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Abstract: We present a constructive and structural proof of the Goldbach Conjecture, which asserts that
every even integer greater than two is the sum of two primes. Our approach is based on the concept of factor
elimination and prime complement analysis. By categorizing integers into divisors and non-divisors of a given
N, and focusing on the structure of non-divisor primes, we demonstrate that the set of complements 2N-a
cannot be fully covered by multiples of these primes. Using prime density estimates and structural lemmas,
we show that a prime pair (p, q) satisfying p+q=2N must always exist. Numerical examples further validate
the framework, providing an intuitive and elementary alternative to heavy analytic methods traditionally
used in this domain.

1. Introduction to the Goldbach Conjecture

On June 7, 1742, the Prussian mathematician Christian Goldbach sent a letter to Leonhard Euler [1],
proposing what is now known as Goldbach’s strong conjecture:

Every even integer greater than 2 can be expressed as the sum of two prime numbers.

At the time, Goldbach considered 1 to be a prime, a convention that has since been abandoned. He further
noted that all even integers greater than or equal to 4 could be represented as the sum of two distinct primes.

A weaker form of the conjecture, known as Goldbach’s weak conjecture, states:

Every odd integer greater than 5 can be expressed as the sum of three prime numbers.

Euler replied that if the strong conjecture were true, it would imply the weak conjecture. He believed the
conjecture to be certainly true (”ein ganz gewisses Theorema”) but was unable to provide a formal proof.

While the weak conjecture was eventually proven by Harald Helfgott in 2013 [2], via a preprint made
publicly available on arXiv, the strong conjecture remains unproven despite extensive numerical verification
and heuristic support.

Purpose of This Paper This paper proposes a constructive framework to approach the strong Goldbach
Conjecture, utilizing factor-elimination logic and known prime density theorems. The approach is based on
analyzing the structure of integer pairs and systematically eliminating composite numbers to isolate prime
pairings.

2. Computational Verification and Recent Progress

For small values of n, the strong Goldbach conjecture (and hence the weak Goldbach conjecture) can be
verified directly. For instance, in 1938, Nils Pipping laboriously verified the conjecture up to n = 100,000
[3]. With the advent of computers, many more values of n have been checked; T. Oliveira e Silva ran a
distributed computer search that has verified the conjecture for n ≤ 4 × 1018 (and double-checked up to
4× 1017) as of 2013 [4].

Table 1 shows the results of verifying the correctness of the Goldbach conjecture up to now. From
looking at this table, it can be inferred that the proof must focus on huge numbers In 2012 and 2013,
Peruvian mathematician Harald Helfgott released a pair of papers improving major and minor arc estimates
sufficiently to provide an unconditional proof of the weak Goldbach conjecture.[5][6]
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Table 1. Verification of the Goldbach Conjecture

Bound Reference
1× 104 Desboves 1885
1× 105 Pipping 1938
1× 108 Stein and Stein 1965ab
2× 1010 Granville et al. 1989
4× 1011 Sinisalo 1993
1× 1014 Deshouillers et al. 1998
4× 1014 Richstein 1999, 2001
2× 1016 Oliveira e Silva (Mar. 24, 2003)
6× 1016 Oliveira e Silva (Oct. 3, 2003)
2× 1017 Oliveira e Silva (Feb. 5, 2005)
3× 1017 Oliveira e Silva (Dec. 30, 2005)
12× 1017 Oliveira e Silva (Jul. 14, 2008)
4× 1018 Oliveira e Silva (Apr. 2012)

Figure 1. Visualization of Goldbach partitions for even numbers up
to 106, inspired by the concept of Goldbach’s Comet as described in
[7]

3. Even Number Table

Now, we will discuss even numbers, and for any even number 2N (N being a natural number), it is nec-
essary to examine all possible cases. By arranging the numbers in a sequence as shown in Figure 2, we can
determine all possible ways to form 2N. For example, to find all possible ways to form the even number
36, we define the left column as the Num1 column and arrange the numbers from 1 to 18(N). In the right
column, which we call the Num2 column, we arrange the numbers from 16(N) down to 32(2N). In this way,
for every position in the table, the sum of the number in the Num1 column and the corresponding number



3

in the Num2 column will always equal 36(2N).

Definition 3.1. For any natural number N , consider an Even Number Table defined as follows:

• Num1 Column: Contains natural numbers from 0 to N .
• Num2 Column: Each entry is computed as 2N −Num1(i).

Then, the following equation always holds:

Num1(i) + Num2(i) = 2N, ∀i ∈ {0, 1, 2, . . . , N}

That is, in each row, the sum of the values in the Num1 and Num2 columns is always equal to 2N .

Definition 3.2. Goldbach partition[8] of an even integer 2N is a pair of prime numbers (p, q) such that
p+q = 2N . The primary goal of this paper is to demonstrate that for every N ≥ 2, such a prime pair always
exists.

Figure 1 presents an illustration of the Goldbach partitions for even numbers less than 105.
There is a rule that always applies to a table like Figure 2. In the Num1 column, for any factor of N, the

number in the corresponding Num2 column is always a multiple of the number in Num1. This is formally
stated in the following theorem.

Figure 2. Factor and Multiple
Classification for 2N=36 (Yellow:
Factors and Multiples, White: Oth-
ers)

Lemma 3.1. When the sum of two numbers, a and b, is an even number 2N , and a is a factor or a multiple
of a factor of N , then b is always a multiple of a.

Proof. Let N be an number with prime factorization:

N = pe11 pe22 . . . pekk

For any a that is a factor or a multiple of a factor of N , we define:

b = 2N − a
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Figure 3. General even number Table

Since N is even, we express a as:

a = pmi · k, where pmi is a factor of N and k is an integer.

Substituting a into b:

b = 2N − a = 2(pe11 pe22 . . . pekk )− pmi · k

= pmi (2(pe11 pe22 . . . pek−m
k )− k)

Since pmi is factored out, it follows that b is always a multiple of a when a is a factor or a multiple of a factor
of N .

As shown in Figure ?? and Figure 3 when a number is a divisor of N or a multiple of a divisor, it cannot
form a Goldbach partition. Therefore, the focus should be on the non-divisors. The key to the Goldbach
conjecture is to determine whether there always exists a prime number corresponding to the value of Num2
column for each non-divisor in the Num1 column of Figure 2. □

4. Preliminary Definitions

Before proceeding to the main proof, we first define the symbols that will be used throughout the paper.
Let 2N be an even integer with N ∈ N, N ≥ 2. Define:

• D: the set of positive divisors of N ,
• ND = {a ∈ [1, N − 1] | a ∤ N}: the set of non-divisors of N ,
• PN = {a ∈ ND | a is prime}: the set of non-divisor primes of N ,
• B = {2N − a | a ∈ PN}: the set of complements corresponding to elements of PN ,
• M(PN ): the union of all multiples of elements in PN within the interval (N, 2N), i.e.,

M(PN ) =
⋃

p∈PN

{kp | N < kp < 2N}.
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5. Structural Lemmas

In our proof strategy, we have already shown that if a is a divisor of N or a multiple it in interval (1, N),
then the corresponding value b = 2N − a is always a multiple of a, and therefore, no Goldbach partition can
arise from such a.

Hence, our approach is to focus on non-divisors PN , where we aim to prove that the corresponding values
2N − a cannot always be assigned as multiples of other non-divisors PN , ensuring the existence of Goldbach
partition.

Lemma 5.1 (Sparsity and Existence of Uncovered Primes). The set M(PN ) cannot fully cover B, i.e.,
|M(PN )| < |B|. Consequently, there exists at least one b ∈ B such that b /∈ M(PN ), and such a b must be a
prime.

Proof. Each prime pi ∈ PN contributes at most
⌊
N
pi

⌋
values to M(PN ). Since the primes are mutually

coprime, their multiples are sparsely distributed and minimally overlapping. Moreover, multiples divisible
by divisors d ∈ D are excluded. Thus, M(PN ) is strictly smaller than B, ensuring at least one b ∈ B lies
outside M(PN ). Such a b, not divisible by any pi ∈ PN or d ∈ D, must be a prime. □

Lemma 5.1 introduced |M(PN )| < |B|. We now provide a more detailed quantitative description of it
through the following lemma.

Lemma 5.2 (Adjusted Upper Bound of |M(PN )|). We have the estimates:

|M(PN )| = O

(
N log logN

logN

)
, |B| = Θ

(
N

logN

)
.

Thus, for sufficiently large N , it holds that |M(PN )| < |B|.

Proof. The cardinality of M(PN ) is bounded by the sum over primes in PN , accounting for overlaps using
the principle of inclusion-exclusion. The prime number theorem implies |B| ∼ N

logN , while the cumulative

density of prime reciprocals yields |M(PN )| = O
(

N log logN
logN

)
. Therefore, for large N , |M(PN )| < |B|. □

Having established that M(PN ) does not fully cover B, it remains to verify the nature of the uncov-
ered elements. In particular, we must show that these uncovered elements are indeed primes rather than
composites. This is addressed in the following lemma.

Lemma 5.3 (Composite Exclusion from B \M(P ∗
N )). Let P ∗

N = {p | p prime, p < 2N} and define M(P ∗
N )

as the union of their multiples in (N, 2N). Then for sufficiently large N ,

B \M(P ∗
N ) ⊂ P.

That is, any b ∈ B \M(P ∗
N ) is necessarily a prime.

Proof. Suppose b ∈ B \M(P ∗
N ). Any composite number b < 2N must be divisible by some prime p ≤

√
2N .

Since all such primes are included in P ∗
N , a composite b would belong to M(P ∗

N ). Thus, b /∈ M(P ∗
N ) implies

b is not composite, hence prime. □

Lemma 5.4 (Composite Exclusion via Non-Divisor Primes). Let PN be the set of non-divisor primes of N ,
and B the corresponding set of complements b = 2N − a for a ∈ PN . Then all composite elements in B are
covered by the set of multiples M(PN ). Hence, any b ∈ B such that b /∈ M(PN ) must be a prime.

Proof. Suppose b ∈ B and b /∈ M(PN ). If b were composite, then by construction it would be divisible by
some prime p ∈ PN , implying b ∈ M(PN ), contradicting the assumption b /∈ M(PN ). Thus, b cannot be
composite and must therefore be a prime. □

Proof Sketch The proof framework is based on identifying structural gaps among the complements B
associated with non-divisor primes PN . By showing that the set M(PN ) of multiples of non-divisor primes
cannot fully cover B, and applying prime density results, we demonstrate the inevitable existence of a prime
within B that completes a Goldbach partition with a corresponding prime in PN .
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6. Main Result

Based on the lemmas established earlier, we will now demonstrate the validity of the Goldbach Conjecture
in the next theorem.

Theorem 6.1 (Structural Prime Pair Existence Theorem). Let 2N ≥ 4 be an even integer. Then there
always exists a pair of primes p, q such that p+ q = 2N .

Proof. Assume, for contradiction, that there exists an even integer 2N ≥ 4 such that no pair of primes p, q
satisfies p+ q = 2N .

Define PN and B as above.
Suppose that for all a ∈ PN , the complement b = 2N − a is not prime. Then every b ∈ B must be

composite.
By Lemma 5.1, M(PN ) cannot fully cover B, and by Lemma 5.2, |M(PN )| < |B| for sufficiently large N .

Therefore, there must exist at least one b ∈ B such that b /∈ M(PN ).
Now consider P ∗

N = {p | p prime, p < 2N} and M(P ∗
N ).

By Lemma 5.3, any b ∈ B\M(P ∗
N ) must be a prime. Since b /∈ M(PN ) implies b /∈ M(P ∗

N ), this uncovered
b must be prime. By Lemma 5.4, any such b not in M(PN ) must be prime.

Thus, there exists an element b such that both a ∈ PN and b = 2N − a are primes, satisfying a+ b = 2N .
This contradicts the original assumption.

Therefore, for every even integer 2N ≥ 4, there exists a pair of primes p, q such that p+ q = 2N .
□

7. Numerical Validation: Small Cases

Prime Density and Distribution: The Prime Number Theorem states:

π(x) ∼ x

log x
as x → ∞.

For an interval (N, 2N), the number of primes satisfies:

π(2N)− π(N) ∼ N

logN
.

According to Bertrand’s postulate, there is always at least one prime number between any integer N and
2N [9]. Thus, the density of primes in (N, 2N) supports that B contains sufficiently many primes.

According to the above information, we aim to apply the logic developed in the previous chapters to a
small example and verify whether the constructed framework operates correctly. We will proceed with the
specific case of N=30. For N = 30:

• Divisors: D = 1, 2, 3, 5, 6, 10, 15, 30
• Non-divisors: ND = 4, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29
• Non-divisor primes: PN = 7, 11, 13, 17, 19, 23, 29
• B = 53, 49, 47, 43, 41, 37, 31

Small N demonstrates the general structure of sparse non-divisor primes contributing to B.

• PN = 7, 11, 13, 17, 19, 23, 29
• M(PN ): multiples of PN in (30, 60)
• Check: M(PN ) does not fully cover B. see Table 2.

8. Methodological Comparison

Traditional approaches, such as those developed by Vinogradov and Chen, primarily rely on analytic
number theory tools like Fourier analysis and advanced sieve methods to approximate and estimate the
distribution of prime numbers. Vinogradov’s method, for example, uses trigonometric sums to handle primes
in additive problems[10], while Chen’s theorem demonstrates that every sufficiently large even number can
be written as the sum of a prime and a product of at most two primes.[11]

In contrast, our ”Factor Elimination” approach does not depend on heavy analytic machinery. Instead, it
uniquely leverages the structural gaps created by non-divisors and examines the emergence of primes from
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Table 2. Coverage Check of B by M(PN ) for N = 30

b in B Covered by M(PN )
53 No
49 Yes
47 No
43 No
41 No
37 No
31 No

these combinatorial gaps. By focusing on the intrinsic sparsity and distribution properties of non-divisor
primes, our method offers a purely structural and combinatorial perspective on the Goldbach conjecture,
making the argument more accessible and fundamentally different from traditional heavy analytic methods.

9. Discussion and Future Work

Future extensions of this research could proceed in several directions:

• Generalization to Twin Prime Conjecture: The factor elimination method may be adapted to
explore the twin prime conjecture by analyzing pairs of primes with a fixed difference of two. By
extending the combinatorial gap framework to simultaneously track twin gaps, we might develop
new structural insights into the distribution of twin primes.[12][13][14]

• Application to Other Additive Prime Problems: The approach could be extended to other
additive conjectures, such as the three-prime sum problem, where one seeks representations of odd
integers as sums of three primes. By adjusting the elimination structure, it may be possible to
generalize the proof techniques to a wider class of additive problems.[15][16]

• Computational Optimization for Large N : As N grows, efficiently verifying the non-coverage
property and prime emergence becomes computationally intensive. Future work could develop algo-
rithmic optimizations or probabilistic heuristics to speed up the verification for large values of N ,
making the method practical for extensive numerical verification.[17][18]

10. Conclusion

In this paper, we developed a structural framework to prove the Goldbach Conjecture without relying
on heavy analytic methods. By introducing the concepts of non-divisor primes and prime complements, we
established that the set B derived from 2N−PN cannot be completely covered by the multiples of non-divisor
primes. This non-coverage leads to the inevitable emergence of a prime pair that sums to 2N . Our method
leverages basic properties of primes and divisibility structures, providing a novel and intuitive approach to
the longstanding conjecture. Future research may extend this factor elimination framework to investigate
other additive prime problems, such as twin primes and prime gaps.
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