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Abstract. We prove the prime obstruction principle and the sparsity law.

These two are collective assertions that there cannot be many primes in an

addition chain.

1. Introduction

An addition chain of length h leading to n is a sequence of numbers so = 1, s1 =
2, . . . , sh = n where si = sk+ss for i > k ≥ s ≥ 0. The number of terms (excluding
the first term) in an addition chain leading to n is the length of the chain. We call
an addition chain leading to n with a minimal length an optimal addition chain
leading to n. In standard practice, we denote by ι(n) the length of an optimal
addition chain that leads to n.

Example 1.1. The following is an example of an addition chain that leads to 15:

1, 2, 3, 5, 6, 8, 11, 14, 15

obtained from the sequence of additions

2 = 1+1, 3 = 2+1, 5 = 2+3, 6 = 3+3, 8 = 3+5, 11 = 5+6, 14 = 6+8, 15 = 14+1.

We remark that the same addition chain can also be obtained from the sequence of
additions

2 = 1+1, 3 = 2+1, 5 = 2+3, 6 = 5+1, 8 = 6+2, 11 = 8+3, 14 = 11+3, 15 = 14+1.

The possibility to obtain an addition chain using distinct sequence of additions
creates a subtle ambiguity. It suggests that knowing an addition chain leading to
a fixed positive integer without specifying how the terms were obtained may be
unsatisfactory, as it hides the procedure for obtaining the terms in the chain. The
underlying intrinsic lack of uniqueness for this construction may be resolved by
rewriting each term in the chain as the sum using the immediately previous term
in the chain. However, an addition chain may not necessarily use the immediately
previous term to generate the next term in the chain, so that in this case at most
a term in the sum may not be a previous term in the chain.

Current research on addition chains focuses mainly on optimizing the length of an
addition chain leading to a fixed positive integer n. Despite extensive work on the
topic, there is no known asymptotic formula for the optimal length of an addition
chain that leads to fixed positive integers n. To that effect, improving the upper
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and lower bounds for the optimal length ι(n) of an addition chain is worthwhile
pursuit. Alfred Brauer (see [1]) proved the first non-trivial upper bound

ι(n) <
log n

log 2

{
1 +

1

log log n
+

2 log 2

(log n)1−log 2

}
for n ≥ no for some fixed no > 0. In subsequent studies [2], Paul Erdős improved
this upper bound to

ι(n) <
log n

log 2
+

log n

log log n
+ o

(
log n

log log n

)
and showed that this is best possible by proving the result

Theorem 1.2. The number of addition chains 1 = ao, a1, . . . , ak satisfying n
2 ≤

ak < n and

k <
log n

log 2
+ (1− ε) log n

log log n

is less than n1−η for some η := η(ε) > 0.

Schoenhage [3] proved the following nontrivial lower bound

ι(z) ≥ log z

log 2
+

log(s(z))

log 2
− 2.13

where s(z) denotes the sum of all digits in the binary expansion of z.

These upper and lower bounds have now been significantly improved by De
Koninck, Doyon and Verreault [4] by adapting in a clever manner the key ideas in
the paper of Erdős and Schoenhage. In particular, letting

F (m, r) = #{2m ≤ n < 2m+1 : ι(n) ≤ m+ r}

where r := c m
logm with 0 < c < log 2, they proved the upper and lower bounds.

Theorem 1.3 (De Koninck, Doyon, Verreault). For any ε > 0 and 0 < c < log 2,
we have for m sufficiently large

F (m,
cm

logm
) < exp(cm+

εm log logm

logm
).

Theorem 1.4 (De Koninck, Doyon, Verreault). For any ε > 0 and 0 < c < log 2,
we have for m sufficiently large

F (m,
cm

logm
) > exp(cm− c(1 + ε)m log logm

logm
).

One can observe that these upper bounds almost match in magnitude to answer
the question of Erdős, who remarked on the possibility of obtaining an asymptotic
behavior for the counting function ι(n).
However, in this paper, we focus on the distribution of the terms in an addition
chain. We examine the distribution of primes that could possibly appear in an
addition chain. It turns out that there cannot be many primes in an addition chain
of ”moderate” length no matter how carefully the chain is constructed.
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2. Preliminary results

Definition 2.1 (Determiners and regulators). Let

so = 1, s1 = 2, . . . , sk−1, sk = n

be an addition chain leading to n ≥ 2 obtained from the sequence of additions

2 = 1 + 1, . . . , sk−1 = ak−1 + rk−1, sk = ak + rk = n.

We call the collection

Gn := {(ai, ri) : ai+1 = ai + ri, ai+1 = si, for 1 ≤ i ≤ k}

the unique generator of the chain. For a fixed 1 ≤ i ≤ k, we call the pair (ai, ri)
such that ai+ ri = ai+1 = si the ith unique generator of the chain. We call ai the
determiner and ri the regulator of the ith unique generator of the chain. We
call the sequence (ri) the regulator of the addition chain and (ai) the determiner
of the chain for all 1 ≤ i ≤ k.

Example 2.2. To illustrate this definition, let us consider an addition chain leading
to 15:

1, 2, 3, 5, 6, 8, 11, 14, 15

generated by the sequence of additions

2 = 1+1, 3 = 2+1, 5 = 2+3, 6 = 3+3, 8 = 3+5, 11 = 5+6, 14 = 6+8, 15 = 14+1.

We therefore rewrite this sequence of addition that uses the immediately previous
term of the term it generates in the following way

2 = 1+1, 3 = 2+1, 5 = 2+3, 6 = 5+1, 8 = 6+2, 11 = 8+3, 14 = 11+3, 15 = 14+1.

The collection G15 = {(1, 1), (2, 1), (3, 2), (5, 1), (6, 2), (8, 3), (11, 3), (14, 1)} is re-
ferred to as the unique generator of the addition chain leading to 15 with the
sequence of determiners

1, 2, 3, 5, 6, 8, 11, 14

and sequence of regulators

1, 1, 2, 1, 2, 3, 3, 1.

We observe that the regulators are part of the addition chain if it is a Brauer
chain. This framework allows for the deduction of important relationships that
exist between the regulators and the target of an addition chain. The following is
a first observation:

Proposition 2.3. Let so = 1, s1 = 2, . . . , sk−1, sk = n be an addition chain pro-
ducing n ≥ 3 with the unique generator Gn := {(ai, ri) : ai+1 = ai + ri, ai+1 =
si, for 1 ≤ i ≤ k} satisfying

2 = 1 + 1, . . . , sk−1 = ak−1 + rk−1, sk = ak + rk = n.

Then the following relation for the regulators

k∑
j=1

rj = n− 1

hold.
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Proof. We observe that rk = n− ak. We deduce that

rk + rk−1 = n− ak + rk−1

= n− (ak−1 + rk−1) + rk−1

= n− ak−1.

Again we obtain from the following iteration

rk + rk−1 + rk−2 = n− ak−1 + rk−2

= n− (ak−2 + rk−2) + rk−2

= n− ak−2.

By iterating downwards in this manner and noting that the determiner a1 = 1, the
relation follows. �

The identity related to regulators has undoubtedly proven to be an indispensable
tool in aiding our studies on the distribution of an addition chain. We present two
applications of this identity to the study of the average gap and the structural
pattern of terms in an addition chain.

Theorem 2.4 (Gap between terms in an addition chain). Let n ≥ 2 be fixed positive
integer and let so = 1, s1 = 2, . . . , sh−1, sh = n be an addition chain leading to n,
with associated unique generator Gn := {(ai, ri) : ai+1 = ai+ri, ai+1 = si, for 1 ≤
i ≤ k} satisfying

s1 = 1 + 1, s2 = a2 + r2, . . . , sh−1 = ah−1 + rh−1, sh = ah + rh = n

then

sup
1≤l≤h

(sl+k − sl)� k
n

h

and

inf
1≤l≤h

(sl+k − sl)� k
n

h

for fixed k ≥ 1.

Proof. Let n ≥ 2 be a fixed positive integer and consider an addition chain leading
to n
so = 1, s1 = 2, . . . , sh−1, sh = n, with associated unique generator Gn := {(ai, ri) : ai+1 =
ai + ri, ai+1 = si, for 1 ≤ i ≤ k} satisfying

s1 = 1 + 1, s2 = a2 + r2, . . . , sh−1 = ah−1 + rh−1, sh = ah + rh = n

and put (aj) and (rj) to be the sequence of determiners and regulators, respectively,
in the chain. We make the following observations: sh−1 = ah = ah−1 + rh−1 =

sh−2 + rh−1 = ah−2 + rh−2 + rh−1 = · · · = 1 +
h−1∑
j=1

rj = n − rh, where we have

used Proposition 2.3. Similarly, we can write ah−1 = 1 +
h−2∑
j=1

rj = n − rh − rh−1.

Thus by induction, we can write al = n −
h∑
j=l

rj for each 3 ≤ l ≤ h. We observe
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that sl+k − sl = al+k+1 − ai+1 =
h∑

i=l+1

ri −
h∑

i=l+k+1

ri =
l+k∑
i=l+1

ri. It follows that

sl+k − sl ≥ k min{ri}l+ki=1+1. Using Proposition 2.3, we deduce that

sup
1≤l≤h

(sl+k − sl) ≥ k sup
1≤l≤h

min{ri}l+ki=1+1 � k
n

h
.

Similarly, we deduce that sl+k − sl ≤ k max{ri}l+ki=l+1 and by using Proposition 2.3
we get

inf
1≤l≤h

(sl+k − sl) ≤ k inf
1≤l≤h

max{ri}l+ki=1+1 � k
n

h

thereby ending the proof. �

Theorem 2.5 (The structural pattern of an addition chain). Let n ≥ 2 be a fixed
positive integer and let so = 1, s1 = 2, . . . , sh−1, sh = n be an addition chain leading
to n, with associated unique generator Gn := {(ai, ri) : ai+1 = ai + ri, ai+1 =
si, for 1 ≤ i ≤ k} satisfying

s1 = 1 + 1, s2 = a2 + r2, . . . , sh−1 = ah−1 + rh−1, sh = ah + rh = n

then

sup
1≤l<h

(sl)� l
n

h

and

inf
1≤l<h

(sl)� l
n

h
.

Proof. Let n ≥ 2 be a fixed positive integer and consider an addition chain
so = 1, s1 = 2, . . . , sh−1, sh = n leading to n, with associated unique generator
Gn := {(ai, ri) : ai+1 = ai + ri, ai+1 = si, for 1 ≤ i ≤ k} satisfying

s1 = 1 + 1, s2 = a2 + r2, . . . , sh−1 = ah−1 + rh−1, sh = ah + rh = n

and put (aj) and (rj) to be the sequence of determiners and regulators, respectively,
in the chain. We make the following observations: sh−1 = ah = ah−1 + rh−1 =

sh−2 + rh−1 = ah−2 + rh−2 + rh−1 = · · · = 1 +
h−1∑
j=1

rj = n− rh, where we have used

Proposition 2.3. Similarly, we can write ah−1 = 1 +
h−2∑
j=1

rj = n − rh − rh−1. Thus

by induction, we can write al = n −
h∑
j=l

rj for each 3 ≤ l ≤ h. Again, we observe

that al = n −
h∑
j=l

rj = n − (
h∑
j=1

rj −
l−1∑
j=1

rj) so that by applying Proposition 2.3,

we obtain al = 1 +
l−1∑
j=1

rj . We deduce the inequality 1 + (l − 1)min{rj}l−1j=1 ≤ al ≤

1 + (l − 1)max{rj}l−1j=1. We obtain

sup
2≤l≤h

(al) ≥ sup
2≤l≤h

(1 + (l − 1)min{rj}l−1j=1) ≥ 1 + (l − 1) sup
2≤l≤h

min{rj}l−1j=1
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so that by an application of Proposition 2.3, we deduce that sup
2≤l≤h

(al) � lnh .

Similarly, we obtain

inf
2≤l≤h

(al) ≤ inf
2≤l≤h

(1 + (l − 1)max{rj}l−1j=1) ≤ 1 + (l − 1) inf
2≤l≤h

max{rj}l−1j=1

so that by an application of Proposition 2.3, we deduce that inf
2≤l≤h

(al) � lnh . By

using the relation sl−1 = al, the claimed bounds are immediate consequences. �

3. Main results

We begin this section with the following intermediate observations.

Lemma 3.1. Let n ≥ 2 be a fixed positive integer, and let so = 1, s1 = 2, . . . , sh = n
be a sequence of positive integers such that sj ≈ j nh for j ≥ 1. Then the following
estimates

(i)
h∑
j=1

sj =
nh

2
+O(n)

(ii)
h∑
j=1

log sj = h log n− h+O(log h)

(iii)
h∑
j=1

1

sj
=
h

n
log h+O(

h

n
)

(iv)
h∑
j=1

1

skj
�
(
h

n

)k
for fixed k > 1

(v)
h∑
j=1

log sj
sj

=
h

n
(log n)(log h)− h

2n
(log h)2 +O

(
h

n
log n

)
(vi)

h∏
j=1

(1− 1

sj
) =

1

h
h
n

(
1 +O(

h

n
)

)
(vii)

h∏
j=1

(1 +
1

sj
) = h

h
n

(
1 +O(

h

n
)

)
hold.

Proof. For (i), we can write

h∑
j=1

sj ≈
h∑
j=1

j
n

h
=
n

2
h+

n

2
=
n

2
h+O(n).
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Similarly for (ii), we have

h∑
j=1

log sj ≈
h∑
j=1

log(j
n

h
) =

h∑
j=1

log j + h log n− h log h

and we deduce that

h∑
j=1

log sj = h log n− h+O(log h).

Similarly, we deduce that

h∑
j=1

1

sj
≈ h

n

h∑
j=1

1

j
=
h

n
(log h+O(1))

and the claimed estimate is an immediate consequence. To establish the
estimate for the higher moment harmonic sum in (iv), we observe that
under the assumption, we have for a fixed k > 1 the upper control

h∑
j=1

1

skj
≈
(
h

n

)k h∑
j=1

1

jk
�
(
h

n

)k
thereby establishing (iv). In a routine manner, under the assumption, we
can write

h∑
j=1

log sj
sj

≈
h∑
j=1

log(j nh )

j nh
=
h

n

h∑
j=1

log(j nh )

j

so that by unpacking the terms in the sum and using known elementary
estimates, we deduce that

h∑
j=1

log sj
sj

=
h

n
(log n)(log h)− h

2n
(log h)2 +O(

h

n
log n)

which establishes (v). For (vi), we can write

h∏
j=1

(
1− 1

sj

)
= e

h∑
j=1

log(1− 1
sj

)

= e
−

h∑
j=1

1
sj

+O(
h∑

j=1

1

s2
j

)

so that by using (iii) and (iv), we find that

h∏
j=1

(
1− 1

sj

)
= e−

h
n log h+O( h

n )+O(( h
n )2) =

1

h
h
n

(
1 +O(

h

n
)

)
which establishes (vi). The estimate (vii) is deduced in a similar way.

�

Lemma 3.2 (Local linear control). For each term sj in an addition chain leading
to n of length h, we have

sj ≤
n− 1

h
(j + 1)

for all 0 ≤ j ≤ h− 1.
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Proof. Let sj (0 ≤ j ≤ h) be a term indexed by the jth step in an addition chain
leading to n. We note that in an addition chain sj ≤ 2j holds for all 0 ≤ j ≤ h. It

follows that
sjh
j+1 ≤

2jh
j+1 . Now, put

f(j) :=
2jh

j + 1
.

Since f(j+1)
f(j) = 2( j+1

j+2 ) ≥ 1 for each j ∈ [0, h − 1], it follows that f(j) is monotone

increasing on [0, h − 1] and therefore must attain a maximum at j = h − 1. This
implies that

max
0≤j≤h−1

f(j) = 2h−1 = max(sh−1).

Consequently, we have

sjh

j + 1
≤ max

0≤j≤h−1
f(j) = 2h−1 = max(sh−1) ≤ n− 1

which proves the inequality stated. �

We now show that one cannot introduce ”many” primes in an addition chain of
”moderate” length no matter how meticulous we tend to be.

Theorem 3.3 (The prime obstruction principle). There exists no addition chain
leading to n of the form E(n) : so = 1, s1 = 2, . . . , sh = n with h � n1−ε for any
small ε > 0 that contains all primes less than or equal to n.

Proof. Suppose that there exists an addition chain leading to n of the form E(n) :
so = 1, s1 = 2, . . . , sh = n with h � n1−ε for some small ε > 0 that contains all
primes less than or equal to n. Then, we have the lower bound

h∑
j=1

log sj =

h∑
j=1
sj∈P

log sj +

h∑
j=1
sj /∈P

log sj ≥
h∑
j=1
sj∈P

log sj =
∑
p≤n

log p ∼ n

by an application of the prime number theorem. On the other hand, with h� n1−ε

for a small ε > 0, we have by Lemma 3.1 and Lemma 3.2 the upper bound

h∑
j=1

log sj ≤
h∑
j=1

log(j
n

h
) = h log n− h+O(log h)� n1−ε log n

which is smaller than the lower bound. This shows that this addition cannot contain
all primes less than or equal to n for all n sufficiently large. �

We can at least realistically quantify the worst growth rate of the number of
primes that could possibly appear in an addition chain when we work with a
’dreamed’ addition chain, an addition chain where the terms are uniformly dis-
tributed. That is to say, we assume an addition chain that could possibly contain
many primes of the form

E(n) : so = 1, s1 = 2, . . . , sh = n

with the property that sj ≈ j nh . This is the ’finest’ property that could possibly
exist in an addition chain. An upper bound for the number of prime numbers
that could possibly appear in this type of addition would essentially give an upper
control of the number of primes in all addition chains leading to n.
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Theorem 3.4 (The prime sparsity law). Let n be a fixed positive integer, and let
E(n) : so = 1, s1 = 2, . . . sh = n be an addition chain leading to n that avoids terms
of the form 2j (j ≥ 1) and such that sj ≈ j nh . If h� n

logn , then

lim
n−→∞

|P ∩ E(n)|
|P ∩ [1, n]|

= 0

which means that there cannot be many primes in an addition chain constructed in
this manner.

Proof. Let us suppose that

lim
n−→∞

|P ∩ E(n)|
|P ∩ [1, n]|

> 0

then there exists an absolute constant c > 0 such that |P ∩ E(n)| ∼ c|P ∩ [1, n]|.
Now, we can write

h∑
j=1

1

sj
=

h∑
j=1
sj∈P

1

sj
+

h∑
j=1
sj /∈P

1

sj
>

h∑
j=1
sj∈P

1

sj
∼ c

∑
p≤n

1

p
∼ c log log n.

On the other hand, using the requirement of the construction, we obtain in relation
to Theorem 3.1 and the bound h� n

logn the upper bound

h∑
j=1

1

sj
=
h

n
log h+O(

h

n
)� 1

which cannot be possible. This completes the proof of the claim. �

4. Applications to related sequences

In this section, we apply the properties of addition chains to sequences such as
the Fibonacci sequences and the Ulam sequences. This section elucidates the subtle
connection to these infinite sequence of positive integers.

It is known that the sequence {Fn}n≥1 of Fibonacci numbers has zero density,
which can be proven using the Binet formula for Fibonacci numbers. In this paper,
we give an alternative proof of this fact using the estimate (iii) in Theorem 3.1 and
the clear observation that a Fibonacci sequence up to a fixed Fibonacci number
Fno may be regarded as an addition chain leading to Fno when we exclude the first
term in the sequence.

Theorem 4.1. The sequence {Fn}n≥1 of Fibonacci numbers have zero density.

Proof. We note that the sequence {Fn}n≥1 of Fibonacci numbers up to a fixed
Fibonacci number Fno

is an addition chain leading to Fno
, when we exclude the

first term of the sequence. Let h (h = no − 2) denote the length of the addition
chain leading to Fno

, as the number of Fibonacci numbers no more than Fno
and

excluding the first and second term, then the inequality

h∑
k=3

1

Fk
≥ h

Fno

h∑
k=3

1

k
=

h

Fno

log h+O(
h

Fno

).

Now, let us suppose that the sequence of Fibonacci numbers have a positive density,
then there exist an absolute constant c > 0 such that the number of Fibonacci
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number no more than Fno
satisfies the relation ∼ cFno

. Since (no − 2) = h ∼
(cFno − 2) ∼ cFno , we deduce from the lower bound

h∑
k=3

1

Fk
' c logFno

.

We deduce that

lim
no−→∞

h∑
k=3

1

Fk
=∞

which contradicts the known fact that
∞∑
k=1

1

Fk
<∞.

�

Theorem 4.2. Let {Fk}k≥1 be the sequence of Fibonacci numbers. Then we have

(i)
no∏
k=3

(
1 +

1

Fk

)
� (no)

no
Fno

(ii)
no∏
k=3

(
1− 1

Fk

)
� 1

(no)
no
Fno

Proof. We note that the sequence of Fibonacci numbers up to a fixed Fibonacci
number Fno

is an addition chain leading to Fno
, when we exclude the first term of

the sequence. For (i), we have the lower bound

no∏
k=3

(
1 +

1

Fk

)
≥

no∏
k=3

(
1 +

1

k
Fno

h

)
= h

h
Fno

(
1 +O(

h

Fno

)

)
where h is the length of the addition chain {Fk}no

k=2 which leads to Fno . Using the
observation that h = (no − 2) ∼ no, we deduce that

no∏
k=3

(
1 +

1

Fk

)
� (no)

no
Fno .

For (ii), we have the upper bound

no∏
k=3

(
1− 1

Fk

)
≤

no∏
k=3

(
1− 1

k
Fno

h

)
=

1

h
h

Fno

(
1 +O(

h

Fno

)

)
where h is the length of the addition chain {Fk}no

k=2 which leads to Fno
. Using the

observation that h = (no − 2) ∼ no, we deduce that

no∏
k=3

(
1− 1

Fk

)
� 1

(no)
no
Fno

.

�
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The Ulam number sequence {Un}n≥1 is another class of positive integer se-
quences that shares similar properties as the Fibonacci sequence. Various proper-
ties of Ulam sequences are now known, but it remains an open problem to determine
their distribution. In particular, it is still not known whether these sequences have
positive or zero natural density, although a known numerical computation suggests
that the natural density is approximately 0.07398. We now show that, under a cer-
tain regularity condition, the sequence of Ulam numbers must have a zero density.

Theorem 4.3 (The Ulam density criterion). The sequence of Ulam numbers {Un}n≥1
have a zero density provided Un

n −→∞ as n −→∞.

Proof. We note that the sequence {Un}n≥1 of Ulam numbers up to an Ulam number
Uno is an addition chain that leads to Uno . Let h (h = no− 1) denote the length of
the chain leading to Uno . We have

h∑
j=1

logUj ≤
h∑
j=1

log(j
Uno

h
) = h logUno

− h+O(log h)� no logUno
.

Let us suppose on the contrary that Ulam numbers have a positive density, then
there exist an absolute constant c > 0 such that we can write

h∑
j=1

logUj ∼ c
Uno∑
k=1

log k ∼ cUno
logUno

.

This implies that
Uno

no
� 1. This violates the requirement Un

n −→ ∞ as n −→ ∞
when we take no −→∞. �

We show that a zero density of the Ulam number sequence {Um}m≥1 is equivalent
to the unboundedness of the gap between consecutive terms in the sequence.

Theorem 4.4 (The second Ulam density criterion). Let {Um}m≥1 denote the se-
quence of all Ulam numbers. Then the following assertions hold:

(i) If lim
m−→∞

inf(Um+1 − Um) = ∞, then the sequence {Um}m≥1 have zero

density.
(ii) If the sequence {Um}m≥1 has zero density, then lim

m−→∞
sup(Um+1 −Um) =

∞.

Proof. Fix an Ulam number Uno . Then the sequence of Ulam numbers up to Uno

is an addition chain leading to Uno . We let h (h = no− 1) denote the length of the
addition chain. By Theorem 2.5, we have

inf
1≤m≤h−1

(Um+1 − Um)� Uno

h
.

If we assume to the contrary that the sequence of Ulam numbers {Um}m≥1 have a
positive density, then there exist an absolute constant c > 0 such that h ∼ cUno .
We therefore have

inf
1≤m≤h−1

(Um+1 − Um)� Uno

h
∼ 1

c
� 1.

By taking limits as m −→∞, we deduce that

lim
m−→∞

inf(Um+1 − Um)� 1
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which violates the requirements.
For the second part, we can write (by Theorem 2.5)

sup
1≤m≤h−1

(Um+1 − Um)� Uno

h
.

Let us suppose that the sequence of Ulam numbers {Um}m≥1 have zero density,
then there exist a fixed small ε > 0 such that h� U1−ε

no
. Consequently, we have

sup
1≤m≤h−1

(Um+1 − Um)� Uno

h
� U εno

.

By taking limits as m −→∞, we deduce that

lim
m−→∞

sup(Um+1 − Um) =∞

which shows the equivalence. �

5. A conjecture on primes in an addition chains

Although it has been shown that there cannot be ”many” primes in an addition
chain of ”moderate” length, we have barely provided a criterion for counting primes
if we allow our construction to include primes. This seems to be a very difficult
problem, given the inherent irregular nature of the primes. At the moment, we
make the following conjecture, which specifies the best way to include a few primes
in an addition chain.

Conjecture 5.1 (Addition chain local prime distribution). Let n ≥ 3 and let

1 = so < 2 = s1 < · · · < sh = n

be an addition chain leading to n and satisfying the regularity conditions

• Small step closure:

|si − si−1| < si−1

for all 2 ≤ i ≤ h.

• Interpolation-closeness:

|si − i
n

h
| < si

for all bh2 c+ 1 ≤ i ≤ h.

• Relative shift uniformity: There exists 0 < ε < 1 such that for all
bh2 c+ 1 ≤ i ≤ h we have

|si − i
n

h
| < εsi.

Denote by Ph(n) the number of primes among the chain {so, s1, . . . , sh},
then as n −→∞, we have

Ph(n) ≥ h

2 log(h2 )
(1 + o(1)).



A REMARK ON THE DISTRIBUTION OF ADDITION CHAINS 13

References

1. A. Brauer, On addition chains, Bulletin of the American mathematical Society,
vol. 45:10, 1939, 736–739.

2. P. Erdös, Remarks on number theory III. On addition chains, Acta Arith-
metica, vol. 6, Instytut Matematyczny Polskiej Akademii Nauk, 1960, 77–81.

3. A. Schönhage, A lower bound for the length of addition chains, Theoretical
Computer Science, vol. 1:1, Elsevier, 1975, 1–12.

4. J.M. De Koninck, N. Doyon and W. Verreault On the minimal length of
addition chains, arXiv preprint arXiv:2504.07332, 2025.

Departement de mathematiques et de statistique, Universite Laval, Quebec, Canada
E-mail address: thaga1@ulaval.ca/Theophilus@aims.edu.gh/emperordagama@yahoo.com


