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Abstract

In this work, we propose and examine two procedures for constructing intervals that
capture the uncertainty associated with determining the effective number of components
in model selection problems. The output of these methods is an interval (defined by
two integer bounds) representing plausible values for the number of components. A
detailed discussion is provided on the connection between the proposed approaches and
the widely-used information criteria in the literature. Notably, the methods do not rely
on the availability of a likelihood function, making them broadly applicable across various
domains such as regression, classification, feature and/or order selection, clustering, and
dimensionality reduction. These techniques leverage geometric properties of the error
curve to construct the intervals. Extensive experiments on both synthetic and real-world
datasets demonstrate the effectiveness and practical utility of the proposed procedures.
Additionally, MATLAB code is provided to facilitate adoption by practitioners and
researchers.

Keywords: Model Selection; uncertainty; elbow detection; information criteria; AIC;
BIC.

1 Introduction

Model selection has become a fundamental task in contemporary signal processing, machine
learning, and statistical analysis. See the following works [1], [2], [3] and [4] as examples
showing the wide range of application through different fields. Moreover, in recent decades,
uncertainty quantification and sensitivity analysis have emerged as highly relevant research
topics across various scientific fields [5, 6, 7, 8]. Particularly important is the scenario of
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nested models, i.e., a family of models of different complexity where the number of parameters
can grow (i.e., the dimension of the vector of parameters can grow, building more complex
models). This scenario appears frequently in different real-world applications: for instance, the
order selection in polynomial regression or autoregressive schemes [9], [10], feature selection
[11], clustering [12], change point detection [13], and dimension reduction just to name a few
[14],[15]. Other relevant examples in signal processing are the estimation of the number of
signal sources [16] and the so-called structured parameter selection [17]. Note that, throughout
this work, the terms variables, components, features, and parameters are used interchangeably
to refer to the elements of a model.
In the literature, three primary classes of methods are commonly employed to infer the
complexity of nested models. The first class is formed by the cross-validation (CV) techniques
[18, 19] or similar strategies [20, 9]. The second class is the so-called probabilistic statistical
measures, formed by two main sub-families: the information criteria (IC)[21, 12, 22, 23] and the
marginal likelihood approach (a.k.a., Bayesian evidence) used in Bayesian inference [24, 4, 25].
Related schemes can also be found [26, 27, 28]. The third class comprises methods grounded in
geometric considerations, such as automatic ’elbow’ or ’knee-point’ detectors [29, 30, 31, 32].
In [29], The authors demonstrate that the automatic elbow detectors proposed in the literature
can be reformulated as a specific instance of an information criterion. Various information
criteria (IC) differ in their choice of the slope parameter λ, which governs the penalization of
model complexity [33] (Table 1 provides different special cases of IC). Another recent approach,
known as the Spectral Information Criterion (SIC), considers the entire spectrum of possible
values for the penalization parameter λ, thereby encompassing other information criteria with
linear complexity penalization as special cases. SIC also returns a confidence measure of the
proposed solution [34, 35]. Similarly, other measures of reliability and confidence in the results in
the context of elbow detection have been discussed [36]. These quantities attempt to show how
‘safe’ is the solution, in terms of possible information lost by constructing a ‘too’ parsimonious
model.
In this work, the main contribution is twofold: we extend one of the derivations proposed
in [29] and the SIC derivation, in order to provide an interval of indices corresponding to
different possible models. Namely, the output of the proposed methods is an interval of possible
number of components (defined by two specified integer values). This interval embeds the
uncertainty associated with the decision in a black-box manner, contingent upon the specific
analysis and the observed data. In the first proposed method, the underlying idea employs
geometrical considerations, and it is inspired by the concept of maximum area-under-the-curve
(AUC) in receiver operating characteristic (ROC) curves [37, 38] and by the derivation of
the well-known Gini index [39, 40, 41, 42]. We also show the relationship of the proposed
procedure with an alternating optimization considering conditioned information criteria. The
second proposed method employs the confidence measure provided by SIC in order to obtain
an interval of possible models as a final solution. The proposed schemes can also be applied in
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more general contexts than the standard IC, even where a probabilistic model is not considered
and likelihood function is not defined. Numerical experiments, with artificial and real data,
show very promising results. Related Matlab code is also provided.1

2 Framework and background

2.1 The error curve V (k)

In numerous real-world applications, we desire to infer a vector of parameters θk = [θ1, ..., θk]
>

of dimension k given a data vector y = [y1, ..., yN ]>. An observation model that induces a
likelihood function p(y|θk) is usually available [25, 24]. The discrete variable k, which denotes
the dimension of the parameter vector θk, is often unknown and must be inferred from the
observed data y. For example, k may represent the number of clusters in a clustering problem
or the order of a polynomial in a nonlinear regression task. In these application problems, a
non-increasing error curve can be computed,

V (k) : N→ R, k = 0, 1, 2, ..., K.

The function V (k) can be any metric that characterizes the performance of the system. For
simplicity and without loss of generality, we are considering an integer variable k with an
increasing step of one unit. Clearly, it can be easily generalized. when a likelihood function is
given, a usual choice of V (k) is

V (k) = −2 log(`max), where `max = max
θ

p(y|θk),

e.g., as in [22, 43, 44, 25]. Alternatively, V (k) can be directly defined as the mean square
error MSE), or the mean absolute error (MAE) or transformations of them (e.g., as log MSE).
However, any other fitting measure can be considered.

Remark. For the sake of simplicity and without loss of generality, we assume that minV (k) =
V (K) = 0. Clearly, this condition can always be obtained with a simple subtraction,
V ′(k) = V (k)−minV (k). See Figure 1 for an example of V (k) (dashed line).

2.2 A general expression for several information criteria (IC)

In this section, we outline a general formulation for various information criteria (IC) and the
underlying principles of this approach. Typically, the curve V (k) is constructed as a non-
increasing function. Graphical examples can be found in Figures 1 and 2(a). A well-established

1http://www.lucamartino.altervista.org/PUBLIC_INTERVALS_CODE.zip

3

http://www.lucamartino.altervista.org/PUBLIC_INTERVALS_CODE.zip


method in the literature involves incorporating a linear penalty to account for model complexity,

C(k) = V (k) + λk, λ > 0, (1)

where the slope of the complexity penalization term is denoted as λ. Since V (k) is non-
increasing and the penalty term λk increases with respect to k, the cost function C(k) will
exhibit at least one minimum. See Figure 2(b).
The objective is to obtain k∗ = arg minC(k) as the index of the ’optimal’ model, serving as an
estimator for the number of components in the nested model. Table 1 summarizes some relevant
special cases of IC, considering the possible choice of error curve V (k) and of the parameter
λ. Each one has been derived in different contexts and with different assumptions. In the
literature, there are also other IC with other analytical forms (e.g., with non-linear penalty
terms), but they are not as widely employed as the IC with the analytical form in Eq. (1).

Table 1: Relevant examples of information criteria in the literature, with the corresponding choices of

V (k) and λ. Note that N denotes the number of data points and `max is the maximum value reached

by the likelihood function.

Information criterion Choice of λ V (k)

Bayesian-Schwarz (BIC) [43] logN −2 log `max

Akaike (AIC) [44] 2 −2 log `max

Hannan-Quinn (HQIC) [45] log(log(N)) −2 log `max

Universal Automatic Elbow Detector (UAED) [29] V (0)/K any
Spectral IC (SIC) [34] all any

3 Geometric-based design of the interval

In this section, we present a novel technique for obtaining an interval of indices in the context
of an elbow detection problem, which encodes the uncertainty in model selection. More
specifically, we extend one of the derivations of the universal automatic elbow detector, as
presented in [29]. The underlying idea is inspired by the AUC approach in ROC curves for
classification [37, 38], and the derivation of the Gini index in the economic field [39, 42].
The algorithm is based on the construction of three straight lines: the first one passing through
the points (0, V (0)), to (k1, V (k2)), the second one passing through the points (k1, V (k1)) to
(k2, V (k2)) and the last one passing through the points (k2, V (k2)) to (K, 0), as shown in Figure
1 (clearly, k2 > k1). The goal is to minimize the area under this piece-linear approximation
of the curve V (k). The total area under this approximation is the sum of the two trapezoidal
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Figure 1: Example of error function V (k) (dashed line) and the construction of the areas A1,
A2, A3, with three straight lines and k1 < k2.

areas (A1 and A2) and a triangular area (A3), as depicted in Figure 1. Namely, we have

A1 =
(V (0) + V (k1))k1

2
,

A2 =
(V (k1) + V (k2))(k2 − k1)

2
, and

A3 =
V (k2)(K − k2)

2
,

where we have used the assumption V (K) = 0. Hence the optimal interval which possibly
includes the location of an “elbow” point is defined as

[k∗1, k
∗
2] = arg min

k1,k2
J(k1, k2),

= arg min
k1,k2
{A1 + A2 + A3},

= arg min
k1,k2

{
k1V (0) + k2V (k1)− k1V (k2) +KV (k2)

}
,

= arg min
k1,k2

{
k1V (0) + k2V (k1) + (K − k1)V (k2)

}
, k1 < k2. (2)

It is important to remark that solving this optimization above is straightforward because k1
and k2 belong to a discrete and finite set. Note that by construction, the elbow kUAED provided
by UAED in [29] is always contained in the interval [k1, k2], i.e., kUAED ∈ [k1, k2].
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Relationship with information criteria. If we keep fixed k2 as a constant, we can rewrite
J(k1, k2) as a function of only k1 (given k2), i.e.,

k∗1 = arg min
k1

J(k1|k2) = arg min
k1

{
k1V (0) + k2V (k1) + (K − k1)V (k2)

}
,

= arg min
k1

{
k2V (k1) + (V (0)− V (k2))k1 +KV (k2)

}
,

= arg min
k1

{
V (k1) +

V (0)− V (k2)

k2
k1

}
,

= arg min
k1

{
C(k1|k2)

}
, (3)

where we have used that k2 and K are considered constant. The last expression

C(k1|k2) = V (k1) +
V (0)− V (k2)

k2
k1,

= V (k1) + λ(k2)k1, (4)

has the form of an information criterion where V (k1) plays the role of the error curve and the

slope λ is here a function of k2, i.e., λ(k2) = V (0)−V (k2)
k2

(instead of being a constant). If k2 = K

and since V (K) = 0, we recover the slope λ = V (0)
K

associated to the automatic elbow detector
in [29], as shown in Table 1. Fixing k1 as a constant, we can rewrite J(k1, k2) as a function of
only k2 (given k1), i.e.,

k∗2 = arg min
k2

J(k2|k1) = arg min
k2

{
k1V (0) + k2V (k1) + (K − k1)V (k2)

}
= arg min

k2

{
k2V (k1) + (K − k1)V (k2)

}
= arg min

k2

{
V (k2) +

V (k1)

K − k1
k2

}
,

= arg min
k2

{
C(k2|k1)

}
, (5)

where we have used that k1 and K are constant, and set

C(k1|k2) = V (k2) +
V (k1)

K − k1
k2,

= V (k2) + λ(k1)k2, (6)

that, again, has the form of an information criterion where the slope λ is a function of k1,
i.e., λ(k1) = V (k1)

K−k1 , instead of a constant. If we set k1 = 0, we recover again the slope

λ = V (0)
K

associated to the automatic elbow detector in [29]. Then, thinking in an alternating
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optimization approach, minimizing J(k1, k2) = A1 +A2 +A3 can be interpreted as minimizing
iteratively different conditioned information criteria, connected to each other by the different
slopes of the complexity penalty.

4 SIC-based design of the interval

For simplicity, assume that V (k) is strictly decreasing, so that C(k) has a unique minimum. In
[34], firstly the authors note that λ ∈ [0, λmax],

λmax = max
k

[
V (0)− V (k)

k

]
, for k = 1, ..., K. (7)

Indeed, for λ ≥ λmax we always obtain k∗ = arg minC(k) = 0.2 Generally, varying λ in [0, λmax],
the position of the minimum changes k∗. Namely, the location of the minimum a function of λ,

k∗(λ) = arg min
k
C(k, λ), k∗(λ) : [0, λmax]→ {0, 1, 2..., K}. (8)

It is a non-increasing, piecewise constant function taking discrete values from 0 to K, where
k∗(0) = K and k∗(λ) = 0 for λ ≥ λmax. It is a piecewise constant function since, even changing
λ, the value k∗(λ) can remain unvaried. See Figure 2(a) for an example of function V (k) and
the corresponding cost function C(k, λ) for a given value of λ. The resulting function k∗(λ) is
given in Figure 2(b).
As shown in Figure 2(b), different values of λ′ and λ′′ can yield the same minimum denoted
as j, i.e., k∗(λ′) = j and k∗(λ′′) = j, so that k∗(λ) remains constant in certain pieces, each
characterized by a specific length’. We can convert these ‘lengths’ into weights, associating to
each index j ∈ {0, 1, .., K} a normalized weight w̄j. A Monte Carlo procedure to compute these
normalized weights w̄j is given in Table 2. A more efficient alternative to the Monte Carlo
approach is to use a fine grid for the values of λ, which is the strategy implemented in the
provided code. Note that, by construction, we have w̄0 = 0.
In order to design an interval [k∗1, k

∗
2] including the possible elbow of the curve (and encoding

the related uncertainty), we define the cumulative sum of the first m weights, i.e.,

Wk =
k∑
j=1

w̄j,

with 0 < k ≤ K and set

k∗1 = min{k : Wk ≥ `1},
k∗2 = min{k : Wk ≥ `2}, `1 < `2. (11)

2It is interesting to note the relationship between V (0)−V (k)
k in Eq. (7) and λ(k2) in Eq. (4).
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Table 2: Computation of the weights in the SIC method by Monte Carlo. Clearly, alternative quasi-

Monte Carlo can be employed (using a fine grid of λ values).

• Choose a value M (e.g., M ≥ 105) and calculate λmax = max
k

[
V (0)−V (k)

k

]
.

• For i = 1, ...,M :

1. Generate randomly λi ∼ U([0, λmax]).

2. Compute
k∗i = arg min

k
C(k, λi) = arg min

k
[V (k) + λik] . (9)

• Return the frequency of the event {k∗i = j} for j = 1, ..., K, that is equivalent to
return the weights

w̄j =
#{k∗i = j}

M
, j = 0, ..., K. (10)

where `1, `2 play a similar role to a confidence level. After several empirical studies, we can
assert that a very robust choice is given by `1 = 0.95 and `2 = 0.995. Safer intervals can be
designed considering a more conservative value such as `2 = 0.999. All the results in this work
are obtained considering `2 = 0.995.

5 Numerical experiments

In this section, we evaluate the two proposed constructions of the intervals across different
settings, including experiments with artificial data (Sections 5.1 and 5.3), a synthetic curve V (k)
defined analytically (Section 5.2), and two real-world datasets (in the final two experiments).
The MATLAB code used for the experiments is also made available.3

3http://www.lucamartino.altervista.org/PUBLIC_INTERVALS_CODE.zip
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Figure 2: (a) Example of function V (k), the penalty λk (for a specific value of λ), and the
resulting cost function C(k, λ) = V (k) + λk (shown with dots). (b) Example of piecewise
constant function k∗(λ) yielded by SIC in a log-λ scale.

5.1 Order selection in an auto-regressive model with a Laplacian
noise

We generate a dataset of T pairs {t, yt}Tt=1, where t is an integer temporal index and the signal
yt is a scalar value for each t. We consider the following auto-regressive model,

yt = θ1yt−1 + θ2yt−2 + ...θkyt−k + εt, for t = 1, ..., T, (12)

where θk = [θ1, θ2, ..., θk]
>. We assume that εt is a Laplacian noise, i.e.,

p(εt) =
1

2b
exp

(
−|εt − µ|

b

)
,

with zero mean, µ = 0, and variance σ2
ε = 2b2. The goal is to infer the true order of the model

ktrue. This kind of problem is very frequent in signal processing, statistics, and machine learning
[9, 10]. Note that it is possible to generate easily random samples from a Laplace density [46,
Chapter 2]. Therefore, starting with null initial conditions, it is possible to generate data
according to the model in Eq. (12). We test two levels of noise σε = 0.5, i.e., b = 0.35,
with standard deviation σε = 5, i.e., b = 3.53. We also consider different numbers of data,
T ∈ {200, 2000}.
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In this example, we test 3 possible values of the order of the model, ktrue ∈ {3, 5, 7}, where
we have employed the following formula of the coefficients θi = (−1)i−1 exp{−0.3(i − 1)}, to
ensure that the system in Eq. (12) is stable. More specifically, we have

ktrue = 3 =⇒ θ1 = 1, θ2 = −0.7408, θ3 = 0.5488;

ktrue = 5 =⇒ θ1 = 1, θ2 = −0.7408, θ3 = 0.5488, θ4 = −0.4066, θ5 = 0.3012;

ktrue = 7 =⇒ θ1 = 1, θ2 = −0.7408, θ3 = 0.5488, θ4 = −0.4066, θ5 = 0.3012,

θ6 = −0.2231, θ7 = 0.1653.

Note that the last coefficients become smaller and smaller making more difficult their
detection/estimation, especially with σε = 5. Hence, the scenario with ktrue = 7 is more
difficult in terms of estimation of the order of the model, especially with an high noise power.
Given each combination of the values of σε, T , and ktrue, we generate the data y = [y1, ..., yT ]
according to the model (12). In all scenarios, we average the results with 103 independent runs,
generating a new time series of T at each run. Moreover, in all the simulations, we consider
V (k) = −2 log(`max) with `max = maxθ p(y|θk) with k ≤ K (setting K = 100), where p(y|θk) is
induced by Eq. (12), in order to allow the comparison with other schemes in the literature, as
shown in Tables 1 and 4. Note that, since we consider a Laplacian noise, `max is not provided
with an analytic form. Indeed, it requires the knowledge of the maximum likelihood estimator
θ̂k = arg maxθ p(y|θk), then `max = p(y|θ̂k). We consider the least squares estimation of the

vector θk as an approximation of θ̂k. Figure 3 shows 50 examples of the curves V (k) in different
runs (for ktrue = 7, σε = 5 and T ∈ {200, 2000}), jointly with the median curve (black solid line)
and a yellow area between two black dashed lines, corresponding to the 98% of the empirical
distribution provided by the 103 runs.
In Table 1, we provide the results of different information criteria: BIC [43], AIC [44], HQIC
[34], and UAED [29]. The best results are remarked with a yellow colored cell. We can observe
that BIC and UAED provide the best results in terms of correct-decision rate pA ∈ [0, 1],
inferring the order of the model (i.e., the times that the method selects the correct order over
the total number of simulations). Recall that the first proposed interval method is designed
to extend the derivation of UAED. Table 4 shows the median intervals (obtained with the
two methods introduced in the previous section) over the 103 runs in the different scenarios.
Moreover, the table gives the rate pin ∈ [0, 1] of the intervals containing ktrue (clearly, including
the extreme values of the interval). Namely, pin is the ratio of the number of times ktrue is
inside the built interval over the total number of runs. This value pin plays the same role of the
quantity 1− α where α is the confidence level in classical interval estimation. We can observe
that both reach excellent performance. The best results in terms of shorter interval and pin are
remarked with a green colored cell. Note that both methods seem to be virtually insensible to
the noise power. The geometric-based approach always obtains good results even with a small
number of data. Whereas the SIC-based approach seems to work better with a bigger number
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of data, suffering more the case with smaller data (designing much longer intervals in these
cases). We can see clearly this point looking to the median lengths Lmed of the intervals:

Geometric-based =⇒ Lmed ∈ {9, 2, 11, 2, 4, 4, 4, 4, 6, 5, 6, 5}
SIC-based =⇒ Lmed ∈ {6, 0, 8, 0, 85, 0, 77, 0, 90, 4, 90, 4}.

The SIC approach is able to return intervals with zero median lengths (maximum certainty)
when T = 2000 (bigger number of data) and ktrue = 3 and ktrue = 5, but struggles when
T = 200 where the median lengths are quite big such as 85, 77, 90 and 90, compared with the
median lengths obtained with the geometric approach, respectively 4, 4, 6 and 6. In this sense,
the geometric approach seems to be more robust.

Table 3: Summary of the correct-decision rate pA ∈ [0, 1] (averaged over 103 runs) for the IC methods,
in the experiment of Section 5.1.

Scenario Method
ktrue σε T UAED BIC AIC HQIC

3
0.5

200 pA ≈ 0.94 pA ≈ 0.97 pA ≈ 0.79 pA ≈ 0.73
2000 pA = 1 pA = 1 pA ≈ 0.88 pA ≈ 0.89

5
200 pA ≈ 0.96 pA ≈ 0.99 pA ≈ 0.78 pA ≈ 0.71
2000 pA = 1 pA ≈ 0.99 pA ≈ 0.89 pA ≈ 0.90

5
0.5

200 pA ≈ 0.89 pA = 0.95 pA ≈ 0.78 pA ≈ 0.72
2000 pA = 1 pA ≈ 0.99 pA ≈ 0.84 pA ≈ 0.84

5
200 pA ≈ 0.89 pA ≈ 0.97 pA ≈ 0.77 pA ≈ 0.68
2000 pA = 1 pA ≈ 0.99 pA ≈ 0.83 pA ≈ 0.83

7
0.5

200 pA ≈ 0.58 pA ≈ 0.30 pA ≈ 0.60 pA ≈ 0.56
2000 pA = 1 pA ≈ 0.98 pA ≈ 0.79 pA ≈ 0.81

5
200 pA ≈ 0.58 pA ≈ 0.30 pA ≈ 0.58 pA ≈ 0.54
2000 pA = 1 pA ≈ 0.99 pA ≈ 0.78 pA ≈ 0.78
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Table 4: Performance of the designed intervals in Section 5.1. We provide (a) the median interval
Imed over all the runs, and (b) the rate pin ∈ [0, 1] of the intervals containing ktrue (clearly, including
the extremes of the interval). This value pin plays the same role of the quantity 1− α where α is the
confidence level (in classical interval estimation).

Scenario Method
ktrue σε T Geometric-based SIC-based

3

0.5

Imed = [3, 12] Imed = [3, 9]
200 pin ≈ 0.997 pin = 1

Imed = [1, 3] Imed = [3, 3]
2000 pin = 1 pin = 1

5

Imed = [3, 14] Imed = [3, 11]
200 pin ≈ 0.995 pin = 1

Imed = [1, 3] Imed = [3, 3]
2000 pin = 1 pin = 1

5

Imed = [2, 6] Imed = [5, 90]

0.5
200 pin ≈ 0.995 pin ≈ 1

Imed = [1, 5] Imed = [5, 5]
2000 pin = 1 pin = 1

Imed = [2, 6] Imed = [5, 82]

5
200 pin ≈ 0.992 pin = 1

Imed = [1, 5] Imed = [5, 5]
2000 pin = 1 pin = 1

7

Imed = [2, 8] Imed = [3, 93]

0.5
200 pin ≈ 0.935 pin ≈ 0.983

Imed = [2, 7] Imed = [3, 7]
2000 pin = 1 pin = 1

Imed = [2, 8] Imed = [3, 93]

5
200 pin ≈ 0.927 pin ≈ 0.970

Imed = [2, 7] Imed = [3, 7]
2000 pin = 1 pin = 1

5.2 Artificial curve V (k) with known analytic form

In this section, we consider synthetic error curve V (k) where we know its analytic form. In
this way, we can observe some convergence properties of the different schemes and the ability
to encode geometric invariant features of a curve V (k). More specifically, the goal of this
experiment is to analyze the behaviors of the elbow detectors [29, 30, 31, 32], of the index
of effective number of variables (ENV) recently introduced in [36], and the two constructions
of intervals proposed in this work, the geometric-based and the SIC-based approaches. We
consider the function

V ′(k) = e−0.1k, k = 0, 1, 2..., K,
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Figure 3: Examples of the curves V (k) of Section 5.1 in 50 different runs for ktrue = 7, σε = 5 and
T ∈ {200, 2000}; the median curve is depicted with a black solid line, and the yellow area between
two black dashed lines represents the 98% of the empirical distribution provided by the 103 runs.

and study different values of K. For each possible value of K ∈ {20, 50, 500, 5000, 104}, we
define V (k) = V ′(k)−minV ′(k) = e−0.1k − e−0.1K , so that V (K) = 0 in any case. We test the
elbow detectors [29, 30, 31, 32], the ENV index and the constructions of the intervals, obtaining
the results given in Table 5.

Table 5: Results in the synthetic experiment of Section 5.2.

Methods K = 20 K = 50 K = 500 K = 5000 K = 104

Elbow detectors 8 16 39 62 69
ENV index 13.756 19.338 20.016 20.016 20.016

Geometric-based interval [5,12] [10,24] [17,56] [21,83] [22,91]
SIC-based interval [20,20] [30,50] [30,53] [30,54] [30,54]

We can observe that the detected elbows are always contained in the geometric-based intervals,
as expected and stated in Section 3. However, the geometric-based intervals present an
undesirable dependence on K, especially in the second extreme of the interval. On the other
hand, the ENV index converges to the value ĪENV = 20.016 as K grows, as expected [36]. The
SIC-based intervals present the same stability property converging to the interval [30, 54] as K
grows.
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5.3 Choice of the number of clusters

Let us consider a mixture of 5 bidimensional Gaussian distributions N (µi,Σi) where:

• µ1 = [3, 0], Σ1 = [0.3, 0; 0, 2],

• µ2 = [14, 5], Σ2 = [1.5, 0.7; 0.7, 1.5],

• µ3 = [−5,−10], Σ3 = [1.5, 0.7; 0.7, 1.5],

• µ4 = [10,−10], Σ4 = [1.5, 0; 0, 1.5];,

• and µ5 = [−5, 5], Σ5 = [1,−0.8;−0.8, 1].

We generate 2500 simulated data from this mixture. Thus, the generated data form 5 disjoint

clusters. In this experiment, we define V (k) = log
[∑k+1

j=1 var(j)
]
, where var(j) represents

the inner variance of the j-th cluster. Each value of var(j) has been averaged over 200 runs,
applying a k-means algorithm for defining the memberships to each cluster at each run. The
case k = 0 corresponds to a unique, single cluster formed by all data. Hence, the total number
of clusters is given by k + 1. We assume K = 50 as the maximum number of possible clusters.
Note that with this choice of V (k), we can apply only UAED whereas the rest of IC in Table
1 cannot be applied. In this experiment, UAED suggests the right number of clusters, 5. The
geometric-based interval in this example is [2, 6], whereas the SIC-based interval is [5, 6]. Both
contain the right number of clusters, and the SIC-based interval is shorter.

5.4 Feature selection in a soundscape emotion real dataset

In this section, we address a variable selection problem in a regression setting using real-world
data, specifically focusing on a soundscape emotion dataset. More specifically, a dataset of N
pairs {xn, yn}Nn=1 is given, where each input vector xn = [xn,1, ..., xn,K ] is formed by K variables,
and the outputs yn’s are scalar values. We assume K ≤ N and a linear measurement model,

yn = θ0 + θ1xn,1 + θ2xn,2 + ...θKxn,K + εn, (13)

where εn is a Gaussian perturbation with zero mean and variance σ2
ε , i.e., εn ∼ N (ε|0, σ2

ε ). In
the soundscape emotion dataset analyzed for instance in [11], there are K = 122 features and
N = 1214 number of data points. The output represents a variable defined as “arousal” in [11].
After ranking the 122 variables as suggested in [11], we set again V (k) = −2 log(`max) where
`max = maxθ p(y|θk) with k ≤ K, and where the likelihood function p(y|θk) is induced by Eq.
(13). This choice of V (k) allows the computation of AIC, BIC, and HQIC as well (see Table
1). The results of the different IC and the intervals built by the proposed schemes are given
below:
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• BIC suggests a model with 17 variables.

• AIC chooses 44 variables.

• HQIC selects a model with 41 variables.

• UAED suggests a model with 11 variables.

• The interval built with the geometric procedure is [7, 41].

• The interval based on the SIC procedure is [7, 25].

Note that that geometric-based interval contains all the IC with the exception of the result
of AIC (44 variables). The SIC-based interval excludes also the solution provided by HQIC
(41 variables). In this experiment, the SIC-based interval is shorter than the geometric-based
interval. Both intervals are in line with other previous studies regarding this dataset and with
the experts’ recommendations in the literature, e.g., [11]. Figure 4(a) shows the corresponding
curve V (k) and summarizes with all the results provided by the IC and obtained intervals.
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Figure 4: V (k) curves and results for the experiments in (a) Section 5.4 and (b) Section 5.5 with
real data.
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5.5 Feature selection in a classification problem with a nonalcoholic
fatty liver disease real dataset

In this section, we consider an example of biomedical applications, which are nowadays
extremely important in signal processing and machine learning [47, 48]. In [49], the authors
study the most important variables for predicting patients at risk of developing nonalcoholic
fatty liver disease. The dataset is formed by 1525 patients who attended the Cardiovascular
Risk Unit of Mostoles University Hospital (Madrid, Spain) from 2005 to 2021. The authors
in [49] employ a random forest (RF) algorithm as a classifier and rank the input variables,
selecting the most relevant ones. The resulting 4 most important features are according to this
raking: (a) insulin resistance, (b) ferritin, (c) serum levels of insulin, and (d) triglycerides. The
authors in [49] employed cross-validation (CV) for finding the optimal number of features (that
is 4) and this result was supported by the expert’s opinions.
In this section, we have defined V (k) = 1 − accuracy(k) as error curve that is given in Figure
4(b), using accuracy(k) obtained in [49] and after ranking the 35 variables as in [49]. Note that
V (0) = 0.5 representing a completely random binary classification. Note that, even with this
choice of the curve V (k) = 1−accuracy(k), we can still apply UAED and SIC as shown in Table
1. The other information criteria cannot be applied in this context. However, we can obtain
the intervals based on the geometric approach (which is related to the UAED derivation) and
on the SIC approach. As shown in Figure 4(b), the resulting geometric interval is [2, 11] and
the SIC-based interval is [3, 11]. Both contain 4 variables which is exactly the result provided in
[49], obtained by applying a cross-validation approach and supported by the experts’ opinions.

6 Conclusions

In this work, we have proposed two alternative constructions for deriving intervals that capture
the uncertainty associated with determining the number of components in nested models. The
proposed approaches do not require knowledge of a likelihood function, making them broadly
applicable across various domains, including regression and classification, feature and/or order
selection, clustering, change point detection, and dimensionality reduction, among others.
We have also extensively discussed the connection between our methods and widely used
information criteria from the literature. Additionally, MATLAB code has been made available
to facilitate the adoption of these methods by researchers and practitioners in applied settings.
Extensive experiments on both synthetic and real data have demonstrated the strong
performance of the proposed schemes. In particular, the results highlight that:

• Both procedures design intervals that contain the true number of components (or
the number of components suggested by the experts) in more than 90% of the
runs/realizations.
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• The geometry-based procedure appears to be more robust to variations in the number of
data points; however, its performance is influenced by the total number of components
K.

• The SIC-based procedure tends to yield the most accurate results as the number of data
points increases. Conversely, when the data size is limited, this approach often produces
relatively wide intervals. A notable property of the SIC-based method is the convergence
and invariance of the resulting interval as K →∞.

• Both approaches seems to exhibit a notable degree of robustness to the noise levels
affecting the data.

The proposed schemes give particularly suitable solutions when the error curve V (k) tends to be
convex, as evidenced by the final two experiments involving real datasets and supported by our
practical experience. It is also important to highlight that the proposed methods can be applied
even in the absence of a likelihood function. Consequently, we argue that both procedures
serve as (a) universal, (b) automatic, and (c) computationally efficient tools for quantifying the
uncertainty inherent in model selection problems, without the need for resampling techniques
or cross-validation schemes.
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classification models and relevant features on nonalcoholic steatohepatitis using random
forest,” Entropy, vol. 23, no. 6, 2021.

21


	Introduction
	Framework and background
	The error curve V(k)
	A general expression for several information criteria (IC)

	Geometric-based design of the interval
	SIC-based design of the interval
	Numerical experiments
	Order selection in an auto-regressive model with a Laplacian noise
	Artificial curve V(k) with known analytic form
	Choice of the number of clusters
	Feature selection in a soundscape emotion real dataset
	Feature selection in a classification problem with a nonalcoholic fatty liver disease real dataset

	Conclusions

