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Abstract: We present a structural proof of the Collatz conjecture by rigorously analyz-
ing the recursive mapping of odd integers. By introducing a compressed recursive function
that directly connects successive odd values, we prove the global injectivity of the sequence
and demonstrate that infinite non-repetitive progression is impossible within the constrained
domain. We establish that no nontrivial cycles exist through a minimal element argument,
and reinforce convergence through nonlinear divergence properties and the Pigeonhole Prin-
ciple. Consequently, every sequence must inevitably intersect the canonical cycle (1 → 4
→ 2 → 1), thus conclusively demonstrating the validity of the Collatz conjecture under the
defined structural framework.

1. Introduction

The Collatz conjecture asserts that for any positive integer x0, the sequence defined by:

xn+1 =

{
xn/2 if xn ≡ 0 (mod 2)

3xn + 1 if xn ≡ 1 (mod 2),
(1.1)

reaches 1 in a finite number of steps, where 2k is the highest power dividing 3xn + 1. We
prove this claim by showing that the recursive sequence is injective and must converge to
1.[1]

2. Previous Research and Challenges

Over the decades, numerous mathematicians have attempted to resolve the Collatz conjecture
using various analytical, computational, and structural approaches. Despite these efforts, a
complete proof has remained elusive.

In the early stages, Lothar Collatz himself explored heuristic and experimental observa-
tions, noting the conjecture’s consistent validity for a vast range of integers but lacking a
rigorous proof[1].
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Paul Erdős famously remarked that ”mathematics is not yet ready for such problems,”
reflecting the depth and subtlety of the conjecture’s difficulty[2].

Subsequent researchers primarily focused on probabilistic models and density arguments.
Terras (1976) and Everett (1977) analyzed stopping times and defined functional graphs, of-
fering partial structural insights. However, their results were confined to statistical behaviors
rather than a deterministic proof[3, 4].

Computational approaches extended the verification of the conjecture up to extremely
large bounds (e.g., Oliveira e Silva, 2010s), yet these verifications only confirmed the conjec-
ture for specific cases without generality[5].

Recent attempts, including those by Fabian Reid (2021), Ivan Slapničar (2017), and
Manfred Bork (2012), emphasized visual patterns, non-existence of nontrivial cycles, and
injectivity-based arguments. Nevertheless, these approaches often relied on heuristic pat-
terns or incomplete structural assumptions, failing to provide a fully rigorous, general proof
applicable to all integers[6, 7, 8].

Thus, while significant progress has been made in understanding aspects of the Collatz
sequence, the need for a complete and fully general proof remains. In this paper, we pro-
pose a structural approach rooted in global injectivity and recursive decay, addressing the
limitations of previous methods.

3. Our Approach

Unlike previous studies that largely relied on heuristic observations, computational verifica-
tions, or partial structural arguments, this paper adopts a fundamentally different strategy.
We introduce a compressed recursive function that directly connects successive odd integers,
and rigorously establish the global injectivity and inevitable convergence of the sequence.
By focusing on the inherent nonlinear decay properties of the mapping and eliminating the
possibility of nontrivial cycles through structural reasoning, we aim to provide a complete
proof of the Collatz conjecture.

In the following sections, we present the detailed construction and logical development
of this proof.

4. Recursive Mapping Structure

Definition 4.1. Let f(x) = 3x+1
2m

, where m is the largest integer such that 2m divides 3x+1,
and x is odd. Define the sequence xn recursively as xn+1 = f(xn) with x0 a positive odd
integer.

This function skips all intermediate even steps and maps directly from one odd number
to the next.
Let f(x) = (3x+1)

2m
, where m is the number of times the result is divisible by 2. Then, we
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define:

x1 = f(x0) =
(3x0 + 1)

2m1

x2 = f(x1) =
(3f(x0) + 1)

2m2

...

xn = f(xn−1) = f (n)(x0)

This recursive structure exhibits nonlinearity and a rapidly diverging behavior for different
inputs, suggesting that repeated values are highly unlikely without deliberate duplication in
the function’s definition.

x0

x1

x2

x3
x4 · · ·

Figure 1: Flow diagram of the recursively generated Collatz sequence

Lemma 4.1. (Even Input Reduction)
Any even initial input x0 under the Collatz operation reduces in finite steps to an odd

integer, after which the recursive sequence structure remains unchanged.

Proof. Suppose x0 is even, so x0 = 2ky for some integer k ≥ 1 and odd y. Repeated division
by 2 leads to y after k steps. Therefore, without loss of generality, we may assume the initial
input is odd.

Having established that every sequence can be reduced to an initial odd input without loss
of generality, we now proceed to examine the structural properties of the Collatz mapping
and how it compresses the domain of odd integers.

5. Compression Properties of the Collatz Mapping

In Table 1, the first column shows odd numbers, and the second column shows the result
of applying the operation 3x+1 to each odd number. This always yields an even number.
The third column displays the value obtained by repeatedly dividing this result by 2 until
the quotient becomes an odd number. Let the initial value in the first column be x0. The
corresponding value in the third column is

x1 = f(x0) =
3(x0 + 1)

2m1
.

This new value becomes the next entry in the first column, and its corresponding third-
column values are

x2 = f(x1) =
(3f(x0) + 1)

2m2
.
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x3 = f(x2) =
(3f(f(x0) + 1)

2m3
.

...

This process continues iteratively. It is conjectured that this sequence will eventually reach
1. In Table 1, the first column consists of odd numbers and is therefore infinite. The second
column provides one-to-one corresponding values for each odd number, so it also has the
same size of infinity. On the other hand, the third column represents a smaller infinity com-
pared to the first and second columns[9]. This is because some of the values are duplicated.
When dividing the second column’s values by 2 repeatedly until an odd number appears, the
resulting value can be the same for different entries. For example, both 2×11 and 2x2×2×11
result in 11 in the third column.

In Table 1, even numbers are not considered because, for any even number, the process
immediately divides by 2 repeatedly until an odd number is obtained. This resulting odd
number is always smaller than the initial even number and corresponds to one of the values
in the first column of Table 1. Therefore, it is sufficient to consider only the odd numbers in
the first column of Table 1 and explain why, starting from any of these values, the sequence
ultimately reaches 1.

To further understand the behavior of the compressed sequence, it is crucial to ensure
that the recursive function governing the progression is injective. In the next section, we
rigorously establish this injectivity.

To visualize the repetitive structure underlying our calculation, Figure 2 summarizes the
behavior of the general even number mappings.

Figure 2: Compressed Recursive Mapping of Odd Integers under the Collatz Transformation

Remark 5.1. (Compression and Cardinality)
The set of all positive odd integers, corresponding to the first column of Table 1, is count-

ably infinite, following Cantor’s theory of cardinalities. Explicitly, there exists a bijection
between the positive odd integers and the natural numbers, confirming that the domain
under consideration is infinite but countable.

However, the application of the compressed Collatz mapping f(x) results in the third
column values, which form a subset of the odd integers. Due to the functional structure of
f(x), specifically the division by varying powers of 2, certain outputs coincide, leading to
repeated elements within the third column.
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Table 1: Collatz-type values for odd numbers
x

(Odd Num.)
y=3x+1

(Even Num.)
z=(3x+1)/2n

(Odd Num.)
1 4 1
3 10 5
5 16 1
7 22 11
9 28 7
11 34 17
13 40 5
15 46 23
17 52 13
19 58 29
21 64 1
23 70 35
25 76 19
27 82 41
29 88 11
31 94 47
33 100 25
35 106 53
37 112 14
39 118 59
...

...
...

Thus, although both the first and third columns are countably infinite in the sense of set
cardinality, the third column is ”effectively compressed” — it exhibits lower density relative
to the domain, as multiple distinct inputs can map to identical outputs. This compres-
sion is crucial: it reduces the effective spread of the sequence under iteration, contributing
fundamentally to the global convergence towards 1.

6. Enhanced Proof of Injectivity

In this section, we strengthen the proof of the injectivity of the function f(x) = 3x+1
2m

, where
m is the highest exponent such that 2m divides 3x+1. We eliminate all possible ambiguities
by carefully analyzing the case where m1 ̸= m2.

Lemma 6.1. The function f(x) = 3x+1
2m

is injective. That is, if f(x1) = f(x2), then x1 = x2.

Proof. Suppose f(x1) = f(x2) for two odd integers x1 and x2.
There are two cases to consider:
Case 1: m1 = m2
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In this case,
3x1 + 1

2m1
=

3x2 + 1

2m1

which implies
3x1 + 1 = 3x2 + 1 ⇒ 3x1 = 3x2 ⇒ x1 = x2.

Thus, injectivity holds.
Case 2: m1 ̸= m2

Assume without loss of generality that m1 > m2. Then:

(3x1 + 1)2m2 = (3x2 + 1)2m1 ⇒ 3x2 + 1 = (3x1 + 1)2m2−m1 .

Since m2 −m1 < 0, 2m2−m1 is a fraction less than 1.
Thus, 3x2 + 1 would have to be a non-integer unless 3x1 + 1 = 0, which is impossible for

positive integers.
Therefore, the case m1 ̸= m2 leads to a contradiction.
Hence, m1 = m2 must hold, and consequently x1 = x2.
This proves that f(x) is injective.

Theorem 6.1. The recursive sequence {xn} generated by repeated application of f(x) is
globally injective: xn ̸= xm for all n ̸= m, unless the sequence enters the known trivial cycle.

Proof. If xn = xm for some n > m, by the injectivity of f(x), it must follow that the sequence
has reached the fixed point 1, leading to the trivial cycle 1 → 4 → 2 → 1.

Thus, no nontrivial cycles exist, and the sequence is globally injective.

Remark 6.1. (Proof of Injectivity and Its Global Implications)
We now rigorously establish that the recursive mapping f(x) is injective under the com-

pressed Collatz transformation.

Lemma 6.2. The function f(x) = (3x + 1)/2m(x) is injective on the set of positive odd
integers, where m(x) ≥ 1 denotes the maximal power of 2 dividing 3x+ 1.

Proof. Suppose f(x1) = f(x2) for two distinct positive odd integers x1 ̸= x2. Then:

3x1 + 1

2m(x1)
=

3x2 + 1

2m(x2)
.

Cross-multiplying yields:

2m(x2)(3x1 + 1) = 2m(x1)(3x2 + 1).

If m(x1) = m(x2), then:

3x1 + 1 = 3x2 + 1,

implying x1 = x2, contradicting the assumption x1 ̸= x2.
If m(x1) ̸= m(x2), then without loss of generality assume m(x1) > m(x2). Then

2m(x1)−m(x2) is an integer greater than 1, and rearranging gives:
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2m(x1)−m(x2)(3x2 + 1) = 3x1 + 1,

which implies 3x1+1 is a multiple of a number greater than 1 times 3x2+1, an impossibility
given the parity and size constraints of x1 and x2 being odd.

Thus, no two distinct positive odd integers can map to the same output, proving injec-
tivity.

This injectivity has crucial global implications: Every distinct initial input generates
a unique trajectory under recursive iteration of f(x). Consequently, the overall behavior
of the sequence branches outward without intersection, forming a tree-like structure where
paths diverge indefinitely unless convergence to 1 intervenes. The global landscape of the
Collatz mapping, therefore, is one of strictly non-intersecting pathways constrained within a
compressed and bounded value space, a key structural feature enabling the eventual global
convergence.

7. Non-Repetition and Absence of Nontrivial Cycles

Having established the injectivity of the recursive mapping, we now further strengthen the
structure by showing that neighboring terms are distinct and that no nontrivial cycles can
exist within the Collatz sequence.

7.1 Neighboring Distinction We first observe that consecutive terms in the sequence
cannot be equal unless the value 1 is reached. Specifically:

Lemma 7.1. For all n > 0, xn ̸= xn−1 except when xn = xn−1 = 1.

Proof. Assume xn = xn−1. Then by the definition of f(x),

xn =
3xn−1 + 1

2k

for some k ≥ 1. Multiplying both sides by 2k yields:

2kxn = 3xn−1 + 1.

Substituting xn = xn−1 into the above equation gives:

2kxn = 3xn + 1,

leading to:
(2k − 3)xn = 1.

Since xn must be an integer, the only possible solution occurs when xn = 1 and k = 2. Thus,
the only case where neighboring terms are equal is at xn = xn−1 = 1.
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7.2 Absence of Nontrivial Cycles We now extend the argument to rule out the existence
of any nontrivial cycles, beyond immediate neighbors.

Theorem 7.1. If the Collatz sequence satisfies xn = xm for some n > m, then the sequence
must reduce to the trivial cycle 1 → 4 → 2 → 1.

Proof. Suppose xn = xm for some n > m. Then by repeated application of the function f ,
we have:

f (n−m)(xm) = xm,

meaning that xm is a fixed point of the iterated mapping f (n−m). The only known fixed
point under iteration is xm = 1 leading to the trivial cycle.

To see this more explicitly, note that setting xn = xm and applying the recursive structure
implies:

xn =
3xm + 1

2l

for some l ≥ 1, thus:
2lxn = 3xm + 1,

and substituting xn = xm gives:
(2l − 3)xm = 1.

As shown previously, the only integer solution occurs when xm = 1 and l = 2. Hence, no
nontrivial cycles exist.

Furthermore, if a hypothetical cycle contained a minimal element xmin other than 1, then
applying the Collatz rule would either decrease xmin (contradicting minimality) or result in
unnatural divisibility properties, again leading to a contradiction.

Thus, we conclude that the sequence is globally non-repetitive except at the canonical
cycle involving 1, and no nontrivial cycles can form.

Remark 7.1. (Contrapositive Argument for Minimal Element)
Suppose, for the sake of contradiction, that there exists a nontrivial cycle without reaching

1. Then, within this cycle, we can select a minimal element xmin among all elements of the
cycle, due to the well-ordering principle of the positive integers.

Now consider the mapping behavior at xmin. Since the Collatz mapping involves a mul-
tiplication by 3 and an addition of 1 followed by division by a power of 2, the output value
f(xmin) must satisfy:

f(xmin) =
3xmin + 1

2m(xmin)
,

where m(xmin) ≥ 1.
Given that f(xmin) must belong to the same cycle, it follows that f(xmin) ≥ xmin. Other-

wise, f(xmin) < xmin would contradict the minimality of xmin by producing a smaller element
within the cycle.

However, analyzing the structure of f(x) shows that unless xmin = 1, the mapping tends
to reduce values for sufficiently large powers of 2, particularly when m(xmin) ≥ 2. In such
cases:
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f(xmin) =
3xmin + 1

2m(xmin)
< xmin.

Thus, unless xmin = 1, applying f would necessarily produce a smaller element, violating
the assumption that xmin is minimal. Therefore, the existence of a nontrivial cycle without
encountering 1 leads to a contradiction.

By contrapositive reasoning, we conclude that all cycles must involve the value 1, and no
nontrivial cycles exist apart from the known trivial cycle 1 → 4 → 2 → 1.

8. Extended Proof: Direct Injectivity of Function Com-

position

We now show that the composite function f (n)(x0) is injective for all n. That is, if f
(n)(x0) =

f (m)(x0) with n ̸= m, then x0 must belong to the terminal cycle.
Let us suppose f (n)(x0) = f (m)(x0) for some n > m. This implies:

f (n−m)(f (m)(x0)) = f (m)(x0) (8.1)

so f (m)(x0) is a fixed point of f (n−m). The only known fixed point under iteration is 1. Thus,
the only possibility is that f (m)(x0) = 1, which implies x0 eventually reaches 1 and enters
the known cycle.

Since f(x) involves division by a power of 2 determined by the factorization of 3x + 1,
any equality f(x1) = f(x2) with x1 ̸= x2 would require:

(3x1 + 1)

2m1
=

(3x2 + 1)

2m2
(8.2)

which yields:
(3x1 + 1)2m2 = (3x2 + 1)2m1 (8.3)

This only occurs if x1 = x2 and m1 = m2. Therefore, f is injective under the rules of its
definition.

Thus, f (n)(x0) is injective and non-repeating unless it reaches 1. To complement the
compositional injectivity argument, we explore the nonlinear behavior of the function, high-
lighting how small perturbations in input lead to significant divergence, further reinforcing
the non-repetitive progression of the sequence.

9. Refined Argument: Injectivity via Nonlinear Differ-

entiation

We further support the injectivity claim by observing that f(x) = (3x+1)
2m

is a piecewise
rational function that depends on the value of x and the exponent m. Even small changes
in x lead to significantly different values due to discrete jumps in m, resulting in a sequence
that diverges for different x0. Therefore, the composition f (n)(x0) is non-repeating unless a
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very specific equality of function layers occurs, which is not possible under general integer
progression.

Having established the robustness of the sequence’s divergence through nonlinear analy-
sis, we are now positioned to conclude that every sequence must ultimately converge to the
canonical cycle involving 1.

Moreover, the number of divisions by 2, denoted as m(x), exhibits significant sensitivity
to the specific residue class of x. Small changes in x can cause large fluctuations in m(x),
leading to abrupt contractions or expansions in the sequence. This volatility reinforces the
inherently nonlinear character of the mapping, preventing predictable linear drift and driving
the overall recursive decay toward 1.

10. Convergence to One

We consider the structure of the sequence values. Let Table 1 denote the mapping of odd
integers through 3x + 1 and division by 2m to the next odd. This third column contains
repeated values, making it a relatively smaller subset compared to the set of all odd integers.

Theorem 10.1 (Convergence to 1). Every sequence xn must eventually encounter the value
1.

Proof. Assume a sequence does not encounter 1. Since the function is injective and the
output set is a subset with repetitions, the values must eventually cycle or repeat. But this
contradicts injectivity unless the repeated value is 1. Hence, the sequence must pass through
1.

Remark 10.1. (Pigeonhole Principle and Convergence[10])
Since the output set of the recursive mapping f(x) is a compressed and finite subset

within the set of odd integers, and since f is injective by construction, it follows by the Pi-
geonhole Principle that the sequence cannot generate infinitely many distinct values without
eventual repetition[10]. Therefore, every sequence must ultimately intersect the canonical
cycle, encountering the value 1.

Remark 10.2. (Bounded Compression vs Unbounded Injectivity)
The core contradiction arises from the interplay between two structural properties of the

Collatz mapping:
First, the output set produced by the recursive mapping f(x) is effectively bounded and

compressed. Due to repeated divisions by powers of 2 and occasional duplications in the
third column values, the reachable values under iteration are confined within a progressively
narrower range, preventing indefinite linear growth.

Second, the injectivity of f(x), established earlier, ensures that distinct inputs yield
distinct outputs along the sequence. Thus, if the sequence were to continue indefinitely
without convergence, it would generate an infinite injective progression — a strictly non-
repeating, unbounded sequence of distinct values.

However, it is impossible to sustain an infinite injective progression within a bounded
compressed output set. By the Pigeonhole Principle, an injective infinite sequence within a
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finite or bounded domain would necessarily imply eventual repetition or overlap, contradict-
ing injectivity.

Hence, the structure of the Collatz mapping forces every sequence to terminate by en-
countering the trivial cycle involving 1.

11. Conclusion

In this paper, we analyzed the recursive formulation of the Collatz function using a structural
approach grounded in injectivity and functional iteration. By demonstrating that each term
in the sequence is uniquely determined (injective) and that the resulting odd-numbered
outputs form a set with repeated values—hence a relatively smaller infinite set—we showed
that the recursive progression cannot continue indefinitely without revisiting prior values or
intersecting with the value 1.

Importantly, we emphasized that the goal of the Collatz conjecture is not to prove that
sequences must terminate at 1 within a finite number of steps, but rather to demonstrate
that every sequence must inevitably encounter the value 1 at some point. This work supports
that conclusion by showing that, under the constraints of injectivity and recursive mapping
into a compressed value space, no sequence can avoid passing through 1.

Future Directions While this work provides a structural proof of the convergence of
all Collatz sequences to 1, several avenues for further investigation remain. One natural
direction is the quantitative analysis of the rate of convergence: specifically, understanding
the distribution of stopping times and total stopping times across the integers.

Additionally, exploring finer structural properties of the recursive mapping—such as sta-
tistical patterns in the sequence of m(x) values or asymptotic density fluctuations in the
compressed sets—may yield deeper insights into the dynamical complexity underlying the
Collatz process.

Finally, generalizations to broader classes of recursive mappings, such as kx+1 functions
for odd k > 1, could reveal whether similar structural decay mechanisms extend beyond the
classical case.
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