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Abstract

Large Language Models (LLMs) have shown
remarkable capabilities in complex reasoning
tasks. However, as the number of generated
tokens increases, they tend to accumulate small
errors that compound over time, often leading
the model further down incorrect reasoning
paths. In this work, we introduce Dynamic
Sampling and Multi-Validation on Scratch Pol-
icy Optimization (ASPO), a novel framework
designed to enhance the reasoning robustness
of LLMs. ASPO leverages scratchpads and spe-
cialized attention masks to dynamically mask
previous context during inference, allowing
the model to remain resilient to earlier mis-
takes, explore alternative reasoning paths, and
identify potential inconsistencies. Extensive
experiments on four benchmark datasets and
across two model architectures demonstrate
that ASPO significantly improves reasoning
accuracy. Our findings highlight a promising
direction for improving LLM performance on
complex reasoning tasks.

1 Introduction

Large Language Models (LLMs) have achieved
strong performance on a wide range of natural lan-
guage processing tasks, including complex multi-
step reasoning. Despite their success, LLMs of-
ten suffer from error accumulation: early-stage
mistakes in long-form reasoning can mislead sub-
sequent steps, causing the final output to deviate
significantly from the correct answer. Due to the
autoregressive nature of LLLMs, once an incorrect
token is generated, it becomes part of the context
for future predictions, making it difficult for the
model to recover.

To address this limitation, we propose dynamic
Ampling and multi-validation on Scratch Policy
Optimization (ASPO), a novel method designed
to improve the robustness and accuracy of LLMs
in multi-step reasoning tasks. The key idea behind
ASPO is to allow the model to revise its reasoning

path dynamically—without being rigidly tied to
potentially flawed earlier outputs.

Concretely, ASPO proceeds in three stages. First,
the model generates an initial draft reasoning tra-
jectory (scratchpad 1). Then, using a specialized
attention mask, the model masks out the draft and
re-generates a second reasoning path (scratchpad
2) without being directly influenced by the first.
By comparing the two drafts, the model identifies
discrepancies and locates potential errors. A cor-
rection phase follows, in which the model refines
its answer by resolving inconsistencies. Finally,
we apply a rule-based reward signal to reinforce
successful correction behaviors via reinforcement
learning, gradually improving the model’s reason-
ing strategies over time.

Our contributions are threefold:

* We propose ASPO, a novel framework that
enables LLMs to dynamically mask and revise
reasoning steps during inference.

¢ We introduce a multi-validation mechanism
that identifies and corrects inconsistencies be-
tween independent reasoning paths.

* We demonstrate through extensive experi-
ments that ASPO significantly improves rea-
soning accuracy across multiple datasets and
model scales, while also enabling effective
policy refinement via rule-based rewards.

2 Method

In this section, we describe our proposed method,
Dynamic Sampling and Multi-Validation on
Scratch Policy Optimization (ASPO), which
aims to improve reasoning accuracy in Large Lan-
guage Models (LLMs) by allowing the model to
dynamically revise its reasoning paths during in-
ference. The core idea of ASPO is to enable the
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Figure 1: Overview of the ASPO framework. The model
generates an initial reasoning path, masks it, regenerates
a second path, compares the two, performs correction,
and learns through rule-based rewards.

model to compare multiple reasoning drafts, iden-
tify errors in earlier steps, and refine its answer
accordingly, ultimately improving its performance
through reinforcement learning.

2.1 Overview of ASPO

The ASPO framework proceeds in three main
phases: (1) Draft Generation, (2) Error Detection
and Correction, and (3) Reinforcement Learning
for Refinement. Each phase is designed to dynami-
cally adjust the model’s reasoning process, allow-
ing it to recover from errors and strengthen its rea-
soning abilities over time. Below, we detail each
phase.

2.2 Draft Generation

The process begins with the model generating an
initial reasoning trajectory, denoted as scratchpad 1.
This first draft represents the model’s initial reason-
ing process, which may contain errors due to ear-
lier missteps in the inference process. The model
then generates a second reasoning path, scratchpad
2, by masking out the attention to scratchpad I,
which prevents the model from being influenced by
potentially erroneous information.

Mathematically, the model generates the first
and second drafts as follows:

Draft 1: s; = Generate(x)

Draft 2: s = Generate(x, mask(sj))

Here, x represents the input to the model, and the
function Generate produces a sequence of tokens.
The attention masking ensures that the second draft
is not affected by the errors in the first draft.

2.3 Error Detection and Correction

After generating two drafts, the next phase involves
comparing them to detect inconsistencies and iden-
tify errors. The model compares the tokens in
scratchpad 1 and scratchpad 2, and if any discrep-
ancies are found, the model locates the source of
the error.

The comparison can be formalized as:

Compare(sy, so) if Discrepancy(sy, s2) >

where 9 is a threshold that determines the level of
discrepancy considered as an error. Upon detecting
an inconsistency, the model corrects its reasoning
by resolving the identified discrepancies, producing
a refined output ¢ that improves the initial reason-
ing.

2.4 Reinforcement Learning for Refinement

Once the reasoning path has been corrected, the
model employs a rule-based reinforcement learn-
ing (RL) strategy to further refine the correction
process. A reward signal is applied based on the
accuracy of the corrections made in the reason-
ing. This reward signal is designed to reinforce the
model’s ability to avoid similar mistakes in future
reasoning tasks.
The reward is computed as:

R = Reward (7, Yirue)

where ¢ is the corrected output, and ¥y is the
ground truth. The model then updates its policy
based on this reward, improving its reasoning capa-
bilities over time.

2.5 ASPO Workflow

The complete ASPO workflow can be summarized
in the following steps:

1. The model generates an initial reasoning draft
(scratchpad 1).



2. The model generates a second draft (scratch-
pad 2) by masking out the first draft’s influ-
ence.

3. The model compares the two drafts to detect
errors and inconsistencies.

4. The model corrects the reasoning by resolving
discrepancies.

5. The model receives a rule-based reward for
the corrected reasoning path, which is used to
refine its reasoning ability through reinforce-
ment learning.

By following these steps, ASPO ensures that the
model’s reasoning is both accurate and adaptable,
while progressively enhancing its ability to handle
complex multi-step tasks.

3 Experiments

Tasks and Datasets. We evaluate our approach on
a suite of math reasoning benchmarks that span el-
ementary arithmetic to advanced competition-level
problems. The selected tasks are designed to assess
the model’s capacity for symbolic manipulation,
multi-step reasoning, and domain-specific mathe-
matical understanding.

* MATH(Hendrycks et al., 2021): Following
the data setup inLightman et al. (2023), we
construct the training set by augmenting the
original MATH dataset with 4,500 problems
drawn from the test set. Evaluation is con-
ducted on the remaining 500 held-out prob-
lems (referred to as MATHS00).

¢ GSMSK (Cobbe et al., 2021): We evaluate
performance on the 1,000 official test prob-
lems. This dataset focuses on grade school
math word problems, emphasizing arithmetic
reasoning and step-by-step solution genera-
tion.

* Minerva Math (Lewkowycz et al., 2022):
This benchmark includes a diverse collection
of quantitative reasoning problems, primarily
drawn from scientific and mathematical do-
mains. Problems typically require multi-step
derivations and symbolic manipulation.

e OlympiadBench (He et al., 2024): This
benchmark comprises 8,476 high-difficulty

Table 1: Results of experiments with Qwen2.5-Math-
7B-base. We set the temperature to 0.7.

Benchmark Method H Acc
ASPO 92.2

MATH GRPO 80.3
MGRPO 90.1

ASPO 97.3

GSMEK GRPO 834
MGRPO 95.3

ASPO 42.1

Minerva Math GRPO 34.8
MGRPO 39.0

ASPO 51.8

OlympiadBench | GRPO 39.6
MGRPO 50.2

problems curated from international and na-
tional mathematics and physics competi-
tions, including the International Mathemati-
cal Olympiad (IMO), Chinese Mathematical
Olympiad (CMO), and the Gaokao. Each
problem is paired with an expert-written, step-
by-step solution that supports detailed evalua-
tion of the model’s reasoning process.

For all experiments, we configure the model with
a maximum context length of 8192 tokens. Infer-
ence is conducted using the VLLM engine (version
0.8.4) (Kwon et al., 2023), enabling efficient gener-
ation with minimal latency.

Models. Qwen2.5-Math-7B-base.

Experiment setup of reinforcement learning.
For training with GRPO, we adopt the following
hyperparameter settings: an initial learning rate of
5 x 10~7; a cosine annealing scheduler with a min-
imum learning rate ratio of 0.1; a linear warmup
phase covering 3% of total training steps; an en-
tropy regularization coefficient 5 = 0; a maximum
generation length of 8,196 tokens; eight sampled
rollouts per input; and a mini-batch size of 32.

4 Experiment Results Analysis

Table 1 shows the performance comparison among
ASPO, GRPO, and MGRPO across four mathe-



matical reasoning benchmarks using the Qwen2.5-
Math-7B-base model with a temperature of 0.7.

Overall, our proposed method ASPO consis-
tently achieves the highest accuracy across all
datasets, demonstrating its effectiveness in enhanc-
ing model reasoning ability through multi-draft
generation and correction.

On the MATH dataset, ASPO outperforms
GRPO by a large margin (92.2% vs. 80.3%),
and also surpasses the more advanced MGRPO
(90.1%), showing that dynamic masking and error
correction play a critical role in solving complex
symbolic problems.

For the GSMS8K dataset, which emphasizes
step-by-step arithmetic reasoning, ASPO achieves
97.3% accuracy, significantly higher than both
GRPO (83.4%) and MGRPO (95.3%). This high-
lights ASPO’s robustness in handling chain-of-
thought style tasks and correcting early-stage rea-
soning errors.

In the more challenging Minerva Math dataset,
where problems require advanced mathematical
intuition, ASPO again achieves the best perfor-
mance (42.1%), indicating its advantage in cor-
recting deep, multi-step logical flaws.

On the OlympiadBench benchmark, which con-
tains competition-level problems, ASPO achieves
51.8%, outperforming GRPO (39.6%) and slightly
surpassing MGRPO (50.2%). This suggests that
ASPO can also generalize to high-difficulty do-
mains requiring non-trivial deductive reasoning.

These results confirm that ASPO’s multi-
validation and correction mechanism not only im-
proves overall accuracy, but also enhances robust-
ness in various levels of problem difficulty. The
consistent performance gains across datasets vali-
date our hypothesis that preventing error propaga-
tion and enabling error recovery is key to improv-
ing LLM reasoning.

4.1 Ablation Study

To assess the contributions of each component in
ASPO, we perform ablation studies on the GSMSK
and MATH datasets using the Qwen2.5-Math-7B-
base model. Table 2 summarizes the results.

No Masking. When dynamic attention masking
is removed, the model tends to overfit or rely too
heavily on earlier incorrect steps, leading to de-
graded performance. This confirms that the ability
to "forget" earlier flawed reasoning is crucial.

Table 2: Ablation results on GSM8K and MATH. Each
variant removes one key component from the full ASPO
framework.

Model Variant ‘ GSMSK Accuracy (%) MATH Accuracy (%)

Full ASPO 97.3 92.2
No Masking 84.2 81.2
No Draft Comparison 88.4 83.5
No RL Fine-tuning 92.7 87.2

No Draft Comparison. Without comparing two
independently generated drafts, the model loses
its mechanism for self-verification and correction,
resulting in significant accuracy drops. This demon-
strates the importance of draft disagreement detec-
tion in identifying errors.

No RL Fine-tuning. Removing the reinforce-
ment learning stage, the model still benefits from
structural corrections but lacks long-term improve-
ment via reward-guided optimization. This shows
that while ASPO’s core idea works in a zero-shot
setting, RL fine-tuning further enhances perfor-
mance.

These results clearly indicate that each compo-
nent in ASPO—dynamic masking, draft compari-
son, and RL-based policy refinement—contributes
meaningfully to its overall effectiveness.

5 Conclusion

In this paper, we introduce ASPO (Dynamic Sam-
pling and Multi-Validation on Scratch Policy Opti-
mization), a novel framework designed to improve
the reasoning accuracy of large language models
(LLMs) by actively detecting and correcting inter-
mediate errors during inference.

ASPO leverages a multi-draft generation mech-
anism with dynamic attention masking to isolate
and compare different reasoning paths, enabling the
model to identify inconsistencies and correct them
before producing final answers. Furthermore, we
reinforce this self-correction behavior through rule-
based reward signals via reinforcement learning,
encouraging the model to generalize its correction
capabilities.

Extensive experiments on four mathematical rea-
soning benchmarks demonstrate that ASPO consis-
tently outperforms strong baselines, achieving new
state-of-the-art results on datasets such as GSM8K
and MATH. Ablation studies further confirm the
necessity of each component in the framework.

Our work highlights the importance of dynamic



self-evaluation and correction in LLLM reasoning,
offering a promising direction toward more accu-
rate and robust language models capable of com-
plex multi-step problem solving.

In future work, we plan to extend ASPO to open-
domain reasoning tasks, explore scaling laws for
correction strategies, and integrate uncertainty esti-
mation into the draft comparison process.

6 Limitations

While ASPO demonstrates strong improvements in
reasoning accuracy, our approach also has several
limitations.

First, the reliance on generating multiple drafts
increases inference cost during decoding, espe-
cially for long-context or resource-constrained de-
ployments. Although correction improves robust-
ness, the extra compute may not be feasible for all
real-time applications.

Second, ASPO assumes that divergence between
drafts indicates potential error, which may not al-
ways hold. In certain ambiguous or multi-solution
problems, disagreement may reflect diversity rather
than mistake, potentially leading to overcorrection.

Third, the current correction mechanism is rule-
driven and relies on handcrafted signals to guide
reinforcement learning. This may limit general-
izability to other domains where explicit rules or
symbolic comparisons are hard to define.

Finally, our experiments focus on mathematical
reasoning tasks. While the framework is general,
its effectiveness on open-domain commonsense or
scientific reasoning tasks remains to be fully vali-
dated.

Addressing these limitations—through more ef-
ficient draft sampling, adaptive error detection, and
broader evaluation—will be an important direction
for future work.

Ethical Considerations

This work focuses on improving the reasoning ac-
curacy of large language models (LLMs) in math-
ematical tasks through draft-based correction and
reinforcement learning. While the approach is pri-
marily evaluated on academic benchmarks, we ac-
knowledge several ethical considerations.

First, increased reasoning accuracy may lead to
unintended reliance on LLMs for high-stakes tasks
such as education, scientific problem-solving, or
decision support. Caution should be taken when

deploying such systems without appropriate human
oversight, especially when correctness is critical.

Second, reinforcement learning with rule-based
rewards may encode biases present in the design of
those rules or in the datasets used for fine-tuning.
Care must be taken to ensure that the reward signals
do not amplify undesirable behaviors or narrow
forms of reasoning.

Third, although our method improves trans-
parency through draft comparison, the model’s in-
ternal decision-making remains largely opaque. We
encourage further research into interpretable self-
correction and responsible debugging of LLMs.

Lastly, our method involves increased computa-
tion for draft generation and validation, which may
have environmental implications if scaled widely.
We recommend using lightweight models or batch
inference when feasible to mitigate carbon foot-
print.

We believe these concerns can be addressed with
careful system design, human-in-the-loop valida-
tion, and open release of evaluation tools for com-
munity auditing.

Reproducibility Statement

To ensure the reproducibility of our results, we
provide detailed information regarding the code,
datasets, and models used in all experiments. All
relevant implementations will be shared through
publicly available repositories and datasets to allow
other researchers to replicate our experiments and
validate our findings.

* Code and Implementation: Our code will
be made publicly available on GitHub, along
with detailed documentation including instruc-
tions for installing dependencies, running ex-
periments, and using the model for inference.

* Datasets: All datasets used (such as MATH,
GSMS8K, Minerva Math, and Olympiad-
Bench) are publicly accessible through their
respective sources. We will provide links for
accessing these datasets and specify their us-
age licenses.

* Model: The Qwen2.5-Math-7B-base model
used in our experiments will be made avail-
able on an open platform, allowing re-
searchers to download and use the model to
replicate our experiments.



* Experimental Setup: We will provide a de-
tailed description of the experimental hyperpa-
rameters, hardware configurations, and train-
ing/evaluation procedures. All setups will be
consistent with those reported in the paper,
ensuring the verifiability of the experimental
results.

We encourage other researchers to build upon
and extend our work, and we welcome feedback
from the community to further improve our efforts.
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A Appendix



ASPO:

Input:<|im_start|>system

<|im_end|>

<|im_start|>user

Alexis is applying for a new job and bought a new set of business clothes to wear
to the interview. She went to a department store with a budget of $200 and spent
$30 on a button-up shirt, $46 on suit pants, $38 on a suit coat, $11 on socks,
and $18 on a belt. She also purchased a pair of shoes, but lost the receipt
for them. She has $16 left from her budget. How much did Alexis pay for the
shoes?<|im_end|> <|im_start|>assistant

<think>

<drafti1>

First, I need to determine the total amount Alexis spent on her business clothes
excluding the shoes. She spent $30 on a button-up shirt, $46 on suit pants, $38
on a suit coat, $11 on socks, and $18 on a belt. Adding these amounts together
gives a subtotal of $145.

Alexis’s total budget is $200, and she has $16 left after purchasing the
shoes. This means the total amount she spent on all items, including the shoes,
is $200 minus $16, which equals $184.

To find out how much she spent on the shoes, I subtract the subtotal of
the other clothes from the total amount spent: $184 minus $145 equals $39.

Therefore, Alexis paid $39 for the shoes.

</draft1> <draft2> First, I need to determine how much Alexis spent in total on
her business clothes excluding the shoes.

She spent $30 on a button-up shirt, $46 on suit pants, $38 on a suit coat, $11
on socks, and $18 on a belt. Adding these amounts together:

30 + 46 = 76

76 + 38 = 114
114 + 11 =125
125 + 18 = 143

So, Alexis spent a total of $143 on items other than the shoes.

Alexis had a total budget of $200 and has $16 left after her purchases.
Therefore, the total amount she spent on all items, including the shoes, is:

200 - 16 = 184

To find out how much she spent on the shoes, I subtract the amount she
spent on other items from the total amount she spent:

184 - 143 = 41

Therefore, Alexis paid $41 for the shoes.

</draft2>

Wait, the answers from the two thinking processes are inconsistent. Let me
carefully analyze which draft is incorrect, identify the error, and then generate
a new draft:

Table 3: A prompt used to evaluate the quality of a response.
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