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Abstract

In this article, we are going to be discussing about the full proof
to the Gambler’s Ruin Problem, using a combination of probability
theory, recurrence relations, and boundary conditions.

1 Introduction

The Gambler’s Ruin Problem is arguably the most well-known problem in
the study of probabilities and statistics. The general solution to this problem
sets the foundation for studies of mathematical theory of probabilities.

2 The Gambler’s Ruin Problem

2.1 Problem description

Consider that a gambler who at each play of a game has probability p of
winning 1 unit and probability ¢ = 1—p of losing 1 unit, and the performance
of the gambler in each play of the game is independent.

If the gambler begins with 7 units, what is the probability of the gambler’s
total amount of units will reach n before reaching 0 units?



2.2 Proof of the Problem

let P(i),i=1,2,3,...,4, be the probability that starting from ¢, the Gambler’s
total amount of units will eventually reach n.

First, we notice that P(0) = 0, and P(n) = 1. This is because of that,
when the gambler has 0 unit, the probability of the gambler moving on to
the next play is 0, and when the gambler has n units, the gambler’s total
amount of units has reach n. So we have our two boundary values P(0) and
P(n).

By conditioning the outcome of the first play of the game, we can get:

P(i)=pP(i+1)+qP(i—1) (1)
This means that, starting from ¢ units, the probability of the gambler
winning 1 unit is p, which moves i to ¢4 1, and the probability of the gambler

losing 1 unit is ¢, which moves ¢ to ¢ — 1.
The equation above is equivalent to:

1x P(i)=pP(i+1)+qP>i—1) (2)
Since g =1 —p, so 1 = p+ q. We can replace the 1 in the equation with

p + ¢q. Hence:
(p+q)P(i) =pP(i+1)+qP>i—1) (3)

Rearranging the equation, we get:

plP(i+1) = P(i)] = q[P(i) — P(i —1)] (4)

P(i+1) = P(i) = (¢/p)[P(i) = P(i — 1)] ()
From the structure of the equation, we can clearly see that there exists a

recursion pattern. We can plug in some values of 7 to test it out:
For ¢ = 1,2, 3, we have:

P(2) = P(1) = (¢/p)[P(1) = P(0)] (6)
P(3) = P(2) = (¢/p)[P(2) — P(1)] (7)
P(4) = P@3) = (¢/p)[P(3) — P(2)] (8)



Since the left-hand side of (6) is equivalent to the P(2) — P(1) in the
right-hand side of (7). We can replace the [P(2) — P(1)] in the right-hand
side of (7) with (¢/p)[P(1) — P(0)]. Hence we have:

P(3) = P(2) = (¢/p)*[P(1) — P(0)] (9)
Since P(0) = 0, we have:

P(3) = P(2) = (a/p)*P(1) (10)

Summarizing this pattern, for i = 1,2, 3, ..., n, we have:

P(i) = P(i—1) = (¢/p) ' P(1) (11)
Since the equation above is true, we have:

i

Y P(k)=P(k—=1)=2 (¢/p) " P(1) (12)

k=1

But we noticed that, since P(i) — P(i — 1) follows a recursion pattern, for
i=1,2,3,...n:

> P(k)— P(k—1) = P(i) (13)
k=1
P(i) = (q/p)* ' P(1) (14)
k=1
P(i) = P()[1 + (¢/p) + (¢/p)* + ... + (¢/p)" "] (15)



We noticed that [1+ (q/p) + (¢/p)? + ... + (¢/p)""!] is a finite geometric
series. So using the geometric sum formula, we can see that:

P(i) = P(1)[1 = (¢/p))/[1 — (¢/p)] (16)

Keep in mind this formula only works when p # ¢. Ilf p=¢q¢ =1/2:

P(i) =iP(1) (17)
Now, we can plug in the value i = n:
For p # ¢:
P(n) = P(1)[1 = (q/p)"l/[1 = (a/p)] (18)
Forp=q¢=1/2:
P(n) =nP(1) (19)

Since P(n) is one of our boundary values, and P(n) = 1, we can solve for
the value of P(1):

For p # ¢:

P(1) = P(n)[1 - (¢/p)l/[1 = (a/p)"] (20)
Forp=q=1/2:

P(1)=1/n (21)



As such, we have found a general solution for P(7):

For p # ¢:

P(i) =[1—(q¢/p)'])/[1 — (a/p)"]

Forp=q=1/2:

P(i)=i/n

Hence we have found the solution to this problem.



