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Abstract:

Described  is  a  Pseudo-Kasnermetric  of  local  spacetime  with  shrinking  timelike  dimension- 
coordinate  (TLD) as a  solution of GRT gravity  fieldequation. This metric leads to normal flat 
Minkowski-spacetime  in time intervall of present time  but changes with changing of timelike 
coordinate from a 1-dimensional only timelike  spacetime in early universe to a more 3-dimensional 
pure spatial space in far future with only spacelike coordinates or dimensions (SLD) and shrinking 
timelike coordinate  until it reaches the Planck-time. This whole description  leads to  the model of 
a spacetime with permanent shrinking timelike dimension and a prediction of maximal length of 
spacelike dimernsions through existence of a rip-length.
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1. Introduction:

A Pseudo-Kasnermetric can be described as a solution of GRT-gravity fieldequation with shrinking 
timelike coordinate. This model describes an anisotropic universe in empty spacetime, also without 
matter, it is a vacuum solution. The anisotropy describes only the timelike dimension-coordinate, so 
its  homogenious  and  isotrop  in  its  three   spacelike  dimensions  but  the  timelike  dimension  is 
shrinking,  while  the  spacelike   coordinates  expand  itself.  In  the  early  universe  there  existed 
logically only the one timelike dimension, before the SLDs enfold in Big Bang from Planck-length 
to their today measurable values. In the far future spacetime will be only threedimensional in this 
model, because the TLD shrinks to Planck-time resp. in multplication with local invariance velocity 
c to Planck-length. Time is changing into space and wears out itself in this process. 

                                                               1



In following, there has to be distinguished between physical and mathematical zeros. The latter can 
be defined (like a temperature of zero at the Kelvin-scala, which is no physical expression or the 
„zeropoint-energies“), the further doesn‘t really exist in nature, because there are only measurement 
values under the range of the measuring instruments or devices which can‘t be supposed to be zero. 
There is no zero in nature nor are there infinities. These are pure mathematical expressions  and 
idealisations. In this case latter a tear resistance (TR) of spacetime is introduced as a maximal value 
of  existing  state  coupled  with  cosmic  expansion  of  real  existing  universe,  not  a  mathematical 
construct. This TR exists as well as for spacelike/timelike component- cases but also for the whole 
four-system  with its description of spacetime. Since matter seems only garbage in the history of 
universe and there is too little of it in cosmos to play any important role, even with dark matter, it  
can be neglected in the consideration. Matter is just useless and unnecessary waste and garbage in 
the  universe.  Matter  is  only  firework,  only  show.  One  has  to  look  at  the  deeper  structure  of 
spacetime itself,  on the vacuum-energy structures of gravity field-equation. And thus also  Life is 
just a small speck of dirt on the wall of the universe.  Like matter it is  without any matter for 
evolution of cosmos.
  
2. Methods/Calculation:

2a. Ordinary Kastner-metric (KM) in pure mathematical description:

Some of the following statements in this paragraph are useful  for a real spacetime-description but  
some are pure nonsense because of inadmissible idealization in pure mathematical spaces. Einstein 
said:  “This applies in particular to our concepts of time and space, which physicists —forced by 
facts—had to bring down from the Olympus of the a priori in order to repair them and restore them 
to a usable state.” [1.].  Nevertheless, a short introduction into this theme is now made but it may 
never be forgotten, that  real spacetime is either a very viscous liquidor or a dynamic lattice-net and 
not an idealized Hausdorff-space with defined  point differences of zero but with real Planck-length 
distances between minimal actions or minimal four events in its gravity vacuum [2.]. In this case it 
is not smooth but as an example, a rough lattice, maybe dynamic. A  form of granular liquid or a 
stretchable network structure in form of a dynamic lattice, maybe between the geodesics. Spacetime 
is no matter itself but it is an object, it is structured, solidified energy with its own gravity field from 
Einsteins  non-linear  field-equations.  In  this  case  it  underlies  some  physical  laws  of  structural 
strength. Spacetime is not only  a  mathematical description with mathematical defined zeros and 
infinities but it has a sort of physical structure like a maximal tear resistance and has to be treated as 
such for description of its expansion.

Now some of  the pure (but physically wrong)  mathematics, which will be corrected later:

The Kasner  spacetime [3.]  is  a  cosmological  model,  which  describes  an anisotropic  expanding 
universe in one ore more SLDs. It is an exact solution of the Einstein Vacuum field-equations with 
the  Ricci-tensor  of  Rμ , ν(g)=0 .There  is  a   possibility  in  choice  of  the  Kasner-exponents

p1 ,... , pd . If one of these exponents is  chosen negative,  then there exists a global spacetime 
singularity in curvature.  After choosing a suitable time orientation, the Kasner  spacetime   can be 
used as a model for  an anisotropic expanding universe without matter. There is a Big Bang or Big 
Crunch in description of this universe-model with a pure mathematical definition of t≡0 , which 
is not physical. There are some only formal working conditions for this model [4.]:

- It is future-one-connected,
- Geodesics, either, are future-complete or hits the singularity,
- It is global hyperbolic,
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- There is a spacelike boundary at the singularity,
- In interpretation of  mathematics it has divergent spacelike diameter,
- Isometries come from spherical symmetry,
-  Interpretation of Space-coordinates  t and coordinates of the sphere converge for a  timelike 
curve, and hit the  curvature singularity [5.].

All these statements are proven well [6.],[7.]. Shown here are only the following two lemmata:

Lemma  1; A  Spacetime  of  a Kasnermetric (M , g) ,   is  a  Lorenzian  manifold  with 
Dim(M , g)=d+1 for d≥3 . The description is that of an anisotropic, expanding universe and 

it is an exact solution of the Einstein gravity vacuum-equation Rμ ,ν=0 .

Proof   1  :    The Ricci-curvature of a semi-Riemannian manifold can be defined as the contraction:

Ric (g)=C3
1R∈T2

0
(M ) of the Riemann-curvature tensor  R . In local coordinates this can be 

written in form of:

Ri . j :=δ μΓi , j
μ
−δ jΓi ,μ

μ
+Γμ ,ν

μ
Γ i , j
ν
−Γi ,ν

μ
⋅Γμ , j

ν .                                                                                 (1.)

The only terms, which are  not zero by calculation, are:

R0.0=(1−∑
j=1

d

p ² j−∑
j=1

d

p j)⋅t−2                                                                                                      (2a.)

and

Ri , i=(1−∑
j=1

d

p j)⋅pi⋅t(2⋅pi−2)                                                                                                          (2b.)

Ergo the two conditions for  the Kasner-metric only holds, iff the Ricci-curvature vanishes. Then, 
the  Kasner-metric  indeed  is  a  vacuum-solution  of   Einstein-equations,  which  means 

Rμ , ν=0 , q . e . d ..                                                                                                                     (2c.)

Therefore a  classical, only mathematical described, Kasner-metric is defined as:

M=(0;∞) xℝd                                                                                                                           (3a.)
  
with its “smooth” Lorentz-metric of:

g=−dt2
+∑

i=1

d

t 2⋅pi⋅dx i
2 .                                                                                                                 (3b.)

From  the  proof  can  be  seen,  that  a  KM  must  fulfill  in  its  exponent-properties  the  following 
existence-conditions:
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∑
i=1

d

pi=1∧∑
i=1

d

pi
2
=1 .                                                                                                                    (4.)

The  first  equation  describes  a  d−1 dimensional  hyperplane  but  the  second  condition  is  the 
standard sphere Sd−1 . This means, the possible choices of Kasner exponents lie on  a sphere of 
dimension d−2 [8.].

Lemma 2:  If  the  choice  of  exponents  is  not  one  of  the  trivial  solution,  (when there  exists  a 
k0∈{1 , ... , d} ,  so  that  pk0

=1 and all  other  solutions  of  p are  equal  to  zero),  then there 
always  exists at least one solution with negative Kasner  exponent.

Proof 2:  
 If both conditions of (4.) are combined, there is:

1=(∑
1

d

pi)
2
=∑

1

d

pi
2
+2∑

1

d−1

pi∑
k>i

pk=1+2∑
1

d−1

pi∑
k>i

pk⇔∑
1

d−1

pi∑
k >i

pk≡0 , q .e . d ..                       (5.)

Proof 2 shows, that either the solution is a trivial one or  there exist at least three Kasner exponents  
which are non zero and at least one of them, but not all, needs to be negative. Further can be seen 

from [9.], that for d=3  and without loss of generality, if p1<0 , then −
1
3
≤ pi<0.

For the trivial solution, that is p1=1 ,  without the loss of generality, the metric takes the form of:

g=−dt ²+t ²⋅d x ²1+∑
i=2

d

dx ²i                                                                                                          (6.)

It  is  easy   shown   with  a  conformal  coordinate-transformation,  that  there  can  derived  the 
Minkowski-metric from g  with the  assuming of: 

t ²⋅dx ²1 :=d x̂ ²1                                                                                                                            (7a.)

 and the terms of:

t̂=t⋅cosh (x1)  and x̂1=t⋅sinh (x1)                                                                                         (7b.)

This leads to:

ĝ=−d t̂ ²+d x̂ ²1+∑
i=2

d

dx ²i=−dt ²+∑
i=2

d

dx ²i .                                                                                (7c.)

The range of  t̂  : t̂=(0 ;∞)∧x̂1=ℝ .                                                                                      (7d.)

That means, that the Kastner-metric with trivial exponents can be embedded isometrically  into the 
open subset (0;∞) xℝd of Minkowski-metric ℝ1

d+1 with its common map [10.].
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2b. Curvature of classical Kasner-metric:

Assume δt a nowhere vanishing, timelike vectorfield, which defines the future direction (Note 
that δ  here  never is a variation but only a vectorfield or a derivation in this paper).
Then, the Kasner-metric is a time-oriented, “smooth“, oriented  and connected Lorentz-manifold. 
The curvature of this spacetime is given by the non-vanishing Christoffel-symbols [11.]:

Γ0 i
i
=Γi 0

i
=

pi

t
                                                                                                                               (8a.)

and

Γii
⁰
=pi⋅t

2⋅pi−1 .                                                                                                                             (8b.)

The Riemann curvature tensor  R∈T 3
1
(M )  then can be calculated in local coordinates in form of:

R δκδμ
δν=Rκμ ν

σ                                                                                                                              (9a.)

with:

Rκμν
σ

=δμΓνκ
σ
−δνΓμ κ

σ
+Γμρ

σ
Γνκ
ρ
−Γνρ

σ
Γμκ
ρ .                                                                                   (9b.)

This  calculation  then   leads  to  the  only   existing,  nonvanishing  components  of  the  Riemann 
curvature -tensor of ( i≠ j) [12.]:

R jij
i
=−R jji

i
=pi p j t

2⋅p j−2

R00i
i
=−R0 i 0

i
=pi⋅(pi−1)⋅t ⁻ ²

R0 i0
0
=−Rii 0

0
=pi⋅( pi−1)⋅t 2⋅pi−2

                                                                                 (10a. - c.)

The first index can be lowered with the metric:

Rσκμ ν=gσρ Rκμν
ρ .                                                                                                                      (11a.)

This leads to the following conditions:

R 0i 0 i=−R0 ii 0=Ri 0i 0=−Ri00 i= pi⋅(1−pi)⋅t2⋅pi−2                                                                        (11b.)

and

Rijij=−Rijji=pi p j⋅t
2⋅pi+2⋅p j−2 .                                                                                                     (11c.)

From these conditions easily can be seen, that the Riemann curvature only vanishes, iff the Kasner 
exponents are the trivial solutions  e.g. pi=1∧p j=0 or vice versa.
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If  the Kastner metric is  not in the trivial  case,  then there exists  at  least  one negative Kastner-  
exponent, and the curvature descends with  the pure mathematical assumption of t→0 , which is 
in fact of  physical reality  nonsense, because there is only a t Min=t PL≠0 . So there is the fact of a 
maximal curvature in real spacetime, not in pure mathematical idealization. More to this theme in 
Chapter three.

The mathematical case develops this:  Coordinate invariant curvature scalars are described like the 
Kretschmann-scalar K [13.]:

K :=Rσκμ ν Rσ κμν                                                                                                                       (12a.)

with:

Rσκμ ν
=gσ α gκβ gμγgνδRαβγ δ .                                                                                                   (12b.)

This time, the non-vanishing terms are ( i≠ j) :

R 0i 0 i
=−R0 ii 0

=Ri 0i 0
=−Ri00 i

= pi⋅(1−pi)⋅t−2⋅pi−2                                                                      (13a.)

and

Rijij
=−Rijji

=pi p j⋅t
−2⋅pi−2⋅p j−2 .                                                                                                  (13b.)

These conditions lead to  description of the Kretschmann-scalar in pure mathematical, idealized 
description without physical thinking (which is, as mentioned above , pure nonsense) of:

K=
4
t ⁴
⋅(∑

i=1

d

p ²i⋅(1−pi) ²+∑
i=1

d

∑
j>i

p ²i p ² j) .                                                                                  (14.)

Now, it is easy to see, that the Kretschmann-scalar would blow up to an unphysical value of infinity, 
if  the  senseless  mathematical  operation  of  t→0 is  done.  In  fact  of  doing  real  physics,  for 

t→t Min=tPL there is a finite maximal, physical  curvature iff there is no description of the trivial 
solutions but with at least one negative exponent. So it is seen, that the Kastner-metric has a form of 
finite singularity with a physical radius unequal to zero because of its finite size of curvature. This 
shall be named a „physical singularity“ or „real singularity“ not a mathematical point in an only 
mathematical defined space.

The volume element  of KM can  be described over  following formula, where |g| is determinant 
of metric [14.]:

√−|g|=t p1 , ... , pd=t                                                                                                                        (15.)

This leads to a spatial volume of O (t) , since the spatial volume slices are always proportional to 
the  volume element. For the unphysical case of t→0 the Kasner-metric can be interpreted as a 
classical cosmological model with a Big-Bang singularity or a Big Crunch by reversing the time-
orientation. An isotropic expansion or contraction is impossible, because not all the exponents shall 
have the same, equal value [15.]. 
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If they  were all equal, then by contradiction can be assumed, that from the first condition for all 

j∈{1 ,... , d } there  is  p j=
1
d

.Then  the  second  condition  of  (4.)  can‘t  be  satisfied,  because 

d≥3 and:

∑
I=1

d

p ²i=
1
d
≠1 .                                                                                                                            (16.)

Therefore the Kasner-metric  models  an  anisotropic expanding (or  contracting by time shifting) 
universe without matter [16.].

3  . General   physical   calculation:  

3a. Time-involved Pseudo-Kasner-metric:

Set is a quasi-Kasner-metric  of the form:

ds ²=(
t
t0 )

2⋅ pi

⋅∑
1

d

dx i ²                                                                                                                       (17.)

This  is  for  the  vacuum-field-equations  of  GRT  without  matter-tensor:

Rμ ,ν − 1
2
⋅R ⋅gμ , ν+Λ ⋅gμ ,ν=

1
r ²PL

                                                                                                      (18.)

with

 lim
Rμ, ν→ R μ,ν

V
( χ ⋅T μ , ν)→ χ ⋅T μ ,ν

V
=

1
r ²PL

                                                                                                    (19.)

and Kasner-conditions of:

∑
1

d

pi=∑
1

d

pi
2
=1                                                                                                                            (20a.)

Then this conditions lead with d=4 in four dimensions to

p1+ p2+ p3+ p4=1=p1 ²+ p2 ²+ p3 ²+ p4 ²                                                                                        (20b.)

All four dimensions have to be treated equally  because nothing distinguishes one from the other 
physically than the presign, so  the choice for the relations pi are:

p1=− 1
2

; p2=p3= p4=
1
2

                                                                                                                 (21.)

All four dimensions are equally in their values, only sign changes in linelelement and dimension 
normation.
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This condition then leads to a metric of:

ds ²=gμ , ν ⋅dxμ⋅dxν
=−(

t
t0
)

−¹

⋅c0 ⋅dt ²+(
t
t 0
)

1

⋅(∑
i=1

3

dx ²i)                                                                   (22.)

with  the   normalization-functions  of  metric-tensor  matrix  (and  gμ ,ν  resp.  changing  signs  in 
exponents) of  :

gμ ,ν=(
−(

t
t 0
)
⁻¹

cV cV cV

cV
t
t 0

cV cV

cV cV
t
t0

cV

cV cV cV
t
t 0

)                                                                                                           (23.)

with  cV :=1+
4⋅Λ

R
=
χ⋅T V

R
≠ 0  or cV :=

ℏ ²⋅(R±k⋅Λ)

mV⋅TV ≠0; k∈ℝ  or   something  similar,  a 

dimensionless physical vacuum constant of vacuum gravity field.

 χ  -  Einstein gravitational constant,
TV -  Vacuum energy scalar as part of: T μ ,μ=T M

+TV ,
R   -  invariant Ricci-scalar,
Λ   -  cosmological constant.

3.b Metric- changing for the three cases:

1. t ≈ t 0;
2. t ≪ t0 ;
3.t ≫ t 0 .

                                                                                                                                          (24.)

1.  For  case  one  there  is  with  global   time  of  t=t 0 of  our  presence   the  local  metric  of  flat 
Minkowskispace:

ds ²=− c0 dt ²+∑
i=1

3

dx ²i                                                                                                                   (25.)

2. For case two the metric leads to:
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lim
t →t Min

(− c ²0⋅dt ² )=− c ²0 t ²Min                                                                                                           (26a.)

and 

lim
t →t Min

(dx ²1=dx ²2=dx ²3 )=r ²PL                                                                                                      (26b.)

also this is leading to  the solution for lineelement  of:

ds ²=− c ²0 ⋅ t ²Min+3r ²PL                                                                                                                 (26c.)

near Big Bang, where the TLD enfolded the SLDs. 

3. For case three the term leads to:

lim
t →t Max=t PL

(− c ²0 ⋅dt ² )=c ²0⋅t ²PL                                                                                                         (27a.)

and

lim
t →t Max=t PL

dx1 ²=dx2 ²=dx3 ²=rMax                                                                                                    (27b.)

which leads to the end-metric of:

ds ²=−c0⋅t ²PL+3⋅r ²Max                                                                                                             (27c.)

This  is  the  case  of  spacelike  cosmic  expanding,  which  is  in  accordance  with  astronomical 
observation of experience today for spacelike slices. As well  t Max  as rMax deal with sizes of 
tear resistance of the universe.

4. Tear resistence of the universe – the Big Rip

Since real  physical   spacetime is  some form of material,  no geometry because of  existence of 
energy in its vacuum state caused by non-linearity of  Einstein-field-equations, it has also physical 
properties like a tear resistance or a tear length resp. breaking length [17.].  Because the Planck 
length is the smallest possible length, a brittle, not a ductile, tensile strength is assumed here in first 
order.  The deformation  of  spacetime can  therefore  be  calculated  with  a  constant  cross-section, 
because this means that no transverse contraction and no fracture necking  can occur  below from 
Planck-length. Possible other quantum gravity effects may be neglected in this considered context.

The breaking-length or resistance-length LR  of spacetime is then  defined as follows:

LR=
σ
ρ⋅a

,                                                                                                                                    (28.)
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where σ is the tear resistance of spacetime, ρ is the matter/vacuum-density of spacetime and 
a is fundamental Planck-acceleration. ρ is mean-density of universe.

This leads with some assumptions of :

a :=
c0

tPL

  ,                                                                                                                                  (29a.)

ρ :=
M Mat+M Vac

V Uni

=ρ Vac+ρMat ,c    ,                                                                                            (29b.)

c0 :=
rPL

tPL

  ,                                                                                                                                (29c.)

and σ :=
FPL

APL

=
M PL⋅aPL

r ²PL

,                                                                                                     (29d.)

to the final calculation of:

LR =
σ⋅V Uni⋅t ²PL

(M Mat , c+M Vac)⋅r PL

=
σ⋅tPL

2

(ρVac+ρMat ,c )⋅rPL

                                                                          (30.)

and at last (but not least) to:

LR =
M PL

r PL
2
⋅(ρV+ρ Mat ,c)

                                                                                                             (31.) 

This  leads  with  a  mean  numerical  value  of  Hubble-constant   of  71 km
s⋅Mpc

to  numerical 

calculation for  resistance-length of universe LR of :

LR = 1,660218804⋅1072 LJ=rMax .

Also  there  can  be  calculated  a  maximal   resistance-time  of  Pseudo-Kasner-cosmos  with 
cosmological movement of:

t R=lim
v→c

LR

v
=

LR

c
=1,660218804⋅10 ⁷² a=tMax .

With slightly different initial  values, one arrives at  a similar order of magnitude for resistance-
length or resistance-time of universe. The graph of picture 1 below shows the qualitative behaviour 
of this spacetime:
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5. Summary:

An adaption of Kasner-spacetime can be described in four dimensions with shrinking timelike 
dimension (TLD) while the spacelike dimensions (SLD) cause expanding universe. Thereby 
timelike dimension was minimal (which means maximal with negative sign) in the past at Big Bang 
and was the only, lonely dimension while all three spacelike dimensions  hold the state of Planck-
Length and their expansion  is caused by this lonely existence of timelike dimension.  Since this 
TLD causes and holds  permanently all SLDs since Big Bang through constant energy transfer to 
stabilize them, it shrinks itself because it consumes itself in this process. In the far future there will 
be no timelike dimension anymore  in this model without Planck-time resp. Planck-length. This 
adapted Kasner- Universe will be only threedimensional spacelike then  out of  the size of Planck-
terms in macroscopic state.
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Picture  1:   Qualitative  behaviour  of  Pseudo-
Kasner-Spacetime  with  relative  units  on  the 
axes. Spacelike dimensions are expanding from 
Planck-length, while timelike dimension is sign-
depended  expanding,  which  means  from  its 
norm, shrinking to Planck-time. 

Normation of  axes: 

Abscissa: time  t in [a].

Ordinate: space-expansion R in [LJ/pc]

Both axes: 

relative terms with Planck-size normed to 1.



6. Conclusion:

Decreasing of TLD evolves encreasing of SLDs  like is observed in astronomical descriptions. But 
the original existence of only one single  TLD-coordinate causes basically the enfolding of the 
spacelike  spatial-coordinate  dimensions  in  a  wider  size.  In  the  far  future  this  spacetime-model 
shows the universe as pure spacelike structure in three extended dimensions without time resp. 
timelike dimension except Planck-time. Nothing else remains but c 0⋅t ²PL=r ²PL and three spacelike 
dimensions without evolving of time.  In this model time passes more slowly, thus decreasing the 
time-like dimension. It wears out while pushing the spatial dimensions. The universe ends when 
time is used up, i.e., when it stands still, respectively when the state of Planck time is reached. This 
is also the time of reaching the tear-resistance of universe. May be, with a big rip, then a new 
cosmological  instanton will be born.

7. Discussion:

Since the TLD is shrinking after this simple model of spacetime description  and if the model is 
taken seriously,  it may be, that time travel will be easier in the far future than it could be in our 
present  cosmic   time because  the  blocking-conditions  for  this  case  of  applied  physics  may be 
weakening in time with time.  Since TLD shrinks in the far future,  it may be  far easier  in this 
model  then  to undertake time-travel there  than today because the timelike differences  of an event 
may shrink. The increasing timelike coordinate into the past, seen from the future, may  cause  a 
form of  increasing resistor to get far in the past by time-travel. So time-travel may be restricted to 
certain epoches far in the future.

 A spacetime with shrinking timelike dimension but constant nature-laws can also be interpreted as 
a spacetime with constant timelike coordinate dimension  but changing nature-constants possibly or 
probably  weaking.  This  is  first  a  sort  of  a  global  symmetry  contemplation,  if  both  conditions 
compensate  another  fully,  or  a  form of  local  symmetry,  if  both  conditions  overlap  with  a  rest 
different from zero. This idea of changing nature constants is not new and principally measurable, 
ergo falsifizable as it should in physics.
Dependend  from  this  sort  of  symmetry  there  is  another  form  of  symmetry,  namely  a  broken 
Noether-symmetry  for continual symmetry-conditions if they exist, because  existence of constant 
timelike dimension preserves a form of global  energy-conservation law with timelike invariance of 
nature laws and so constants, which is not valid in case of changing timelike coordinate-dimension. 
These both  statements  seem to be an unsolved  contradiction. Since all these descriptions describe 
a spacetime model without matter it can‘t be the  real deal because it is only a vacuum solution 
without matter influence unless matter is globally  seen or interpreted as unimportant for evolution 
of  universe  but  vacuum  tensor-term  gi, k ⋅ Λ of  dark  energy  or  cosmological  constant  would 
dominate this situation [3.]. Also may be, that time travel gets more difficult in the far
future, so there will be no timetravel at all.
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