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Abstract: Starting from fault dynamic equations, it is explained how real time evolution 1

of a seismic activation region’s elastic parameters preceding a major earthquake can be 2

modeled in terms of statistical physics. Initial evidence for model validity is provided by 3

deriving previously reported deviation of seismic activation earthquake occurence statistics 4

from Gutenberg-Richter statistics in time intervals preceding a major earthquake. 5

Keywords: seismic activation; fault dynamics; statistical physics; signal processing 6

Introduction 7

An increase in the number of intermediate sized earthquakes (M > 3.5) in a seismic region 8

preceding the occurrence of an earthquake with magnitude M > 6, referred to as seismic 9

activation, has been documented by various researchers [7]. For example, seismic activation 10

was observed in a geographic region spanning 21◦N − 26◦N × 119◦E − 123◦E for a period 11

of time between 1991 and 1999 preceding the magnitude 7.6 Chi-Chi earthquake [11]. 12

Figure 1 shows a schematic plot of the cumulative distribution of earthquakes of different 13

magnitudes in a seismic activation region in two different time intervals of equal duration 14

preceding occurrence of a major (7 < M < 8) earthquake at time τ = τ0. In this figure, τ 15

is a real time parameter, and τ0 is the characteristic time of major earthquake recurrence 16

assuming an earthquake of similar magnitude occurred in the same region at τ = 0 [20,29]. 17

Importantly, the cumulative distribution of earthquakes in a time interval of fixed width 18

increasingly deviates away from a Gutenberg-Richter linear log-magnitude plot as the end 19

of the time interval approaches τ0. 20

As a means of predicting the time τ = τ0 at which a major earthquake preceded by 21

seismic activation occurs, it has been hypothesized that the average seismic moment ⟨M⟩τ 22

of earthquakes occuring in intervals of time (τ, τ + ∆τ) preceding a major earthquake 23

obeys an inverse power of remaining time to failure law: 24

⟨M⟩τ ∝
1

(τ0 − τ)γ1
(1)

and that the cumulative Benioff strain C(τ), defined as: 25

C(τ) =
n(τ)

∑
i=1

M1/2
0,i , (2)

where M0,i is the seismic moment of the ith earthquake in the region starting from a time 26

τ = 0 preceding the major earthquake, and n(τ) is the number of earthquakes occurring in 27

the region up to time τ, satisfies [27]: 28

C(τ) = a − b(τ0 − τ)γ2 , γ2 = 1 − γ1/2. (3)
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Figure 1. Plot of the cumulative distribution of earthquakes of different magnitudes in a seismic
zone in two different time intervals of equal width preceding occurrence of a major earthquake at
∆τ = τ0 − τ = 0 [20,29].

The exponent selection of 1/2 in equation (2) is not necessary to derive formula (3) with 29

a different arithmetic relation between γ1 and γ2, but appears to have been selected by 30

previous researchers based on resulting predictions of major earthquake occurrence time 31

when formula (3) is fit to real seismic data, which suggest a typical value of γ2 is 0.3 [7,28]. 32

Notably, the validity of the accelerating seismic moment release hypothesis (1) has been 33

questioned by some researchers who claim normal foreshock and aftershock can account 34

for seismic measurements without moment acceleration [15,31]. 35

A model of seismic activation based on fault damage mechanics (FDM) has been used 36

to derive equation (3) with a value γ2 = 1/3 [4]. In this derivation, the occurrence of 37

seismic activation earthquakes progressively decreases the average shear modulus of fault 38

material in the seismic region where subsequent seismic activation earthquakes occur, and 39

the result γ2 = 1/3 is obtained using a Boltzman kinetic type description of the rupture 40

nucleation process in which ruptured faults of different lengths at different positional 41

locations grow and join together [26]. 42

In addition to the FDM model of seismic activation, an empirical statistical physics 43

model of seismic activation known as the Critical Point (CP) model has been put forth to 44

derive equation (3) with a value γ2 = 1/4 [20]. In this derivation, the inverse power of 45

remaining time to failure law: 46

⟨M⟩τ ∝
1

(τ0 − τ)3/2 (4)

is asserted based on identifying the mean rupture length L(τ) of earthquakes occuring at 47

time τ with the correlation length of a statistical physical system described by Ginzburg- 48

Landau mean field theory with a τ-dependent temperature parameter, whereby: 49

L(τ) ∝
1

(τ0 − τ)1/2 , (5)

and relation (4) follows from the scaling relation ⟨M⟩τ ∝ L(τ)3 which holds when the fault 50

material shear modulus is constant [21]. 51

Importantly, previous work on the CP model has not explained why it is physically 52

reasonable to describe seismic activation earthquake occurrence statistics with thermal 53

equilibrium statistical physics formalism [24]. Therefore, the first objective of this article 54

is to clarify how the FDM and CP models of seismic activation can be in correspondence 55

with each other. The second objective of the article is to use this correspondence to advance 56
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Figure 2. Schematic illustration of seismic activation in a 2D geometry at four different times τ in
which each black line represents an earthquake fault rupture that has already occured, and the red
lines represent earthquake faults along which shear stress is increasing prior to rupture [18].

rigorous testing of seismic activation model predictions against seismic measurements, 57

and in the event of positive experimental verification, advance earthquake prediction 58

technology. 59

Motivating the presented correspondence between FDM and CP seismic activation 60

models is previous work suggesting that the real time evolution of the elastic model 61

of a seismic activation region, expressed in terms of a finite element method stiffness 62

matrix, can in certain cases be described with statistical physics renormalization group flow 63

equations [2,13]. This theoretical work may have computational utility to seismic activation 64

modeling if dimensional reduction of statistical physics models at critical points can be 65

used to systematize dimensional reduction of seismic activation region stiffness matrices in 66

windows of time preceding a major earthquake. 67

The outline of the article is as follows. Section 2 explains how fault rupture dynamics 68

can be described in terms of soliton equations, and how these soliton equations can be 69

used to characterize critical points of statistical physics models whose mean field values 70

at criticality correspond to unstable seismic displacements. Section 3 further claims that 71

seismic activation earthquake occurrence statistics are expressible in terms of the Yang-Lee 72

zero distribution of a statistical physics model partition function, and uses this claim to 73

account for deviation of occurrence statistics from Gutenberg-Richter statistics before a 74

major earthquake. Section 4 concludes by commenting on how validity of statistical physics 75

modeling of seismic activation can be tested against seismic measurements. 76

Materials and Methods 77

Seismic Activation Fault Dynamics 78

Figure 2 shows a 2D schematic of earthquake occurrence in a seismic activation region [18]. 79

In this figure, the activation region is shown at 4 different times up to and including the 80

moment after a major earthquake has occurred. At each time, black lines indicate fault 81

ruptures associated with earthquakes that have occurred, and red lines indicate faults 82

where stress is accumulating prior to earthquake occurrence. Qualitatively, the picture 83

suggests the occurrence of successively larger earthquakes, associated with successively 84

longer rupture lengths, leads to increased strain along the major earthquake fault as seismic 85

activation proceeds. From an FDM point of view, this increased strain occurs with a 86

reduction in the average shear modulus of material in the vicinity of the fault, until fault 87

rupture occurs at time τ = τ0, when fault material is marginally stable with respect to 88

material displacement perturbation [10]. 89

Quantitatively, this picture of seismic activation leading to rupture along a major 90

earthquake fault is supported by modeling of earthquake fault dynamics in 1+1 spacetime 91

dimensions, whereby the differential equation: 92

A∂2
τU(τ, z)− B∂2

zU(τ, z) + C∂τU(τ, z) = − sin(U(τ, z)/D). (6)
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has been used to model both creep along a major earthquake fault and rupture propagation, 93

depending on whether or not frictional forces dominate the fault dynamics and shear 94

stress evolution along the fault is more appropriately described with a reaction diffusion 95

equation or a solitary wave equation [9]. In this equation, τ is real time, z coordinates a 96

direction of creep or slip along an earthquake fault, U(τ, z) is the local displacement of 97

elastic material across the earthquake fault, A∂2
τU(τ, z) is the local inertial force acting on 98

the fault material, B∂2
zU(τ, z) is the local elastic restoring force acting on the fault material, 99

and C∂τU(τ, z) and sin(U(τ, z)/D) are local frictional forces acting on the fault material 100

attributed to contact of the material with tectonic plates on either side of the fault. For 101

C = 0, an (anti-kink) soliton solution to equation can be interpreted as propagation of 102

earthquake fault rupture [30]. 103

To generalize this description of fault creep and rupture in 1 spatial dimension to 3 104

spatial dimensions, first note that if the seismic activation region resides in an elastic half 105

space H, then real time evolution of the elastic displacement of material in the region is 106

specified by a path γ(τ) in the Lie group G = Di f f (H) [1]. For τ < τ0, this path specifies a 107

gradual deformation of the activation region’s quasi-elastostatic equilibrium configuration 108

in which strain energy is minimized, whereby a displacement u⃗ of the region’s equilibrium 109

configuration at tme τ increases the strain energy of the region by: 110

∆E =
1
2

u⃗TK(τ)⃗u, (7)

for K(τ) equal to a positive definite stiffness matrix of the region at time τ. At τ = τ0, 111

this stiffness matrix has at least one zero eigenvalue corresponding to a marginally stable 112

seismic displacement u⃗0 that describes the major earthquake faulting mechanism. For 113

τ > τ0, when the path γ(τ) specifies fault rupture propagation, the equation of motion of 114

the tangent vector γ′(t), pulled back to the Lie algebra g of vector fields on H by left (or 115

right) translation, is a soliton equation describing parallel transport of the initial unstable 116

seismic displacement u⃗0. 117

Seismic Activation Region Finite Element Model 118

In finite element method terms, the Lie algebra g is approximated by the vector space 119

of nodal displacements associated with a mesh of H. More specifically, suppose a major 120

earthquake hypocenter resides in a 3D elastic half space H in such a way that the elastic 121

parameters of the half space are constant outside a hemisphere of diamater L0 centered 122

at the earthquake epicenter. Then, if each fracture within the region is defined as a thin 123

low elastic impedance layer, a Dirichlet-to-Neumann map is defined at the hemisphere 124

boundary, and a finite element mesh accounting for fracture and boundary geometry is 125

defined, the elastic model of the region at time τ can be written as a frequency dependent 126

stiffness matrix K(ω; τ) with dimension equal to the number of finite element nodes [5,25]. 127

Similarly, using the density of the activation region, a time dependent lumped mass matrix 128

M(τ) can be written with dimension equal to the number of finite element nodes. Together, 129

the stiffness and mass matrices define a nonlinear eigenvalue problem: 130(
K(ω; τ)− ω2M(τ)

)
u⃗ = 0, (8)

at each time τ, whose non-zero solution vectors u⃗ specify nodal displacements associated 131

with elastic resonant frequencies ω of the activation region. 132

Statistical Physics Mean Field Theory 133

To introduce the relevance of statistical physics to modeling real time evolution of the 134

seismic activation region elastic model, suppose that in a window of time preceding τ = τ0, 135
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K(ω, τ) is independent of ω, and W(τ) = K(τ)M(τ)−1 has (τ-dependent) real eigenvalues 136

λi associated with orthonormal eigenvectors u⃗i. In this event, writing: 137

u⃗ = ∑ ci⃗ui, (9)

it follows that: 138

u⃗TW(τ)⃗u = ∑ λi(τ)c2
i , (10)

and assuming each λi(τ) > 0 for τ < τ0, the onset of instability of the seismic activation 139

region at τ = τ0 coincides with vanishing λ1(τ0) = 0 of at least one of the eigenvalues. 140

Now suppose that a statistical physics mean field theory is defined in such a way that 141

its Landau free energy is given by expression (10) plus higher order terms in mean field 142

values ci [Goldenfeld]. Also suppose that the temperature of the system is determined 143

by the parameter τ in such a way that the sign change of λ1(τ) at τ = τ0 corresponds to 144

ordering of the statistical physics system with a non-zero value of c1 for τ > τ0 . With these 145

suppositions, the stiffness matrix K(ω, τ)M(τ)−1 is a matrix coefficient of a statistical field 146

theory with a critical point at τ = τ0, and the order parameter fields of this theory have 147

a classical physics interpretation as magnitudes of activation region nodal displacement 148

from mechanical equilibrium. Moreover, if the statistical physics model is defined so that 149

a discontinuous gap in the coefficient λ1(τ) occurs at τ = τ0, as known to occur for the 150

2D XY model, the mean field condition c2
1 ∝ −λ1(τ) implies the quantity

√
−λ1(τ

+
0 ) is 151

proportional to the rupture length of the major earthquake. 152

Results 153

To relate the discussion in the previous chapter to seismic activation earthquake occurrence 154

statistics, now suppose the negative eigenvalues of the stiffness matrix K(τ)M(τ)−1 are 155

the Yang-Lee zeroes of the statistical physics model partition function [Bena et al.]. With 156

this supposition, Yang-Lee zero statistics should describe the cumulative distribution of 157

seismic activation earthquakes with rupture length
√
−λ, a prediction that is now verified 158

to the extent that it accounts for the deviation of seismic activation earthquake occurrence 159

statistics from Gutenberg-Richter statistics. 160

In the time interval (τ, τ + ∆τ), let ω be the corner frequency of an activation earth- 161

quake with rupture length
√
−λ, where λ is an eigenvalue of the stiffness matrix that 162

changes sign during the time interval. Then, assuming the earthquake occurs within the 163

time interval with probability proportional to ωdτ, and ρ(ω) is the density of corner fre- 164

quencies in the interval (ω, ω + dω) associated with activation earthquakes occurring in 165

the time interval, the number of earthquakes with corner frequency less than or equal to ω 166

occurring during the time interval is: 167

Ṅcdτ =
∫ ω

ωc(τ)
ω̄ρ(ω̄)dτdω̄, (11)

where ωc(τ) is the corner frequency of the largest activation earthquake occurring up until 168

time τ. 169

To specify the mathematical form of the integral in equation (11), recall that the 170

Gutenberg-Richter law implies the total number of earthquakes of Richter magnitude in 171

the interval (MR, MR + dMR) occurring in the seismic activation region in the time interval 172

(τ, τ + dτ) is proportional to: 173

10−bMR dMRdτ, (12)
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which according to the relation between Richter magnitude and seismic moment: 174

MR =
(
log10(Ms)− 9

)
/1.5, (13)

and scaling relation Ms ∝ ω−3, satisfies: 175

10−bMR dMRdτ ∝ M−1−b/1.5
s dMsdτ ∝ ω2b−1dωdτ. (14)

Therefore, assuming the Gutenberg-Richter law is valid, it follows that: 176

ρ(ω) ∝ ω2b−2. (15)

To account for modification of the Gutenberg-Richter law in time intervals preceding 177

a major earthquake, now assume that for corner frequencies ω satisfying: 178

ω ≈ ωc(τ0) ≡ ω0, (16)

with ω0 equal to the corner frequency of the largest seismic activation earthquake preceding 179

the major earthquake at time τ = τ0, the quantity ρ(ω) is determined by a distribution of 180

the eigenvalues λ satisfying: 181∫ ω

ω0

ρ(ω̄)dω̄ ∝ (ω − ω0)
β0 , 1 > β0 > 0. (17)

With this assumption, equation (11), modified to account for occurrence of an earthquake 182

at corner frequency ω0, implies: 183

Ṅc = 1 +
∫ ω

ω0

ω̄ρ(ω̄)dω̄ ≈ 1 + c(ω − ω0)
β0 . (18)

Consequently: 184

log10 Ṅc ≈ log10

(
1 + c(ω − ω0)

β0
)

, (19)

when plotted against Richter magnitude MR ∝ −2 log10 ω for β0 < 1, can have either of 185

the cumulative distribution curve shapes shown in Figure 1 for different time intervals, 186

depending on the value of β0. 187

In passing, it is also noted that in accordance with previous statistical physics models 188

of seismic activation, the identification β0 = β(τ0), where β(τ) is a parameter in a τ- 189

dependent statistical physics model such as the 2D XY model, is logical. From this point 190

of view, the parameters of the statistical physics models, including β(τ), are related by 191

renormalization group flow, and an increase in the value of β(τ) as τ → τ0 accounts for 192

increasing steepness of the cumulative distribution curve shown in Figure 1. 193

Discussion 194

Previous research has identified predicting the time of occurrence of major earthquakes as a 195

possible application of statistical physics models of seismic activation, but this application 196

has not yet been realized [7]. In more recent times, the earthquake early warning algorithm 197

Virtual Seismologist has been developed which can in principle use previous earthquake 198

occurrence statistics as input to improve warning accuracy, and the artificial intelligence 199

algorithm QuakeGPT has been developed for predicting the occurrence of major earth- 200

quakes using seismic event records created with stochastic simulator training data [6,12,22]. 201

Therefore, a practical applied science goal for the statistical physics model presented in this 202

article appears to be improving statistical characterization of earthquake precursors for use 203

in earthquake warning and/or forecasting technologies, acknowledging that preliminary 204
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tests of the model’s validity against real seismic data must be passed before achieving this 205

application objective can be considered a realistic possibility. 206

From a geophysical testing point of view, if it is true that renormalization of a 2D 207

sine-Gordon model describes real time evolution of the elastic model of a seismic activation 208

region and, as a result, a nonlinear dynamical system of finite phase space dimension char- 209

acterizes the elastic model during nucleation of shear stress in a seismic region preceding a 210

major earthquake, a geophysical signal processing technique known as singular spectrum 211

analysis should apply to determine this phase space dimension [8]. Specifically, it is sug- 212

gested that measurements of relative changes in seismic surface wave and/or body wave 213

velocity be performed between pairs of seismic stations in a seismic region over a duration 214

of time during which seismic activation is known to have occurred, and used as input to 215

a time domain multichannel singular spectrum analysis algorithm [19]. The number of 216

channels of this algorithm would equate to the number of station pairs, and the number of 217

singular values output by the algorithm in different time windows preceding occurrence of 218

a major earthquake should categorize the region’s elastic model if the statistical physics 219

model of seismic activation is correct in principle. With reference to previous geophysical 220

application of singular spectrum analysis, performed in the frequency domain, the signal 221

processing algorithm suggested here is different in that it should be carried out in the time 222

domain τ rather than the frequency domain [23]. 223

In conclusion, work towards improving current earthquake early warning systems 224

can proceed in two directions. Firstly, as an initial check on whether or not the statistical 225

physics modelling approach presented here could be of practical utility, work can be done to 226

determine whether or not observed changes of the Earth’s elastic velocity model preceding 227

major earthquakes can be processed to extract an integer identifiable as the phase space 228

dimension of a nonlinear dynamical system. Secondly, work can be done to elaborate upon 229

the statistical physics mathematical model of seismic activation presented in this article to 230

determine other tests of its scientific validity and potential for practical application. 231
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