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Abstract

In this article, we are going to be discussing about the full proof
to the Gambler’s Ruin Problem, using a combination of probability
theory, recurrence relations, and boundary conditions.

1 Introduction

The Gambler’s Ruin Problem is arguably the most well-known problem in
the study of probabilities and statistics. The general solution to this problem
sets the foundation for studies of mathematical theory of probabilities.

2 The Gambler’s Ruin Problem

2.1 Problem description

Consider that a gambler who at each play of a game has probability p of
winning 1 unit and probability q = 1−p of losing 1 unit, and the performance
of the gambler in each play of the game is independent.

If the gambler begins with i units, what is the probability of the gambler’s
total amount of units will reach n before reaching 0 units?
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2.2 Proof of the Problem

let P (i), i = 1, 2, 3, ..., i, be the probability that starting from i, the Gambler’s
total amount of units will eventually reach n.

First, we notice that P (0) = 0 , and P (n) = 1. This is because of that,
when the gambler has 0 unit, the probability of the gambler moving on to
the next play is 0, and when the gambler has n units, the gambler’s total
amount of units has reach n. So we have our two boundary values P (0) and
P (n).

By conditioning the outcome of the first play of the game, we can get:

P (i) = pP (i+ 1) + qP (i− 1) (1)

This means that, starting from i units, the probability of the gambler
winning 1 unit is p, which moves i to i+1, and the probability of the gambler
losing 1 unit is q, which moves i to i− 1.

The equation above is equivalent to:

1× P (i) = pP (i+ 1) + qP (i− 1) (2)

Since q = 1− p, so 1 = p+ q. We can replace the 1 in the equation with
p+ q. Hence:

(p+ q)P (i) = pP (i+ 1) + qP (i− 1) (3)

Rearranging the equation, we get:

p[P (i+ 1)− P (i)] = q[P (i)− P (i− 1)] (4)

P (i+ 1)− P (i) = (q/p)[P (i)− P (i− 1)] (5)

From the structure of the equation, we can clearly see that there exists a
recursion pattern. We can plug in some values of i to test it out:

For i = 1, 2, 3, we have:

P (2)− P (1) = (q/p)[P (1)− P (0)] (6)

P (3)− P (2) = (q/p)[P (2)− P (1)] (7)

P (4)− P (3) = (q/p)[P (3)− P (2)] (8)
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Since the left-hand side of (6) is equivalent to the P (2) − P (1) in the
right-hand side of (7). We can replace the [P (2) − P (1)] in the right-hand
side of (7) with (q/p)[P (1)− P (0)]. Hence we have:

P (3)− P (2) = (q/p)2[P (1)− P (0)] (9)

Since P (0) = 0, we have:

P (3)− P (2) = (q/p)2P (1) (10)

Summarizing this pattern, for i = 1, 2, 3, ..., n, we have:

P (i)− P (i− 1) = (q/p)i−1P (1) (11)

Since the equation above is true, we have:

i∑
k=1

P (k)− P (k − 1) =
i∑

k=1

(q/p)k−1P (1) (12)

But we noticed that, since P (i)−P (i−1) follows a recursion pattern, for
i = 1, 2, 3, ..., n:

i∑
k=1

P (k)− P (k − 1) = P (i) (13)

P (i) =
i∑

k=1

(q/p)k−1P (1) (14)

P (i) = P (1)[1 + (q/p) + (q/p)2 + ...+ (q/p)i−1] (15)
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We noticed that [1 + (q/p) + (q/p)2 + ... + (q/p)i−1] is a finite geometric
series. So using the geometric sum formula, we can see that:

P (i) = P (1)[1− (q/p)i]/[1− (q/p)] (16)

Keep in mind this formula only works when p ̸= q. If p = q = 1/2:

P (i) = iP (1) (17)

Now, we can plug in the value i = n:
For p ̸= q:

P (n) = P (1)[1− (q/p)n]/[1− (q/p)] (18)

For p = q = 1/2:

P (n) = nP (1) (19)

Since P (n) is one of our boundary values, and P (n) = 1, we can solve for
the value of P(1):

For p ̸= q:

P (1) = P (n)[1− (q/p)]/[1− (q/p)n] (20)

For p = q = 1/2:

P (1) = 1/n (21)
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As such, we have found a general solution for P (i):
For p ̸= q:

P (i) = [1− (q/p)i]/[1− (q/p)n] (22)

For p = q = 1/2:

P (i) = i/n (23)

Hence we have found the solution to this problem.
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