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Abstract

We propose a tensor-vector-scalar field theory of gravity by defin-
ing a corresponding Lagrange function. Deriving the field equations
we observe, that the coupling to the tensor field gives mass to the
vector field. After considerations of stability and convergence we de-
velop the systems of differential equations for two cases. In the static
case of a central mass we start with the Schwarzschild metric as a first
approximation and get a behavior corresponding to the observation of
galaxy rotation for sufficiently large distances from the center. Using
this result a second approximation gives a qualitatively stronger grav-
ity for very large distances, which could possibly describe the cohesion
of galaxy clusters. When the distance tends to infinity, the gravity re-
turns to a Newton-like decay due to the mass term of the vector field.
In cosmology we find an expansion of a homogeneous, isotropic, flat
universe at a lower rate than expected, but with a time contraction
towards the past. Together these effects cause an observed redshift of
light with far distant sources, which suggests an accelerated expansion
of the universe.

1 Introduction

There are different attempts to describe gravity without the need of dark
matter by relativistic theories based on the Einstein tensor field and extended
by vector and scalar fields, for example the Brans-Dicke theory [3], TeVeS by
Bekenstein [1] or newer versions [22] of Modified Newtonian dynamics and
MOG by Moffat [15]. In most cases a scalar field represents a generalization
of the gravitational constant. In our theory, the scalar field should fill the
gap between the observed gravity and that calculated from visible matter by



the Newton/Einstein theory. The scalar field is coupled to the vector field by
the scalar potential, while the vector field is coupled to the tensor field. Only
the tensor field has a direct source, which is the usual stress-energy tensor.

In the next section we define the Lagrange function consisting of the
three parts representing tensor, vector and scalar field, while the fourth part
corresponds to the stress-energy tensor. The following section starts with a
decomposition of the coupling between tensor and vector field. It turns out
that the term quadratic in the vector field represents a mass term, where the
mass is given by % of the coupling constant. Next, we discuss the relation
of the resulted system of equations to general relativity for small coupling
constants. In the case of a flat metric we investigate the character of the
equations for the vector field and determine the number of degrees of freedom
for the remaining system using the Hamilton-Dirac analysis.

The following section is devoted to the spherically symmetric case of a
central mass M. First, it turns out that we had to use Cartesian instead of
spherical coordinates because of their intrinsic warping. We derive the time
dependent equations, but reduce the consideration to the static case. Starting
with the Schwarzschild metric we describe the behavior of the vector and the
scalar field in powers and logarithms of the distance r to the central mass.
In a first approximation the scalar field generates a gravity proportional to
Mzp! multiplied by a logarithmic factor with a negative exponent. This
corresponds to observations of galaxy rotations, which in the outer regions
can be approximated by the square root of Newtonian gravity. Using this
result for a second approximation of the metric, we get a higher rate of
gravity proportional to M e again multiplied by a logarithmic term for
larger distances. Possibly, this can describe galaxy clusters, where the gravity
given by the first approximation is to weak. Finally, for distances tending
to infinity, the mass term dominates the equation for the vector field. Then,
the scalar field generates a gravity proportional to r—2, which corresponds to
Newtonian gravity.

In the section about cosmology we apply the theory to a homogeneous,
isotropic, flat universe, dominated by mass neglecting radiation. In contrast
to the Robertson-Walker metric we need a variable factor for the time compo-
nent. Using again the Ansatz of a power series with logarithmic factors, here
depending on t, we get only a logarithmic expansion and a Hubble function
proportional to t~! up to a logarithmic term. On the other hand, there is a
time contraction with a factor =2 and a logarithmic term with negative ex-
ponent. For observed light from the early universe this gives a redshift with a
factor ¢ multiplied by a logarithmic term with positive exponent. Interpreted
in the Robertson-Walker metric this suggests an accelerated expansion of the
universe.



2 Lagrange formulation

In a Minkowski space with coordinates $a|a:g, where for simplicity we iden-
tify 20 with time ¢ even if it should be £2°, we will describe gravity by the met-
ric tensor ¢ = ga,gl,, ﬁ:?) and two additional fields, a vector field U = u|,_]
and a scalar field v. For the metric we will use the signature (—,+, 4+, +),
i.e. in absence of matter the metric should be g = diag(—1,+1, +1, +1).

The Christoffel symbols FZ{’ 5. the Ricci tensor Rqps and the Ricci scalar
R will be considered as differential operators

[750) = 59" (0a9os + 039ac — OrGap) (1)
Rap(0) = 0,105(0) = 0517, (9) + I'35(0) I7,(9) — T3, (9) I74(9) (2)
with 0 = 8a|a:8. One can show, that R,g is symmetric in «, 8, what is only

nontrivial for the second term of (2). To preserve this symmetry for more
general differential operators D = Da]a:g we define

Ras(D) = % [Rab’(a”a—m + Rﬁa(a)‘a—m] (3)
R(D) = ¢*Ras(D) (4)

The tensor part L of the Lagrangian can now be defined by
Lr = L RO+ ull) (5)

where 0 + pld = 0, + /Lua|a:g and g is the coupling constant between the
tensor and the vector field. The vector part £y and the scalar part Lg of
the Lagrangian are

Ly == (Vaug — Vgu,) (Vou’ — Vi) — 3 Vu® Vi’ (6)
Ls=—-3VoV — VUV, V(U)=3(m*+1°Vu*Ved®) (7)

-2
where v describes the strength of the coupling between the scalar and the
vector field and the covariant derivative of a vector or a scalar field is defined

by
Vaug = Oaug — I75(0) uy, Vot = 0au’ +T5 (9)u?, Vov =00 (8)
2
Note that V,u® Vgu® = (z:7 V,yu”) > 0.
Together with the matter part £j;, which is defined later in the usual
way, depending only on the metric g we can write the complete Lagrangian

as
L=Lr+Ly+Ls+ La 9)

Sz/ﬁed%, e=+/—detyg (10)
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3 Field Equations

First, we shall decompose the expression R(9+ pulf) in the tensor part of the
Lagrangian. For

[0p(0+ nl) =T op(0) + p T )
with
Tlﬂ - %g’YU (uagoﬁ + UsGaos — Uggaﬁ)
= 3 (0fua + 6us — gapu”) (12)
we have

Rap(0+pUl) = 0,[T75(0) + Y] — 505 [[2,(0) + n Y]
30 T3,0) + T3] + e, [T14(0) + 1 0]
—5 g [[3,(0) + 103, ] = 5 iua [T5,(9) + p T3
+[I0500) + 1 T0s] [M5,(0) + 15, ]
= [L2,(0) + 13, ] [[55(0) + 1 T5]
Rap() + p [0,005 = 50500, = 50aT5,
+105(0) T, +17,(9) Yoy — I0,(0) Y5 — I'74(9) T2,
e [uy T24(0) — 3us T7,(0) — 5 ua I, ()]
1 [y Y — 3 ugTY, — 3 ua X, + Y0, T, — 1,1,
For the last term an easy calculation using (12) shows
Rapll) = Xl — Sus X0 — Sua Y3 + T2, T3, — X2, 1,
Lt — a4
With the relations
VXl = VT, = 0,71, 05T,
+Flﬁ(a) Tf‘yo + Fi‘yo(a) Tgﬁ - Flo(a) Tf{ﬁ - Fzﬁ(a) TZ{O’
VXl = VaXh, = 0,15 — 0.1,
Ha(0) 105 +T5,(9) Yo — T3, (9) T — 17(9) T,

we obtain

Lr = 29" Rap(0+ puld)
- %R(m + %M gaﬁ [V’YTZzB o %VﬂTzv o %VQTZ)V}
+11g° [u, [750) = 5us'},(0) — § uq Fgw(ﬁ)] — 2Py
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By renaming some indices we can now write

Lo=3L0 +LpLd) + 12 L) + L v,k (13)
with

¥ = R) -

£ = ¢ [, T2(0) = S us T2 (9) = S ua T, 9)] (15)

= [ T0) — 1 TL0) - L TL@)]  (6)

£ = 9u,uw (17)

K = g0 =597 Ths = 597 o5 = =30 (18)

where KJ. was simply calculated using (12).
Having defined the vector field as massless, we now see a mass term

1L = () uy

generated by the coupling to the tensor field with a mass proportional to the
coupling constant.

For the field equations we have to describe the variation of the action &
by the variation of L€ in the form

S[Le] = MG + MWsuT + MWsv + VK7 e (19)
Then, the field equations are
M =0 for a,$=0,..3, MY =0 for y=0,.,3, MY =0 (20)

First, we have

S[Lel=[0L—1Lgas g€ (21)

since
de = —3 e '5(detg) and d(detg) = detg g*?0gas = € gup 69"
One can show [4] (appendix A) that
AT = g7 6T75(0) — g°7 0T545(0) = 90 V'0g™" = V569" (22)
Using this relation for the zero part of L we get
SLY = Rop(8) 89 + V., [gap V9% — V5697] (23)

b}



The variation of the next part gives
0L = duy g7 TL5(0) = 3 9 T04(0) — 197 Ta4(9)]
iy 8977 T5(0) — §6g™ T25(0) — 3 8971 T54(9)]
oy |79 0T05(0) = 3 977 OT05(0) — L 7 oT54(0)|  (24)
We can write

Oty = 6(gypt”) = Gyp OU” — U’ G5 G7p 097" = Grp OU — Uz Gro 0G7"

= Gy ouf — % Ur Gyo 6907- - % Uo Gyr 6gUT

to preserve symmetry of indices in the og terms. With g,,g%7 = 47 and
applying (22) again we obtain

5££r1) - [97/) g’ Fgﬁ(a) - %Fgﬁ(@ - %ng(aﬂ ou’

1 @ o oT
3 |90 97 T25(0) = $T24(0) = 3 15,(9)| ur 09
1
2 [gw 9" T05(0) = 5T75(0) — 5 F&“T(i?)] Uy 6977
+ [uy T25(0) — $us T (9) — § ua T2 5(9)] 697

+ [gap V109*" — 3V 5097 — 1V, 697 u, (25)
The last line can be transformed by
UyGap Vg™ = Vv, [u” Jap 5ga5} — V,u gap 5g°°
uy [3 Ve 09" +5Vadg™] = 5V [uy09”7] + § Va [u, 0]
—3Vsu, Y 2 Vau, 6™ (26)

having used V7 = ¢”*V, and ¢”” u, = u”. After changing indices we get

0Ly = [u3T05(0) = 5 (up Gory + 10 953) 7 13, (0)
+ 2 (Vaus + Vaua) — Vou? gasl 69°°
+ [gvp g° It (9) — F};p(a)} ou”
+ Vo [W Gor 6°7 — u, 6977 (27)
For the remaining parts we obtain
LY = 95[g,u ]
9 gp 00’ U + 0P 6u7] — 9U" U’ gyo gpr 0977
= 9 [2u, 6u" — uy ugg°7) (28)
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and
5IC} = —36u” (29)

From (23), (27), (28) and (29) we get

0Ly = 3 {Rap(d) + 1t [, T75(0) — % (us Gay + Ua gsy) 977 T2,(0)
(Vaug + Vgua) = Vo' gag] — § 1 ugug} 6%
1[990 977 T5,(9) = T4,(9) + 9 pruy |
Vs [gas V169°° = V55¢%
+ p (W gor 69°7 —u, 697" — 3 6u7)} (30)

+
1
1

We write the vector part of the Lagrangian (6) in the form
Ly =-3Ly) - Ly (31)
with

£y = 3 (Vaus — Vaua) (Vou’ — Viu) LY =1V Ve’ (32)

)
The first part can be simplified by changing indices in two terms

LY = 1 [Vaus Vou + Vot Vou® = Vaus VA = Vu, Vo]
= Vaug (Vi = V) = V4 (Vaus — Vgua) (33)

With ug = gg, u” the variation gives

SLY = 895, Vau" (VU = Vou®) + g5, Vodu? (Vo' — VPu)

+Vug (V“&L'B — V'Béua)

= —09" 98p gor Vaui! (V“uﬁ — Vﬁuo‘)
+ Vo [6u” (Viuy — Viu®)| — du” V, (Viuy — Vou?)
+VausV, (gméuﬁ - 9755u°‘)

= —Vau, (Vu, —V,u®)dg”
+ Vo [(VOu, — V. u®) 0u] — Vo (VOu, — Vu®) ou?
+V, [Vug du’ — Vo 6u®]
— [V, V7uy ouP — V.,V ou®]

and after changing indices

5£E9) = = v’yuﬁ (VWUa - vau’y) 5gaﬁ —-2V* (vpu’}’ - V'Yup) ou’
+2V, [(Vu, — V,u") ou’ (34)

7



For the second part we get

5/3%,1) = V,u’V,ou"
= V,[Vfu,0u’] — V, [Viu,] du” (35)

and together

Ly = —tocld —scly
L Vg (Ve — Vaty) + Vg (Voug — Vau, )] 697
+ VPV, u, 0u” — V, [(Vu, — V,u") ou’ + VPu,0u’]  (36)
Here we have used §g*° = §¢”® and changed the indices o, 3 in 1/2 of its

coefficient to symmetrize the expression.
Splitting the scalar part of the Lagrangian (7) in the form

Ls=—3L8 ~ Ly’ (37)

-2
with
LY =Vawven, Ly =vu)e? (38)
the variation gives
5£g)) =9 [go‘ﬁ Vav Vo]
= §g™ Vo0 Va0 + g% V60 Vv 4 g™ Vv Vv
= V,vVgv 5g°"3 +2V7uV,0v

= VawVgudg™ +2V, [VTvév] — 2V, Vv v (39)
and similar to 5£§/1)
55(51) = 19 [m2 v? + 12V u" Y uf Uﬂ
= m?vév+ v Viu, VPu,v v+ 1>V, [VPu,v” 6u’]
—*V,, [VPu,v*] u? (40)

Together we have
Ly = —tord —ocy
= [V»YV’YU —m*v —1?Vu, Viu, v] ov
+ 12V, [VPu,v?] du” — 1 Vo Vo 5g°”
—V, [V év + 1v* VPu, v* 5u’] (41)

Finally, the variation of the matter part should give the stress energy tensor

T
§[Larel = =Lk Topedg™” (42)
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where kK = 87r with the gravitational constant G and the speed of light in

vacuum c.
So we obtain the functions in (19) by (21), (30), (36), (41) and (42)

MG = 3 Raﬂ@) ﬁgaﬁ 35 Tos
[ -3 (uﬂ Jory T Uq 9,3”/) g9’ Fgr(aﬂ
+1u (Vau,g + Vgua) — UV gas — 9 1P uqug
+1 Vs (Vyua = Vauy) + Vi (Vyus — Vsu, )]

e ALCAY D (43)
MW =V, Viu, + 2P, + 1V, [V, 0]

+ % H [gw 97 I5-(9) — ng((?)] (44)
MW = V.V —m?Pv — 12 VU, VPu,v (45)

(905 V769°7 — V509" + 1 (0" gor 6977 — 1, 697°)]
(Vu, — V,u)ou’ — (V¥ 0* + 1) VPu, 6u” — 3 pou?
-V v (46)
Inserting the parts of £ from (7), (13) - (18), (33) we get the field equa-
tions defined by (20)
Ras(0) = 5 R(0) gas — 5 197" [y T3,(0) — us I7,(9)] gas
+p [uv Flg(a) - % (ug Joy T Uq gﬁv) g7 FZ’T(8>]
+ 1 [2 (Vaug + Vaua) — Vo) gas] — 217 (2uats + uyu” gog)
+3 (Vs (Vatia = Vaty) + Vo (Vyus — Vu, )]
+ 1V’ (Vvup \% uy) Jop — Vav Vv + 2V,0 V0 gag
—|— m*v® gos + = (1/ Ve + ) V7u,VPu, gos

1
2

= kTap for a,5=0,..,3, (47)
V,VPuy + 317wy + V2V, [VPu, v’

= Z 2 [Ff/p<8) - g’YP gUT Fg7<a)] for 7= 07 ) 37 (48)
V.V —m?v —1v*Viu, VPu,v = 0 (49)

4 Relation to General Relativity, the case of
flat metric

We assume now, that g and m are very small. For a fixed metric g we
introduce an additional parameter A with 0 < A < 1 and denote by u,(z, ),

9



v(x, ) the solutions of equations (48), (49) for u = Ay, m = Amg with
some fixed fig, my. Omitting the part proportional to 2 in (48) the linearity
of the equation yields the proportionality to u for u,. Putting this property
into equation (49) we can also describe the dependence on A of v:

Ua (T, A) ~ Aug(z, 1), v(z, X)) ~v(y, 1), Vgv(z,\) ~ AVgo(y,1)  (50)

for y = Axz. With these results we can write (47) in the form
1 ~
Ras(0) = 5 R(D) gas — £ Ta ~ N FLl) (51)

where F C(Y%) depends polynomially on A, u,(z,1), v(y,1) and its first deriva-
tives. So we can expect that the corresponding metric gos(z, \) tends to the
solution of General Relativity, if A resp. p and m tend to 0.

Now, we want to investigate the system of equations for the vector and
the scalar field in the case of a flat metric ¢ = n = diag(—1,+1,+1,+1).
The equations (48), (49) then take the form

Np 85 Uy + g/f w, + v°n,0, [8pup 112} = 0 for v=0,.,3, (52)
Ty 8,31) —m?*v —v?n,n,0,u, du,v = 0 (53)

where for simplicity we wrote 1, 1= 1.

The vector field U does not satisfy the condition of a nondynamical zero
component imposed in [6], i.e. the equations for 4 should not include a term
Ooug. So we will have a closer look to this system. The equations (52) can
be written in the form

P, 0)U = p2)(x) 00U + pV (2) 0, U + p® () U = 0 (54)

with 4 x 4 matrices p((fg, pgl), p®. The character of this system is determined
by its main part

PO (x,0) = pl)(x) 0a05 (55)

and the corresponding main symbol P (z, &) with ¢ = §a|a:8- The system
is called hyperbolic, if for all x the equation

det PP (z,),€) =0 (56)

with f =& i:‘z’ has only real solutions A and strictly hyperbolic, if addition-
ally for £ # 0 all these solutions are different.
For (52) the main part is

3
=0

P (x,0)U = [np 8?7 u, + v*v?, awapu,,} (57)
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and the corresponding main symbol

P = (| -8)z

& fg &1 & &3
22| —S& & &6 &8
L A (58)
—&& L& L& &

with the identical matrix Z. The equation

3

. 2 4
det PP (z, A, &) = (v*v? + 1) ( — )\2> =0 (59)
has only real, but multiple solutions A = ‘é ‘ and A = — ‘é ‘ Hence, the system

(52) is hyperbolic, but not strictly hyperbolic. For such systems there are a
priori estimates showing that the solution does not grow exponential in case
of bounded right hand side and initial conditions, for example [7].

Next, we want to determine the number of degrees of freedom for the
system (52), (53) using the Hamilton-Dirac analysis [16]. For this purpose
we have to derive the Hamiltonian from the Lagrangian, which in the flat
case g = 1 is reduced to

L = —% Mo [Oatis (Oats — Ogtla) + Ontia Ogug| + (%,u)z n7u$

—% [na (8av)2 + (m2 + 1103 Onlia aIBUﬁ) UQ] (60)

Here, we used equations (6), (7), (9), (13) — (17) and (33). In this expression
we have to separate time derivatives dyug =: 1o, Ogu; =: u;, 1 = 1,2,3,
Oyv =: ¥ and spatial derivatives d;ug, Oju;, Ojv, i,j = 1,2,3 and get

Z = % Zz (8/&0 - Uz)Q - %Zidaﬂlj (@uj - (‘)Juz)
=5 (0 = X0us)* + (3 )° (ug — L)
+i97 =15 (Bw)* — Lm® + v* (o — Zz&uz)g} v? (61)

Determining the conjugate momenta

71-0 = % = — (1 + V2712) (U() - Zzaﬁul) (62)
8u0
. oc .
oL
4 . = __»
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we obtain the base Hamiltonian defined by
Ho = 70ug+ Zzﬂluz +rxto—L
= =522 (Do — ;) (Byug + 05) + 5 32, 0y (Dyu; — Oju;)
+ (3 )" (w2 = ud) + L+ 13 (90)” + LmPe?
—L (14 v%0%) (o — 32,00u) (o + Y ,05u;) (65)
The fact, that the matrix

4

7L =diag [ — (1+v*7%),1,1,1,1 (66)
Ou; Oty |, B
1,]=
with 14 := v is invertible implies, that there are no constraints, the base

Hamiltonian is already the final Hamiltonian and can be expressed by spatial
derivatives of the original fields and the conjugate momenta

H = Ho = —% iﬂ'i (261140 + 7Ti) + % Zi7jain (&uj — @uz)
+ (2 ,u)2 (ug — Zzuf) +3 (7r4)2 +3> (8v)* + %m%2

1

14+v

Without any constraints the number of degrees of freedom is equal to the
number of field components. This property, respectively the invertibility of
matrix (66), should be stable under small perturbations and hence preserved
for spacetime with small warping.

5 The spherically symmetric case

Usually, the spherically symmetric case is described by coordinates (t,r, ¢, 0)
which are defined by the relations

Ty =1 cosf cosp, To =1 cosl sing, T3 =r sind (68)
to cartesian coordinates, and a metric tensor
g - dlag (907 g1, T27 T2 COS2 0) (69)

with functions gy = go(r,t), g1 = g1(r,t), But in our system of equations
this is not suitable, since the spherical coordinates have an intrinsic warping.
The problem can be seen in equation (48). Here, the right hand side should

12



vanish in the flat case, but it does not in spherical coordinates. Therefore,
we transform the metric (69) to Cartesian coordinates using the formula

oz* 0% _
9o = 5 558 I (70)
and obtain
goo = 9o, Joi =gio =0, ¢¥ =g5", ¢ =" =0, (71)
TiT; T
9”251']"1‘(91—1)?] 97 =0+ (91 — 1) 'r] (72)
or
g0 0 0 0 .
.TQ T1 T1
0 (91—1)—;+1 - (—-1)=
g= $1$2 2 $2$3 (73)
0 (g1—1) (91—1)7,—3"‘1 (n—1)
2
1T ol x
0 (g —1) ;3 (1 —1) igg (91—1)7,_;"‘1_

and a similar representation for ¢g=! with ¢go and ¢; replaced by its inverse
—1 -1
9o and gy .

In the following we will write as usual a prime for a differentiation with

respect to r and a dot for a differentiation with respect to t, i.e. for a = a(r,t)

da , Oa . 0% ., 0%a . 0% y
=: : =:d", — =i =:d.

a Y e T e T v
For the Christoffel symbols (1) we get

/ /
poo_ado po 1% gk _ 19Tk k1 17 74
00 ng 30 ng r 00 2g 7,7 0 291 r2 ’ ( )
0 1 91 %5 ko T g LiLj T
e = (G ) e ()| E

Next, we can evaluate the Ricci tensor R,p (2) and the Ricci scalar R (4).
For a simple representation we first define an additional scalar R by

2 .. . N2
= L gy, 1 (9) 199 Ll g, 1 (@) 1900 -6
=— |- +3—5 *t3 t— |t 5ty ( )
g1 90 90 9091 go g1 g1 dog1
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Then, we obtain

X
Roo = 390R—==2 Ry Rio = 2—2 (77)
rg gir
1gy] xx
Rii = |t R+ =2 222
j [2 g1 v+ , 91] 2
2rgn Lgr 9o a Y r?
and 5 ) -
R:R—F—{&—@‘i‘_(gl—l)} (79)
g1 191 90 T
The terms Rop — %R Jap With non-vanishing g,z are
1 11
Roo—%Rgoo S {&4‘—(91—1)} (80)
gl T
1[g, 1 Tk
Rii—iRg. = |2 —Z(g—1)| 22
J 5 11 Gij r |:g() r (gl )1 r2
- 1 (g, g )} TiT s
1 1 0 iy
R (0] (5,- ) @
2 [ g1 (91 9o ’ 7 (8

In the spherically symmetric case the vector and scalar fields can be repre-
sented in the form

uy = Up(r,t), u; = ue(r,t) ﬁ, v=uv(rt) (82)
r

with scalar functions u,, u. and v. Now, we may calculate some terms of
the equations (47) - (49). Such containing no or only linear vector field
components are

NOW) = g7 [u,T5,.(9) = ug I7,(9)] (83)
NEAW) = u,T7,(0) (84)
Ncg:i) = garg”" FZT(a) (85)
NIV = T (0) = g5 97" T%,(0) (86)
In this case we get
NOWU) =~ (G, + gy + 2 (1 - i) . (87)
9o 91 r g1
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N = 3| B, 5y (58)
go go
, .
NP =NG ) = L] Ly, + 2 }— (89)
L 90 [} r
(2) _ 1% Gu,, | Tt 90
N2 W) o R } 2 (90)
1 1 T; X5
(1= (05— T2 ), 91
(=) (- o1)
N = 3 (2-2) (92
dgo G
(3) 1 9% | % i
= s ==+ = —(g1 —1)| — 93
N {2< g0+gl)+r(g1 ﬂ (%)
. ;o '
NP =2 N =R Zg | 2 (94)
a1 go T T
The quadratic term is
1 1
NOWU) = uu” = —ug + —u (95)
go (251
For the terms with derivatives of first order
NOWU,oU) = V' (96)
NDW, ou) = Viug (Vyug — Vau (97)
af B vy ol
NOWU, ou) = Vu (Viu, — V,u,) (98)
N (v dv) = V0oV (99)
we obtain
1 1 1 ‘ ‘ 1 ! !
NOWU,0U) = —tip+—u,+3 — (—@ + @) Upti — (@ — ﬂ) ue (100)
Jo (251 9o do g1 g1 \90 G
1 [ ! ]
N o) = ug—é(%uﬁ%ueﬂ(ug—ae) (101)
1T : / Z.
NOW, ou) = . —u0+%<%uo—%ue)}(ug—ue)% (102)
(M _ A9, 9 TR
Ny’ U, 0U) = m _ue+ 5 <gou0 glue)} (u), — ) . (103)
I 9 g1 .\ LTy
NOU,ou) = — |- e+l(—0uo+—ue)} ul — e I (104
Do) = ity (S D) | (- i) T (104




NOWU, oU) =

N2 I o 1 2
")t NOw,ov) = — @0+ = 105
oo (ug — ) (v, Ov) go<) 91( )" (105)

Terms with second order derivatives of the vector or the scalar field are

N7(10)(ujau’62u) =V, VPu,, N (v, dv,0%) =V, Vv (106)

1 1 1 ! !
NGO, U, PU) = — ity + —uf + — (—% P &> o+

go g T
1 A / o e
- (@ue - ﬂu;) + 8, + 8w (107)

M(10)<u7 au’ a?u) _ |i_7’j/e + lug + l (_l @ _1 &) ’de—i—
1

g1 90 g1
1 ‘ ' o e Z;
+= (—@uo + ﬂu;)Jr S\7u, + S} )ue}— (108)
90 90 g1 r
1 . 2 .. 2
1 _;@+<9_o) _;M_;@)
g | ?9 9 Y900 G
2
_|_l _1 9_6/ + 1 <g_6) 4 1 g(l)gll _ 19_6 (109)
gl g *\g Y9091 T g0
1 r c/ -/ . I / . . / 1 .
o R Y- e AT
g1 " 9o g1 90 go g1 971 T g1
1 r -, -, . / / . . , 1 .
=Rl fh_yah 0, 08 g
9o | 9o g1 90 9o 91 91 g

2 2
Ll 191 (% 1 9091 9 lg; 2
— |72 a2l ) T 1 =) — ==
g1 g1 90 9o 91 g1 g1 r

. . 2 .
g 1 (9N 1 9091
+— —l—+—(—) +3 112
9o g *\n 49091] (112)
1
N (v, 9, 0*0) = =6+ —v" + =0/ (113)
9o 1 r



With a reduced Lagrangian, defined by

L= iNG (u oU) — pNOU, oU) — L uNOU) - 2 PNO W)
+1 (VPo* +1) [N<6>(u,auﬂ LNO (v, 00) + L m*? (114)

WP 4162+ )

1

51
1 1 / 2

*[—uo—l——u;—i-%—(———i- > —i———(——&)ue}

go qn 90 Jo g1

L9

7 U

1

1 1 1 1
el i LB (1))
9o g1 0 r g1
o 2of L o 1 5 1,22
— 05| —u, + —u, |+ 5mTv (115)
90 91

we can write equation (47) in the form
Rap(9) =  R(O) gos + L gas + & [N @, 00) + ND U, 000)|
—Vav Vv +pu [NOEZ)(U) — % <u5Na3) + ua./\f/g3 ﬂ
+1 0 (Vaug + Vaua) — $ P uqus = £ Top (116)

For indices (a, §) = (0,0) we get

1 A | ~ 1 ]
—@[&+—(91—1)}+£go+—{ug— (go o+&ue)}*
g lg1 T g1 9o g1

*(ug—ue)+u{uo+§(—@+gl) +§(—go+g°) }
go 1 Jo G1

—%,uzug—i)Q = k70 , (117)
for (a, 8) = (3,0) or (a, 8) = (0,)

1 1 1 1 (¢ ]
{—&+5[——uo+—u’e+%—(@+ﬂ>uo—

0 9o 91 go \9o G

s (o o) ] s
1 0 1 / 1 '
-5 + = | Ue| (Ug — Ue) + 5 1 [ Uy + Ue +
291(90 9 (0 ) 2| Mo

/ / 2 b b
+(%@—%&——(91—1))u0+(—%@+£>ue]

9o g T Jgo g1
_g/ﬂuoue—@vl}E = kT , (118)

T
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and for (o, 8) = (4, 4)

11gy 1 T - 1 (g1 9 Tk
-] mea e (2 8)] (- 22)
go T r rg1 \91 9o r
. oy 1 ’ '
2 o+ (- 2] + L {_wg (@W 9_)] ,
r

9o 90 g1
, N / 196 19/1 2 ZiTj
x () — 1) “o 10 12 1)),
(u! — ) 2 + i {ue + (290 g 7 (g1 —1) | u .~
2 T2 T X5 9 LT,
e (0 = ) = gt T - ) B = kT (119)

For equation (48) in the case v = 0 we obtain
1 1 1 ) / 1 A T2
— iy + —up + — (—% @—i—% £>uo+— (—%@—% &+—>u'
9 9 9 9o g1 T
1 A j o e
+— (@ue — ﬂu’e) + 85 + 8 e + 2 puy + 1

g1 \ 90 g1

B, 1 1 1 ' ' 1 /dq !
*—{[—uo+—u;+§—(—@+@>uo+§—(@—&>ue]v2}
ot 190 g1 g\ 9 G g1 \9 G

1 9

1,9 120
2“91 (120)
and for v =1

1 1 1 (¢ j 1 / 2
—ue+—ug——<§@+l@)ue+g—(l@—§gl+—>u;
1

1 A j o e
+— (—@uo + ﬂué) + 81( iy + S| Jue + 2 1P ue + V7 %

90 go 451

0 1 1 1 ] ] 1 ! d
e sd () (64)0)
or 9o a1 90 g G g1 \90 G1

| %2 - 1) (121)
= - ——_g_

2 H 9o r !

2
— b4 ="+ 20— m?o
9o g1 (A
1 1 1 o0 G 1 /g ¢ 2
—v? {—uo—i——u'e—ké — (—@Jr@) Up+ 3 — (@—&) u] v
90 g1 9o go g1 g1 \ 90 g1
—0 (122)
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Now, we consider the stationary case go = go(r), g1 = G1(r), uo = u,(r),
ue = ue(r) and v = v(r). From (51) we obtain that for A = 0 resp. p =0
and m = 0 the equations (117) - (119) pass over to general relativity, giving
the well known Schwarzschild solution for a central mass M. So, as a first
approximation for gy, g1 we use the Schwarzschild metric

s s -1 MG
(R At
Jo(1) ( . g1(1) . where rg > (123)
and derive the behavior of corresponding functions (1), te(1), v(1) from equa-
tions (120) - (122), which in the stationary case after multiplication with g;
are reduced to

/ / 2
ul + (—5@ 15y —) ul)
9o r

g1
" I\ 2 I, /
1
+ —%g—°+}l(@> 10 Sy S g, =0 (124)
g0 gJo Jo 91 T go

+
" I\ 2 I I\ 2 1d 9
_;9_1_;(@> _1M+(&> g2,
00 "\ ‘oo \a) ra |
a 1 / /
+%M291ue+y291g{a [u,e"‘%(%_!%)u@} UZ}

9 2
= %Mgl {g—z T (91 — 1)} (125)

9 1 / / 2
v”+;glv’—m2glv—l/2— |:U/e+%(@_&)ue:| v=0 (126)
g1 go G

We see that in the system (124) - (126) the function u, is decoupled from u,
and v. So, from the vanishing right hand side of (124) we can derive u, = 0.

To describe functions as power series with logarithmic factors by terms of
highest order we will use the following relation. For two functions f(©, f()
defined by converging series

f(i)<7") = Z f;i;) Pk (lnT)qi_l 1=1,2 we write
k>0

fi~ fo it pr=p2, ¢ = qo, fé(l)) = f(%) (127)
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Some simple properties are

fio ™ (lnr)® for p = ps and ¢1 > ¢

fit far 1 ) Or p1 > P2 (128)
(féo) + fo(o)> P (Inr)™  for py = py and ¢1 = ¢

f1f2 ~ féé)fég) Tp1+p2 (hl T)Q1+CI2’ (129)

and
féé) p; P (Inr)% forp; #0o0rp; =0,¢; =0
—fi~ (130)
dr 0 1 1

foo gir™ (Inr)® for p;, =0and ¢; # 0

First, we observe

9o 910 rs 9o 91 rs
9oa) ~ =1L, g1y ~ 1, LNLN—W 20 LN—2—3 (131)
go(1) g1(1) T Jo(1) g1(1) r

We will now assume, that r¢ < r and r < %l%, ie. %,uQ < T% Furthermore,
we set m = 0. Then, from (125) and (126) we get

9 9 d .
" l 2 / 2 1 S
ue(l) + ; ue(l) - ﬁ Ue(1) +v E [Ue(l)v(l)] ~ o i ﬁ (132)
2 2
oy + vy =V [l v~ 0 (133)

Defining for some ry > rg the variables
Fi=_, 3:=In (1) (134)
To To

we use the Ansatz
ue(l)(r) ~ ﬂe(l) P gna U(l)(T) ~ 27(1) 7 P2 g2 (135)

To ensure that the coupling term in equation (133) has the same order of r
resp. 7 as the remaining terms, u’e(l) should have order —1, hence p;;) = 0.
In equation (132) the coupling term should have the same order as the right
hand side, i.e. u’e(l)vé) must be of order —1, so that the derivative has order
—2. Then follows py1y = 0. Inserting now (135) with pi1y = p2y = 0 into
(132) and (133) we get

q1(1) 2q1(1)

_ 1\ cn—1 1) ~ sny—1 vy S91(1)
Ue(1) S + Ue(1) S Ue(1) S
7,2 e(1) ,,,.2 e(1) 7,2 e(1)

o, d 1 B
2 @) ey 0y 3 [;Sq“””"z<l> 1} ~

Ue(1)
7»2

2570 + 12 gy B §HOTROT] ~ =55 (136)
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a2(1) . - 1 2G01) . 1
—71)(1)8‘12“) + = Uy 520
4oy
11) <2~ - _
_ 12 ; Ugu) 0(1)32q1(1>+q2<1) 2
va) i 2 - _
2 (o) 20~ — 17 Q%(l) 7@(1)‘()‘2(]1(1)%12(1> T~ 0 (137)

Equation (137) implies go1) — 1 = 2qi01) + 20) — 2, i.e. qiq) = % Then,

(136) gives qi1) +2q21) —1 =0, i.e. o) = i. The coefficients are obtained
from

v? q1(1) Ue(1) 17(21) = %/Ns and  go(1) = v? qu) ﬁg(l)

We get
1 ~ 1
ue(l) = ;, U(l) = <% 7”5) : (138)

te(1) (1) ~ % {hl (%)] % ;o (r) ~ (% Ts)é {ln (%)]i (139)

The resulting gravity —grad v(;), generated by the scalar field, has the amount

d 1 31 11 -
Gsay ~ T-va) ~ = (2 £ G) - M:2 - [ln <L)} (140)

dr 4\ v c r To

and

ENY

This corresponds to the description of observed gravity Go by Newtonian
gravity Gy for the outer regions of galaxies in [12] and [17] by

N
N
N

1
Mz —
r

Go~ (GLGn)? = (G G) (141)
up to the weak logarithmic term, when Gy < G, ~ 107 %ms2.
Now, we can use a Robertson series [5] to get a second approximation of

the metric:

2 N o1
Jo(2) = —1+C—QU(1): —1 40 54, 9
9 where @(1) = C_2 17(1) (142)
L1
g2y = 1+ 2V = L+ vq) 83,
assuming
1
_ 1 4 12
b st <1 or r<rge’y with — =—  (143)
o (5 MG)
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For the derivatives of the metric elements we get

1 —

. .3 1
96(2) ~ 91(2) ~ Ar vy s 4, 96’(2) ~ 91’(2) ~ ) Va)s 4, (144)

N[

while according to (143) we set

o) ~ —1, qio) =1 (145)
Again we assume rg < 1, 1 K %i and m = 0. Then, for corresponding

functions ue(2), Ue(2), V(2) €quations (120) - (122) give uq9) = 0 and

te(z) % Ue(z) %Ue@) + VQ% [wevly] ~ —pify % 53, (146)
o+ 2y = ] vy ~ 0 (147

For the Ansatz
Ue(2)(T) ~ T2y TPHPEDE | o) (1) ~ Ty TP2HFLE) (148)

we get again pj(2) = 0 from equation (147) and for the coupling term in (146)
in comparison with the right hand side pyo) +2pa2) —2 = —1, i.e. pya) = %
With these first results we insert (148) into (146) and (147) and get

ae 2 ~ _ ~ _ ~
7,(2) [(J1(2) 1 4 2(]1(2) 01 _9 8611(2)}
V2

d
+— i 62 . §Q1(2)+2612(2)*1 ~
o q1(2) Ue(2) V(2) ar [ }

2
v 2

P _ o 1 1
o 1@ (€12) +2qo2) — 1) The(z) ) . §N@F2RE2 ~ —poF) - 52 (149)

1
4

_3
2

T2 T2 5O 4 Gy 72 52O
2) (@)

2 2 ~2 ~ —32 ~2qy(2)+a2(2)—2
—V7 (i (2) Ug(z) V) 7 2 87HETRE ~

Dy 12 [35%20 — 12 ¢y Wy 2002~ 0 (150)

Now, equation (150) implies ga2) = 2qi(2) + Ga2) — 2, i.e. qi2) = 1. Then,
(149) gives qi2) +2qa2) —2 = % Jle gy = %. The coefficients are obtained
from

1/2

% Q1(2) (Q1(2) + 2 QQ(Q) — 1) 'ae(Q) '17(22) = —/j, 17(21) and % = y2 q%(Z) 'ZL?(Q)
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- 33 1 N 2 /p 31 4 p1 11
Ue) = "5 Y@= o3 (;) Tolm = o3 a0 s (151)
and
33 1 441 1
2 r 7 1 r
. ~—""In(—], ~— = 2 In| — 152
Ue(2)(T) 5, n(ro) V(2)(7) e r2re [n<7“0>} (152)
The resulting gravity, generated by the scalar field, has the amount
3
d 2w 11 11 r\|*
~—vog~—5—(2G)2 =M2 — |In| — 153
Gsea ar’® 31 1/( ) 3 r3 {n (7"0>:| (153)

and is stronger than Gg(;) in the sense of a greater exponent in 7~2 than that
in 77!, but with a lower coefficient. Therefore, the higher gravity would act
on longer distances and could describe the cohesion of galaxy clusters, which
can not be explained sufficiently by gravity with the strength of Gg).
Finally, we will consider the case of very large r > %i, so that we have

to take into account the term § p? g1 u. in equation (125). For the searched
functions, in this case denoted by u,(s), Ue(3), V(3) We get uy3) = 0 and

1]g, 2
Ug(z) ~ & = —0——g—1] 154
®) 9#{90 ~ (g —1) (154)
Then, for the Ansatz
ue(3)<7”) ~ ﬂe(g) REOEEHON U(g)(?“) ~ ?7(3) 7P2(3) §92(3) | (155)

we can assume py(3) < —1 and gy ~ 1 for large . For m = 0 equation (126)
implies that

2 /

" B 7 P2(3)
U(3) + ;U(g) = U(g)

5 (P2 (P +1) 520+
(2 P23) + 1) G2(3) §ee ! 4 G2(3) (Q2(3) — 1) 5(”(3)_2] (156)

must have an order py3) + 2pi3) — 2 < pa) — 4 with respect to r resp. 7.
This is satisfied only for gy3) = 0 and pas) = 0 or py@) = —1. For pyi3) =0
the function vy would be constant and the gradient gives no contribution
to gravity. For py3) = —1 we get

To
r2

v (1) ~ 0 7 and Gs) ~ e ~ ) (157)

i.e. for very large distances the gravity generated by the scalar field has the
order of Newtonian gravity.
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6 Cosmology

Next, we shall describe the dynamics of a homogeneous, isotropic, flat uni-
verse. The corresponding metric should be diagonal with identical compo-

nents for the three spatial dimensions, depending only on time, i.e.

g = diag (g0, 91,91, 1) with go = go(t), 91 = 91 (2),

The only non-vanishing Christoffel symbols (1) are

for the Ricci tensor and the Ricci scalar we get

ROOI%QOR, Riizggléa R:6R>

Roo — %Rgoo = —%QOR, Rii — %Rgu‘ = —%Q1R

(158)

(159)

(160)

(161)

Because of the isotropy the spatial components u; of the vector field vanish.

Hence, the additional fields are ug = ug(t) and v = v(t).

We may now calculate the terms N - A/ defined in (83) - (86), (95)

- (99) and (106).

L .
N = (385,
90 9o g1

0

2 g() 2 gl
NG W) = 57 o, NPWU) = =5 L,
9o 90

go 291 ’
’/\/E)(‘l) — 32’ '/\/;(4) — 0
g1
1
./\/(5)(2/{) = —u?
Jo
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(162)

(163)
(164)
(165)

(166)

(167)



NOWU, o) = ~ {umL (_%@Jr%ﬂ) uo]

9o 9o g1
NOQW,ou) = NOu,ou) = 0
NO (v, 0v) = iDQ
90
. . .
N U, ou, 0°uU) = —{uo+ [—§@+gﬂ] iy +
90 9o 91

+ do (go>2 SO0 (glﬂ}
e T\ ) Ti il
9o 90 9o 91 g1
N U, ou,0°U) = 0
1
NI (y, v, 0%0) = —

90

For the reduced Lagrangian, defined in (114) we get

) 1 . : 2
L = l{%(VQUQqu)—[uo—i—(—l@—kéﬂ)uo}

9o 9o 90 ‘o
: 1 90 9,22 1.2 1,2 2
— uO—Z%uO —THU, F 50T+ 5mgev
Then, equation (116) gives

g{uﬁ <—§%+§@) u} — 2P0l + 1 0?
—%goﬁi—l—goﬁ = 700
—?5)91]%4'91£~ = KT

(168)

(169)
(170)

(171)

(172)

(173)
(174)

(175)

(176)
(177)

for (a, 8) = (0,0) and («, B) = (4,4), while equation (48) is relevant only in

the case v =0
1 1 )
— i, + (—§@+§@) 0
Jo 0 90 (251
L ho, () 5909 g\’
4B () 128 ()]s
o o 9o Jo 1 g1

401 . . .
il (R - e
t 1 9 9o g1 g1
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Equation (49) gives

1 1 . . 2
—i—m’v— 1= {u0+(—§@+gﬂ>uo} v =0 (179)
Yo g1

We consider the universe as matter dominated, i.e.

Tos = pPads With ¢, 07 = g*%¢, d5 = 2, (180)

where p is the matter density and ¢, the four-velocity of the matter. In the
isotropic case we have ¢; = 0 for i > 0 and hence g, '¢2 = 2. So we get

Top = diag (6290 0, 0,0, O) (181)

with p = p(t). Neglecting radiation the preservation of mass gives

p(t) Da ()] = plte) [xa(to)]* =: My (182)

for a starting point ¢y, where x;(t) describes the expansion of the universe
and can be defined by x7 = ¢;. Now, the system (176), (177) is equivalent
to

. . _3
it (F1 23 2) o)~ gt 4407 = wetMogos? (159
1
ol = 39k (184)

To find the behavior of the unknown functions for large times we use again
an Ansatz similar to (135) with the variables

t= i, W :=1In (-) (185)

Uo(t) ~ Ut W2, v(t) ~ TP WS, (186)

First, we want to evaluate the exponents p; so, that equations (178), (179)
and (183), (184) can be fulfilled. Since R is of order —2, from (175) and
(184) we obtain ps = —1. Then, equation (178) multiplied by g, gives
Py — 2 =ps+2p3 —2 =py — 1, hence py = —2 and p3; = 0. Finally, from
equation (183) we derive —2 = py — %pl and get p; = 0. We could easily
check that for these values of the p; in each equation all terms have the same
order with respect to t.
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Now, we insert (186) into the equations. For some terms we have to take
into account lower order terms, since the highest order terms vanish. We find

Jdo R ~ 1 (1 — %ql + %QQ) t_2 UNJ_Q (187)
and
gl ~ t7? %(v252@2qg’+1)( Yo+ 3 q) gyt w0t
—l—lu_otou?‘p — 4u Ut W 2q2
+ p 2q3 2+ m ToU t2 qo+2q3} (188)
Equation (183) gives
2 [,u ((]2 + §q1 _ %qo) ﬂotoqu_l _ 2M2_2t(2) ~2q2
—|—%p§5 w2 2} ~ 72k M090§12t TG (189)

Multiplying (178) and (179) by go we get

)
72 (64+ 2 12 gy tg 0 ) U, to w
d o _
20 = (024 § 0 — 5 90) TVt 0 T
~ t*3[(6+2u Go to W ™) Uy to W
+ V7 (e +3a —5) (@2 + 265 — q0) UV’ tow*
~ 73 pqgetgw ! (190)

2+QQ3—1}

and
t 2w [qgufl + m2 gy tgw®
+ v (C]Q+%CI1—%C]0) Go | upw T2~ () (191)

Now, we search values for qo,..,q3 so that the relations (184) and (189) -
(191) can be solved up to terms of lower order, i.e. the greatest exponents
in powers of w should occur at least two times while all other are smaller in
each of the relations. A solution can be found only, if we set 7 = 0 so that
(191) is satisfied automatically and g¢s is irrelevant. The other exponents are
Go=-1,q = % and g; = —2. Then, the values of g,, g; and @, are obtained
from a comparison of coefficients for the terms of highest order with respect
to w.

%,uﬂoto:—— %,u to—/{cMogOg1 2, 6Uyto =21 Gyts (192)
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Finally, we get

ug(t) v — 1 {m (3)} a0 (193)

We may now discuss the meaning of this result for the expansion of the uni-
verse and the observable redshift in comparison with the Robertson-Walker
metric using the representation of the line element

(d8)” = gap dz® da’ =} (dw)* — xj (dt)° (194)
In our case x2(t) = —go(t) and x%(t) = g1(t), while for the Robertson-Walker
metric X(()RW) =1

If we consider two points P; and P, at a fixed time ¢, we have dt = 0 and
hence ds = x1dx. Integrating from P; to P, gives for the distance

d A5 _ X
As = x1 Az, aAs = x1 Az and hence th—SS = % = H(t) (195)

H describes how fast the distance of two points increases in relation to its

value. From (193) we get
1 t\]"
i P 196
t {n (tO)} (196)

What we actually observe is the redshift of light, from which we conclude
to the velocity of the emitter. Since light moves with velocity ¢, it satisfies
ds = 0 and (194) gives

H(t) ~

win

do = X0 gt (197)
X1

Considering light sent from a point P, with wavelength Ay at time ¢q +
Aty to P, with wavelength A; at time t; + At; we can assume that the
distance between Py and P; does not change during short times At resp.
At,. Integration of (197) for At; = 0 and At; = \; (i = 0,1) gives

Py t1 t1+X1
/ de = / Xolh) 4y _ / Xolt) o) (198)
Py to X1<t> to+Xo X1<t>

Subtracting the integral from ¢y, + A\g to t; we get

t to+Xo t t1+A1 ¢ t
o Xolo) z/ xoll) gy :/ Xol) gy . 5, Xolt) (199)
X1 (to) to t x(t) x1(t1)
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and finally
A1 xolto) xa(t)

Ao xalto) xo(t)
i.e. the redshift of observed light is determined by the function

Ly = 00 (il,uwaMo) ; {m (%)r (201)

~ Xo(t) 22

Interpreting this observation in the sense of the Robertson-Walker metric,
L would correspond to XgRW). Since the second derivative of L is positive,
this interpretation suggests an accelerated expansion of the universe. A time
contraction in the past could also explain the observations of objects in the
early universe, which seem to have developed much faster than expected.
Reminding the identification of ¢ with z° to get a 'real’ time one has to

replace t by %t.

(200)

Wl

7 Discussion

In the case of a central mass the investigation of the scalar field in a first
approximation showed a behavior of the generated gravity for great distances
from the center, which very good coincides with observations in galaxies,
while a second approximation gave a qualitatively stronger gravity for larger
distances, which could possibly describe galaxy clusters without the need of
dark matter.

In cosmology the long term development showed a logarithmic expansion
of the universe, but a time contraction in the past, which results in redshifts
of observations, that can be interpreted as an accelerated expansion. Thus,
no dark energy would be needed.

For the verification of the theory in galaxies and galaxy clusters and
the determination of the coupling constants p, v the system (117) - (122)
with at least four unknown functions or more generally (47) - (49) has to
be solved numerically and compared to observed motions. The obtained
coupling constants should be sufficiently small such that in the solar system
the deviations from general relativity are negligible in the sense of (51).

Since matter is coupled only to the tensor field the theory should not be
falsified by observations of gravity waves [9].

Stability was examined in the flat case for the system of vector and scalar
fields, which can be generalized to a small warping of spacetime. A further
investigation of spherically symmetric perturbations in the sense of [19], [1§]
was not possible, since the simplifications derived there could not be achieved.
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At least, in the two considered cases we got solutions for the highest order
terms of a power series Ansatz with logarithmic terms. Therefore, we expect
no exponential growth for any of the participated fields.

The results about solutions in the central symmetric case and in cosmol-
ogy are only valid for sufficiently large distances from the center or a long
term, respectively. So it would be important to find a description of the
behavior of gravity near great masses and in the beginning of the universe.
Furthermore, rotating objects should be investigated.
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