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Abstract

It was realized as an important progress in the field of topological matters that the nontrivial

topological phase will be violated when temperature hits or exceeds a nonzero threshold. However,

the concept of anomaly of topological phase transition is firstly introduced in the paper, refering

to the nontrivial topological phase at nonzero temperature transitioned from a trivial one at zero

temperature. A no-go theorem is here proved that the anomaly cannot happen to one-dimensional

fermionic flat-band systems. Besides, the existence of the anomaly is obtained and analyzed by

reexaming the mapping of the parameters of the system Hamiltonian in momentum space which

plays a pivotal role in the anomaly rather than energy band.

PACS numbers: 03.65.Vf,03.65.Yz

I. INTRODUCTION

Topological invariance is consistenly at the core of topology in mathematics, which is

usually characterized by topological invariants to classify topological objects. Often a newly-

found topological invariant implies an even finer partition of topological equivalence classes;

namely, two topological objects corresponding to different topological invariants must be

topologically nonequivalent. Nowdays such an abstract mathematical concept has been

widely applied in physics, especially in the field of topological matters [1–4], due to the cele-

brated TKNdN’s formula analogous to Gauss-Bonnet formula in differential topology, where

the quantized Hall transversal conductivity σxy in units of e2/h is 2π times an integer equal-

ing to the integral of Berry curvature over two-dimensional Brillouin zone or equivalently

two-dimensional torus [5, 7].

In the last decade, topological Uhlmann index or number was introduced as a new topolog-

ical invariant via Uhlmann phase to characterize topological phases in nonzero-temperature

quantum systems described by mixed quantum states [19–27]. It allows that classification

of topological matters can no longer be confined to the case of pure quantum states describ-

ing zero-temperature quantum systems. Besides, available studies have evidently indicated

that there exists a nonzero critical temperature Tc for topological phase transition [24–27],

i.e., the nontrivial topological index can be sustained below Tc but will be violated at and

above Tc, in accordance with physical intuition. However, it is unaware whether a nontrivial
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topological phase at nonzero temperature may be transitioned from a trivial one at zero

temperature. The issue is here addressed and answered by reexamining the planar mapping

of parameters of one-dimensional fermionic system Hamiltonians in momentum space. It

will be seen that the geometric configuration of the mapping is an important factor making

the phenomenon happen.

Topological Uhlmann index is based on the concept of Uhlmann phase which is briefly

and practically reviewed here by the language of fiber bundles. Uhlmann’s pioneer work

generalizes the notion of Berry phase from pure quantum states to mixed quantum states [19–

21]. Mixed quantum states ρ whose collection is denoted by ϱ are intrinsically operators, not

as well as pure quantum states |ψ⟩ constituting a Hilbert space endowed with the common

inner product (ψ1, ψ2) = ⟨ψ1|ψ2⟩. To constitute a Hilbert space endowed with a proper inner

product, mixed quantum states need a purification or homomorphism procedure: a mixed

quantum state ρ is decomposed as ρ = ωω† by Hilbert-Schmidt decomposition theorem,

where ω is a Hilbert-Schmidt operator and commonly called amplifier; next, given the non-

uniqueness of Hilbert-Schmidt decomposition, the amplifier ω can be expressed via spectral

decomposition ρ =
∑n

j=1 pj|φj⟩⟨φj| as ω =
√
ρu =

∑n
j=1

√
pj|φj⟩⟨φj|u where u ∈ U(n);

and then, there exists an bijective mapping between the operator ω and the state |ω⟩,
i.e., ω ←→ |ω⟩ = ∑n

j=1

√
pj|φj⟩ ⊗ ⟨φj|u; at last, all those states |ω⟩ constitute a Hilbert

space Hω := H ⊗ H∗ endowed with Hilbert-Schmidt product (ω1, ω2) = Tr(|ω1⟩⟨ω2|) as

inner product. So far, the quadruple (Hω, ϱ, π,U(n)) has formed a fiber bundle where

Hω/U(n) = ϱ or equivalently π(Hω) = ϱ.

Following the prevailing practice in developing Berry phase [6–28], which begins from

Berry’s parallel transport condition by minimizing the distance between two pure quantum

states |ψ1⟩ and |ψ2⟩, i.e., mina1,a2∈U(1)∥ψ1a1 − ψ2a2∥, to obtain the Berry’s U(1) holonomy

a2a
†
1 = ⟨ψ2|ψ1⟩/|⟨ψ2|ψ1⟩| and furthermore the Berry’s connection 1-form AB = daa† =

−iIm⟨ψ|dψ⟩, Uhlmann’s parallel transport condition by minimizing the distance between

two amplifiers ω1 and ω2, i.e., minu1,u2∈U(n)∥ω1u1 − ω2u2∥, can derive the Uhlmann’s U(n)

holonomy u2u
†
1 =
√
ρ2

−1√ρ1−1
√√

ρ1ρ2
√
ρ1 and moreover the Uhlmann’s connection 1-form

AU = duu† =
∑

i,j |ψi⟩
⟨ψi|[d

√
ρ,
√
ρ]|ψj⟩

pi+pj
⟨ψj| [22, 26]. Exactly as Berry’s U(1) phase factor

stemming from the accumulation of the Berry’s connection 1-form along a closed trajectory,

i.e., eiΦB = e
∮
AB , Uhlmann’s U(n) phase factor originates from the accumulation of the

Uhlmann’s connection 1-form along a closed trajectory, i.e., u = Pe
∮
AU , where P represents
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the path ordering operator. Thus far, Uhlmann phase can be properly defined as

ΦU := arg Tr(ρPe
∮
AU )

which possesses a U(n)-gauge invariance as well as Berry phase ΦB = −i
∮
AB posseses a

U(1)-gauge invariance [6–8].

II. TOPOLOGICAL UHLMANN INDEX DESCRIBED BY TWO-BAND HAMIL-

TONIAN’S PARAMETERS

Two-band hamiltonians for one-dimensional fermionic systems are considered in this pa-

per, which can be abstractly described as a quadratic form H =
∑

kΨ
†
kHkΨk in units of

Boltzmann constant and

H(k) = h(k) + p(k) · σ

= h(k) + px(k)σx + py(k)σy + pz(k)σz

where h(k) denotes the band offset and σ = (σx, σy, σz) are the Pauli matrices. The band

eigenvalues of Hk can be written as

E±(k) = h(k)±∆(k)

where ∆(k) = |p(k)|=
√
p2x(k) + p2y(k) + p2z(k) denotes the half of the gap of H(k), and the

corresponding eigenvectors can be represented by

|ψ±(k)⟩ =
1√

2∆(k)[∆(k)∓ pz(k)]

 px(k)− ipy(k)

±∆(k)− pz(k)


When the system is at thermal equilibrium with particle number conserved and Fermi level

in the gap, its one-particle Gibbs states can be expressed via Tr(p(k) · σ) = 0 as

ρ(k) =
e−

H(k)
T

Tr(e−
H(k)
T )

=
1

2

[
1− tanh ∆(k)

T

∆(k)
p(k) · σ

]
.

Since px, py, pz are on equal terms in the Hamiltonian H(k) and the Gibbs state ρ(k) is

independent of the band offset h(k), pz(k) ≡ 0 and h(k) ≡ 0 can be set throughout this

paper without loss of generality, which also means H(k) has a chiral symmetry.
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By applying the following equation

p(k) · σ|ψ±(k)⟩ = ±∆(k)|ψ±(k)⟩,

the Uhlmann’s connection 1-form AU for ρ(k) proves to be

AU =
∑

i,j=+,−

|ψi(k)⟩
⟨ψi(k)|[d√ρ,√ρ]|ψj(k)⟩

pi + pj
⟨ψj(k)|

=
[
1− sech

∆(k)

T

](
⟨ψ−(k)|dψ+(k)⟩|ψ−(k)⟩⟨ψ+(k)|+ ⟨ψ+(k)|dψ−(k)⟩|ψ+(k)⟩⟨ψ−(k)|

)
.

The planar mapping p : R → R2 winds around a contour ∂S on the O − pxpy plane as

k changes as cycle of 2π, provided here that S denotes a simply connected and open area

surrounded by the contour ∂S. The eigenvalues and eigenvectors are now expressed by px

and py as

E± = ±∆(px, py), |ψ±⟩ =
1√

2[p2x + p2y]

 px − ipy

±
√
p2x + p2y

 ,

and in the basis of which the Uhlmann’s connection 1-form AU comes to be

AU = i
1− sech

√
p2x+p

2
y

T

2(p2x + p2y)
[pydpx − pxdpy]σx.

Due to algebraic identity σ2
x = 1, the Uhlmann’s U(n) phase factor turns out to be

u = Pe
∮
AU

=
1

2

[
e
i
∮
∂S

pydpx−pxdpy

2(p2x+p2y)
−i

∮
∂S sech

√
p2x+p2y

T

pydpx−pxdpy

2(p2x+p2y) + e
−i

∮
∂S

pydpx−pxdpy

2(p2x+p2y)
+i

∮
∂S sech

√
p2x+p2y

T

pydpx−pxdpy

2(p2x+p2y)

]
+
σx
2

[
e
i
∮
∂S

pydpx−pxdpy

2(p2x+p2y)
−i

∮
∂S sech

√
p2x+p2y

T

pydpx−pxdpy

2(p2x+p2y) + e
−i

∮
∂S

pydpx−pxdpy

2(p2x+p2y)
+i

∮
∂S sech

√
p2x+p2y

T

pydpx−pxdpy

2(p2x+p2y)

]
.

Furthermore, the corresponding Uhlmann phase can be derived as

ΦU = argTr(ρPe
∮
AU )

= arg

[
cos

∮
∂S

pydpx − pxdpy
2(p2x + p2y)

cos

∮
∂S

sech

√
p2x + p2y
T

pydpx − pxdpy
2(p2x + p2y)

]
,

whose possible value is merely 0 or π so that the topological Uhlmann index can be defined

by

nU := ΦU/π =

0, ΦU = 0

1, ΦU = π
,

where the indices 0 and 1 correspond to the trivial and nontrivial topological phase, respec-

tively.
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III. ANOMALY OF TOPOLOGCIAL PHASE TRANSITION AT NONZERO TEM-

PERATURE

Considering he identity∮
∂S

pydpx − pxdpy
2(p2x + p2y)

=

0, (px, py) = (0, 0) /∈ S ∪ ∂S

π, (px, py) = (0, 0) ∈ S

where the point (0, 0) on the O− pxpy plane is the unique singular point of the integral, the
topological Uhlmann index for one-dimensional fermionic systems with two-band hamilto-

nians at zero temperature is followed by

n0
U = lim

T→0
arg

[
cos

∮
∂S

pydpx − pxdpy
2(p2x + p2y)

cos

∮
∂S

sech

√
p2x + p2y
T

pydpx − pxdpy
2(p2x + p2y)

]
=

1

π
arg

[
cos

∮
∂S

pydpx − pxdpy
2(p2x + p2y)

]

=

0, (px, py) = (0, 0) /∈ S ∪ ∂S

1, (px, py) = (0, 0) ∈ S

where the interchangeability between limitation and integration holds. Namely, the system

at zero temperature is at the trivial and nontrivial topological phase when the singular point

(0, 0) is outside and inside the contour ∂S, respectively. It had already been indicated that

there exists a nonzero critical temperature Tc for the nontrivial topological phase which can

be sustained below Tc but will be transitioned to the trivial one at and above Tc [24]. Such

kind of topological phase transition is called normal.

However, it is to be naturally asked if the trivial topological phase may be transitioned

to the nontrivial one as temperature rises from zero. Such kind of topological transition is

in the paper called anomaly. To be more precisely, the definition of anomaly is given below:

Definition. Provided the point (0, 0) on the O−pxpy plane is not a singularity, i.e., (0, 0) /∈
S ∪ ∂S, if the topological Uhlmann index which now reduces to

nU =
1

π
arg

[
cos

∮
∂S

sech

√
p2x + p2y
T

pydpx − pxdpy
2(p2x + p2y)

]
.

jumps from 0 to 1 as temperature T rises from zero, then such kind of topological phase

transition is called anomaly.

The issue whether and how the anomaly may happen will be subsequently answered.
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FIG. 1. The planar mapping p “Pac-Man” in momentum space (left) and the corresponding

anomaly of topological Uhlmann index driven by temperature (right). The contour is composed of

a red curve, a blue curve and two green line, where the red curve denotes the constant lower bound

function ∆l(θ) ≡ 0.5 and the blue curve denotes the constant upper bound function ∆u(θ) ≡ 2 of

modulus r, respectively. The pair of green dashed lines starting from original point are tangent

rays of the contour to confine the azimuth θ in [−5π/6, 5π/6]. The range of temperature T is set

between 38% of the minimum gap and 38% of the maximum gap as considered. All parameters

are dimensionless.

Theorem. The anomaly cannot happen to one-dimensional fermionic flat-band systems.

The theorem is equivalently to say there does not exist a transition temperature of the

anomaly.

Proof. Considering φ(T ) :=
∮
∂S

sech

√
p2x+p

2
y

T

pydpx−pxdpy
2(p2x+p

2
y)

as a function of temperature T , topo-

logical Uhlmann index nU may change with temperature T , especially that nU = 1 is equiv-

alent to that cosφ(T ) < 0. For the further calculation of φ(T ), it is convenient to transform

the O− pxpy plane to the polar coordinate plane. Here, every point (θ, r) of S ∪ ∂S in polar

coordinate representation satisfies

θmin := (arctan
py
px

)min ≦ θ ≦ (arctan
py
px

)max =: θmax

and

∆l(θ) ≦ r ≦ ∆u(θ)

where ∆l(θ) and ∆u(θ) as the two segments of the contour ∂S divided by two tangent rays

θ = θmin and θ = θmax are the lower and the upper bound functions, respectively.

Via Green’s formula in calculus, φ(T ) is calculated to be

φ(T ) =
1

2

∫ θmax

θmin

[
sech

∆l(θ)

T
− sech

∆u(θ)

T

]
dθ.
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By virtue of the inequality

sech
∆l(θ)

T
− sech

∆u(θ)

T
< sech

∆min

T
− sech

∆max

T
< 1

where ∆min and ∆max represent the half of the minimum and maximum gap, respectively, a

necessary estimate must be

π <
π

sech∆min

T
− sech∆max

T

< θmax − θmin < 2π

or equivalently

sech
∆min

T
− sech

∆max

T
>

1

2

in order that cosφ(T ) < 0 possibly holds. Furthermore, due to the inequality 0 < sech∆max

T
<

sech∆min

T
< 1, a reasonable estimate of transition temperature of the anomaly T ac is followed

by the inequality

sech
∆max

T
<

1

2
< sech

∆min

T

which must hold and defines the admissible range of T ac , i.e.,

∆min

ln(2 +
√
3)
< T ac <

∆max

ln(2 +
√
3)

namely, T ac is situated approximately between 38% of the minimum gap and 38% of the max-

imum gap. It immediately implies there cannot exist any T ac for one-dimensional fermionic

flat-band systems. And the proof is completed.

Besides, the theorem also implies the existence of the anomaly can merely happen to

one-dimensional fermionic non-flat-band systems.

To demonstrate the existence of the anomaly, the planar mapping p(k) should be selected

as simple as possible in order to simplify the calculation of φ(T ). Apparently it is the case

that the upper and lower bound functions ∆u,l(θ) are both selected as constant functions,

i.e., ∆u(θ) ≡ ∆max and ∆l(θ) ≡ ∆min. Accordingly, the contour of the planar mapping

p(k) looks like “Pac-Man”, a famous video-game character as illustrated in Fig.1(left). As

expected, the topological Uhlmann index nU indeed happens to jump from 0 to 1 and to

be sustained within a certain temperature range; T ac appears in the range between 38% of

the minimum gap and 38% of the maximum gap, i.e., T ac ∈ (0.38, 1.52), as illustrated in

Fig.1(right). Such a simple example indicates that the concavity of planar mapping p(k)

about the point (0, 0) on the O − pxpy plane plays a pivotal role in inducing the anomaly.
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FIG. 2. The planar mapping p of Polyacetilene (left) with J1 = −2, J2 = 1 and Creutz Ladder

(right) with m = 2, Θ = π/6 in momentum space. Every contour is composed of a red curve and

a blue one which denote the lower bound function ∆l(θ) and the upper bound function ∆u(θ) of

modulus r, respectively. Every pair of green dashed lines starting from original point are tangent

rays of the contour to describe the range of azimuth θ. All parameters are dimensionless.

IV. DISCUSSION AND CONCLUSION

The following examples provide the reason why the anomaly of topological phase tran-

sition in one-dimensional fermionic systems was not found. Polyacetylene or a SSH model

introduced for topological insulating phase in momentum space is written by

HSSH = (−J1 − J2 cos k)σx + J2 sin kσy.

The corresponding planar mapping is a circle on the O − pxpy plane represented by the

equation
(px + J1)

2

J2
2

+
p2y
J2
2

= 1,

whose convexity about the point (0, 0) leads to θmax − θmin < π as illustrated in Fig.1(left),

and it is therefore impossible to cause the anomaly no matter how the temperature

T changes. Similarly, the same situation happens to Creutz Ladder (as illustrated in

Fig.2(right))

HCL = (m+ cos k)σx + sinΘ sin kσz

whose planar mapping is an ellipse on the O − pxpz plane represented by the equation

(px −m)2

1
+

p2z
sin2Θ

= 1,

and so does Majorana Chain

HMC = − sin kσy + (−m+ c cos k)σz,
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whose planar mappings is also an ellipse on the O − pypz plane.

Finally, it is here stressed that the admissible range of transition temperature of the

anomaly T ac as a reasonable but rough estimate based on two simple energy band indices,

the minimum and maximum gap, is a necessary rather than sufficient condition for the

anomaly of topological phase transition, which may be useful only after examining the

geometric configuration of the mapping of parameters of the system Hamiltonian.
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