
Hybrid AI for Generating Programs: a Survey

Giancarlo Frison - gfrison.com

May 3, 2025

Abstract
Computer programming is a specialized activity that requires long

training and experience to match productivity, precision and integration.
It hasn’t been a secret for AI practitioners to ultimately create software
tools that can facilitate the role of programmers. The branch of AI
dedicated to automatically generate programs from examples or some sort
of specification is called program synthesis. In this dissertation, I’ll explore
different methods to combine symbolic AI and neural networks (like large
language models) for automatically create programs. The posed question
is: How AI methods can be integrated for helping to synthesize programs
for a wide range of applications?.

Introduction
Hybrid AI brings together two very different approaches: symbolic AI, which
works like traditional programming with rules and logic, and connectionist AI,
which relies on neural networks, where large language models (LLMs) being the
most advanced example. In this dissertation, I review some literature that tries
to combine these methods to leverage their strengths for generating programs. I
focus on the most interesting and useful papers, setting aside those that were
less clear or relevant. While this overview may simplify some aspects or overlook
certain details, my aim is to clarify the key ideas and highlight what has been
achieved so far in making these two approaches work together.

Program synthesis (PS) is the automatic process of generating programs that
accomplish specified objectives. A program consists of a set of instructions written
in a formal language a symbolic engine can interpret and execute. Because of
that, programs must be exactly right to achieve the intended outcome otherwise
any deviation may lead to incorrect results or even the impossibility to run the
program. The central challenge is the transformation of input - which often
looks very different to the final program - into working code. The input may
take different forms, as pointed below.

1



Input as formal specification

The requirements might be written in a formal language, like test cases in the
same language of the generated code or a even more abstract logical form. This is
typical of the SyGus 1 challenge, where specification are runnable code snippets.

An example of PS specification states the constraints of the new function max2,
its signature and the tests for correctness:

;; The background theory is linear integer arithmetic
(set-logic LIA)
;; Name and signature of the function to be synthesized
(synth-fun max2 ((x Int) (y Int)) Int

;; Declare the non-terminals that would be used in the grammar
((I Int) (B Bool))
;; Define the grammar for allowed implementations of max2
((I Int (x y 0 1

(+ I I) (- I I)
(ite B I I)))

(B Bool ((and B B) (or B B) (not B)
(= I I) (<= I I) (>= I I))))

)
(declare-var x Int)
(declare-var y Int)
;; Define the semantic constraints on the function
(constraint (>= (max2 x y) x))
(constraint (>= (max2 x y) y))
(constraint (or (= x (max2 x y)) (= y (max2 x y))))
(check-synth)

Programming by example

Rather than providing a strict set of requirements the program should adhere
to, the generator is tuned on few pairs of input→output as training samples
and then the learned pattern is applied to a unpaired input.

One key detail: the output in these examples isn’t the actual code itself, it’s
rather the result of running the target program, and PS succeeds if the generated
program produces the same output of the expected one. This type is named
programming by example (PBE) and it is the approach adopted for example by
ARC-AGI, an initiative for testing human-like intelligence in software agents2.

1SyGuS-Org. (n.d.). SyGuS language. SyGuS. Retrieved from https://sygus-org.github.io/
language/

2Chollet, F., Knoop, M., Kamradt, G., & Landers, B. (2024). ARC Prize 2024: Technical
Report. arcprize.org

2

https://sygus-org.github.io/language/
https://sygus-org.github.io/language/


Figure 1: Example ARC-AGI task

Input in plain English

These inputs may take the form of high-level specifications written in natural
language, such a brief description of what the program should do. An example
is the ConCode3 dataset, where pairs of description and code allow the training
of PS’s generators from English statements. Using natural language for defining
programs has been indeed one of the hardest type of input to work with. The
problem is that human language is ambiguous and fuzzy, while code needs to be
exact, almost mathematical in its structure, as clearly stated by Dijkstra:

using natural language to specify a program is too imprecise for
programs of any complexity4

The lack of rich and complex language models has been a barrier for this type of
synthesis, but with LLMs it is possible to capture nuances that were previously
out of reach.

Domain specific language
The generated program might be encoded in some general-purpose language that
is designed - as the name suggests - to cover a very wide range of tasks. However,
PS is usually tailored for narrowed domains where the language expressiveness
is not the biggest advantage. This why a domain specific language (DSL) is
usually more appropriate.

A DSL brings some other advantages to the process. First of all, a DSL reduces
the range of possible solutions a program generator has to search through. DSLs

3Soliman, A. S. (n.d.). CodeXGLUE-CONCODE dataset. Hugging Face. Retrieved from ht
tps://huggingface.co/datasets/AhmedSSoliman/CodeXGLUE-CONCODE

4Dijkstra, E.W. On the foolishness of “natural language programming”;
https://bit.ly/3V5ZP5

3

https://huggingface.co/datasets/AhmedSSoliman/CodeXGLUE-CONCODE
https://huggingface.co/datasets/AhmedSSoliman/CodeXGLUE-CONCODE


are restricted in the scope and purposes and consequently the search space
of possible programs is smaller. In favor of DSL there is also another point:
DSLs tend to be more readable for humans. They do not prescribe unnecessary
boilerplate code. Rather they keep only the meaningful parts that actually affect
what the program will do.

Symbolic vs Statistical methods
Before going deep down to the methods used for PS, I would distinguish three
approaches for PS: fully symbolic, fully neural, and hybrid (symbolic + statisti-
cal).

Fully symbolic

The exclusive-symbolic systems relies only procedural algorithms for searching
solutions that do not comprise any statistical method. Basically, they do not
take into account any learned pattern for speed-up the synthesis. Those methods
usually fetch the entire search space and when the problem can’t be narrowed in
a small number of possibilities, the task might turns out to be very slow or even
unfeasible.

Fully neural

On the other end, statistical methods usually count on generalizations offered
by neural networks, and thanks to their universal function approximation they
tentatively map the input to the final program. Those methods have some
drawbacks related to the massive amount of data they requires for obtaining
convincing results5.

By their intrinsic nature, purely statistical methods lack of precision that usually
is demanded for PS. This is a major issue since the output must run on a formal
interpreter. To compensate, post-hoc filtering on multiple program generation is
necessary. It consists on generating multiple candidate programs and filter them
afterward. Usually it degrades performance with consequent defeat of real-time
systems.

Hybrid: combine the best

An attentive observer may notice that the two paradigms above actually com-
plement each other: while neural networks excel at approximations and fuzzy
selections, symbolic methods perform best when nesting and composing prim-
itive operations. So why not combine them by exploiting their strengths and

5Moreover, in many cases those datasets are synthetically generated by the same models
adopted for reversing them into programs. Unfortunately, it introduces the self-selection bias,
the kind of problem where the training data is not actually a reliable sample of real-case
scenarios

4



mitigating their weaknesses? Hybrid methods attempt to do just that, but since
they are fundamentally different, making them work together is not an easy task.

The integration of the two different ways is usually called neuro-symbolic AI
(NeSy) and the boundary where one system ends and the other begins varies
significantly on the method adopted by the authors. Generally, an appropriate
metaphor for NeSy could be the one that emphasize the duality reason/intuition
or the more glamoured dichotomy of Thinking Fast and Slow6. It basically
describes how well the human (slow) reasoning integrates with the (fast) intuitive
mental module. Similarly, in PS the symbiosis occurs for facilitating the search
of the target program: the symbolic clockwork scans the possibilities while the
neural module suggests the intuitions to search more efficiently.

Enumerative algorithms
What mainly distinguish symbolic from statistical methods is the presence
of enumerative algorithms that represent one of the workhorse of the entire
program synthesis. Each time the PS generates a candidate program, it is going
to be validated in order to ensure correctness with the DSL syntax and the
specifications7.

If the verification fails and the candidate does not satisfy the specifications,
the system has just found a counterexample – an input on which the program
produces an incorrect output that could be added in the history of failed trials
for improving search on the next iterations. This is basically the process named
counter-example guided inductive synthesis (CEGIS) and it is applied not only
on PBE but also on specifications settings.

As previously mentioned, the fast and intuitive module is deployed to guide the
search of candidates, but learning to search works best when it exploits existing
search algorithms already proven useful for the problem domain of interest -
for example, AlphaGo exploits Monte Carlo Tree Search, DeepCoder uses also
Satisfiability Modulo Theories (SMT) solvers. Which kind of searches are usually
employed? A distinction should be remarked among different approaches I’ve
seen in the surveyed methods.

Top-down enumeration

The top-down paradigm shows how an high-ranking problem could be decomposed
in smaller parts that are nested or connected together. In programming, top-
down algorithms are the deep first search, it’s companion breath first search or
the more generic dynamic programming. Those algorithms are recursive since

6Kahneman, D. (2011). Thinking, fast and slow. Farrar, Straus and Giroux.
7This verification should not cause significant performance degradation, as the verifier is

symbolic and typically the same component that will execute the generated artifact once
deployed in the target system. Unless the verification involves costly data access, we can
confidently assume it takes negligible resources.

5

https://gfrison.com/2019/06/18/dynamic-programming


they unfold into branches that have a similar structure, but they suffer of a big
problem.

Many derived branches ultimately prove irrelevant to the optimal solution. If we
can infer which sub-problems are worth of scrutiny, we can significantly reduce
computation time. This is why we need more sophisticated way than the ones
mentioned above. The A* search combines backtracking search with heuristics
that helps to find the right path8. Where do heuristics come from? Of course,
from a probabilistic learned model. This is the intuition at work! With top-down
enumeration, the model could be called just before the search and just once, since
its output includes the elements to drive the search without further inquiries.

Because search branches operate independently - a property called Markovian -
top-down methods work well for supervised learning. Consider a target output:
a program represented as an abstract syntax tree (AST) is essentially a hierarchy
of operations that unfold from top to bottom. If we can encode the AST in a
neural network, it should somehow reflect inevitably a tree structure we can use
to discriminate relevant branches to examine.

Bottom-up enumeration

In contrast, bottom-up searches do not offer the same Markovian characteristic.
Bottom-up search builds programs from smaller components, and the correctness
or usefulness of a program’s chunk might only become apparent when it’s
combined with other segments later in the process.

What might be more appealing in bottom-up settings is that the process of
building programs is closely related to the intuition that a human programmer
has when he writes small functions first and then combine them to get the
desired solution. This differs from the top-down approach, where you start
with the big picture and break it down. Instead, bottom-up focuses on solving
smaller, manageable problems first and then assembling them into more complex
solutions9.

Because the search starts at the bottom of the AST tree and moves its way
up, every sub-program it generates is already executable. At any stage of the
search, any sub-problem has always a concrete value attached to it, which helps
to assess how well it combines with other code segments10.

So, how does the model contribute to the search? Let’s talk about some
probability-based methods that help those enumerations.

8Li, Y., Parsert, J., & Polgreen, E. (2024). Guiding enumerative program synthesis with
large language models. Proc. ACM Program. Lang., 8(POPL).

9bottom-up search is similar to mathematical factorization, which refers to the process of
breaking down a number into smaller factors. Given a non-prime number n then n = a ∗ b
where a, b are factors of n. Important note: it’s easy to multiply, but hard to factor.

10Shi, K., Dai, H., Ellis, K., & Sutton, C. (2022). CROSSBEAM: Learning to search in
bottom-up program synthesis . arXiv preprint arXiv:2203.10452

6



Probabilistic guided search
Most of practitioners agree that heuristics are useful for finding the right solution,
and these shortcuts are based also on observed patterns. In particular, it is
evident that not all programs are equally likely - some patterns appear more
often than others. There definitely is a bias in the way programs are written.
For instance, it is self-evident not a single program use both filter(> x 0)
and filter(<= x 0) - that would be simply absurd.

Another suggestion for inferring which operations may be involved comes from
an analysis of the training data labels (on PBE settings). Is there some kind
of alignment on the output’s elements, for example a sorting? If so, then most
likely there is a sort command in the target program11.

Probabilistic grammar tree

Earlier, I exposed some reasons for using DSLs as target programs. One advantage
is that DSLs come with a well-defined context-free grammar12 (CFG) which is a
formal way to define how languages are structured. A CFG is defined by a set
of:

• terminal symbols - those atomic elements that can’t be derived by other
elements.

• variables - to be computed by the symbolic engine and rule of productions
(non-terminal elements).

• rules of production - the core of the CFG because it is where the generation
can unfold the expressiveness of the language and cover myriads of use
cases.

The rules determine the language’s expressiveness, allowing it to generate count-
less use cases. Think of it when forming sentences in English: not every word
sequence is valid, and a CFG strictly defines which combinations are allowed.
This rigidity contrasts with neural models, which learn from examples and work
non-deterministically rather than following hard rules.

Probabilistic context-free grammar (pCFG) is an extension of CFG where each
rule is associated with a probability that reflects the chance of choosing that
particular rule when expanding the program in a sequences of terminals. Those
probabilities (or weights) are statistically derived from a series of programs linked
to a specific task13.

11Balog, M., Gaunt, A.L., Brockschmidt, M., Nowozin, S., & Tarlow, D. (2016). DeepCoder:
Learning to Write Programs. ArXiv, abs/1611.01989.

12The term “context-free” means that the rules for creating a valid sentence depend only
on the individual symbols themselves, not on their surrounding elements. Imagine building
a sentence with blocks; each block has a specific role regardless of where it sits in the final
structure.

13Those programs might be given training samples but also generated programs as we will
see specifically with LLMs adoption.

7



Attribute vector

Another way to learn heuristics from training data is the approach used in
DeepCoder14 where the system uses a vector to represents the probability of
programming features present in the target program. The encoded features
depends of course on the DSL adopted for the task. For giving some examples,
it might be present features such as:

• unary math operations - like abs, sqrt.
• binary arithmetic - like +, -.
• sequence helper methods - like head, tail, take, drop.
• set functionalities - like intersection, union, diff.
• filters - like >, <=, ==.
• tailored compositions of functions - like mergesort.

The (probabilistic) attribute vector is then used to elicit discriminatory decisions
when the enumerator searches for viable solutions.

Argument selector

The two type of statistical models above fit greatly with top-down search since
they capture the overall structure of the target program. In contrast, systems
such as CrossBeam15 take a bottom-up approach. Instead of reasoning from the
top level, the model decides how to combine previously explored operations to
build new program components.

As we have seen, not only the programs are kept in history but also their
execution result. In this way, in the following iterations those program/value
pairs are then used to generate more complex candidates, until the desired
solution is found. In this way, promising combinations are prioritized rather
then exhaustively enumerate all possibilities.

Branch selector

In the neural guided deductive search (NGDS)16 the model is intended to rank
potential extensions of a partial program. It takes the input-output examples
and the current candidate program, then assigns weights to different branches
the search algorithm could explore.

At beginning, the candidate program is of course empty, and from there starts
the divide and conquer top-down approach by building the solution step-by-step
from the root of the AST. When the enumerator reaches a branch, the model

14Balog, M., Gaunt, A.L., Brockschmidt, M., Nowozin, S., & Tarlow, D. (2016). DeepCoder:
Learning to Write Programs. ArXiv, abs/1611.01989.

15Shi, K., Dai, H., Ellis, K., & Sutton, C. (2022). CROSSBEAM: Learning to search in
bottom-up program synthesis . arXiv preprint arXiv:2203.10452

16Vijayakumar, A. K., Batra, D., Mohta, A., Jain, P., Polozov, O., & Gulwani, S. (2018).
Neural-guided deductive search for real-time program synthesis from examples. In Advances
in Neural Information Processing Systems (pp. Not specified in the excerpt).1 Retrieved from
https://arxiv.org/abs/1804.01186

8



suggests the most promising path to follow - guiding the search toward a valid
solution.

Auxiliary construction

What if the neural model doesn’t just help to speed-up the search by giving
proper heuristics, but rather it generates new supporting information, helping
the symbolic engine to discover a better path to the correct program? This
is what has been proposed in Alpha Geometry17 with the purpose of creating
proofs to verify geometrical theories18.

Figure 2: Overview of our neuro-symbolic AlphaGeometry and how the auxiliary
construction helps to solve a simple problem

LLMs in the loop
Unlike specialized statistical models, LLMs can bring broader cognitive abilities
to PS. Though they were designed to generate the next word in a sequence, they
have shown surprising reasoning capabilities, the ones that can be valuable on
generating code.

Whether LLMs genuinely reason or they just emulates it by retrieving training
data is still controversial19. But for practical purposes, I’m more interested on
observing what they can actually do, and integrating them into PS poses new
challenges - as any new emerging technology.

Lack of consistency

A persistent challenge is the lack of consistency and generalization in reasoning
behavior. The inconsistency arises when LLMs provide different answers to

17Trinh, T. H., Wu, Y., Le, Q. V., He, H., & Luong, T. (2024). Solving olympiad geometry
without human demonstrations. Nature. https://doi.org/10.1038/s41586-023-06747-5

18The reader might find mathematical proofs a bit out of scope with the topic of this
dissertation, but the Curry-Howard correspondence equates propositions with types and proofs
with programs. That means when we are talking of geometrical validity proofs we are actually
describing programs that derives consequences from axioms to the target state

19Kambhampati, S., Valmeekam, K., Guan, L., Stechly, K., Verma, M., Bhambri, S., Saldyt,
L., & Murthy, A. (2024). LLMs can’t plan, but can help planning in LLM-Modulo frameworks.
arXiv. https://arxiv.org/abs/2402.01817

9



semantically equivalent input. For instance, simply altering the prompt’s tone -
or even adding threats to the request - can significantly steer the LLM’s output.
This suggests that LLMs probably don’t have a stable, logical framework guiding
their answers.

Crafting effective prompts remains an art (maybe yet one of the fewer exclusive
to humans?) and this unpredictability adds another layer of uncertainty to PS.
Indeed, this kind of problem is well known to practitioners, and when a problem
is familiar, there are usually ways to circumvent it, as those surveyed here.

When LLMs generate programs - and usually they return many wrong solutions
- the correct solution is most often in the proximity of the wrong ones, and that,
by searching in the neighborhood of the invalid proposals, we may be able to
guide the search to find a solution faster by compiling a pCFG as described in a
previous section.

Context is the king

LLMs being based on the transformer architecture possess long-term memory
that enables to track distant elements in the request. This capability joint with
vast ground knowledge that extends the mere narrow scope of the PS’s request,
is indeed helpful on determining proper variations on the generated program.

As memory capabilities are present in more simpler neural architecture, in LLMs
they surely reach undisputed highs. This aspect affects also the latent-space
that governs the network capabilities. LLM’s embeddings incorporate much
more information than in older neural architectures. RAG (retrieval augmented
generation) is a method to encode vectors for enabling similarity search on very
complex structures. Though similarity is indeed used for fuzzy searches, its
importance on PS remains marginal due to the more tight requirements for
generating programs. Program structures are closer to graph representations
that hardly can be generated only by similarity means.

The leverage of high contextualization is well exploited in top-down search
methods where an hierarchical view of the final goal gives an important help on
splitting high-level problems into tiny ones. On the other hand, this reliance on
context can become a drawback when using those powerful models for bottom-up
searches. Starting from the big picture and trying to work backward, from basic
functions to complex solutions, is much harder.

Hybrid methods
Alpha Geometry

As just previously mentioned, the intuitive hint comes from a neural model
based on the transformer architecture. It is initially pre-trained with a large
amount of synthetic-generated cases of pure geometrical deductions to create a
grounding latent space for geometrical knowledge. Then the model is fine-tuned

10



on a generating auxiliary statements to be added to the initial geometrical
proposition20.

DeepCoder

Or how to learn to write programs with a NeSy approach. It is based on PBE
and it employs a neural network (no LLM) to encode an attribute vector that list
the features the final program should include. The search will start by including
the most promising features and it will test-and-prune inapplicable programs till
it finds a solution that satisfy the examples provided21.

iLLM-synth

This method involves prompting the LLM to provide helper functions or syntactic
suggestions based on the partially constructed program and any counterexamples
encountered (CEGIS) and the provided problem specification (SyGus). The
LLM’s feedback can even augment the grammar and update rule weights dynam-
ically as the search progresses. A pCFG is created from LLM’s suggestions and
the Symbolic searcher apply an A* algorithm based on the heuristics calculated
in the pCFG. The search stops when a solution is found or a max cost is reached.
As cost it is intended as a max depth in the search tree is reached, or the time
budget is spent or when the diminishing return of searching does not worth
further explorations22.

Figure 3: Overview of iLLM-synth

20Trinh, T. H., Wu, Y., Le, Q. V., He, H., & Luong, T. (2024). Solving olympiad geometry
without human demonstrations. Nature. https://doi.org/10.1038/s41586-023-06747-5

21Balog, M., Gaunt, A.L., Brockschmidt, M., Nowozin, S., & Tarlow, D. (2016). DeepCoder:
Learning to Write Programs. ArXiv, abs/1611.01989.

22Li, Y., Parsert, J., & Polgreen, E. (2024). Guiding enumerative program synthesis with
large language models. Proc. ACM Program. Lang., 8(POPL).

11



Neural guided deductive search

It is a PBE oriented method where a DSL provides the vocabulary of the
operations that apply in different parts of the input. The method works by
filtering the most likely useful operations (via statistical learning) and then
chaining them together recursively, following a functional programming style23.

Take for example the following problem: “Firstname Lastname” → “FL”:

• The model’s inference breaks it down into smaller problems by splitting
them with the firstWord and lastWord functions.

• Those two branches are then computed separately by recursively solving
“Firstname” and “Lastname”.

• The model finds the operating sequentially firstChar to the previous
operations might lead to interesting results, that the model again will
attempt to combine them together.

If this sounds over-simplified, well, it is. Real-world cases involve more complexity,
but this gives the basic idea24.

Crossbeam

Differently from previous approaches, the enumerative search follow the bottom-
up prescriptions. Starting from the raw input, it applies most likely operations
and their result will be used in the following iterations. The search is guided
by a neural model trained on program examples. While in NGDS the model
gives indications on the AST tree, in Crossbeam only the operations’ output
is considered for ranking nested operations. The model learns how to combine
evaluated sub-programs in a bottom-up manner25.

HySynth

Differently from other methods, LLMs are prompted first to guess what will be
the program for a PBE problem. Candidate programs are used to compile a
pCFG which will then guide the following bottom-up search.

The search method falls under dynamic programming, meaning it builds the
program from its smaller parts step by step, assigning a computational cost at
each new chunk of code. This cost reflects the resources needed to execute that
part, as well as the search process itself and it is used for filtering out unsuitable

23Though it appears to be more a bottom-up, it is still top-down because the process is
driven by attempting to satisfy the overall goal of transforming the input to the target output
by recursively applying rules from the DSL.

24Vijayakumar, A. K., Batra, D., Mohta, A., Jain, P., Polozov, O., & Gulwani, S. (2018).
Neural-guided deductive search for real-time program synthesis from examples. In Advances
in Neural Information Processing Systems (pp. Not specified in the excerpt).1 Retrieved from
https://arxiv.org/abs/1804.01186

25Shi, K., Dai, H., Ellis, K., & Sutton, C. (2022). CROSSBEAM: Learning to search in
bottom-up program synthesis . arXiv preprint arXiv:2203.10452

12



Figure 4: Overview of HySynth

candidates. The DP-based search stores intermediate results to avoid redundant
calculations, improving efficiency by skipping explored sub-programs26.

Conclusion
In this brief overview I explore how different methods for PS can be combined
in flexible way. Various approaches have been tested to find simple and effective
ways to generate programs. Pure statistical methods, especially when they are
based on LLMs, might provide simple methods that do not requires combinations
of techniques but rather they rely on the universality of their broad context they
can leverage for producing code.

Usually, fully neural approaches are effective when problems are simple or
LLMs can compensate the lack of explicit knowledge in the input, or they can
simply exploit massive amount of publicly available programming code. When
none of the above conditions applies, LLMs are beneficial when paired with
enumerative processes by guiding the search towards more plausible candidates.
The intersection between symbolic and neural systems lies where probabilities
may have a role on compiling heuristics. In particular, the flat semantic of a
DSL can be more valuable for search when enriched with pCFG.

26Barke, S., Gonzalez, E. A., Kasibatla, S. R., Berg-Kirkpatrick, T., & Polikarpova, N.
(2024). HYSYNTH Context-Free LLM Approximation for guiding program synthesis.

13


	Introduction
	Input as formal specification
	Programming by example
	Input in plain English

	Domain specific language
	Symbolic vs Statistical methods
	Fully symbolic
	Fully neural
	Hybrid: combine the best

	Enumerative algorithms
	Top-down enumeration
	Bottom-up enumeration

	Probabilistic guided search
	Probabilistic grammar tree
	Attribute vector
	Argument selector
	Branch selector
	Auxiliary construction

	LLMs in the loop
	Lack of consistency
	Context is the king

	Hybrid methods
	Alpha Geometry
	DeepCoder
	iLLM-synth
	Neural guided deductive search
	Crossbeam
	HySynth

	Conclusion

