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Abstract 

This study evaluates the performance and 

robustness of a trained Natural Language 

Inference (NLI) model by using a gradient-

based adversarial training approach to 

identify and address its vulnerabilities. 

Initially trained on the SNLI dataset 

(Bowman et al., 2015) and achieving a 

baseline accuracy of 89.90%, the model 

was then challenged with adversarial 

examples generated through gradient-

based methods. These examples exposed 

specific weaknesses, particularly in 

handling negations, ambiguous language, 

and long sentences. This report provides an 

in-depth analysis of both the original 

baseline model and the fine-tuned, 

enhanced model, as well as a detailed 

discussion of the techniques employed to 

improve the model’s overall performance. 

1 Introduction 

 

Natural Language Interference (NLI) tasks require 

a deep understanding of the relationship between 

a premise and a hypothesis, with the objective of 

classifying relationships as either entailment, 

contradiction, or neutral. Despite the 

advancements achieved with pre-trained models, 

such as the Google Electra-small-discriminator 

(Clark er al., 2020), NLI systems often make 

significant mistakes when given challenging 

examples, especially those involving adversarial 

perturbation or semantically ambiguous inputs.    

This study focuses on examining a gradient-based 

adversarial challenge strategy to improve the 

robustness of NLI systems through adversarial 

training. It aims to identify vulnerabilities by 

analyzing common failure modes in the baseline 

model, which involves a thorough examination of 

instances where the model incorrectly predicts the 

relationship. By pinpointing these weaknesses and 

incorporating gradient-based adversarial 

examples into the training process, this study aims 

to enhance future NLI model’s resilience and 

improved performance on challenging inputs. 

 

2 Limitations in the Baseline Model 

 

While the baseline model trained solely on the 

SNLI dataset demonstrated strong performance 

on standard validation examples, achieving an 

accuracy of 89.89% with a loss of 0.2928, its 

behavior on more challenging subsets and 

adversarial perturbed examples revealed 

significant limitations, highlighting weaknesses 

in its NLI approach. 

2.1 Over Reliance on Specific Tokens  
The baseline model heavily relied on tokens with 

high gradients, such as proper nouns, negations, 

and key contextual words. When these tokens 

were masked, replaced, or subtly perturbed in 

adversarial examples, the model's predictions 

became erratic. This over-reliance suggests that 

the model lacks a holistic understanding of 

sentence semantics (Poliak et al., 2018) and 

relies instead on a shallow pattern-matching 

mechanism. 

• Premise: "A man playing guitar at a 

concert." 

• Original Hypothesis: "A man performs 

music on stage." 

• Adversarial Hypothesis: "A [MASK] 

performs music on stage." 

• Baseline Prediction: Neutral (1) instead 

of Entailment (0). 
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In this case, masking "man" caused the model to 

lose critical contextual alignment between the 

premise and hypothesis. 

2.2 Inability to Handle Ambiguity 

Examples containing ambiguous phrases or 

multi-faceted meanings posed a consistent 

challenge for the baseline model. Specifically, 

the model struggled to disambiguate neutral 

examples that shared elements with both 

entailment and contradiction classes and 

sentences where masking or token replacement 

introduced uncertainty in the hypothesis 

• Premise: "A woman cooking in a 

kitchen." 

• Original Hypothesis: "A person is 

making food." 

• Adversarial Hypothesis: "A [MASK] is 

making food." 

• True Label: Neutral (1) 

• Baseline Prediction: Contradiction (2) 

The ambiguity introduced by masking "person" 

led the model to misinterpret the relationship, 

exposing its limited reasoning capabilities 

(McCoy et al., 2019). 

2.3 Poor Handling of Negations 

Negation constructs ("not," "never," etc.) often 

flipped the intended meaning of a sentence, but 

the baseline model failed to handle such cases 

consistently. This shortcoming is particularly 

problematic in NLI tasks, where understanding 

negation is critical to accurately determining 

relationships between sentences. 

• Premise: "A man is not eating lunch.” 

• Hypothesis: "A man is eating lunch." 

• True Label: Contradiction (2) 

• Baseline Prediction: Neutral (1) 

The baseline model's inability to correctly 

account for the presence of "not" highlights its 

limited understanding of negation and its impact 

on sentence meaning. 

 

2.4 Low Performance on Adversarial 

Examples 

When evaluated on generated adversarial 

examples specifically crafted to exploit these 

limitations, the baseline model’s accuracy 

dropped dramatically to 53.35%, with a loss of 

2.2764. This sharp decline underscores its 

inability to generalize to perturbed or edge-case 

inputs, which are often reflective of real-world 

challenges in NLI tasks. 

2.5 Setting the Stage for Adversarial 

Training 

The limitations observed in the baseline model 

point to a need for a more robust strategy that 

not only improves performance on standard 

validation datasets but also equips the model to 

handle adversarial inputs effectively. 

    By crafting and incorporating adversarial 

examples into the training process, we aim to 

enhance the model’s ability to generalize across 

varied and challenging inputs. This approach 

helps to mitigate the reliance on specific tokens, 

improve ambiguity handling, and strengthen the 

model's overall robustness. 

3 Data Processing 
 

3.1 Data Sources 

The foundation dataset used in our study is the 

Stanford Natural Language Inference (SNLI) 

dataset (Bowman et al., 2015), a widely used 

corpus for training and evaluating NLI models. It 

consists of 570,000 labeled pairs of premises and 

hypothesis. We then added 15,000 adversarial 

examples to show how adequately picked 

examples can greatly improve performance. 

3.2 Data Splitting 

To generate the adversarial examples, we focused 

on the SNLI dataset (Bowman et al., 2015) to 

generate examples and evaluate the model’s 

performance. The validation set consists of 15,000 

examples, providing a balanced and manageable 

subset for experimentation. 

    To create a balanced dataset for generating 

adversarial examples, the validation data was first 

separated by class labels:  

• Entailment (Label 0) 

• Neutral (Label 1) 

• Contradiction (Label 2) 

    We then sampled 5,000 examples for each class. 

This decision was to prevent class imbalance, 

which could bias the model during training and 

evaluation. 
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3.3 Data Preprocessing 

Before feeding the data into the model, we 

performed standard preprocessing steps using 

the Electra tokenizer (Clark et al., 2020) which 

involved converting the text into tokens that the 

model can process, padding and truncating all 

input sequences to a uniform length, and 

encoding textual labels to a numerical format.  

4 Adversarial Strategy 

 
The adversarial examples were generated using 

gradient-based perturbations, a method that 

leverages the model's gradient information to 

identify and modify the most influential tokens 

in the input sequence like those implemented in 

frameworks like TextAttack (Morris et al., 

2020). This approach is designed to expose the 

model's vulnerabilities by directly targeting the 

components that most significantly impact its 

predictions, like the universal adversarial 

triggers used by Wallace et al. (2019). 

4.1 Gradient Computation 

For each input pair consisting of a premise and a 

hypothesis, the model calculates the loss with 

respect to the true label, which measures the 

difference between the model's prediction and 

the actual class. This loss acts as a signal for 

understanding which parts of the input contribute 

most to the prediction. During the backward 

pass, gradients of the loss are computed with 

respect to the input embeddings, which represent 

the model's token-level understanding of the 

input. The gradients provide a way to quantify 

the sensitivity of the loss to small changes in 

these embeddings. Specifically, for this task, we 

used the pre-trained Electra-small-discriminator 

model (Clark et al., 2020). By enabling gradient 

computation for the input embeddings, the 

gradients corresponding to each token in the 

hypothesis were calculated. To make sure these 

gradients were accessible, the embeddings were 

set to retain their gradients using the 

retain_grad() method in the code. This step was 

critical because it preserved the gradients during 

the backward pass, allowing for a detailed 

analysis of the importance of each token.  

4.2 Token Importance Ranking 

Once the gradients for the input embeddings 

were obtained, the next step was to determine the 

relative importance of each token in the 

hypothesis for the model's decision. This was 

achieved by computing the gradient magnitudes, 

which measure the absolute value of the 

gradients summed across all embedding 

dimensions for each token. The resulting scalar 

values indicate how much a small change in the 

embedding of a token would affect the overall 

loss. A higher gradient magnitude suggests that 

the token is more influential in the model’s 

reasoning, as changing its embedding would 

significantly impact the loss. This process 

provides an interpretable mechanism to rank 

tokens based on their importance. By identifying 

the token with the highest gradient magnitude, 

we could pinpoint the single most critical token 

in the hypothesis that the model relied on for its 

prediction. This step is essential for 

understanding which parts of the input drive the 

model’s decisions, and it offers a way to assess 

whether the model is focusing on the correct or 

meaningful parts of the hypothesis. 

4.3 Token Replacement 

After identifying the most influential token in the 

hypothesis, the next step involved replacing it 

with the [MASK] token, a placeholder used in 

transformer models trained with masked 

language modeling objectives, such as BERT 

(Devlin et al., 2019). This replacement 

challenges the model by removing critical 

information from the input, thereby introducing 

ambiguity or missing context. The [MASK] 

token forces the model to make a prediction 

without relying on the identified token, testing 

its robustness and ability to infer relationships 

from the remaining input. This technique 

leverages the pre-trained tokenizer of Electra. By 

replacing the token with the highest gradient 

magnitude, we effectively simulate a scenario 

where the model must generalize beyond its 

most relied-upon feature. This method is 

particularly useful for evaluating whether the 

model is overly dependent on specific tokens or 

whether it can draw on deeper, more generalized 

reasoning to make accurate predictions in the 

presence of missing or ambiguous information. 
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4.4 Adversarial Example Creation 

The modified hypothesis, along with the original 

premise and the true label, forms a new 

adversarial example. This example maintains 

grammatical structure and overall meaning as 

much as possible while perturbing critical 

information that the model relies upon for 

prediction. 

4.5 Dataset Construction 

This process was applied to a balanced subset of 

the SNLI validation dataset. Specifically, up to 

5,000 examples were sampled from each class 

(entailment, neutral, contradiction) to ensure 

diversity and balance in the adversarial dataset. 

The resulting adversarial examples were saved 

for use in retraining the complete model. 

4.6 Strategy Analysis 

This strategy aims to reveal the model's reliance 

on specific tokens and assess its ability to handle 

inputs where critical information is obscured or 

altered. By focusing on tokens that have the 

greatest impact on the loss, the adversarial 

examples are tailored to exploit the model's 

specific weaknesses. 

    The method aligns with prior research on 

adversarial attacks in natural language 

processing. Similar techniques have been 

employed in works like HotFlip (Ebrahimi et al., 

2018), which uses gradient information to 

identify important tokens for character-level 

perturbations, and the work by Michel et al. 

(2019), which investigates extraction of salient 

features using gradients. 

    By integrating these adversarial examples into 

the training pipeline, the model is encouraged to 

develop a deeper understanding of the context 

and relationships between the premise and 

hypothesis, rather than over-relying on specific 

tokens. This leads to improved robustness and 

generalization, as evidenced by enhanced 

performance on both the original and adversarial 

datasets after retraining. 

5 Results Comparison 

 

5.1 Results Overview 

To evaluate the impact of fine-tuning with 

adversarial examples, we conducted a comparative 

analysis between the baseline model (pretrained 

without adversarial data) and the fine-tuned model 

(trained with a combination of SNLI and 

adversarial examples). The evaluation focused on 

specific subsets of challenging examples, 

including negations, ambiguous cases, and 

challenging long sentences. This analysis aimed to 

quantify the improvements in model robustness 

and accuracy. 

We prepared subsets of test data based on 

linguistic characteristics such as the presence of 

negation keywords (e.g., "not," "no," "never") and 

ambiguity-inducing words (e.g., "maybe," 

"possibly"). Additionally, we defined challenging 

examples as cases where either the premise or the 

hypothesis contained a high word count (greater 

than 20). These subsets allowed us to evaluate the 

model's performance on nuanced and complex 

scenarios where language understanding plays a 

critical role. 

For both the baseline and fine-tuned models, we 

used Hugging Face’s pipeline functionality to 

generate predictions on these subsets. The models 

were evaluated using metrics such as precision, 

recall, and F1-score to analyze classification 

accuracy. Additionally, an error analysis was 

conducted to measure fixed errors (errors corrected 

by fine-tuning), introduced errors (new errors 

caused by fine-tuning), and remaining errors 

(errors persisting in both models).  

 

5.2 Metrics Comparison - Negation 

The baseline model performs poorly when 

handling negations, as evident from its metrics 

across the three classes of entailment, neutral, and 

contradiction. The model shows a significant bias 

toward the neutral class, achieving near-perfect 

recall but very low precision, indicating it 

frequently predicts neutral regardless of the actual 

class. This over-reliance on neutral predictions 

suggests that the model struggles to understand the 

nuanced effects of negations on the semantic 

relationship between sentences. As a result, both 

entailment and contradiction classes are severely 

under-predicted, with their precision, recall, and 

F1-scores being extremely low. This indicates that 

the baseline model lacks the sophistication to parse 

the logical changes introduced by negations, 

failing to detect how they transform sentence 

meanings into entailments or contradictions.  
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The fine-tuned model shows a substantial 

improvement in handling negations. The 

performance for all three classes is far more 

balanced, with significant gains in both precision 

and recall for entailment and contradiction. The 

model now effectively identifies entailment cases, 

showing it has learned to detect when negations 

still support a consistent relationship between 

sentences. Similarly, contradiction cases, which 

were almost ignored by the baseline model, are 

now handled with high accuracy, reflecting the 

model's enhanced ability to detect semantic 

conflicts introduced by negations. While the 

neutral class sees a slight reduction in recall, its 

precision increases, indicating the model has 

become less reliant on neutral predictions and more 

adept at distinguishing between classes. Overall, 

the fine-tuned model demonstrates a much deeper 

understanding of how negations impact sentence 

relationships, leading to a significantly improved 

ability to resolve the complexities they introduce. 

 

5.3 Error Comparison - Negation 

The error analysis for negation examples 

demonstrates the effectiveness of adversarial 

training in improving the model's performance 

on challenging linguistic phenomena. The fine-

tuned model successfully fixed 63.3% of the 

errors that the baseline model made in this 

category, showcasing a significant improvement 

in handling negation-based examples. 

Additionally, only 3.4% of new errors were 

introduced during the fine-tuning process, 

highlighting the model’s ability to generalize 

better without compromising overall accuracy. 

However, 33.3% of errors remain unresolved, 

indicating room for further optimization. These 

results underscore the fine-tuned model’s 

enhanced robustness in classifying examples 

with negations, while maintaining a balanced 

trade-off between fixing errors and introducing 

new ones. 

 

 

5.4 Metrics Comparison - Ambiguities 

The baseline model struggles significantly with 

resolving ambiguities across the three classes of 

entailment, neutral, and contradiction. The metrics 

indicate that the model overwhelmingly predicts 

the neutral class, achieving near-perfect recall for 

it while exhibiting extremely poor precision. This 

suggests that the model is biased towards neutral 

predictions, likely because it cannot effectively 

distinguish between nuanced relationships in 

ambiguous cases. For the entailment and 

contradiction classes, the baseline model's 

precision, recall, and F1-scores are abysmally low, 

indicating it frequently misclassifies these cases as 

neutral. The model's inability to interpret subtle 

semantic cues or the impact of linguistic 

complexities, such as negations or adversarial 

modifications, demonstrates a lack of robustness in 

handling ambiguities. 
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The fine-tuned model, on the other hand, shows 

a dramatic improvement in its ability to handle 

ambiguities, as evidenced by the more balanced 

and elevated performance metrics across all three 

classes. For entailment, the model now accurately 

identifies examples with much greater precision 

and recall, showing it has learned to handle 

ambiguous cases where the relationship is implied 

but not explicitly stated. Similarly, the 

contradiction class, which was almost ignored in 

the baseline model, now achieves high precision 

and recall, reflecting the model's enhanced ability 

to detect semantic opposition even in challenging 

scenarios. Although the neutral class sees a slight 

drop in recall, this is compensated by a significant 

increase in precision, demonstrating that the model 

has reduced its tendency to default to neutral 

predictions and is better at distinguishing between 

subtle ambiguities. Overall, the fine-tuned model's 

balanced performance indicates it has developed a 

deeper understanding of linguistic nuances and 

relationships, allowing it to handle ambiguous 

cases with much greater accuracy. 

 

 
 

5.5 Error Comparison - Ambiguities 

The error analysis for ambiguities provides a 

detailed breakdown of how the fine-tuned model 

improved over the baseline while also highlighting 

the challenges that remain. The pie chart reveals 

that 75.5% of errors made by the baseline model on 

ambiguous examples were successfully fixed by 

the fine-tuned model, demonstrating its capability 

to better handle nuanced and contextually complex 

examples. However, 16.3% of the errors 

introduced by the fine-tuned model indicate a 

trade-off; in attempting to generalize better on 

ambiguous cases, the model occasionally 

misclassifies previously correct predictions. This 

could stem from the fine-tuning process 

amplifying certain patterns that lead to overfitting 

or misalignment for edge cases. The remaining 

8.2% of errors, which persisted across both the 

baseline and fine-tuned models, underscore the 

inherent difficulty in dealing with ambiguity. These 

cases often involve subtle semantic differences or 

interpretations that are challenging even for 

sophisticated language models. The results suggest 

that while adversarial training significantly 

enhanced the model's ability to generalize and 

address ambiguities, there remains an opportunity 

to further optimize performance, perhaps through 

additional strategies like incorporating more 

diverse ambiguous examples or refining the 

training process to minimize introduced errors. 

 
  

5.6 Metrics Comparison - Challenging 

Cases 

The baseline model performs similarly on both 

negations and ambiguities, struggling to handle the 

complexities of either scenario, and this pattern 

extends to challenging cases as well. Across all 

these contexts, the model demonstrates a heavy 

reliance on the neutral class, achieving near-perfect 

recall but at the expense of precision. This 

similarity across negations, ambiguities, and 

challenging cases highlights a fundamental 

weakness in the baseline model's architecture or 

training. The model's inability to detect the effects 

of negations on sentence meaning mirrors its 
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failure to resolve ambiguities where context or 

subtle cues play a critical role. Similarly, its 

performance on challenging cases demonstrates 

that small perturbations or nuanced alterations can 

easily overwhelm its simplistic decision-making 

process. These results suggest that the baseline 

model relies on a narrow, rigid strategy that fails 

whenever inputs deviate from straightforward 

examples, resulting in its uniform behavior of over-

representing the neutral class in all scenarios. 

 
The fine-tuned model shows a marked 

improvement across all metrics for these 

challenging cases. It no longer disproportionately 

favors the neutral class and demonstrates balanced 

performance across entailment, neutral, and 

contradiction. For entailment, the model can 

identify relevant examples with much higher 

precision and recall, suggesting it has developed a 

better understanding of subtle affirmations or 

logical consistency even under adversarial 

pressure. The contradiction class also sees a 

significant boost in performance, indicating the 

model's enhanced ability to detect semantic 

conflicts that are often masked or obfuscated in 

challenging scenarios. Although the neutral class 

sees a slight reduction in recall compared to the 

baseline, this is balanced by improved precision, 

showing that the model is no longer defaulting to 

neutral predictions but is instead making more 

deliberate and accurate classifications. Overall, the 

fine-tuned model demonstrates the robustness and 

nuanced understanding needed to handle 

challenging cases effectively. 

 

 
 

 

5.7 Error Comparison – Challenging 

Cases 

The error analysis for challenging cases 

highlights the mixed outcomes of fine-tuning the 

model. The chart shows that 57.1% of errors 

made by the baseline model on challenging cases 

were successfully corrected by the fine-tuned 

model. This demonstrates that fine-tuning 

significantly improved the model's ability to 

handle complex examples, such as longer 

sentences or intricate semantic relationships. 

However, 26.5% of the errors introduced by the 

fine-tuned model reflect the model's struggle to 

generalize completely. These introduced errors 

suggest that the fine-tuning process, while 

enhancing performance in many areas, also led 

to overfitting or misinterpretation of certain 

complex patterns. Additionally, 16.4% of errors 

remained unresolved across both models, 

indicating the persistent difficulty of challenging 

cases that likely require further architectural 

changes or additional training data. The 

relatively high proportion of fixed errors affirms 

the efficacy of adversarial training, but the 

noticeable rate of introduced errors points to a 

need for further refinement in the training 

pipeline, particularly for mitigating overfitting in 

edge-case scenarios. 
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5.8 Overall Comparison 

 

 

The final comparison of the baseline and fine-

tuned models across all evaluation metrics shows 

significant improvements achieved through 

adversarial training when comparing the baseline 

and fine-tuned models. The reduction in 

evaluation loss and the increase in accuracy 

underscore the success of the fine-tuning process 

in delivering a more reliable and high-

performing model. 

6 Conclusion 
 

This study highlights the significant impact of 

adversarial training in addressing the weaknesses 

of a natural language inference model. Starting 

with a basic model trained on the SNLI dataset, 

it had difficulty handling negations, ambiguities, 

and other complex linguistic cases. The baseline 

achieved an accuracy of 89.9% but showed poor 

performance in key, complex areas. By 

incorporating adversarial examples into the 

training process, the fine-tuned model 

demonstrated marked improvements, with 

accuracy rising to 94.1% and evaluation loss 

decreasing from 0.2928 to 0.2010. 

    The fine-tuned model addressed major 

weaknesses of the baseline, fixing a substantial 

number of errors while introducing minimal new 

ones. Enhanced precision, recall, and F1-scores 

across all classes, especially contradictions, 

highlight its ability to generalize better and 

handle complex cases. This work underscores 

the value of adversarial training in improving 

model robustness and addressing biases, setting a 

strong foundation for future research to further 

optimize performance in challenging scenarios.    
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