indexes grow from left to right, then we use the left
realisation; if they grow from right to left, then we use the right realisation 1.

Thus for the right realisation we have |Λ2Λ1 =
�

�

�Λ2|Λ1

6. For any orthogonal paravector
Λ1|= Λ2| if and only if (Λ1,Λ2〉∗ = (Λ1,Λ2〉−

|Λ1 = |Λ2 if and only if 〈Λ1,Λ2)
∗ = 〈Λ1,Λ2)

−

It follows that if Λ1|= Λ2|, then the integrated product (Λ1,Λ2〉 is the unitary paravector, and in case of the
right realisation, the left integrated product is a unitary paravector.

7.
�

Λ, Λ|
�

= 1p
a 2+c 2

�

a
i c

�

�

Λ|,Λ
�

= 1p
a 2+c 2

�

a
−i c

�

So, the integrated product of any orthogonal paravector and its left realisation gives a unitary paravector.

8. In the general case, the realisation of the orthogonal paravector does not preserve a scalar product, which
means that realisation is not an orthogonal transformation, but it preserves the parallelism.

9. The realisation preserves the scalar product of the vigors of orthogonal paravectors, i.e.
�

vigΛ1|, vigΛ2|
¶

=
�

vigΛ1, vigΛ2

�

(8.15)

10. 1
a 2+c 2

�

a
−i c

�

Λ|
�

a
i c

�

= 1
a 2+c 2

�

a
i c

�

Λ|
�

a
−i c

�

= |Λ

1Such particular order of increasing the value of the index results from the following reasoning:
The phase difference V −X after passing to the frame moving at the speed of −v1 has the form of V −V −1 X

′, where X ′ = V1X. After the
realisation of compound boost, the last phase will have the form of V −r e a lXr e a l = V −Λ−1Λ

−
2

�

�Xr e a l , that is Vr e a l = |Λ2Λ1V
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11. For any rotation it is true that

R−ΛR
�

�=R−Λ|R where R =
1

p
r 2+ s 2

�

r
i s

�

Proof.

1.
�

|Λ−
�

V
= a (−b)+d (−c)+(−b)×(−c)

a 2+c 2 =− a b+d c−b×c
a 2+c 2 =
�

Λ|−
�

V

2.
�

|Λ∗
�

V
= a b+d c−b×c

a 2+c 2 =
�

Λ|
�

V

3. Use the definition of realisation and perform calculations.

4. Λ1Λ2|=V ⇐⇒ (Λ1Λ2)
∗ (Λ1Λ2) =VV

VV=Λ∗2Λ
∗
1Λ1Λ2 =
�

Λ2Λ1Λ
∗
1Λ
∗
2

�∗

and since we have a real paravector in parentheses, so
�

Λ2Λ1Λ
∗
1Λ
∗
2

�∗
=Λ2Λ1Λ

∗
1Λ
∗
2 =Λ2Λ1 (Λ2Λ1)

∗ ⇐⇒ V= |Λ2Λ1

5. Λ1Λ2|=V ⇐⇒ (Λ1Λ2)
∗ (Λ1Λ2) =VV ⇐⇒ Λ∗2Λ

∗
1Λ1Λ2 =VV

and since Λ∗1Λ1 =V1V1, then Λ∗2V1V1Λ2 =VV,

that is (V1Λ2)
∗ (V1Λ2) =VV ⇐⇒ V1Λ2|=V ⇐⇒ Λ1|Λ2

�

�

�=V

6. (Λ1,Λ2〉∗ = (Λ1,Λ2〉− ⇐⇒
�

Λ1Λ
−
2

�∗
=
�

Λ1Λ
−
2

�− ⇐⇒
Λ−∗2 Λ

∗
1 =Λ2Λ

−
1 ⇐⇒ Λ∗1Λ1 =Λ∗2Λ2 hence Λ1|= Λ2|

7. The reader should substitute appropriate quantities into the definition of the integrated product and
perform calculations.

8. We check what the integrated product will look like
�

Λ1|, Λ2|
¶

.

(Λ1,Λ2〉 = Λ1Λ
−
2 = Λ1Λ1|−Λ1|Λ2|−Λ2|Λ−2 =

�

Λ1, Λ1|
¶�

Λ1|, Λ2⌋
¶�

Λ2, Λ2|
¶−

which shows that realisation does
not preserve integrated products.

9. Use the definition of vigor, the definition of an integrated product, and the definition of realisation.
�

vigΛ1|, vigΛ2|
¶

= (V1V1)(V2V2)− = (Λ1Λ
∗
1)(Λ2Λ

∗
2)
− =
�

vigΛ1, vigΛ2

�

If the integrated product is preserved, then the dot product must, of course, also be preserved.

10. Use property 7.

11. If R = 1p
r 2+s 2

�

r
i s

�

, then

R−ΛR
�

� R−ΛR
�

�= (R−ΛR )∗(R−ΛR ) =R−Λ∗R R−ΛR =R−Λ∗ΛR = (R−Λ|R )(R−Λ|R )
Since the first and the last expressions are the products of the same two real velocity paravectors, property
11 has been proved.

Theorem 8.2.2. Any orthogonal paravector Λ = 1p
a 2−b 2+c 2−d 2

�

a + i d
b+ i c

�

can be presented unambiguously as

product
1

p
12− v 2

1
p

a 2+ c 2

�

1
v

��

a
i c

�

or
1

p
12−w 2

1
p

a 2+ c 2

�

a
i c

��

1
w

�
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Proof.

Suppose there are two different v vectors which satisfy the condition

1
p

1− v 2

1
p

a 2+ c 2

�

1
v

��

a
i c

�

=Λ,

then it would have to be

1
Æ

1− v 2
1

1
Æ

a 2
1 + c 2

1

�

1
v1

��

a1

i c1

�

=
1
Æ

1− v 2
2

1
Æ

a 2
2 + c 2

2

�

1
v2

��

a2

i c2

�

Hence
1
Æ

1− v 2
2

1
Æ

1− v 2
1

�

1
−v2

��

1
v1

�

=
1
Æ

a 2
1 + c 2

1

1
Æ

a 2
2 + c 2

2

�

a2

i c2

��

a1

−i c1

�

From the real vector part, one can see that the vector v1 must be equal to v2.

The same goes for the second case.

The phase and space-time intervals realise as follows:

Theorem 8.2.3. For each orthogonal paravector Λ= 1p
a 2−b 2+c 2−d 2

�

a + i d
b+ i c

�

Λ−X= Λ|−X′ where X′ =
1

p
a 2+ c 2

�

a
−i c

�

X

Proof.

Λ−X= Λ|−Λ|Λ−X= Λ|−
�

Λ|Λ
�

X

hence by the theorem 8.2.1.7 we obtain real coordinates

X′ =
1

p
a 2+ c 2

�

a
−i c

�

X

Theorem 8.2.4. Each special orthogonal paravector can be shown as a combination of velocity paravectors.

Proof.

Let Λ= 1p
a 2−b 2+c 2−d 2

�

a + i d
b+ i c

�

= 1p
1−v 2

1

�

1
v1

�

1p
1−v 2

2

�

1
v2

�

1p
1−v 2

3

�

1
v3

�

It follows from theorem 8.2.1.7 that

Λ|
1

p
a 2+ c 2

�

a
i c

�

=
1
Æ

1− v 2
1

�

1
v1

�

1
Æ

1− v 2
2

�

1
v2

�

1
Æ

1− v 2
3

�

1
v3

�

hence
1

p
a 2+ c 2

�

a
i c

�

= Λ|−
1
Æ

1− v 2
1

�

1
v1

�

1
Æ

1− v 2
2

�

1
v2

�

1
Æ

1− v 2
3

�

1
v3

�
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When examining the properties of realisation, it is worth noting that:

1. The velocity paravector realises to itself. |V = V|=V

2. The realisation of the paravector representing the Euclidean rotation is equal to 1.
�

�

�

�

�

cosα
i c sinα

�

=

�

cosα
i c sinα

��

�

�

�

= 1

or
�

Λ, Λ|
��

�=
�

�

�

Λ, Λ|
�

= 1

3. The Euclidean rotation can be formulated as below:
�

Λ, Λ|
�

X
�

Λ|,Λ
�

4. By writing

�

i d
b

��

a
i c

�−1

=

�

0
a b+d c+b×c

a 2+c 2

�

in the scalar part we see the condition for the paravector to be proper, and in the vector part we get the
realised velocity vector.

8.3 Attempts to apply realisation

The concept of realisation of the state paravector was introduced because no interpretation of
imaginary scalars was found in real space-time, so only the possibility of complex multiplication of two real
state paravectors was allowed for the phase. On the other hand, it seems obvious that energy, as a product of
conjugated paravectors, must be a real quantity. In a complex space, if velocity were complex, the kinetic
energy would have to depend on the product of mutually conjugated orthogonal paravectors. Testing this
hypothesis showed promising results. However, more detailed research shows that the concept of realisation of
an orthogonal paravector may only apply to a single physical object. It is impossible to describe in this way
many objects that are in motion towards each other and towards the observer, because realisation is not an
orthogonal transformation and it deforms space. Realisation, however, preserves the parallelism of the
paravectors and their vigors, which makes it similar to projection. And, most interestingly: realisation
preserves the scalar product of the paravector vigors (e.g. the energy paravector).

8.3.1 Spherical explosion

As a result of an explosion of a point material object, particles fly away evenly in all directions at
a relativistic w velocity. In the experimenter’s frame, the equation of motion of a single particle has the
following form:

1
p

1−w 2

�

1
−w

��

∆t
∆x

�

=

�

∆t 0

0

�

The same equation at the frame of the observer moving at -v velocity looks in the following way:

1
p

1−w 2

1
p

1− v 2

�

1
−w

��

1
−v

��

∆t ′

∆x′+ i y′

�

=

�

∆t 0

0

�

The resultant velocity is:

Λ− =
1

p
1−w 2

1
p

1− v 2

�

1+wv
−w−v+ i w×v

�

(8.16)
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The realised vector of this velocity is:

Λ−|=−w′ =
−(1+wv)(w+v) + (w+v)× (w×v)

(1+wv)2+ (w×v)2
(8.17)

If the variable parameter here is the particle flight direction (direction of vector w relative to v), then on the XOY
plane the real vector will have the following coordinates:

w ′x =
v (1+w 2) + (1+ v 2)w cosα

1+2v w cosα+ v 2w 2

w ′y =
(1− v 2)w sinα

1+2v w cosα+ v 2w 2

For the calculations, we take two cases: (w= 0.7 and v= 0.7) and (w= 0.4 and v= 0.8), whileα is the angle
between the w and v vectors.

Figure 8.1: A realised image of the explosion front as seen from a rocket speeding at v velocity

As can be seen, the image of the sphere is a sphere. However, we encounter problems when we have to
describe the movement of particles with an elastic rebound.

8.3.2 Elastic collision

Let us imagine an experiment: In the center of the bubble (laboratory), a spherical explosion occurs, the
front of which propagates concentrically with the relativistic velocity of w < c , and then returns to the center
after an elastic rebound from the wall. Knowing the equation of the particle motion in the laboratory frame, one
should describe the particle trajectory in the observer’s frame moving in relation to the laboratory.

The realised velocity of the particle towards the wall is represented by the formula (8.17). After the
rebound, the realised velocity will be described by the same formula but will change the sign of the vector w.

w′2 =
(1−wv)(−w+v) + (−w+v)× (w×v)

(1−wv)2+ (w×v)2
(8.18)

The whole way of the particle is∆x=w′∆t +w′2∆t = (w′+w′2)∆t

Now, we will check what the realised movement looks like of a particle whose speed w is perpendicular
to the speed v.

w′+w′2 = 2
v−w× (w×v)

1+w 2v 2
= 2v

1+w 2

1+w 2v 2
> 2v

Since an outside observer sees that the center has shifted on 2v∆t at this time, s/he calculates that the particle
will pass the center of the laboratory. Thus, the use of realisation does not give a satisfactory image of the
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described experiment. In fact, this could be expected because, as previously shown, realisation does not
preserve the dot product. But for the sake of comfort, let us see what the same experiment looks like in the
current theory.

8.3.3 Limited use of realisation

Let’s imagine an experiment: In the center of a spherical laboratory there is an explosion, the front of
which propagates concentrically with a relativistic velocity w < c , and then, after elastic reflection from the wall,
returns to the center. Knowing the equation of the particle trajectory in the laboratory frame, we need to describe
the real trajectories of the particles in the observer’s frame moving with velocity -v relative to the laboratory.

The realisated velocity of the particle moving towards the wall is given by the formula (8.17). After
rebound, the realisated velocity will be described by the same formula, but the vector w will change sign.

w′2 =
(1−wv)(−w+v) + (−w+v)× (w×v)

(1−wv)2+ (w×v)2
(8.19)

The entire path of the particle is∆x=w′∆t1+w′2∆t2

Now we will check what the realistic picture of the motion of a particle whose velocity w is perpendicular
to the velocity v looks like.

w′+w′2 = 2
v−w× (w×v)

1+w 2v 2
= 2v

1+w 2

1+w 2v 2
> 2v (8.20)

Since the same observer sees that the center has moved along the path 2v∆t during this same time,
according to his calculations, the particle will pass the center of the laboratory. Using the realisation does not
provide a satisfactory picture of the described experiment. To tell the truth, this could be expected, because as
previously shown, the realisation does not preserve the scalar product. After this unpromising introduction, we
will try to graphically interpret the above experiment.

In the laboratory, the experiment looks the same as in the figure ??. To make the images comparable, the
same parameters were substituted into the formulas, i.e. w = 0.4 and v = 0.8. In the moving frame, the particle
trajectories have a common beginning at the moment of explosion and a common end after returning to the
center. The distance between the explosion and the end point is the same as in the case of the experiment
discussed in Chapter 7.4, because the velocity paravector realises to itself. The velocity vectors of the particles
before and after reflection are given by (8.17) and (8.19). The reflection points are located at the intersection of
the corresponding lines. The above figure shows that the real phenomenon of particle reflection from the

Figure 8.2: A realisated explosion front ’viewed’ from a rocket traveling at speed of 0,8

laboratory wall is stretched in time and space. In addition, it is not precisely defined, which results from the
fact that realisation is a non-orthogonal transformation. We conclude from this that realisation may have
limited application to the physical description of individual objects and should rather not be used in
confrontation with other objects in geometry. Looking at the above figure, a similarity to a photograph taken
from a tripod is obvious. The figure 8.2, just like a photo of a moving vehicle taken from a tripod, is blurred and
stretched along the direction of movement. When we put the figures 6.12 - 6.17 together (fig. 8.3), the image of
the phenomenon is precise and it is clearly visible that the particles hit the same points of the laboratory wall in
both frames. This image corresponds to a photograph taken ’hand-held’, when the observer follows the
photographed object with the lens.
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Figure 8.3: Image of the real part of the same experiment in complex space-time

8.4 Realisation of time

Space-time phenomena are inherently related to movement, i.e. a change of position in time. Time,
although added as a fourth dimension to the 3-dimensional Euclidean space, does not fit into geometric
concepts for one fundamental reason: Time does not stand still, but moves steadily in one direction. The
properties of time are fundamentally different from those of geometric space. In order not to lose the basic
property of time, which is dynamics, we assume that the time-line is not composed of points (moments), but of
segments (intervals). This, in turn, implies the next assumption that space-time is not an affine space but
a vector one. Such a general approach leads to the conclusion that the ordering of space-time phenomena in
terms of place and time is limited in scope. So time could be a complex quantity. However, when introducing
an observer (which mathematically means that we are introducing an affine space), the phenomena in his
frame must be ordered in terms of his real time. Due to problems with fitting the complex theory into the real
space-time of the observer, we compromise and now modernize our hypothesis. We assume that the space of
motion is complex, and only the time in the observer’s frame must be real.

Below we repeat the reasoning from the beginning of this chapter, but with the assumption that in the
complex space velocity will be represented by a complex vector. So, we have:

1

1− v 2+u 2

�

1
v− i u

��

1
v+ i u

�

=
1

a 2− b 2+ c 2−d 2

�

a − i d
b− i c

��

a + i d
b+ i c

�

(8.21)

From above we get the system of equations:

1+ v 2+u 2

1− v 2+u 2
=

a 2+ b 2+ c 2+d 2

a 2− b 2+ c 2−d 2
(8.22)

v−v×u

1− v 2+u 2
=

a b+d c−b× c

a 2− b 2+ c 2−d 2
(8.23)

There is also a third condition: since the new complex velocity paravector must also be orthogonal, the vectors
must satisfy the following condition vu= 0. From the equation (8.22) we calculate that

v 2 =
�

1+u 2
� b 2+d 2

a 2+ c 2

After substituting (8.23) into the vector equation, we get

v−v×u

1+u 2
=

a b+d c−b× c

a 2+ c 2
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Together with the condition vu= 0, we can present the above equation in the form of a parawector equation

1

1+u 2

�

0
v

��

1
i u

�

=

�

0
a b+d c−b×c

a 2+c 2

�

Hence, it is easy to calculate the vector v

v=
a b+d c−b× c

a 2+ c 2
+

a b+d c−b× c

a 2+ c 2
×u and u⊥

a b+d c−b× c

a 2+ c 2
(8.24)

We have not obtained a unique solution to the equation (8.21). Let’s take the vector u as a parameter. We
can see that if we choose the zero vector u, the problem boils down to the realisation considered at the beginning
of the current chapter. However, we have some freedom here and we can choose u in such a way that the real
velocity vector v takes the values that we are satisfied with.

Admittedly, the vector v can be longer than 1 because v2 = (w+w×u)2 =w 2(1+u 2), where
w= (a b+d c−b×c)/(a 2+ c 2), but it is only a real component, so in the complex space there is no contradiction
with the assumption of the maximum speed of light. The velocity vector of light, of course, also can be a complex
vector.

Example: A particle is moving at a compound velocity V =V1V2.

V =
1
Æ

1− v 2
1

1
Æ

1− v 2
2

�

1
v1

��

1
v2

�

=
1
Æ

1− v 2
1

1
Æ

1− v 2
2

�

1+v1v2

v1+v2+ i v1×v2

�

V −X′ =
1

p
1− v 2+u 2

�

1
−v− i u

��

∆t ′

∆x′

�

=

�

∆t 0

0

�

, (8.25)

where v= v1+v2
1+v1v2

and u= v1×v2
1+v1v2

.

Since the proper time is a real quantity, and we want the time in the primed frame to be real as well, after
extracting∆t ′ we get

∆t ′
p

1− v 2+u 2

�

1
−v− i u

��

1
v′

�

=∆t 0

�

1
0

�

From where, after transferring the velocity paravector V to the opposite side of the equality, we get

∆t ′
�

1
v′

�

=
∆t 0

p
1− v 2+u 2

�

1
v+ i u

�

The observer in the primed frame describes the object in primed coordinates in primed time, so we have to try
to transform the (8.25) equation so that the way is traditionally a function of time. From the equation (8.25) one
can also see that∆x′ must be a complex vector.

∆x′ = (v+ i u)∆t ′

When the observer relocates to the frame moving at the speed−v3 and he wants to realise the time only, then the
resultant speed will be determined by the paravector

1
Æ

1− v 2
1

1
Æ

1− v 2
2

�

1
v1

��

1
v2

�

�

�

�

�

�

1
Æ

1− v 2
3

�

1
v3

�

=
1

p
1−w 2

�

1
w

�

1
Æ

1− v 2
3

�

1
v3

�

=
1

p
1− v 2+u 2

�

1
v+ i u

�

8.5 Discussion

In this chapter we have shown that the complex orthogonal paravector characterizing the velocity of an
object in the complex space-time can always be reduced to the form of a real velocity paravector (3.3) in the
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observer’s space-time. We can also present it in the form such that the scalar component is one and the vector is
complex. This is not a disadvantage. On the contrary, it gives us a lot of possibilities for interpretation. Certain
analogies arise here with the description of motion in Euclidean space. If we describe a rectilinear motion of a
single object, the easiest way is to choose a coordinate system consistent with the direction of motion. We then
have motion in 1-dimensional space. In the case of two objects, if we choose the frame assigned to one of the
objects in the same way, then the motion of the other decomposes into components parallel and perpendicular
to the motion of the first one. In the complex world, the axis to which we compare it is the observer’s time. Here,
to describe the motion of one or two objects, one can choose such a frame of reference that the time is real.
Unfortunately, it is no longer possible to describe three or more objects moving in different directions. The time
of one of the objects must have an imaginary component. It does not matter for energy paravectors (which is a
vigor), because regardless of the frame of reference they are always real, but as shown in the theorem 8.2.1.9 the
dot product between these paravectors is preserved. Realisation, as well as projection, maintains the relation of
parallelism. Realisation, despite the disadvantage of non-orthogonality, has a great advantage: it gives positive
time, which is a mathematical confirmation of the fact that a time of the physical objects never goes backwards.
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Chapter 9

Electric field

In this chapter, the transformation of the electric field strength 4-vector around a point charge is
analysed. After transforming Gauss’s law, slightly changed Maxwell’s equations are obtained. Based
on the hypothesis put forward in the previous chapter, it is shown that in complex space-time the
vector potential and the Lorenz gauge condition have no mathematical justification. A new quantity:
a scalar induction, is introduced in their place.

In the previous chapters we showed what the idea of complex relativistic transformations is and that they
do not contradict the postulates of the current theory of relativity. Since the postulate of a constant velocity of
light results from the invariance of the wave equation, it is essential to check what the consequences of complex
transformations are for the theory of electricity. In this chapter we return to the theory of electricity and deal with
the 4-vector transformation of the electric field strength around a point charge moving in a relativistic uniform
motion. To be closer to the formulas known from the classical theory of electric field, we assume that the phase
is the product of real state paravectors, and velocity is represented by the paravector which we called the velocity
paravector (3.3) in Chapter 3.

9.1 The field surrounding a point charge

The coordinates of an inertly moving object in the real observer frame are presented in the form of
a paravector equation

X0 =V −X or ∆t0 =V −(X −X0) (9.1)

The potential of an electric field with spherical symmetry around a stationary charge placed at point X0

is described by the function

ϕ (X −X0) =
1

r0
q (C − (X −X0)), (9.2)

where C is a singular paravector, e.g C =

�

1
c

�

. With in-phase compliance (|X|= 0), the following is the case:

X= X −X0 =

�

t − t0

x−x0

�

=

�

r
r

�

, where r = |r| . (9.3)

The expression r −1q (C −(X −X0)) is a scalar function with the value q/r spanned on coordinates implicit in phase
C −(X −X0). Point X0 is interpreted as the location in time and space of the q charge being the source of the field.
From the equation (9.3) it follows that r= x−x0 = c(t − t0) = c∆t 0.

In Chapter 7, we chose the wave equation system for consideration, in which the potential is an invariant
scalar function. The denominator r can only be viewed as a distance by an observer stationary with respect to
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the charge. The space-time distance from the payload is the argument (X). We wrote r , but remember that the
value in the denominator is the length of the vector r only in the payload frame, not in every other frame, because
the vector r is not invariant. So it is better to interpret r =∆t as the phase lag and c= r/r as the phase direction.

The situation is different with the field strength, because it is no longer invariant. It should be
remembered that the value of r in the formula describing the field strength, as in the formula for potential,
remains unchanged, because it is a field parameter that can be associated with the distance from the source,
but only on the condition that the source is at rest or at most it moves at a non-relativistic speed. Otherwise,
r is a factor that affects the value of the field in inverse proportion to the charge.

In the frame of a field source, the electric field strength at point X from the charge placed at point X0 is
described by the formula:

E=−∇
1

r
q
�

C − (X −X0)
�

=
r

r 3
q
�

C − (X −X0)
�

=
c

r 2
q
�

C − (X −X0)
�

(9.4)

The relative position of an inertly moving object in the real observer frame is presented in the form of a paravector
equation

X0 =V −X that is ∆t 0 =V −(X −X0) (9.5)

When passing to a moving frame, the field’s strength is transformed

∂ −
�

ϕ(C − (X −X0))
0

�

=

�

0
E(C − (X −X0))

�

−→ (9.6)

−→ V −∂ ′−
�

ϕ ((V C )−X′)
0

�

=

�

0
E ((V C )−X′)

�

.

Hence, in a frame that moves at speed - v, based on the dependence (9.6), the 4-vector of the field strength takes
the following form:

�

e ′

E′

�

=
1

p
1− v 2

�

1
v

��

0
c

r 2 q (C ′−X′)

�

, (9.7)

whereX′ specifies a new space-time distance from the source of the field, and we replaced the product V C with
a paravector C ′.

The last formula shows that:

- a scalar induction (introduced in Chapter 7, replacing the vector potential and Lorentz gauge condition) is

e
�

X′
�

=
vc

r 2
p

1− v 2
q (C ′−X′) (9.8)

- an electric field strength is

E
�

X′
�

=
c

r 2
p

1− v 2
q (C ′−X′) (9.9)

- a magnetic induction is

B
�

X′
�

=
v× c

r 2
p

1− v 2
q (C ′−X′) (9.10)

where r is the phase delay and c is the phase direction (a unit vector). The resulting equations describe the field
of a moving point charge.

Now let’s have a look at the relationship between the above equations and Maxwell’s equations. In the
complex model, the electrostatics equations ∂ E=ρ transformed under the relativistic transformation have the
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following form:

∂ vE

∂ t
+∇E = ρ
p

1− v 2 (9.11)

∇ (v×E) = 0 (9.12)
∂ (v×E)
∂ t

= −∇×E (9.13)

∂ E

∂ t
+∇(vE) = ∇× (v×E) (9.14)

Introducing B = v × E we can see that the equations (9.12) and (9.13) do not differ from the known Maxwell
equations. For the speed v ≪ c the equation (9.11) also takes a familiar form. However, the dependency (9.14)
does not follow the valid theory. Let’s discuss this equation.

9.2 The field surrounding a wire

At first, we’ll calculate the value of the product vE at any point in space in case of a field resulting from
the flow of current in a closed circuit, because we deal with such currents in practice.

Figure 9.1:

The scalar induction from the specified slice is:

d e (P ) = vd E(P ) =ρ
�

vr/r 3
�

(sd l) ,

which gives d e (P ) = ρ
�

vs/r 3
�

(rd l) ,

because v ∥ d l, which is the cosine of the angle between vectors s and d l, is the same as between vectors s and v
and the same goes for the vector r. Since svρ = J is the circuit current, the scalar induction e (P) at any point P
from the entire circuit is:

e (P ) = J

∮

r

r 3
d l= J

∫∫

∇×
r

r 3
d s= 0 (9.15)

Conclusion 9.2.1. In the case of a field resulting from the current flowing in a closed circuit, the scalar field
component is equal to 0 at any place of the space.
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The above result is important because it shows and confirms that in practice we do not encounter scalar
induction, because in macroscopic systems we always deal with closed current circuits. So, the equations (9.11)
- (9.14) take the following form:

∇E = ρ
p

1− v 2 (9.16)

∇B = 0 (9.17)
∂ B

∂ t
= −∇×E (9.18)

∂ E

∂ t
= ∇×B (9.19)

Biot-Savart law.

We assume that the conductor has a constant cross-section and that the charge density is constant along
the length of the conductor.

Figure 9.2:

At any point in space, we integrate the fields of charges flowing at a relativistic velocity v along the conductor L.

�

e
E+ i B

�

=
1

p
1− v 2

+∞
∫

−∞

�

1
v

��

0
(l+h)

r 3 ρ (sd l)

�

(9.20)

We get three integrals:

1. e = ρp
1−v 2

+∞
∫

−∞

lv
r 3 sd l

2. E= ρp
1−v 2

+∞
∫

−∞

r
r 3 sd l

3. B= ρp
1−v 2

+∞
∫

−∞

v×h
r 3 sd l

Since s ∥ v ∥ l⊥h we receive following conclusions
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1. e = ρp
1−v 2

+∞
∫

−∞

lv
r 3 sd l= ρp

1−v 2

+∞
∫

−∞

l v
r 3 s d l = Jp

1−v 2

+∞
∫

−∞

l

(
p

l 2+h 2)3
d l = 0

2. There are as many negative charges in the wire as positive ones, only negative charges move and their

field is E− =
ρ−p
1−v 2

+∞
∫

−∞

r
r 3 sd l. The field produced by the positive charges differs by the dilation factor E+ =

ρ+

+∞
∫

−∞

r
r 3 sd l.

In practice, the resultant electric field around the conductor is zero because the electrons in the conductors
move at non-relativistic velocities.

3. B= ρp
1−v 2

+∞
∫

−∞

v×h
r 3 sd l= j×hp

1−v 2

+∞
∫

−∞

1

(
p

l 2+h 2)3
d l = 2j×h

h 2
p

1−v 2
l i m
l→∞

lp
l 2+h 2

= 2j×h
h 2
p

1−v 2

The last equation is the Biot-Savart law.

9.3 General field equations

Starting from the known Gauss, Stokes and Maxwell integral equations (no current, because they should
be consistent with (9.16) - (9.19)) we can derive their integral complex equivalents.

Gauss equation:
�
(f+ i g)d s =

∫∫∫

∇ (f+ i g)dΩ
Stokes equation:

∮

(f+ i g)d l =
∫∫

∇× (f+ i g)d s
Maxwell equations:

�
(E+ i B)d s =

∫∫∫

ρdΩ
(without current):

∮

(E+ i B)d l =
∫∫ �

∂ E
∂ t + i ∂ B

∂ t

�

i d s

From the above equations we get the following dependencies:

∫∫

�

∂

∂ t
(E+ i B)+ i∇× (E+ i B)

�

i d s= 0 (9.21)

∫∫∫

�

∇ (E+ i B)−ρ
�

dΩ= 0 (9.22)

For compliance with our equations, we need the gradient of the scalar field∇e in the equation (9.21), and in the
equation (9.22) the differential of this field over time:

∫∫

�

∂

∂ t
(E+ i B) +∇e + i∇× (E+ i B)

�

i d s= 0 (9.23)

∫∫∫

�

∇ (E+ i B)+
∂ e

∂ t
−ρ
�

dΩ= 0 (9.24)

The conditions
∫∫

∇e d s = 0 and

∫∫∫

∂ e

∂ t
dΩ= 0

are certainly met in the case of fields around stationary charges and those moving in closed circuits. Based on
these results, we can conclude that the Gauss and Stokes theorems are also invariant when integrations take place
on a time-independent surface or contour. It should be noted here that the integral

∫∫∫

ρ (X)dΩ is invariant,
and since the volume and the scalar charge density are invariant, the charge must be invariant too.
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9.4 Ampere’s law

Let’s get back to the formula (9.10) again. The magnetic field at X ′ from charges distributed throughout
the entire space can be described by the equation

B
�

X ′−X ′0
�

=

∫

v× c

|V | r 2
q
�

(V C )−
�

X ′−X ′0
��

d 3 x ′0,

and since v
|V |q
�

C ′−
�

X ′−X ′0
��

= j
�

C ′−
�

X ′−X ′0
��

is the current that flowed at the t0 moment at the point x0, then
we obtain the dependence

B
�

X′
�

=

∫

j (C ′− (X′))× c

r 2
d 3 x ′0

Given the above formula, following Jackson [12] (Chapter 5.3) one can derive the Ampere’s law:

∇×B(X) = j(X)

Hence it follows that Ampere’s law needs not necessarily appear explicitly in Maxwell’s equations. Using
a complex relativistic transformation, we can derive it from the complex electric field equations.

9.5 Potential energy

Since in our model the charge density and the potential are always real invariant scalar fields, the potential
energy density should also be an invariant real scalar field:

w (X) =
1

2
ρ(X)ϕ(X) (9.25)

w (X−X0) =
1

2
ρ(X−X0)ϕ(X −X0),

The first equation is always true, but the second one is an equation of electrostatics, where X = X − X0, that is:
ϕ (X−X0) is the electric field potential at X from the charge located at X0.

9.6 Discussion

Summarizing the above chapter, we conclude that it is possible to create such a theory of electricity and
magnetism, in which starting from the equations of electrostatics

�

∂
∂ t
∇

��

0
E

�

=

�

ρ
0

�

and transforming them according to the principles of complex relativistic transformations, we obtain the laws
of electrodynamics (Maxwell’s equations) that do not contain the current density component and do not require
the Lorenz gauge condition:

∂ e

∂ t
+∇E = ρ

∇B = 0
∂ B

∂ t
= −∇×E

∂ E

∂ t
+∇e = ∇×B,

where e is the scalar induction of the electric field introduced by us.
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Below is a set of electromagnetic field equations in paravector notation with equations for potentials:

∂

�

e (X)
(E+ i B)(X)

�

=

�

ρ(X)
0

�

and ∂ −
�

ϕ(X)
0

�

=

�

e (X)
(E+ i B)(X)

�

It should be noted that although there is no Ampere’s law in the paravector equivalents of Maxwell’s
equations, they do not contradict the classical theory. We also pay attention to the aesthetic side of such
modified equations. Although in the real form they are not fully symmetrical, in the paravector form their
elegance is unquestionable. It should be remembered that, in general, the velocity paravector is complex. This
means that the scalar induction we introduced can also be a complex number.

It is important to check whether the principle of the conservation of the charge is respected

∂ ρ

∂ t
+∇j= 0 (9.26)

Please pay attention to the meaning of the above formula. In the rest frame, the sense of the vector current
density j has no direct relation to the movement of the ρ charge, because this is the current that flows from
the source in any direction, and ρ is the charge density in the source region. The current may or may not be
the movement of charges that flow through the source region, so it does not need to be a charge ’lift’ current
resulting from the relative movement of the observer and the ρ charges. The (9.26) formula is a quantitative
scalar relationship between the varying amount of charges present in the source and the charges flowing from
the source. Therefore, in this case, one must be careful deciding whether the transformational identities derived
in Chapter 4 can be applied directly. Nevertheless, a formula can be constructed that confirms the relativistic
invariance of the charge conservation principle. The formula is mathematically correct, but in order to be able
to say that it captures the essence of the phenomenon, a deeper analysis is needed. The (9.26) formula can be
represented in a symbolic form as:

(∂ − J −)S = 0 (9.27)

where J is the 4-dimensional charge-current density function. The above formula in its explicit form is as follows
�

∂
∂ t
−∇

��

ρ
−j

�

=

�

0
?

�

(9.28)

The question mark means that we are not interested in the vector part of the above formula. According to the
theorem 4.1.1, after switching to a frame that moves at -v velocity, the above formula transforms into

1
p

1− v 2

�

1
−v

��

∂
∂ t ′

−∇′

��

ρ′

−j′

�

=

�

0
?

�

(9.29)

After moving the velocity paravector to the other side and the right-hand multiplication by the paravector

V − = 1p
1−v 2

�

1
−v

�

we get the dependence

�

∂
∂ t ′

−∇′

�

(

�

ρ′

−j′

�

V −) =V

�

0
?

�

V − (9.30)

Since on the right side of the equation we have a rotation that does not change the scalar, in the symbolic notation
the scalar part of the above equation is

[∂ ′−(V J ′)−]S = 0 (9.31)

Thus, it has been shown that the principle of conservation of charge is invariant.

The previous chapter showed that realisation as a transformation has a serious drawback, namely the
non-orthogonality. However, above we derived the formulas of the theory of electricity using the transformation
described by the real velocity paravector, as if the realisation could be applicable. In Chapter 10, devoted to
selected issues of Special Relativity, we will present the interpretation of realisation and will make a hypothesis
explaining when and why realisation can be used.
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Chapter 10

Selected issues of Special Relativity in
complex space-time

Analysis of some formulas describing the inertial motion of particles allows us to show the possibility of
various interpretations of the image of this motion. In complex space-time the Cauchy and the triangle
inequalities have opposite directions and are not as general as their counterparts in Euclidean space.
The Hamilton-Jacobi free-particle equation of motion and the Klein-Gordon equation are invariant
with respect to paravector orthogonal transformations. We present the paravector formulas for the
kinetic energy of a physical object, which differ from their classical relativistic counterparts. Finally,
it is shown that in non-relativistic case a composition of velocities as well as energy and momentum
formulas assume the form known from classical physics.

Chapter 6 presented the first interpretations of basic geometric concepts in as yet undefined complex
space-time, where we only dealt with the real parts of the paravectors describing the physical concepts. In the
meantime, we expanded our knowledge to field theory issues where it was easier to interpret imaginary vectors.
The time has come to tackle complex space-time again, but already taking into account all the imaginary 4-vector
components.

In a rest frame, we observe an object moving with a uniform motion. During the time ∆t it traverses

the way ∆x, which we write down in the form of a 4-vector

�

∆t
∆x

�

, where ∆t is the observer’s elapsed time

interval, so it is a positive real number. Likewise, ∆x is a real vector. Pulling out ∆t in front of the 4-vector we

get a paravector describing the velocity of the object

�

1
v

�

. Since it was not possible to observe that the objects

with energy were moving faster than the speed of light, we assume that 0 ⩽ det

�

1
v

�

⩽ 1. When examining the

invariance of the wave equation where the observer passed between two inertial frames, we used the paravector

1p
1−v 2

�

1
v

�

, where the vector v was the relative speed of the frames.

We will now deal with the transformation equation in more detail. After the observer enters a frame
moving at speed v, the time interval∆t 0 of the observed object will change as follows:

1
p

1− v 2

�

1
−v

��

∆t
∆x

�

=

�

∆t 0

0

�

, (10.1)

hence
1

p
1− v 2

�

1
−v

�

=
1

∆t 2−∆x 2

�

∆t 0

0

��

∆t
−∆x

�

=
1

∆t 2−∆x 2

�

∆t 0∆t
−∆t 0∆x

�

.
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From the scalar part it follows that
1

p
1− v 2

=
∆t 0∆t

∆t 2−∆x 2

If we change the dilation factor in the vector part according to the above equality, we get the classical definition
of velocity

v=
∆x

∆t
(10.2)

So, the velocity is the ratio of the spatial component to the time component of the four-vector position of the
described object in the observer’s frame.

Looking at the equation representing the real 4-vector transformation

�

∆t ′

∆x′+ i y′

�

=
1
Æ

1− v 2
1

�

1
v1

��

∆t
∆x

�

it can be seen that the 4-vectors on the right and left represent the motion of the object in two mutually moving
frames. So it is enough to draw the times before the 4-vectors to get the object’s velocities in these frames.

∆t ′
�

1
v′

�

=
∆t
Æ

1− v 2
1

�

1
v1

��

1
v

�

=
∆t (1+v1v)
Æ

1− v 2
1

�

1
v+v1+i v1×v

1+vv1

�

(10.3)

where we get the well-known formula for the syntax of velocity and the formula for the relationship between
times in frames moving in relation to each other at the speed v′. The second formula is a bit strange, because the
dilation depends not only on the Lorentz factor, but also on the direction, which we have already interpreted as
a spatial ’crossing’ of simultaneity, in other words, a spatial desynchronization.

∆t ′ =
(1+vv1)
Æ

1− v 2
1

∆t and v′ =
v+v1+ i v1×v

1+vv1
(10.4)

Let us return to the formula (10.1) from which it follows

1
p

1− v 2

�

∆t −v∆x

∆x−v∆t − i v×∆x

�

=

�

∆t 0

0

�

,

which can be written as a system of equations

∆t −v∆x = ∆t 0
p

1− v 2

∆x = v∆t

v×∆x = 0

After placing the∆x from the second equation into the first one, we obtain

∆t 0

∆t
=
p

1− v 2

Thus, the dilation factor determines the proportion of the time flowing in the observed moving frame to the time
in the observer’s frame. Of course, the so-called twin paradox does not result from this, because this factor only
works when both frames are in relative motion. After the velocities are equalized, the dilation factor becomes
one and it may turn out that the same time has elapsed in both frames. The difference of both times occurs
only and exclusively in the 4-vector simultaneously with the spatial component, and thus simultaneously with
the path covered by the moving object. This phenomenon should therefore be understood as an illusion that
accompanies movement at a great speed, just as an illusion is the shortening of the mast of a sailing ship moving
towards the horizon. Incidentally, the same is true of the applicable theory. Someone once interpreted the results
very unfortunately and compared the times in different frames, disregarding the fact that NO ONE CAN DO IT!
Only invariant quantities can be compared, i.e. space-time intervals, not times.
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10.1 A spherical explosion

We will now consider what the image of the explosion front looks like after∆t time from the moment of
the explosion. The parameter here is the direction of the particle velocity vector w, and its length is a constant
velocity w of the explosion front (Fig. 10.1).

Figure 10.1:

1
Æ

1− v 2
0

�

1
−w

��

∆t
∆x

�

=

�

∆t 0

0

�

(10.5)

Since the dilation factor only makes sense when moving from a resting to a moving frame, and we as
observers are not interested in the proper time (∆t 0) of the observed particle, we unite them and replace them
with the parameter s . In the rest OX frame the explosion front is described by the equations

∆t −w∆x= s
∆x=w∆t
w×∆x= 0

(10.6)

The number s is some parameter that is proportional to the time∆t because if we substitute∆x, from the second
equation we get s = ∆t (1 − w 2). For the observer, the first equation is irrelevant because he is interested in
observing the motion of particles (∆x) per his time (∆t ). From the second equation of the above system, we can
see that the blast front is a sphere expanding with time. The∆x vectors are real.

Now, we pass to the OX’ frame moving at velocity of −v.

1
p

1− v 2

�

1
−w

��

1
−v

��

∆t ′

∆x′+ i y′

�

=

�

∆t 0

0

�

(10.7)

We can transform the above formula in two ways:

1.

�

1
− v+w
(1+vw) + i w×v

(1+vw)

��

∆t ′

∆x′+ i y′

�

=

�

k∆t 0/(1+vw)
0

�

(10.8)

2.

�

∆t ′

∆x′+ i y′

�

=
∆t 0

k

�

1
v

��

1
w

�

=
∆t 0

k

�

1+vw
v+w+ i v×w

�

(10.9)

The value of k =
p

1− v 2
p

1−w 2 is a real number. Time in the OX’ frame is real, and the vector of the object’s
position change is complex.
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In the formula (10.8) the OX’ time is the ’deformed’ OX frame time. Time ’deformation’ is a spatial
desynchronization of ∆t ′ = k∆t 0/ (1+vw). When observing an explosion in a primed frame, we are not
interested in the mutual relation of the coordinates of both systems. We want to describe the observed
experiment in primed coordinates, i.e. the change of spatial primed coordinates from primed time. To avoid
confusing real and imaginary parts, let’s write complex quantities in the equation (10.8) using Greek letters:

�

1
−ϑϑϑ

��

∆t ′

∆χχχ

�

=

�

k∆t /(1+vw)
0

�

(10.10)

Let’s just deal with the vector equation:

∆χχχ −∆t ′ϑϑϑ− iϑϑϑ×∆χχχ = 0

Since complex vectors have the same properties as real ones, it must be:

∆χχχ −∆t ′ϑϑϑ = 0 and ϑϑϑ×∆χχχ = 0

from where it follows that

∆x′ =
v+w

1+vw
∆t ′ and y′ =

v×w

1+vw
∆t ′ (10.11)

In the vector part of the equation (10.8) we have a velocity whose real vectors for selected directions are plotted
in Figure 10.2. The real equation (10.11) shows that particles spread simultaneously in the time of the rest frame
(∆t ) form a flattened sphere in primed time. Now let us do a small swap that mathematically changes nothing,
but gives a different physical interpretation: Let us move the expression 1+ vw from under the velocity vector
against time.

∆x′ = (v+w)
∆t ′

1+vw
(10.12)

The above equation shows the same particles but at different times. It seems to be more in line with the
spirit of the equation (10.8), since from its equivalent (10.9) it can be seen that the relativistic transformation
does not preserve spatial simultaneity. We must remember that the formulas (10.11) and (10.12) follow from the
formula (10.8), but are not equivalent to it. The formulas (10.8) and (10.9) connect coordinates from different
frames. The formulas (10.11) and (10.12) show how the coordinates in one frame must depend on each other.
Interpretations of the latter two formulas are presented in the figure below. A flattened sphere resulting from the
equation (10.11) is drawn with a continuous black line, while the broken line is a sphere not spatially deformed,
but deformed in time, resulting from the formula (10.12). Blue color means that the particles were there before
B3 was in the place (t ′3, x′3), and in green are the places of the particles that will get there later. In order for the
vector (v+w)∆t ′/(1+vw) to circle the ball, it must be such that for vw< 0 time∆t ′ is shorter than∆t ′B3

of particle
B3, that is∆t ′ <∆t ′B3

. It is difficult to present on a flat, stationary sheet of paper what is happening in space and
time. The reader need to use their imagination for this.

For the calculations, v = 0.4 and w = 0.8 are assumed.

Since all paravectors in (10.7) are proper, the vector∆x′must be perpendicular to the vector y′. The value
of k is a real number and does not depend on the mutual directions of the vectors w and v, so we can conclude
from the scalar equation that at the same moment in different places of the explosion front there are particles that
correspond to the same particles but at a different moment in the OX frame, which results from the component
1+ vw. This means that simultaneity in a rest frame does not have to correspond to simultaneity in a moving
frame. Otherwise, time would flow differently in different directions in the OX’ frame (time in the OX’ frame
would depend on the angle between vectors v and w), which for an observer in the OX’ frame does not make
sense.

Simultaneous particles in the OX frame non-simultaneously outline an ellipsoid in the OX’ frame, while
the simultaneous particles in the OX’ frame form a sphere. We choose the time of the particle (B3) as the
reference time in the primed frame, because the dot product of the compounded velocity vectors is equal to 0.
If we measure the time from the explosion, then after the corresponding time in both frames we will only ’see’
the red point (B3). Blue points will be earlier and green points will be later. We used the word ’deformation’ in
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Figure 10.2:

apostrophes because the real image is subject to deformation. In a space-time sense, no deformation has
occurred because the relativistic transformation preserves the dot product. It is because of this ’deformation’
that we see part of the electric field of a moving charge as a magnetic field.

The problem of understanding relativistic phenomena lies not so much in considering the dilation
factor, as emphasized in the explanations of the applicable STR, as in the scalar and vector products occurring
in transformation formulas and in getting used to imaginary components.

We can see that by describing many particles, we could interpret an imaginary vector as a parameter of
spatial deformation, but what about the imaginary component of a single particle motion? We hypothesized that
living in a stationary frame, we should be able to ’project’ the coordinates of the complex vectors onto our real
space-time. After all, we perceive time which flows at the same pace here as it does in a moving frame, as if it flew
slower. For the description of a single object (or many objects, but in a situation where their mutual relation is not
important), we can use the orthogonal velocity paravector realisation, which also realises the position 4-vector.
Below Figure 10.3 we add a purple sphere resulting from the realisation of the velocity paravector.

Figure 10.3:
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Explanation for Figure 10.3:

Dashed line - w′ =w+v

Black line - w′ =
v+w

(1+vw)

Violet line - w′ =
(1+wv)(w+v) + (w+v)× (w×v)

(1+wv)2+ (w×v)2

In Figure 10.3 everything is done in the primed frame, so prime here means spatial coordinates simultaneous in
time t3. It should be noted that in the first two interpretations, the direction of motion of any selected particle
is the same and results from a simple Euclidean sum of the vectors w+v, while if it is made real, the direction
changes. The lengths of the resultant vector are also different. In the first two cases, the actual resultant velocity
may be higher than the velocity of light, but there is an imaginary component which makes the resultant complex
velocity lower than the velocity of light, which is consistent with the 2nd postulate of STR. In the first case, we
included the dot product of velocity in the coordinates of the position, so there is an extension of time in relation
to the observer’s time (directional desynchronization).

10.2 Particle motion with elastic rebound

The material point starts from the center of the sphere, for the time∆t1 it flies at a uniform velocity w and
returns to the center after an elastic rebound from the wall (Fig. 10.2).

Figure 10.4:

X1+X2 =∆t , (10.13)

where the coordinates satisfy the equations:

before the rebound: 1p
1−w 2

�

1
−w

��

∆t1

∆x1

�

=

�

∆t 0

0

�

and after the rebound: 1p
1−w 2

�

1
w

��

∆t2

∆x2

�

=

�

∆t 0

0

�

From the above we get the obvious conclusions that ∆t1 = ∆t2 and ∆x1 = −∆x2. Since the 4-vectors X1

and X2 are inverted to each other, the equation (10.13) can be written as follows

X1+X−1 =∆t (10.14)

The determinant of the left side of the equation (10.13) is

det(X1+X2) = detX1+detX2+2〈X1,X2〉= (10.15)
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=∆t 2
1 −∆x2+∆t 2

2 −∆x2+2(∆t1∆t2+∆x2) = (∆t1+∆t2)
2 = detX

We pass to the moving frame
V −V X1+V −V X2 =V −V ∆t ,

which, in a moving frame, is a sum of four-vectors

X′1+X
′
2 =X

′
3, (10.16)

because






























1p
1−v 2

�

1
−v

��

∆t ′1
∆x′1+ i y′1

�

=

�

∆t1

∆x1

�

1p
1−v 2

�

1
−v

��

∆t ′2
∆x′2+ i y′2

�

=

�

∆t1

−∆x1

�

1p
1−v 2

�

1
−v

��

∆t ′3
∆x′3

�

=

�

∆t
0

�

(10.17)

Let us describe the equation (10.16) in the paravector form without the dilation factor, which will be
reduced in the equation, and since we have the coordinates of the four-vectors from one frame of reference, it
does not matter anyway. In other words, we omit the dilation factor when we conduct observations in one
frame (e.g. primed).

�

1
−v

��

∆t ′3
∆x′3

�

=

�

1
−v

��

∆t ′1
∆x′1+ i y′1

�

+

�

1
−v

��

∆t ′2
∆x′2+ i y′2

�

= (10.18)

=

�

∆t ′1−v∆x′1
∆x′1−v∆t ′1− i v×∆x1

�

+

�

∆t ′2−v∆x′2
∆x′2−v∆t ′2− i v×∆x2

�

�

∆t ′3−v∆x′3
∆x′3−v∆t ′3

�

=

�

∆t ′1+∆t ′2−v
�

∆x′1+∆x′2
�

∆x′1+∆x′2−v
�

∆t ′1+∆t ′2
�

− i v×
�

∆x′1+∆x′2
�

�

(10.19)

Figure 10.5:

The v × ∆x′3 component in the last equation was omitted because it is equal to 0. For particles moving
perpendicularly to velocity v (w⊥v), the total time is equal to the sum of the times before and after the rebound
∆t ′3 =∆t ′1 +∆t ′2, and on the left we have a real vector, so the sum of the vectors∆x′1 +∆x′2 must be parallel to v.
There is a shift in time for the remaining particles. We can see that although we started from the formulas of the
relativistic transformation in space-time, real vectors are composed as in Euclidean geometry. The above
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results do not depend on the direction of the composite velocity vectors as long as we do not pay attention to
simultaneity, which is our greatest strain.

We still need to check the determinant of the equation (10.16), because we will soon define the metric
based on the determinant. The formulas (10.17) show that







∆t ′1+∆t ′2 = ∆t ′3
∆x′1+∆x′2 = ∆x′3

y′1+y′2 = 0
(10.20)

so

det(X′1+X
′
2) = detX′1+detX′2+2〈X′1,X′2〉= (10.21)

=∆t ′21 −∆x′21 +y′21 +∆t ′22 −∆x′22 +y′22 +2[∆t ′1∆t ′2−∆x′1∆x′2+y′1y′2− i (∆x′1y′2+∆x′2y′1)] =

= (∆t ′1+∆t ′2)
2− (∆x′1+∆x′2)

2 =∆t ′23 −∆x′23 = detX′3

Figure 10.6:

In the rest frame, the b particle moves uniformly from the point A(t0, xA) to the point B (t1, xB ), then returns
at the same speed to the initial point, where it arrives at t2, that is A(t2, xA). The second particle a waits for the
first particle at xA . We ’observe’ at the same time several particles scattering in different directions. It is presented
in Fig. 10.6. When an observer passes to a frame that moves at the speed−v, he ’sees’ 4-vectors as in Figure 10.7.

In the rest frame, we describe the motion of a and b particles in the following way:

The b particle before rebound X1 =

�

∆t1

∆x1

�

=

�

t1− t0

xB −xA

�

,

the b particle after rebound X2 =

�

∆t2

∆x2

�

=

�

t2− t1

xA −xB

�

and the rest a particle X3 =

�

∆t3

0

�

=

�

t2− t0

xA −xA

�

.

After the observer passes to the frame moving at real speed −v, the above 4-vectors are transformed:

the b particle before rebound X′1 =
1p

1−v 2

�

1
v

��

∆t1

∆x1

�

,
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Figure 10.7:

the b particle after rebound X′2 =
1p

1−v 2

�

1
v

��

∆t2

∆x2

�

and the a particle X′3 =
1p

1−v 2

�

1
v

��

∆t3

0

�

,

which gives the following sum
�

∆t ′3
∆x′3

�

=

�

∆t ′1
∆x′1+ i y′1

�

+

�

∆t ′2
∆x′2+ i y′2

�

(10.22)

The times∆t ′1 and∆t ′2, although they correspond to the same times in the rest frame, do not have to be the same
in the moving frame, because they were transformed with values depending on the direction (v∆x). Therefore,
the simultaneous rebounds in the rest frame correspond to the collision points shifting in time in the moving
frame. In the OX’ frame it is not visible, unlike the spherical mark left by the rebound. We ask the question: Has a
deformation occurred or not? In real space - yes, in time too, but in complex space-time there is no deformation,
because the relativistic transformation is orthogonal.

The imaginary component of the path y is not the path to go, but it is closely related to the path ∆x, the
time ∆t , and the speed that causes it to get out of sync. For the imaginary component of the road y′1 = −y′2,
dilation factors are omitted because, as said numerous times, they do matter only when passing from frame to
frame. For describing the position in the coordinates of one frame (this time a primed ones), they are not needed
for anything and only introduce complications. It should be noted that the position vectors of the b particle are
complex and their imaginary components shorten. So we can write the sum without the imaginary part and
the equation will be correct (this is how we had seen the particles before the introduction of our theory), but
we leave these imaginary vectors because they make sense in complex space-time. Thanks to them, we can
seemingly exceed the speed of light (the length of the real velocity vector may be greater than 1), remaining in
accordance with the fact that the highest speed at which physical objects can move is c .

10.3 Metric of movement of physical objects

We will now follow the same experiment but with a loss of energy on rebounding. In the experimenter’s
frame inside the spherical laboratory, the material point starts from the center of the sphere, travels at velocity
v1, then bounces off the lab wall and returns to the center of the sphere at velocity v2 (collision with energy loss).

In the frame of a moving point, the entire experiment lasted∆t 0 =∆t 0
1 +∆t 0

2 . In the experimenter’s frame,
the motion of a point can be described by the vector part from the paravector equations:

1
Æ

1− v 2
1

�

1
−v1

��

∆t1

∆x1

�

=

�

∆t 0
1

0

�

and
1
Æ

1− v 2
2

�

1
−v2

��

∆t2

∆x2

�

=

�

∆t 0
2

0

�
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Since the entire experiment takes∆t1+∆t2, and the observed point at the end will return to the initial point, the
coordinates must satisfy the relationship:

�

∆t1

∆x1

�

+

�

∆t2

∆x2

�

=

�

∆t3

0

�

, that is X1+X2 =X3, (10.23)

where

�

∆t1

∆x1

�

=
∆t 0

1
Æ

1− v 2
1

�

1
v1

�

and

�

∆t2

∆x2

�

=
∆t 0

2
Æ

1− v 2
2

�

1
v2

�

.

We are talking about the coordinates of a physical object, that is, all four vectors above are proper.

Another observer sits in a vehicle moving at −v and describes the point with the following formulas:

- first segment V −X′1 =
1p

1−v 2

�

1
−v

��

∆t ′1
∆x′1+ i y′1

�

=

�

∆t1

∆x1

�

- second segment V −X′2 =
1p

1−v 2

�

1
−v

��

∆t ′2
∆x′2+ i y′2

�

=

�

∆t2

∆x2

�

- path travelled through the center of the laboratory V −X′3 =
1p

1−v 2

�

1
−v

��

∆t ′

∆x′

�

=

�

∆t3

0

�

We return to the equation (10.23) and write down V X1 + V X2 = V X3, so X′1 +X
′
2 = X

′
3. The result is

obvious: In both frames the corresponding four-vectors are additive. Since the velocity paravector represents
the quotient:

V =
X
|X|
=

1
p
∆2t −∆2 x

�

∆t
∆x

�

=
1

p
1− v 2

�

1
v

�

,

otherwise the sum of four-vectors X1+X2 =X3 can also be written by extracting times.

∆t3

�

1
0

�

=∆t1

�

1
v1

�

+∆t2

�

1
v2

�

In a frame moving at velocity −v we have:

∆t3p
1− v 2

�

1
v

�

=
∆t1p
1− v 2

�

1
v1

��

1
v

�

+
∆t2p
1− v 2

�

1
v2

��

1
v

�

(10.24)

In the above equation, we can reduce the factor
p

1− v 2 because it is not important for the relationship between
the variables in the primed frame, hence

∆t ′3

�

1
v

�

=∆t ′1

�

1
v′1

�

+∆t ′2

�

1
v′2

�

,

where ∆t ′i = (1+vvi )∆ti and v′i = (vi +v+ i vi ×v)/(1+vvi )

or otherwise

�

∆t ′

∆t ′v

�

=

�

∆t ′1
∆t ′1v′1

�

+

�

∆t ′2
∆t ′2v′2

�

,

which means
�

∆t ′

∆x′

�

=

�

∆t ′1
∆x′1

�

+

�

∆t ′2
∆x′2

�

(10.25)

At this point, we bring to the readers’ attention one more very important conclusion that will allow us to
understand the metric of physical space. Since the relativistic transformation preserves the scalar product, in
order for the triangle to close (i.e. for the particles to meet at one place and time), the 4-vectors describing the
position of the physical particles in the triangle must satisfy the following theorem:
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Theorem 10.3.1. If X′1,X′2,X′3 are proper 4-vectors and X′1+X
′
2 =X

′
3, then

1.



X′1,X′2
�

∈R+

2. 〈X′1,X′2〉⩾
�

�X′1
�

�

�

�X′2
�

�

Proof.

1. From the sum X′1+X
′
2 =X

′
3 it follows that det(X′1+X

′
2) = detX′3

Based on the theorem 2.3.4 we can write

detX′1+detX′2+2〈X′1,X′2〉= detX′3
Since the four-vectors X′1,X′2 and X′3 are proper, the scalar product of the four-vectors X′1 and X′2 is a real
number.

From the example above, we know that X′1 = ΛX1, X′2 = ΛX2 and X′3 = ΛX3, where Λ is an orthogonal
paravector. In the frame of a particle moving along the way X′3 we have

X1 =

�

∆t1

∆x1

�

, X2 =

�

∆t2

−∆x1

�

and X3 =

�

∆t1+∆t2

0

�

Hence (∆t1)2− (∆x1)2+ (∆t2)2− (∆x1)2+2



X′1,X′2
�

= (∆t1+∆t2)2,

which gives



X′1,X′2
�

=∆t1∆t2+ ((∆x1)
2+ (∆x1)

2)/2> 0

2. Based on the formula (2.5), we know that 〈X1,X2〉2− (X1,X2}2 = detX1detX2

Let us take an example as above, where X2 =

�

∆t2

−∆x1

�

.

For proper paravectors, the scalar product must have a real value. A relativistic transformation preserves
the determinants and the scalar product. The vector product in this case is also a real vector, so
〈X′1,X′2〉

2 ⩾ detX′1detX′2.

Since the 4-vectors X1, X2 are proper or singular and the dot product 〈X′1,X′2〉⩾ 0, so

〈X′1,X′2〉⩾
�

�X′1
�

�

�

�X′2
�

�

It is seen from the above theorem that the Cauchy-Buniakowski-Schwarz (CBS) inequality does not apply
in the physical space we construct. What is more, for physical objects moving at speeds not greater than light,
the inequality is opposite! So after introducing scalar coordinates, the CBS inequality changes its direction, but
in fact it plays the same role for the constructed geometry.

This is the best moment to reflect on the basic geometrical property of space, which is the triangle
inequality. Does it also apply in space-time? If not, is there any other relationship between the four-vectors that
corresponds to this relationship? We can guess that, unlike Euclidean geometry, in space-time the triangle
inequality does not have the same generality, because not every 4-vector has a module. Only proper and
singular paravectors have their modules. So we guess that the triangle relation can only be formulated for the
physical objects we talked about above. The experiments described above correspond to space-time triangles.
Physical objects start simultaneously from one place (point P0) to meet again simultaneously elsewhere (point
P2). One object rushes directly to the target, and the other rushes the longer route - through P1. Using the
paravector formalism, we write down times and ways in the following way

X = X1+X2 (10.26)
�

t2− t0

x2−x0

�

=

�

t1− t0

x1−x0

�

+

�

t2− t1

x2−x1

�

(10.27)
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Since the above 4-vectors describe the position of physical objects, they must be proper or singular. From this
assumption it follows that the values∆t and∆x are not arbitrary. Also note that they do not have to be real. To
investigate the relationship between the above 4-vectors, we will use the following reasoning:

In the rest frame, we describe the movement of a physical object from point 0 to point 1 and back to point
0. All coordinates are real. Then we move on to a frame that moves at any speed lower than c . As a result of
transforming 4-vectors from the rest frame, we get 4-vectors forming the triangle we want.

Four-vectors in a rest frame can be written down as
�

∆t
∆x

�

+

�

∆t
−∆x

�

=

�

2∆t
0

�

, (10.28)

and the relation R between the modules of its sides is the following

|X|+ |X−| R |X+X−| (10.29)

or
p
∆2t −∆2x+

p
∆2t −∆2x R 2∆t

Since we have non-negative real values on both sides of the relation, we can square both sides and the relation
will not change.

∆2t −∆2x R ∆2t (10.30)

The left side of the relation is therefore less than or equal to the right side. We get any 4-vector triangle we are
interested in by passing to the frame moving in relation to the previous one. This means that we are multiplying
the equation (10.28) by any orthogonal paravector. To bring the result closer to our actual perception of motion,
we choose the velocity paravector. So we have

X1 =V X

X2 =V X−

X1+X2 =V (X+X−)

Since |V | = 1, so for any orthogonal V (or Λ in general) the relation will be the same as in the equation (10.30).
Thus, we have shown that for space-time physical objects the triangle inequality has a form of

|X1|+ |X2| ⩽ |X1+X2| (10.31)

that is, it is opposite to the Euclidean geometry. This inequality can also be proved from the polarization identity
and from the theorem 10.3.1.

In the frame moving at speed -v a sum of 4-vectors (10.28) is

1
p

1− v 2

�

1
v

��

∆t
x

�

+
1

p
1− v 2

�

1
v

��

∆t
−x

�

=
1

p
1− v 2

�

1
v

��

2∆t
0

�

(10.32)

which in this frame gives
�

∆t ′1
x′1+ i y′1

�

+

�

∆t ′2
x′2+ i y′2

�

=

�

∆t ′3
x′3

�

(10.33)

Below, the system of equations follows from the above equation

∆t ′1+∆t ′2 = ∆t ′3 (10.34)

x′1+x′2 = x′3

As it is easy to check, the (10.31) inequality is preserved. In the above reasoning a physical triangle was
considered, the sides of which were the paths of motion of particles with energy, so their velocity was lower
than c and they left a certain point at the same moment and later met one another in the same way. The
situation in which the particles never meet again after they start moving, even if their paths intersect, but they
are at different times at the point of intersection, is no longer a closed triangle.
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From the computational point of view, everything looks simple, but the above equations describe the
motion of physical objects. Then, how to interpret the imaginary components? The answer is simple: one has to
get used to them. The imaginary distance has no physical significance in terms of the way to travel. It is a spatial
effect of desynchronization and it should be understood as a quantity characterizing a certain deformation of real
coordinates, or simply, as a dependent variable needed to balance the calculations. An imaginary vector never
exists by itself, but it is always related to a real one. The above reasoning shows the simplicity and flexibility of
interpretation of complex space-time as opposed to a real one.

10.4 Equations of motion of a charged particle in electric field

In this monograph, mechanics is treated very briefly, but it is our duty to check whether the studied
complex model does not contradict the laws of these branches of physics. Therefore, we will perform a few
mathematical transformations of selected formulas to show that the applicable basic equations of theoretical
mechanics and quantum mechanics are invariant to complex relativistic transformation. This shows that there
is a point in working on translating mechanics into the language of paravectors and interpreting it in complex
space-time.

The total energy of the body in the potential field is described by the Hamilton equation

d p

d t
+∇H = 0 , (10.35)

where H = T +V is the Hamiltonian of the body. T is kinetic energy, V is potential energy, and p is its momentum.
If the particle has an electric charge q and the electric field is given by the function E, then the above formula
takes the form

d p

d t
+∇T = q E . (10.36)

This equation is the real vector component of the next equation (without the dilation factor)
�

∂
∂ t
∇

��

T
p

�

=

�

0
E

��

1
v

�

q
p

1− v 2
(10.37)

In the above equation, the observer is in a field frame and the q charge with mass m is moving of v relativistic
velocity in this frame. The above equation will be true when we add any constant to the variable kinetic energy.
We add half the mass of the object whose motion is described by this equation. Instead of T we will write K,
where K = T +m/2. Since the field intensity in the rest frame is E= ∂ −ϕ, we have

�

∂
∂ t
∇

��

K
p

�

=

�

∂
∂ t
−∇

��

ϕ
0

��

1
v

�

q
p

1− v 2
(10.38)

If we pass to a frame that moves at a constant relativistic velocity -w, the above equation transforms according
to the identities proved in Chapter 4

�

∂
∂ t ′

∇′

�

1
p

1−w 2

�

1
w

��

K ′

p′

�

=
1

p
1−w 2

�

1
−w

��

∂
∂ t ′

−∇′

��

ϕ′

0

�

q
p

1− v 2

�

1
v

�

, (10.39)

where prime on a function means the primed arguments, and not some other value of the function. On the right,
in brackets, we have a new 4-vector of field intensity/induction, so let us write the above equation as

�

∂
∂ t ′

∇′

�

1
p

1−w 2

�

1
w

��

K ′

p′

�

= q

�

e ′

E′+ i B′

�

1
p

1− v 2

�

1
v

�

, (10.40)

If we multiply both sides of the above equation by the velocity paravector W, we get
�

∂
∂ t ′

∇′

�

[
1

p
1−w 2

�

1
w

��

K ′

p′

�

1
p

1−w 2

�

1
w

�

] = q

�

e ′

E′+ i B′

�

1
p

1− v 2
p

1−w 2

�

1
v

��

1
w

�

(10.41)
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On the left side, it was possible to include the paravector W under the derivative operator, because the w vector
is constant (inertial motion). To simplify the calculations, let us write the above formula in a symbolic form

∂ ′K′ = qE′V ′∗ (10.42)

where

K′ =
1

p
1−w 2

�

1
w

��

K ′

p′

�

1
p

1−w 2

�

1
w

�

, E′ =
�

e ′

E′+ i B′

�

, V ′ =
1

p
1−w 2

p
1− v 2

�

1
w

��

1
v

�

From the above, it can be seen that the equation of motion (10.37) is covariate with POT, and the
energy-momentum 4-vector is consistent with the equation (3.32). In general, the equation of motion of a
charged particle with m mass and q charge in the E field has the following form

∂K= qEΛ∗ (10.43)

whereK=mΛΛ∗/2, Λ is an orthogonal paravector, and on the right side is the complex force
F= qEΛ∗.

Note that in order for the above equation for a single particle to be interpretable, it needs to be realised (as we
did in Chapter 8) and then it becomes the equation (10.37).

We still have to check what the above equation of motion will look like at low velocity. In the SI system,
the equation (10.37) has the following form

�

∂
c ∂ t
∇

��

T
c p

�

=

�

0
E
p
ε0

��

1
v/c

�

q
p

ε0[1− (v /c )2]
(10.44)

which with v /c → 0 gives a system of equations

d T

d t
+ c 2∇p = q Ev (10.45)

∇T +
d p

d t
= q E (10.46)

∇×p =
E×v

c 2
= 0 (10.47)

In the first equation there is a component c 2∇p which is equal to 0 because

c 2∇p=m c 2(
∂ vx

∂ x
+
∂ vy

∂ y
+
∂ vz

∂ z
) (10.48)

The sum of the differentials is

∂ 2 x

∂ x∂ t
+
∂ 2 y

∂ y ∂ t
+
∂ 2z

∂ z∂ t
=
∂

∂ t
(
∂ x

∂ x
+
∂ y

∂ y
+
∂ z

∂ z
) = 0, (10.49)

because the partial differentiation is commutative, and we differentiate along the path of the particle’s motion.
So we get the classical equations of motion of a charged particle in an electric field

d T

d t
= q Ev (10.50)

∇T +
d p

d t
= q E (10.51)

10.5 On the compliance of paravector orthogonal transformations with
the relativistic equations of theoretical and quantum mechanics

The relativistic Hamilton-Jacobi equation for a free particle with the mass m0 in the Cartesian system
denoted in SI units has the following form:

q

(∇S )2+K 2
0 +

∂ S

c ∂ t
= 0, (10.52)

112



where K0 =m0c 2, which is the current SR, but might as well be half of that value. This does not affect the proof
of invariance of the equation under POT. After transformation of the above equation, we obtain:

�

∂ S

c ∂ t

�2

− (∇S )2 = K 2
0 . (10.53)

This equation written in a natural system of units, using the differentiation operators, is:
�

∂ S
∂ t
∇S

��

∂ S
∂ t
−∇S

�

= (∂ S )∂ −S = E 2
0 , (10.54)

where S is an action and therefore it is a scalar function. From the formulas derived in Chapter 4 it follows that
the above equality transforms in following way:

(∂ S )∂ −S =
�

∂ ′ΛS ′
�

Λ−∂ ′−S ′ =
�

∂ ′S ′
�

ΛΛ−∂ ′−S ′ =
�

∂ ′S ′
�

∂ ′−S ′ = E 2
0 (10.55)

Therefore, the equation (10.52), as equivalent to (10.53), is invariant with respect to the orthogonal paravector
transformation. A prim on an action function means that its arguments change, but its value is left unchanged.

The Klein-Gordon equation, also known as the relativistic Schroedinger equation (in natural unit system)

−
∂ 2Ψ(t , x)
∂ 2t

+∇2Ψ(t , x) =m 2Ψ(t , x) (10.56)

transforms under the boost in the same way as the wave equation (1.3), so we do not repeat the proof of its
invariance. The proof can also be made using the formulas derived in chapter 4. It also follows that the function
Ψ is invariant.

From the above cursory considerations, it can be seen that complex relativistic transformations should
not contradict the existing relativistic theoretical mechanics or quantum mechanics.

10.6 The definitions of momentum and kinetic energy are different than
in the classical SR

It was shown above that the equations of motion covariate with POT. However, if we look closely at the
energy-momentum 4-vector, we can see that ours is different from its classical counterpart. In the classical SR,
a energy-momentum 4-vector has the same properties as a any space-time 4-vector. In complex space-time,
although energy is covariate with POT, it transforms so that it is always real. For a moving object, it is
proportional to the product of mutually conjugated paravectors of its velocities (3.32), (7.13). Hence, the energy
dilation factor is the square of the Lorentz factor in SR. The definition of an object’s energy in complex
spacetime differs significantly from the classical SR. This results in the following differences:

Table 10.1:
Momentum Kinetic energy Total energy

Classic SR pr =
mvp
1−v 2

Tr =m ( 1p
1−v 2
−1) Kr =

mp
1−v 2

Complex model pc =
mv

1−v 2 Tc =
m v 2

2(1−v 2) Kc =
m (1+v 2)
2(1−v 2)

The table below shows the differences in the momentum and energy of a moving electron depending on
its velocity. The mass of the electron is m = 0.510998946 MeV.

The above results in graphic form

As can be seen, for very high speeds (> 0.6c) the difference becomes large. Since both energy and speed
can be measured, the both models can be tested and compared experimentally.
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Table 10.2: The difference in electron energy and momentum between the SR (r) and the complex model (c)
depending on the velocity.

v pr [MeV] pc [MeV] Tr [MeV] Tc [MeV] Kr [MeV] Kc [MeV]

0.1 0.051357 0.051616 0.002574 0.002581 0.513573 0.260661
0.2 0.104307 0.106458 0.010537 0.010646 0.521536 0.276791
0.3 0.160702 0.168461 0.024674 0.025269 0.535672 0.306038
0.4 0.223018 0.243333 0.046547 0.048667 0.557546 0.352833
0.5 0.295025 0.340666 0.079052 0.085166 0.590051 0.425832
0.6 0.383249 0.479062 0.12775 0.143718 0.638749 0.542936
0.7 0.500879 0.701371 0.204543 0.24548 0.715542 0.746459
0.8 0.681332 1.135553 0.340666 0.454211 0.851665 1.163942
0.9 1.055081 2.420521 0.661313 1.089235 1.172312 2.433696

Figure 10.8: Momentum

In laboratory practice, the above differences do not matter, because the velocity of the particles is not
measured, but the energy balance is made, which is the same in both theories, as we will show on the example
of muon decay. However, we will show earlier that

The law of mass conservation is valid only for low velocities.

Let us analyse the decay of a particle with mass m0, without energy exchange, into two particles with
masses m1 and m2 in the particle m0 system

m0 =m1V1V1+m2V2V2 (10.57)

According to our theory, all components should be divided by 2, which does not affect the correctness of the
above formula, which results the following system of equations

m0 = m1

1+ v 2
1

1− v 2
1

+m2

1+ v 2
2

1− v 2
2

(10.58)

0 =
m1v1

1− v 2
1

+
m2v2

1− v 2
2

(10.59)

The determinant of paravectors in the equation (10.57) is

m 2
0 = det(m1V1V1+m2V2V2) =m 2

1 +m 2
2 +2m1m2 〈V1V1, V2V2〉 (10.60)
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Figure 10.9: Kinetic energy

Figure 10.10: Total energy

The last term of the equation above is

2m1m2

(1− v 2
1 )(1− v 2

2 )
(1+ v 2

1 + v 2
2 + v 2

1 v 2
2 −4v1v2) = (10.61)

=
2m1m2

(1− v 2
1 )(1− v 2

2 )

�

(v1−v2)
2+ (1−v1v2)

2+ (v1×v2)
2
�

We conclude from above that the law of mass conservation is valid only for non-relativistic velocities, i.e. when
v1 and v2 are close to 0. Then 〈V1V1, V2V2〉= 1, so

m0 =m1+m2 (10.62)

In a frame that moves at the speed of v with respect to the m0 particle, the formula (10.57) takes the form

m0V V =m1V V1V1V +m2V V2V2V where V =
1

p
1− v 2

�

1
v

�

(10.63)
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or
m0V V =m1Λ1Λ

∗
1+m2Λ2Λ

∗
2, (10.64)

which gives after realisation

m0V V =m1V ′1 V ′1 +m2V ′2 V ′2 where V ′x =Λx | (10.65)

Example: The muon decay M ∗→M −+π0

On the example taken from the publication [4] we will write in the paravector form the decay of a muon
with a rest mass of mM ∗ = 0.8917 GeV into two particles with a rest mass of mM − = 0.4937 GeV and mπ0 = 0.1350
GeV. In the M ∗ frame of reference, which is the center of mass system, the energy balance of such a phenomenon
is:

mM ∗

2
=

mM −V1V1

2
+

mπ0 V2V2

2
(10.66)

�

KM ∗

0

�

=

�

KM −

pM −

�

+

�

Kπ0

pπ0

�

(10.67)

where

det

�

KM −

pM −

�

=
m 2

M −

4
, det

�

Kπ0

pπ0

�

=
m 2
π0

4
, det

�

KM ∗

0

�

=
m 2

M ∗

4
or KM ∗ =

mM ∗

2
.

From (10.67) obtains that

det

��

KM ∗

0

�

−
�

KM −

pM −

��

= det

�

Kπ0

pπ0

�

and pπ0 =−pM − (10.68)

hence
m 2
π0

4
=

m 2
M ∗

4
−mM ∗KM − +

m 2
M −

4
(10.69)

From above we calculate the total energy of the muon M −

KM − =
m 2

M ∗ +m 2
M − −m 2

π0

4mM ∗
= 0.28615 GeV (10.70)

The result is half of the result obtained classically by P. Avery. We showed that despite different definitions of the
momentum, the kinetic, total and proper energy, the energy balance is consistent with the current theory of the
scale 1/2, which results from the covariate equations of motion in complex space-time.

10.7 Non-relativistic approximations of the transformation formulas

It is high time to check what the transformation formulas for non-relativistic velocities look like (v ≪ c ).
For this purpose, it is better to change the units so as to explicitly write c where the value of the speed of light
is present, i.e. go to the SI units. This means that we will write v/c instead of v and t → c t instead of time.
Relativistic transformation formulas are as follows:

�

c∆t
∆x

�

=
1
Æ

1− (v /c )2

�

1
−v/c

��

c∆t ′

∆x′+ i y′

�

= (10.71)

=
1
Æ

1− (v /c )2

�

c∆t ′−v∆x′/c
∆x′−v∆t ′− i v×∆x′/c

�

For non-relativistic velocities (v /c → 0), we obtain

�

c∆t

∆x

�

=

�

c∆t ′

∆x′−v∆t ′

�

which are the formulas of Galilean

transformation.
∆t =∆t ′ and ∆x=∆x′−v∆t ′ (10.72)
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The velocities composition was described by the equation

1
Æ

1− (v /c )2+ (w /c )2

�

1
v/c + i w/c

�

=
1
Æ

1− (v1/c )
2

1
Æ

1− (v2/c )
2

�

1
v1/c

��

1
v2/c

�

(10.73)

or

Æ

1− (v1/c )
2
Æ

1− (v2/c )
2

Æ

1− (v /c )2+ (w /c )2

�

1
v/c + i w/c

�

=

�

1+v1v2/c
2

v1/c +v2/c + i v1×v2/c
2

�

Since the fraction in front of the paravector on the left is equal to 1 for low velocities, we get the system of
equations

1 = 1+v1v2/c
2

v/c = v1/c +v2/c (10.74)

w/c = v1×v2/c
2

which for very small velocities compared to light, reduces to the second equation, that is to a simple sum of
vectors v= v1+v2.

Momentum and kinetic energy

In the SI system, the formulas for momentum and kinetic energy have the form

pc =
m c 2v/c

1− (v /c )2
T =

m c 2(v /c )2

2(1− (v /c )2)
, (10.75)

which after simplification gives

p=
mv

1− (v /c )2
T =

m v 2

2(1− (v /c )2)
(10.76)

hence it is seen that for v ≪ c the formulas take the form

p=mv T =
m v 2

2
(10.77)

It is clearly visible here that when passing to non-relativistic velocities, the complex relativistic
transformation turns into a Galilean transformation, and the paravector formula of velocities composition
changes into a vector sum, relativistic momentum turns into Newtonian momentum, and so is kinetic energy.

10.8 Discussion

We have mentioned the compliance of our theory with the postulates of the classical STR numerous time,
but the presented calculations show that the model we propose differs from the classical theory. However, there
is no mistake here!

• 1st postulate says that the laws of physics do not depend on the choice of the translational physical system as
a whole. In our case, the postulate is assumed to be fulfilled because we started from the wave equation,
and all the reasoning was based on a transformation that maintains its form.

• 2nd postulate is: The speed of light does not depend on the motion of its source. It is clear that it is an
absolute value of the speed of light, not a vector. The compliance of our model with this postulate has also
been checked. It cannot be otherwise, because this postulate results from a 1st postulate. The speed of
light depends on the electric permittivity and magnetic permeability, which are constants of the vacuum,
and results from the solution of the homogeneous wave equation. So, if this equation is invariant under
the boost, it must have the same solution in every inertial frame.
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So what is the difference, since the results of our theory differ from the classical results? The authors of the
classic STR implicitly made one more assumption: Lorentz factor (

p
1− v 2) works only in the direction of the

relativistic movement. In the classical STR, the description of the phenomena is divided into components in
line with the direction of motion and perpendicular to it, i.e. we deal with relativistic one-dimensional (in the
spatial sense) phenomena. This assumption results from the seemingly obvious fact that space-time is real.
The adoption of such assumptions leads in consequence to paradoxes such as, for example, a change of shape.
By examining mathematically a very simple linear transformation that preserves the invariance of the wave
equation, we looked for consequences for the theory of the electric field and built the foundations of the
geometry of the space in which this field could reasonably exist. The results were surprising. We found that the
theory works best when we don’t try to confine it to real space-time. From the mathematical point of view, the
adopted definition of the scalar product naturally extends the definition known from Euclidean geometry and
carries the invariability of the shape of the sphere distinguished in nature. Consequently, this means that
shapes are invariant, which is more intuitive and simplifies many problems. Maxwell’s equations are also great
for complex space.

We have shown that, despite the differently defined momentum and kinetic energy, the energy balance
of the complex theory is completely consistent with the balance made in accordance with the formulas of the
applicable theory. The obtained theoretical results make it possible to confront both theories, because the same
kinetic energy and momentum correspond to different velocities in both theories.

A very important conclusion from the considerations so far concerns the dilation factor, which in the
classic theory is called the Lorentz factor. One should pay attention to a very important detail: when we
transferred the description of the phenomenon from a rest frame to a moving one, then in the moving frame
this factor was reduced ((6.29), (6.34), (10.12), (10.19), (10.22), (10.25)). In the classical SR, this factor did not
concern the coordinates perpendicular to the direction of motion and therefore it did not disappear when
describing space-time phenomena. In complex space-time, it applies to all spatial directions, therefore it can
be treated as a transient scaling factor that disappears in the observer’s coordinate system, regardless of the
inertial frame of the observer. In cases where we refer to the values from the rest frame, the dilation factor
remains there. It should be noted, however, that what happens to the factor 1/

p
1− v 2 also happens to the

magnetic field: it occurs only in the case of relative motion of the charge and the observer. If the charge is
stationary relative to the observer, the magnetic field will disappear. When one twin brother returns after light
years from a long trip and sits down over cup of coffee with his twin brother, it may turn out that both are
equally old, because in this joyful moment, the dilation factor is equal to 1.

In addition to the advantages of the complex model, there are also disadvantages that mainly indicate the
need for a deeper understanding of the mathematical structure of space-time. It seems that geometric space-
time must be distinguished from the space-time of physical objects. The geometric four-vectors can take any
values and can be any para-vector, while the coordinates of four-vectors of the objects endowed with energy
must meet the conditions of proper or singular paravectors. This means that geometric space-time does not
have a metric, while the space-time of physical objects would be a classical unitary space, if it was not for the
other properties of the metric. We’ll show the outline of a space-time structure in the next chapter.
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Chapter 11

Draft of the mathematical structure of
complex space-time and the physical
objects contained in it

In this chapter, information about paravectors is gathered and organized in terms of its application
to the description of physical problems, which gives us an outline of the mathematical structure of
complex space-time. Space-time is divided into a geometric and a physical layer. The elements of the
geometrical layer are any four vectors, therefore, although it is an orthogonal space, it does not have
a metric. The physical layer is made up of objects with energy, the state coordinates of which are proper
or singular paravectors. Therefore a metric can be defined for these objects. Since this metric does not
have classical properties, but is also not Minkowski’s pseudo-metric, it is called a para-metric. In the
complex physical space-time the triangle and Cauchy inequalities are valid, but they have opposite
directions to their equivalents known from Euclidean geometry. Finally, there are a few tips given on
how to help readers imagine a complex space-time.

Chapter 2 presents the algebra of paravectors. As was shown later, some of the paravectors are additive
and others are not. We call those of them that can be summed up four-vectors. We have learned about the
geometric interpretations of the components of the phase interval and the orthogonal transformation. We have
also distinguished between geometric and physical concepts. The relativistic transformation corresponds to the
shift of an observer to another frame, moving at the relativistic speed. Every physical object is in motion, both
in space and in time. Movement is an inherent quality of nature. In order to say that time is passing, at least two
clock ticks are needed. The interval between these ticks can be very short, but it must be greater than null. At the
moment of the tick, there is no time, as in the a photo picture there is no movement. Therefore, we assumed that
time consists of whiles, i.e. arbitrarily short intervals. In Euclidean geometry, a vector is defined as an ordered
pair of points, where the point is a basic, undefined concept. When assuming that time is nonzero, we must
assume that the basic concept of space-time is a nonzero 4-vector. A point in space can be defined as a vector
by which a rest object has moved at any time. For an observer moving in time, a point is a fleeting concept. We
define a point as a place in the observer’s real space-time, which is the beginning or the end of the 4-vector. The
space of places is an affine space, but time belongs to a semi-group, hence the complex space-time is a vector
space (not an affine one). There is a physical relationship between the and the beginning of a 4-vector, if the
4-vector is proper or singular. Besides, 4-vectors having a physical meaning are so directed that the beginning
must always be earlier than the end.

It was an intuitive description of space-time. In other words, but more formally:

1. Any single object in the observer’s space-time is described by two parameters: its position relative to the
observer and his time. The observer’s proper time and the coordinates of his frame of reference are real. We
have assumed that time passes in steps, that is, the structure of time is ’granular’, with an infinitesimal step.
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The behaviour of a physical object in the observer’s space-time is described by the following coordinates:
time ones∆t ∈R+ \ {0} and spatial ones∆x ∈R 3.

2. The state of an inertial physical object in the observer’s real space-time is determined by the phase interval

�

1
−v

��

∆t
∆x

�

=

�

∆t −v∆x
∆x−v∆t − i v×∆x

�

= k ∈R+.

where the vector v is interpreted as the velocity of the object relative to the observer. Time lapse can be
interpreted as the movement of the observer in one direction along the time axis. The time of the observer
∆t is therefore targeted. It is the same with any physical object. The above formula shows that v ∥ ∆x.
Physical phenomena are those in which energy is involved. Energy has not been found to travel faster
than the speed of light. Mathematically, this means that for a physical object, individual elements of the
phase interval must meet the conditions ∆2t −∆2x ⩾ 0 and 0 ⩽ v 2 ⩽ 1 . In the case of v 2 = 1, the object
moves relative to the observer at the speed of light. The phase interval of objects slower than light can be
depicted as

V −X=
1

p
1− v 2

�

1
−v

��

∆t
∆x

�

=
1

p
1− v 2

�

∆t −v∆x
∆x−v∆t − i v×∆x

�

=∆t 0 ∈R+ \ {0}

In the formula above, the phase interval is equivalent to the proper time interval of observed object. The
phase interval cannot be a negative number because time does not run backwards.

3. When an observer describes two objects (or more), their mutual relations require one of them to move in
a complex motion, so the coordinates of his state paravectors must be complex

Λ−X=
1

p
a 2− b 2+ c 2−d 2

�

a + i d
−bbb − i ccc

��

∆t + i s
∆x+ i y

�

=∆t 0 ∈R+ \ {0}

where a d = bc and s∆t = y∆x. The imaginary components s and y are auxiliary quantities and are not
independent. The real vector ∆x is the vector between the start and end points of the event in the affine
local observer space. Likewise, ∆t is the duration of the event. The imaginary scalar s and the imaginary
vector y are dependent parts of the corresponding real variables.

4. The transition from a rest frame to an inertly moving frame is determined by the relativistic transformation
described by the complex orthogonal paravector Λ, and defined as the transformation mapping the four-
vector X into the X′ one such that the phase interval is an invariant of this transformation.

X Λ−→X′ and Γ
Λ−→ Γ ′ so that Γ−X= Γ ′−X′

5. The observer describes the state of a single object with real state paravectors, where the velocity is

determined by the parameter in the form V = 1p
1−v 2

�

1
v

�

, and change of its position is determined by the

real proper four-vector X ∈ (R+ \ {0})×R 3. When the observer describes an object moving in relation to
another object, which is also moving, the state of the first object is described by complex paravectors.
The observer can reduce these complex state paravectors to the real form by realisation of state
paravectors, which is defined on the basis of the value of the energy paravector, which is always the real,
as the following transformation:

Λ−X→V −X′ = Λ−
�

�X′ such that ΛΛ∗ =V V

whereΛ is a complex orthogonal paravector,X is the proper complex four-vector,X′ is the proper real four-
vector, and V is the velocity paravector. Realisation distorts the mutual space-time relationship between
these objects because it is not an orthogonal transformation. However, it preserves the scalar product
between the real energy paravectors of these objects.
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Since the realisation does not maintain the scalar product, we can only apply it to the description of the
motion of a single physical object (or space-time parallel objects) and it is used to choose a frame related to this
object(s) which is the most convenient for the observer. The benefit of using realisation is that the coordinates
of the object are real. When describing two inertial objects whose paths intersect (motion on a plane), we have
less freedom and by choosing real coordinates for one of them and wanting to maintain their mutual relations,
we can only choose a system in which time will be real for the other one. Realisation cannot be applied to the
description of the movement of spatially moving objects, as it introduces deformations (it is not an orthogonal
transformation). Since the realisation preserves the parallelism of the paravectors, we interpret them as a kind
of projection on the real space-time of the (rest) observer.

11.1 Mathematical structure of space-time

For an even more precise ordering of the obtained results, we should define the outline of the
mathematical structure of the space in which we build our model. In the current state of knowledge, the
following construction should be treated only as a working mathematical model for imagining the complex
space-time. As a symbol of the structure, we use the designation of its element in curly brackets.

GEOMETRICAL LEVEL

1. We define the geometric space-time as a tangled ring of paravectors GST = ({X} ⊙ {Γ }, (C ,+, ·)) over the
field of complex numbers, where {X} = (C ×C 3,+) is an abelian group of four-vectors with a summation
operation, and {Γ }= (C ×C 3, ·) is a semigroup of paravectors with the operation of multiplication.

The elements of the {X} group are four-vectors

X=
�

∆t + i s
∆x+ i y

�

On four-vectors we define the external multiplication operation ⊙ such that the 4-vector product is
a paravector from the {Γ } semigroup. The product of the paravectors from the {Γ } semigroup and the
four-vector is a four-vector. This operation is an internal operation of the semigroup {Γ }

X1X2 ∈ {Γ }, Γ1Γ2 ∈ {Γ } and (ΓX ∈ {X} or XΓ ∈ {X})

The space-time defined in this way corresponds to the vector space, therefore the term coordinates is
understood as the coordinates of 4 vectors. It is a geometrical structure - an empty space in which there
are no objects with energy as yet, and it only serves to define the mathematical operations that can be
performed.

2. In space-time, we define the relationships:

• Integrated products:

right one (X1,X2〉=X1X−2 and left one 〈X1,X2) =X−1X2

• scalar product 〈X1,X2〉= (X1,X2〉S = 〈X1,X2)S ∈C

• determinant detX=XX−

These relations are valid for all elements of the ring, both 4-vectors and paravectors.

3. The determinant has the following properties:

• detX ∈C

• parallelogram identity det (X+Y) +det (X−Y) = 2(detX+detY)

• polarization identity det(X+Y) = detX+2〈X,Y〉+detY
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which introduces into space-time the skeleton of geometric space on which the metric of physical objects
is based.

PHYSICAL LEVEL

4. We create physical space-time by placing physical objects in geometric space-time, the state paravectors
of which cannot assume any value but are complex proper or singular paravectors (detX, detΓ ∈ R+). A
physical object is distinguished by two attributes:

a The proper time of a physical object is discrete and takes values from the set of non-negative rational
numbers.

b A physical object has energy. Energy is the ability to do work, and work is the act of transferring energy
to another physical object. Energy is a discrete quantity and its scalar value is a positive number.

5. Among physical objects, we distinguish material objects whose proper time is a rational positive number
(∆t > 0). A force field is also a physical object.

6. We create the inertial boost group (Λ, ·), where Λ is the set of complex orthogonal paravectors and the
operation is a multiplication of paravectors.

7. In the (Λ, ·) group we introduce the unary relation ΛΛ∗, the result of which is called vigor, and it has to do
with the kinetic energy of a physical object.

8. We create the phase space of physical objects {Θ} = ([Λ−X],+) = ([∆t ],+), where [Λ−X] is a set of pairs of
elements consisting of a position 4-vector of a physical object and an ortogonal (boost) paravector (a pair
of state paravectors) connected by the multiplication operation Λ−X. The value of this product is a real
non-negative number equal to the proper time interval, i.e. Λ−X ∈R+ (or Q+, if time is a discrete quantity).
Therefore, the X and Λ paravectors are not independent of each other.

9. For these 4-vectors, we define the |X|=
p

detXmodule. This means that we are introducing a function that
acts as a metric that is valid only for physical objects(!). This function has slightly different properties than
the known metrics, namely:

• |X| ∈R+

• X= 0⇒ |X|= 0

X ̸= 0 and |X|= 0⇔when an object is moving at the light velocity

• |X|= |X−|
• If X1 +X2 is a proper or singular paravector, then |X1 +X2| ⩾ |X1|+ |X2|. This is the inverse triangle

condition in a space-time.

We call the above function para-metrics.

10. Function fields are spread over this space.

On transition to a moving frame, the 4-vectors of physical objects in the old frame of reference X are
replaced with new complex 4-vectorsX′ so that the phase interval is invariantΛ−X=Λ′−X′. In the case of a single
physical object movement description, the observer in his real frame can always present the state of this object
using real paravectors, i.e. in such a way that the object moves along real coordinates and does it by realisation.

A while (minimal proper time of the material object) is the real infinitesimal interval (δt > 0). Space-time
defined in this way is not an affine space, that is, there is no coordinate system in it. Each observer builds his
affine space by determining their real coordinate system. In this system, he can only describe a non-relativistic
movement of individual object that is relativistic in relation to him. However, he is not able to accurately describe
the relationship between objects in relative relativistic motion using real coordinates. In other words: space-
time is real locally. The word local primarily means a slow velocity relative to the observer. Frames of various
observers are ’immersed’ in a complex vector space-time, in which any physical phenomenon can be described
by means of paravectors. In the observer frame, these paravectors (implicit in phase intervals) are real when
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the observer describes a single object. If he wants to describe the motion of the same object, but with respect
to another moving object, real paravectors are not enough. The coordinates of the same object described in
relation to different other objects will be different. Thus, it is not possible to objectively determine the position
of objects in the real coordinate system of the observer, but any phenomenon can be objectively described by
means of complex paravectors.

11.2 Few remarks on the nature of time and space

We already know enough to think about the nature of time and space:

• Is time a physical or mathematical concept?

• Does the space have physical properties? Or to put it another way: Does space have the property of
transmitting energy, that is the property of ether?

Physical objects have the property that their determinant is a non-negative real number1. This feature
distinguishes physical objects in the mathematical structure of space-time. Physical objects are therefore
located in a specific substructure of the more general space-time that we built in Chapter 2. We want
space-time to be a mathematical environment for physical objects and not to have properties specific only to
physical objects. Of course, the properties of space-time and physical objects must be complementary.

Any physical objects has two specific properties:

1. The arrow of its proper time is pointing in one direction, it towards future. But, there are physical objects
that do not have proper time - timeless objects. These are objects moving at the speed of light.

2. They have energy, a property that physical objects can transfer to each other. Energy is described by a real
paravector whose scalar component has a real positive value. This explains why we see the world as real,
because energy is the only carrier of information.

The physical quantities in physical formulas, written in SI system, include so-called material constants,
e.g. c ,µ0,ϵ0 (see table 1). It is assumed that they describe the properties of the medium, which in this case is
vacuum. We tend to claim that these are properties of physical objects, such as the electric field or, for example,
a charge. This assumption gives complete freedom to mathematical operations and imposes restrictions on
physical quantities. We wrote time as c t . The letter c stands for the speed of light, a property characteristic of
certain physical objects. Time cannot be transferred from object to object. Time is one of the dimensions of
space-time, but directed time c t is shared by physical objects. This dimension is definitely different from spatial
dimensions. Time is a dynamic dimension of a physical object. Thanks to this dimension, physical objects are
always in motion and can transfer energy to each other. Saint Augustine stated that ’Time does not exist without
the movement of successive changes’[5]. So, he linked time with the movement of matter. This explains why time
as an oriented dimension of physical objects has a c factor.

When it comes to space, the formulas of classical physics do not give it any physical properties. In SI
system, the magnetic permeability and electric permettivity factors are attached to a field or charge. In the
formulas the speed of light occurs with mass or momentum, but never with spatial coordinates. Here we are in
agreement with the classical SR and so we can say that there is no aether. Force fields are specific physical
objects that fill space-time and they have physical properties in opposite to a space-time.

An attention should be paid to the significant advantage of complex space-time: Thanks to complex
paravectors, it is possible to exceed the speed of light in real coordinates, which means that we do not get
paradoxes such as deformation of moving objects. Despite the apparent exceedance of the c speed, we cannot
determine it by measurements, because the measurement is always made using an electromagnetic wave in its
source frame. At this point, there is a contradiction in the current theory: If we assume that the speed of light is

1This is due to the fact that physical objects are subject to entropy - they age, which mathematically means that their proper time is a
semigroup
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constant, then we must accept the deformation of space, and if we want space to be rigid, then the speed of
light cannot be constant. In complex space-time there is no such contradiction, because real coordinates
change into imaginary ones and vice versa.
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Chapter 12

On the classical Special Theory of Relativity
based on William Baylis’ publications

Based on the ’Algebra of Physical Space’ (APS) by Professor William Baylis, in this chapter the classical
Lorentz transformation is presented. The advantages of the ’Lorentz rotation’, such as consistency with
the current theory of electricity and limitation of space-time dimensions to the real domain, are shown.
Finally, the APS flaw is shown, consisting in the conclusion that the observer can turn around in place
by assembling rectilinear inertial movements, which in our opinion proves to the disadvantage of the
concept developed by W. Baylis, and thus the current SR.

12.1 Lorentz rotation

Using the tool of the paravector calculus we will now look at the classical theories of SR and EM as
proposed by William Baylis. In his works, W. Baylis describes the Lorentz transformation with the below
formula and calls it the Lorentz rotation:

X′ =ΛXΛ∗ (12.1)

where Λ is an orthogonal paravector, and X belongs to real space-time.

ΛXΛ∗ =
1

α2−β 2

�

α
βββ

��

∆t
∆x

��

α∗

βββ ∗

�

=

=
1

a 2− b 2+ c 2−d 2

�

a + i d
b+ i c

��

∆t
∆x

��

a − i d
b−i c

�

= (12.2)

=
1

detΛ

�

(a 2+ b 2+ c 2+d 2)∆t +2(a b+ cd −b× c)∆x

2(a b+ cd +b× c)∆t + (a 2− b 2− c 2+d 2)∆x+2 (a c+d b)×∆x+2 [b (b∆x)+c (c∆x)]

�

From the above it follows that ifX ∈R 4, thenX′ ∈R 4. Assuming that b= 0 and d = 0, the Lorentz rotation
is a Galilean rotation

X′ =ΛXΛ∗ =
�

∆t
a 2−c 2

a 2+c 2∆x−2 a c×∆x
a 2+c 2 +2 c(c∆x)

a 2+c 2

�

, (12.3)

which is easy to check when we replace

cosφ =
a

p
a 2+ c 2

sinφ =
c

p
a 2+ c 2
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and decompose the∆x vector into the components parallel and perpendicular to the c vector. If we assume that
c = 0 and d = 0 we obtain

X′ =ΛXΛ∗ =
1

a 2− b 2

�

(a 2+ b 2)∆t +2(a b)∆x

2a b∆t + (a 2− b 2)∆x+2b(b∆x)

�

, (12.4)

which is a classic Lorentz transformation, which we can find out assuming that b⊥∆x

ΛXΛ∗ =
1

a 2− b 2

�

(a 2+ b 2)∆t
2a b∆t + (a 2− b 2)∆x

�

=

�

a 2+b 2

a 2−b 2∆t
2a b

a 2−b 2∆t +∆x

�

=

�

∆t ′

∆x′

�

. (12.5)

As can be seen, the Lorentz factor does not affect the spatial components perpendicular to the direction of
motion. So it is a classic Lorentz transformation. The image of the time interval (rest object) in the Lorentz
transformation is the space-time interval (moving object):

1

α2−β 2

�

α
β

��

∆t
0

��

α∗

β ∗

�

=

�

∆t ′

∆x′

�

(12.6)

which means that the observed point covered the distance∆x′ in the time∆t ′ at a velocity of v such that:

(a 2+ b 2+ c 2+d 2)∆t

a 2− b 2+ c 2−d 2

�

1
2(a b+cd+b×c)
a 2+b 2+c 2+d 2

�

=∆t ′
�

1
v

�

, (12.7)

hence the velocity is

v=
2(a b+ cd +b× c)
a 2+ b 2+ c 2+d 2

(12.8)

Value a 2+b 2+c 2+d 2

a 2−b 2+c 2−d 2 is the Lorentz factor γ= 1/
p

1− v 2, which is shown below

1
p

1− v 2
=

1
r

1−
�

2(a b+cd+b×c)
a 2+b 2+c 2+d 2

�2
=

a 2+ b 2+ c 2+d 2

a 2− b 2+ c 2−d 2
(12.9)

Again, for formality’s sake, we check that the resulting velocity is always less than the speed of light.

v2 =
4(a b+ cd +b× c)2

(a 2+ b 2+ c 2+d 2)2
= 4

a 2b2+ c2d 2+ (b× c)2+2a bcd

(a 2+ b 2+ c 2+d 2)2
(12.10)

Since (b× c)2 = b 2c 2− (bc)2 and bc= a d (the assumption is that the paravector Λ is s proper one) we obtain

v 2 = 4
a 2b 2+ c 2d 2+ b 2c 2+a 2d 2

(a 2+ b 2+ c 2+d 2)2
= 4

(a 2+ c 2)(b 2+d 2)
(a 2+ b 2+ c 2+d 2)2

= (12.11)

=
[(a 2+ c 2) + (b 2+d 2)]2− [(a 2+ c 2)− (b 2+d 2)]2

(a 2+ b 2+ c 2+d 2)2
= 1−

(a 2− b 2+ c 2−d 2)2

(a 2+ b 2+ c 2+d 2)2
< 1

The transformation proposed by W. Baylis is an orthogonal transformation, i.e. it preserves the scalar
product (def.2.2.3).

Proof. Under the transformation (12.1) the scalar product of paravectors has the following form




A′1, A′2
�

=
�

ΛA1Λ
∗ (ΛA2Λ

∗)−
�

S
=
�

ΛA1A−2Λ
−�

S
= 〈A1, A2〉 (12.12)

Since Λ is an orthogonal paravector, Λ(A1A−2 )Λ
− is the rotation of the integrated product, and as we know from

Theorem 2.3.6, the rotation does not change the scalar.
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The last request is equivalent with the statement that the Lorentz transformation does not change the
shape of objects/phenomena in space-time. It is necessary to check what non-relativistic approximation of
Lorentz transformation looks like. To simplify the calculation, in the same way as before, we assume that the
paravector Λ is a real one (c = 0 and d = 0).

�

∆t ′

∆x′

�

=
1

a 2− b 2

�

a
b

��

∆t
0

��

a
b

�

(12.13)

which gives
�

∆t ′

∆x′

�

=
1

a 2− b 2

�

a
b

��

a
b

��

∆t
0

�

=
a 2+ b 2

a 2− b 2

�

1
2a b

a 2+b 2

��

∆t
0

�

(12.14)

If we divide the numerator and denominator of the vector fraction by a 2 and substitute

v= 2
b/a

1+ (b/a )2
(12.15)

then we obtain
�

∆t ′

∆x′

�

=
1

1− v 2

�

1
v

��

∆t
0

�

(12.16)

If we change the system of units to SI, then instead of∆t we write c∆t , and instead of v→ v/c , from where we
obtain

�

c∆t ′

∆x′

�

=

�

1
v/c

��

c∆t
0

�

, (12.17)

which is the Galilean transformation

∆t ′ = ∆t

x′ = v∆t +x′0

All of that confirms the compliance of our calculations with the William Baylisean Algebra of Physical Space.

12.2 Electromagnetic field

Now, we will have a closer look at the electric field equations. Based on the Chapter 4, differentiation
operators (4-gradient ∂ − and 4-divergence ∂ ) under transformation X′ =ΛXΛ∗ change to:

∂ A(X) = Λ∗∂ ′ΛA(Λ−X′Λ∗−) (12.18)

∂ −A(X) = Λ−∂ ′−Λ∗−A(Λ−X′Λ∗−) (12.19)

We transform equations of electrostatics according to the first identity

�

∂
∂ t
∇

��

0
E (X)

�

=ρ (X) −→
�

∂
∂ t ′

∇′

�

Λ

�

0
E (Λ−X′Λ∗−)

�

=Λ∗−ρ
�

Λ−X′Λ∗−
�

(12.20)

Based on formula 4.10 we can multiply the resulting equation on the right by any orthogonal paravector,
for example Λ−

�

∂
∂ t ′

∇′

�

(Λ

�

0
E (Λ−X′Λ∗−)

�

Λ−) =Λ∗−[ρ
�

Λ−X′Λ∗−
�

]Λ− (12.21)

hence, on the left side of the above equation we have

�

0
E′+ i B′

�

=
1

a 2− b 2+ c 2−d 2

�

a + i d
b+ i c

��

0
E

��

a + i d
−b− i c

�

, (12.22)
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and on the right side
�

ρ′

−j′

�

=
ρ

a 2− b 2+ c 2−d 2

�

a − i d
−b+ i c

��

a + i d
−b− i c

�

(12.23)

The equation (12.21) is a system of Maxwell’s equations in the primed frame.
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∂
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0
E′+ i B′

�

=
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(12.24)

or
∇′E′ =ρ′ ∇′B′ = 0

∇′×B′ = ∂ E′

∂ t ′ + j′ ∇′×E′ =− ∂ B′

∂ t ′

(12.25)

By identity (12.19) we obtain the conditions for the field to meet the wave equation.
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∂
∂ t
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ϕ (X)
0

�

=

�

0
E (X)
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(12.26)

⇕
�

∂
∂ t ′

−∇′

�

Λ∗−
�

ϕ (Λ−X′Λ∗−)
0
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0
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(12.27)

Just as before we multiply the right side of the received equation by Λ−, and we obtain

�

∂
∂ t ′

−∇′

�

(Λ∗−
�

ϕ (Λ−X′Λ∗−)
0

�

Λ−) =Λ
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0
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which gives
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ϕ′

A′

�

=Λ∗−
�

ϕ
0

�

Λ− and
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0
E′+ i B′

�

=Λ

�

0
E

�

Λ− (12.29)

So, the equation (12.28) can be denoted as

�

∂
∂ t ′

−∇′

��

ϕ′

−A′

�

=

�

0
E′+ i B′

�

(12.30)

or

∂ ϕ′

∂ t ′
+∇′A′ = 0 (12.31)

−
∂ A′

∂ t ′
−∇′ϕ′ = E′ (12.32)

∇′×A′ = B′ (12.33)

The results confirm the compatibility of our considerations and the theory that has been applied for over a
century, because the field is transformed in such a way that in Maxwell’s equations we obtain the density of
current and the Lorenz gauge condition is maintained. The field is transformed by rotation, and based on 2.3.6
we know that the rotation does not change the scalar component of the rotated paravector, which is equivalent
to the Lorenz gauge invariance. Since this is not a Euclidean rotation, the real vector of the electric field
becomes a complex vector, whose imaginary component is interpreted as the magnetic field. Assuming that
paravector Λ is the real one (for the sake of simplicity), by equations (12.22) (12.23) we get:

E′ =
a 2+ b 2

a 2− b 2
E−2

b(bE)
a 2− b 2

+2i a
b×E

a 2− b 2
=

a 2+ b 2

a 2− b 2
(E+ i v×E)−2

b(bE)
a 2− b 2

(12.34)

ρ′ =
a 2+ b 2

a 2− b 2
ρ and j′ = vρ, where v=

2a b

a 2+ b 2
(12.35)
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For unrelativistic velocities we have b 2≪ a 2, so the time-dilation factor is equal to 1 and the last component of
the equation (12.34) disappears.

Now we calculate the fields that appear around an infinite straight wire in which a constant current has
always flown. The intensity of the electric field of the load placed at a distance of r is

E=
Q r

r 3
=

r

r 3
ρ(sd l) (12.36)

Since the electrical charges are always distributed equally along an infinite straight wire, so the electric field of
negative charges at a point of h of the wire equals:

E=ρs

+∞
∫

−∞

l+h
�p

l 2+h 2
�3 d l , since r= l+h, l⊥h and s ∥ l (12.37)

If electrons move along the wire at the velocity of v = 2b/(a 2 + b 2), that is parallel to l, then by equation (12.29)
the vectors of the electric field and magnetic induction are the spatial components of 4-vector:
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where before the parenthesis we have the dilation factor. Vector l1 is a unitary vector, whose direction is
in line with the direction of wire, so l1 = b/b . The first and the third integrals reset, and since 2ρs b/(a 2+ b 2) = j
is the current density, we get
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(12.40)

The real component is the electric field of moving electrons, while the imaginary component is the magnetic
field proportional to the current flowing in the wire.
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The second formula shows the Biot-Savart law, so it is another confirmation of the correctness of the theory
created by Professor Baylis. In the wire there is the same number of positive and negative charges, but only
negative ones move. Integrating the formula (12.34) by the wire, but getting positive charges only, we get
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ρ+s l h
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(12.43)

Since the electrons in the wire move at the non-relativistic velocity, there is no resultant electric field. Using the
formulas from Chapter 4 we have to prove that the wave equation
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transforms into
�
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∂ t ′

∇′

��
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∂ t ′
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ϕ (Λ−X′Λ∗−)
0
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�
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�
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What follows from the considerations above is that the Baylis’ version of the Lorentz transformation does
not look bad:

• It is compatible with the Lorentz transformation

• It is compatible with the valid rules of the theory of electricity and magnetism, that is:

- as a result of transformation of the scalar potential there appears the vector potential

- as a result of transformation of the charge density there appears the current density

- the Lorentz gauge condition is invariant

• Although the Lorentz rotation is a complex transformation, it transforms the real space-time into itself.

12.3 Doubts

Unfortunately, some details cause concern:

1. In the formula (12.21) there is a discrepancy between the direction of charges movement (coordinates of
charges Λ−XΛ∗−), and the direction of electric current (Λ∗−ρΛ−).

2. As a result of the composition of inertial rectilinear movements, one can get a rotation in place.

The second point is the most serious objection against ’Lorentz rotation’. In Chapter 10.4 we showed that the
Lorentz transformation for a non-relativistic approximation becomes a Galilean transformation, but we did so
by simplifying the transformational formulas. First, the paravectors representing the transformation were real,
not complex, and second, the transformed interval was time, not space-time. By composing the velocities, we
obtain complex paravectors and we have to check what the Lorentz transformations will look like for them.

Although the idea of realisation did not give fully satisfactory results, while working on it, many very
interesting mathematical properties of orthogonal paravectors were found. We will now use them to show that
if we accept the Baylisean definition of the Lorentz transformation, we conclude that we can compose the
boosts so that we end up turning on the spot. In other words one can choose rectilinear translational
movements so that as a result of their putting together we get a rotation in place (not to be confused with
rotational movement). This seems to be a serious error of Baylis’ theory, and thus also of the classical theory (as
far as both theories are equivalent?).

A Lorentz rotation is defined by:
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a 2− b 2+ c 2−d 2
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��
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(12.46)

The complex Λ paravector is the product of the multiplication of real orthogonal paravectors. We will now
prove that for each complex paravector Γ we can find such a real paravector that their product will be a special
paravector. We already know that it is possible from the properties of the theorem 8.2.1.7.

A special paravector has a form of R =
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, and a real one B =
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.
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As a result of the multiplication, we have to obtain the zero imaginary component of a scalar and a zero real
vector, which gives the following conditions:

�

k d + cl = 0
k b+a l = l× c

The above system of equations can be represented by non-singular paravectors
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We calculate a special paravector
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After dividing both sides by k a 2−b 2+c 2−d 2
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and performing some transformations, we get the equation for
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Let’s go back to the equation X ′ = ΛXΛ∗. By switching to a frame that moves at the speed represented by the
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, we obtain:
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(12.47)

The conclusion is that one can find such a way to move forward as to turn on the spot, which raises our doubts
about the Baylis’ theory of "Lorentz rotation".

The question arises: What does the ’Lorentz rotation’ represent?

If we substitute u = b/a in the equation (12.15), we get v = 2u/(1+ u 2). Hence, we get close to associating the
obtained velocity with the ratio of momentum and kinetic energy. It is enough to multiply the numerator and
denominator by the same mass. And here we come to the essence of the difference between the relativistic
transformation proposed by us and the Lorentz transformation proposed by Professor Baylis:

According to Professor Baylis, the definition of velocity results from the relationship between kinetic
energy and momentum. We traditionally define it as a road travelled in time. In the case of the description of
the movement of a single object, it does not matter, but in the case of the movement described in relation to
other objects, it will have serious consequences for relativistic mechanics. It seems that energy should always
be the product of coupled paravectors, so it should be described with a real paravector. A paravector that
describes the kinetic energy of an object in motion will always have a positive scalar component (energy) and
a real momentum vector. Here it makes sense to rotate or nullify the vector component when composing the
speed of the observer’s, because the results of the multiplication operation of the mutually coupled paravectors
will be different for each observed energy-momentum paravector. In the formula (12.47) we have the same
rotation for every 4-vector X, so it is the observer who makes the Euclidean rotation in space. It is particularly
well visible in the case of the description of a purely spatial vector (improper paravector). According to the
model created by Professor Baylis, such situations are possible, and with us - they are not.

By choosing the model of complex space, we enter an unknown territory, but the mathematics is largely
simplified, which bodes well.
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Chapter 13

Summary

In this paper is shown that it is possible to build a mathematical model including Electrodynamics and the
Special Theory of Relativity, consistent with experiments, but different from the model considered by the science
mainstream to be the only correct one. Experiments carried out in various variants show that light in a vacuum
always moves at a constant speed of about 300,000 km/s. With this in mind, we assumed that the electromagnetic
wave in any frame in a vacuum must be described by the same mathematical formula - the wave equation, and
we found a simple linear transformation satisfying the invariance of this equation. The trouble is, it’s a complex
transformation, not a real one. Its matrix can be represented by a complex paravector. This transformation is
close to the known Lorentz transformation, and in the direction of motion both are identical. To distinguish it
from the classical Lorentz transformation, we called mine the relativistic transformation1. In the course of work,
it turned out that our transformation matrices are already known as paravectors and that they are dealt with by
physicists using Clifford’s algebra. Paravectors are an excellent tool for describing objects in space-time because
they naturally extend the algebra of vectors. Paravectors combine the features of numbers and vectors:

- Together with the addition and multiplication, paravectors form a ring, so they have properties similar to
numbers.

- Paravectors meet geometrical relationships such as parallelism, perpendicularity or angles, which makes
them spatially imaginable just like vectors.

- Maxwell’s equations written in a paravector form naturally refer to the operator-vector notation introduced
by Olivier Heaviside.

Although at the beginning we started from the assumption that physical space-time is real and we were
looking for solutions in real quantities, mathematical aesthetics steadily directed the discussion towards a
complex space. At this moment, we can say with full conviction that space-time has a complex structure. It is
difficult to imagine an imaginary direction because our immediate experiences are about stationary
phenomena in the sense of the speed of light, and those taking place at enormous speeds reach the observer
through the transmitted energy, which by nature is always real. However, everyone is well aware of physical
phenomena such as magnetic fields and gyroscopic phenomena that testify to complex space-time. Since
imaginary coordinates never exist alone (they must always be accompanied by real coordinates) and are not
independent of real coordinates, we treated them as auxiliary coordinates and not as independent dimensions
in an algebraic sense. For this reason, we interpreted the imaginary spatial components as indicators of
deformation of real quantities. The situation is much more problematic with the imaginary time component
which we have failed to interpret. Real time is orderly - it has its direction and pace, and complex numbers are
not ordered. Although for an immobile observer, that is one living in real time, the complex time can be
ordered along the real component, as of now this is only a hypothesis and it requires a lot of research. Besides,
it is not certain whether it makes sense at all to order the times of different frames that do not have direct

1The mathematical name is a paravector orthogonal transformation
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physical relationships with each other, or can ordering be introduced only at the interface of the energy
interaction of these frames? Certainly, the proper time of any frame is real and orderly. The interpretation of
velocity as a paravector angle between four-vectors prompts us to give different ’directions’ to the time axes of
frames that are in mutual motion. The flow of time in different ’directions’ can only take place in complex
space-time when the frames are in motion with respect to each other. This does not mean, however, that these
times move at different speeds. The real time is the local dimension. It is related to the object. The times of
spatially distant objects can be synchronized only when they are at rest. In the case when objects move, each
displacement causes the disynchronization of the previously established simultaneity. However, it is possible
to coordinate objects that are in motion in relation to each other. This can be done when and where they meet.
In the presented example of an explosion in the center of a spherical laboratory, the objectives for any observer
were the beginning and the end of the experiment, that is, the place and time of the explosion and the meeting
of particles. Meanwhile, the particles were not simultaneous and each observer saw them in their own way.

In Newtonian physics, time is a dimension independent of anything. Observers can objectively place all
phenomena in time. All they need to do is synchronize their clocks with each other in advance. They can
coordinate the place of the phenomenon by translation, rotation, or Gallileo transformation of their coordinate
frames. The introduction of a variable time in the classical SR made it necessary to give up the concept of
simultaneity, which was natural for a human being immersed in objective time. In order to make observations,
there must be some objective references provided. The speed of light in a vacuum is such an objective quantity.
The relative speed of two observers is also objective. If the speed of observer A relative to observer B is v, then
the speed of observer B is the same with respect to A. SR reversed the principles - time and space are variable,
but equally variable, so that their ratio (velocity) is constant. And at this point we encounter an interpretation
difficulty, because in the current SR, space is variable only in the direction of relative motion (Lorentz
contraction). The perpendicular directions do not change. The Lorentz transformation introduces anisotropy.
Theoretically, a deformation of moving objects should occur. Complex space-time is more flexible, as opposed
to the rigid real space-time of the SR. Another reason, for real space-time rigidity is the assumption that it is an
affine space - observers in their coordinate systems on their timelines try to order the spatially distant events in
the same way, and this is impossible.

Differences between the complex model and the current SR

Complex space-time is not a Cartesian space with a coordinate frame in which the observer can locate
all the phenomena taking place in this space. An affine space is a subjective space of the observer. He marks
the origin of the coordinate system and places the observed objects in this system. For the observer, only what
energetically connects him with the observed objects makes physical sense. For space-time, this approach
creates a huge limitation. The formulas we analysed describe physical interactions. However, the most
important reason for departing from the affine space is the property of time which is its directed dynamics.
Time does not stand still and does not turn back. Time can be divided into intervals (whiles), but an interval
can never be built from moments (points). In other words, in the presented theory, time has a discrete
structure, hence our space-time is a vector space and this is the basic difference between complex space-time
and Minkowski’s space-time.

The results of applying complex transformations in the theory of high velocity appear to be promising.
As the most important, it should be noted that the complex model is consistent with the SR postulates, which
does not mean, however, that both theories are equivalent. The postulates of the classical SR are so general that
to deny them would be at least unwise. However, due to their general nature, they cannot be treated as axioms
and a strict theory cannot be built on them.

1st. postulate: The laws of physics take the same form in all inertial frames of reference is valid for ANY physical
theory. It is a necessary condition that should be met by any correctly formulated physical law and
transformation equations of reference systems, regardless of what these laws refer to. This postulate should
therefore be treated as a guideline for checking the universality of the mathematical model.

2nd. postulate: The speed of light in a vacuum is independent of the kinematic state of any inertial observer
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results directly from the first postulate, because if the wave equation expresses a law of nature, and the speed of
the electromagnetic wave is its parameter, then by demanding the invariance of the wave equation, we also
demand the invariance of the speed of light.

On the one hand, a complex model complies with the 2nd postulate, because we have shown invariance
of the wave equation, but at the same time it doesn’t comply, because the real speed of the object may exceed
300,000 km/s. This apparent paradox is caused by a different structure of space-time in which our theory is
built. From the perspective of this work, it is clearly visible that the creators of the classic SR informally made a
third assumption, which limited it a lot and resulted in numerous paradoxes. The assumption is: Space-time is
real2. Our space-time is a complex structure, and therefore, although our real component of the speed of light
may exceed (but not arbitrarily) the value of 300,000 km/s, measuring it in the light source frame the observer
always yields the same result. In complex space-time the speed of light is constant. In the classical theory the
assumption of real space-time results in the necessity to decompose the description of phenomena into
components parallel and perpendicular to the direction of relative motion. This assumption, seemingly
natural, is in fact contradictory to the postulate of universality of the laws of physics. The complex model
eliminates this dissonance, and in addition, as far as the direction of motion and the description of energy go, it
is in line with the current theory. In our considerations, this inconsistency points to the advantages of the
complex model, the conformality (shape invariance) of which is immediately noticeable. While time dilation is
observed, no space deformation has been noticed.

The complex model explains the concept of time dilation, which has been controversial since its
introduction. As has been emphasized many times, and which we demonstrated clearly, it is prohibited to
compare four-vectors from different reference systems, let alone their components (e.g. time). We can only
compare the phases with each other, because they are invariant, and the phase interval is always equal to the
interval of elapsed proper time. It cannot be ruled out that the proper times of all inertial reference frames
elapse at the same rate. The fact that faster particles are seen as if they lived longer than identical, but slower
ones, is an illusion similar to the fact that we see the mast of a yacht on the horizon as shorter than the mast of
the same yacht in the harbour. This illusion only works when the observed object is in motion, just as the mast
is short when the yacht is far away. This is because the local times of the objects moving in relation to each
other flow in different ’directions’.

In complex model the energy is always a real quantity, and because the information from the surrounding
world reaches the observer thanks to energy, it seems to him that the world is real while it is more compound. The
real energy should follow the classical Lorentz transformation, but it does not. While the differences in the EM
theory between the presented model and the classical relativistic electric field theory are cosmetic, the difference
between the mechanics in both models is significant. These differences are shown in the table below

Classic SR Complex model
Momentum p=mγv p=mγ2v
Energy E = γm E =mγ2(1+ v 2)/2

where γ= (1− v 2)−1/2.

One more spectacular difference from the classic STR should be noted. With us, the formula for the
equivalence of mass and energy is

E =
m c 2

2
Mathematical aesthetics is also important. Obtaining the results presented above was possible only thanks to
the paravector calculus. The algebra of the complex model naturally extends the concepts known from the most
intuitive Euclidean geometry, which was emphasize in Chapter 2, and at the same time is closely related to the
Clifford C l3 algebra.

The creators of SR, guided by the mathematical analysis of space-time dependencies, added time to
spatial dimensions, which was a great and shocking discovery. Time is no longer stiff and independent of
anything. However, the jigsaw puzzle that they put together has gaps due to the too literal transfer of space
properties by mathematicians to time. After all, the physical properties of time and space are completely

2In the sense of the set R 4
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different. Continuing the comparison to a puzzle, it can be said that flat puzzles turn out to be spatial blocks
which, arranged in an additional imaginary dimension, fit together perfectly.

Differences between the complex model and the current Theory of
Electricity and Magnetism

In electrodynamics, the complex model made it possible to abandon the vector potential, the Lorenz
gauge condition and the current density in the Maxwell-Ampere equation, which was questioned even during
Maxwell’s lifetime. Instead, it was necessary to enter the scalar quantity e = vE, called scalar induction by us,
which does not occur in classical electrodynamics due to the adopted Lorenz gauge. This allowed for the
symmetrization of the field equations (corresponding in the classical theory to Maxwell’s equations) for fields
from stationary charges and currents flowing in closed circuits, because in these cases scalar induction does
not occur, and we deal with these cases in practice. From Maxwell’s equations modified in this way, it is
possible to derive all the laws of electrodynamics, including the Ampere’s law. The lack of current density in the
Maxwell-Ampere equation does not prevent the fundamental laws of the electromagnetic field from
composing the wave equation, with the use of complex transformations. Neither vector potentials nor a Lorenz
gauge condition are needed. The potential and charge density fields are invariant and real. On the basis of the
theory described in this way, the basic premise for the search for a magnetic monopole loses its sense and it
becomes clear why the magnetic charge has not been discovered, and if our reasoning is correct, then it cannot
be discovered.

Epilogue

Although I am still far from declaring that the model proposed above is complete the obtained results
seem promising enough that I decided to publish them. By creating the complex model I went back to the
beginning of the evolution of the prevailing theory, that is: starting from the electric field equations, I
developed alternative principles of relativistic transformation, trying not to lead to contradictions with known
experimental results. Although initially I conducted my considerations assuming that physical space-time is
real, mathematical aesthetics constantly directed me towards complex space. At the moment I can say with full
conviction that space-time has a complex structure.

I was moving along my own path but I did not work in a vacuum. I drew much inspiration from the
results of Professor William Baylis. I do not rule out that Baylis is right, but certain details, and above all
intuition supported by a sense of mathematical aesthetics, indicate that high-velocity space-time is a complex
structure after all. The main objection I make to W. Baylis’s theory is that by combining the boosts he can turn
in place. Based on the similarity of the geometry of complex space to Euclidean geometry, one can expect that
by maneuvering his vehicle appropriately, the observer can arbitrarily change the direction of the motion of the
object observed outside, that is, that this object can move relative to the observer in any direction at any speed.
However, by combining the boosts, this never happens to all observed objects simultaneously and equally. The
same change of direction of all observed objects takes place only in the case of the observer’s rotation, which is
why rotations and boosts are different groups of issues.

Since the scope of verified correctness is, so far, very limited, I admit that I approach my results with
caution. Apart from checking the invariance of the laws and covariance of the most general equations of physics,
I did not deal with more detailed issues. I leave this to specialists, whose interest I count on.
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Chapter 14

Appendixes

Appendix 1. From discrete time to complex space-time

In the current SR, the time axis is a continuous set of real numbers. This assumption is impossible to test
since the clocks measure the time in steps. As technology advances, these steps become shorter and shorter,
but it seems that continuous measurement will never be achieved. We may assume that there is a hypothetical
shortest time interval below which it is impossible to go - a quantum of time1 , which we call a while. On the other
hand, the stepwise advancement of time is close to our intuition. The history of the Earth is divided into epochs,
the history of civilization is divided into periods, the year is divided into seasons, etc. The most precise clocks
keep time in rhythm with the vibrations of the atom. To measure the time, there is a while determined by the
beginning and ending moments: two consecutive moments. In the cinema, two frames of the film are needed
to obtain the effect of motion. With just one photo-picture, nothing can be said about the movement. Motion
in physics is described by differential equations that describe changes in the position or energy of an object in
the infinitesimal time interval. The same goes for the transformational formulas. The Galilean transformation
in Newtonian mechanics takes the form:

t ′ = t , x′ = x−vt where x= (x , y , z )

This formula is true only assuming that the systems are coordinated, that is, at the initial moment t = 0 they
overlap, the object is at the point with x coordinates, and the clocks of both systems are synchronized. If we
coordinate both systems at the moment t ′0↔ t0 and at the point x′0↔ x0 the formula has the following form

t ′− t ′0 = t − t0 , x′−x′0 = x−x0−v(t − t0)

The above formula is more general and it shows what cannot be seen in the previous formula, that the
transformation applies to a specific time interval and not only to the coordinates of points, but also to vectors.
The first formula imposes the coordination of the coordinates of both systems, while the second one is true
even without the coordination of time and the coordinate system. Coordinate changes are objective no matter
where the observers are and where they place the origins of their reference frames. While it is obvious in the
affine Euclidean space, in the Lorentz transformation one should pay attention to this fact, because it is
omitted in textbooks, and any attempts to synchronize the systems are backbreaking.

1Some physicists call it Planck’s time
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The Loretz transformation is commonly presented as a system of equations:

c t ′ =
c t − x v /c
p

1− (v /c )2

x ′ =
x − v t
p

1− (v /c )2

y ′ = y

z ′ = z ,

which are burdened with additional assumptions:

1. The relative speed of the systems is parallel to the OX and OX ’axes.

2. At the t0 = t ′0 = 0 moment the origins of the coordinate systems coincide,

thus giving the impression that they are the transformational dependences of affine space. However, when we
take more general formulas

c t ′ = γ(c t −βββx) , gdzie γ=
1

p
1− v 2

, βββ =
v

c

x′ = x+
γ−1

β 2
(βββx)βββ −γβββ t

where the relative velocity of the systems has any direction, we will see that further explanations are necessary.
The observer can place the object in any coordinate system he constructed - the coordinates (t, x) of the point
in which the object is located are completely independent. However, if we want to describe the movement of
this object between the coordinates∆t and∆x, it is necessary to put the limiting relation |∆x/∆t | ≤ c . Besides,
if we treat the spatial coordinates here as the coordinates of the position of the object in the frame, then we get
a shift on the time axis depending on the dot product vx which makes it difficult to interpret, because what is
the meaning of the dot product of the vector and the coordinates of the point? All points on the plane
perpendicular to the velocity, regardless of their distance from the observer (the origin of the system), are
simultaneous, and others are not. This desynchronisation is not due to the distance from the observer, but to
the direction of movement.

If we do not coordinate the systems with each other and in the original system we choose an event starting
at t0 moment, at x0 point and ending at t , at x point, then an observer in the OX system will write that it took
place in the (t ′−t ′0, x′−x′0) space-time interval. The transformation formulas remain the same, but in place of the
(t , x(x , y , z )) variables there are (∆t ,∆x) vectors. So we transform the vector space, not the affine one. This subtle
change on the one hand refines the assumptions for the considerations, and on the other hand gives us much
more freedom, because vectors can be enriched with additional properties of multivectors, which cannot be
done with points. In this way, the discrete advancement of time gives us the basis for extending the domain from
a real space-time to a complex one. For this reason, from the perspective of mathematical properties, we treat
space-time in the most general way - as a 4-dimensional complex continuous structure that has three spatial
dimensions and a fourth scalar dimension - prototime. When describing the behavior of physical objects in
such a mathematical environment, we cannot allow ourselves to be arbitrary, because any physical object has its
own properties, which include a discrete value of energy, and many clues indicate that its proper time also has
a discrete value. Such an assumption is objective due to the methodology of time measurement, in contrast to
the assumption of continuity of proper time.

Philosopher Professor Herb Spencer [16] has written many on the discrete nature of time. This
monograph is in complete agreement with his views on time.
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Appendix 2. A reference to formalisms used by other authors

Until the end of the 19th century, physical quantities were divided into scalars and vectors. In the 20th
century, theoretical physics was dominated by the unintuitive tensor formalism. There were also attempts to
use quaternion calculus [1, 2, 3], [18]. For some time, scientists have been looking for a more intuitive language
to describe phenomena in space-time. There are number of papers written in the language of multivector
calculus in journals. The main precursors of this direction are Professors David Hestenes and William Baylis. To
describe the properties of physical objects, they use concepts taken from the Clifford Algebra C l3, whose
elements consist of scalars, vectors, bivectors and trivectors. David Hestenes, and many other authors after
him, refer to it as Geometric Algebra (GA). William Baylis calls it the Algebra of Physical Space (APS). Although
equations describing physical phenomena using multivectors are much clearer than tensor equations,
multivector multiplication is an obstacle in performing calculations. Internal and external products are used,
which can be scalar or vector products, depending on the configuration. D.Hestenes [11], W.Baylis [6] and the
authors of [9] note that (p) element of GA as sum of a number (s ), vector (v), bivector (b) and a trivector or
pseudoscalar (t ).

p = s +v+b+ t (14.1)

Operations on multivectors become clearer if we separate the scalar and vector part.

p =

�

s + t
v+b

�

(14.2)

In the notation traditionally used in GA, the multiplication is

p1p2 =

�

s1+ t1

v1+b1

��

s2+ t2

v2+b2

�

=

�

(p1p2)S
(p1p2)V

�

, (14.3)

and

(p1p2)S = s1s2+ s1t2+v1 ·v2+v1 ∧b2+b1 ∧v2+b1 ·b2+ t1s2+ t1 · t2

(p1p2)V = s1v2+ s1b2+v1s2+v1 ∧v2+v1 ·b2+v1 · t2+b1s2+

+b1 ·v2+b1×b2+b1 · t2+ t1 ·v2+ t1 ·b2

where, v1 ·v2 is an inner product, v1 ∧v2 is an exterior product, and v1×v2 is a cross product.

The differences between the components are more readable if the sum (14.1) is written in complex form

p = s +v+ i b+ i t (14.4)

William Baylis called such complex multivectors paravectors because they have many properties of vectors.
Instead of four components of a multivector, we can only got two: a complex scalar (α) and a complex vector
(βββ ).

p =

�

α
βββ

�

=

�

s + i t
v+ i b

�

(14.5)

In this notation, the multiplication of multivectors can be described

p1p2 =

�

(p1p2)S
(p1p2)V

�

=

�

α1

βββ 1

��

α2

βββ 2

�

=

�

s1+ i t1

v1+ i b1

��

s2+ i t2

v2+ i b2

�

= (14.6)

(p1p2)S = s1s2+ i s1t2v1v2+ i v1b2+ i b1v2−b1b2+ i t1s2− t1t2

(p1p2)V = s1v2+ i s1b2+v1s2+ i v1×v2−v1×b2+ i v1t2+ i b1s2−
−b1×v2− i b1×b2−b1t2+ i t1v2− t1b2

=

�

(s1+ i t1)(s2+ i t2) + (v1+ i b1)(v2+ i b2)
(s1+ i t1)(v2+ i b2) + (v1+ i b1)(s2+ i t2) + i (v1+ i b1)× (v2+ i b2)

�

=

�

α1α2+βββ 1βββ 2

α1βββ 2+βββ 1α2+ iβββ 1×βββ 2

�
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The complex notation is definitely friendlier. By performing the above operation, we will see that it can be
described in a simple form

�

α1

βββ 1

��

α2

βββ 2

�

=

�

α1α2+βββ 1βββ 2

α1βββ 2+α2βββ 1+ iβββ 1×βββ 2

�

=

�

α3

βββ 3

�

(14.7)

This, matrix notation of paravectors turned out to be very effective because

- paravectors have their matrix representation, so they have all matrix properties, which reduces the need
to carry out many proofs,

- paravector notation naturally corresponds to the 4-vectors that are used in textbooks for SR,

- the clear separation of the scalar and vector part of the paravector highlights their completely different
properties, which is obliterated in the tensor notation,

- the mutual relation of the scalar and vector parts is closely related to the determinant of the matrix and
constitutes a paravector,

- calculations performed in this notation are transparent.

In the book [15] J.Scott called the above multiplication the algebraic multiplication of complex four-vectors and
he showed the wide possibilities of using the algebra of complex four-vectors to describe physical issues.

The relationship between our notation and some others found in the scientific literature is explained
below. For a reader familiar with the calculus of paravectors, it may be important to compare our notation with
the formalism used by William Baylis, and we refer to his papers [8].

Table 14.1: William Baylis’s equivalents
W.E.Baylis This book

paravector q = a + i d +b+ i c paravector Γ =

�

a + i d
b+ i c

�

bar conjugation ∗) q = a + i d −b− i c reversion Γ− =

�

a + i d
−b− i c

�

Hermitean conjugation q † = a − i d +b− i c conjugation Γ ∗ =

�

a − i d
b− i c

�

gradient operator
(or paragradient)

∂ = ∂ /∂ t −∇
reversed
differential operator
(or 4-gradient)

∂ − =

�

∂ /∂ t
−∇

�

spatially reversed
gradient operator

∂ = ∂ /∂ t +∇ differential operator
(or 4-divergence)

∂ =

�

∂ /∂ t
∇

�

determinant det Γ = Γ Γ−

module ∗∗) |Γ |=
p

detΓ
norm





q




=
p

a 2+ b 2+ c 2+d 2

vigor vigΓ = Γ Γ ∗

∗)or Clifford conjugation ∗∗) it exists in the set of proper or singular paravectors only!

For readers familiar with multivector algebra (Geometric Algebra) the following explanations are valid.
Scalars and trivectors are called by us complex scalars and we denoteα= a+i d , where i = a123 is a unity trivector.
Vectors and bivectors are called by us real and imaginary vectors respectively, and their sum is a complex vector.

In the next table we compare our notation with the multivector notation used by D. Hestenes in the article
[11].
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Table 14.2: David Hestenes equivalents
Multivectors Paravectors

multivector q =
�

q
�

0
+
�

q
�

1
+
�

q
�

2
+
�

q
�

3
paravector Γ =

�

a + i d
b+ i c

�

scalar a =
�

q
�

0
real scalar a

vector b=
�

q
�

1
real vector b

bivector C=
�

q
�

2
imaginary vector i c

trivector D = d e123 =
�

q
�

3
imaginary scalar i d

conjugation q reversion Γ−

reversion q ∗ conjugation Γ ∗

involution bq (Γ−)∗

bivector coordinates C 23e23, C 31e31, C 12e12 i c 1e1, i c 2e2, i c 3e3,
trivector coordinates d e123 i d

b1 ·b2 b1b2

b1 ·C2 =−C2 ·b1 −b1× c2

inner products C1 ·C2 =C2 ·C1 −c1c2

D1 ·b2 i d1b2
D1 ·C2 −d1c2

exterior products b1 ∧b2 i b1×b2

b1 ∧C2 =C2 ∧b1 i b1c2

vector product C1×C2 =−C2×C1 −i c1× c2

Unit multivectors are represented by matrices:

Scalar







1 0
1

1
0 1






Vector







0 rx ry rz

rx 0 −i rz i ry

ry i rz 0 −i rx

rz −i ry i rx 0







Bivector







0 i rx i ry i rz

i rx 0 −rz ry

i ry rz 0 −rx

i rz −ry rx 0






Trivector







i 0
i

i
0 i







where |r|= 1.
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Appendix 3. Quasi-real space-time (real time and imaginary vectors)

It has been shown that it is not possible for the 4-vector coordinates to be special paravectors.

As we know from Chapter 2, there is a class of special paravectors which have real scalar and imaginary
vector components. These paravectors with addition and multiplication operations form a division ring. In
order for the structure to be a field, it only needs the commutation of multiplication. Such paravectors describe
the Euclidean rotation. It is very tempting to check whether it is possible to build space-time on the basis of
such paravectors. Since all special paravectors have a module, the space made up of such paravectors can be
normalized. Since the vectors are imaginary, we say that space-time is quasi-real. Based on the current

knowledge about paravectors, it is obvious that when writing the velocity with the V s = 1p
1+v 2

�

1
i v

�

paravector2 , the wave equation is invariant with respect to the transformation represented by this paravector.
Below we will repeat for special paravectors the reasoning we used previously for proper paravectors.

The orthogonal transformation takes the form of

�

t ′

i x′

�

=
1

p
1+ v 2

�

1
i v

��

t
i x

�

(14.8)

which is equivalent to a system of real equations

t ′ =
1

p
1+ v 2

(t −vx) and x′ =
1

p
1+ v 2

(x+vt −v×x) (14.9)

We can see that the transformation written in this way is internal to the set equinumerous with R 4 (quasi-real
space-time) and everything would work if it were not for the dilation factor, which is different than in the
applicable STR. As a result of composing paravectors corresponding to the velocity, we obtain

V s
1 V s

2 =
1
Æ

1+ v 2
1
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1
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�

1
Æ
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1
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=
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1+
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1−v1v2

�2

�

1
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1−v1v2

�

(14.10)

As it is not difficult to calculate in this case a result of the composing velocities is not limited.

v 2 =
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�2
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�

1+ v 2
1

� �

1+ v 2
2

�

(1−v1v2)2
−1 (14.11)

For example, by combining the parallel velocities v1= 0.8 and v2= 0.8, we get the resultant velocity of v ≈ 4.9,
which is inconsistent with our scientific knowledge.

Below we will perform a time interval transformation.

�

∆t
0

�

=
1

p
1+ v 2

�

1
−i v

��

∆t ′

i∆x′

�

=
1

p
1+ v 2

�

t ′+v∆x′

i (∆x′−v∆t ′+v×∆x′)

�

(14.12)

From the vector part of the above formula, we obtain

∆x′−v∆t ′+v×∆x′ = 0.

Since the result of the vector product is perpendicular to both v and∆x, therefore it must be:

∆x′−v∆t ′ = 0 and v×∆x′ = 0. (14.13)

In the motion equation of a point in the R 3 space the observer does not have a dilation factor, and the motion,
just like in the complex space-time, is described by the Galilean formula, which looks good.

2The upper index s means that the paravector is special
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When examining the wave equation, we face another problem.

In Chapter 4, we said that the solution of a homogeneous wave equation ∂ ∂ −A(X ) = 0 is satisfied by any
function:

A(

�

α
β

��

t
x

�

) lub A(

�

t
x

��

α
β

�

)

such that A is a paravector and paravector

�

α
β

�

is singular. If α = 1 , and β = −c and c 2 = 1, we interpreted

the vector c (Chpt. 3) as the speed of the wave (the speed of light). The wave front met the phase compliance
condition

�

1
−c

��

t − t0

x−x0

�

= 0.

Here we face a serious problem. In the case of special paravectors, the wave front should satisfy the equation:

C s−Xs =

�

1
−i c

��

t − t0

i (x−x0)

�

= 0

Note that because paravectors C s− and Xs are not singular, it is only satisfied for X s = X s
0 .

However, if we write down the wave front as
�

1
i c

��

t − t0

i (x−x0)

�

= 0, (14.14)

then we get a system of equations
�

∆t − c∆x= 0
∆x+ c∆t − c×∆x= 0

(14.15)

The first equation shows that the vectors c and ∆x should have the same direction, and the second equation
shows that directions are opposite.

We can obtain the wave equation ∂ 2ϕ
∂ t 2 −∇2ϕ = 0 in a different way, consistently for special paravectors. If

we denote the differentiation operator as:

∂ s =

�

∂
∂ t
i∇

�

hence, the homogeneous wave equation is:

∂ s∂ sϕ =

�

∂ 2

∂ t 2 −∇2
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�
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∂ 2
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�

ϕ = 0, (14.16)

where we get an additional condition in the spatial part ∂
∂ t ∇ϕ = 0.

In case of the transformation

X s ′ =V s X s or

�
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the following identities can be proved in the same way as we did in Chapter 4

∂ s As (X s ) =V s−∂ s ′ϕ(V s−X s ′) (14.18)

∂ s−As (X s ) = ∂ s ′−V s As (V s−X s ′) (14.19)

Hence we conclude that the wave equation (14.16) is not invariant with respect to the transformation (14.17).

The description of the Doppler effect differs from the current theory in terms of frequency only in the
dilation factor.
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that is, the new frequency is

ω′ =
ω−vk
p

1+ v 2
.

We should also check whether the Maxwell equations can be represented by a special paravector. The
electrostatic field equation would be

∂ s−E s =ρ or
∇E = ρ

∂ E
∂ t +∇×E = 0

(14.20)

According to the identity (14.19), the electric field E seen by an observer moving at velocity -v has the value of

E′ =
1

p
1+ v 2

(E+v×E) (14.21)

It can be seen that when trying to write Maxwell’s equations, we also failed to get any meaningful result,
because instead of the magnetic field, we got an additional component of the electric field. Although the
relativistic transformation is an internal operation in a real space-time, we once again come to the critical point
when it turns out that the equations corresponding to the Maxwell’s equations do not fit the EM theory.

The use of special paravectors for notation of coordinates and velocities seemed very tempting, primarily
because special paravectors with summation and multiplication form a division ring. When doing multiplication
and summation, we are always in space-time, which we can treat as real. Unfortunately, this hypothesis turned
out to be a dead end. Attempts to use special paravectors to describe wave phenomena ended in a failure:

• it was impossible to write the wave front equation,

• composing velocities allowed superluminal speeds,

• trying to write Maxwell’s equations yielded absurd results.

Therefore, we do not see any sense in continuing the search in this direction.
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