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1 Abstract

We present a generalization of the well-known Lemma of Lifting the Exponent
(LTE), introducing a novel valuation function. Using this framework, we outline
a new approach to Fermat’s Last Theorem that relies solely on elementary
number theory techniques.

2 Introduction

Consider the function vy (z)[1] where vk (x) is the p-adic valuation function that
shows how many ks can be divided into z. In other words, if x = k®b where
kx, then vg(z) = vk (k®b) = a. Let us examine this function by entering the
expression (a + b)™ — b™ inside v, () where p is a prime number greater than 2
and pla, pb, and n is a natural number. We will prove the following theorem;

LTE(Lifting the Exponent Lemma) [2]

vp((a+b)" = b") = vp(an)

Proof of LTE Using the binomial theorem, we can say that the ith term of
(a+b)" is #2),1, ~athnTl.

We have to prove that v,(an) < 1/,,((71_”7;)!“ -a'b" %) for all i such that 2 < i <
n—1 as vp(nab" ') = v,(na) and nab™ ! is the first term of (a + b)™ — b".
Because pb, it can be rewritten as v,(an) < up((nfi;)m - a'), which can be
rewritten as v,((n — i)li!) < v,((n — 1)!- a*~1), which is equivalent to v,((n —
D))+ vp(il) <vp((n = 1)) +vp(a’1) as vy(af) = vp(a) + vp(B).

Because 2 < i < n—1, ,((n —i)!) < vp((n—1)1). Also, v,(i!) < vp(a’™t)

because of Legendre’s Formula[3] and v,(a"™') = (n — 1)vp(a) > n—1,

D) = [ |+ < |2 4 | <i—1<wy(a!
(i) = 12+ 1)+ 154 < 1)+ L)+ ) Si = 1S y(a)
where [x| is the floor function, showing the integer part of z(this logic works
for every i except 3, when [| + [5] + [;5] + .. = [3] + [32] + 55 ]-



Inequality v,((n — i)!) + vp(i!) < vp((n —1)!) + vp(a®~1) still works because
vp((n —9)!) <vp((n—1)).

Thus, we have proven Theorem 0.1. The same can be proved when p = 2 and
4|a because the proof is same except the part

vp(il) = L%J + LQ%J + LQ%J... <2i—2<y(at)

Generalization Also, we can improve our Theorem 0.1 by removing the con-
dition p fb by solving v, (k™ ((a + b)™ — ")) = vp((ak + bk)™ — b"™k™)), which is
vp((a+0)" —b") +vp(k™) = vp(k - an) + (n — 1)v,p(k) where k may or may not
be divisible by p. Because of this, ka and kb can be any number under condi-
tion vp(a) > vp(b). Restating Theorem 0.1 by this, we know that the following
statement is true;

Theorem 1.0
vp((a+ )" = b") = vp(a) + (0 — Dvp(b) + vp(n) = vp(nab™?)

where v,(a) > v,(b) when p is a prime above 2, and v,(a) > v,(b) + 1 when
p=2.

3 Application and examples

Theorem 2.0 a” + b" = ¢” The theorem is that there are no natural num-
bers a, b, ¢ such that a™ 4+ b™ = ¢™ where n is a natural number greater than two.

Proof of Theorem 2.0 Assume that there is a a, b, ¢, n such that a”+b™ = ™.
Then we can also assume that there is a a, b, ¢, n such that ged(a, b, ¢) = 1, which
has the simplest form. We can say that ged(a,b) = ged(b,¢) = ged(c,a) = 1
because if two of the three had a common divisor k such that a = a’k,b =
bk, k > 1, then a™ + b" = a/"k"™ + V"k"™ = k™(a/™ + V™) = ", and thus
¢ also having k as a factor, contradicting the statement that ged(a,b,c) = 1.
Therefore, a, b, ¢ are all co-prime to each other. Also, we only have to prove that
n is 4 or a prime number because equations with greater ns can be expressed
with lower ns with the original factors of n’s. Since Theorem 2.0 is trivial when
n = 4[4](proving by contradiction using Pythagorean triples), we can assume
that n is a prime number. To use LTE, we must transform a™ + b" = ¢™ to fit
it into the expression of Theorem 1.0. We can do that by saying ¢ = b+ d as
¢ > b where d is a natural number.



Remark Note that b and d are also relatively prime.
Restating a™ + b™ = ¢" , we get a™ = (d + b)™ — b". Let p be a prime factor of
d. Since b and d are relatively prime, we can use LTE. By using Theorem 0.1,
the following is true;

vp((d+0)" = ") = vp(n) + vp(d) = vp(a”)

Assume that p # n(we will observe when n = p later). Since n is prime and
hence not divisible by p,

vpl(d) = vy(a™)

This process can be applied to all of the prime factors of d except 2 when
vo(d) = 1. If so, then a is also an even number because d and b are relatively
prime as b and a are also relatively prime, which makes a even in the equation
a™+b" = (b+d)". So, a™ can be expressed by d as a™ = de where d and e are
relatively prime because for every p, v,(d) = v,(a™) is satisfied. And as d and e
are relatively prime, they are both the nth power of some number. Therefore,
a™ can be expressed as a” = o 8" where d = o™ and e = ™.

So, a™f™ + b = (b+ a™)™. Since the process applied to a can be applied to b,
the following is true;

QB 4" = (0 + )" = (af +9")"

where b = ~"0", ¢ = a +~", and «, 3,7, are relatively prime to each other as
ged(a,b) = ged(a, B) = ged(n,d) = 1.

c=v5+a"=aB+9", v —y" =aB —a", ("1 - 6) = a(a™! — B). Since
a fy, ay" "t = and so § = 4" —ma. Also, B = a1 — k.

Substituting these values into d, 5, we get ¢ = @™ +9" —may = o™ + " — kary
and so m = k.

a" (@ = k)" + " (" = k)" = (@ 44" — kay)

and so
(" —kay)" + (v" — kay)" = (a" + 4" — kay)"

But, (o™ — kay)™ + (" — kay)™ < (o™ — kay)™ + ()" < (a™ + 4™ — kay)"™,
so it contradicts. When n = p, a™ = nde where nd and e are co-prime. Because
gcd(a,b) = 1, n cannot divide b, and so in the same way, a™ = ", b" = ™"
where nd = a”, ¢ — a =~" and «, 3,7, are all relatively prime to each other.
So, a"B" + "™ = (% +78)" = (" + aB)". In the same way, § = Y"1 —
ma, = = —ky, m =k, (% —kay)" + (4" — kay)" = (% + " — kay)",
The rest is the same as above. Therefore, we have proved Theorem 2.0
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