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Abstract

We propose a tensor-vector-scalar field theory of gravity by defin-
ing a corresponding Lagrange function. Deriving the field equations
we observe, that the coupling to the tensor field gives mass to the
vector field. After considerations of stability and convergence we de-
velop the systems of differential equations for two cases. In the static
case of a central mass we start with the Schwarzschild metric as a first
approximation and get a behavior corresponding to the observation of
galaxy rotation for sufficiently large distances from the center. Using
this result a second approximation gives a qualitatively stronger grav-
ity for very large distances, which could possibly describe the cohesion
of galaxy clusters. When the distance tends to infinity, the gravity re-
turns to a Newton-like decay due to the mass term of the vector field.
In cosmology we find an expansion of a homogeneous, isotropic, flat
universe at a lower rate than expected, but with a time contraction
towards the past. Together these effects cause an observed redshift of
light with far distant sources, which suggests an accelerated expansion
of the universe.

1 Introduction

There are different attempts to describe gravity without the need of dark
matter by relativistic theories based on the Einstein tensor field and extended
by vector and scalar fields, for example the Brans-Dicke theory [3], TeVeS by
Bekenstein [1] or newer versions [22] of Modified Newtonian dynamics and
MOG by Moffat [15]. In most cases a scalar field represents a generalization
of the gravitational constant. In our theory, the scalar field should fill the
gap between the observed gravity and that calculated from visible matter by
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the Newton/Einstein theory. The scalar field is coupled to the vector field by
the scalar potential, while the vector field is coupled to the tensor field. Only
the tensor field has a direct source, which is the usual stress-energy tensor.

In the next section we define the Lagrange function consisting of the
three parts representing tensor, vector and scalar field, while the fourth part
corresponds to the stress-energy tensor. The following section starts with a
decomposition of the coupling between tensor and vector field. It turns out
that the term quadratic in the vector field represents a mass term, where the
mass is given by 3

2
of the coupling constant. Next, we discuss the relation

of the resulted system of equations to general relativity for small coupling
constants. In the case of a flat metric we investigate the character of the
equations for the vector field and determine the number of degrees of freedom
for the remaining system using the Hamilton-Dirac analysis.

The following section is devoted to the spherically symmetric case of a
central mass M . First, it turns out that we had to use Cartesian instead of
spherical coordinates because of their intrinsic warping. We derive the time
dependent equations, but reduce the consideration to the static case. Starting
with the Schwarzschild metric we describe the behavior of the vector and the
scalar field in powers and logarithms of the distance r to the central mass.
In a first approximation the scalar field generates a gravity proportional to
M

1
2 r−1 multiplied by a logarithmic factor with a negative exponent. This

corresponds to observations of galaxy rotations, which in the outer regions
can be approximated by the square root of Newtonian gravity. Using this
result for a second approximation of the metric, we get a higher rate of
gravity proportional to M

1
2 r−

1
2 again multiplied by a logarithmic term for

larger distances. Possibly, this can describe galaxy clusters, where the gravity
given by the first approximation is to weak. Finally, for distances tending
to infinity, the mass term dominates the equation for the vector field. Then,
the scalar field generates a gravity proportional to r−2, which corresponds to
Newtonian gravity.

In the section about cosmology we apply the theory to a homogeneous,
isotropic, flat universe, dominated by mass neglecting radiation. In contrast
to the Robertson-Walker metric we need a variable factor for the time compo-
nent. Using again the Ansatz of a power series with logarithmic factors, here
depending on t, we get only a logarithmic expansion and a Hubble function
proportional to t−1 up to a logarithmic term. On the other hand, there is a
time contraction with a factor t−2 and a logarithmic term with negative ex-
ponent. For observed light from the early universe this gives a redshift with a
factor t multiplied by a logarithmic term with positive exponent. Interpreted
in the Robertson-Walker metric this suggests an accelerated expansion of the
universe.
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2 Lagrange formulation

In a Minkowski space with coordinates xα| 3
α=0, where for simplicity we iden-

tify x0 with time t even if it should be 1
c
x0, we will describe gravity by the met-

ric tensor g = gα,β| 3
α,β=0 and two additional fields, a vector field U = uα| 3

α=0

and a scalar field v. For the metric we will use the signature (−,+,+,+),
i.e. in absence of matter the metric should be g = diag(−1,+1,+1,+1).

The Christoffel symbols Γγ
α,β, the Ricci tensor Rαβ and the Ricci scalar

R will be considered as differential operators

Γγ
αβ(∂) = 1

2
gγσ (∂αgσβ + ∂βgασ − ∂σgαβ) (1)

Rαβ(∂) = ∂γΓ
γ
αβ(∂)− ∂βΓ

γ
αγ(∂) + Γγ

αβ(∂) Γ
σ
γσ(∂)− Γγ

ασ(∂) Γ
σ
γβ(∂) (2)

with ∂ = ∂α| 3
α=0. One can show, that Rαβ is symmetric in α, β, what is only

nontrivial for the second term of (2). To preserve this symmetry for more
general differential operators D = Dα| 3

α=0 we define

Rαβ(D) := 1
2

[
Rαβ(∂)|∂→D + Rβα(∂)|∂→D

]
(3)

R(D) := gαβ Rαβ(D) (4)

The tensor part LT of the Lagrangian can now be defined by

LT = 1
2
R(∂ + µU) (5)

where ∂ + µU = ∂α + µuα| 3
α=0 and µ is the coupling constant between the

tensor and the vector field. The vector part LV and the scalar part LS of
the Lagrangian are

LV = −1
4
(∇αuβ −∇βuα)

(
∇αuβ −∇βuα

)
− 1

2
∇αu

α ∇βu
β (6)

LS = −1
2
∇αv∇αv − V (U) v2, V (U) = 1

2

(
m2 + ν2∇αu

α ∇βu
β
)

(7)

where ν describes the strength of the coupling between the scalar and the
vector field and the covariant derivative of a vector or a scalar field is defined
by

∇αuβ = ∂αuβ − Γγ
αβ(∂)uγ, ∇αu

β = ∂αu
β + Γβ

αγ(∂)u
γ, ∇αv = ∂αv (8)

Note that ∇αu
α∇βu

β =
(∑

γ ∇γu
γ
)2

≥ 0.

Together with the matter part LM , which is defined later in the usual
way, depending only on the metric g we can write the complete Lagrangian
as

L = LT + LV + LS + LM (9)

and the action

S =

∫
L ϵ d4x, ϵ =

√
−det g (10)
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3 Field Equations

First, we shall decompose the expression R(∂+µU) in the tensor part of the
Lagrangian. For

Γγ
αβ(∂ + µU) = Γγ

αβ(∂) + µΥγ
αβ (11)

with

Υγ
αβ = 1

2
gγσ (uαgσβ + uβgασ − uσgαβ)

= 1
2

(
δγβuα + δγαuβ − gαβu

γ
)

(12)

we have

Rαβ(∂ + µU) = ∂γ
[
Γγ
αβ(∂) + µΥγ

αβ

]
− 1

2
∂β

[
Γγ
αγ(∂) + µΥγ

αγ

]
−1

2
∂α

[
Γγ
βγ(∂) + µΥγ

βγ

]
+ µuγ

[
Γγ
αβ(∂) + µΥγ

αβ

]
−1

2
µuβ

[
Γγ
αγ(∂) + µΥγ

αγ

]
− 1

2
µuα

[
Γγ
βγ(∂) + µΥγ

βγ

]
+
[
Γγ
αβ(∂) + µΥγ

αβ

] [
Γσ
γσ(∂) + µΥσ

γσ

]
− [Γγ

ασ(∂) + µΥγ
ασ]

[
Γσ
γβ(∂) + µΥσ

γβ

]
= Rαβ(∂) + µ

[
∂γΥ

γ
αβ − 1

2
∂βΥ

γ
αγ − 1

2
∂αΥ

γ
βγ

+ Γγ
αβ(∂)Υ

σ
γσ + Γσ

γσ(∂)Υ
γ
αβ − Γγ

ασ(∂)Υ
σ
γβ − Γσ

γβ(∂)Υ
γ
ασ

]
+µ

[
uγ Γ

γ
αβ(∂)− 1

2
uβ Γ

γ
αγ(∂)− 1

2
uα Γ

γ
βγ(∂)

]
+µ2

[
uγΥ

γ
αβ − 1

2
uβΥ

γ
αγ − 1

2
uαΥ

γ
βγ +Υγ

αβΥ
σ
γσ −Υγ

ασΥ
σ
γβ

]
For the last term an easy calculation using (12) shows

Rαβ(U) = uγ Υ
γ
αβ − 1

2
uβ Υ

γ
αγ − 1

2
uα Υ

γ
βγ +Υγ

αβ Υ
σ
γσ −Υγ

ασ Υ
σ
γβ

= −1
2
uα uβ − gαβ uγ u

γ

With the relations

∇γΥ
γ
αβ −∇βΥ

γ
αγ = ∂γΥ

γ
αβ − ∂βΥ

γ
αγ

+Γγ
αβ(∂)Υ

σ
γσ + Γσ

γσ(∂)Υ
γ
αβ − Γγ

ασ(∂)Υ
σ
γβ − Γσ

γβ(∂)Υ
γ
ασ

∇γΥ
γ
αβ −∇αΥ

γ
βγ = ∂γΥ

γ
αβ − ∂αΥ

γ
βγ

+Γγ
αβ(∂)Υ

σ
γσ + Γσ

γσ(∂)Υ
γ
αβ − Γγ

βσ(∂)Υ
σ
γα − Γσ

γα(∂)Υ
γ
βσ

we obtain

LT = 1
2
gαβ Rαβ(∂ + µU)

= 1
2
R(∂) + 1

2
µ gαβ

[
∇γΥ

γ
αβ − 1

2
∇βΥ

γ
αγ − 1

2
∇αΥ

γ
βγ

]
+1

2
µ gαβ

[
uγ Γ

γ
αβ(∂)− 1

2
uβ Γ

γ
αγ(∂)− 1

2
uα Γ

γ
βγ(∂)

]
− 9

4
µ2 uγ u

γ
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By renaming some indices we can now write

LT = 1
2
L(0)

T + 1
2
µL(1)

T + 1
4
µ2 L(2)

T + 1
2
µ∇γKγ

T (13)

with

L(0)
T = R(∂) (14)

L(1)
T = gαβ

[
uγ Γ

γ
αβ(∂)− 1

2
uβ Γ

γ
αγ(∂)− 1

2
uα Γ

γ
βγ(∂)

]
(15)

= uγ

[
gαβ Γγ

αβ(∂)− 1
2
gαγ Γβ

αβ(∂)− 1
2
gβγ Γα

αβ(∂)
]

(16)

L(2)
T = 9uγ u

γ (17)

Kγ
T = gαβ Υγ

αβ − 1
2
gαγ Υβ

αβ − 1
2
gβγ Υα

αβ = −3uγ (18)

where Kγ
T was simply calculated using (12).

Having defined the vector field as massless, we now see a mass term

1
4
µ2 L(2)

T =
(
3
2
µ
)2

uγ u
γ

generated by the coupling to the tensor field with a mass proportional to the
coupling constant.

For the field equations we have to describe the variation of the action S
by the variation of L ϵ in the form

δ[L ϵ] =
[
M(g)

αβδg
αβ +M(u)

γ δuγ +M(v)δv +∇γKγ
]
ϵ (19)

Then, the field equations are

M(g)
αβ = 0 for α, β = 0, .., 3, M(u)

γ = 0 for γ = 0, .., 3, M(v) = 0 (20)

First, we have
δ[L ϵ] =

[
δL − 1

2
L gαβ δg

αβ
]
ϵ (21)

since

δϵ = −1
2
ϵ−1δ(detg) and δ(detg) = detg gαβδgαβ = ϵ2 gαβ δg

αβ

One can show [4] (appendix A) that

Aγ = gαβ δΓγ
αβ(∂)− gαγ δΓβ

αβ(∂) = gαβ ∇γδgαβ −∇β δg
βγ (22)

Using this relation for the zero part of LT we get

δL(0)
T = Rαβ(∂) δg

αβ +∇γ

[
gαβ ∇γδgαβ −∇β δg

βγ
]

(23)
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The variation of the next part gives

δL(1)
T = δuγ

[
gαβ Γγ

αβ(∂)− 1
2
gαγ Γβ

αβ(∂)− 1
2
gβγ Γα

αβ(∂)
]

+uγ

[
δgαβ Γγ

αβ(∂)− 1
2
δgαγ Γβ

αβ(∂)− 1
2
δgβγ Γα

αβ(∂)
]

+uγ

[
gαβ δΓγ

αβ(∂)− 1
2
gαγ δΓβ

αβ(∂)− 1
2
gβγ δΓα

αβ(∂)
]

(24)

We can write

δuγ = δ(gγρu
ρ) = gγρ δu

ρ − uρ gγσ gτρ δg
στ = gγρ δu

ρ − uτ gγσ δg
στ

= gγρ δu
ρ − 1

2
uτ gγσ δg

στ − 1
2
uσ gγτ δg

στ

to preserve symmetry of indices in the δg terms. With gγρg
αγ = δαρ and

applying (22) again we obtain

δL(1)
T =

[
gγρ g

αβ Γγ
αβ(∂)− 1

2
Γβ
ρβ(∂)− 1

2
Γα
αρ(∂)

]
δuρ

−1

2

[
gγσ g

αβ Γγ
αβ(∂)− 1

2
Γβ
σβ(∂)− 1

2
Γα
ασ(∂)

]
uτ δg

στ

−1

2

[
gγτ g

αβ Γγ
αβ(∂)− 1

2
Γβ
τβ(∂)− 1

2
Γα
ατ (∂)

]
uσ δg

στ

+
[
uγ Γ

γ
αβ(∂)− 1

2
uβ Γ

γ
αγ(∂)− 1

2
uα Γ

γ
γβ(∂)

]
δgαβ

+
[
gαβ ∇γδgαβ − 1

2
∇β δg

βγ − 1
2
∇α δg

αγ
]
uγ (25)

The last line can be transformed by

uγgαβ ∇γδgαβ = ∇ρ

[
uρ gαβ δg

αβ
]
−∇ρu

ρ gαβ δg
αβ

uγ

[
1
2
∇β δg

βγ + 1
2
∇α δg

αγ
]

= 1
2
∇β

[
uγ δg

βγ
]
+ 1

2
∇α [uγ δg

αγ]

−1
2
∇βuγ δg

βγ − 1
2
∇αuγ δg

αγ (26)

having used ∇γ = gργ ∇ρ and gργ uγ = uρ. After changing indices we get

δL(1)
T =

[
uγ Γ

γ
αβ(∂)− 1

2
(uβ gαγ + uα gβγ) g

στ Γγ
στ (∂)

+ 1
2
(∇αuβ +∇βuα)−∇γu

γ gαβ
]
δgαβ

+
[
gγρ g

στ Γρ
στ (∂)− Γρ

γρ(∂)
]
δuγ

+∇γ [u
γ gστ δg

στ − uρ δg
γρ] (27)

For the remaining parts we obtain

δL(2)
T = 9 δ [gγρ u

ρ uγ]

= 9 gγρ [δu
ρ uγ + uρ δuγ]− 9uγ uρ gγσ gρτ δg

στ

= 9
[
2uγ δu

γ − uα uβ δg
αβ
]

(28)
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and
δKγ

T = −3 δuγ (29)

From (23), (27), (28) and (29) we get

δLT = 1
2

{
Rαβ(∂) + µ

[
uγ Γ

γ
αβ(∂)− 1

2
(uβ gαγ + uα gβγ) g

στ Γγ
στ (∂)

+ 1
2
(∇αuβ +∇βuα)−∇γu

γ gαβ
]
− 9

2
µ2 uα uβ

}
δgαβ

+ 1
2
µ
[
gγρ g

στ Γρ
στ (∂)− Γρ

γρ(∂) + 9µuγ

]
δuγ

+ 1
2
∇γ

[
gαβ ∇γδgαβ −∇β δg

βγ

+ µ (uγ gστ δg
στ − uρ δg

γρ − 3 δuγ)
]

(30)

We write the vector part of the Lagrangian (6) in the form

LV = −1
2
L(0)

V − L(1)
V (31)

with

L(0)
V = 1

2
(∇αuβ −∇βuα)

(
∇αuβ −∇βuα

)
, L(1)

V = 1
2
∇αu

α ∇βu
β (32)

The first part can be simplified by changing indices in two terms

L(0)
V = 1

2

[
∇αuβ ∇αuβ +∇βuα∇βuα −∇αuβ ∇βuα −∇βuα∇αuβ

]
= ∇αuβ

(
∇αuβ −∇βuα

)
= ∇αuβ (∇αuβ −∇βuα) (33)

With uβ = gβγ u
γ the variation gives

δL(0)
V = δgβγ∇αu

γ
(
∇αuβ −∇βuα

)
+ gβγ∇αδu

γ
(
∇αuβ −∇βuα

)
+∇αuβ

(
∇αδuβ −∇βδuα

)
= − δgρσ gβρ gσγ∇αu

γ
(
∇αuβ −∇βuα

)
+∇α [δu

γ (∇αuγ −∇γu
α)]− δuγ ∇α (∇αuγ −∇γu

α)

+∇αuβ∇γ

(
gγαδuβ − gγβδuα

)
= −∇αuσ (∇αuρ −∇ρu

α) δgρσ

+∇α [(∇αuγ −∇γu
α) δuγ]− ∇α (∇αuγ −∇γu

α) δuγ

+∇γ

[
∇γuβ δu

β −∇αu
γ δuα

]
−

[
∇γ∇γuβ δu

β −∇γ∇αu
γ δuα

]
and after changing indices

δL(0)
V = −∇γuβ (∇γuα −∇αuγ) δg

αβ − 2∇ρ (∇ρuγ −∇γuρ) δu
γ

+2∇γ [(∇γuρ −∇ρu
γ) δuρ] (34)
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For the second part we get

δL(1)
V = ∇ρu

ρ∇γδu
γ

= ∇γ [∇ρuρ δu
γ]− ∇γ [∇ρuρ] δu

γ (35)

and together

δLV = −1
2
δL(0)

V − δL(1)
V

= 1
4
[∇γuβ (∇γuα −∇αuγ) +∇γuα (∇γuβ −∇βuγ)] δg

αβ

+∇ρ∇ρuγ δu
γ − ∇γ [(∇γuρ −∇ρu

γ) δuρ +∇ρuρ δu
γ] (36)

Here we have used δgαβ = δgβα and changed the indices α, β in 1/2 of its
coefficient to symmetrize the expression.

Splitting the scalar part of the Lagrangian (7) in the form

LS = −1
2
L(0)

S − L(1)
S (37)

with
L(0)

S = ∇αv∇αv, L(1)
S = V (U) v2, (38)

the variation gives

δL(0)
S = δ

[
gαβ ∇αv∇βv

]
= δgαβ ∇αv∇βv + gαβ ∇αδv∇βv + gαβ ∇αv∇βδv

= ∇αv∇βv δg
αβ + 2∇γv∇γδv

= ∇αv∇βv δg
αβ + 2∇γ [∇γv δv]− 2∇γ∇γv δv (39)

and similar to δL(1)
V

δL(1)
S = 1

2
δ
[
m2 v2 + ν2∇γu

γ ∇ρu
ρ v2

]
= m2 v δv + ν2∇γuγ ∇ρuρ v δv + ν2∇γ

[
∇ρuρ v

2 δuγ
]

−ν2∇γ

[
∇ρuρ v

2
]
δuγ (40)

Together we have

δLS = −1
2
δL(0)

S − δL(1)
S

=
[
∇γ∇γv −m2 v − ν2∇γuγ ∇ρuρ v

]
δv

+ ν2∇γ

[
∇ρuρ v

2
]
δuγ − 1

2
∇αv∇βv δg

αβ

−∇γ

[
∇γv δv + ν2∇ρuρ v

2 δuγ
]

(41)

Finally, the variation of the matter part should give the stress energy tensor
T

δ [LM ϵ] = −1
2
κ Tαβ ϵ δg

αβ (42)
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where κ = 8π G
c4

with the gravitational constant G and the speed of light in
vacuum c.

So we obtain the functions in (19) by (21), (30), (36), (41) and (42)

M(g)
αβ = 1

2
Rαβ(∂)− 1

2
L gαβ − 1

2
κ Tαβ

+ 1
2
µ
[
uγ Γ

γ
αβ(∂)− 1

2
(uβ gαγ + uα gβγ) g

στ Γγ
στ (∂)

]
+ 1

4
µ (∇αuβ +∇βuα)− 1

2
µ∇γu

γ gαβ − 9
4
µ2 uαuβ

+ 1
4
[∇γuβ (∇γuα −∇αuγ) +∇γuα (∇γuβ −∇βuγ)]

− 1
2
∇αv∇βv (43)

M(u)
γ = ∇ρ∇ρuγ +

9
2
µ2 uγ + ν2∇γ

[
∇ρuρ v

2
]

+ 1
2
µ
[
gγρ g

στ Γρ
στ (∂)− Γρ

γρ(∂)
]

(44)

M(v) = ∇γ∇γv −m2 v − ν2∇γuγ ∇ρuρ v (45)

Kγ = 1
2

[
gαβ ∇γδgαβ −∇β δg

βγ + µ (uγ gστ δg
στ − uρ δg

γρ)
]

− (∇γuρ −∇ρu
γ) δuρ −

(
ν2 v2 + 1

)
∇ρuρ δu

γ − 3
2
µ δuγ

−∇γv δv (46)

Inserting the parts of L from (7), (13) - (18), (33) we get the field equa-
tions defined by (20)

Rαβ(∂)− 1
2
R(∂) gαβ − 1

2
µ gστ

[
uγ Γ

γ
στ (∂)− uσ Γ

γ
τγ(∂)

]
gαβ

+µ
[
uγ Γ

γ
αβ(∂)− 1

2
(uβ gαγ + uα gβγ) g

στ Γγ
στ (∂)

]
+µ

[
1
2
(∇αuβ +∇βuα)−∇γu

γ gαβ
]
− 9

4
µ2 (2uαuβ + uγu

γ gαβ)

+ 1
2
[∇γuβ (∇γuα −∇αuγ) +∇γuα (∇γuβ −∇βuγ)]

+ 1
2
∇γuρ (∇γuρ −∇ρuγ) gαβ −∇αv∇βv +

1
2
∇γv∇γv gαβ

+ 1
2
m2v2 gαβ +

1
2

(
ν2v2 + 1

)
∇γuγ∇ρuρ gαβ

= κ Tαβ for α, β = 0, .., 3, (47)

∇ρ∇ρuγ +
9
2
µ2 uγ + ν2∇γ

[
∇ρuρ v

2
]

= 1
2
µ
[
Γρ
γρ(∂)− gγρ g

στ Γρ
στ (∂)

]
for γ = 0, .., 3, (48)

∇γ∇γv −m2 v − ν2∇γuγ ∇ρuρ v = 0 (49)

4 Relation to General Relativity, the case of

flat metric

We assume now, that µ and m are very small. For a fixed metric g we
introduce an additional parameter λ with 0 ≤ λ ≤ 1 and denote by uα(x, λ),

9



v(x, λ) the solutions of equations (48), (49) for µ = λµ0, m = λm0 with
some fixed µ0, m0. Omitting the part proportional to µ2 in (48) the linearity
of the equation yields the proportionality to µ for uα. Putting this property
into equation (49) we can also describe the dependence on λ of v:

uα(x, λ) ∼ λuα(x, 1), v(x, λ) ∼ v(y, 1), ∇βv(x, λ) ∼ λ∇βv(y, 1) (50)

for y = λx. With these results we can write (47) in the form

Rαβ(∂)−
1

2
R(∂) gαβ − κ Tαβ ∼ λ2 F̃ (g)

αβ (51)

where F̃ (g)
αβ depends polynomially on λ, uγ(x, 1), v(y, 1) and its first deriva-

tives. So we can expect that the corresponding metric gαβ(x, λ) tends to the
solution of General Relativity, if λ resp. µ and m tend to 0.

Now, we want to investigate the system of equations for the vector and
the scalar field in the case of a flat metric g = η = diag(−1,+1,+1,+1).
The equations (48), (49) then take the form

ηρ ∂
2
ρ uγ +

9
2
µ2 uγ + ν2 ηρ ∂γ

[
∂ρuρ v

2
]

= 0 for γ = 0, .., 3, (52)

ηγ ∂
2
γv −m2 v − ν2 ηγ ηρ ∂γuγ ∂ρuρ v = 0 (53)

where for simplicity we wrote ηγ := ηγγ.
The vector field U does not satisfy the condition of a nondynamical zero

component imposed in [6], i.e. the equations for U should not include a term
∂0u0. So we will have a closer look to this system. The equations (52) can
be written in the form

P(x, ∂)U = p
(2)
αβ(x) ∂α∂β U + p(1)γ (x) ∂γ U + p(0)(x)U = 0 (54)

with 4×4 matrices p
(2)
αβ , p

(1)
γ , p(0). The character of this system is determined

by its main part
P(2)(x, ∂) = p

(2)
αβ(x) ∂α∂β (55)

and the corresponding main symbol P(2)(x, ξ) with ξ = ξα| 3
α=0. The system

is called hyperbolic, if for all x the equation

detP(2)(x, λ, ξ̂) = 0 (56)

with ξ̂ = ξi| 3
i=1 has only real solutions λ and strictly hyperbolic, if addition-

ally for ξ̂ ̸= 0 all these solutions are different.
For (52) the main part is

P(2)(x, ∂)U =
[
ηρ ∂

2
ρ uγ + ν2v2 ηρ ∂γ∂ρuρ

] 3

γ=0
(57)
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and the corresponding main symbol

P(2)(x, ξ) =

(∣∣∣ξ̂∣∣∣2 − ξ20

)
I

+ν2v2


−ξ20 ξ0 ξ1 ξ0 ξ2 ξ0 ξ3
−ξ0 ξ1 ξ21 ξ1 ξ2 ξ1 ξ3
−ξ0 ξ2 ξ1 ξ2 ξ22 ξ2 ξ3
−ξ0 ξ3 ξ1 ξ3 ξ2 ξ3 ξ23

 (58)

with the identical matrix I. The equation

detP(2)(x, λ, ξ̂) =
(
ν2v2 + 1

)(∣∣∣ξ̂∣∣∣2 − λ2

)4

= 0 (59)

has only real, but multiple solutions λ =
∣∣∣ξ̂∣∣∣ and λ = −

∣∣∣ξ̂∣∣∣. Hence, the system
(52) is hyperbolic, but not strictly hyperbolic. For such systems there are a
priori estimates showing that the solution does not grow exponential in case
of bounded right hand side and initial conditions, for example [7].

Next, we want to determine the number of degrees of freedom for the
system (52), (53) using the Hamilton-Dirac analysis [16]. For this purpose
we have to derive the Hamiltonian from the Lagrangian, which in the flat
case g = η is reduced to

L = −1
2
ηαηβ [∂αuβ (∂αuβ − ∂βuα) + ∂αuα ∂βuβ] +

(
3
2
µ
)2

ηγu
2
γ

−1
2

[
ηα (∂αv)

2 +
(
m2 + ν2ηαηβ ∂αuα ∂βuβ

)
v2
]

(60)

Here, we used equations (6), (7), (9), (13) – (17) and (33). In this expression
we have to separate time derivatives ∂0u0 =: u̇0, ∂0ui =: u̇i, i = 1, 2, 3,
∂0v =: v̇ and spatial derivatives ∂ju0, ∂jui, ∂jv, i, j = 1, 2, 3 and get

L = 1
2

∑
i (∂iu0 − u̇i)

2 − 1
2

∑
i,j∂iuj (∂iuj − ∂jui)

−1
2
(u̇0 −

∑
i∂iui)

2 +
(
3
2
µ
)2 (

u2
0 −

∑
iu

2
i

)
+1

2
v̇2 − 1

2

∑
i (∂iv)

2 − 1
2

[
m2 + ν2 (u̇0 −

∑
i∂iui)

2] v2 (61)

Determining the conjugate momenta

π0 :=
∂L
∂u̇0

= −
(
1 + ν2v2

)
(u̇0 −

∑
i∂iui) (62)

πi :=
∂L
∂u̇i

= u̇i − ∂iu0 (63)

π4 :=
∂L
∂v̇

= v̇ (64)
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we obtain the base Hamiltonian defined by

H0 := π0 u̇0 +
∑

iπ
i u̇i + π4 v̇ − L

= −1
2

∑
i (∂iu0 − u̇i) (∂iu0 + u̇i) +

1
2

∑
i,j∂iuj (∂iuj − ∂jui)

+
(
3
2
µ
)2 (

u2
0 −

∑
iu

2
i

)
+ 1

2
v̇2 + 1

2

∑
i (∂iv)

2 + 1
2
m2v2

−1
2

(
1 + ν2v2

)
(u̇0 −

∑
i∂iui) (u̇0 +

∑
i∂iui) (65)

The fact, that the matrix

∂2L
∂u̇i ∂u̇j

∣∣∣∣ 4

i,j=0

= diag

(
−
(
1 + ν2v2

)
, 1, 1, 1, 1

)
(66)

with u̇4 := v̇ is invertible implies, that there are no constraints, the base
Hamiltonian is already the final Hamiltonian and can be expressed by spatial
derivatives of the original fields and the conjugate momenta

H = H0 = −1
2

∑
iπ

i
(
2∂iu0 + πi

)
+ 1

2

∑
i,j∂iuj (∂iuj − ∂jui)

+
(
3
2
µ
)2 (

u2
0 −

∑
iu

2
i

)
+ 1

2

(
π4
)2

+ 1
2

∑
i (∂iv)

2 + 1
2
m2v2

+1
2
π0

(
2
∑

i∂iui −
1

1 + ν2v2
π0

)
(67)

Without any constraints the number of degrees of freedom is equal to the
number of field components. This property, respectively the invertibility of
matrix (66), should be stable under small perturbations and hence preserved
for spacetime with small warping.

5 The spherically symmetric case

Usually, the spherically symmetric case is described by coordinates (t, r, ϕ, θ)
which are defined by the relations

x̃1 = r cos θ cosϕ, x̃2 = r cos θ sinϕ, x̃3 = r sin θ (68)

to cartesian coordinates, and a metric tensor

g̃ = diag
(
g0, g1, r

2, r2 cos2 θ
)

(69)

with functions g0 = g0(r, t), g1 = g1(r, t), But in our system of equations
this is not suitable, since the spherical coordinates have an intrinsic warping.
The problem can be seen in equation (48). Here, the right hand side should
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vanish in the flat case, but it does not in spherical coordinates. Therefore,
we transform the metric (69) to Cartesian coordinates using the formula

gαβ =
∂x̃µ

∂xα

∂x̃ν

∂xβ
g̃µν (70)

and obtain

g00 = g0, g0i = gi0 = 0, g00 = g−1
0 , g0i = gi0 = 0, (71)

gij = δij + (g1 − 1)
xixj

r2
gij = δij +

(
g−1
1 − 1

) xixj

r2
(72)

or

g =



g0 0 0 0

0 (g1 − 1)
x2
1

r2
+ 1 (g1 − 1)

x1x2

r2
(g1 − 1)

x1x3

r2

0 (g1 − 1)
x1x2

r2
(g1 − 1)

x2
2

r2
+ 1 (g1 − 1)

x2x3

r2

0 (g1 − 1)
x1x3

r2
(g1 − 1)

x2x3

r2
(g1 − 1)

x2
3

r2
+ 1


(73)

and a similar representation for g−1 with g0 and g1 replaced by its inverse
g−1
0 and g−1

1 .
In the following we will write as usual a prime for a differentiation with

respect to r and a dot for a differentiation with respect to t, i.e. for a = a(r, t)

∂a

∂r
=: a′,

∂a

∂t
=: ȧ,

∂2a

∂r2
=: a′′,

∂2a

∂t2
=: ä,

∂2a

∂r ∂t
=: ȧ′.

For the Christoffel symbols (1) we get

Γ0
00 =

1
2

ġ0
g0
, Γ0

i0 =
1
2

g′0
g0

xi

r
, Γk

00 = −1
2

g′0
g1

xk

r
, Γk

i0 =
1
2

ġ1
g1

xixk

r2
, (74)

Γ0
ij = −1

2

ġ1
g0

xixj

r2
, Γk

ij =

[(
r

2

g′1
g1

+
1

g1
− 1

)
xixj

r2
+ δij

(
1− 1

g1

)]
xk

r2
(75)

Next, we can evaluate the Ricci tensor Rαβ (2) and the Ricci scalar R (4).
For a simple representation we first define an additional scalar R̃ by

R̃ :=
1

g1

[
−g′′0
g0

+ 1
2

(g′0)
2

g20
+ 1

2

g′0g
′
1

g0g1

]
+

1

g0

[
− g̈1
g1

+ 1
2

(ġ1)
2

g21
+ 1

2

ġ0ġ1
g0g1

]
(76)
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Then, we obtain

R00 = 1
2
g0 R̃− 1

r

g′0
g1
, R0i = Ri0 =

ġ1
g1

xi

r2
, (77)

Rij =

[
1
2
g1 R̃ +

1

r

g′1
g1

]
xixj

r2

+
1

2rg1

[
g′1
g1

− g′0
g0

+
2

r
(g1 − 1)

](
δij −

xixj

r2

)
(78)

and

R = R̃ +
2

rg1

[
g′1
g1

− g′0
g0

+
1

r
(g1 − 1)

]
(79)

The terms Rαβ − 1
2
Rgαβ with non-vanishing gαβ are

R00 − 1
2
Rg00 =

1

r

g0
g1

[
g′1
g1

+
1

r
(g1 − 1)

]
(80)

Rij − 1
2
Rgij =

1

r

[
g′0
g0

− 1

r
(g1 − 1)

]
xixj

r2

−1
2

[
R̃ +

1

rg1

(
g′1
g1

− g′0
g0

)](
δij −

xixj

r2

)
(81)

In the spherically symmetric case the vector and scalar fields can be repre-
sented in the form

u0 = uo(r, t), ui = ue(r, t)
xi

r
, v = v(r, t) (82)

with scalar functions uo, ue and v. Now, we may calculate some terms of
the equations (47) - (49). Such containing no or only linear vector field
components are

N (1)(U) := gστ
[
uγ Γ

γ
στ (∂)− uσ Γ

γ
τγ(∂)

]
(83)

N (2)
αβ (U) := uγ Γ

γ
αβ(∂) (84)

N (3)
α := gαγg

στ Γγ
στ (∂) (85)

N (4)
γ := Γρ

γρ(∂)− gγρ g
στ Γρ

στ (∂) (86)

In this case we get

N (1)(U) = − 1

g0 g1
(ġ1uo + g′0ue) +

2

r

(
1− 1

g1

)
ue (87)
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N (2)
00 (U) = 1

2

[
ġ0
g0
uo −

g′0
g0
ue

]
(88)

N (2)
0i (U) = N (2)

i0 (U) = 1
2

[
g′0
g0
uo +

ġ1
g1
ue

]
xi

r
(89)

N (2)
ij (U) = 1

2

[
− ġ1
g0
uo +

g′1
g1
ue

]
xixj

r2
(90)

+
1

r

(
1− 1

g1

)(
δij −

xixj

r2

)
ue (91)

N (3)
0 = 1

2

(
ġ0
g0

− ġ1
g1

)
(92)

N (3)
i =

[
1
2

(
−g′0
g0

+
g′1
g1

)
+

2

r
(g1 − 1)

]
xi

r
(93)

N (4)
0 =

ġ1
g1

, N (4)
i =

[
g′0
g0

− 2

r
(g1 − 1)

]
xi

r
(94)

The quadratic term is

N (5)(U) := uγu
γ =

1

g0
u2
o +

1

g1
u2
e (95)

For the terms with derivatives of first order

N (6)(U , ∂U) := ∇γu
γ (96)

N (7)
αβ (U , ∂U) := ∇γuβ (∇γuα −∇αuγ) (97)

N (8)(U , ∂U) := ∇γuρ (∇γuρ −∇ρuγ) (98)

N (9)(v, ∂v) := ∇γv∇γv (99)

we obtain

N (6)(U , ∂U) = 1

g0
u̇o+

1

g1
u′
e+

1
2

1

g0

(
− ġ0
g0

+
ġ1
g1

)
uo+

1
2

1

g1

(
g′0
g0

− g′1
g1

)
ue (100)

N (7)
00 (U , ∂U) =

1

g1

[
u′
o − 1

2

(
g′0
g0
uo +

ġ1
g1
ue

)]
(u′

0 − u̇e) (101)

N (7)
i0 (U , ∂U) =

1

g0

[
−u̇0 +

1
2

(
ġ0
g0
uo −

g′0
g1
ue

)]
(u′

0 − u̇e)
xi

r
(102)

N (7)
0j (U , ∂U) =

1

g1

[
u′
e +

1
2

(
ġ1
g0
uo −

g′1
g1
ue

)]
(u′

o − u̇e)
xj

r
(103)

N (7)
ij (U , ∂U) =

1

g0

[
−u̇e +

1
2

(
g′0
g0
uo +

ġ1
g1
ue

)]
(u′

o − u̇e)
xixj

r2
(104)
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N (8)(U , ∂U) = 1

g0 g1
(u′

o − u̇e)
2
, N (9)(v, ∂v) =

1

g0
(v̇)2 +

1

g1
(v′)

2
(105)

Terms with second order derivatives of the vector or the scalar field are

N (10)
γ (U , ∂U , ∂2U) := ∇ρ∇ρuγ, N (11)(v, ∂v, ∂2v) := ∇γ∇γv (106)

N (10)
0 (U , ∂U , ∂2U) =

1

g0
üo +

1

g1
u′′
o +

1

g0

(
−3

2

ġ0
g0

+ 1
2

ġ1
g1

)
u̇o +

+
1

g1

(
−1

2

g′0
g0

− 1
2

g′1
g1

+
2

r

)
u′
o +

+
1

g1

(
g′0
g0
u̇e −

ġ1
g1
u′
e

)
+ S(o)

0 uo + S(e)
0 ue (107)

N (10)
i (U , ∂U , ∂2U) =

[
1

g0
üe +

1

g1
u′′
e +

1

g0

(
−1

2

ġ0
g0

− 1
2

ġ1
g1

)
u̇e+

+
1

g1

(
1
2

g′0
g0

− 3
2

g′1
g1

+
2

r

)
u′
e +

+
1

g0

(
−g′0
g0
u̇o +

ġ1
g1
u′
o

)
+ S(o)

1 uo + S(e)
1 ue

]
xi

r
(108)

where

S(o)
0 =

1

g0

[
−1

2

g̈0
g0

+

(
ġ0
g0

)2

− 1
4

ġ0 ġ1
g0 g1

− 1
4

(
ġ1
g1

)2
]

+
1

g1

[
−1

2

g′′0
g0

+ 1
4

(
g′0
g0

)2

+ 1
4

g′0 g
′
1

g0 g1
− 1

r

g′0
g0

]
(109)

S(e)
0 =

1

g1

[
1
2

ġ′0
g0

− 1
2

ġ′1
g1

− 1
2

ġ0 g
′
0

g20
− 1

2

g′0 ġ1
g0 g1

+
ġ1 g

′
1

g21
− 1

r

ġ1
g1

]
(110)

S(o)
1 =

1

g0

[
−1

2

ġ′0
g0

+ 1
2

ġ′1
g1

+
ġ0 g

′
0

g20
− 1

2

g′0 ġ1
g0 g1

− 1
2

ġ1 g
′
1

g21
+

1

r

ġ1
g1

]
(111)

S(e)
1 =

1

g1

[
−1

2

g′′1
g1

− 1
4

(
g′0
g0

)2

− 1
4

g′0 g
′
1

g0 g1
+

(
g′1
g1

)2

− 1

r

g′1
g1

− 2

r2

]

+
1

g0

[
−1

2

g̈1
g1

+ 1
4

(
ġ1
g1

)2

+ 1
4

ġ0 ġ1
g0 g1

]
(112)

N (11)(v, ∂v, ∂2v) =
1

g0
v̈ +

1

g1
v′′ +

2

r
v′ (113)
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With a reduced Lagrangian, defined by

L̃ = 1
2
N (8)(U , ∂U)− µN (6)(U , ∂U)− 1

2
µN (1)(U)− 9

4
µ2N (5)(U)

+1
2

(
ν2v2 + 1

) [
N (6)(U , ∂U)

]2
+ 1

2
N (9)(v, ∂v) + 1

2
m2v2 (114)

= 1
2

1

g0 g1
(u′

o − u̇e)
2
+ 1

2

[
1

g0
(v̇)2 +

1

g1
(v′)

2

]
+ 1

2

(
ν2v2 + 1

)
∗

∗
[
1

g0
u̇o +

1

g1
u′
e +

1
2

1

g0

(
− ġ0
g0

+
ġ1
g1

)
uo +

1
2

1

g1

(
g′0
g0

− g′1
g1

)
ue

]2
+µ

[
− 1

g0
u̇o −

1

g1
u′
e +

1
2

ġ0
g20

uo +
1
2

g′1
g21

ue −
1

r

(
1− 1

g1

)
ue

]
−9

4
µ2

(
1

g0
u2
o +

1

g1
u2
e

)
+ 1

2
m2v2 (115)

we can write equation (47) in the form

Rαβ(∂)− 1
2
R(∂) gαβ + L̃ gαβ +

1
2

[
N (7)

αβ (U , ∂U) +N (7)
βα (U , ∂U)

]
−∇αv∇βv + µ

[
N (2)

αβ (U)− 1
2

(
uβ N (3)

α + uα N (3)
β

)]
+1

2
µ (∇αuβ +∇βuα)− 9

2
µ2 uαuβ = κ Tαβ (116)

For indices (α, β) = (0, 0) we get

1

r

g0
g1

[
g′1
g1

+
1

r
(g1 − 1)

]
+ L̃ g0 +

1

g1

[
u′
o − 1

2

(
g′0
g0
uo +

ġ1
g1
ue

)]
∗

∗ (u′
0 − u̇e) + µ

[
u̇0 +

1
2

(
− ġ0
g0

+
ġ1
g1

)
uo +

1
2

(
−g′0
g0

+
g′0
g1

)
ue

]
−9

2
µ2 u2

0 − v̇2 = κ T00 , (117)

for (α, β) = (i, 0) or (α, β) = (0, i){
1

r

ġ1
g1

+ 1
2

[
− 1

g0
u̇o +

1

g1
u′
e +

1
2

1

g0

(
ġ0
g0

+
ġ1
g1

)
uo−

−1
2

1

g1

(
g′0
g0

+
g′1
g1

)
ue

]
(u′

0 − u̇e) +
1
2
µ

[
u′
0 + u̇e +

+

(
1
2

g′0
g0

− 1
2

g′1
g1

− 2

r
(g1 − 1)

)
u0 +

(
−1

2

ġ0
g0

+
ġ1
g1

)
ue

]
−9

2
µ2 u0 ue − v̇ v′

}
xi

r
= κ Ti0 , (118)
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and for (α, β) = (i, j)

1

r

[
g′0
g0

− 1

r
(g1 − 1)

]
xixj

r2
− 1

2

[
R̃ +

1

rg1

(
g′1
g1

− g′0
g0

)](
δij −

xixj

r2

)
+L̃

[
δij + (g1 − 1)

xixj

r2

]
+

1

g0

[
−u̇e +

1
2

(
g′0
g0
uo +

ġ1
g1
ue

)]
∗

∗ (u′
o − u̇e)

xixj

r2
+ µ

[
u′
e +

(
1
2

g′0
g0

− 1
2

g′1
g1

− 2

r
(g1 − 1)

)
ue

]
xixj

r2

+µ
2

r
ue

(
δij −

xixj

r2

)
− 9

2
µ2 u2

e

xixj

r2
− (v′)

2 xixj

r2
= κ Tij (119)

For equation (48) in the case γ = 0 we obtain

1

g0
üo +

1

g1
u′′
o +

1

g0

(
−3

2

ġ0
g0

+ 1
2

ġ1
g1

)
u̇o +

1

g1

(
−1

2

g′0
g0

− 1
2

g′1
g1

+
2

r

)
u′
o

+
1

g1

(
g′0
g0
u̇e −

ġ1
g1
u′
e

)
+ S(o)

0 uo + S(e)
0 ue +

9
2
µ2 uo + ν2 ∗

∗ ∂

∂t

{[
1

g0
u̇o +

1

g1
u′
e +

1
2

1

g0

(
− ġ0
g0

+
ġ1
g1

)
uo +

1
2

1

g1

(
g′0
g0

− g′1
g1

)
ue

]
v2
}

= 1
2
µ
ġ1
g1

(120)

and for γ = i

1

g0
üe +

1

g1
u′′
e −

1

g0

(
1
2

ġ0
g0

+ 1
2

ġ1
g1

)
u̇e +

1

g1

(
1
2

g′0
g0

− 3
2

g′1
g1

+
2

r

)
u′
e

+
1

g0

(
−g′0
g0
u̇o +

ġ1
g1
u′
o

)
+ S(o)

1 uo + S(e)
1 ue +

9
2
µ2 ue + ν2 ∗

∗ ∂

∂r

{[
1

g0
u̇o +

1

g1
u′
e +

1
2

1

g0

(
− ġ0
g0

+
ġ1
g1

)
uo +

1
2

1

g1

(
g′0
g0

− g′1
g1

)
ue

]
v2
}

= 1
2
µ

[
g′0
g0

− 2

r
(g1 − 1)

]
(121)

where we omitted the factor xi

r
on both sides. Finally, equation (49) gives

1

g0
v̈ +

1

g1
v′′ +

2

r
v′ −m2 v

−ν2

[
1

g0
u̇o +

1

g1
u′
e +

1
2

1

g0

(
− ġ0
g0

+
ġ1
g1

)
uo +

1
2

1

g1

(
g′0
g0

− g′1
g1

)
ue

]2
v

= 0 (122)
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Now, we consider the stationary case g0 = g0(r), g1 = g1(r), uo = uo(r),
ue = ue(r) and v = v(r). From (51) we obtain that for λ = 0 resp. µ = 0
and m = 0 the equations (117) - (119) pass over to general relativity, giving
the well known Schwarzschild solution for a central mass M . So, as a first
approximation for g0, g1 we use the Schwarzschild metric

g0(1) = −
(
1− rS

r

)
, g1(1) =

(
1− rS

r

)−1

, where rS = 2
MG

c2
(123)

and derive the behavior of corresponding functions uo(1), ue(1), v(1) from equa-
tions (120) - (122), which in the stationary case after multiplication with g1
are reduced to

u′′
o +

(
−1

2

g′0
g0

− 1
2

g′1
g1

+
2

r

)
u′
o

+

[
−1

2

g′′0
g0

+ 1
4

(
g′0
g0

)2

+ 1
4

g′0 g
′
1

g0 g1
− 1

r

g′0
g0

]
uo +

9
2
µ2 g1 uo = 0 (124)

u′′
e +

(
1
2

g′0
g0

− 3
2

g′1
g1

+
2

r

)
u′
e

+

[
−1

2

g′′1
g1

− 1
4

(
g′0
g0

)2

− 1
4

g′0 g
′
1

g0 g1
+

(
g′1
g1

)2

− 1

r

g′1
g1

− 2

r2

]
ue

+9
2
µ2 g1 ue + ν2g1

∂

∂r

{
1

g1

[
u′
e +

1
2

(
g′0
g0

− g′1
g1

)
ue

]
v2
}

= 1
2
µ g1

[
g′0
g0

− 2

r
(g1 − 1)

]
(125)

v′′ +
2

r
g1 v

′ −m2 g1 v − ν2 1

g1

[
u′
e +

1
2

(
g′0
g0

− g′1
g1

)
ue

]2
v = 0 (126)

We see that in the system (124) - (126) the function uo is decoupled from ue

and v. So, from the vanishing right hand side of (124) we can derive uo = 0.
To describe functions as power series with logarithmic factors by terms of

highest order we will use the following relation. For two functions f (0), f (1)

defined by converging series

f (i)(r) =
∑
k,l≥0

f
(i)
kl rpi−k (ln r)qi−l i = 1, 2 we write

f1 ∼ f2 if p1 = p2, q1 = q2, f
(1)
00 = f

(2)
00 (127)
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Some simple properties are

f1 + f2 ∼


f
(1)
00 rp1 (ln r)q1 for p1 = p2 and q1 > q2

or p1 > p2(
f
(1)
00 + f

(2)
00

)
rp1 (ln r)q1 for p1 = p2 and q1 = q2

(128)

f1f2 ∼ f
(1)
00 f

(2)
00 rp1+p2 (ln r)q1+q2 , (129)

and

d

dr
fi ∼


f
(i)
00 pi r

pi−1 (ln r)qi for pi ̸= 0 or pi = 0, qi = 0

f
(i)
00 qi r

−1 (ln r)qi−1 for pi = 0 and qi ̸= 0

(130)

First, we observe

g0(1) ∼ −1, g1(1) ∼ 1,
g′0(1)
g0(1)

∼
g′1(1)
g1(1)

∼ rS
r2

,
g′′0(1)
g0(1)

∼
g′′1(1)
g1(1)

∼ −2
rS
r3

(131)

We will now assume, that rS ≪ r and r ≪ 2
3
1
µ
, i.e. 9

2
µ2 ≪ 2

r2
. Furthermore,

we set m = 0. Then, from (125) and (126) we get

u′′
e(1) +

2

r
u′
e(1) −

2

r2
ue(1) + ν2 d

dr

[
u′
e(1)v

2
(1)

]
∼ −1

2
µ
rS
r2

(132)

v′′(1) +
2

r
v′(1) − ν2

[
u′
e(1)

]2
v(1) ∼ 0 (133)

Defining for some r0 > rS the variables

r̃ :=
r

r0
, s̃ := ln

(
r

r0

)
(134)

we use the Ansatz

ue(1)(r) ∼ ũe(1) r̃
p1(1) s̃ q1(1) , v(1)(r) ∼ ṽ(1) r̃

p2(1) s̃ q2(1) , (135)

To ensure that the coupling term in equation (133) has the same order of r
resp. r̃ as the remaining terms, u′

e(1) should have order −1, hence p1(1) = 0.

In equation (132) the coupling term should have the same order as the right
hand side, i.e. u′

e(1)v
2
(1) must be of order −1, so that the derivative has order

−2. Then follows p2(1) = 0. Inserting now (135) with p1(1) = p2(1) = 0 into
(132) and (133) we get

−
q1(1)
r2

ũe(1) s̃
q1(1)−1 +

2q1(1)
r2

ũe(1) s̃
q1(1)−1 − 2

r2
ũe(1) s̃

q1(1)

+ν2 q1(1) ũe(1) ṽ
2
(1)

d

dr

[
1

r
s̃ q1(1)+2 q2(1)−1

]
∼

−
ũe(1)

r2
[
2s̃ q1(1) + ν2 q1(1) ṽ

2
(1) s̃

q1(1)+2 q2(1)−1
]

∼ −1
2
µ
rS
r2

(136)
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−
q2(1)
r2

ṽ(1) s̃
q2(1)−1 +

2q2(1)
r2

ṽ(1) s̃
q2(1)−1

−ν2
q21(1)
r2

ũ2
e(1) ṽ(1) s̃

2 q1(1)+q2(1)−2 ∼
ṽ(1)
r2

[
q2(1)s̃

q2(1)−1 − ν2 q21(1) ũ
2
e(1) s̃

2 q1(1)+q2(1)−2
]

∼ 0 (137)

Equation (137) implies q2(1) − 1 = 2 q1(1) + q2(1) − 2, i.e. q1(1) = 1
2
. Then,

(136) gives q1(1)+2 q2(1)− 1 = 0 , i.e. q2(1) =
1
4
. The coefficients are obtained

from
ν2 q1(1) ũe(1) ṽ

2
(1) =

1
2
µ rS and q2(1) = ν2 q21(1) ũ

2
e(1)

We get

ũe(1) =
1

ν
, ṽ(1) =

(µ
ν
rS

) 1
2

(138)

and

ue(1)(r) ∼
1

ν

[
ln

(
r

r0

)] 1
2

, v(1)(r) ∼
(µ
ν
rS

) 1
2

[
ln

(
r

r0

)] 1
4

(139)

The resulting gravity−grad v(1), generated by the scalar field, has the amount

GS(1) ∼
d

dr
v(1) ∼

1

4

(
2
µ

ν
G
) 1

2 1

c
M

1
2
1

r

[
ln

(
r

r0

)]− 3
4

(140)

This corresponds to the description of observed gravity GO by Newtonian
gravity GN for the outer regions of galaxies in [12] and [17] by

GO ≈ (GL GN)
1
2 = (GL G)

1
2 M

1
2
1

r
(141)

up to the weak logarithmic term, when GN < GL ≈ 10−10ms−2.
Now, we can use a Robertson series [5] to get a second approximation of

the metric:

g0(2) = −1 +
2

c2
v(1) = −1 + v̂(1) s̃

1
4 ,

g1(2) = 1 +
2

c2
v(1) = 1 + v̂(1) s̃

1
4 ,

where v̂(1) =
2

c2
ṽ(1) (142)

assuming

v̂(1) s̃
1
4 ≪ 1 or r ≪ r0 e

1

v̂4
(1) with

1

v̂4(1)
=

4 c12(
µ
ν
MG

)2 (143)
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For the derivatives of the metric elements we get

g′0(2) ∼ g′1(2) ∼
1

4 r
v̂(1) s̃

− 3
4 , g′′0(2) ∼ g′′1(2) ∼ − 1

4 r2
v̂(1) s̃

− 3
4 , (144)

while according to (143) we set

g0(2) ≈ −1, g1(2) ≈ 1 (145)

Again we assume rS ≪ r, r ≪ 2
3
1
µ
and m = 0. Then, for corresponding

functions uo(2), ue(2), v(2) equations (120) - (122) give uo(2) = 0 and

u′′
e(2) +

2

r
u′
e(2) −

2

r2
ue(2) + ν2 d

dr

[
u′
e(2)v

2
(2)

]
∼ −µ v̂2(1)

1

r
s̃

1
2 , (146)

v′′(2) +
2

r
v′(2) − ν2

[
u′
e(2)

]2
v(2) ∼ 0 (147)

For the Ansatz

ue(2)(r) ∼ ũe(2) r̃
p1(2) s̃ q1(2) , v(2)(r) ∼ ṽ(2) r̃

p2(2) s̃ q2(2) , (148)

we get again p1(2) = 0 from equation (147) and for the coupling term in (146)
in comparison with the right hand side p1(2)+2 p2(2)− 2 = −1, i.e. p2(2) =

1
2
.

With these first results we insert (148) into (146) and (147) and get

ũe(2)

r2
[
q1(2) s̃

q1(2)−1 + 2q1(2) s̃
q1(2)−1 − 2 s̃ q1(2)

]
+
ν2

r0
q1(2) ũe(2) ṽ

2
(2)

d

dr

[
s̃ q1(2)+2 q2(2)−1

]
∼

ν2

r0
q1(2)

(
q1(2) + 2 q2(2) − 1

)
ũe(2) ṽ

2
(2)

1

r
s̃ q1(2)+2 q2(2)−2 ∼ −µ v̂2(1)

1

r
s̃

1
2 (149)

−1
4
ṽ(2) r

− 3
2 s̃ q2(2) + ṽ(2) r

− 3
2 s̃ q2(2)

−ν2 q21(2) ũ
2
e(2) ṽ(2) r

− 3
2 s̃ 2 q1(2)+q2(2)−2 ∼

ṽ(2) r
− 3

2

[
3
4
s̃ q2(2) − ν2 q21(2) ũ

2
e(2) s̃

2 q1(2)+q2(2)−2
]

∼ 0 (150)

Now, equation (150) implies q2(2) = 2 q1(2) + q2(2) − 2, i.e. q1(2) = 1. Then,
(149) gives q1(2)+2 q2(2)−2 = 1

2
, i.e. q2(1) =

3
4
. The coefficients are obtained

from

ν2

r0
q1(2)

(
q1(2) + 2 q2(2) − 1

)
ũe(2) ṽ

2
(2) = −µ v̂2(1) and 3

4
= ν2 q21(2) ũ

2
e(2)
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We get

ũe(2) = −3
1
2

2

1

ν
, ṽ(2) =

2

3
3
4

(µ
ν

) 1
2
r

1
2
0 v̂(1) =

4

3
3
4

µ

ν

1

c2
r

1
2
0 r

1
2
S (151)

and

ue(2)(r) ∼ −3
1
2

2

1

ν
ln

(
r

r0

)
, v(2)(r) ∼

4

3
3
4

µ

ν

1

c2
r

1
2
S r

1
2

[
ln

(
r

r0

)] 3
4

(152)

The resulting gravity, generated by the scalar field, has the amount

GS(2) ∼
d

dr
v(2) ∼

2

3
3
4

µ

ν
(2G)

1
2
1

c3
M

1
2
1

r
1
2

[
ln

(
r

r0

)] 3
4

(153)

and is stronger than GS(1) in the sense of a greater exponent in r−
1
2 than that

in r−1, but with a lower coefficient. Therefore, the higher gravity would act
on longer distances and could describe the cohesion of galaxy clusters, which
can not be explained sufficiently by gravity with the strength of GS(1).

Finally, we will consider the case of very large r ≫ 2
3
1
µ
, so that we have

to take into account the term 9
2
µ2 g1 ue in equation (125). For the searched

functions, in this case denoted by uo(3), ue(3), v(3) we get uo(3) = 0 and

ue(3) ∼ 1
9

1

µ

[
g′0
g0

− 2

r
(g1 − 1)

]
(154)

Then, for the Ansatz

ue(3)(r) ∼ ũe(3) r̃
p1(3) s̃ q1(3) , v(3)(r) ∼ ṽ(3) r̃

p2(3) s̃ q2(3) , (155)

we can assume p1(3) ≤ −1 and g0 ≈ 1 for large r. For m = 0 equation (126)
implies that

v′′(3) +
2

r
v′(3) = ṽ(3)

r̃ p2(3)

r2
[
p2(3)

(
p2(3) + 1

)
s̃ q2(3)+(

2 p2(3) + 1
)
q2(3) s̃

q2(3)−1 + q2(3)
(
q2(3) − 1

)
s̃ q2(3)−2

]
(156)

must have an order p2(3) + 2 p1(3) − 2 ≤ p2(3) − 4 with respect to r resp. r̃.
This is satisfied only for q2(3) = 0 and p2(3) = 0 or p2(3) = −1. For p2(3) = 0
the function v(3) would be constant and the gradient gives no contribution
to gravity. For p2(3) = −1 we get

v(3)(r) ∼ ṽ(3) r̃
−1 and GS(3) ∼

d

dr
v(3) ∼ −ṽ(3)

r0
r2

(157)

i.e. for very large distances the gravity generated by the scalar field has the
order of Newtonian gravity.
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6 Cosmology

Next, we shall describe the dynamics of a homogeneous, isotropic, flat uni-
verse. The corresponding metric should be diagonal with identical compo-
nents for the three spatial dimensions, depending only on time, i.e.

g = diag (g0, g1, g1, g1) with g0 = g0(t), g1 = g1(t), (158)

The only non-vanishing Christoffel symbols (1) are

Γ0
00 =

1
2

ġ0
g0
, Γi

i0 =
1
2

ġ1
g1
, Γ0

ii = −1
2

ġ1
g0

(159)

Using again the scalar R̃, defined in (76)

R̃ :=
1

g0

[
− g̈1
g1

+ 1
2

(ġ1)
2

g21
+ 1

2

ġ0ġ1
g0g1

]
(160)

for the Ricci tensor and the Ricci scalar we get

R00 =
3
2
g0 R̃, Rii =

3
2
g1 R̃, R = 6 R̃,

R00 − 1
2
Rg00 = −3

2
g0 R̃, Rii − 1

2
Rgii = −3

2
g1 R̃ (161)

Because of the isotropy the spatial components ui of the vector field vanish.
Hence, the additional fields are u0 = u0(t) and v = v(t).

We may now calculate the terms N (1) - N (11), defined in (83) - (86), (95)
- (99) and (106).

N (1)(U) =
1

g0

(
1
2

ġ0
g0

− 3
ġ1
g1

)
uo (162)

N (2)
00 (U) = 1

2

ġ0
g0

uo, N (2)
ii (U) = −1

2

ġ1
g0
uo, (163)

N (2)
i0 (U) = N (2)

0i (U) = N (2)
ij (U) = 0 (i ̸= j) (164)

N (3)
0 = 1

2

ġ0
g0

− 3
2

ġ1
g1
, N (3)

i = 0 (165)

N (4)
0 = 3

ġ1
g1
, N (4)

i = 0 (166)

N (5)(U) =
1

g0
u2
o (167)
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N (6)(U , ∂U) =
1

g0

[
u̇o +

(
−1

2

ġ0
g0

+ 3
2

ġ1
g1

)
uo

]
(168)

N (7)
αβ (U , ∂U) = N (8)(U , ∂U) = 0 (169)

N (9)(v, ∂v) =
1

g0
v̇2 (170)

N (10)
0 (U , ∂U , ∂2U) =

1

g0

{
üo +

[
−3

2

ġ0
g0

+ 3
2

ġ1
g1

]
u̇o + (171)

+

[
−1

2

g̈0
g0

+

(
ġ0
g0

)2

− 3
4

ġ0 ġ1
g0 g1

− 3
4

(
ġ1
g1

)2
]}

(172)

N (10)
i (U , ∂U , ∂2U) = 0 (173)

N (11)(v, ∂v, ∂2v) =
1

g0
v̈ (174)

For the reduced Lagrangian, defined in (114) we get

L̃ =
1

g0

{
1
2

(
ν2v2 + 1

) 1

g0

[
u̇o +

(
−1

2

ġ0
g0

+ 3
2

ġ1
g1

)
uo

]2
−µ

(
u̇o − 1

4

ġ0
g0

uo

)
− 9

4
µ2u2

o +
1
2
v̇2 + 1

2
m2g0 v

2

}
(175)

Then, equation (116) gives

µ

[
u̇o +

(
−1

2

ġ0
g0

+ 3
2

ġ1
g1

)
uo

]
− 9

2
µ2u2

o +
1
2
v̇2

−3
2
g0 R̃ + g0 L̃ = κ T00 (176)

−3
2
g1 R̃ + g1 L̃ = κ Tii (177)

for (α, β) = (0, 0) and (α, β) = (i, i), while equation (48) is relevant only in
the case γ = 0

1

g0
üo +

1

g0

(
−3

2

ġ0
g0

+ 3
2

ġ1
g1

)
u̇o

+
1

g0

[
−1

2

g̈0
g0

+

(
ġ0
g0

)2

− 3
4

ġ0 ġ1
g0 g1

− 3
4

(
ġ1
g1

)2
]
uo +

9
2
µ2uo

+ ν2 d

dt

{
1

g0

[
u̇o +

(
−1

2

ġ0
g0

+ 3
2

ġ1
g1

)
uo

]
v2
}

= 3
2
µ
ġ1
g1

(178)
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Equation (49) gives

1

g0
v̈ −m2 v − ν2 1

g20

[
u̇o +

(
−1

2

ġ0
g0

+ 3
2

ġ1
g1

)
uo

]2
v = 0 (179)

We consider the universe as matter dominated, i.e.

Tαβ = ρ ϕα ϕβ with ϕγ ϕ
γ = gαβϕα ϕβ = c2, (180)

where ρ is the matter density and ϕγ the four-velocity of the matter. In the
isotropic case we have ϕi = 0 for i > 0 and hence g−1

0 ϕ2
0 = c2. So we get

Tαβ = diag
(
c2g0 ρ, 0, 0, 0

)
(181)

with ρ = ρ(t). Neglecting radiation the preservation of mass gives

ρ(t) [χ1(t)]
3 = ρ(t0) [χ1(t0)]

3 =: M0 (182)

for a starting point t0, where χ1(t) describes the expansion of the universe
and can be defined by χ2

1 = g1. Now, the system (176), (177) is equivalent
to

µ

[
u̇o +

(
−1

2

ġ0
g0

+ 3
2

ġ1
g1

)
uo

]
− 9

2
µ2u2

o +
1
2
v̇2 = κ c2M0 g0 g

− 3
2

1 (183)

g0 L̃ = 3
2
g0 R̃ (184)

To find the behavior of the unknown functions for large times we use again
an Ansatz similar to (135) with the variables

t̃ :=
t

t0
, w̃ := ln

(
t

t0

)
(185)

g0(t) ∼ g0 t̃
p0 w̃ q0 , g1(t) ∼ g1 t̃

p1 w̃ q1 ,

uo(t) ∼ uo t̃
p2 w̃ q2 , v(t) ∼ v t̃ p3 w̃ q3 . (186)

First, we want to evaluate the exponents pi so, that equations (178), (179)
and (183), (184) can be fulfilled. Since R̃ is of order −2, from (175) and
(184) we obtain p2 = −1. Then, equation (178) multiplied by g0, gives
p2 − 2 = p2 + 2p3 − 2 = p0 − 1, hence p0 = −2 and p3 = 0. Finally, from
equation (183) we derive −2 = p0 − 3

2
p1 and get p1 = 0. We could easily

check that for these values of the pi in each equation all terms have the same
order with respect to t̃.
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Now, we insert (186) into the equations. For some terms we have to take
into account lower order terms, since the highest order terms vanish. We find

g0 R̃ ∼ q1
(
1− 1

2
q1 +

1
2
q0
)
t−2 w̃−2 (187)

and

g0 L̃ ∼ t−2
[
1
2

(
ν2 v2 w̃ 2 q3 + 1

) (
q2 − 1

2
q0 +

3
2
q1
)
g−1
0 u2

o w̃
−q0+2q2−2

+ 1
2
µuo t0 w̃

q2 − 9
4
µ2 u2

o t
2
0 w̃

2q2

+ 1
2
p23 v

2 w̃ 2q3−2 + 1
2
m2 g0 v

2 t20 w̃
q0+2q3

]
(188)

Equation (183) gives

t−2
[
µ
(
q2 +

3
2
q1 − 1

2
q0
)
uo t0 w̃

q2−1 − 9
2
µ2 u2

o t
2
0 w̃

2q2

+ 1
2
p23 v

2 w̃ 2q3−2
]
∼ t−2 κ c2M0 g0 g

− 3
2

1 t20 w̃
q0− 3

2
q1 (189)

Multiplying (178) and (179) by g0 we get

t−3
(
6 + 9

2
µ2 g0 t

2
0 w̃

q0
)
uo t0 w̃

q2

+ t−2 ν2 w̃ q0
d

dt

[(
q2 +

3
2
q1 − 1

2
q0
)
uo v

2 t0 w̃
q2+2q3−q0

]
∼ t−3

[(
6 + 9

2
µ2 g0 t

2
0 w̃

q0
)
uo t0 w̃

q2

+ ν2
(
q2 +

3
2
q1 − 1

2
q0
)
(q2 + 2q3 − q0)uo v

2 t0 w̃
q2+2q3−1

]
∼ t−3 3

2
µ q1 g0 t

2
0 w̃

q0−1 (190)

and

t−2 v w̃ q3
[
q3 w̃

−1 + m2 g0 t
2
0 w̃

q0

+ ν2
(
q2 +

3
2
q1 − 1

2
q0
)2

g−1
0 u2

o w̃
2q2−q0−2

]
∼ 0 (191)

Now, we search values for q0,..,q3 so that the relations (184) and (189) -
(191) can be solved up to terms of lower order, i.e. the greatest exponents
in powers of w̃ should occur at least two times while all other are smaller in
each of the relations. A solution can be found only, if we set v = 0 so that
(191) is satisfied automatically and q3 is irrelevant. The other exponents are
q0 = −1, q1 =

4
3
and q2 = −2. Then, the values of g0, g1 and uo are obtained

from a comparison of coefficients for the terms of highest order with respect
to w̃.

1
2
µuo t0 = −1

3
, 1

2
µuo t0 = κ c2M0 g0 g

− 3
2

1 t20, 6uo t0 = 2µ g0 t
2
0 (192)
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Finally, we get

g0(t) ∼ − 2

µ2

1

t2

[
ln

(
t

t0

)]−1

, g1(t) ∼
(

6

µ2
κ c2M0

) 2
3
[
ln

(
t

t0

)] 4
3

,

uo(t) ∼ − 2

3µ

1

t

[
ln

(
t

t0

)]−2

, v ∼ 0 (193)

We may now discuss the meaning of this result for the expansion of the uni-
verse and the observable redshift in comparison with the Robertson-Walker
metric using the representation of the line element

(ds)2 = gαβ dx
α dxβ = χ2

1 (dx)
2 − χ2

0 (dt)
2 (194)

In our case χ2
0(t) = −g0(t) and χ2

1(t) = g1(t), while for the Robertson-Walker

metric χ
(RW )
0 = 1.

If we consider two points P1 and P2 at a fixed time t, we have dt = 0 and
hence ds = χ1dx. Integrating from P1 to P2 gives for the distance

∆s = χ1∆x,
d

dt
∆s = χ̇1∆x and hence

d
dt
∆s

∆s
=

χ̇1

χ1

=: H(t) (195)

H describes how fast the distance of two points increases in relation to its
value. From (193) we get

H(t) ∼ 2
3

1

t

[
ln

(
t

t0

)]−1

(196)

What we actually observe is the redshift of light, from which we conclude
to the velocity of the emitter. Since light moves with velocity c, it satisfies
ds = 0 and (194) gives

dx =
χ0

χ1

dt (197)

Considering light sent from a point P0 with wavelength λ0 at time t0 +
∆t0 to P1 with wavelength λ1 at time t1 + ∆t1 we can assume that the
distance between P0 and P1 does not change during short times ∆t0 resp.
∆t1. Integration of (197) for ∆ti = 0 and ∆ti = λi (i = 0, 1) gives∫ P1

P0

dx =

∫ t1

t0

χ0(t)

χ1(t)
dt =

∫ t1+λ1

t0+λ0

χ0(t)

χ1(t)
dt (198)

Subtracting the integral from t0 + λ0 to t1 we get

λ0
χ0(t0)

χ1(t0)
≈

∫ t0+λ0

t0

χ0(t)

χ1(t)
dt =

∫ t1+λ1

t1

χ0(t)

χ1(t)
dt ≈ λ1

χ0(t1)

χ1(t1)
(199)
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and finally
λ1

λ0

≈ χ0(t0)

χ1(t0)

χ1(t1)

χ0(t1)
(200)

i.e. the redshift of observed light is determined by the function

L(t) =
χ1(t)

χ0(t)
∼

(
3

2
1
2

µκ c2M0

) 1
3

t

[
ln

(
t

t0

)] 7
6

(201)

Interpreting this observation in the sense of the Robertson-Walker metric,
L would correspond to χ

(RW )
1 . Since the second derivative of L is positive,

this interpretation suggests an accelerated expansion of the universe. A time
contraction in the past could also explain the observations of objects in the
early universe, which seem to have developed much faster than expected.

Reminding the identification of t with x0 to get a ’real’ time one has to
replace t by 1

c
t.

7 Discussion

In the case of a central mass the investigation of the scalar field in a first
approximation showed a behavior of the generated gravity for great distances
from the center, which very good coincides with observations in galaxies,
while a second approximation gave a qualitatively stronger gravity for larger
distances, which could possibly describe galaxy clusters without the need of
dark matter.

In cosmology the long term development showed a logarithmic expansion
of the universe, but a time contraction in the past, which results in redshifts
of observations, that can be interpreted as an accelerated expansion. Thus,
no dark energy would be needed.

For the verification of the theory in galaxies and galaxy clusters and
the determination of the coupling constants µ, ν the system (117) - (122)
with at least four unknown functions or more generally (47) - (49) has to
be solved numerically and compared to observed motions. The obtained
coupling constants should be sufficiently small such that in the solar system
the deviations from general relativity are negligible in the sense of (51).

Since matter is coupled only to the tensor field the theory should not be
falsified by observations of gravity waves [9].

Stability was examined in the flat case for the system of vector and scalar
fields, which can be generalized to a small warping of spacetime. A further
investigation of spherically symmetric perturbations in the sense of [19], [18]
was not possible, since the simplifications derived there could not be achieved.
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At least, in the two considered cases we got solutions for the highest order
terms of a power series Ansatz with logarithmic terms. Therefore, we expect
no exponential growth for any of the participated fields.

The results about solutions in the central symmetric case and in cosmol-
ogy are only valid for sufficiently large distances from the center or a long
term, respectively. So it would be important to find a description of the
behavior of gravity near great masses and in the beginning of the universe.
Furthermore, rotating objects should be investigated.
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