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Acknowledgement. This document began its life as a private copy of the Glossary accompanying the
Encyclopedia of Clark Kimberling (1998-2024). This Glossary –as its name suggests– is organized
alphabetically. As a never satisfied newcomer, I would have preferred a progression from the easiest
to the hardest topics and I reordered this document in my own way. It is unclear whether this
new ordering will be useful to someone else ! In any case a detailed index is provided, where
(tentatively) the main entry is bolded.

Second point, the Kimberling’s Glossary is written using trilinear coordinates. From an ad-
vanced point of view, these coordinates are neither better nor worse than the barycentric co-
ordinates. Nevertheless, having some practice of the barycentrics, and none of the trilinears, I
undertook to translate everything, from one system to another. In any case, this was a forma-
tive exercise, and this also puts the focus on the covariance/contra-variance properties that were
subsequently systematized.

Drawings are the third point. Everybody knows –or should know– that geometry is not possible
at all without drawings. Having no intention to pay royalties for using rulers and compasses, I
turned to an open source software (kseg) in order to produce my own drawings. Thereafter, I have
used Geogebra, together with pstricks. What a battle, but no progress without practice !

Subsequently, other elements have been incorporated from other sources, including materials
about cubics, from the Gibert web site, and about Cremona transforms from the Déserti archive.
Finally, original elements were also added. As it will appear at first sight, "pldx" is addicted to a
tradition that requires a precisely specified universal space for each object to live in.

A second massive addiction of the author is computer algebra. Having at your fingertips a
tool that gives the right answer to each and every expansion or factorization, and never lost the
small paper sheet where the computation of the week was summarized is really great. Moreover,
being constrained to explain everything to a computer helps to specify all the required details.
For example, the "equivalence up to a proportionality factor" doesn’t apply in the same way to
a matrix whether this matrix describes a collineation, a triangle, a trigone or a set of incidence
relations.

In this document, "beautiful geometrical proofs" are avoided as much as possible, since they are
the most error prone. A safe proof of "the triangle of contacts of the inscribed circle and the triangle
of the mid-arcs on the circumcircle admit the insimilicenter of the two circles as perspector" is :

ency(persp(matcev(vX(7)),matucev(vX(1)))) 7→ 56
where the crucial point is ency, i.e. a safe implementation of the Kimberling’s search key method
to explore the database.

To summarize, the present document is rather a "derived work", where the elements presented
are not intended to be genuine, apart perhaps from the way to assemble the ingredients and cook
them together.
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Chapter 1

Introduction

Many changes have occurred in the way we are doing geometry, from the old ancient times of
Euclid and Apollonius. Most of them are related to yet another way of performing "automated"
computing of properties, rather than relying on intuition to find "beautiful geometric proofs".
Many individuals have contributed to this long process, and attributing a given discovery to a
given individual is not an easy task (Coolidge, 1940).

The most eminent milestones along this long road are the individuals who have summarized
the discoveries of their time into an efficient way of writing down the questions to solve (Fourrey,
1907). Each time, the new way of writing was appearing as doing the job by itself and providing
the required answers through something like a least action trajectory. Heroes are no more required,
replaced by computing power.

Writing numbers and calculations in a tractable manner is associated with Al-Khwarizmi and
his Algebra (825). Using coordinates (x, y) to describe points and compute their geometrical
properties (as well as the exponent notation for polynomials) is associated with Descartes and
his Géometrie (1637). Using homogeneous coordinates x : y : z to implement the principle of
continuity when dealing with objects that escape to infinity is associated with Moebius and his
barizentrische Calcul (1827).

More recently, the very idea of stamping an hash-code on each noteworthy point involved
in Triangle Geometry and then practice some kind of computer aided inventory management
(Kimberling, 1998-2024) has changed the practice of geometers. This idea has emerged from a
more general trend, where

barycentrics are understood to define points, lines, circles, triangle centers, etc., and
zero determinants are understood to define collinearity and concurrence. Doing that
way, triangle geometry, formally speaking, is much more general than the study of
a single Euclidean triangle. In the formal treatment, sometimes called transfigured
triangle geometry, the symbols a, b, c are regarded as algebraic unknowns, so that
points, defined as functions of a, b, c, are not the usual points of a two-dimensional
plane. When (a, b, c) are real numbers restricted by the "triangle inequalities" for
sidelengths, the resulting geometry is traditional triangle geometry (Kimberling, 1998).

When possible, computed proofs are given that use formal computing tools. This kind of proof
is deprecated by several authors. Nevertheless, these proofs are the easiest since all the messy
job is done by a computer and are also the safest. A construction that sounds like a "beautiful
geometrical proof" is too often invalid due to some hidden exception. During a computerized proof,
exceptions are appearing as multiplicative factors, according to the polynomial model :

conclusion× exceptions = hypothesis

To quote the Knuth’s foreword to Petkovsek et al. (1996) :

Science is what we understand well enough to explain it to a computer. Art is everything
else we do. During the past several years important parts of mathematics has been
transformed from an Art to a Science.

21



22 1.1. Special remark for French natives

1.1 Special remark for French natives

Lorsque vous écrivez pour un public américain, mieux vaut commencer par montrer que le sujet est
suffisamment intéressant pour mériter du temps et de la peine. Lorsque vous écrivez pour un public
français, mieux vaut commencer par montrer que l’auteur dispose d’une hauteur de vue suffisante.
Si vous percevez les choses de cette façon, le Chapitre 4 est le bon endroit par où commencer.

1.2 Basic objects : points and lines

Fact 1.2.1. You can safely build temples and pyramids by drawing reduced maps, and then rescale
your measurements to the real world.

Remark 1.2.2. Beside this founding property the reader is supposed to have heard about some
basic facts concerning numbers. There are sheep. We can eat some of them and count the others.
And so, we get N. Over the centuries, Q,Z,R have been obtained from geometric considerations.
One can follow this process in Stillwell (2010), while it’s result has been summarized in Artin
(1957).

Definition 1.2.3. In this book, R and C are defined as axiomatic objects.

Definition 1.2.4. The abbreviation "etc." will stand for "et cyclically". When an "A-object" has
been defined as F (A,B,C), then the B-object is F (B,C,A), obtained by the cyclic permutation
ABC 7→ BCA, and the C-object is, likewise, F (C,A,B). Example: If A′ is the point where lines
AP and BC meet, and B′ and C ′ are defined cyclically, then B′ is where lines BP and CA meet,
and C ′ is where lines CP and AB meet.

Definition 1.2.5. Equality. We will use the simeq sign (i.e. ') to denote an equality up to a
non vanishing multiplier, and restrict the use of the equal sign (i.e. =) to a strong equality. In
other words

x = y means x− y = 0 while x ' y means (∃k 6= 0) (k x− y = 0)

Moreover we will use the special signs doteq (i.e. .
=) and simdoteq (i.e.

.') to denote "defini-
tional equalities", in order to emphasize the fact that these equalities aren’t equations: they are
introducing new objects.

Definition 1.2.6. A point is an element of PR
(
R3
)
. To tell the same thing more simply, a point

is represented by a column of three numbers (the barycentrics of the point), not all of them being
zero, and such a column is dealt "in a projective manner", i.e. up to a proportionality factor. An
efficient way to write such a projective column is the colon notation :

P
.' p : q : r meaning that P '




p

q

r


 '




k p

k q

k r


 ∀k ∈ R \ {0}

Definition 1.2.7. A line is an element of the dual of the point space. To tell the same thing
more simply, a line is represented by a row of three numbers (the barycentrics of the line), not all
of them being zero, and such a row is dealt "in a projective manner", i.e. up to a proportionality
factor. A line will be described as :

∆
.'
(
ρ σ τ

)
'
(
λρ λσ λτ

)
∀λ ∈ R \ {0}

Notation 1.2.8. In all these definitions, property p2 + q2 + r2 6= 0 and ρ2 + σ2 + τ2 6= 0 are ever
intended. Colon notation will *ever* be restricted to inline equations describing columns, and
*never* be used for rows. Anyway, such a notation would be hopeless when dealing with matrices.

Definition 1.2.9. Incidence relations. We will say that a line ∆
.' (p, q, r) contains a point

U
.' u : v : w, or that ∆ goes through U , or that U belongs to ∆ when their dot product vanishes,

i.e. :
U ∈ ∆⇐⇒ pu+ qv + rw = 0

April 5, 2025 14:49 published under the GNU Free Documentation License
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Remark 1.2.10. It is clear that the incidence relation is projective, i.e. holds for any choice of the
proportionality factors.

Definition 1.2.11. The collinearity of three points P
.' p : q : r, U

.' u : v : w, X
.' x : y : z is

defined by the following determinant equation :
∣∣∣∣∣∣∣

x p u

y q v

z r w

∣∣∣∣∣∣∣
= 0 (1.1)

When P 6= U , the set of all the X that satisfies (1.1) is what is usually called the line PU .

Definition 1.2.12. A triangle is an ordered set of three non collinear points. Its natural rep-
resentation is an invertible square "matrix of columns", where each column is defined up to a
proportionality factor (right action of a diagonal matrix). On the contrary, a "may be degenerate
triangle" is a matrix such that (i) columns are not proportional to each other and (ii) rank is at
least two. When at least two points are equal, the triangle is "totally degenerate".

Remark 1.2.13. Without explicit permission, a triangle is not allowed to be degenerate, while
totally degenerate triangles are (quite ever) to be avoided.

Definition 1.2.14. The concurrence of three lines ∆1
.' (d, e, f), ∆2

.' (p, q, r) and ∆3
.'

(u, v, w) is defined by the following determinant equation :
∣∣∣∣∣∣∣

d e f

r s t

u v w

∣∣∣∣∣∣∣
= 0 (1.2)

When ∆1 6= ∆2, the set of all the ∆3 that satisfies (1.2) is usually called the pencil generated by
the two lines.

Definition 1.2.15. A trigone is a set of ordered three non concurrent lines. Its natural represen-
tation is an invertible square "matrix of rows", where each row is defined up to a proportionality
factor (left action of a diagonal matrix).

Proposition 1.2.16. The reciprocal matrix of a triangle is a trigone and conversely. Adjoint
matrices can be used instead of inverses due to proportionality. Relation T −1 · T = Id is nothing
but the incidence relations : A′ /∈ B′C ′, A′ ∈ A′B′, A′ ∈ A′C ′ and cyclically.

Remark 1.2.17. It should be noticed that a tetra-angle defines an hexa-gone, while an tetra-gone
(quadrilateral) defines an hexa-angle : n = n (n− 1) /2 holds only when n = 3.

Definition 1.2.18. The line at infinity Lb is the locus of points x : y : z such that x+y+z = 0,
so that any point out of Lb can be described by a triple such that x+ y + z = 1. Using only this
representation would discard Lb and is nothing but the usual affine geometry.

Definition 1.2.19. Barycentric basis. Special points A = 1 : 0 : 0, B = 0 : 1 : 0, C = 0 : 0 : 1
are usually identified with the vertices of a triangle in the euclidian1 plane, so that all (barycentric)
points can be mapped onto the euclidian plane (completed with the appropriate line at infinity).
The side lengths of this triangle are denoted BC = a, CA = b and AB = c. Since a triangle is not
a two-angle, none of the a, b, c are allowed to vanish.

1.3 Figures using geogebra

1.3.1 Alternatives
The very idea to pay something for using Pythagoras theorem seems terrific, and therefore using
a free software like geogebra appears as a requirement. The following remarks may nevertheless
have some historical value.

1This kind of plane is to be named as euclidian rather than as Euclidean, since the very idea to compute figures
instead of drawing computations is as far as possible from the thoughts and practices of the historical figure who
wrote the celebrated Elements.
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ps, pstricks PostScript was a proprietary language. But it became a de facto standard for talking
to printers of any brand, and was finally released to the open source status.

maple proprietary. Moreover not sufficiently versatile.

kseg kseg (KSEG, 1999-2006) was our initial best choice, providing *.ps images. But
the maintenance stopped near 2006. Figures were fine in the Linux version, but -
constructions were badly saved, requiring the use of the win$ version (through wine)
for writing the s.

1.3.2 Various versions of geogebra
1. https://wiki.geogebra.org/en/Keyboard_Shortcuts

2. /opt/geogebra-old/geogebra/geogebra
--v GeoGebra 5.0.309.0 20 December 2016 Java 1.8.0_121-64bit

3. /usr/share/geogebra-classic/GeoGebra
--v error!!!
Version: 6.0.666.0-offline (21 September 2021)

4. /usr/share/geogebra/geogebra
--v GeoGebra 5.0.755.0 17 January 2023 Java 1.8.0_121-64bit
213686 Dec 2016 geogebra_cas.jar
054109 Jan 2023 geogebra_cas.jar si court !!! surprise !!!

1.3.3 Using Geogebra
From 2014, more and more figures of the present Glossary were drawn using Geogebra.

1. Nowadays, exporting a graphical output is easy. In the old ancient times, the best output was
obtained as a *.pdf file, resulting into a page, requiring a manual pdfcrop to the bounding
box.

2. Obtaining the second intersection of two objects requires the following incantation :
Element[Remove[{Intersect[BBB,CCC]}, {A}], 1]

3. A command like
X186 = TriangleCenter[A, B, C, 186]

can be used when n < 3053 (Geogebra 5.0.309.0-3D, tested 2016-12-12). Moreover
indexof(P, sequence(Trianglecenter(A,B,C,j),j,1,10)) allows to identify P among
the points X(j) known to geogebra (the other points generate (?,?) and everything stands
at the right place).

1.3.3.1 Construction protocol

Export the construction protocol in *.html, with nocolor, nopicture, only three columns (name&type,definition,value).
And then extract.sh will display something to insert into a LyX equation.

1.3.3.2 3D geometry

Triangle ABC Polygon(A, B, C)

Segment AB Segment[A, B, ABC]

Circle f Circle(A, 4.5, ABC)

Point D (x(H), y(H), 5)

Pyramid ABCD Pyramid(ABC, D)

Segment BD Segment[B, D, ABCD]

Triangle ABD Polygon(A, B, D, ABCD)

Line j PerpendicularLine[P, AB, ABC]

Line k PerpendicularLine[P, ABC]

Plane o PerpendicularPlane[P, BD]
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• circle f is drawn in the ABC plane

• line j is parallel to plane ABC, through point P and perpendicular to line AB

• line k is perpendicular to plane ABC

• segment AB is an element of ABC, not an "independent" object.

1.3.3.3 Macros

1. Dealing with macros is not so easy. As a rule: ever suppress any non-required sub-macro
when archiving a macro from its source file. Sometimes, you have to unzip the *.ggb file and
modify it with a text editor.

2. When transmitting a complex point P to a macro, a safe method is to create, inside the
macro, a copy of this point using Tocomplex

1.4 Type-keeping and type-crossing functions
Remark 1.4.1. The type-keeping/type-crossing properties are better understood when they are
described in terms of collineations. Chapter 16 will be devoted to this topic. The aim of the
current Section is only to provide some useful tools as soon as possible.

Definition 1.4.2. Trilinears and barycentrics. Triangle people splits into a barycentric tribe
and a trilinear tribe. The trilinear tribe thinks that trilinears, i.e. p : q : r2 are better looking than
barycentrics and redefine everything according to their preferences. The barycentric tribe thinks
that barycentrics, i.e. p : q : r3 are better looking than trilinears and redefine everything according
to their preferences.

Remark 1.4.3. Trilinears can be measured directly on the figure, since they are the directed
distances to the sidelines. When compasses were actual compasses and not a button to click
over, using trilinears was a must. Nowadays, the existence –and the persistence– of both sys-
tems can be used for an interesting renewal of the Capulet against Montague story, as in http:
//mathforum.org/kb/message.jspa?messageID=1091956. But this could also be used to gain a
better insight over many point-transforms used in the Triangle Geometry.

Definition 1.4.4. Vectors are covariant, while forms are contravariant. Therefore, coordinates
that measure a vector are forms and are contravariant. At the same time, coordinates that measure
a form are covariant. In other words, p : q : r is contravariant, while [p, q, r] is covariant.

Definition 1.4.5. We will say that a function P 7→ f (P ) : p : q : r 7→ u : v : w is type-keeping or
type-crossing or type scrambling according to :





type keeping when f (αp : βq : γr) = αu : βv : γw

type crossing when f (αp : βq : γr) = u
α : vβ : wγ

type scrambling otherwise

For a function of several variables, global type-keeping means :

f (αp :βq :γr, αu :βv :γw) = αx :βy :γz when f (p :q :r, u :v :w) = x :y :z

Remark 1.4.6. An object that is intended to describe a point has to be contravariant. An object
that is intended to describe a line has to be covariant, while relationships like collinearity (1.1) and
concurrence(1.2) have to be invariant. Therefore a function whose input and output are points
has to be type-keeping. In the same way, a function whose input and output are lines has to be
type-keeping. On the contrary, a function whose entries are points and output are lines has to be
type-crossing. In the same way, a function whose entries are lines and output are points has to
be type-crossing. These facts are the reasons why both tribes, using barycentrics or trilinears, are
proceeding to the same geometry.

2someone from the barycentric tribe would write them p/a : q/b : r/c, since she would use p : q : r for the
barycentrics

3someone from the trilinear tribe would write them ap : bq : cr, since she would use p : q : r for the trilinears
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26 1.5. Duality between point and lines

Definition 1.4.7. Barycentric multiplication is the multiplication component by component
of the barycentrics of two points. This operation is denoted :

P ∗
b
X

.' p x : q y : r z (1.3)

Component-wise multiplication of trilinears would be another possibility. This is the way of doing
of the trilinear tribe.

Definition 1.4.8. Barycentric division is the division component by component of the barycentrics
of two points. This operation is denoted :

P ÷
b
X

.' p

x
:
q

y
:
r

z
(1.4)

Component-wise division of trilinears would be another possibility. This is the way of doing of the
trilinear tribe.

Remark 1.4.9. These transforms are introduced here to provide an easy description of some other
transforms. The study of their geometrical meaning is postponed to Chapter 18. For our present
needs, we only need to remark that both :

X 7→ X ∗
b
P ÷

b
U and X 7→ P ∗

b
U ÷

b
X

are globally type-keeping transforms, that can be used to obtain points from points, or lines from
lines.

Definition 1.4.10. Sqrtdiv. Let F
.' f : g : h be a fixed point, and U a moving point, restricted

to avoid the sidelines of ABC. The mapping defined by :

sqrtdivF (U)
.
= U#

F

.' f2

u
:
g2

v
:
h2

w
(1.5)

is globally type-keeping and describes a pointwise transform, whose fixed points are the four ±f :
±g : ±h. This map U 7→ U#

F is exactly the same as U 7→ U∗P defined by U∗P
.' P÷

b
U and P

.' F ∗
b
F .

The second form is often used, introducing a fictitious point P
.' f2 : g2 : h2. This will be studied

at length at Section 18.4.

Remark 1.4.11. Using # instead of ∗ in this context is already the way of doing of the cubics’
people (Ehrmann and Gibert, 2005) : fixed points of the transform (F and its relatives) have a
clearer geometrical meaning than P . On the other hand, when P crosses the borders of ABC, the
coordinates of point F become imaginary, and the configuration is less visual.

Remark 1.4.12. The converse operation of sqrtdiv would be sqrtmul defined as (U,X) 7→ √ux :√
vy :
√
wz but this map is multivalued. When U,X are triangle centers and ux, vy, wz are perfect

squares, it makes sense to fix signs so that F is also a triangle center.

1.5 Duality between point and lines

Does equation pu+ qv+ rw = 0 means P ∈ ∆U or U ∈ ∆P ? Without any further indication, one
cannot decide which is the point and which is the line. This is called duality. If you want to be
specific, you have to say :

[
u v w

]
·



p

q

r


 = 0 or

[
p q r

]
·



u

v

w


 = 0

and remember how points/lines are mapped into columns/rows. In any case, points aren’t lines and
columns aren’t rows. An efficient formulation of incidence axioms must recognize this elementary
fact.
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Definition 1.5.1. The wedge operator is the universal factorization of the determinant. This
means that wedge of two columns is a row, while wedge of two rows is a column. One has :




p

q

r


 ∧




u

v

w


 ' (qw − rv, ru− pw, pv − qu)

(p, q, r) ∧ (u, v, w) '




qw − rv
ru− pw
pv − qu




Proposition 1.5.2. When P 6= U , the barycentrics of the line PU are provided by operation P∧U .
As it should be, this operation is commutative and is type-crossing.

Proof. The wedge of two points cannot be 0 : 0 : 0 when the points are different, therefore ∆ = P∧U
defines a line. By definition, we have :







p

q

r


 ∧




u

v

w





 ·




x

y

z


 =

∣∣∣∣∣∣∣

p u x

q v y

r w z

∣∣∣∣∣∣∣

and the conclusion comes from the fact that inclusion of a line into another implies equality. Type-
crossing is obvious from stratospheric reasons... but can also be checked on the components (up
to a global αβγ factor). When dealing with lines, the same argument shows that "line wedge line"
is a point.

Proposition 1.5.3. When line ∆12 is given by points P1and P2 (with P1 6= P2) and line ∆3 is
given by its barycentrics then either both lines are equal or their intersection M is given by :

∆12 ∩∆3 ' (∆3 · P1)P2 − (∆3 · P2)P1

Proof. CallM this object. It is clear thatM ∈ P1P2. And we can check that ∆3 ·M = 0. Another
proof is that this ' is in fact a component-wise identity.

Proposition 1.5.4. Suppose that lines ∆12 and ∆34 are respectively defined by points P1, P2 and
points P3, P4. Then either both lines are equal or their intersection M is given by :

M
.
= (P1 ∧ P2) ∧ (P3 ∧ P4) ' P2 det [P1P3P4]− P1 det [P2P3P4]

Proof. Obvious from the previous proposition and the definition det [P1P3P4] = (P3 ∧ P4) · P1.
Another proof is that this ' is in fact a component-wise identity.

Definition 1.5.5. The wedge point X∧ of a line is what is obtained by a simple transposition
of the barycentrics. This way of doing is based on a misperception of the wedge operation since
PU

.
= (P ∧ U) is a line (row) and not a point (column). When written in trilinears, this object

don’t look good. Not without reason.

Definition 1.5.6. The Weisstein point XW of a line is what is obtained when applying the
same misperception to trilinears. Applied to line PU , this leads to the crossdifference of P and
U . When written in barycentrics :

XW
.
= crossdiff (P,U) ' a2 (qw − rv) : b2 (ru− pw) : c2 (pv − qu)

this object don’t look good. Not without reason.

A better founded concept must lead to a type-crossing transform.

Definition 1.5.7. The tripole of a line and the tripolar of a point is what is obtained by
"transpose and reciprocate". Clearly, the one-to-one correspondence between pole and polar is
lost when a coordinate vanishes (line through a vertex, or point on a sideline).

Remark 1.5.8. A less stratospheric definition of the tripolar is given in Definition 3.4.3.
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name 2020 line tripo t∆ L ∞ ∞⊥ ⊥po 2014

Euler 4877 X2-X3 X648 X525 L647 X30 X523 X125 404
Nagel 1303 X1-X2 X190 X514 L649 X519 ??? ??? 142
Infinity 993 X30-X511 X2 X2 L6 269
Brocard 981 X3-X6 X110 X850 L523 X511 X512 X115 229
Bevan 740 X1-X3 X651 ??? L650 X517 X513 X11 128

? 421 X1-X6 X100 X693 L513 X518 X3309 ??? 92
Soddy 300 X1-X7 X658 X3239 X657 X516 X514 X1565 ?

van Aubel 205 X4-X6 X107 X3265 L520 X1503 X525 X1562 40
192 X1-X4 X653 X6332 L652 X515 X522 ??? 64

Fermat 137 X2-X6 X99 X523 L512 X524 X1499 ??? 97
Lemoine 132 X187-X237 X6 X76 L2 X512 X511 X1513 37
antiorthic 125 X44-X513 X1 X75 L1 X513 X517 X1512 92
orthic 118 X230-X231 X4 X69 L3 X523 X30 X1514 29

Longchamps 102 X325-X523 X76 X6 L32 X523 X30 X1531 30
72 X3-X8 X13136 ??? L3310 X952 X900 X3259 14

Gergonne 69 X241-X514 X7 X8 L55 X514 X516 X1541 21
model X1-X1 X1 X1 X1 X1 X1 X1

Table 1.1: Some well-known lines

Remark 1.5.9. When applying "transpose and reciprocate", both tribes are thinking they are
acting "their way", and are talking about "trilinear pole" and "barycentric pole". But the result
is the same since reciprocation of barycentrics (aka isotomic conjugacy, Section 3.4) acts over X∧
while reciprocation of trilinears (aka isogonal conjugacy, Section 9.2) acts over XW . To summarize
(using later introduced concepts) :

XΛ = t∆ ; XW = t∆ ∗
b
X6 ; tripole = isotom (XΛ) = isogon (XK) (1.6)

Remark 1.5.10. When tripole is at infinity, the line is tangent to the Steiner in-ellipse (cf Exam-
ple 12.11.1).

Example 1.5.11. Table 1.1 describes some well-known lines. For example, the Euler line goes
through X2(centroid) and X3(circumcenter) . Its equation is

∑
x (b2 − c2)(b2 + c2 − a2) = 0.

Formally, center (b2 − c2)(b2 + c2 − a2) is X525 = t∆, while center a2 (b2 − c2)(b2 + c2 − a2) is
X647 = XW . This center has been used sometimes to describe lines, leading to Euler = L647. The
next column (∞) gives the infinity point while the remaining two columns give the later defined
orthopoint (∞⊥) and orthopole (⊥pole).

Proposition 1.5.12. Tripole and tripolar, being correctly typed, are constructible (Figure 1.1).
Start from P . Draw AP and obtain A′ = AP ∩BC. Construct A′′ ∈ BC so that division BCA′A′′
is harmonic (Section 3.2). Act cyclically and obtain B′′ and C ′′. Then A′′B′′C ′′ are collinear, and
the line they define is nothing but the tripolar of P . (and are named tripo in Table 1.1).

Remark 1.5.13. One of the most important consequence of all these duality formulas is the rock-
solid equality giving the intersection of two lines each of them defined by two points :

(PQ ∩RS) = (P ∧Q) ∧ (R ∧ S)

Proposition 1.5.14. A symmetric parametrization in ρ, σ, τ of the points U
.' u : v : w that lie

on line ∆
.' [p, q, r] is :

U ' qτ − rσ : rρ− pτ : pσ − qρ (1.7)

A symmetric parametrization in ρ, σ, τ of the points U
.' u : v : w that lie on line ∆

.
= tripolar (P )

where P
.' p : q : r is :
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A

B C
P

B'

B''

C'

C''

A'

A''

Figure 1.1: Point P and line A”B”C” are the tripolars of each other.

U ' p (τ − σ) : q (ρ− τ) : r (σ − ρ) (1.8)

Proof. The first formula is U ' ∆ ∧ [ρ, σ, τ ], defining a point on a line as the (projective) inter-
section of this line with another one. The second one is obvious.

Proposition 1.5.15. (Spoiler) Line tripolar (P ) is the locus of the tripoles U of the tangents to
the inconic IC (P ). Moreover, the contact point of tripolar (U) with the conic is Q ' U ∗

b
U ∗

b
P .

Proof. This is the right place for the assertion, but not for its proof... Postponed to Proposi-
tion 12.8.11.

Remark 1.5.16. Caveat : A triangle is not a conic. When U lies on the polar of P wrt a
conic, then P lies on the polar of U wrt the same conic. When U lies on tripolar (P ) (the polar of
P wrt triangle ABC) we have :

u

p
+
v

q
+
w

r
= 0

and this isn’t a commutative relation.

1.6 Isoconjugacy has moved
See Chapter 18, chiefly Section 18.4.
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Chapter 2

Central objects

Centrality is a key notion. Emphasis on this concept was put by the founding paper of Kimberling
(1998). The corresponding definitions have been tailored so that a central point is something like
I = X (1) or G = X (2) or O = X (3) etc., while a central triangle is something like ABC itself or
JKL (the triangle of the excenters).

2.1 Triangle centers

When a concept emerges, various attemps are tested. Twenty years later, the most efficient ones
take place in the "favored" list, while the others have to be deprecated. No criticism is implied
here.

2.1.1 Favored concepts

Three points defines six triangles when taking the order into account. But there exists only one
orthocenter. A central point is something that behaves like that. Moreover, geometrical theorems
are not supposed to change when the king’s foot shortens (not to speak of what happens when
the king itself is shortened) : barycentric functions have to be homogeneous. This leads to the
following definition.

Definition 2.1.1. A triangle center (or a central line) is a point (or a line) of the form



f(a, b, c)

f(b, c, a)

f(c, a, b)




where f is a nonzero function satisfying two conditions:

1. f is homogeneous in a, b, c; i.e., there is a real number h such that f(λa, λb, λc) = λhf(a, b, c)
for all (a, b, c) in the domain of f ;

2. f is symmetric in b and c; i.e., f(a, c, b) = f(a, b, c).

Definition 2.1.2. Bicentric points. When condition (2) is relaxed, we have to consider the two
different points




f(a, b, c)

f(b, c, a)

f(c, a, b)


 ,




f(a, c, b)

f(b, a, c)

f(c, b, a)




They are called bicentric, together comprising a bicentric pair. Example: the Brocard points,
ω+ = a2b2 : b2c2 : c2a2 and ω− = c2a2 : a2b2 : b2c2 (cf Proposition 7.11.1).

Definition 2.1.3. A strong center is a triangle center whose defining function belongs to
C
[
a2, b2, c2

]
. Coordinates of such a point only depend on the coordinates of the vertices.
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32 2.1. Triangle centers

Definition 2.1.4. A rational center is a triangle center whose defining function belongs to
C
[
a2, b2, c2, S

]
, where S is the area of triangleABC. When the coordinates of the vertices are

rational, the coordinates of the center are made of rational quantities and fixed numbers.

Remark 2.1.5. Rational points that are not of the strong kind are in fact occuring by pairs,
depending on the sign chosen for S (i.e. depending from the orientation of the triangle wrt the
orientation of the plane). Example:

X(15) ' a2
(
Sa + 2/3S

√
3
)

: b2
(
Sb + 2/3S

√
3
)

: c2
(
Sc + 2/3S

√
3
)

X(16) ' a2
(
Sa − 2/3S

√
3
)

: b2
(
Sb − 2/3S

√
3
)

: c2
(
Sc − 2/3S

√
3
)

Definition 2.1.6. Aweak center is a triangle center whose defining function belongs to C [a, b, c, S]
without being a rational center.

Theorem 2.1.7. Lemoine transforms. When using barycentrics, the identity together with
the three transforms a 7→ −a, b 7→ −b and c 7→ −c form a Klein group. Nowadays, they are
called the Lemoine transforms, while Lemoine himself called them the "transformations continues"
(see Lemoine, 1891). Spoiler: when using Lubin-2, these transforms are obtained by α 7→ −α or
β 7→ −β or γ 7→ −γ .

Proof. The fact that La◦Lb = Lc comes from the homogeneity required for the formulas of interest.
Remember: a theorem is a proposition with the biggest consequences, not necessarily something
difficult to prove.

Remark 2.1.8. Rational points (strong or not) are invariant by the Lemoine transforms, while the
weak centers are replicated, leading to what is called a set of four extraversions. Obviously, the
incenter and its three excenters were the pattern used to shape this concept.

Theorem 2.1.9. Klein transforms. When using barycentrics x : y : z, the identity together
with the three transforms x 7→ −x, y 7→ −y and z 7→ −z form a Klein group. They are called
the Klein transforms (see Lemoine, 1891) and a group of four points ±f : ±g : ±h is called a
Klein quadrangle. Spoiler. Any three points of such a set are the vertices of the anticevian
triangle of the remaining one, while triangle ABC is the diagonal triangle of the quadrangle (see
Proposition 3.4.15.

Proof. Here, the fact that La ◦ Lb = Lc comes from the very definition of a projective space.

Remark 2.1.10. When function f (a, b, c) is a times an even polynomial, then both transforms give
the same result. A list of such points is given at the introduction of points X(7001) - X(7373).

2.1.2 Deprecated concepts

Definition 2.1.11. A transcendental center is a triangle center X that cannot be defined as X
= f(a, b, c) : f(b, c, a) : f(c, a, b) using an algebraic function f . Examples: X(359) and X(360).

Definition 2.1.12. A major center is a triangle center X for which there exists a function f of
the angles such that X = f(A) : f(B) : f(C). Examples: X(1), X(2), X(3), X(4), X(6). Major
centers solve certain problems in functional equations (Kimberling, 1993; ?).

Consider two examples, X(9) and X(37), of which first trilinears are b + c − a and b + c,
respectively. It is not clear from these trilinears that X(9) is a major center, whereas X(37) is not.
Indeed, X(9) also has first trilinear cot(A/2), so that X(9) is a major center, but there remains
this problem: how to establish that X(37) and others are not major. In April, 2008, Manol Iliev
found a criterion for a triangle center to be not a major center (**reference missing**). He applied
his test to the first 3236 triangle centers in ETC and found that exactly 292 of them are major, as
listed Table 2.1.

Definition 2.1.13. Angular Lemoine transform.

A 7→ −A ; B 7→ π −A ; C 7→ π − C ; S 7→ −S ; R 7→ R ; r0 ↔ ra
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1 2 3 4 6 7 8 9 13 14 15
16 17 18 19 24 25 31 32 33 34 35
36 41 47 48 49 50 55 56 57 61 62
63 68 69 75 76 77 78 79 80 85 91
92 93 94 158 173 174 179 184 186 188 200
202 203 212 215 219 220 222 236 255 258 259
264 265 266 269 273 278 279 281 289 298 299
300 301 302 303 304 305 312 317 318 319 320
323 326 328 331 340 341 345 346 348 357 358
359 360 365 366 371 372 378 393 394 400 470
471 472 473 479 480 483 485 486 491 492 506
507 508 509 554 555 556 557 558 559 560 561
562 563 571 577 601 602 603 604 605 606 607
608 728 738 847 999 1000 1028 1049 1077 1081 1082
1085 1088 1092 1093 1094 1095 1096 1102 1106 1115 1118
1119 1123 1124 1127 1128 1129 1130 1131 1132 1133 1134
1135 1136 1137 1139 1140 1143 1147 1151 1152 1250 1251
1253 1259 1260 1264 1265 1267 1270 1271 1274 1321 1322
1327 1328 1335 1336 1395 1397 1398 1399 1407 1411 1435
1442 1443 1488 1489 1496 1497 1501 1502 1583 1584 1585
1586 1593 1597 1598 1599 1600 1659 1748 1802 1804 1807
1820 1847 1857 1870 1917 1928 1969 1973 1974 1989 1993
1994 2003 2006 2052 2066 2067 2089 2151 2152 2153 2154
2160 2161 2165 2166 2174 2175 2207 2212 2289 2306 2307
2323 2351 2361 2362 2477 2671 2672 2673 2674 2962 2963
2964 2965 3043 3076 3077 3082 3083 3084 3092 3093 3179
3200 3201 3205 3206 3218 3219

Table 2.1: Major centers

2.2 Central triangle

Definitions of this Section are tailored so that triangle ABC itself as well as later defined (Sec-
tion 3.4) cevian and anticevian triangles are central objects. The corresponding matrices are,
columnwise, as follows :

CP '




0 p p

q 0 q

r r 0


 , AP '



−p p p

q −q q

r r −r




Definition 2.2.1. Suppose that f, g are two homogeneous functions having the same degree of
homogeneity. One of them (but not both) can be the zero function. Then the (f, g)central triangle
is defined as :

[A′, B′, C ′] '




f (a, b, c) g (a, c, b) g (a, b, c)

g (b, c, a) f (b, c, a) g (b, a, c)

g (c, b, a) g (c, a, b) f (c, a, b)


 (2.1)

Example 2.2.2. Triangle ABC is (1, 0) while CP is (0, f) and AP is (−f, f) when point P is
defined by center function f .

Proof. We have P = f(a, b, c) : f(b, c, a) : f(c, a, b), together with f (a, b, c) = f (a, b, c).
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34 2.3. Symbolic substitution

Example 2.2.3. As a summary, we have:

T
(
bc, c2

)
=




bc

b2 + bc+ c2
c2

a2 + ca+ c2
b2

a2 + ab+ b2
c2

b2 + bc+ c2
ca

a2 + ca+ c2
a2

a2 + ab+ b2
b2

b2 + bc+ c2
a2

a2 + ca+ c2
ab

a2 + ab+ b2




Notation 2.2.4. Among the functions often used, we have:

S area (ABC). Not twice the area, as used in ETC.

Sa, Sb, Sc the Conway symbols. Sa =
(
b2 + +c2 − a2

)
/2

cotω where ω is the Brocard angle, cotω =
(
a2 + b2 + c2

)
/2S

s (a+ b+ c) /2, so that 2s is the perimeter.

Proposition 2.2.5. Symmetric (metric) functions. An (a, b, c, S) expression that is symmetric in
(a, b, c) can be expressed as a function of s,R, r0 where s is the semiperimeter, while R, r0 are the
oriented radiuses of the circum- and in-scripted circles (as given in r0 = S/s ; R = abc/4S, so
that Rr0 > 0).

Proof. Use the symmetric functions S = r0 s ; a + b + c = 2 s ; ab + bc + ca = D ; abc = P and
then substitute

P = 4 s r0R ; D = 4Rr0 + r2
0 + s2

Caveat: quantities R, r0 are often perceived as positive but, here, they have to carry the orientation
of the triangle.

2.3 Symbolic substitution
Definition 2.3.1. Symbolic substitution. Suppose p(a, b, c), q(a, b, c), r(a, b, c) are functions
of a, b, c, all of the same degree of homogeneity. As the transfigured plane consists of all functions
of the form X = x(a, b, c) : y(a, b, c) : z(a, b, c), the substitution indicated by

a 7→ p(a, b, c), b 7→ q(a, b, c), c 7→ r(a, b, c)

maps the transfigured plane into itself.

Remark 2.3.2. Such a substitution may have no clear geometric meaning, as suggested by the
name, symbolic substitution. On the other hand, symbolic substitutions are of geometric interest
because they map lines to lines, conics to conics, cubics to cubics, and they preserve incidence.

Example 2.3.3. The symbolic substitution (a, b, c) 7→ (1/a, 1/b, 1/c) maps every triangle center
to a triangle center, every pair of bicentric points to a pair of bicentric points, every circumconic
to a circumconic, etc. However, when (a, b, c) = (3, 4, 5), for example, then a, b, c are sidelengths
of an euclidian triangle, but 1/a, 1/b, 1/c are not.

Symbolic substitutions were introduced in Kimberling (2007).
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Chapter 3

Cevian stuff

3.1 Centroid stuff
Definition 3.1.1. The reflection of point U = u : v : w in point P = p : q : r (not at infinity) is
the point X such that :

X '




(p− q − r)u+ 2p(v + w)

(q − p− r)v + 2q(u+ w)

(r − p− q)w + 2r(u+ v)


 (3.1)

Proof. We want to obtain X = 2P − U when P,U,X are finite and in normalized form. When P
is finite and U ∈ Lb then X = U (OK). Taking P ∈ Lb would result into X = P for any value of
U , not an acceptable result.

Stratospheric proof. X is obtained under the action described by :

2







p

q

r


 · Lb


−


Lb ·




p

q

r





 ·




1 0 0

0 1 0

0 0 1




Definition 3.1.2. Complement and anticomplement are inverse transforms defined so that
the complement of a vertex of triangle ABC is the middle of the opposite side. In other words
(using barycentrics),

complement (U)
.
= (3G− U) /2 ' q + r : p+ r : p+ q

anticomplement (Q)
.
= (3G− 2Q) ' −p+ q + r : p− q + r : p+ q − r

According to Court, p. 297, the term complementary point dates from 1885, and the term anti-
complementary point dates from 1886.

Definition 3.1.3. The medial triangle C2 is the complement of triangle ABC. The A-vertex of
C2 is the middle of segment BC, and cyclically. In other words :

C2 '




0 1 1

1 0 1

1 1 0




Definition 3.1.4. The antimedial triangle A2 is the anticomplement of triangle ABC (and is
also called the anticomplementary triangle). Each sideline of A2 contains a vertex of ABC and
corresponding sidelines of both triangles are parallel. In other words :

A2 '



−1 1 1

1 −1 1

1 1 −1




These triangles are the model used to define the next coming cevian and anticevian triangles (they
are the triangles related to the centroid X2).
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36 3.2. Cross-ratio and fourth harmonic

3.2 Cross-ratio and fourth harmonic

Remark 3.2.1. This section about PC
(
C2
)
is set here, i.e far away from the chapter about PC

(
C3
)
,

in order to emphasize the fact that 2 6= 3: both sets are different and they will be used for very
different things. The later, i.e. PC

(
C3
)
will be used to enlarge the description of points or lines

already provided by PR
(
R3
)
, while the former, i.e. PC

(
C2
)
, will be used to parametrize various

families of objects.

Definition 3.2.2. The Riemann sphere is the set C = C ∪ {∞}. It can be identified with the set
PC
(
C2
)
of the Z : T , i.e. the set of the couples (Z,T) when treated projectively, i.e. "up to a

factor".

Definition 3.2.3. The cross-ratio of four (different) parameters zj ∈ C is defined as

cross_ratio C (z1, z2, z3, z4)
.
=

(z4 − z2) (z3 − z1)

(z4 − z1) (z3 − z2)

This definition can be extended to the Riemann sphere by the formula :

cross_ratio (z1 : t1; z2 : t2; z3 : t3; z4 : t4)
.
= cross_ratio C

(
z1

t1
,
z2

t2
,
z3

t3
,
z4

t4

)

with the usual rules to resolve indeterminacies.

Remark 3.2.4. Exactly this same quantity is introduced as z1−z3
z1−z4 ÷

z2−z3
z2−z4 , i.e. as (z4, z3, z2, z1)

by (Pedoe, 1970, p 212) and (Schwerdtfeger, 1962, p. 35). The intent of these authors was to
emphasize the definition as a ratio of ratios. Our intent here is to emphasize the choice made
among the six possibilities described just below.

Proposition 3.2.5. An homography ψ is defined as a mapping of C which preserves the birapport.
As a result, ψ can be written as

z 7→ ψ (z)
.
=

a z + b

c z + d
where a,b, c,d ∈ C and ad− bc 6= 0

Such transform can also be seen as an element of PGLC
(
C2
)
.

Proof. Write
(z − z2) (z3 − z1)

(z − z1) (z3 − z2)
=

(ẑ − ẑ2) (ẑ3 − ẑ1)

(ẑ − ẑ1) (ẑ3 − ẑ2)
and solve in ẑ.

Remark 3.2.6. Some French writers are using ’homography’ as a synonym to collineations acting
on PC

(
C3
)
. This is as stupid as possible. At High Schools, students have acquired (or should have

acquired) some behavioral skills about these ψ functions acting on the complex plane C. When
introducing new concepts, new names should be used, in order to preserve what is already acquired.

Proposition 3.2.7. An involution is an homography ψ such that ψ ◦ ψ = Id while ψ 6= Id. Three
characterizations are:

1. a + d = 0

2. it exists z1, z2 such that ψ (z1) = z2, ψ (z2) = z1, z1 6= z2.

3. it exists three different points such that det3 [zjψ (zj) , zj + ψ (zj) , 1] = 0

Proof. (1) one has z − ψ2 (z) = (a+ d)
cz2 + (d− a) z − b
c (a+ d) z + bc+ d2

(2) one has cz1z2 − az1 + dz2 = b ; cz1z2 − az2 + dz1 = b. Substracting, one gets

(z1 − z2) (a+ d) = 0

(3) requites the existence of a, b, c such that czjψ (zj) + (zj + ψ (zj)) dz2 − b = 0.
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3. Cevian stuff 37

Proposition 3.2.8. Group of the cross-ratio. The cross ratio remains unchanged under the action
of the bi-transpositions like [a, b, c, z] 7→ [b, a, z, c]. Therefore the action of S4 generates only 6
values for the cross-ratio. We have :

a b c z a a

b c a b z b

c a b c c z

z z z a b c

k
k − 1

k

1

1− k 1− k k

k − 1

1

k

Special cases are {exp (+iπ/3) , exp (−iπ/3)} (equilateral triangle and one of its centers) {1, 0,∞}
(two points are equal) and {−1, 2, 1/2} (harmonicity) .

Proof. Direct examination.

Definition 3.2.9. Consider the linear projective family defined from two fixed rows (or columns)
X,Y (where X 6' Y is assumed)

∆ = {zX + tY | (z, t) 6= (0, 0)}

The cross-ratio of four elements of ∆ is defined as the cross-ratio of their parameters, i.e.

cross_ratio (zjX + tjY ) = cross_ratio C (zj/tj)

Theorem 3.2.10. The cross-ratio of four elements of a linear projective family (assuming at least
three different elements) is intrinsic, i.e. doesn’t depend of the columns (or rows) chosen to describe
the family. When four different collinear objects P,Q,R, S are given, then non zero multipliers
p, q, r, s and a constant λ can be found that satisfy the hard equalities :

r R = pP + q Q

sS = λ pP + q Q

Moreover quantity λ depends only on the four objects and their order. This quantity is the former
defined cross-ratio of the 4-uple.

Proof. To prove the existence, we write P = z1X + t1Y, etc and solve the resulting set of 4
equations.The value obtained for λ is the former defined cross-ratio "using X,Y ". The uniqueness
of λ comes from the uniqueness, up to a proportionality factor, of r : p : q and s : λp : q since P,Q
is yet another generating family.

Corollary 3.2.11. When the family is parametrized as Pj = kj X+(1− kj)Y , then λ = cross_ratio C (kj).

Proof. By definition, λ = cross_ratio (kj/ (1− kj)). But cross_ratio C () is invariant under z 7→
z/ (1− z).

Corollary 3.2.12. Let the Pj be given by their barycentrics pj : qj : rj. Assuming that two of the
pj are not 0, then λ = cross_ratio (pj/ (pj + qj + rj)).

Proof. This holds only if the points are on the same line, but not the infinity line !

Definition 3.2.13. Four points A,B, J,K on an ordinary straight line form an harmonic divi-
sion when :

AJ

BJ
÷ AK

BK
= −1

Since cross-ratio is a projective invariant, this relationship is carried along collineations.

Proposition 3.2.14. Let be given three members P,Q,R of a linear projective family with, at least
P 6= Q. Then it exists exactly one member S of the family such that cross_ratio (P, Q, R, S) =
−1. This object is called the fourth harmonic of the first three.

Proof. Cross-ratio is an homographic function of parameter kS , and therefore bijective between λ
and kS .
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38 3.3. About combos

Construction 3.2.15. Let A,P,B be three aligned distinct points, and E be a point external to this
green line (see Figure 3.1). Division (A,B, P,Q) will be harmonic if the pencil (EA,EB,EP,EQ)
is harmonic. To this end, we draw the blue line ∆ i.e. the parallel to EA through B. Then M is
DP ∩ ∆ and N the reflection of M into C. The division (∞∆, B,M,N) is obviously harmonic.
And we obtain Q as EN ∩AB.

Figure 3.1: Obtain Q from A,P,C and auxiliary D

Remark 3.2.16. In the Cartesian plane, the fourth harmonic is also the reflection of the third point
into the circle having the first two as diameter.
Remark 3.2.17. Conic cross-ratio is described in Section 12.10.

3.3 About combos
Definition 3.3.1. combos. When P ' p : q : r and U ' u : v : w are points at finite distance
and f = f(a, b, c), g = g(a, b, c) are nonzero homogeneous functions having the same degree of
homogeneity, then the (f, g) combo of P and U , denoted as f × P + g × U , is :

f × P + g × U ' P

Lb · P
f (a, b, c) +

U

Lb · U
g (a, b, c)

Remark 3.3.2. Written that way, one has not to discuss if barycentrics or trilinears are used.

Proposition 3.3.3. With the same hypotheses, points P, U, fP +gU, fP +hU are collinear and

cross_ratio (P, U, fP + gU, fP + hU) = h/g

As a special case, f P ± g U are harmonic conjugate wrt P, U .

Proposition 3.3.4. When f, g, h are homogeneous symmetric functions all of the same degree
of homogeneity, and X,X ′, X”are triangle centers, then f X + g X ′ + h X”is a triangle center.
Conversely, given three non collinear triangle centers, any fourth triangle center is a combo of the
first three, using symmetric functions as coefficients.

Proof. This amounts to say that, in R3, any invertible matrix defines a basis of the space.

Remark 3.3.5. Part of the time, normalization is useless. Knowing that X(482) ' s × nX(1) +
(r + 4R) × nX(7) can be required, but using X(482) ' vX(1) + 4S vX(7) (where vX is what is
given in the table) can be sufficient.

Proposition 3.3.6. The columns of a matrix T describing the vertices of a central triangle have

to be normalized in such a way that Lb · T ' Lb. Such matrices form a group under multiplication.

And then T · P is (another) triangle center when P is a triangle center.
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3. Cevian stuff 39

3.4 Cevian, anticevian, cocevian triangles
Definition 3.4.1. Cevian triangle. Let P be a point not on a sideline of ABC. The lines
AP,BP,CP are the cevians of P . Let Ap = AP ∩ BC. Define Bp and Cp cyclically. Triangle
ApBpCp is called the cevian triangle of triangle ABC.

cevian




p

q

r


 =




0 p p

q 0 q

r r 0


 (3.2)

Example 3.4.2. Examples of cevian triangles are given in Table 3.1.

Proposition 3.4.3. Cocevian triangle. Let P = p : q : r be a point not on a sideline of ABC,
let APBPCP be its cevian triangle and define TA as BC ∩BPCP , etc. Then points TA, TB , TC are
aligned on a line which is called the tripolar line of P , while the (degenerate) triangle TA, TB , Tc
itself is called the cocevian triangle of P. One has:

cocevian (p : q : r) '




0 p −p
−q 0 q

r −r 0


 (3.3)

tripolar (p : q : r) '
[

1

p
,

1

q
,

1

r

]
' [qr, rp, pq] (3.4)

Proof. Direct computation.

Remark 3.4.4. (Spoiler) Point P is the perspector of triangles ABC and APBPCP , i.e. their
(degenerate) vertex triangle (see Definition 3.8.1). While tripolar (P ) is the perspectrix of ABC
and APBPCP , i.e. their (degenerate) sideline trigone (see Definition 3.8.4).

Definition 3.4.5. Anticevian triangle. Let P be a point not on a sideline of ABC. The
anticevian of P is the triangle PAPBPC such that ABC is the cevian triangle of P wrt PAPBPC .

Example 3.4.6. Examples of anticevian triangles are given in Table 3.1.

Construction 3.4.7. Let P be a point not on the sidelines of ABC. Draw Ap
.
= AP ∩ BC, etc

(the cevian triangle of P ) and then draw TA
.
= BC ∩BPCP , etc (the cocevian triangle of P . Then

we have PA = BTB ∩ CTC , etc (the anticevian triangle of P )

Proof. Compute all these points and obtain

P '




p

q

r


 ; cev =




0 p p

q 0 q

r r 0


 ; cocev '




0 p −p
−q 0 q

r −r 0


 ; anticev '



−p p p

q −q q

r r −r




(3.5)
Then one can verify the relations A ∈ PBPC , etc (ABC is inscribed in PAPBPC), P ∈ APA, etc
(P is the perspector of ABC and PAPBPC), TA = BC ∩ PBPC , etc (TATBTC is the perspectrix
of ABC and PAPBPC).

Remark 3.4.8. (Spoiler) Point P is the perspector of triangles ABC and PAPBPC , i.e. their
(degenerate) vertex triangle (see Definition 3.8.1). While tripolar (P ) is the perspectrix of ABC
and PAPBPC , i.e. their (degenerate) sideline trigone (see Definition 3.8.4).

Proposition 3.4.9. We have three sets of aligned points whose divisions are harmonic, namely

cross_ratio (A,AP , P, PA) = −1

cross_ratio (B,C,AP , Ta) = −1

cross_ratio (PB , PC , A, Ta) = −1

Proof. We have formally: (0 : q : r)±(p : 0 : 0) = (p : q : r) , (−p : q : r) while (0 : q : 0)±(0 : 0 : r) =
(0 : q : r) , (0 : q : −r) and (p : −q : r)± (p : q : −r) = (2p : 0 : 0) , (0 : −2q : +2r)
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40 3.4. Cevian, anticevian, cocevian triangles

cevian bary (p) G O I
incentral 24.3 incenter X(1) a

medial 24.5 centroid X(2) 1 X(2) X(5) X(10)
orthic 24.7 H-center X(4) tanA X(51) X(5) X(4)
intouch 24.12 Gergonne X(7) (b+ c− a)

−1

extouch 24.13 Nagel X(8) b+ c− a X(210) X(1158)
anticevian bary G O I
excentral 24.4 incenter X(1) a X(165) X(40) X(164)
antimedial 24.6 centroid X(2) 1 X(2) X(4) X(8)
tangential 24.8 Lemoine X(6) a2 X(154) X(26) X(3)

other
Fuhrmann 24.15

Brocard triangles 24.9

Hexyl 24.14 X(3576) X(1)
star 24.16 X(3817) X(946) ?

Table 3.1: Some well-known triangles

3.4.1 Well-known triangles

3.4.2 Isotomic and reciprocal conjugacies

Proposition 3.4.10. Equation3.6 gives the condition for an inscribed triangle to be the Cevian
triangle of some point P .




0 p2 p3

q1 0 q3

r1 r2 0


 is Cevian ⇐⇒ p2 q3 r1 − p3 q1 r2 = 0 (3.6)

and then p : q : r = r1p2 : q1r2 : r1r2

An absolutely hopeless formula, but nevertheless more "obviously symmetric" is :

p : q : r = 3

√
p2

2 p
2
3 q1 r1 : 3

√
q2
3 q

2
1 p2 r2 : 3

√
r2
1 r

2
2 p3 q3

Proof. Line AP1 is (0, r1, −q1) and cyclically. These lines are concurrent when their determinant
vanishes. Their common point is then given by any column of the adjoint matrix, or the cubic root
of their product.

Proposition 3.4.11. Isotomic conjugacy. Suppose U = u : v : w is a point not on a sideline
of ABC. Take the cevians AU

.
= AU ∩ BC, etc and then reflect AUBUCU about the midpoints

of sides BC, CA, AB, respectively, to obtain points A′, B′, C ′. Then lines AA′, BB′, CC ′ are
concurrent. Their common intersection is called the isotomic conjugate of U . The corresponding
barycentrics are :

isotom (u : v : w) =
1

u
:

1

v
:

1

w
(3.7)

Proof. Immediate computation.

Remark 3.4.12. The fixed points of this transform are the gravity center and its relatives, so that
isot (U) = U#

G while U ∗
b
isot (U) =X(2). It should be noticed that X (2) plays together the role of

points F and P of Definition 1.4.10.

Proposition 3.4.13. Reciprocal conjugacy. Suppose ∆ = [ρ, σ, τ ] is a line not through a
vertex of ABC. Let A∆ = BC ∩∆, etc the traces of ∆ on the sidelines. Reflect them about the
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3. Cevian stuff 41

corresponding midpoint and obtain TA = B + C − A∆, etc. The points TA, TB , TC are aligned,
defining a line called the reciprocal of the given one since we have:

recip ([ρ, σ, τ ]) '
[

1

ρ
,

1

σ
,

1

δ

]

Proof. Immediate computation.

Remark 3.4.14. For a given U ' u : v : w, we have

(tripolar ◦ isotom) (U) = [u, v, w] = (recip ◦ tripolar) (U)

Proposition 3.4.15. Anticevian quadrangle. (1) Triangle ABC is inscribed in triangle PAPBPC .
(2) ABC is the cevian triangle of P wrt the anticevian triangle. (3) Anticevian triangle of point
PA wrt ABC is PPCPB (the two remaining points are permuted). See also Theorem 2.1.9.

Figure 3.2: Cevian, anticevian and cocevian triangles

3.5 Transversal lines, Menelaus and Miquel theorems
Theorem 3.5.1 (Ceva). Let A′ ∈ BC, B′ ∈ CA and C ′ ∈ AB be three points on the sidelines
of triangle ABC, but different from the vertices. Then lines AA′, BB′, CC ′ are concurrent if and
only if :

AB′

CB′
BC ′

AC ′
CA′

BA′
= −1

Proof. The usual proof uses Menelaus theorem. Another proof, using determinants, is given below.

Proposition 3.5.2 (Genuine Menelaus theorem). Let A′ ∈ BC, B′ ∈ CA and C ′ ∈ AB be
three points on the sidelines of triangle ABC, but different from the vertices. Then A′, B′, C ′ are
collinear if and only if :

AB′

CB′
BC ′

AC ′
CA′

BA′
= +1
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P

Cevian Triangle of P

CB

A

A'

B'
C'

Distance A  C' Distance B A' Distance C B'   9028475.5223=
Distance A  B' Distance B C' Distance C A'   9028475.5223=
Distance A  C' Distance B A' Distance C B'   9028475.5223=
Distance A  B' Distance B C' Distance C A'   9028475.5223=

Figure 3.3: Ceva’s Theorem

Proof. Let us parametrize the situation by A′ = kaB+ (1− ka)C, etc. Alignment is described by :
∣∣∣∣∣∣∣

0 1− kb kc

ka 0 1− kc
1− ka kb 0

∣∣∣∣∣∣∣
= 0

while A′ −B = (1− ka) (C −B) and A′ − C = ka (B − C).

Example 3.5.3. The cevian of P verify this formula.

Proposition 3.5.4 (Miquel theorem). Let A′ ∈ BC, B′ ∈ CA and C ′ ∈ AB be three points on
the sidelines of triangle ABC, but different from the vertices. Then circles AB′C ′, A′BC ′, A′B′C
are passing through a same point Mq, the Miquel point of A′B′C ′ wrt ABC.

Proof. Equation of circle AB′C ′ is :

a2y z + b2z x+ c2x y − (x+ y + z)
(
y kc c

2 + z (1− kb) b2
)

Therefore their last common point is :

Mq '




a2
(
ka (ka − 1) a2 + (ka − 1) (kb − 1) b2 + c2kcka

)

b2
(
kakb a

2 + kb (kb − 1) b2 + (kb − 1) (kc − 1) c2
)

c2
(
(kc − 1) (ka − 1) a2 + b2kbkc + kc (kc − 1) c2

)




Since this expression is symmetric, the point Mq is also on the third circle.

Theorem 3.5.5 (Extended Menelaus theorem). Let A′ ∈ BC, B′ ∈ CA and C ′ ∈ AB be three
points on the sidelines of triangle ABC, but different from the vertices. All the following are
necessary and sufficient conditions for A′, B′, C ′ to be collinear :
(i) the Menelaus condition : ((1− ka) (1− kb) (1− kc) + kakbkc) = 0
(ii) the midpoints Ma = (A+A′)/2, Mb = (B+B′)/2, Mc = (C+C ′)/2 are on the same line (the
so-called Newton line of the quadrilateral)
(iii) the Miquel point Mq of A′B′C ′ is on the circumcircle of ABC.
(iv) –spoiler– the Clawson-Schmidt homography application Ψ in PC

(
C3
)
by A 7→ A′, B 7→ B′,

C 7→ C ′ is involutory .

Proof. (i) obvious ; (ii) determinant ; (iii) condition for M ∈ Γ is the Menelaus condition times an
ugly factor that can be written as :

(
2 a2ka + 2 b2kb + 2 c2kc − c2 − b2 − a2

)2
+ 16S2

(iv) Condition for Ψ to be involutory is det3 [1, zA + z′A, zA z
′
A] = 0. This results into Is4 times

the Menelaus condition (see Section 15.4 for notations and more details).
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3.6 Tripolar centroid
Proposition 3.6.1. When P is neither a vertex nor X(2), the centroid of the cocevian triangle is
well defined (perhaps on Lb), and called the tripolar centroid of P (Stothers, 2003b).

TG (P ) = p(q − r)(2p− q − r) : q(p− r)(p− 2q + r) : r(q − p)(p+ q − 2r)

Remark 3.6.2. When q = r then TG (P ) = 0 : 1 : −1 (at infinity on BC). When all p, q, r are
different, TG (P ) is a finite point.

Proposition 3.6.3. When all p, q, r are different, then it exists exactly another point that shares
the same TG (P ), namely :

other (P ) =
q + r − 2 p

rp+ qp− 2 qr
:

r + p− 2 q

qp+ qr − 2 rp
:

p+ q − 2 r

qr + rp− 2 qp

Proof. Direct computation. When eliminating k, u, v in TG (P ) = k TG (U), special cases are
p, q − r, u, v − w, qw − rv, 2p − q − r and cyclically. For all named points X, it happens that
other (X) is not named.

Example 3.6.4. Points X(1635) to X(1651) are defined that way. Examples include :

1 1635 98 1640 263 2491 525 1650

3 1636 99 1641 512 1645 648 1651

4 1637 100 1642 513 1646 957 3310

6 351 105 1643 514 1647 1002 665

7 1638 190 1644 523 1648 1022 244

8 1639 262 3569 524 1649 2394 125

3.7 Cross-triangle
Definition 3.7.1. Crosstriangle. The crosstriangle of two given triangles T1 = A1B1C1 and
T2 = A2B2C2 is defined as the triangle T4 = B1C2 ∩B2C1, C1A2 ∩C2A1, A1B2 ∩A2B1. Its name
comes from the fact we are crossing the vertices of the homologue sidelines.

3.8 Perspectivity
Definition 3.8.1. Vertex trigone, vertex triangle. Let T1 = A1B1C1 and T2 = A2B2C2

be two triangles (i.e. two ordered sets of three points). Their vertex trigone T ∗3 is the set of
three lines A3 = A1A2, B3 = B1B2, C3 = C1C2, while their vertex triangle is the set of points
A3 = B3 ∩ C3, etc. The vertex triangle is the dual of the vertex trigone.

Remark 3.8.2. Exclude the case where all points are on the same line, the rank of the vertex trigone
is either 3 or 2, while the rank of the vertex triangle is either 3 or 1 (adjoint matrix).

Definition 3.8.3. Perspector. Let T1 = A1B1C1 and T2 = A2B2C2 be two triangles. When the
vertex trigone degenerates, i.e. when the lines A3,B3,C3, concur at some point P , this point is
called the perspector (replacing center of perspective) of the (ordered) triangles.

Definition 3.8.4. Sideline triangle, sideline trigone. Let T1 = A1B1C1 and T2 = A2B2C2

be two trigones (i.e. two ordered sets of three lines). Their sideline triangle T4 is the set of three
points A4 = A1 ∩ A2, B4 = B1 ∩B2, C4 = C1 ∩ C2, while their sideline trigone is the set of lines
B4C4, C4A4, A4B4 (i.e. the dual of the sideline triangle).

Remark 3.8.5. Excluding the case where all lines are through the same point, the rank of the
sideline triangle is either 3 or 2, while the rank of the sideline trigone is either 3 or 1 (adjoint
matrix).

Definition 3.8.6. Perspectrix . Let T1 and T2 be two triangles. When the sideline triangle of
T ∗1 and T ∗2 degenerates, i.e. when points A4, B4, C4 are on the same line, this line is called the
perspectrix (replacing axis of perspective) of the triangles.

—– pldx : Translation of the Kimberling’s Glossary into barycentrics – vA2 —–



44 3.8. Perspectivity

Theorem 3.8.7. [Desargues] . When none of the triangles T1 and T2 are degenerate, the exis-
tence of a perspector is equivalent to the existence of a perspectrix.

Proof. In this context, trigone T3 is called the Desargues trigone and triangle T4 is called the
Desargues triangle. The result comes from

det T4 = det T1 det T2 detT3

and such a lack of symmetry is better understood when considering the dual formulas:

det thomol (T ∗1 , T ∗2 ) = det T1 det T2 dethomol (T1, T2)

dethomol (T∗1, T
∗
2) = detT1 detT2 det thomol (T1,T2)

Example 3.8.8. Let T1 be the reference triangle ABC and T2 the cevian triangle APBPCP of a
point P . Then

1. T3 =




0 −r q

r 0 −p
−q p 0


 is the set of the three cevian lines AP, etc while T∗3 = P · tP : this

triangle degenerates into three times the point P . Therefore P is the perspector of both
triangles.

2. T4 =




0 p −p
−q 0 q

r −r 0


 is the cocevian triangle. Compared to T2 =




0 p p

q 0 q

r r 0


, this

T4 is the set of the associated cross-ratio points, while T ∗4 degenerates into three times the
tripolar line tripolarP

.
= [qr, rp, pq]. Therefore this line is the perspectrix of both triangles.

Example 3.8.9. Let T1 be the triangle and T2 the anticevian triangle PAPBPC of a point P .
Let us recall that cross_ratio (A,Ap, P, PA) = −1. Then again perspector is P and perspectrix is
tripolarP .

Exercise 3.8.10. Spoiler: for any P , the pedal triangle of P is in perspective with Mb , the
triangle whose vertices are the directions of the altitudes AH, BH, CH. The perspector is P
itself. Since vertices of Mb are on Lb, the flatness of the sideline triangle was granted and caries
no additional information.

Proposition 3.8.11. Perspectivity kit. Such a kit is defined as p : q : r : u : v : w, i.e. six
numbers up to a common proportionality factor, none of them being 0. This amounts to give points
P ' p : q : r, U ' u : v : w (none on an ABC-sideline) together with a synchronization factor
k = (p+ q + r) / (u+ v + w). Exchanging P and U changes k in 1/k. We define triangle T0 as
ABC and triangle T1 and T2 by :

T1 '




u p p

q v q

r r w


 ; T2 '




p u u

v q v

w w r




1. T0 and T1 are perspective wrt to P , T0 and T2 are perspective wrt U , while T2, T3 admit P +U
as perspector

2. Each triangle T1, T2 T3 is the cross-triangle of the other two.

3. All pair of triangles have the same Desargues triangle, defining the same perspectrix:

∆ '
[

1

p− u ;
1

q − v ;
1

r − w

]

4. Reciprocally, any triangle in perspective with ABC can be parametrized that way.
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Figure 3.4: Triangles ABC and UVW that admit P as perspector.

Proposition 3.8.12. When triangle T0 = ABC and triangle T admit P ' p : q : r and
tripolar ∆ ' [qr, rp, pq] as perspector and perspectrix, then it exists k ∈ R ∪ {∞} such that

Tk '




kp p p

q kq q

r r kr


 (3.8)

Proof. Start from preceding proposition and write that ∆ is tripolarP rather than another line.

Proposition 3.8.13. Suppose additionally that line PU doesn’t go through any of the vertices
A,B,C, define

Q '




(qw − rv) (p− u) p

(ru− pw) (q − v) q

(pv − qu) (r − w) r


 ; V '




(qw − rv) (p− u)u

(ru− pw) (q − v) v

(pv − qu) (r − w)w




and consider the triangles T0, T1, T2, the cevian triangles of P : T0P , T1P , T2P and the cevian
triangles of U : T0U , T1U , T2U .
Then: (1) P is the perspector of each pair : (T0, T1), (T0P , T1P ), (T0, T0P ), (T0, T1P ), (T1, T0P ),
(T1, T1P );
(2) Perspector of (T1, T2) is p+ u : q + v : r + w.
(3) Q 6= V and line ∆ = QV is the perspectrix of each pair : (T0, T1), (T0P , T1P ), (T1, T2),
(T0, T2), (T0U , T2U ) ;
(4) Moreover, the perspectrices of (T0, T0P ), (T0, T1P ), (T1, T0P ), (T1, T1P ) are going through Q
(and symmetrically for U).

Proof. The perspectrix of (T0, T0P ) is ∆P =
[
qr pr pq

]
, the tripolar of P and we have :

T0 T1P pqr∆1 − det T2 ∆P

T1 T0P 2 pqr∆1 − det T2 ∆P

T1 T1P 3 pqr∆1 − det T2 ∆P
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Remark 3.8.14. Behavior wrt isogonal transform is examined in Proposition 18.6.2.

3.9 Cevian nests

Definition 3.9.1. Cevian nest. Suppose T1, T2, T3 are triangles and that T1 is inscribed in T2

and T2 is inscribed in T3. If any two of the tree triangles are perspective, it is well-known that
each is perspective to the third : T1 is a cevian triangle of T2 for some point P , T3 is an anticevian
triangle of T2 for some point U and T1, T3 are perspective wrt some point X. Such configuration
is called a cevian nest.

Remark 3.9.2. Dyslexic readers – and the author among them – are advised to organize their
memories around the P/U cevadivision, which gives the perspector between the cevian of P and
the anticevian of U.

Figure 3.5: X is cevadiv (P,U) while P is cevamul(U,X)

Proposition 3.9.3. Map P = P (U,X) giving the perspector of T1, T2 from the other two perspec-
tors of a cevian nest is symmetric, while –for a given P– map X ←→ U is involutory.

Proof. Given the vertices Si (i = 1, 2, 3) of triangle T3 and perspector U , the vertices Si (i = 4, 5, 6)
of triangle T2 are obtained by S4 = (S1 ∧ U) ∧ (S2 ∧ S3) and cyclically. Process can be iterated,
obtaining vertices Si (i = 7, 8, 9) of T1. Then X is obtained as X = (S1 ∧ S7) ∧ (S2 ∧ S8). It can
be checked that substituting U by X (and keeping everything else unchanged) leads back to U ,
proving the second part. The first part follows immediately.

When triangle ABC belongs to such a nest, three possibilities can occur. The corresponding
operations are summarized in Table 3.2, where "mul" stands for multiplication (giving P ) and
"div" for the converse operation (giving the missing one from U,X). The Kimberling’s name is
also given.

3.10 The cross case (aka case I, cev of cev)

Definition 3.10.1. Crossmul(U,X). As in Table 3.2 (I), let T3 (the biggest triangle) be ABC,
T2 = AUBUCU the (usual) cevian triangle of U and T1 = A′B′C ′ the triangle inscribed in T2

obtained by A′ = AX ∩BUCU and cyclically. Then T1 and T2 have a perspector (P ), and mapping
(U,X) 7→ P is called cross-multiplication.

April 5, 2025 14:49 published under the GNU Free Documentation License



3. Cevian stuff 47

small medium large
T1 T2 T3 X, P Kimberling

CP wrt T2 CU ABC
X = crossdiv (P,U)

P = crossmul (U,X)

cross− conj

cross− point

CP ABC AU
X = cevadiv (P,U)

P = cevamul (U,X)

ceva− conj

ceva− point

ABC AP AU wrt T2
X = sqrtdiv (P,U)

P = sqrtmul (U,X)

All these operations are (globally) type-keeping, since they transform points into constructible
points.

Table 3.2: Three cases of cevian nets

Definition 3.10.2. Crossdiv(P,U). As in Table 3.2 (I), let T3 (the biggest triangle) be ABC,
T2 = AUBUCU the (usual) cevian triangle of U and T1 = A′B′C ′ the cevian triangle of P wrt
T2, obtained by A′ = AUP ∩ BUCU and cyclically. Then T1 and T3 have a perspector (X), and
mapping (P,U) 7→ X is called cross-division.

crossmul (u : v : w, x : y : z) = (v z + w y)ux : (u z + w x) v y : (u y + v x)w z (3.9)

X ✛ ∗b U
X/U ✛isotom ◦ anticomplem

P/U ✛∗b U
−1

(P,U)

✛....................................................................................................................
crossdiv

crossdiv (p : q : r, u : v : w) =
u

quw + ruv − pvw :
v

pvw + ruv − quw :
w

pvw + quw − ruv (3.10)

Figure 3.6: crossmul, crossdiv

Proposition 3.10.3. Computing rules of crossmul and crossdiv are given (using barycentrics) in
Figure 3.6. Map (U,X) 7→ P is commutative and behaves like ordinary multiplication (eponymous
property). Map (P,U) 7→ X behaves wrt crossmul like division behaves wrt ordinary multiplication
(eponymous property).

Proof. Barycentrics p : q : r are defining point P ′ with respect to triangle T3. Call P : Q : R its
barycentrics with respect to triangle T2, so that (p : q : r) = T2 (P : Q : R). Then :

T1 '




0 u u

v 0 v

w w 0


 ·




0 P P

Q 0 Q

R R 0


 ·



P 0 0

0 Q 0

0 0 R


 '




u (Q+R)

QR

u

P

u

P
v

Q

v (P +R)

PR

v

Q
w

R

w

R

w (P +Q)

PQ



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where the diagonal matrix had been chosen to "synchronize" the columns of triangle T2. Then
Proposition 3.8.11 shows that T3 and T1 are perspective wrt point u/P : v/Q : w/R.

Remark 3.10.4. The cross-multiplication and cross-division were introduced in Kimberling (1998),
using the names crosspoint and "cross conjugacy", together with the notation X = C(P,U)
and also X = PcU . In our opinion, a name that emphasizes the properties is more efficient.

The factorization given can be interpreted in terms of isoconjugacies (see Chapter 18). First
compute what happens when U =X(2) and obtain complem ◦ isotom. Then transmute this map
by the transform ∗

b
U that fixes A,B,C and sends G =X(2) onto U .

Proposition 3.10.5. The crossmul P of U, X is also the point of concurrence of (1) the line
through points AX ∩BU and AU ∩BX, (2) the line through points BX ∩CU and BU ∩CX, (3)
the line through points CX ∩AU and CU ∩AX.

U

A

B

C

Cu

Bu

Au

P

A"

Ap

Bp

C'

Cp

B'

A'

Figure 3.7: P is crossmul of U and X

3.11 The ceva case (aka case II, cev and acev)

Definition 3.11.1. Cevamul(U,X). As in Table 3.2 (II), let T2 (the middle triangle) be ABC,
T3 = UAUBUC the anticevian triangle of U and T1 = A′B′C ′ be the triangle inscribed in T2 = ABC
obtained by A′ = UAX ∩ BC and cyclically. Then T1 and T2 have a perspector (i.e. T1 is the
cevian triangle of some point P ), and mapping (U,X) 7→ P is called ceva-multiplication.

Definition 3.11.2. Cevadiv(P,U). As in Table 3.2 (II), let T2 (the middle triangle) be ABC,
T3 = UAUBUC the anticevian triangle of U and T1 = APBPCP be the cevian triangle of P ,
obtained (as usual) by AP = AP ∩BC and cyclically. Then T1 and T3 have a perspector (X), and
mapping (P,U) 7→ X is called ceva-division.

Proposition 3.11.3. Computing rules of cevamul and cevadiv are given (using barycentrics) in
Figure 3.8. Map (U,X) 7→ P is commutative i.e. :

{
X is the perspector of CP andAU
U is the perspector of CP andAX

and behaves like ordinary multiplication (eponymous property). Map (P,U) 7→ X behaves wrt
crossmul like division behaves wrt ordinary multiplication (eponymous property).
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P/U ✛isotom ◦ complem
X/U

P
✛
∗bU

✛........................... cevamul ............................. (U,X)

✛∗b U −1

U/X ✛
isotom ◦ complem

✛
∗
b X

P/X
✛
∗bX

−1

cevamul (u : v : w, x : y : z) =

(uz + wx)(uy + vx) : (vz + wy) (uy + vx) : (vz + wy) (uz + wx) (3.11)

cevadiv (p : q : r, u : v : w) =

u(−q r u+ r p v + p q w) : v(q r u− r p v + p q w) : w(q r u+ r p v − p q w) (3.12)

Figure 3.8: cevamul, cevadiv

Proposition 3.11.4. (Spoiler) Seen as an V 7→ X map, U 7→ cevamul (U, V ) is a Cremona
transform, whose points of indeterminacy are the anticevian vertices of U and the exceptional
locus is the union of the U -anticevian sidelines. Seen as an U 7→ X map, U 7→ cevadiv (P,U) is a
Cremona transform, whose points of indeterminacy are the cevian vertices of P and the exceptional
locus is the union of the P -cevian sidelines. Seen as an P 7→ X map, P 7→ cevadiv (P,U) is a
Cremona transform, whose points of indeterminacy are the ABCvertices and the exceptional locus
is the union of the ABC sidelines.

Proof. Direct examination.

Remark 3.11.5. The ceva-multiplication and ceva-division were introduced in Kimberling (1998),
using the names cevapoint and "ceva conjugacy", together with the notation X = P©U . In
our opinion, a name that emphasizes the properties is more efficient.

Proposition 3.11.6. Suppose U = u : v : w and X = x : y : z are distinct points, neither lying
on a sideline of ABC. Let Ax = XAXBXC and Au = UAUBUC be the anticevian triangles of X
and U (wrt ABC). Define A′ as UAX ∩ XAU and B′, C ′ cyclically (Figure 3.5). Then triangle
A′B′C ′ is inscribed in ABC and is, in fact, the cevian triangle of P = cevamul (U, V ).

Proof. Direct computation.

Construction 3.11.7 (Floor Van Lamoen (2003/10/17)). Point cevamul(U,X) can be constructed
from the cevian triangles : let AUBUCU be the cevian triangle of U , and AXBXCX the cevian
triangle of X. Define :

Aux = AuCx ∩AxBu Axu = AuBx ∩AxCu
Bux = BuAx ∩BxCu Bxu = BuCx ∩BxAu
Cux = CuBx ∩ CxAu Cxu = CuAx ∩ CxBu

Proposition 3.11.8. Then, as seen in Figure 3.9, triangle ABC is perspective to both triangles
Aux, Bux, Cux and Axu, Bxu, Cxu, and the perspector in both cases is the cevamul (U,X).

Proof. Direct computation.
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Figure 3.9: Lamoen’s construction of P=cevamul(U,X)

3.12 The square case (aka case III, acev of acev)
Construction 3.12.1. sqrtdiv(F,U). As in Table 3.2 (III), let T1 (the smallest triangle) be
ABC, T2 = FAFBFC the anticevian triangle of F and T3 be the anticevian triangle of U wrt T2.
Then T1 and T3 have a perspector X and mapping (F,U) 7→ X is called sqrtdiv. We have formula :

sqrtdivF (U)
.
= U#

F '
f2

u
:
g2

v
:
h2

w

Remark 3.12.2. This construction is not so easy as it seems to be. In fact, drawing an anticevian
triangle requires a knowledge of the barycentrics (and this is no more a construction!), or some
conics, or a forest of lines that are equivalent to the drawing of the conics themselves. One can
also start from the cevian triangle and use some fourth harmonics, that are equivalent to inversions
into some circles.

Definition 3.12.3. sqrtmul(U,X). The inverse mapping of sqrtdiv should be the mapping
sqrtmul (U,X) 7→ P "defined" by :

p : q : r = ±√ux : ±√vy : ±√wz

... but (1) the solution is not unique and (2) in fact, the problem cannot even be stated clearly.

3.13 Danneels perspectors
Definition 3.13.1. First Danneels perspector. Let T1 = AUBUCU be the cevian triangle of
a point U = u : v : w. Let LA be the line through A parallel to BUCU , and define LB and LC
cyclically. The lines LA, LB , LC determine a triangle T2 perspective to T1 (and in fact homothetic,
with factor 2). The corresponding perspector is DP1 (U), the first Danneels perspector (#11037)
of U . Using barycentrics :

DP1 (U) = u2(v + w) : v2(w + u) : w2(u+ v) (3.13)

Proof. Compute (from left to right) the row BU ∧ CU ∧ Lb ∧ A and cyclically. Obtain a matrix
describing a trigone and takes the adjoint to obtain T2. Then compute the perspector. One can
also remark that T2 is the anticevian triangle of :

X = u(v + w) : v(u+ w) : w(u+ v)

and obtain DP1 (U) as cevadiv (U/X) (homothetic property is obvious... and useless to compute
the perspector).
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Remark 3.13.2. This point is named D (U) in ETC. No name of only one letter! Moreover this
conflicts with the Maple’s derivation operator.

Proposition 3.13.3. Point G = X (2) is invariant under DP1. Moreover, G, U and DP1 (U) are
ever collinear. For example, Euler line is globally invariant.

Proof. Check that det (X2, U, DP1 (X2 + λU)) = 0.

Proposition 3.13.4. When DP1 (X) = G then either X = G or X lies on the Steiner circumel-
lipse.

Proof. Write DP1 (X) = k G and solve. Except from X = G, xy + yz + zx = 0 is obtained.

Proposition 3.13.5. When DP1 (U) 6= G, i.e. when U 6= G and U not on the circumSteiner, it
exists two other points that verify DP1 (X) = DP1 (U). Using barycentrics, we have :

X '




v + w − 2u−W 1
(u+w)(u+v)

w + u− 2 v −W 1
(u+v)(v+w)

u+ v − 2w −W 1
(u+w)(v+w)


 where

W 2 = (u+ v) (v + w) (w + u)
(
u2 (v + w) + v2 (w + u) + w2 (u+ v)− 6uvw

)

Proof. Direct computation, assuming xy + yz + zx 6= 0. The main difficulty is to re-obtain a
symmetric expression after elimination of k, z and resolution on y.

Example 3.13.6. Here is a list of pairs (I, J) of named points such that DP1 (X (I)) = X(J):

1 42 20 3079 189 1422 1370 455

3 418 25 3080 264 324

4 25 30 3081 366 367

5 3078 69 394 651 222

6 3051 75 321 653 196

7 57 100 55 1113 25

8 200 110 184 1114 25

2, on Steiner : 190, 290, 648, 664, 666, 668, 670, 671, 886, 889, 892,

903, 991, 1121, 1494, 2479, 2480, 2481, 2966, 3225, 3226, 3227, 3228

Definition 3.13.7. Second Danneels perspector. Suppose T1 = AUBUCU is the cevian
triangle of a point U . Let LAB be the line through B parallel to AUBU , and let LAC be the
line through C parallel to AUCU . Define A′ = LAB ∩ LAC and B′, C ′ cyclically. Finally obtain
A” = BB′ ∩ CC ′ and B”, C” cyclically. It happens that triangle T2 = A”B”C” is perspective to
T1 = AUBUCU . The corresponding perspector is DP2 (U), the second Danneels perspector of U
(Danneels, 2006). Using barycentrics :

DP2 (U) = u(v − w)2 : v(w − u)2 : w(u− v)2 (3.14)

Proof. Compute (left to right) LAB = AU∧BU∧Lb∧B, LAC accordingly, then A′ = LAB∧LAC and
B′, C ′ cyclically. Obtain A” = (B ∧B′) ∧ (C ∧ C ′) and B”, C”cyclically. See that T2 = A”B”C”
is the anticevian triangle of point :

X
.
= u(v − w) : v(w − u) : w(u− v)

and obtain DP2 (U) as cevadiv (U, X).

Proposition 3.13.8. The circumconic through A,B,C,U, isot (U) admits DP2 (U) as center and

u
(
v2 − w2

)
: v
(
w2 − u2

)
: w
(
u2 − v2

)

as perspector. And therefore isotomic conjugates have the same second Danneels’ perspector.
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52 3.13. Danneels perspectors

Proof. Immediate computation.

Example 3.13.9. List of (U,U∗,DP2 (U)) :

U U∗ DP U U∗ DP U U∗ DP

1 75 244 37 274 3121 394 2052 3269

3 264 2972 42 310 3122 519 903 1647

4 69 125 57 312 2170 524 671 1648

6 76 3124 81 321 3125 536 3227 1646

7 8 11 94 323 2088 538 3228 1645

9 85 3119 98 325 868 2394 2407 1637

10 86 3120 99 523 1649 2395 2396 2491

20 253 122 100 693 3126 2397 2401 3310

30 1494 1650 200 1088 2310 2398 2400 676

and of points without named isotomic :

[43, 3123], [88, 2087], [694, 2086], [1022, 1635], [1026, 2254], [2421, 3569]
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Chapter 4

The French Touch

This chapter is translated from an article originally published under the title "Géométrie projective pour
agrégatifs" (Douillet, 2012). One cannot totally exclude that some provocative tone was used here or there.

Our friend keeps repeating that the current program of the recruitment competition for French
Second Degree teachers (agrégation de Mathématiques) does not contain the elements necessary to
understand the geometries of Moebius, Kimberling or Morley, that is to say the different versions
of the plane projective geometry. I rather disagree with this point of view. Here are some elements
to support my own opinion.

4.1 The "not so flying plane"1

1. Definition. We call rantanplan the "quad ruled paper sheet" which is placed in front of a
schoolchild. We make a (red) cross somewhere (at the intersection of two gridlines), and we
write "Here you are". When this takes up too much space, we write "O". And we say "this
is the origin".

2. Definition. You obtain the point "tchik, tchik, tchik, kling, tchouk, tchouk, bang, A" by
placing yourself in O, with the margin behind you (the gaze is then directed along the
horizontal lines of the papersheet). And you move a square forward (tchik), and another
square forward (the second tchik), and again another square forward (the third tchik). Then
you do a quarter turn (kling) and now, the gaze is directed along the vertical lines of the
papersheet. And you move one square forward (tchouk), then another square forward (the
second tchouk), you put down the pencil and make a cross (bang). And you write the name
of the point, A.

3. Axiom (Archimedes + Thales + Cantor). The preceding definitional schema gives access to
all the points of the rantanplan.

4. Definition, Borel notation. When there are "a lot" of tchiks and tchouks, we count them and
we note A = 3 + 2i . The "i" is used to denote the kling.

5. Foundational experiment. The candidate is at the blackboard and stands in front of the
door. Then she makes a quarter turn, in the direction of the Jury. Then she makes another
quarter turn, in the direction of the window. As a result, the candidate has made a half turn
and all (horizontal) directions have been reversed. This is noted i2 = −1 .

6. Scholie. Suppose the previous scene is observed by two Vice-Presidents of the Jury, one
placed on the floor above, the other placed on the floor below, and further assume that the
President of the Jury has a sufficient authority to impose on his assessors the use of watches
whose hands turn in the same "clockwise" direction. Then one of them will see A = 3 + 2i ,
and the other will see A = 3− 2i .

7. Hands out. The above experiment can be reproduced without such a grandiose staging.
It is enough that the pupil looks at his rantanplan not from above, but from below, by
transparency. So "everything starts turning the other way".

1Tentative translation of the French joke: "le rantanplan"
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54 4.2. Algorithmic in the rantanplan

8. Definition. Normalized coordinates. In order obtain an intrinsic object, we define the Nor-
malized Coordinates of the point A by:

ζnorm (A) =




3 + 2i

1

3− 2i




We note above what is seen by the Vice president who is on the floor above and we note
below what is seen by the Vice president who is on the floor below. And one can even imagine
that the "1" between the two serves to unify the points of view of the two Vice-Presidents.

9. Scholie. When the two Vice-Presidents enter into a full open war (to become President of
the next year Jury), the "unifying" point of view cannot be maintained, and it is advisable
to replace this "1=unity" by a multiple, leading to the following definition.

10. Definition. Superior Coordinates. Coordinates proportional to the Normalized Coordinates
are called Superior Coordinates2. This will be noted using the sign ' (simeq) and we have,
for example, the relation

ζA '




6 + 4i

2

6− 4i




In the wide outer world, where jokes about the ENS are likely to fail miserably, ζA is called
the Morley coordinates of A.

11. Notation. The Morley coordinates of the current point of the plane are written Z : T : Z (big
zed, big tea, big zeta). Each candidate to the aggregation knows (or at least should know)
that an algebraic variable is nothing else than a mark-a-place in the writing of polynomials
which are finite series of multi-indexed coefficients. What could be the complex conjugate of
a mark-a-place?

4.2 Algorithmic in the rantanplan

1. Theorem. The fraction field K of an integral ring A is constructed by identifying among
themselves all the couples of A × A \ (0, 0) which share the same alignment with the origin
(0, 0). Whatever it has been said, this projectification K = PA

(
A2
)
\ {∞} is and remains on

the Agrégation program, and when you have that, you have quite everything else.

2. Softer version. In order to not frighten the school children, we can also say that when two
points of the rantanplan are aligned with the origin, the coordinates are proportional, and
the cross difference is zero, i.e. xAyB − xByA = 0.

3. Thales theorem. When three points are three in number and aligned, the abscissa variations
and ordinate variations are proportional. This can be written as:

(xC − xA) (yB − yA)− (xB − xA) (yC − yA) = 0

4. Definition (slope). The equation of a line is the condition for a third point (x, y) to be aligned
with two given points (two is two: the given points must be different). Once reorganized, the
above expression can be written y = px + m, where p is the slope, i.e. the proportionality
ratio between the ∆y and the ∆x.

5. Scholie. Beyond its limitations, the formula y = px+m has the immense merit of character-
izing the direction of a straight line by its slope, and even of characterizing straight lines as
being the curves that keep going in a straight line, i.e. curves with a constant slope.

6. Algorithmic version of the Thales theorem. The stratospheric point of view consists in
summarizing the Thales theorem by "we develop, we reorganize and we obtain ax+by+c = 0".

2Alluding to the École Normale Supérieure

April 5, 2025 14:49 published under the GNU Free Documentation License



4. The French Touch 55

The algorithmic point of view consists in being interested in computations, to the point of
trying to facilitate them. We have

a = −yB + yA, b = xB − xA, c = xAyB − yAxB

In other words, the number c is the cross difference of the x and the y. The result is known:
the other two are also cross differences when using the "ever one" quantity. In other words,
the equation of the line passing through two points is computed using:

A ∧B =




xA

yA

1


 ∧




xB

yB

1


 = [yA × 1− yB × 1, xB × 1− xA × 1, xAyB − yAxB ]

7. Duality. The cross-differences are put in a row because they characterize a straight line. It’s
not just a joke "line / row". We deliberately note the lines differently from the points ...
quite simply because the lines are not points and the points are not lines3. If wanted, we
could note the points in row, and the lines in column4. We could even exchange all the points
with all the lines. We just have to find a way not to mix the two kinds of things.

8. From an advanced point of view, the equation of a line is written using a determinant and
the wedge operator is the universal factorization of this multilinear operator:

∣∣∣∣∣∣∣

xA xB x

yA yB y

1 1 1

∣∣∣∣∣∣∣
=







xA

yA

1


 ∧




xB

yB

1





 ·




x

y

1




But, despite the possibility of such a stratospheric description, the fact remains that the
cross difference method is a practical and fast way to calculate lines and intersections. This
method can be taught and used well before learning any theory on large determinants. It is
the same for the algorithm of the ordinary decimal division: it can be taught and used well
before learning any theory on the limited expansions of a quotient of uniformly converging
series.

9. Let us insist heavily on this fundamental point. The formula for subtracting fractions:
a

b
−

c

d
=

a d− b c
b d

is only saying that (a, b) and (a d, b d) are aligned with the origin. This is
projective geometry. More precisely, projective geometry is nothing more than that: drawing
the fractions that we want to subtract, then expand them to the same denominator. There
is no reason to make a molehill out of such an elementary thing.

10. Example. We want to calculate E = AB ∩CD with A = 3 + 4i, B = 2− 5i, C = −1 + i,D =
1− i. We have successively:




3

4

1


 ∧




2

−5

1


 =

[
9 −1 −23

]



−1

2

1


 ∧




1

−1

1


 =

[
3 2 −1

]

[
9 −1 −23

]
∧
[

3 2 −1
]

=




47

−60

21


 '




47/21

−20/7

1




3As the French joke says, les points ne sont point des droites, et les droites ne sont droite des points.
4Cross over the Chanel, they behave like that.
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56 4.3. Thales antiquadratic form

11. Example (continued). Using Morley’s affixes leads to:



3 + 4 i

1

3− 4 i


 ∧




2− 5 i

1

2 + 5 i


 =

[
−1 + 9 i −46 i 1 + 9 i

]



−1 + 2 i

1

−1− 2 i


 ∧




1− i
1

1 + i


 =

[
2 + 3 i −2 i −2 + 3 i

]




[
−1 + 9 i −46 i 1 + 9 i

]
∧

[
2 + 3 i −2 i −2 + 3 i

]


 =




+120 + 94 i

42 i

−120 + 94 i


 '




47

21
− 20

7
i

1
47

21
+

20

7
i




Since complex conjugacy is an automorphism, the third component ends up being the conju-
gate of the first, since this was the case when starting. For now, the Z component is merely
a concession made to the fans of intrinsic constructions. Let’s show how to use it for a good
reason.

4.3 Thales antiquadratic form
1. Fundamental formula for affine spaces. To arrive at B, we start from some A, then we follow

the path that goes from A up to B . We have:

B = A+ (B −A)

2. Definition. The vector
−−→
AB is what we get by subtracting the normalized coordinates of A

from the normalized coordinates of B.

3. Scholie. Subtracting the upper coordinates would not give a well-defined object, since the up-
per coordinates of A can be multiplied by a factor different from that of the upper coordinates
of B.

4. Proposition. When we consider the vectors
−−→
AB for what they are, i.e. exactly defined objects

(and not defined up to a factor), their set
−→V forms a vector space of dimension 2.

5. Definition. If we assume that the vector
−−→
AB is non-zero, but if we disregard its size, only its

direction remains, and we get a new kind of points, i.e. the points with T = 0. The set of
the points which verify this equation is the line [0; 1; 0] . We write it Lz .

6. Proposition. The point k
−−→
AB belongs to line AB. In fact, this point is nothing else than

AB ∧ Lz . Proof: this result is obvious from the coordinates. The basic reason is that the
subtraction of fractions also uses cross differences: don’t we have K = PA

(
A2
)
\ {∞} ?

7. Operator W . This is the operator which takes a straight line as input and gives its point at
infinity as output. Using Morley’s affixes, we have:5

∆ ∧ Lz ' Wz · t∆ where Wz =




0 0 −i
0 0 0

+i 0 0




8. Theorem (Thales). Two lines are parallel when the point at infinity of one of them belongs
to the other. This is expressed by:

∆1 ‖ ∆2 ⇐⇒ ∆1 · Wz ·∆2 = 0

5When only dealing with ∆ ∧ Lz , we could have simplified by i. But there are other uses of Wz where this
factor will be required.
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4.4 Pythagoras quadratic form

1. Theorem (pons caballorum). The squared norm of a vector is computed using |z|2 = z z. For
vectors of type

−−→
AB , this translates into:

∣∣∣−−→AB
∣∣∣
2

=
t−−→
AB · Pythz ·

−−→
AB where Pythz =

1

2




0 0 1

0 0 0

1 0 0




2. Proposition. Let P a point at finite distance. Then there are two linear transformations ψ
such that

(a) ψ (P ) = 0 : 0 : 0

(b) ψ
(−→V

)
=
−→V

(c) for all V ∈ −→V , 〈ψ (V ) | V 〉 = 0 while 〈ψ (V ) | ψ (V )〉 = 〈V | V 〉.

Their characteristic polynomial is µ3 + µ and we have:

ψ = i




+1 −z/t 0

0 0 0

0 +z/t −1




the other possibility being the opposite of the ψ operator .

3. Definition. Operator OrtOz . The action of one of the operators ψP on the vector 1: 0: 1 is
the vector + i: 0: -i. Therefore it corresponds to a direct rotation of a quarter turn for the
observer from above (i.e. Z). The choice P = O leads to the operator:

OrtOz = i




+1 0 0

0 0 0

0 0 −1




and we have OrtOz = −2
t
Wz · Pythz .

4. Proposition. Considered as acting up to a factor, each of the operators ψ –and OrtOz

among them– sends a point at infinity on the point at infinity representing the orthogonal
direction (orthopoint).

5. Remark. When U ∈ Lz , then ∆U
.
= tU · Pythz is the line of points V such as tU · Pythz ·V =

0. The point at infinity of ∆U is U ′ = Wz ·t∆U = Wz · Pythz ·U . It is therefore convenient

to choose P in O, so that ψ is proportional to Wz · Pythz .

6. OperatorM (orthodir). This is the operator which takes a straight line as input and gives
the orthopoint of its point at infinity as output. Using Morley’s affixes, we have:

orthodir (∆) = Mz · t∆ where Mz = OrtOz . Wz =




0 0 1

0 0 0

1 0 0




7. Theorem (Pythagoras). Two lines are perpendicular when the orthodir of one of them belongs
to the other. This is expressed by:

∆1 ⊥ ∆2 ⇐⇒ ∆1 · Mz ·∆2 = 0
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4.5 Tangent of an angle between two lines
1. Theorem. The tangent of the oriented angle determined by the lines ∆1 and ∆2 is obtained

by dividing the antisymmetric form of Thales by the symmetric form of Pythagoras. In other
words, we have:

tan (∆1, ∆2) =
∆1 · Wz · t∆2

∆1 · Mz · t∆2

2. Remark. One of the interests of this formula is to provide a projective expression, i.e. an
expression that resists to all these "definitions up to a factor". This is clear for the factors
involving the ∆j . But this is also true for the transformation matrices. Indeed Wz and

Mz are of the same type, namely "line to point", and are both transformed according to
the same X 7→ aller ·X · taller paradigm.

3. Elementary proof (the shorter, the better). We have:

([p+ i ; 2m ; p− i] , [q + i ; 2n ; q − i]) 7→ q − p
1 + p q

4. Everybody knows that tangents are making a group, which satisfies:

tan (∆1, ∆3) =
tan (∆1, ∆2) + tan (∆2, ∆3)

1− tan (∆1, ∆2) tan (∆2, ∆3)

with the usual homographic rules to manage the point ∞ ∈ C. And this applies even when
the lines are not visible, and the tangents are complex numbers.

5. Note that the visible points at infinity of PC
(
C3
)
, in other words the directions, are written

z : 0 : z and therefore can be normalized to ω2 : 0 : 1 . An angle between lines is represented
by its double, which is an angle between vectors, so that the later can be represented by a
point on the trigonometric circle.

6. Interpretation. When the President of the Jury raises his head to contemplate the infinity,
he forms his opinion by dividing the points of view of his two Vice-Presidents, according to
the formula ω2 = z/z . And then, each of the quarter turns multiplies ω2 by −1. So intrinsic,
says the President !

4.6 Down with flechi-flecha !
Remark 4.6.1. The physical space doesn’t know about some point which would be central and
privilegied, contrary to what happens in a vector space. A better model is provided by the so-
called "affine spaces", where all points can be taken as a "random observer".

Definition 4.6.2. An affine combination of vectors is a linear combination whose sum of coeffi-
cients is equal to 1. An affine space is some non empty set E closed under such affine combinations.
Obviously, this requires the possibility to compute the said barycenters, and therefore E needs to
be a subset of some vector space Ê.

Notation 4.6.3. As usual, operations in E are noted +, −, ·. ; but, sometimes, il could be useful
to use another set of notations for the operations used in some external vector space. We will use
the ⊕, 	, � symbols.

Proposition 4.6.4. When E is an affine subset of Ê, the set
−→V .

=
{−−→
BC

.
= C 	B | B,C ∈ E

}
is

a vectorial subset of Ê, while E can be written as A⊕−→V for any observer A ∈ E.
Proof. Since E 6= ∅, it exists some A ∈ E . Therefore,

−→
0 ∈ −→V is obtained as A − A. If uj

.
=

C 	B ∈ −→V , then Dj
.
= A⊕ uj = A⊕C 	B is the barycenter of three points of E so that Dj ∈ E .

Thus each uj ∈
−→V is an Dj 	 A for some Dj and the same fixed A. Then ku = k (D 	A) =

(kD ⊕ (1− k)A)	A = Dk −A ∈
−→V . Moreover

ku1 ⊕ (1− k)u2 = k (M1 −A)⊕ (1− k) (M2 −A) = (kM1 ⊕ (1− k)M2)	A ∈ −→V
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4. The French Touch 59

Definition 4.6.5. A French flechi-flecha is a pair
(
E ,−→V

)
where

−→V is a vector space acting freely
over the non empty set E . In other words, paradigms are reversed and Proposition 4.6.4 is taken
as a definition, while Definition 4.6.2 becomes a property.

Definition 4.6.6. Since the French flechi-flecha despises the set Ê, barycenters have to be defined
otherwise. Using the obvious fact that the set of all the E ↪→ −→V functions is a K vector space, the
so-called Leibniz functions are members of

F
.
= span {λA | A ∈ E} where λA : E ↪→ −→V , M 7→ −−→AM

Proposition 4.6.7. Define the mass µ of some element of F by µ (
∑
kAλA)

.
=
∑
kA then

1. Function µ is well defined and is a linear map F 7→ K.

2. When f ∈ F and µ (f) = 0, then f is constant

3. When f ∈ F and µ (f) 6= 0, it exists an unique G ∈ E (the so-called barycenter) such that
f = µ (f) · λG

Proof. (1-2). Suppose that your French flechi-flecha E contains at least two different points P,Q.
Then, for any decomposition of f ,

f (Q)− f (P ) =
∑

kBλB (Q)−
∑

kBλB (P ) =
∑

kB

(−−→
BQ−−−→BP

)
=
(∑

kB

)−−→
PQ

(3). Assume µ (f) 6= 0 and define GP = P − f(P ) ÷ µ (f). Then GP = GQ by the previous
relation, together with f (G) = f (P )−−→f (f (P ))÷ µ (f) =

−→
0 .

Theorem 4.6.8. Using the French flechi-flecha, i.e. reverting the paradigms to obtain Defini-
tion 4.6.5 is only stupid. Indeed, knowledge of the pair

(
E ,−→V

)
is sufficient to determine

1. a vector space Ẽ isomorph to E ×K,

2. a linear form µ : Ẽ ↪→ K,

3. an affine injection j : E ↪→ Ẽ such that j (E) =
{
x ∈ Ẽ|µ (x) = 1

}

4. and then
{
x ∈ Ẽ | µ (x) = 0

}
is an isomorphic copy of

−→V (Lelong-Ferrand, 1986, p.104).

You can even obtain a canonical vector space Ê where
−→V and E are actually included as genuine

substructures, not just up to an isomorphism (Nekovar, 2007, p. 10).

Nekovar. . Use self-explanatory notations, i.e. u, v ∈ −→V , x, y ∈ E , s, t ∈ K∗.

• Define Ê as
−→V ∪ (K∗ × E). Therefore x̂ ∈ Ê is either some u or some pair q (s, x), where

s 6=0.

• Define µ as µ (u) = 0 while µ (sx) = s 6= 0 otherwise.

• Enforce q (1, x) = x and define �, the scalar multiplication in Ê, by 0�x̂ =
−→
0 , s�u = su

and t�q (s, x) = q (ts, x).

• Define ⊕, the addition in Ê, by the necessary formulas

– u⊕ v = u+ v; x⊕ u = x+ u ;

– q (s, x)⊕ u = q
(
s, x+ s−1 u

)

– q (−s, x)⊕ q (+s, y) = s · −→xy

– q (s, x)⊕ q (t, y) = q

(
s+ t, x+

t

s+ t
−→xy
)

• And now, it "only" remains to verify that these operations define a vector space structure
over the set Ê, while h is linear.
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Lelong-Ferrand. The algebraic burden can be alleviated by using

Ẽ =
{
gu = (M 7→ u) |u ∈ −→V

} ⋃ {
s · λx|s ∈ K+, x ∈ E

}

and µ as defined before. But this way of doing cannot be described as "canonical" since what is
obtained is not E itself, but only an isomorphic copy of this space.

Remark 4.6.9. The French flechi-flecha was a must during the "new maths" period in France. But
now, we have:

Theorem 4.6.10. There is no such thing like an "intrinsic affine space". (Polo, 2015, chap3,
p.65)
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Chapter 5

Teaching Geometry to a computer

5.1 Maple

1. Catch maple 2023, Linux from the net.

2. Update: /opt/maple2023/maple2023/update/update.ini contient la valeur de
encyfile = "$ipse/docs/Cherche/Geometry/maple/ency48.m"

3. nouvelle procedure kiestu() qui donne 18 ou 2023 selon le cas.

4. modifier mkici pour initialiser sin(ω), cos(ω) avant de calculer tan(ω).

5. modifier latexx pour avoir latex(*,writeto=*,*) .

5.2 The random observer

When dealing with triangle geometry, we have to organize the coexistence of three kinds of objects.
We have vectors, we have points and we have 3-tuples. A vector describes a translation of the
"true plane". A vector has a direction but also a length and therefore is not defined "up to a
proportionality factor". The set of all these vectors is a 2-dimensional vector space

−→V (more about
it in what follows). A point is either an element of the "true plane", i.e. an ordinary point at finite
distance, or a point at infinity describing the direction of some line. Such points have therefore to
be described "up to a proportionality factor" by a column that belongs to a given copy of PR

(
R3
)
.

In the same vein, lines are described "up to a proportionality factor" by a row that belongs to
another copy PR

(
R3
)
.

And we need to talk with our computer in order to let it compute all the required results. These
computations are done using 3-tuples and tools acting over 3-tuples so that computations must
be described using R3 rather than using

−→V or PR
(
R3
)
. It remains to optimize the coexistence of

these three points of view

Notation 5.2.1. In the plane we are dealing with, an affine description of a point at finite distance P
is a 3-tuple (ξ, η, ζ) where ζ = 1 is assumed. The semantic of these coordinates is the pre-existence
of some random observer, that uses a Cartesian frame (ξ, η) to describe what is occurring before
her eyes.

5.3 Working out an example

Let us take an example and begin with an informal approach (cf http://www.les-mathematiques.
net/phorum/read.php?8,585414,586289#msg-586289). We have a point P , given by a column,
and two triangles T1, T2 given by the columns of their vertices :

P =
1

2




8

15

2


 ; T1 =




7 3 −2

9 9 −3

1 1 1


 ; T2 =



−9 19 6

1 −15 11

1 1 1



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As it should be, each column verifies ζ = 1, which is the equation of the affine plane E when
seen as a subspace of R3.

We define W as the matrix that transforms the matrix T of a triangle (Pj) into the matrix of

the sideline vectors
(−−−−−−→
Pj+1Pj+2

)
of this triangle (indices are taken modulo 3 so that P4 = P1 etc).

And now, we compute K =
t
W · tT · T · W for both triangles. We have :

W =




0 1 −1

−1 0 1

1 −1 0




K1 =




169 −189 20

−189 225 −36

20 −36 16


 =




a2 −Sc −Sb
−Sc b2 −Sa
−Sb −Sa c2




K2 =




845 −65 −780

−65 325 −260

−780 −260 1040


 =




α2 −Sγ −Sβ
−Sγ β2 −Sα
−Sβ −Sα γ2




Here we use a, b, c for the sidelengths of the first triangle and α, β, γ for the second one.
The Conway’s symbols Sa =

(
b2 + c2 − a2

)
/2 etc. are defined accordingly. The letter used

to name the matrix K has been chosen by reference to the Al-Kashi formula. Clearly, row

(1, 1, 1) belongs to the kernel of matrix K . The characteristic polynomial of this matrix is
χ (µ) = µ3 −

(
a2 + b2 + c2

)
µ2 + 12S2µ. One eigenvalue is µ = 0 and the other two are real

(from symmetry of K ) and positive.

Remark 5.3.1. Matrix Mb used to compute the orthodir of a line is nothing but Mb = K /8S2.

A more "stratospheric", but nevertheless equivalent, definition for these Al-Kashi matrices
would be :

K .
=
t
W · tT · Pyth3 · T · W

where Pyth3 describes any R3-quadratic form that embeds (ξ, η) 7→ ξ2 + η2, the quadratic form
of the ordinary affine euclidian plane. This embedding quadratic form depends on three arbitrary
parameters since 6 coefficients are needed for dimension three, while only 3 are needed for dimension
two.

5.4 An involved observer
Now, we will describe how things are looking when the observer is no more a random ☼ but rather
an actor of the play. For example, we can take triangle T1 as a new vector basis inside vector space
R3 and calculate everything again using this new basis. From :




ξ

η

ζ


 = T1




x

y

z




it is clear that condition ζ = 0 that shows that a 3-tuple belongs to
−→V becomes now x+ y+ z = 0.

Defining Lb = (1, 1, 1) this can be rewritten as Lb · t(x, y, z) = 0. Seen "up to a proportionality
factor" this will gives Lb · (x : y : z) = 0, i.e. the condition for the point x : y : z ∈ PR

(
R3
)
to lie

on the line at infinity. But this is not our purpose for the moment.
The R3-metric is now described by matrix tT1 · Pyth3 .T1. This matrix depends in turn on

three arbitrary parameters. In fact, any other matrix that can be written as :

tT1 · Pyth3 .T1 + U.Lb +
t
(U.Lb) where Pyth3 =




1 0 0

0 1 0

0 0 0



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using an arbitrary column U will be just as well to calculate the Pythagoras of
−→V -vector. A zero

diagonal gives a more nice looking matrix, and is also more efficient for computing. Therefore we
define the matrix Pythb by this property and we obtain :

Pythb = −1

2




0 16 225

16 0 169

225 169 0


 = −1

2




0 c2 b2

c2 0 a2

b2 a2 0




Now, matrix K1 can be computed using :

K1 =
t
W · Pythb · W =




169 −189 20

−189 225 −36

20 −36 16




while the coordinates of the other triangle and the extra point are transformed according to :

T2 = T−1
1 · T2 =

1

24



−52 156 13

60 −180 15

16 48 −4


 ; P[1] = T−1

1 · P =
1

32




13

15

4




And now, matrix K2 can be computed using :

K2 =
t
W · tT2 · Pythb · T2 · W =




845 −65 −780

−65 325 −260

−780 −260 1040




The quadratic form Pyth2 can be obtained as above, or directly as:

Pyth2 = −1

2




0 γ2 β2

γ2 0 α2

β2 α2 0


 = −1

2




0 1040 325

1040 0 845

325 845 0




5.5 From an involved observer to another one
All the preceding computations are standard ones. As long as points have no dependence relations
all together, nothing else can be done. On the contrary, when points are constructed from each
other, another point of view is more powerful. Taking ABC as reference triangle, and describing
all points by their barycentric coordinates, we obtain P = 13 : 15 : 4, A′ = −13 : 15 : 4,
B′ = 13 : −15 : 4, C ′ = 13 : 15 : −4. If this is only a random coincidence, nothing more can be
said.

On the contrary, if these points are really defined wrt T1 as P = a : b : c, A′ = −a : b : c,
B′ = a : −b : c, C ′ = a : b : −c, then things get more interesting. We have :

P[2] = T−1
2 · P = b+ c− a : c+ a− b : a+ b− c

K2 =




4 a2bc

(a− b+ c) (b+ a− c)
−2 abc

b+ a− c
−2 abc

a− b+ c
−2 abc

b+ a− c
4 ab2c

(b+ c− a) (b+ a− c)
−2 abc

b+ c− a
−2 abc

a− b+ c

−2 abc

b+ c− a
4 c2ab

(b+ c− a) (a− b+ c)




so that :
{
α2 = k

4 a2bc

(a− b+ c) (b+ a− c) , etc

}

Since barycentrics are defined only "up to a proportionality factor", the former set of equations
has only to be solved in k, b, c. This gives the ratios between the quantities a, b, c. One gets :

(a : b : c) '
(
α2
(
β2 + γ2 − α2

)
: β2

(
γ2 + α2 − β2

)
: γ2

(
β2 + α2 − γ2

))
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so that :

P[2] =
1

β2 + γ2 − α2
:

1

γ2 + α2 − β2
:

1

α2 + β2 − γ2

This results identifies the incenter of the reference triangle ABC as the orthocenter of the
excentral triangle. In the same vein, the circumcenter of ABC can be identified as the nine-points
center of A′B′C ′. More details on this specific relation will be given in Subsection 24.7.

5.6 Reducing up to a factor

Maple 5.6.1. Reducing "up to a factor" is a key feature in computer-aided projective geometry.

1: reduce := proc (qui_ :: {Matrix,Vector , list}) ; local qui
2: qui0:=convert(qui_, set) \ {0}
3: if qui0 = {} then return qui_ end if
4: qui:=FActor(convert(qui_, Vector)/qui0[1])
5: lili:=convert(qui, list)
6: nunu, dede:=map(simplify@numer, lili), map(simplify@denom, lili)
7: fac:=(lcm@op)(dede)
8: if type(nunu, list(numeric)) then
9: fac:=fac/(igcd@op)(nunu)

10: else
11: fac:=fac/(gcdd@op)(nunu)
12: end if
13: qui:=qui ∗ fac
14: quii:=quii ∗ fac
15: if type(qui_,Vector) then
16: return qui
17: else if type(qui_, list) then
18: return convert(qui, list)
19: else
20: return LTr(Matrix(ColDim(qui_), RowDim(qui_), convert(qui, list)))
21: end if

Listing 5.1: The reduce procedure.

reducol := proc (ma :: Matrix)
Matrix ([seq(reduce(Column(ma, j )), j = 1 ..ColDim(ma))])

Listing 5.2: The reducol procedure

redurow := proc (ma :: Matrix)
< seq(reduce(Row(ma, j )), j = 1 ..RowDim(ma)) >

Listing 5.3: The redurow procedure
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wedge := proc (pp, pu) ; local p, q , r , u, v , w , tmp
p, q , r , u, v ,w := op(convert(pp, list)), op(convert(pu, list))
tmp := [q ∗ w − r ∗ v ,−p ∗ w + r ∗ u, p ∗ v − q ∗ u]
if type(pp,Vector [row ]) then
return Vector(tmp)

else if type(pp,Vector) then
return Vector [row ](tmp)

end if
tmp

Listing 5.4: The wedge procedure

5.7 packages

logic.m 443 geogebra.m 4172

latex.m 834 geo4D.m 5318

geo2c.m cartesian 971 tensor.m 6067

hyperbolic.m 1257 vector.m 8632

pldx.m bootstrap 1268 lfit.m 10656

homogr.m 1988 cevian.m 14749

gone.m 2172 encydb.m 15936

birap.m 3174 faisceaux.m 15981

map2alg.m 3905 lubin.m 16280

circles.m 4085

dessin.m 3056 tcurv.m 8374

quadlat2.m 7166 quadlat.m 8897

relire_sk.m 7223325
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Chapter 6

Maple procedures about searchkeys

Remark 6.0.1. At 2024-01-02, there were 61097 points subject to the curse of having coordinates
in the Kimberling’s database. Too much for continuing to recompile the web pages and extract
the formal coordinates of these points.

From 2019, I have decided to limit my "formal database" to the n ≤ 6809 first points and to the
59 points having complex coordinates. In fact, only four of the later, namely the {8072, 8073, 11065, 11066}
have been added.

On the other hand, the Kimberling (1998-2024) database can be used to obtain the "numerical
barycentrics" of all the 6809 < n < 61098 remaining points (except from the 59 complex ones),
allowing numerical explorations using triangle 6, 9, 13.

6.1 Procedure mkalgo

The map2alg:-mkalgo procedure creates something at ipse/docs/maple/latex/proc.tex
Then you go into ipse/docs/maple/latex and run proc-maker.bat
Then you type M-b d in LyX. This creates the required Algo box.

1: circle3 := proc( )
2: if ColDim(Args[1 ]) = 3 then
3: return Procname(Column(Args[1 ], 1 ..3 ))
4: end if
5: wedge3 (seq ((FActor@reduce@Ver)(jj ), jj = Args))
6: ‘if ‘ (%[4 ] = 0 ,FActor(%),FActor (%/%[4 ]))

Listing 6.1: The circle3 procedure

manual: algorithmic before and after ; Ditto1()7→% ; LColumn 7→ Column ; gestion des @ ;

6.2 Standardized barycentrics

Proposition 6.2.1. Standardized barycentrics are defined as follows :

(x, y, z) 7→
{

(x, y, z)× 1
x+y+z if x+ y + z 6= 0

(x, y, z)×
(

1
x + 1

y + 1
z

)
otherwise

They are defined for all points, except from the directions of the sidelines and the points −1±i
√

3 :
−1∓ i

√
3 : 2.

Remark 6.2.2. This quantity is projectively defined... but depends on a preference towards the
barycentrics, rather than towards the trilinears.

Remark 6.2.3. The two exceptional points of the former proposition are not the so called umbilics,
defined at Subsection 14.1.2.
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Algorithm 6.2.4. normalize. This procedure Alg. 6.2 returns a normalized numerical vector
(using triangle 6, 9, 13) from what is given on entry (a vector, a list or an expression).

Memory from the past: the former procedure kicety was combining this normalize pro-
cedure with the make_a_key instructions (which are now a part of procedure dichot ).

1: normalize := proc (pu) ; local u, v , w , tmp, tmp1 , tmp2
2: if type(pu,Vector) then tmp := subs (ency__, pu)
3: else if type(pu, list) then tmp := V ector(subs(ency__, pu))
4: else tmp := Vector(subs (ency__ [rot3 ](pu)))
5: end if
6: indets(tmp)
7: if % <> {} then Error(”unresolved indets in normalize”, %) end if
8: u, v ,w := tmp[1], tmp[2], tmp[3]
9: if evalf (abs(u + v + w)/(abs(u) + abs(v) + abs(w))) < .1E − 8 then

10: return xpurge(evalf (tmp ∗ (1/u + 1/v + 1/w)))
11: else
12: return xpurge(evalf (tmp/(u + v + w)))
13: end if
Ensure: Decides if M ∈ Lb and returns a normalized, numerical vector, in C3.

Listing 6.2: The normalize procedure

6.3 Numerical values
Definition 6.3.1. The Kimberling’s search key has been defined as the directed distance
between X and the BC sideline of the reference triangle a = 6, b = 9, c = 13 (for an ordinary
point) and as x′ × (1/x′ + 1/y′ + 1/z′) for a point at infinity (caveat: here x′ : y′ : z′ are trilinears
!). When using barycentrics, this quantity is given by:

x : y : z /∈ Lb, key =
x

x+ y + z
× 2S

a
(6.1)

x : y : z ∈ Lb, key =
x

a
×
(
a

x
+
b

y
+
c

z

)

The actual value of factor bc ÷ 2R = 2S/a is 4
√

35/3. Reference values of this search key are
provided by the ETC (Kimberling, 1998-2024).

Definition 6.3.2. The patched search key has been introduced to deal with points like X(5000)
that would otherwise have a non real searchkey. When x/ (x+ y + z) /∈ R, then

key
.
= arg

(
x

x+ y + z

)
∈ [−π, +π]

If one uses Maple, arg(z) is obtained by evalf (arctan (=z, <z)). Using arctan (=z/<z) would be
wrong when <z < 0. And evalf is required to avoid symbolic π.

Example 6.3.3. The key for the first umbilic, i.e. Sb−2 iS : Sa+2 iS : −c2 (see Subsection 14.1.2
for more details about the umbilics) is obtained by:

(
1

Sb − 2 iS
+

1

Sa + 2 iS
− 1

c2

)



Sb − 2 iS

Sa + 2 iS

−c2


 7→




0.9541237489 · · · −0.3042530621 · · · i
1.089086127 · · · +1.034633282 · · · i
−2.043209876 · · · −0.7303802201 · · · i




key = −0.30868862910087033702

Fact 6.3.4. When repeating the same process with triangles 9, 13, 6 and 13, 6, 9, we obtain keya,
keyb, keyc. Then either

∑
a keya = 0 (point at infinity) or

∑
a keya = 2S = 8

√
35 (ordinary

point)... or anything else for a may be complex point. About key conflicts:
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1. At 2009-08-27, the minimal distance between two search keys was 4.8E − 7.

2. At 2017-01-11, this minimal distance was 2.95 E − 8. This can only become smaller as more
points are added to the database. Therefore, one has to be careful when computing a search
key, in order to face the possibility of huge canceling terms. Using Maple Digits:=20
seems to be safe.

3. At 2017-12-27, point have appeared that share the same A− key.

older 667 3239 3616 3617 3635 3875 5592

newer 9780 8834 14078 15224 15519 7292 10896

Thus we can use keya + X × 1E − 19 to build the unique key required by a dichitomy, and
then use 1E− 13 as the blur limit for recognition of a key. And go back using a process that
gives either X or [X1, X2].

4. At 2020-3-30, there were 24 pairs of points that share the same A − key. Moreover, there
were now 4 pairs of points that have the same 6-9-13 barycentrics:

nn 3635 4098 4691 22166

alt 15519 24150 21267 22266

x 2 110 14 54

y 5 209 11 51

z 9 285 7 47

Therefore, a safe identification requires a special treatment for these points.

6.3.1 The new reliresk

Algorithm 6.3.5. reliresk. From 2019, the numerical database is pre-compiled in Maple
format and is simply loaded as is (or even not loaded at all). We have fac47 = 8

√
35, while current

values (2024-01-02) are smax = 53090 ; siz_enc = 53024. As an example, we have

enc_sort [20086] = [0.125000000000000000006623134309, (15519, 3635)]

1: reliresk := proc ( ) ; global fac47 , smax , siz_enc, sk , fk , enc_sort
2: read("$ipse/docs/Cherche/Geometry/maple/reliresk/pas_toujours/reliresk.m")
3: "numerical database imported"
Ensure: sk[j] = [x, y, z] ; fk[j] ∈ {0, 1, 2} ; enc_sort[J ] = [key, qui]

Listing 6.3: The reliresk procedure

6.4 The new buildsk

Let Ketc=https://faculty.evansville.edu/ck6/encyclopedia/ and download the sources

1. Create and go into ipse/docs/Cherche/Geometry/ETC_20xx/

2. Download Ketc/ETC.html and Ketc/ETCPartn.html as ETCPartNN.html for NN =
1..36

3. Download Ketc/Search$kki.html for kki in 6_9_13 9_13_6 13_6_9 and then

4. grep "<tr align=right>" $qui | sed -e "s¶<tr align=right><td>¶¶; s¶</td><td>¶;¶;
s¶</td>.*¶¶" > $kki.csv

5. All required Maple procedures are stored in the relire_sk package.
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Algorithm 6.4.1. buildsk. Start from the searchkeys given by ETC. Use them to identify the
type of the point and set fk[j]. Then compute their normalized values and set sj[k]. Set the
searchkey xk[j] as sk[j][1]+j ∗ 1E − 19. Read the special file that deals with the few points
using complex values (and overwrite what needs to be overwriten).

And then, compute the sorted version enc_sort so that a key is linked to one or more values
(duplicated lines are not deleted !).




0.36733179178700142568 5409

0.3673469387755102707 667, 9780

0.36734693877551118208 667, 9780

0.3674078636432206616 7914




1: buildsk := proc (qqqq := 20 ) 2024-01-03
2: global fac47 , smax , sk , xk , fk , siz_enc, enc_sort
3: local source, fd , tmp1 , tmp2 , qrand , j6 , j9 , j13 , js, jj , j , stamp, laps, tmp, lili
4: source := ipse/docs/Cherche/Geometry/ETC_2023/
5: Digits := 30 ; stamp := time() ; fac47 := evalf (8 ∗ sqrt(35 ), 30 )
6: qrand := rand(1000 ..9999 ) ∗ 1E − 24
7: sk := table() ; fk := table() ; xk := table()
8: try close(fd) catch : end try
9: fd := open(cat(source, ”6_9_13 .csv”),READ)

10: for j to qqqq do
11: tmp := readline(fd) ;
12: if % = 0 then Break() end if
13: tmp1 , tmp2 := op(sscanf (tmp, ”%d ; %a”)) ; sk [tmp1 ] := 6 ∗ tmp2
14: end for
15: smax := −1 + j ; close(fd)
16: fd := open(cat(source, ”9_13_6 .csv”),READ)
17: for j to smax do
18: tmp := readline(fd) ;
19: if % = 0 then Break() end if
20: tmp1 , tmp2 := op(sscanf (tmp, ”%d ; %a”)) ; sk [tmp1 ] := sk [tmp1 ], 9 ∗ tmp2
21: end for
22: close(fd) ; fd := open(cat(source, ”13_6_9 .csv”),READ)
23: for j to smax do
24: tmp := readline(fd) ;
25: if % = 0 then Break() end if
26: tmp1 , tmp2 := op(sscanf (tmp, ”%d ; %a”)) ;
27: sk [tmp1 ] := sk [tmp1 ], 13 ∗ tmp2
28: end for
29: close(fd)
30: for jj to smax do
31: j6 , j9 , j13 := sk [jj ] ; js := j6 + j9 + j13
32: if abs(js) < .1e − 12 then
33: fk[jj] := 1 ; js := 1/j6 + 1/j9 + 1/j13 ; sk[jj] := [j6 ∗ js, j9 ∗ js, j13 ∗ js]
34: else if abs(js − fac47 ) < .1e − 12 then
35: fk[jj] := 0; sk[jj] := [j6/js, j9/js, j13/js]
36: else
37: fk[jj] := 2 ; sk[jj] := [j6/6, j9/9, j13/13]
38: end if
39: xk[jj] := sk[jj][1] + qrand()
40: end for
41: return smax
Ensure: tables sk, xk, fk are set ; fac47 , smax , siz_enc, enc_sort

Listing 6.4: Procedure buildsk

April 5, 2025 14:49 published under the GNU Free Documentation License



6. Maple procedures about searchkeys 71

1: buildencsort := proc( ) 2024-01-03
Require: sk_plex requires the formal coordinates of the complex points
2: global fac47 , smax , siz_enc, enc_sort , sk , xk , fk
3: local fd , j , jj , jjj , jk , tmp, ttmp, enc_tmp
4: fd := open(”ipse/public_html/etc/sk_plex .csv”,READ)
5: for j to 20000 do
6: ttmp := readline(fd)
7: if % = 0 then Break() end if
8: SubstituteRec(ttmp, ” ”, ””, ”\”; \””, ” ”, ”\””, ””)
9: tmp := sscanf (%, ”%d%a%a%a%a”) ; jj := tmp[1 ] ; sk [jj ] := tmp[2 ..4 ] ; xk [jj ] := tmp[−1 ]

10: end for
11: close(fd) ; printf (”read %d corrections”, j − 1 ) ; print()
12: enc_tmp := Array(sort([seq ]([xk [jj ], jj ], jj = 1 ..smax ))) ; jj := 1
13: for j to smax while jj <= smax do
14: jk := NULL
15: for jjj from jj to smax do
16: if .1e − 9 < enc_tmp[jjj , 1 ]− enc_tmp[jj , 1 ] then Break() end if
17: jk := jk , jjj
18: end for
19: enc_tmp[j , 1 ] := enc_tmp[jj , 1 ]
20: enc_tmp[j , 2 ] := seq(enc_tmp[jjj , 2 ], jjj = jk) ; jj := 1 + op(−1 , [jk ])
21: end for
22: siz_enc := j − 1 ; enc_sort := SubMatrix (enc_tmp, 1 ..siz_enc, 1 ..2 )
23: return siz_enc
Ensure: create enc_sort ; its size is siz_enc < smax.

Listing 6.5: The buildencsort procedure

6.5 Complex points
Algorithm 6.5.1. build_sk_plex. The file t6913.csv is collected from ETC, and is not
supposed to change on a daily basis. Required corrections are to be stored somewhere else, namely
in the sk_plex file. These corrections are computed from the barycentrics stored in fdat. It uses
normalize and the key produced by dichot.

When writing these corrections, we have to be tricky, since Maple doesn’t have a native pro-
cedure for printing complex numbers. One can see that files t6913.csv and sk_plex are not
read/written the same way. The first one has a very strong syntax, and can be read by a cus-
tomized sscanf. The second one is more convoluted (there is no specific format for reading complex
numbers). Spaces and nothing else !

Algorithm 6.5.2.
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1: buildsk := proc(qqqq := 20000 )
Ensure: Initializes the following global variables
2: global fac47 , smax , siz_enc, sk , fk , enc_sort
3: local j , jj , j6 , j9 , j13 , js, ttmp, enc_tmp, tmp, xk , fd
4: Digits := 30 ; fac47 := evalf (8 ∗

√
35 ) ; sk , xk , fk := table(), table(), table()

5: fd := open(”/server_root/etc/t6913 .csv”,READ)#2017− 12− 26
6: for smax to qqqq do
7: ttmp := readline(fd)
8: if % = 0 then Break() end if
9: jj , j6 , j9 , j13 := op( sscanf(%, "\"%d\";\"%f\";\"%f\";\"%f"))

10: j6 , j9 , j13 := 6 ∗ j6 , 9 ∗ j9 , 13 ∗ j13 ; js := j6 + j9 + j13
11: if abs(js) < 1E − 12 then
12: fk [jj ] := 1 ; js := 1/j6 + 1/j9 + 1/j13
13: sk [jj ] := [j6 ∗ js, j9 ∗ js, j13 ∗ js] ; xk [jj ] := %[1 ]
14: else if abs(js − fac47 ) < 1E − 12 then
15: fk [jj ] := 0 ; sk [jj ] := [j6/js, j9/js, j13/js] ; xk [jj ] := %[1 ]
16: else
17: fk [jj ] := 2 ; sk [jj ] := [j6/js, j9/js, j13/js] ; xk [jj ] := %[1 ]
18: end if
19: end for
20: smax := smax − 1 ; siz_enc := smax
21: close(fd) ; print(”t6913 has been read : %d items”, smax )
22: fd := open(”/server_root/etc/sk_plex .csv”, READ)
23: for j to 10 do
24: tmq := readline(fd) ;
25: if % = 0 then Break() end if
26: SubstituteRec(ttmp, " ","", "\";\""," ", "\"",""); tmp:= sscanf(%, "%d %a %a %a %a");
27: jj := tmp[1 ] ; xk [jj ] := tmp[−1 ] ; sk [jj ] := tmp[2 ..4 ]
28: end for
29: close(fd) ; printf (”read %d corrections”, j )
30: enc_tmp := [seq ]([xk [jj ] + 1E − 18 ∗ jj , jj ], jj = 1 ..smax ) ;
31: enc_sort := Array(sort(enc_tmp))
32: for jj to siz_enc − 1 do
33: if 1E − 9 < enc_sort [1 + jj , 1 ]− enc_sort [jj , 1 ] then Next() end if
34: tmp := enc_sort [jj , 2 ], enc_sort [1 + jj , 2 ] ;
35: enc_sort [1 + jj , 2 ] := tmp ; enc_sort [jj , 2 ] := tmp
36: end for

Listing 6.6: The writesk procedure

build_sk_plex := proc; local j , theplex , lefichier , fd , tmp, tmp2 , tmp3 , qq
theplex := seq(‘if ‘(fk [j ] = 2 , j ,NULL), j = 1 ..6802 )
fd := open("$ipse/public_html/etc/sk_plex.csv", WRITE)
for j in theplex [1 ..5 ] do

tmp := map(cut , normalize(parse(fdat [j ])), 20 )
tmp1 := op(convert(tmp, list))
tmp2 := (op@map)(op@[Re, Im], convert(tmp, list))
dichot(tmp[1]) ; tmp3 := cut(key + j ∗ 1E − 19 , 20 )
try:
fprintf(fd, ""%d";"%24.20f";"%24.20f";"%24.20f";"%24.20f"\n", j, tmp1, tmp3)
catch:
fprintf(fd, cat(""%d"", ";"%24.20f%+24.20f*i"" $3, ";"%24.20f"\n" ), j, tmp2, tmp3)
end try

end for
close(fd)

Listing 6.7: The build_sk_plex procedure
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6.5.1 Procedures ency and dichot

ency := procqui ; local tm1 , tm2 , tmpd , norqui , rep
Require: receive a vector, or a list or an algebraic expression to be rotated
Ensure: fails with ‘?‘ or proves the existence and unicity of a specific match with the entry

Digits := max (Digits, 20 ) ; norqui := normalize(qui) ; tmpd := dichot(norqui [1 ])
if tmpd [1 ] = ‘?‘ then return ‘?‘ end if
[seq ]([j ,max ( map(abs,norqui − normalize(sk [j ])) )], j = tmpd [2 ])
rep := [seq ](‘if ‘(j [2 ] < .1e − 11 , j [1 ],NULL), j = %)
if rep = [] then return ‘?‘ end if
return op(rep)

Listing 6.8: The ency procedure

dichot := procqui ; global key ; local u, o, m ensu, enso, ensm, eps
Require: receive qui ∈ cc, the normalized x-barycentric of some point
Ensure: fails with left<key<right or returns the key and either a point or a collision_list
if Im(qui) = 0 then key := qui else key := argument(qui) end if
ε := .1e − 7 ; u, o := 1 , siz_enc
ensu, enso := enc_sort [u][1 ], enc_sort [o][1 ]
if enso < key then
if |enso − key | < ε then return enc_sort [o] else return ?, [enso, key , infinity ] end if

end if
if key < ensu then
if |ensu − key | < ε then return enc_sort [u] else return ‘?‘, [−infinity , key , ensu] end if

end if
while 1 < o − u do

m := floor(o/2 + u/2 ) ; ensm := enc_sort [m][1 ]
if ensm < key then u := m ; ensu := ensm else o := m ; enso := ensm end if

end while
if |ensu − key | < ε then return enc_sort [u]
else if |enso − key | < ε then return enc_sort [o]
else return ?, [ensu, key , enso]
end if

Listing 6.9: The dichot procedure

*** descriptions of procedures like localize should be moved here ***

6.6 morley
Definition 6.6.1. The Morley’s search key is the search key associated with a point defined
by its Morley affix. Details and formula are provided in the corresponding chapter. See Proposi-
tion 15.4.10.
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Chapter 7

Euclidian structure using
barycentrics

Barycentric coordinates were intended to describe affine properties, i.e. properties that remains
when points are moved freely. Therefore describing euclidian1 properties when using barycentrics
is often presented as contradictory. We will show that, on the contrary, all the required properties
can be described simply. The key fact is that orthogonality only depends on the directions of lines
so that all what is really needed is a bijection that sends each point at infinity onto the point that
characterizes the orthogonal direction.

7.1 More about the cartesian projective plane
Definition 7.1.1. The cartesian projective plane PR

(
R3
)
is what is obtained when using x : y : 1

to describe the usual Cartesian points (x, y). As a result the line by two points A,B is obtained
as A ∧B, while the point on two lines δ, ε is obtained as δ ∧ ε.

Definition 7.1.2. When two lines are parallel in the cartesian plane, their intersection is some
x : y : 0 point, which belongs to a new special line, namely Lc ' [0, 0, 1] (the cartesian line at
infinity).

7.2 Embedded euclidian vector space
Definition 7.2.1. Given two ordinary (at finite distance) points P ' x1 : y1 : t1 and U ' x2 :
y2 : t2 of PR

(
R3
)
, the embedded vector from P to U is defined as :

−→vec (P, U) =
c

1

t2




x2

y2

t2


− 1

t1




x1

y1

t1




This quantity is projective since replacing P,U with kpP, kuU doesn’t change the result. This can
be generalized as

−→vec (P, U)
.
=

U

L∞ · U
− P

L∞ · P
(7.1)

When applying a collineation Ψ to the points, the collineation Ψ−1 is applied to the line L∞, the
coefficients remain invariant and −→vec (P, U) 7→ Ψ · −→vec (P, U).

Proposition 7.2.2. Embedded vectors belong to the vector plane
−→V : {X | L∞ ·X = 0}, seen as a

subspace of the Cartesian (non projective) vector space R3. These vectors obey to the usual Chasles
rule :

−→vec (P1, P3) = −→vec (P1, P2) +−→vec (P2, P3)

1Let us recall that computing figures, instead of figuring computations, is as far as possible of what the historical
Euclide was doing in his Elements (see Euclid, fl. 300BC). Using the adjective Euclidean to describe the modern
euclidian geometry would only be misleading.
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and space
−→V is isomorphic to the usual vector space R2 where

−−−→
P1P2 = (x2 − x1, y2 − y1) when

assuming t1 = t2 = 1.

Proof. Obvious from definition. Nevertheless, a key property for what follows.

Fact 7.2.3. When using (x, y, t) coordinates, the metric of the usual euclidian plane
−→V c is described

by matrix :

Pythc
.
=




1 0 0

0 1 0

0 0 0


 (7.2)

In fact, any other matrix defined as :

Pythc + U · Lc +
t
(U · Lc) (7.3)

can be used to define the metric of vector space
−→V c since t = 0 is assumed.

7.3 Lengths and areas in the Cartesian plane
Notation 7.3.1. In this section, T0 describes the reference triangle ABC in the cartesian affine
plane (where Lc = [0, 0, 1] , and Tx is the normalised description of a generic triangle (Pj) where
indices are dealt modulo 3, i.e. P4 = P1, etc. In other words :

T0 =

∣∣∣∣∣∣∣

ξa ξb ξc

ηa ηb ηc

1 1 1

∣∣∣∣∣∣∣
, Tx =

∣∣∣∣∣∣∣

ξα ξβ ξγ

ηα ηβ ηγ

1 1 1

∣∣∣∣∣∣∣
(7.4)

We will use |BC| = a, |P2P3| = α, etc together with Sa =
(
b2 + c2 − a2

)
/2, Sα =

(
β2 + γ2 − α2

)
/2,

etc. In other words,
(ξa − ξb)2

+ (ηa − ηb)2
= c2, etc (7.5)

Definition 7.3.2. Matrix W. The matrix W0 is defined by :

W0 =




0 1 −1

−1 0 1

1 −1 0


 (7.6)

Proposition 7.3.3. When a matrix Tx, as defined in (7.4), gives the vertices Pj of a triangle, then
Tx · W0 gives the (cartesian) sideline vectors

−−−−−−→
Pj+1Pj+2 of this triangle (using modulo 3 indices).

Proof. This is obvious from
−−−−→
PjPj+1 = Pj+1 − Pj that holds when Pj are 3-tuples in the t = 1

plane.

Lemma 7.3.4. Matrix K. We have the following Al-Kashi formula :

Kx =
t
W0 ·tTx· Pythc ·Tx· W0 =




α2 −Sγ −Sβ
−Sγ β2 −Sα
−Sβ −Sα γ2


 where Pythc =




1 0 0

0 1 0

0 0 0




Proof. Diagonal elements are
〈−−→
BC | −−→BC

〉
, etc and the others are

〈−−→
BC | −→CA

〉
= −

〈−−→
CB | −→CA

〉
, etc.

Fact 7.3.5. The area Sx of triangle Tx is given by the well-known formula

Sx =
1

2

∣∣∣∣∣∣∣

ξa ξb ξc

ηa ηb ηc

1 1 1

∣∣∣∣∣∣∣
(7.7)
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Moreover, we have the Heron formula :

S2
x =

1

16
(+α+ β + γ)(−α+ β + γ)(+α− β + γ)(+α+ β − γ) (7.8)

=
1

4
(SaSb + SbSc + ScSa)

Proof. The first formula gives the oriented area of a triangle, which cannot be obtained from the
Heron formula. On the other hand, Heron formula can be obtained in many ways, from simple
identification to the more sophisticated :

4S2 = |AB|2 |AC|2 sin2A = b2c2 −
〈−−→
AB | −→AC

〉2

= b2c2 − S2
a

7.4 Lengths and areas in the barycentric plane
Definition 7.4.1. Barycentrics coordinates wrt the triangle T0

.
=ABC formed by three points at

finite distance are what is obtained by using



x

y

t


 7→




p

q

r


 .

= T0

−1
·




x

y

t


 (7.9)

Proposition 7.4.2. Let matrix T be giving the barycentric coordinates of the vertices Pi = pi :
qi : ri of a triangle T. Then area of T is given by :

S ×
det T

∏
(pi + qi + ri)

(7.10)

where S is the area of the reference triangle.

Proof. This formula combines (7.7) with the usual properties of determinants. The denomi-
nator appearing at (7.10) enforces the required invariance wrt multiplicative factors acting on
barycentrics, and also recognizes the fact that only triangles with finite vertices have an area.

Remark 7.4.3. A key point is that formula (7.10) is of first degree in S : once the orientation of
the reference triangle is chosen, all the orientations of the other triangles are fixed.

Theorem 7.4.4. Pythagoras theorem. When using barycentrics as defined at (7.9), we have

Lb = [1, 1, 1] ; Pythb =
1

2




0 −c2 −b2
−c2 0 −a2

−b2 −a2 0


 (7.11)

As a result, the transformation
−−→
PQ ∈ R2 7→ −→vec (P, Q) ∈ −→V b defines an isomorphism of euclidian

spaces, while the squared distance between two (finite) points of the triangle plane is given by :

|PU |2 =
t−→vec (P, U) · Pythb · −→vec (P, U)

∣∣∣
−−−−−→
(ρ, σ, τ)

∣∣∣
2

= −
(
a2στ + b2τρ+ c2ρσ

)
(7.12)

Proof. The usual change of basis formulae applyed to the quadratic form Pythc are leading to

tT0 · Pythc · T0 + U · Lb +
t
(U · Lb)

And then U is chosen to obtain a zero diagonal. One can also identify the coefficients in order to
obtain

〈−→vec (A, B) | −→vec (A, B)〉 = c2 (etc) and 〈−→vec (A, B) | −→vec (A, C)〉 = Sa (etc)
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7.5 About circumcircle and infinity line
Definition 7.5.1. The power of a point X = x : y : z (at finite distance) with respect to the
circle Ω centered at P with radius R defined by :

power (Ω, X)
.
= |PX|2 −R2

Theorem 7.5.2. The power formula giving the Ω-power of any point X = x : y : z from the
power at the three vertices of the reference triangle is :

power (Ω, X) =
ux+ vy + wz

x+ y + z
− a2yz + b2xz + c2xy

(x+ y + z)
2 (7.13)

where u = power (Ω, A) , etc

Proof. Use (7.1) to obtain
−−→
PX and then Theorem 7.4.4 to obtain power (Ω, X). Substitute y =

z = 0 to obtain u, etc. Then a simple subtraction leads to the required result.

Definition 7.5.3. The standard equation of the circumcircle is defined as :

Γstd (x, y, z)
.
= −a

2yz + b2xz + c2xy

x+ y + z
(7.14)

Proposition 7.5.4. The equation of any circle can be written as :

Ω (x, y, z)
.
= (ux+ vy + wz) + Γstd (x, y, r) = 0 (7.15)

where u = power (Ω, A) , etc

where x : y : z is the generic point and Γstd is the standard equation of the circumcircle, as defined
just above.

Proof. Obvious from (7.13) and power (Γ, A) = 0, etc.

Remark 7.5.5. "Can be written" must be understood as "when required, multiply by x+y+z and
use polynomials". For more details, see Chapter 13.

Corollary 7.5.6 (Heron). Center and radius of the circumcircle are :

X3 = a2
(
b2 + c2 − a2

)
: b2

(
c2 + a2 − b2

)
: c2

(
a2 + b2 − c2

)

R2 =
a2b2c2

(a+ b+ c) (a+ b− c) (b+ c− a) (c+ a− b)

Computed Proof. Direct elimination from
{
|XA|2 = R2, etc

}
and (7.1,7.12).

Proposition 7.5.7. For t ∈ PR
(
R2
)
, point

U ' 1 : t : −1− t (7.16)

belongs to Lb. On the contrary, the point

V
.
=
a2

1
:
b2

t
:
−c2
1 + t

(7.17)

belongs to the circumcircle, inducing a rational parametrization of this curve, and a bijection
L∞ ←→ Γ.

Proof. Quite obvious and nevertheless so useful. Spoiler: this is another encounter with the isogonal
conjugacy u : v : w 7→ a2/u : b2/v : c2/w.

Remark 7.5.8. Information conveyed by a 3-tuple like (7.1) is multiple. A first part is the direction
of line PU , described –up to a proportionality factor– by the point ρ : σ : τ ∈ Lb. Another part is
the squared length |PU |2 given by (7.12). In this formula, circumcircle appears as the conic that
defines how lengths are computed in each direction.
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7.6 Orthogonality
Proposition 7.6.1. Let V ∈ PR

(
R3
)
be the point at infinity of a line given by its barycentrics ∆.

Then we have

V
.
= ∆ ∧ Lb ' Wb ·

(
t∆
)

where Wb
.
=

1

2S




0 1 −1

−1 0 1

1 −1 0


 (7.18)

Proof. This assertion is nothing but the very definition of the ∧ operator, while the 1/2S coefficient
is not involved in this property.

Proposition 7.6.2. A point at infinity V ∈ Lb defines a direction of lines. The point V ⊥ ∈ Lb
that defines the orthogonal direction is called the orthopoint of V. And we have:

V ⊥ ' OrtOb · V where OrtO '
t
Wb · Pythb

Proof. Here again, the coefficient is not involved in the property, which simply results from sub-
stituting V ' 1 : t : −1− t into

tV · Pythb ·
t
Wb · Pythb · V = 0

Remark 7.6.3. As discussed in the next section, there are many "formal rules" like:

V ⊥ =
+1

4S
Lb ∧

t(
V ÷

b
X4

)

' t
(V ∧X4) ∗

b
X4

OrtH =
1

2S




0 −Sb +Sc

+Sa 0 −Sc
−Sa +Sb 0




They all provide the same result when V ∈ −→V .
Theorem 7.6.4. Orthopoint transform . When exactly defined as

OrtOb
.
=

t
Wb · Pythb =

1

4S




c2 − b2 −a2 a2

b2 a2 − c2 −b2
−c2 c2 b2 − a2


 (7.19)

the matrix OrtOb describes the +90◦ rotation in the
−→V space, while it’s transpose matrix Wb ·

Pythb describes the −90◦ rotation. Spoiler: Matrix OrtOb provides Ωy 7→ +iΩy, Ωx 7→ −iΩx.
See the next coming Proposition 7.6.7.

Proof. We have Charpoly
(

OrtOb , µ
)

= µ3 + µ = µ (µ− i) (µ+ i). The factor at (7.19) was
precisely chosen to enforce the conservation of length, as it could be easily checked. We have
indeed

tV · Pythb · V = tV ·
t

OrtOb · Pythb · OrtOb · V

when V ∈ −→V . It remains to prove the orientation. Go back to the ordinary Cartesian coordinates
by(7.4), substitute the squared sidelengths using (7.5), and obtain :

T0 · OrtOb · T0

−1
=




0 −1 ∗
1 0 ∗
0 0 ∗


 = OrtOc
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Proposition 7.6.5. The orthodir U of any line ∆ (except from the line at infinity) is defined as
the orthopoint of ∆ ∧ Lb. It can be computed as U = Mb · t∆ where :

Mb
.
= OrtOb · Wb =

t
Wb · Pythb · Wb =

1

4S2




a2 −Sc −Sb
−Sc b2 −Sa
−Sb −Sa c2


 (7.20)

Proof. This comes directly from the orthopoint formula. Normalization factor 1/4S2 is useless
here, but will be required when measuring, i.e. computing angles or distances. Moreover, one can
check that, for example, the first column gives the direction of the first altitude (orthogonal to
sideline BC).

Remark 7.6.6. Characteristic polynomial of S × Mb is : χ (µ) = µ3 + µ2Sω/S + 3µ and it can
be checked that its left null space is [1, 1, 1], the row associated with Lb : for any column X,
Mb ·X ∈ Lb (as it should be).

Proposition 7.6.7. Isotropic lines. A line [f, g, h] that satisfies ∆ · Mb · t∆ = 0 is orthogonal
to itself, whence the name ’isotropic’ given to these lines. This equation can be factored:

∆ · Mb · t∆ .
=

1

2S

(
a2f2 + b2g2 + c2h2 − 2Sa gh− 2Sb hf − 2Sc fg

)

' (∆ · Ωx)× (∆ · Ωy)

so that an isotropic line is a line that goes through one of the so-called umbilics of the plane,
whose barycentrics are:

Ωx '




Sb − 2iS

Sa + 2iS

−c2


 ; Ωy '




Sb − 2iS

Sa + 2iS

−c2




Computed Proof. The possibility of this factorization comes from det Mb = 0. But a formal
computing tool rather factorizes in the Q field, and won’t guess to use Q

(√
−S2

)
!

Proof. Let us proceed by undetermined coefficients wrt f, g, h. Eliminating u : v : w in the
equation:

∆ · Mb · t∆ = (fp+ gq + hr) (fu+ gv + hw)

leads to u = a2/p, v = b2/q, w = c2/r (i.e. these points are isogonal conjugate of each other).
And then solving in q, r leads to the given values. The appearance of these results is rather not
symmetric... but using

Ωx '




(
b4 + c4 − a2b2 − a2c2

)
a2 + 4i

(
b2 − c2

)
a2S(

c4 + a4 − a2b2 − b2c2
)
b2 + 4i

(
c2 − a2

)
b2S(

a4 + b4 − a2c2 − b2c2
)
c2 + 4i

(
a2 − b2

)
c2S




is rather too convoluted to be useful.

Remark 7.6.8. Spoiler: all the isotropic lines form a ’degenerate tangential conic’ (see Proposi-
tion 12.4.2). Therefore, the adjoint of matrix Mb is tLb ·Lb (the "all ones" matrix) and describes

the line Ωx,Ωy, i.e. the Lb line. Rank is one (since Mb has rank n − 1), so that product

Adjoint
(
Mb

)
· Mb is the null matrix.

7.7 Angles between straight lines

Proposition 7.7.1. Let P,U1, U2 be three points at finite distance, such that
−−→
PUi 6=

−→
0 . Then :

|PU1| . |PU2| . sin
(−−→
PU1,

−−→
PU2

)
= 2S

det (P,U1, U2)

(p+ q + r)
∏

(ui + vi + wi)

|PU1| . |PU2| . cos
(−−→
PU1,

−−→
PU2

)
= 2S

(P ∧U1 ) · Mb · t(P ∧ U2)

(p+ q + r)
2∏

(ui + vi + wi)

April 5, 2025 14:49 published under the GNU Free Documentation License



7. Euclidian structure using barycentrics 81

Proof. The sin formula comes from (7.10), while the cos formula can be obtained by using (7.12)
into |PU1|2 + |PU2|2 − |U1U2|2 and rearranging.

Theorem 7.7.2. Let P be a point at finite distance, and U1, U2 two other points (at finite distance
or not). Then the angle between straight lines PU1, PU2 is characterized by its tangent, according
to :

tan

(︷ ︸︸ ︷
PU1, PU2

)
= (p+ q + r)

det (P,U1, U2)

(P ∧U1 ) · Mb · t(P ∧ U2)
(7.21)

When U1, U2 are at infinity, the angle between all the lines having the given directions can be
computed as :

tan∞

(︷ ︸︸ ︷
U1, U2

)
=

2S (v1w2 − w1v2)

(v1w2 + w1v2)Sa + w1w2b2 + v1v2c2

Proof. The key point here is that formula (7.21) is square-root free. Extension to Ui at infinity
is obtained by continuity after cancellation of the (ui + vi + wi). Formula tan∞ is not formally
symmetric (P = A has been used). But the ui are nevertheless present since ui = −vi − wi.

Theorem 7.7.3. Tangent of two lines. If the triangle plane is oriented according to
(︷ ︸︸ ︷
AB, AC

)
=

+A, then the oriented angle from line ∆1 to line ∆2 is characterized by :

tan

(︷ ︸︸ ︷
∆1, ∆2

)
=

∆1 · Wb · t∆2

∆1 · Mb · t∆2

(7.22)

where Wb and Mb are exactly as given in (7.6) and (7.20) (i.e. not up to a proportionality
factor).

Proof. Simple use of ∆1 ∧∆2, Lb ∧∆1, Lb ∧∆2 in (7.21). Among other things, this formula tells
us that ϑ = 0 when each line contain the point at infinity of the other, while |ϑ| = π/2 when each
line contains the orthopoint of the other (formula is anti-symmetric).

Stratospheric proof. Start from the affine space E . Equations of both lines are ajξ + bjη + cj = 0
and their angle is given by

tan

(︷ ︸︸ ︷
∆1, ∆2

)
=
a1b2 − a2b1
a1a2 + b1b2

=
det (L3, D1, D2)

D1 · Orth3 · tD2

where L3 = [0, 0, 1] and Orth3 is the matrix of quadratic form ξ2 +η2 –precisely this one, without
any of the extra terms used in Proposition 7.2.3. Taking now ABC for basis, we have ∆j = Dj ·T−1

0 ,
inducing a factor 1/2S in the numerator. Let us now compare the following two expressions :****

t
T−1

0 =
1

2S




ηb − ηc −ηa + ηc ηa − ηb
−ξb + ξc ξa − ξc −ξa + ξb

ξbηc − ξcηb −ξaηc + ξcηa ξaηb − ξbηa




T0 · Wb =



−ξb + ξc ξa − ξc −ξa + ξb

−ηb + ηc ηa − ηc −ηa + ηb

0 0 0




Due to the specific value of Orth3 , we can replace
t
T−1

0 by T0 · Wb /2S in the change of basis

formulas and obtain Orth3 7→ K / (2S)
2. Using the orthodir matrix (instead of the Al-Kashi

one) leads to a formula without remaining factors.

Theorem 7.7.4. Cosinus of two lines. The non-oriented angle between lines ∆1 and ∆2 is
characterized by :

cos (∆1,∆2) =
∆1 · Mb · t∆2√

∆1 · Mb · t∆1

√
∆2 · Mb · t∆2

(7.23)
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Proof. This is nothing but the general formula in an Euclidian space. Nevertheless, this result can
be checked using Proposition 7.7.1.

7.8 Rotations in the barycentric plane

Lemma 7.8.1. When M is an ordinary point, then π1
.
= (M · Lb) / (Lb ·M) and π2

.
= 1 −π1are

projectors.

Lemma 7.8.2. Then π1 · OrtO = 0, and therefore π2 · OrtO = OrtO

Proposition 7.8.3. The matrix of the rotation with angle ϑ and center M is:

rot
.
= π1 + sinϑ OrtO · π2 + cosϑπ2

Proof. We obviously have rot ·M = M . From π2·Ωy = Ωy, we have rot ·Ωy = (cosϑ+ i sinϑ) Ωy, etc,
as it should be.

7.9 Distance from a point to a line
Definition 7.9.1. The distance from a point P to a line ∆ is the lower bound of the distance
from P to a point U that belongs to ∆. By continuity, this bound is attained and is equal to the
distance of P to its orthogonal projection P0 on ∆.

Theorem 7.9.2. Distance from point P to line ∆ is given by :

dist (P, ∆) =
b

∆ · P
(Lb · P )

√
∆ · Mb · t∆

(7.24)

where Lb = [1, 1, 1] and Mb is as given in (7.20) (not up to a proportionality factor).

Proof. Project P into Q and compute
√
|PQ|2.

Remark 7.9.3. Formula (7.24) is invariant when barycentrics of P or ∆ are modified by a propor-
tionality factor. Denominators are enforcing the fact that P is supposed to be finite, and ∆ is not
supposed to be an isotropic line.

Exercise 7.9.4. Check this formula by computing dist (A, BC).

Proposition 7.9.5. The distance between two parallel lines is defined as the distance from one of
the lines to a point of the other. We have the formula:

dist (∆, ∆ + µLb) = |µ|
√

2S√
∆ · Mb · t∆

Proof. Apply (7.24) with (1/f : t/g : − (1 + t) /h) ∈ ∆.

7.10 More about the Pyth matrix
As stated in Proposition 7.2.3, any matrix

PythU
.
= Pythb +

1

2

(
U · Lb +

t
(U · Lb)

)

can be used to define the euclidian metric of the
−→V vector space. Let us discuss this "degree of

freedom" and note U ' u : v : w.

Proposition 7.10.1. When applied to points X ∈ PC
(
C3
)
, matrix PythU describes a visible

circle CU , characterized by power (CU , A) = u, etc.
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Proof. Obvious from the equation tX · PythU ·X = 0 and the power formula (7.13).

Remark 7.10.2. Spoiler: the Veronese representation of circle CU is therefore u : v : w : 1. Remem-
ber:

V er
b

(x : y : z) · (u : v : w : 1) = 0⇐⇒ −
(
a2yz + b2zx+ c2xy

)
+ (x+ y + z) (ux+ vy + wz) = 0

And therefore, any circle can be used: the center and the radius of CU can be chosen at will.

Example 7.10.3. The choice U = 0 : 0 : 0 leads to C0 = Γ = (O,R), which is nothing else than
the circumscribed circle.

Example 7.10.4. Requiring a diagonal form for PythU leads to

PythH
.
=



Sa 0 0

0 Sb 0

0 0 Sc




that uses the polar circle CH =
(
H ;

√−SaSbSc ÷ 2S
)
as isotropic circle (see Section 13.7).

Example 7.10.5. Spoiler: the choice given by the change of basis formula applied to the Morley
formula ZZ = 0 leads to the CM = (O; 0) = (O), the point circle centered at X(3):

CM =
1

2




2R2 2R2 − c2 2R2 − b2
2R2 − c2 2R2 2R2 − a2

2R2 − b2 2R2 − a2 2R2




Proposition 7.10.6. Let P = (p, q, r) ∈ R3 be a 3-uple that does not belongs to
−→V . Then it exists a

linear transform ψ such that (i) ψ (P ) = 0, (ii) ψ
(−→V

)
=
−→V (iii) for all V ∈ −→V , 〈ψ (V ) | ψ (V )〉 =

〈V | V 〉 while 〈ψ (V ) | V 〉 = 0. Then its characteristic polynomial is χ (µ) = µ3 + µ and we have :

Orth (P ) =
1

2S (p+ q + r)




qSb − rSc −
(
ra2 + pSb

)
qa2 + pSc

rb2 + qSa rSc − pSa −
(
pb2 + qSc

)

−
(
qc2 + rSa

)
pc2 + rSb pSa − qSb




The opposite of this matrix is the only other solution to the problem.

Computed Proof. Assertions M · P = 0, Lb · M = 0 and 〈ψ (V ) | V 〉 = 0 when V = x : y :
−x − y gives nine equations. Elimination leads to the given matrix, up to a coefficient. Then
〈ψ (V ) | ψ (V )〉 = 〈V | V 〉 gives the coefficient. Division by p+ q + r enforces the fact that P is at
finite distance.

Proposition 7.10.7. For any U , matrix OrtU
.
= 1

2S

t
Wb · PythU is equal to Orth (P ) where

P is the center of the isotropic circle CU . Thus, matrices Orth (P ) and Orth (U) relative to finite
points P, U are related by the "translation" formula :

Orth(P ) = Orth (U) ·


1− 1

p+ q + r




p

q

r


 · Lb




Proof. Acting at infinity, both matrices induces a quarter-turn. At finite distance, it remains only
to move the kernel to the right place.

Remark 7.10.8. Any Orth (P ) matrix describes a quarter-turn in the euclidian plane
−→V . In order

to provide a better perception of this result, let O =X(3), H =X(4), put W 2
3 = 16 |OH|2 S2 =∑

3 a
6 −∑6 a

4b2 + 3a2b2c2 and consider the linear transform (collineation) whose matrix is φ =

[X (3) , X (30) /4S, X (523)]. When computing |OH|2, vector −−→OH is involved and therefore X(30)
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(the direction of the Euler line), while X(523) is known to be the direction orthogonal to the Euler
line. We have :

φ =




a2
(
b2 + c2 − a2

) [
2 a4 −

(
b2 − c2

)2 − a2
(
b2 + c2

)]
÷ 4S b2 − c2

b2
(
c2 + a2 − b2

) [
2 b4 −

(
c2 − a2

)2 − b2
(
c2 + a2

)]
÷ 4S c2 − a2

c2
(
a2 + b2 − c2

) [
2 c4 −

(
a2 − b2

)2 − c2
(
a2 + b2

)]
÷ 4S a2 − b2




tφ · Pythb · φ =



−16 a2c2b2S2 0 0

0 W 2
3 0

0 0 W 2
3




φ−1 · OrtO · φ =




0 0 0

0 0 1

0 −1 0




tφ ·
t

OrtO · Pythb · OrtO · φ =




0 0 0

0 W 2
3 0

0 0 W 2
3




Remark 7.10.9. Mind the signs in Mb ! The following matrix



a2 Sc Sb

Sc b2 Sa

Sb Sa c2




describes the triangle of the midpoints of the altitudes. And also the Longchamps circle 13.8 (see
12.22.17).

7.11 Brocard points and the sequel

7.11.1 Some results
Proposition 7.11.1. Brocard points. It exists exactly one point ω+ and one point ω− such
that :

∠ (Aω+, AC) = ∠ (Bω+, BA) = ∠ (Cω+, CB)

∠ (AB, Aω−) = ∠ (BC, Bω−) = ∠ (CA, Cω−)

They are given by ω+ = a2b2 : b2c2 : c2a2 and ω− = c2a2 : a2b2 : b2c2. Moreover, when defined
exactly that way, both angles are equal. This quantity is called the Brocard angle and one has :

cotω =
a2 + b2 + c2

4S
(7.25)

Proof. Equating the tangents of the angles and eliminating, one obtains a third degree equation
with one simple real root and tho others that involves

√
−S2. As it should be Brocard points are

isogonal conjugates of each other.

Proposition 7.11.2. cot versus Conway. We have the following equalities between Conway
symbols and some cotangents:

[Sa, Sb, Sc, Sω] = [2S cotA, 2S cotB, 2S cotC, 2S cotω]

cot

(
A

2

)
=
bc+ Sa

2S
; cot

(
B

2

)
=
ac+ Sb

2S
; cot

(
C

2

)
=
ab+ Sc

2S

Proof. First three are obvious, the ω one is given just above. This proves the Volenec (2005)
formula :

cotω = cotA+ cotB + cotC

.
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Remark 7.11.3. A subsection about the so-called Brocard triangles is located at Subsection 24.9.

Remark 7.11.4. The ETC points on the Brocard line are 9 (Mittenpunkt), 512 (at infinity), 881,
882, 2524, 2531.

Lemma 7.11.5. Since tanω > 0 and |ω| ≤ π/6, we have :

cos (ω) =
c2 + a2 + b2

2
√
a2b2 + a2c2 + b2c2

, sin (ω) =
2S√

a2b2 + a2c2 + b2c2
(7.26)

Fact 7.11.6. Each Brocard point is at the intersection of three isogonal circles, according to :

∠
(
ω+B, ω+C

)
= ∠ (BA, BC)

∠
(
ω−B, ω−C

)
= ∠ (CB, CA)

Proposition 7.11.7. Neuberg circles. The locus of A when B, C, ω are given is a circle
(Neuberg circle of vertex A). Barycentric equation, center and radius are :

a2yz + b2xz + c2xy − a2(x+ y + z)(y + z) = 0

Na '




a2
(
c2 + a2 + b2

)
(
a2 + b2

)
c2 − b4 − a4

(
a2 + c2

)
b2 − c4 − a4


 '



−a cos (ω)

b cos (C + ω)

c cos (B + ω)




ρA =
a

2

√
cot2 ω − 3

Proof. Straightforward computation, replacing b2 by |A′C|2 etc. The form given proves the circular
shape.

Proposition 7.11.8. Tarry point. Triangle NaNbNc is perspective with ABC and perspector is
the Tarry point X(98)=

1

a2b2 + a2c2 − b4 − c4 :
1

b2c2 + b2a2 − c4 − a4
:

1

c2a2 + c2b2 − a4 + b4

Conversely, Neuberg center Na is common point of the A cevian of X98 and the perpendicular
bisector of side BC, etc.

Proof. Direct computation.

Proposition 7.11.9. The Steiner angles ω1 > ω2 are defined as follows. 2ω1 is the maximal value
of A when ω is given and 2ω2 is the minimal value. We have the following relations :

cot 2ωj + 2/ cotωj = cotω

cotω1 = cotω −
√

cot2 ω − 3

cotω2 = cotω +
√

cot2 ω − 3

sin (2ωj + ω) = 2 sinω

ω + ω1 + ω2 = π/2

Proof. First formula comes from (7.25) (at extremum, triangle ABC is isosceles). This gives a
second degree equation whose discriminant cot2 ω−3 is non negative, and last formula comes from
cot (ω1 + ω2) depends on sum and product of the cotωj .

Proposition 7.11.10. Any Neuberg circle is viewed from another vertex under angle 2ϑ where :

cosϑ = 2 sinω = sin (2ωj + ω)

Proof. The polar of B cuts circle Na in two points T1, T2 (equation of second degree, ∆ = a4 +b4 +
c4−a2b2−a2c2−b2c2). And we have 2ϑ = ∠ (BT1, BT2). A better choice is T0 = midpoint(T1, T2)
and ϑ = ∠ (BT1, BT0) ... taking orientation into account !
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7.11.2 Results related to the Kiepert RH

This section has moved to Proposition 13.22.2.

7.11.3 Spoiler: study of the Neuberg pencil

Let us consider the level curves of the Brocard angle ω (M,B,C) when vertex M moves in the
ABC plane. Barycentric coordinates are surely not the best system here, and using the Veronese
map is probably not required. Therefore, this subsection should rather be considered as a spoiler
related to the chapter devoted to pencils of cycles.

1. Let us note M ' x : y : z, |MB| = γ, |MC| = β and u/v = tanω. Then

u

v
=
a2 + β2 + γ2

4 SM
where β2 =

z (x+ z) a2 + x (x+ z) c2 − b2zx
(x+ y + z)

2 , etc. ; SM =
x S

x+ y + z

2. It can be seen that numerator of u/v − · · · collects nicely, leading to equation

v × C (x, y, z)− 4uS × (x (x+ y + z)) = 0

3. In the second term, one recognizes that x (x+ y + z) describes the line BC seen as a cycle, i.e.
completed by the line at infinity. On the other hand, the conic C0 (x, y, z) can be recognized
as the circle whose equation is the column : V ' Sω : a2 : a2 : 1. And therefore is centered
at Q

b
· V ' 0 : 1 : 1 : and has radius

√
tV · Q

b
· V = ia

√
3/2.

4. Thus the set of the level curves is the pencil of cycles generated by the two special cases, i.e.
the Neuberg pencil. Since C0, the cycle centered on the radical axis, is virtual, the pencil
is an isotomic pencil, whose limit points P± are on the real circle associated with C0: these
points are the vertices of the equilateral triangles whose basis is BC.

5. From u2/(u2 + v2) = cos(ωM )2, we have u = v cot (ωM ) so that the level curves are the
circles:

V ' Sω − 2S cot (ω) : a2 : a2 : 1

Q
b
· V ' a cos (ω) : −b cos (ω + C) : −c cos (ω +B) : −abc cos (A+ ω)

√
tV · Q

b
· V =

1

2
a
√

cot2 ω − 3

6. And therefore, C0 is the (virtual) locus of vertices M such that ωM = 90°.

7.11.4 Spoiler: Brocard angle of a pedal triangle

1. ConsiderM ' x : y : z and its pedal triangle. Apart from a common factor 1÷(2R (x+ y + z))
2,

area and squared sidelengths are:

SM = S
(
a2yz + b2zx+ c2yx

)
; a2

M = a2
(
z (y + z) b2 + y (y + z) c2 − a2yz

)
; etc.

Thus the level curves of the Brocard angle are given by

u

v
= cot (ωM ) =

a2
M + b2M + c2M

4SM

2. As before, the numerator collects nicely and the locus is given by:

v C (x, y, z)− 4u S
(
a2yz + b2zx+ c2yx

)
= 0
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3. This locus is a circle, whose Veronese image V , center E and radius ρ are:

V '




b2c2v

c2a2v

a2b2v

2uS + Sω v




E '




a2 (2Sv + Sa u)

b2 (2Sv + Sb u)

c2 (2Sv + Sc u)


 '




a cos (A− ωM )

b cos (B − ωM )

c cos (C − ωM )


 ; ρ =

R
√

cot2 (ωM )− 3

cot (ωM ) + cot (ω)

4. One sees that v = 0 describes the circumcircle. Projections of M are aligned on the Simson
line, so that ωM = 0.

5. One sees that ωM = ±30°, i.e. v = cot (ωM ) = ±
√

3, u = 1 characterizes two points (ρ = 0).
They are X(15), X(16), the isodynamic points. No other pedal triangle is equilateral.

6. The locus characterized by ωM = ωABC is centered at X(182). One identifies the 3-6-Brocard
circle. The locus characterized by ωM = −ωABC is a straight line (ρ = ∞). Therefore, this
line is the perpendicular bisector of segment X(15),X(16): the line X(187),X(512).

7.12 Orthogonal projector onto a line
Proposition 7.12.1. The matrix π∆ of the orthogonal projector onto line ∆ ' [p, q, r] –not
the line at infinity – is given by :

π∆ = Id−
Mb · t∆ ·∆

∆ · Mb · t∆
(7.27)

where matrix Mb is defined by (7.20).

Proof. Let
−→
δ = Mb · t∆ be the orthodir of ∆ and P a generic point of ∆. Then π∆ = Id −(−→

δ ·∆
)
÷
(

∆ · −→δ
)
. Then π∆ (P ) = P since

(−→
δ ·∆

)
· P =

−→
δ · (∆ · P ) = 0. On the other hand,

one has
(−→
δ ·∆

)
· −→δ =

−→
δ ·
(

∆ · −→δ
)
so π∆

(−→
δ
)

= 0. As a result, π∆

(
P + λ

−→
δ
)

= P , as it should
be.

Proposition 7.12.2. The matrix σ∆ of the orthogonal reflection wrt line ∆ ' [p, q, r] –not the
line at infinity – is given by :

σ∆ = Id− 2
Mb · t∆ ·∆

∆ · Mb · t∆
(7.28)

where matrix Mb is defined by (7.20).

Proof. Obvious from the preceding proof.

Proposition 7.12.3. Cosine of a projection. Consider line ∆1 ' [p, q, r] and use −→e1 =
(q − r, r − p, p− q) as unit vector for this direction. Consider also line ∆2 ' [u, v, w] and use−→e2 = (v − w,w − u, u− v) as unit vector for that other direction. Then orthogonal projection π
onto ∆1 transforms ∆2-vectors into ∆1-vectors according to :

π (−→e2) = −→e1

∆1 · Mb · t∆2

∆1 · Mb · t∆1

Proof. Formula is homogeneous, as it should be. Vectors −→ei are not normalized, that the reason
why this formula is square-root free. Formula Mb = 2

t
Wb · Pythb · Wb indicates that scaling

factor can be interpreted in terms of a "cosine of projection".
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ωM ≈ +30° ωM = −ωABC

ωM ≈ −30° ωM = +ωABC

Figure 7.1: Level curves of the Brocard angle of the pedal triangle of point M
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Proposition 7.12.4. Consider the homothety of center P = p : q : r (not on the infinity line)
and ratio k (not 0 !). Then points U are transformed as U 7→ h (P, k) · U while lines ∆ are
transformed as ∆ 7→ ∆ · h (P, 1/k) where :

h (P, k) =




1 0 0

0 1 0

0 0 1


+

1− k
k (p+ q + r)



p p p

q q q

r r r


 ' k + (1− k)

P · Lb
Lb · P

(7.29)

Proof. Applied to column P , the last formula gives P . Applied to a vector
−→
V , this gives k

−→
V since

a vector is defined by Lb ·
−→
V = 0. Another method: we want U 7→ X such that, given U , we have

(X − P ) = k (U − P ). Expressed in barycentrics, this leads to :



x

y

z


 '




u

v

w


+

(1− k) (u+ v + w)

k (p+ q + r)




p

q

r




Property about lines comes from the fact that action over lines and action over points are inverse
of each other.

7.13 The hortocenter romance
The three perpendicular bissectors of a triangle intersect at a single point. The proof is well
known. Note them µ (B,C) , etc and define P as µ (A,B) ∩ µ (B,C). Then PA = PB together
with PB = PC (from Pythagoras theorem). This implies PA = PC and proves P ∈ µ (A,C).

And now, define A′ = B + C − A, etc. The µ (B′C ′) , etc intersect at some point H, while
A = (B′ + C ′), so that µ (B′C ′) is also the altitude issued from A and perpendicular to BC ‖ B′C ′.
As a result, we have proven that the three altitudes of a triangle intersect at a single point. This
enlighthening proof appears to be a recent one... while the property itself is not listed in the Greek
geometry books (Bogomolny, 2015).

In this section, we will explore what happens when this result is taken as an axiom.

Definition 7.13.1. Orthopoints. Let us take a triangle ABC in the projective plane and choose
the point H ' p : q : r as the "rightfull center" together with choosing the line Lb .

= [f, g, h] as
the line at infinity. Points Ha

.
= (HA) ∩ (BC) , etc are called the cevian feets of H. And then

directions Da
.
= (BC)∩Lb and Ta .

= (AH)∩Lb are called orthopoints of each other (this relation
will be extended later into an involution of Lb).
Definition 7.13.2. Holy Garden and hortocenter. Let Ra be the fourth-harmonic of H wrt
Ha, Ta, etc. Then A,B,C,Ra, Rb, Rc are co-conic. Let us call this conic Γ the holly garden, i.e.
the most beautiful circle. Its perspector is the Lemoine point (and therefore is usually named K).
Let us draw the polar of Ta. It goes through Da. The three polars intersect at a single point (the
pole of Lb). This point is the center of the holy garden, i.e. the hortocenter. Let us call it O, since
the orthocenter is called H.

Proof. One has

Ha, Ta, Ra '




0

q

r


 ,



−qg − rh

qf

fr


 ,




−p (qg + rh)

q (2 fp+ qg + rh)

r (2 fp+ qg + rh)




K,O '




p (qg + rh)

q (rh+ pf)

r (pf + qg)


 ,




gh (qg + rh)

hf (rh+ pf)

fg (pf + qg)




Definition 7.13.3. Gravity center. By O, the hortocenter, let us draw the line OTa having the
same direction as (HA) and obtain the points Ga

.
= (BC) ∩ (OTa) , etc. The triangle GaGbGc is

perspective with ABC, defining a point G. To avoid confusions with the Garden Center O, let
us call G as the Gravity center. It occurs that O,G,H are colinear, defining the celebrated Euler
line.
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Proof. One has:

G '




gh

fh

fg


 = tripolar (Lb) ; Euler ' [f (qg − rh) , g (rh− pf) , h (pf − qg)]

Definition 7.13.4. Isogonal conjugacy and orthopoint transform. It happens that G ∗
b

K = O ∗
b
H. Let us extend this result to the whole plane and define the isogonal conjugacy as

M∗ = G∗
b
K÷

b
M . (Spoiler: this is a quadratic Cremona transform). Moreover, we can see that the

pairs (T ∗a , D
∗
a) , etc are aligned with O. Let us use this property to extend the orthopoint relation

to the whole Lb, i.e.
N = orthopoint (M)⇐⇒ det |O,M∗, N∗| = 0

This leads to: N ' OrtH ·M where OrtH '




0 −pr
f

pq

f
rq

g
0 −pq

g

−rq
h

pr

h
0




Proof. Write the system det |O,M∗, N∗| = Lb ·M = Lb · N = 0 and solve in r, q′, r′. Substitute
into p′ : q′ : r′, re-introduce r and take the gradient wrt M . One can remark that ker OrtH is

H ' p : q : r while ker
t
OrtH = Lb.

Proposition 7.13.5. The characteristic polynomial of OrtH is:

χ
OrtH

(X) = X3 +
pqr (fp+ qg + rh)

fgh
X

Non vanishing roots can be taken as ±i or as ±1 according to the signum of pqr (fp+ qg + rh)÷fgh
(as it should be, this signum behaves projectively).
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Chapter 8

Brief extension to 3D spaces

Previous chapters were dealing with 2D spaces (planes), represented as the projective of a 3D
vector space. In this chapter, we are using a 4D vector space to describe a 3D geometric space.

8.1 Basic results
Definition 8.1.1. A 3D point is a projective column in PR

(
R4
)
, most of the time noted as:

X =




x1

x2

x3

x4


 =

(−→
X

x

)

Definition 8.1.2. We will say that four points Xj are coplanar when det1..4 (Xj) = 0.

Theorem 8.1.3 (Universal factoring). Given four columns, we have :

det (X1X2X3X4) = tX1 ·
(
X2 ∧

6
X3

)
·X4 where







x2

y2

z2

t2


 ∧6




x3

y3

z3

t3







.
=




0 t3 z2 − t2 z3 t2 y3 − t3 y2 y2 z3 − y3 z2

t2 z3 − t3 z2 0 t3 x2 − t2 x3 x3 z2 − x2 z3

t3 y2 − t2 y3 t2 x3 − t3 x2 0 x2 y3 − x3 y2

y3 z2 − y2 z3 x2 z3 − x3 z2 x3 y2 − x2 y3 0




Proof. Operator det is multilinear: this ensures the existence of the central matrix. The actual
values of the coefficients are obtained by partial derivatives.

Definition 8.1.4. Matrix ∆ '
(
X2 ∧

6
X3

)
is anti-symmetric, and thus depends on 6 parameters.

We call it the punctual matrix. Two concurent matrix notations are used in the litterature:

∆ =




0 D1,2 −D1,3 D1,4

−D1,2 0 D2,3 D2,4

+D1,3 −D2,3 0 D3,4

−D1,4 −D2,4 −D3,4 0


 =




0 Bz −By Ex

−Bz 0 Bx Ey

By −Bx 0 Ez

−Ex −Ey −Ez 0


 =

(
B −→

E

−−→E 0

)

Notation 8.1.5. Beside the electromagnetic notation given above, there is another representa-
tion, called the Plucker column representation. We have:

col
(

∆
)

=




D2,3

D1,3

D1,2

D1,4

D2,4

D3,4




=




Bx

By

Bz

Ex

Ey

Ez




=

(←−
B
−→
E

)
(8.1)
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Remark 8.1.6. Caveat: (1) D12 is Bz, not Bx ; (2) a minus sign is used at place [1, 3] (3) B is the
antisymmetric matrix such that B · −→X =

−→
X × −→B = (Xx : Xy : Xz) ∧ (Bx : By : Bz)... mind the

order ! (4) E is defined by E · ←−Y =
←−
Y ×−→E .

Remark 8.1.7. When X2 6= X3, the points collinear with X2, X3 are the elements of ker ∆ .
Moreover, the characteristic polynomial is :

χ∆ (λ) = λ4 + λ2
∑

6

D2
jk +

(∑

3

D1,jDk,l

)2

so that
∑

3D1,jDk,l = ExBx + EyBy + EzBz is null.

Proposition 8.1.8. When X /∈ ∆, the row characterizing the plane containing both point X and
line ∆ is obtained as Π = tM · ∆ .

Proposition 8.1.9. Beside the punctual matrix, let us define the planar matrix ∆∗ so that the
column characterizing the point common to plane P and line ∆ is given by X = ∆∗ ·tP (obviously,
∆ 6⊂ P is assumed). Then, using notations of (8.1),we have:

∆∗ =




0 D3,4 −D2,4 D2,3

−D3,4 0 D1,4 D1,3

D2,4 −D1,4 0 D1,2

−D2,3 −D1,3 −D1,2 0


 =




0 Ez −Ey Bx

−Ez 0 Ex By

Ey −Ex 0 Bz

−Bx −By −Bz 0


 =

(
E −→

B

−−→B 0

)

col
(

∆∗
)

=




D1,4

D2,4

D3,4

D2,3

D1,3

D1,2




=




Ex

Ey

Ez

Bx

By

Bz




=

(←−
E
−→
B

)

Proof. This result is obtained by solving P ·X = 0, ∆ ·X =
−→
0 and then generically expressing

X as ∆∗ · tP.

Proposition 8.1.10. Given two (different) planes P1,P2, the punctual matrix ∆ of their diedral
line can be obtained directly as:

∆ ' tP1 ·P2 − tP2 ·P1

Given two (different) points P1, P2, the planar matrix ∆∗ of line P1P2 can be obtained directly
as:

∆∗ ' P1 · tP2 − P2 · tP1

Remember that ∆ describes a punctual line, while ∆∗ describes a planar line.

Proof. These objects are clearly projective objects and antisymmetric matrices of rank 2. The first
one satisfies ∆ · X = 0 : 0 : 0 : 0 as soon as Π1 · X = Π2 · X = 0. The second one satisfies
Y · ∆∗ = [0, 0, 0, 0] as soon as Y · P1 = Y · P2 = 0.

Proposition 8.1.11. The so-called Klein quadratic form defined by

Klein
(

∆
1
, ∆

2

)
= trace

(
∆

1
· ∆∗

2

)

= D1,2E3,4 +D1,3E2,4 +D2,3E1,4 +D1,4E2,3 +D2,4E1,3 +D3,4E1,2

=
t

col
(

∆∗
1

)
· col

(
∆

2

)
=
←−
C · −→E +

←−
B · −→F
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is indeed a quadratic form. Then Klein
(

∆
23
, ∆

14

)
is exactly equal to det (X1X2X3X4) when

∆
14

=
(
X1 ∧

6
X4

)
and ∆

23
=
(
M2 ∧

6
M3

)
. And therefore, Klein

(
∆

1
, ∆

2

)
= 0 is the

condition for the two lines to be coplanar.

Maple 8.1.12. In order to obtain independent points on a line ∆ then take ∆∗ and call
map(reduce, ColumnSpace(%)). This gives a list of two columns.

Proposition 8.1.13. Using the electromagnetic notation, we have the following formulas:

line through two points
(
X ∧

6
Y
)

=

(←−
B
−→
E

)
=

(
y
−→
X − x−→Y
−→
X ×−→Y

)

line by a point X and a direction
−→
W

(
X ∧

6

(−→
W : 0

))
=

(
x
−→
W

−→
W ×−→X

)

plane through a line and a point tX · ∆ =
[
x
−→
E +

−→
X ×←−B ;

−→
E · −→V

]

incident punctual lines

(←−
B
−→
E

)
,

(←−
C
−→
F

) (−→
E ×−→F
←−
B · −→F

)
= X ... or vanishes

assuming
←−
C · −→E +

←−
B · −→F = 0

[←−
B ×←−C ;

←−
B · −→F

]
= P ... or vanishes

Proof. Direct examination. In the last two lines, one can check that P ·X = 0. Caveat: in some
special cases, X or P can vanish.

Exercise 8.1.14. Compute by your-self, and check the following assertions. Four points P1, P2, P3, P4

and a collineation A are given. Consider them as written, i.e. not to a proportionality factor.

P =




53 −58 0 76

−97 −9 −16 40

−74 32 −43 45

79 −34 58 39


 ; det P = 24803093 ; A =




1 −1 0 0

−1 −1 −1 0

−1 1 −1 −1

1 1 −1 0


 ; det A = 4

Let Q1, Q2, Q3, Q4 be the images of the Pj by the collineation. We have:

A−1 =
1

4




+2 −1 0 1

−2 −1 0 1

0 −2 0 −2

−4 +2 −4 2


 ; Q

.
= A P =




150 −49 16 36

118 35 59 −161

−155 51 −31 −120

30 −99 27 71


 ; det Q = 99212372

Using the
(
∧
6

)
operator, we compute line P23 =

(
P2 ∧

6
P3

)
and Q23 =

(
Q2 ∧

6
Q3

)
:

P23 =




0 394 1066 899

−394 0 −3364 −2494

−1066 3364 0 928

−899 2494 −928 0


 ; Q23 =




0 −1692 −6786 −4094

1692 0 261 −703

6786 −261 0 −3451

4094 703 3451 0




And also the planes P123 =
∧

3 (P1, P2, P3) and Q123 :

P123 = [46081, −31028, 309494, 220893] ; Q123 = [−729354,−192255,−883572,−162149]

Proposition 8.1.15. Action of a collineation. We have the following properties:

1. tP1 · P23 · P4 = P123 · P4 = det P , tQ1 ·Q23 ·Q4 = Q123 ·Q4 = detQ = det P det A

2. Q23 = det A tA−1 · P23 · A−1

3. Q123 = det A P123 · A−1
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4. P123 ∧ P234 = detP dual (P23) ; tP123 · P234 − tP234 · P123 = detP P23

5. The same dual
(−→
B,
←−
E
)

= ε
(←−
E ,
−→
B
)
is used for P and Q.

Exercise 8.1.16. Loosely speaking and using Cartesian coordinates: a line goes through (−1, 1, 5)
and is incident with line D1 : {x+ y = 2, x− y = 2} together with line D2 : (1, 3, 1) +λ(2,−2, 1).
We have two planes P11 ' [1, 1, 0,−2], P12 ' [1,−1, 0,−2] and three points P0 ' −1 : 1 : 5 : 1,
P21 ' 1 : 3 : 1 : 1, P22 ' 2 : −2 : 1 : 0. Thus D1 = dual

((
P11 ∧

6
P12

))
, D2 =

(
P21 ∧

6
P22

)
, and

we have to solve the set of equations :

∆ · P0 = 0 : 0 : 0 : 0, φ (∆, D1) = φ (∆, D2) = 0

After expansion, we obtain:
{
−6By − 3Ez ; −By −Bx + Ez ; Bz + 5Bx + Ey ; Bz − 5By + Ex ;

Ex − Ey − 5Ez ; −8Bz +By + 5Bx − 2Ex + 2Ey − Ez

}

so that
←−
B,
−→
E = −3 : 1 : 1 : 4 : 14 : −2. The incidence points are: P4 ' 2 : 0 : 4 : 1 (who clearly

belongs to both planes) and P5 ' 5 : −1 : 3 : 1 (obtained with λ = 2). Finally, P0, P4, P5 are
aligned, since P4 is the middle of the other two.

One can also obtain the rows that describes the plane through P0, D1, the plane through P0, D2

and obtain ∆ using Proposition 8.1.10.

8.2 Euclidian cartesian metric
Notation 8.2.1. In the "usual" cartesian space, points are noted

−→
M : m

.
= Mx : My : Mz : m, and

the metric is described by:

L4c ' [0, 0, 0, 1] ; Pyth4c = M4c =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0




The c in the 4c index is "cartesian", while indices 4 are spared for a later use (tetrahedron barycen-
tric space).

Proposition 8.2.2. Assume that P is not the plane at infinity. Then the orthogonal projection
of point P ' X : Y : Z : T on P ' [E,F,G,H] is given by:

pr (P,P) =
(
E2 + F 2 +G2

)




X

Y

Z

T


− (EX + FY +GZ +HT )




E

F

G

0




=
(
P · M4c · tP

)
(P )− (P · P )

(
M4c · tP

)

and therefore

dist (P,P) =
P · P
Lb · P

1√(
P · M4 · tP

)

Proof. Express that the generic M ∈ P is generated by the three points [H : 0 : 0 : −E], [0 : H :

0 : −F ], [0 : 0 : H : −G]. Then compute |PM |2, minimize and substitute.

Proposition 8.2.3. The orthogonal projection of point P ' X : Y : Z : T on ∆ =
[−→
B,
−→
E
]
is

given by:

pr (P,∆) =
4c
T




BzEy −ByEz
BxEz −BzEx
ByEx −BxEy
B2
x +B2

y +B2
z


+ (XBx + Y By + ZBz)




Bx

By

Bz

0



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Proof. Minimize

∣∣∣∣∣∣∣∣∣
tnor




0

−Ez
+Ey

−Bx


+ (1− t) nor




+Ez

0

−Ex
−By


− nor




X

Y

Z

T




∣∣∣∣∣∣∣∣∣

2

Proposition 8.2.4. It exists a unique point situated at equal distance from four given points when
(1) they are all at finite distance (2) they are not coplanar.

Proof. Consider the four Uj ' xj : yj : zj : tj . The computation is straightforward, and the
denominator of R2 is (

∏
tj)

2×det (Uj)
2. Nevertheless, the length of the formal formula is roughly

equal to 470.000 !

8.3 Rotations in the 3D Euclidean space

In this section, the usual Cartesian coordinates x : y : z are used to describe the usual 3D Euclidean
space, E3 using the usual metric |v| =

√
x2 + y2 + z2.

Proposition 8.3.1. In the Euclidean space E3, the orthogonal projector onto the line directed by
the (not zero) vector V .

=
t
[f, g, h] is given by

π‖ =
1

f2 + g2 + h2
V · tV

On the contrary, the matrix

ω
.
=

1√
f2 + g2 + h2




0 h −g
−h 0 f

g −f 0




describes "project onto V ⊥ and quarter-turn", while the projector itself is given by π⊥ = −ω2.
Thus the matrix of the 3D-rotation of angle τ around axis V is given by:

ρ = Id + sin τ ω + (1− cos τ) ω
2 (8.2)

Proof. One can see that ω2 + ω4 = 0. Thus −ω2 is a projector. And the rest follows. One can
check that χω = X

(
X2 + 1

)
, while χρ = (X − 1)

(
X2 − 2X cos τ + 1

)
.

8.4 Euclidian metric in the tetrahedron space

Proposition 8.4.1. The matrix describing the metric in the tetrahedron A0B0C0D0 space is

Pyth4 =
−1

2




0 c2 b2 A2

c2 0 a2 B2

b2 a2 0 C2

A2 B2 C2 0




where a .
= B0C0 and A = A0D0(in this context, vertices are noted with index 0 while the sidelength

are noted with bare letters). And the matrix giving the direction orthogonal to a given plane is
symmetric matrix whose fourth column is:

col
(
M4 , 4

)
.
= δD =




2A2a2 + a4 −
(
B2 + C2 + b2 + c2

)
a2 −

(
b2 − c2

) (
B2 − C2

)

2B2b2 + b4 −
(
C2 +A2 + a2 + c2

)
b2 −

(
c2 − a2

) (
C2 −A2

)

2C2c2 + c4 −
(
A2 +B2 + a2 + b2

)
c2 −

(
a2 − b2

) (
A2 −B2

)

(b+ a+ c) (a+ b− c) (a+ c− b) (b+ c− a)


 (8.3)
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98 8.4. Euclidian metric in the tetrahedron space

Proposition 8.4.2. The squared volume of the reference tetrahedron is

V 2 =
1

144

(
−a2b2c2 +

∑

3

a2
[
b2
(
A2 +B2

)
−A2a2 +

(
A2 −B2

) (
C2 −A2

)]
)

=
1

36
Lb · adjoint

(
Pyth4

)
· tLb =

1

2304
|δD|2 ÷ S2

D

Proof. Cf. the Heron’s formula: Lb · adjoint
(

Pythb

)
· tLb = 4S2.

Proposition 8.4.3. Let medAB be the plane perpendicular to line AB at (A+B) /2, i.e. the
perpendicular bissector of the edge. Let cutAB be parallel to medAB through (C +D) /2. Then
the six med planes intersect at a point Ω called the circumcenter of the tetrahedron. Its barycentrics
wrt ABCD are:

Ω '
b




a2A2
(
B2 + C2 − a2

)
+ b2B2

(
a2 + C2 −B2

)
+ c2C2

(
a2 +B2 − C2

)
− 2 a2B2C2

a2A2
(
C2 + b2 −A2

)
+ b2B2

(
A2 + C2 − b2

)
+ c2C2

(
A2 + b2 − C2

)
− 2A2b2C2

a2A2
(
B2 + c2 −A2

)
+ b2B2

(
A2 + c2 −B2

)
+ c2C2

(
A2 +B2 − c2

)
− 2A2B2c2

a2A2
(
b2 + c2 − a2

)
+ b2B2

(
a2 − b2 + c2

)
+ c2C2

(
a2 + b2 − c2

)
− 2 a2b2c2




The circumscribed sphere is described by the Pyth4 quadratic form while its radius R is given by:

R2 = (Aa+Bb+ Cc) (Bb+ Cc−Aa) (Cc+Aa−Bb) (Aa+Bb− Cc)÷ (24V )
2

Moreover, the six cut planes intersect at a point M called the Monge point of the tetrahedron.
And we have 2 (Ω +M) = A+B + C +D.

Proof. Obtain medAB as the X-gradient of XA2−XB2, etc and take the wedge of the three planes
medAB, medBC, medCD. The result is symmetric, proving the existence of Ω. Then compute R
from the Pythagoras formula (the obtained value is symmetric, as it should be). Finaly, compute
cutAB, etc by solving (medAB + xL4) · (C +D) = 0, etc and obtain M using

∧
3.

Proposition 8.4.4. The distance between a point P and a plane P is given by:

dist (P,P) =
P · P
Lb · P

12V√(
P · M4 · tP

)

Proof. This formula is homogeneous in P , in P and in a, b, c, A,B,C. Moreover, it obeys to the
general model dist (x, kerφ) = φ (x) / ‖φ‖.

Proposition 8.4.5. There are 8 points that are at the same distance from the faces of the standard
tetrahedron. They are the centers of eight spheres tangents to theses faces. The coordinates of the
centers and the radiuses are:

Ij ' ±SA : ±SB : ±SC : ±SD ;
1

ρj
=

1

hA
+

1

hB
+

1

hC
+

1

h0

where hj = 3V/Sj are the altitudes of the tetrahedron.

Proof. The distances from point x : y : z : t to the four faces of the reference tetrahedron are:
[
x

SA
,
y

SB
,
z

SC
,
t

S0

]
× 3V

x+ y + z + t

Proposition 8.4.6. The distance dj from the in/excenter Ij to the circumcenter is given by:

d2
j −R2 = −

(∑

6

|AB|SCSD
)
÷
(∑

4

Sj

)2

April 5, 2025 14:49 published under the GNU Free Documentation License



8. Brief extension to 3D spaces 99

Proof. Compute tnor (Ω) · Pyth4 ·nor (Ω) and obtain −R2, proving that Pyth4 gives the power
of a point wrt the sphere (and not some multiple). And then use the barycentrics of Ij . Thus

∑
6

sums the product of each sidelength by the areas of the two adjacent faces (taken with the relevant
sign).

Example 8.4.7. The tetrahedron used in Hecquet (1980) is characterized by

a2 = 19, b2 = 13, c2 = 7, A2 = 21, B2 = 28, C2 = 37

It’s existence granted by the reality of the areas:

SA
26

=
SB
19

=
SC
14

=
SD
11

=

√
3

4

One has V 2 = 105/2, R2 = 973/90, r2 = 18/35, d2 = 2851/630.

8.5 HH: hyperbolic hyperboloids
Remark 8.5.1. Caveat 1: the H used here means "hyperbolic hyperboiloid" and therefore is not
the H used at Section 28.9, in the Sister Marie Cordia Karl section.
Caveat 2: HH are also called one-sheet hyperboloids.

Definition 8.5.2. Let L1, L2, L3 be three lines in the 3D space, no two of them being incident.
For each point M3 on L3, it exists a line ∆ going through M3 and incident to L1 and L2. The
union of these lines ∆ is called the hyperbolic hyperboloid defined by the three Lj .

Proposition 8.5.3. It exist a 4 × 4 matrix H such that
t

∆∗ · H · ∆∗ = 04 is verified by
the (planar) matrix of ∆ when M3 moves on L3. Moreover, any point M on such a ∆ verifies:
tM · H ·M = 0.

Proof. Use the four points A,B ∈ L1 and C,D ∈ L2 as barycentric basis, and note L3 as
(−→
B,
−→
E
)
.

Let ∆ be a line incident to L1 at M1
.
= t A + (1 − t)B and to L2 at M2

.
= sC + (1 − s)D. This

gives:

∆ '




0 0 (1− s) (1− t) s (t− 1)

0 0 (s− 1) t st

(s− 1) (1− t) (1− s) t 0 0

s (1− t) −st 0 0




and now write that ∆ and L3 are incident. This leads to an homomorphic relation between s and
t. Eliminate t, k in M = kM1 + (1− k)M2 and obtain tM · H ·M = 0 where

M '




((Ex − Ey +Bx +By) kt+ (Ey −Bx) k) t

((Ex−Ey +Bx +By) kt+ (Ey−Bx) k) (1−t)
((Ex − Ey) t+ Ey) (1− k)

((Bx +By) t−Bx) (1− k)


 ; H '




0 0 −By Ex

0 0 Bx Ey

−By Bx 0 0

Ex Ey 0 0




Proposition 8.5.4. Suppose that M,N and M +N belong all three to H. Then any point of line
∆ = MN belongs to H, while

t
∆∗ · H · ∆∗ = 04 is satisfied.

Proof. Use H0 and consider M ' −→V : v ; N ' −→W : w, write the three equations and eliminate.
This leads to

v =
(VxBy − VyBx)Vz
ExVx + EyVy

, w =
(ByWx −BxWy)Vz

ExVx + EyVy
,Wz =

(ExWx + EyWy)Vz
ExVx + EyVy

and the conclusion follows.

Proposition 8.5.5. By any point M of H, two straight lines can be drawn which belong to H. One
of them, say ∆M , is incident to L1, L2, L3 while the other one, say δM , is incident to all the lines
∆N where N ∈ H.
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Proof. Use H0 and consider M ' −→U : u ; N ' −→V : v, write that
t
(M + kN) · H . (M + kN) is

the null polynomial in k and solve in u, v,
−→
V . This gives two families of solutions for N (depending

on two parameters, e.g. v, Vx). Then compute the lines MN , check that parameters are cancelling
and get:

∆ '




0 0 +uUy −UyUz
0 0 −uUx +UxUz

−uUy +uUx 0 0

UyUz −UxUz 0 0


 ; δ '




0
−EzBz U2

z

ExUx+EyUy
−ByUz ExUz

∗ 0 +BxUz EyUz

∗ ∗ 0 −ExUx−EyUy
∗ ∗ ∗ 0




And then Klein (∆M , δN ) = 0 proves the incidences. One can check that L1 = δ (A), L2 = δ (C)
together with L3 = δ (−EyUy − EzUz : ExUy : ExUz : Exu)

Remark 8.5.6. When dealing with a circumscribed QH, i.e. when H =




0 Hz Hy Kx

Hz 0 Hx Ky

Hy Hx 0 Kz

Kx Ky Kz 0


,

both series of lines ∆, δ are involving the same radical W , where

W 2 = H2
xK

2
x +K2

yH
2
y +H2

zK
2
z − 2HxKxHyKy − 2KyHyHzKz − 2HzKzHxKx

Proposition 8.5.7. The four altitudes of a tetrahedron ABCD belong to a same HH. When using
barycentrics wrt ABCD, we have

H '




0 u (a, b, c, A,B,C) u (c, a, b, C,A,B) u (b, C,A,B, c, a)

∗ 0 u (b, c, a,B,C,A) u (c, A,B,C, a, b)

∗ ∗ 0 u (a,B,C,A, b, c)

∗ ∗ ∗ 0




where u (a, b, c, A,B,C) =
(
B2 −A2 + b2 − a2

) ((
A2 −B2

) (
a2 − b2

)
+
(
a2 + b2 +A2 +B2 − 2C2

)
c2 − c4

)

so that : det H = 82944V 2 ×
∏

3

(
B2 − C2 + b2 − c2

)2

Proof. Read the direction δD of the fourth altitude ∆D at (8.3). Compute ∆D '
(
D ∧

6
δD

)
, etc.

And check that the four sets of equations:
t

∆∗D · H · ∆∗D = 04 , etc are compatible.

Proposition 8.5.8. Orthocentric tetrahedron. When A2 + a2 = B2 + b2, then A0B0 ⊥ C0D0 and
conversely. When two sets of opposite edges are orthogonal, so is the third set and the HH is totally
degenerate: the four altitudes are concurrent, defining an orthocenter H. One has:

H '




Sb Sc
(
A2 − Sa

)

Sc Sa
(
A2 − Sa

)

Sa Sb
(
A2 − Sa

)

Sa Sb Sc


 ; V 2

H =
1

9
S2A2 − 1

36
a2S2

a

Proof. Direct computation.

Exercise 8.5.9. What happens when there is only one pair of orthogonal opposite edges ?
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8.6 HH: some examples
Proposition 8.6.1. Consider a tetrahedron A,B,C,D. Affect a coefficient to each edge, e.g.
BC = a, etc and AD = d, etc. On each face, take the barycenter of the three vertices using the
weight of the opposite side, and obtain

D+ = (a A+ b B + c C) / (a+ b+ c)

A+ = (f B + e C + a D) / (f + e+ a)

B+ = (f A+ d C + b D) / (f + d+ b)

C+ = (eA+ dB + c_D) / (e+ d+ c)

Then lines AA+, BB+, CC+, DD+ are imbedded in a same HH.

Proof. A simple computation gives:

H =




0 (ad− be) c (cf − ad) b (be− cf) d

(ad− be) c 0 (be− cf) a (cf − ad) e

(cf − ad) b (be− cf) a 0 (ad− be) f
(be− cf) d (cf − ad) e (ad− be) f 0




together with W = (ad− be) (be− cf) (cf − ad).

Corollary 8.6.2. If we take a = |BC| and so on, we obtain a property relative to the four lines
joining a vertex to the incenter of the opposite face in a tetrahedron. And the same occurs for the
Lemoine centers. And for their isotomic images X(75) and X(76). When all coefficients are equal,
the four lines are simply concurrent at the gravity center.

Exercise 8.6.3. Consider the four points:

A,B,C,D '




−13

−43

43

1


 ,




−21

−11

41

1


 ,




−13

21

−91

1


 ,




−1

22

53

1




and compute the orthocenters, by minimizing δ2 (A, xB + yC + zD) or otherwise. Consider the
lines AHa, etc. Show they aren’t independent. Compute the QH containing these four lines. One
obtains

H =




−6048 40004 −96004 3786528

40004 94944 64701 −288685

−96004 64701 −88896 −4296565

3786528 −288685 −4296565 520174122




Exercise 8.6.4. (Follow-up). Take two points P,Q on AHa and two points R,S on BHb. Consider
the line ∆ joining eP + fQ with gR + hS. Solve in h so that ∆ becomes incident to CHc. And
now check that the generic point of ∆ belongs to the HH.
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Chapter 9

Pedal stuff

In a previous life, this Section was intended as foreword to Chapter 7 (orthogonality). Now, this
Section is rather the symmetric aisle of Chapter 3 (cevian stuff).

9.1 Pedal triangle
Definition 9.1.1. The pedal triangle of point P is the triangle whose vertices are the orthogonal
projections of P on the sides of the triangle.

Remark 9.1.2. Crossover the Channel, the pedal triangle is called "triangle podaire", while "pédal
triangle" is used to denote the Cevian triangle. Plaisante vérité qu’une rivière borne (Pascal, 1670,
p. 46). For the anti-pedal triangle, see Proposition 26.4.8.

Proposition 9.1.3. The pedal triangle of point P has the following barycentrics (each point is a
column) :

pedal




p

q

r


 '

b




0 Sc q + b2p Sb r + c2p

Sc p+ a2q 0 Sa r + c2q

Sb p+ a2r Sa q + b2r 0


 '




0
q Sc
b2

+ p
r Sb
c2

+ p

pSc
a2

+ q 0
r Sa
c2

+ q

p Sb
a2

+ r
q Sa
b2

+ r 0




(9.1)

Proof. As usual, Sa =
(
b2 + c2 − a2

)
/2, etc. Use (7.27) and obtain directly the result.

Proposition 9.1.4. Condition for an inscribed triangle P1P2P3 to be the pedal triangle of some
P is :

q1 − r1

q1 + r1
a2 +

r2 − p2

p2 + r2
b2 +

p3 − q3

p3 + q3
c2 (9.2)

In such a case, point P is the perspector between P1P2P3 and triangle Mb and is given by either
following expressions :



b2c2p2p3 − (Scr2 − Sap2) (Sbq3 − Sap3)

b2c2p2q3 + (Sbq3 − Sap3) b2r2

b2c2p3r2 + (Scr2 − Sap2) c2q3







a2c2p3q1 + (Sap3 − Sbq3) a2r1

a2c2q1q3 − (Sap3 − Sbq3) (Scr1 − Sbq1)

a2c2q3r1 + (Scr1 − Sbq1) c2p3







a2b2p2r1 + (Sap2 − Scr2) a2q1

a2b2q1r2 + (Sbq1 − Scr1) b2p2

a2b2r1r2 − (Sbq1 − Scr1) (Sap2 − Scr2)



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104 9.2. Isogonal conjugacy and Steiner triangle

Proof. P is on the line through P1 and orthopoint of BC etc. The required condition is the
determinant of these three lines. The various ways of writing P are the wedge product of two rows
at a time. A more symmetric formula would be great...

Proposition 9.1.5. It exists exactly one pedal triangle of a given shape. When the shape is given
by the tangents tA

.
= tan

(−−−−→
APBP ,

−−−−→
APCP

)
, etc (bound by tA+ tB + tC = tAtBtC), the central point

is given by

P '



a2tBtC (Sa tA + 2S)

b2tCtA (Sb tB + 2S)

c2tAtB (Sc tC + 2S)




Proof. Substitute 9.1 in the tan formula (7.22) and obtain three equations. And then eliminate.

Exercise 9.1.6. Spoiler: using Morley affixes, the pedal triangle of can be written

pedal




z

t

ζ


 '

z




β + γ +
z − β γ ζ

t
α+ γ +

z − αγ ζ
t

α+ β +
z − αβ ζ

t
2 2 2

β + γ

β γ
+
βγ ζ − z
βγ t

α+ γ

α γ
+
γα ζ − z
γα t

α+ β

αβ
+
αβ ζ − z
αβ t




Exercise 9.1.7. The area of the P -pedal triangle is
S

4

(
1− |OP |

2

R2

)
. Spoiler: a proof is given at

Proposition 28.8.14.

Exercise 9.1.8. From Proposition 9.1.5, there is exactly one pedal triangle of each shape. What
to say about the only pedal triangle who is skew similar to a given one ?

Construction 9.1.9. Construct the ABC-pedal triangle similar to a given triangle TaTbTc. Through
point A, draw the parallel BpCp to TbTc, etc and obtain triangle ApBpCp. Draw circles BCAp, etc.
Call gE their common (Miquel) point. Then E .

= isogon (gE) is the center of the sought pedal
triangle.

9.2 Isogonal conjugacy and Steiner triangle

Definition 9.2.1. Use barycentrics wrt ABC and suppose that the point P = p : q : r is not on
a sideline. Then the point Q defined by:

Q ' isogon (p : q : r)
.
=
a2

p
:
b2

q
:
c2

r
(9.3)

is not a vertex and is called the isogonal conjugate of P .

Remark 9.2.2. The isogonal conjugate of point P can be introduced as the circumcenter of the P -
Steiner triangle. This will be done at Section 10.1. Another introduction comes from the following
eponymous property.

Proposition 9.2.3. The isogonal conjugate Q of the point P (not on a sideline) is characterized
by the three relations:

(AB, AP ) + (AC,AQ) = 0, etc

In other words, lines AP and AQ are equally inclined over lines AB,AC. This property is obviously
symmetric between P,Q and both points are said to form a pair of isogonal conjugates.

Proof. One has tan (A,B, P ) + tan (A,C,Q) = 0, etc. Mind the order ! When line AP cuts BC
between B and C, then line AQ does the same.

Remark 9.2.4. The isogonal conjugate of a point P is often noted P−1 in ETC since its trilinears
are 1/p : 1/q : 1/r when those of P are p : q : r.
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9. Pedal stuff 105

9.3 Cyclopedal conjugate
Definition 9.3.1. The pedal circle of a given point is the circle circumscribed to the pedal triangle
of this point. (spoiler) It’s representative is:

VP '




p
(
c2q + Sa r

) (
b2r + Sa q

)

q
(
a2r + Sb p

) (
c2p+ Sb r

)

r
(
b2p+ Sc q

) (
a2q + Sc p

)
(
a2qr + b2pr + c2pq

)
(p+ q + r)




Proposition 9.3.2 (Matthieu). When P and Q are isogonal conjugates, they share the same pedal
circle. The center of this circle is the middle of P and Q (cf Figure 9.1)

Proof. Straightforward computation (using V or not !).

Figure 9.1: Cyclopedal congugates are isogonal conjugates

Remark 9.3.3. The definition of "cyclopedal conjugacy" has been coined to enforce symmetry with
the cyclocevian conjugacy, cf. Section 13.23. Some examples are :

point code bary cycp circumcenter

incenter X (1) a X (1) X (1)

centroid X (2) 1 X (6) X (597)

Lemoine X (6) a2 X (2) X (597)

circumcenter X (3) a2
(
−a2 + b2 + c2

)
X (4) X (5)

orthocenter X (4) 1/
(
−a2 + b2 + c2

)
X (3) X (5)

Proposition 9.3.4. (Spoiler). The center KP of the RH through A,B,C,H, P belongs to the
pedal circle of P . As a result, KP and KQ are the common points of the (P,Q) pedal circle and
the Euler circle.

Proof. This can be checked by using:

KP '




(
r (p+ q) b2 − q (r + p) c2

)
(Sb q − Sc r) p(

p (q + r) c2 − r (p+ q) a2
)

(Sc r − Sa p) q(
q (r + p) a2 − p (q + r) b2

)
(Sa p− Sb q) r




—– pldx : Translation of the Kimberling’s Glossary into barycentrics – vA2 —–
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Chapter 10

Orthogonal stuff

10.1 Steiner triangle, definition
Remark 10.1.1. More details are given at Section 18.5.2.

Definition 10.1.2. The Steiner triangle of point P is the triangle whose vertices are the or-
thogonal reflections of P on the sides of the triangle.

Proposition 10.1.3. The Steiner triangle of point P
.' p : q : r has the following barycentrics

(each point is a column) :

Steiner




p

q

r


 '

b




−p 2q Sc
b2

+ p
2r Sb
c2

+ p

2pSc
a2

+ q −q 2r Sa
c2

+ q

2pSb
a2

+ r
2q Sa
b2

+ r −q




(10.1)

Proof. Use (7.28) and obtain directly the result.

Proposition 10.1.4. The circumcenter of the Steiner triangle has the following center and radius:

Q '




a2 qr

b2 rp

c2 pq


 ; ρ =

∏√
b2r2 + 2 qrSa + c2q2

(a2qr + b2rp+ c2qb) (p+ q + r)

Proof. Determine Q using the perpendicular bissectors |QMa|2 − |QMb|2 = 0 and then compute
|QMa|. (Spoiler) Another method will be described at Section 14.3: compute V

b
=
∧

3 V er
b

(Mj),

and then use (14.14) together with (14.15)

10.2 Steiner line
Proposition 10.2.1 (Steiner line). Let P be a point in the barycentric plane. When its Steiner
triangle A′B′C ′ is flat, the corresponding line is called the Steiner line of point P . This occurs
when either:
(1) P is on the line at infinity. Then A′ = B′ = C ′ = P and Steiner (P ) = Lb.
(2) P is on the circumcircle. Then Q = isogon (P ) ∈ Lb while Steiner (U) goes through the
orthocenter X4 and has the following equation :

Steiner (P ) '
t

isogon

(
P ∗

b
X4

)
'

t(
Q÷

b
X4

)

' [Sa (τ − σ) , Sb (ρ− τ) , Sc (σ − ρ)]

'
[
a2 Sa
p

,
b2 Sb
q

,
c2 Sc
r

]
(10.2)
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108 10.2. Steiner line

S2 = t(Q2 ÷b X4) ✛ U2 ∈ Γ
reflection in X3

U1 ∈ Γ ✲ S1 = t(Q1 ÷b X4)

Q1 = L∞ ∩ S2

∞
❄

orthopoint
✲............

............
............

.. isog
............

............
............

..✲

Q2 = L∞ ∩ S1

∞
❄

✛......................................isog ......................................

orthopoint (Q) = Lb ∧
t(
Q÷

b
X4

)
(10.3)

Steiner (P ) = X4 ∧ orthopoint (isogon (P )) (10.4)

Figure 10.1: The orthopoint transform

Proof. The Steiner triangle is depicted at (10.1). Its determinant factors into :

(p+ q + r)
(
a2qr + b2rp+ c2pq

)
/R2

The case p + q + r = 0 is the line at infinity and is not to be discarded, since the orthogonal
projection of a point at infinity onto a line at finite distance is the point at infinity of this line.
When P ∈ Γ, computing (10.2)is straightforward.

Remark 10.2.2. The study of the properties of the so called Simson lines is delayed until Sec-
tion 28.6. Indeed, their envelope is a third degree curve, and not a simple point as for the Steiner
lines.

Proposition 10.2.3. When U1 and U2 are on the circumcircle, then :
(︷ ︸︸ ︷
Steiner (U1) , Steiner (U2)

)
= −1

2

(−−−→
X3U1,

−−−→
X3U2

)

where the "overbrace" denotes the oriented angle between two straight lines. Therefore, it exists a
one-to-one correspondence between lines through X4 and points U on the circumcircle. Moreover,
Steiner lines relative to diametrically opposed points on the circumcircle are orthogonal to each
other.

Proof. From elementary euclidian geometry... or using tan (2ϑ) = 2 tanϑ/
(
1− tan2 ϑ

)
and (7.22).

Corollary 10.2.4. For each point on the circumcircle, the isogonal conjugate is the orthopoint of
the Steiner line (cf. Figure 10.1, and also –far below– Figure 22.7).

Proof. Let Q1 be a point at infinity. Take the isogonal conjugate of Q1 and obtain U1 ∈ Γ. Take
the Steiner line of U1 and obtain S1. Take the point at infinity of S1 and obtain Q2. Take the
isogonal conjugate of Q2 and obtain U2 ∈ Γ. Take the Steiner line of U2 and obtain S2. Now Q1

is the point at infinity of S2 while Q1, Q2 are orthopoints of each other and U1, U2 are antipodes
of each other on the circumcircle.

Proposition 10.2.5. When Q1, Q2 are orthopoints, their barycentric product lies on the orthic
axis, i.e. the tripolar of X4.

Proof. Use parametrization (7.16), eliminate k, σ in kX = Q1 ∗
b
Q2 and obtain an equation of first

degree.

Example 10.2.6. The following list gives the triples (I, J, K) where X (I) and X (J) are named
orthopoints of each other and X (K) is their (named) barycentric product :
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10. Orthogonal stuff 109

30 523 1637

511 512 2491

513 517 3310

514 516 676

2574 2575 647

3307 3308 3310

10.3 Parallelogy

This section has moved to Section 26.3

10.4 Orthology

This section has moved to Section 26.4

10.5 Orthopole

The section has moved to "Pedal LFIT and orthopole" (Section 28.8), while "orthojoin" has
disappeared.

10.6 Spoiler: Moebius-Steiner-Cremona transform

This section should be skipped by a reader not familiar with Morley spaces (Chapter 15) and
Cremona transforms (Chapter 18).

Definition 10.6.1. Let α : 1 : 1/α, etc be the reference triangle ABC, and z : t : ζ the Morley
affix of a point P .

Proposition 10.6.2. Let T be the Steiner triangle of point P . The affine transform ψ charac-

terized by ABC 7→ T sends O on H and satisfies:

z (ψ (M)) = +s1 − zM −
ζ s3

t
ζM

Proof. The Steiner triangle of P is described by:

T ' 1

t




t (β + γ)− βγ ζ t (γ + α)− γα ζ t (α+ β)− αβ ζ
t t t

t (β + γ)− z
β γ

t (γ + α)− z
γ α

t (α+ β)− z
α β




and, therefore, the matrix of ψ is:

T · Lu−1 '




−1 s1 −ζ s3

t
0 1 0

− z

s3 t

s2

s3
−1




Corollary 10.6.3. Applied to Q .
= isogon (P ) and using Fact 18.5.9, this gives (18.7).
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Proposition 10.6.4. Let us consider two points and their Steiner triangles. Define the collineation
φ by T1 7→ T2 ; Lz 7→ Lz. Its matrix is :

φ ' ψ2 · ψ1

−1
' T2 · T1

−1

'




t1 t2 − ζ2 z1
(ζ2 t1 − ζ1 t2) (z1 σ1 − σ2t1)

t1
σ3 (ζ2 t1 − ζ1 t2)

0
(
t21 − z1ζ1

)
t2/t1 0

1

σ3
(z2 t1 − z1 t2)

(z2 t1 − z1 t2) (ζ1 σ2 − σ1t1)

t1 σ3
t1 t2 − z2 ζ1




its characteristic polynomial is

χ (µ) = (µ− 1)

(
µ2 − t1 (2 t1 t2 − ζ2 z1 − z2 ζ1)

t2 (t21 − z1 ζ1)
µ+

(
t22 − z2ζ2

)
t21

(t21 − z1ζ1) t22

)

and we have φ (H)=H.

Remark 10.6.5. Considering some special cases:

1. For φ to be parallelogic, condition is φ11 +φ33 = 0, i.e: z2 ζ1 + ζ2 z1− 2 t1 t2 = 0. Each point
is on the circle-polar of the other.

2. For φ to be orthologic, condition is φ11 − φ33 = 0, i.e. z2 ζ1 − ζ2 z1 = 0. Both points are
aligned with the circumcenter X(3).

3. For φ to be an skew similarity, condition is φ11 = φ33 = 0. Both points are inverse in the
circumcircle.

4. For triangles T1 , T2 to be in perspective (homologic), condition is

σ4 (z2 t1 − t2 z1) (ζ2 t1 − ζ1 t2) ((z1 t2 − t1z2) σ2 + (ζ1z2 − z1ζ2) σ3 + (t1 ζ2 − ζ1 t2) σ3σ1) = 0

In other words, either the points are equal in one of the spherical maps, or they are aligned
with X(4). In this case, the perspector is a point S on the circumcircle, and line U1HU2 is
nothing but the Steiner line of S.

Proof. Compute the perspector of T (M1) and T (kM1 + (1− k)H).

Proposition 10.6.6. In the map Z : T, the homography µ defined by A 7→ A′, B 7→ B′, C 7→ C ′

is called the Moebius-Steiner transform related to U . This transform is involutive and we have:

µ (Z : T) =
t2Z−

(
t2σ1 − tζ σ2 + ζ2σ3

)
T

ζ tZ− t2T

Image µ (U) is isogon (U), i.e. the other focus of the inscribed conic whose U is the first focus.
Moreover, µ (∞) = t/ζ, i.e. the symmetric of U wrt the circumcircle. Finally, A′, B′, C ′, H are
concyclic when either U is on the circumcircle (the Steiner property) or U is on the orthoptic of
the polar circle (centered at H).

Proof. Write the reality of the cross-ratio and obtain
(
t2 − zζ

) (
s1 s3 tζ + s2 tz − s3 zζ − s3 t

2
)

=
0.

10.7 Orthocorrespondents
Definition 10.7.1. Suppose P is a point in the plane of triangle ABC. The perpendiculars
through P to the lines AP,BP,CP meet the lines BC,CA,AB, respectively, in collinear points.
Let L denote their line. The trilinear pole of L is P⊥, the orthocorrespondent of P. This definition
is introduced in Gibert (2003). If P = p : q : r is given in barycentrics, then P⊥ = u : v : w is
given by :

−
(
b2 + c2 − a2

)
p2 +

(
a2 − b2 + c2

)
pq +

(
a2 + b2 − c2

)
pr + 2qra2
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Remark 10.7.2. If follows that if P = x : y : z is given in trilinears, then P⊥ has trilinears given
cyclically by :

yz + (−x cosA+ y cosB + z cosC)x

Example 10.7.3. Pairs (I,J) for which the orthocorrespondent of X(I) is X(J) include the follow-
ing:

1 57 11 651 62 2005 109 1813 125 648 1566 677

2 1992 13 13 80 2006 111 895 132 287 1785 57

3 1993 14 14 98 287 112 110 186 1994 1845 2006

4 2 15 62 100 1332 113 2986 242 1999 1878 1997

5 1994 16 61 101 1331 114 2987 403 1993 3563 2987

6 1995 19 2000 103 1815 115 110 468 1992

7 1996 32 2001 105 1814 117 2988 915 2990

8 1997 33 2002 106 1797 118 2989 917 2989

9 1998 36 2003 107 648 119 2990 1300 2986

10 1999 61 2004 108 651 120 2991 1560 895

Proposition 10.7.4. The orthocorrespondent of every point on the line at infinity is the centroid.
Conversely, given a finite point U , different from the centroid, it exists exactly two orthoassociate
points P1 and P2 (real or not, distinct or not) that share the same orthocorrespondent U . When
P1 is given, then :

p2 ' (q1 + r1)p1 +
a2 − b2 + c2

a2 − b2 − c2 q
2
1 +

a2 + b2 − c2
a2 − b2 − c2 r

2
1

When U is given, the condition of reality is ∆ ≥ 0 where :

∆
.
= S2(u+ v + w)2 − u(w + v)Sc Sb − v(u+ w)Sa Sc − w(u+ v)Sb Sa

S = area and Sa =
(
b2 + c2 − a2

)
/2. Then, cyclically, we have :

p1, p2 '
(
S ((u− w)(u+ v − w)Sb + (u− v)(u− v + w)Sc)

± ((u− w)Sb + (u− v)Sc)
√

∆

)

Proof. Write orthocorr (P ) = kU and eliminate (rationally) k, p. Obtain a second degree equation,
whose discriminant is S2 (v − w)

2
∆. In order to obtain a symmetric form for the barycentrics

p : q : r, all these expressions must be simplified using
(√

∆
)2

= ∆, then rationalized and
simplified again, and finally normalized using p+ q + r = 1.

10.8 Isoscelizer
An isoscelizer is a line perpendicular to an angle bisector. If P is a point, then the A-isoscelizer of
P is the line L(P,A) through P perpendicular to the line that bisects vertex angle A; the B- and
C- isoscelizers are defined cyclically. Let D and E be the points where L(P,A) meets sidelines AB
and AC. Unless D = E = A, the triangle ADE is isosceles.

In ETC, there are several triangle centers defined in terms of isoscelizers. These were discovered
or invented by Peter Yff, in whose notebooks the word isoscelizer dates back to 1963.
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Chapter 11

Circumcevian stuff

11.1 Circum-cevians, circum-anticevians
Definition 11.1.1. Circumcevian. Let P be a point, not on Γ (the circumcircle of ABC). Let
A′ be the other intersection of line AP with Γ and define B′, C ′ cyclically. Then A′B′C ′ is the
circumcevian triangle of P . Using barycentric columns,

circumcevian(P ) =




−qra2

c2q + b2r
p p

q
−rpb2

a2r + c2p
q

r r
−pqc2

b2p+ a2q




(11.1)

Proposition 11.1.2. A circumcevian triangle is a central triangle. When P is on Γ, the cor-
responding triangle is totally degenerate. Three points on the circumcircle form a circumcevian
triangle when the triangle obtained by killing the diagonal of the matrix is a cevian triangle.

Proof. Centrality follows directly from (11.1) (that’s a reason to keep denominators), while killing
the diagonal gives the intersections with sidelines. Determinant is Γ (P )

3 over
∏
a2q + b2p.

Definition 11.1.3. Circum-anticevian. Consider the anticevian triangle PAPBPC of a point
P that is not a vertex of triangle ABC. Line PBPC cuts circumcircle Γ at A. Let A′ be the
other intersection and define B′, C ′ cyclically. Then A′B′C ′ is the circum-anticevian triangle of
P . Using barycentric columns,

circumanticevian(P ) =




qra2

c2q − b2r −p p

q
rpb2

a2r − c2p −q

−r r
pqc2

b2p− a2q




(11.2)

Proposition 11.1.4. This triangle should be a central triangle (does the definition allows that
?). When one of the three other points ±p : ±q : ±r is on Γ, the circum-anticevian triangle
degenerates.

11.2 Steinbart transform
Definition 11.2.1. Exceter point. The circumcevian triangle of the centroid, X2, is perspective
to the tangential triangle A6. The perspector, X22, is named Exceter point, for Phillips Exceter
Academy in Exceter, New Hampshire, USA, where X22 was detected in 1986 using a computer.

Definition 11.2.2. Steinbart transform. The circumcevian triangle of a point P is ever per-
spective to the tangential triangle A6. The corresponding perspector has been called Steinbart
point by Funck (2003) and was called in TCCT (p. 201). This transformation carries triangle
centers to triangle centers. Using barycentrics :
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114 11.3. Circum-eigentransform

Steinbart (P ) = a2

(
b4

q2
+
c4

r2
− a4

p2

)
: b2

(
a4

p2
− b4

q2
+
c4

r2

)
: c2

(
a4

p2
+
b4

q2
− c4

r2

)

Example 11.2.3. On the circumcircle, Steinbart transform is the identity. Here is a list of other
(I,J) such that Steinbart(X(I)) = X(J) :

1 3 14 1606 56 1616 162 1624 365 55

2 22 17 1607 57 1617 163 1625 366 1631

3 1498 18 1608 58 595 174 1626 509 1486

4 24 19 1609 59 1618 188 2933 648 1632

5 1601 21 1610 63 1619 251 1627 651 1633

6 6 25 1611 64 1620 254 1628 662 1634

7 1602 28 1612 81 1621 259 198

8 1603 31 1613 83 1078 266 56

9 1604 54 1614 84 1622 275 1629

13 1605 55 1615 88 1623 284 1630

Points X(1601)-X(1634) have been contributed in ETC by Jean-Pierre Ehrmann (August 2003).

Remark 11.2.4. See Grinberg (2003e) and his Extended Steinbart Theorem in Hyacinthos #7984,
2003/09/23.

11.3 Circum-eigentransform
Definition 11.3.1. The circum-eigentransform of point U = u : v : w, different from X6, is the
eigencenter of the circumcevian triangle of point U and is denoted by CET (U). In trilinears, we
have :

avw

av2 + aw2 − buv − cuw :
bwu

bw2 + bu2 − cvw − avu :
cuv

cu2 + cv2 − awu− bwv
and in barycentrics (cyclically) :

a2vw

a2c2v2 + a2b2w2 − b2c2uv − bc2uw
Proposition 11.3.2. Point CET (U) lies on the circumcircle, and we have CET (U) = isog (U)
if and only if U ∈ Lb.
Remark 11.3.3. My own computations are leading to :

a2vw

−a2c2v2 + a2b2w2 − b2c2uv + bc2uw

This point is also on the circumcircle, but property CET (U) = isog (U) if and only if U ∈ Lb is
lost. Some signs have changed : why ?

Example 11.3.4. Apart from points on the infinity line, pairs (I, J) such thatX(J) = CET (X(I))
include :

1 106 41 767 74 1294 238 741

2 729 42 2368 75 701 265 1300

3 1300 43 106 81 2375 670 3222

4 1294 44 106 110 99 694 98

9 1477 55 2369 125 827 895 2374

19 2365 56 2370 184 2367 1084 689

25 2366 57 2371 194 729 1279 1477

31 767 58 2372 213 2368 1634 689

32 2367 67 2373 219 2376

37 741 69 2374 220 2377
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11. Circumcevian stuff 115

Exercise 11.3.5. For a given point P on the circumcircle, which points U satisfy CET (U) = P
? For example, CET carries each of the points X(1), X(43), X(44), X(519) to X(106).

11.4 Dual triangles, DC and CD Points
Definition 11.4.1. Dual triangle. Suppose DEF is a triangle (at finite distance) in the plane of
triangle ABC. Let D′ be the isogonal conjugate of the point at infinity of line EF . Define E′ and
F ′ cyclically. The triangle D′E′F ′ is called the dual of DEF . Its vertices lie on the circumcircle.

Proposition 11.4.2. The dual triangle D′E′F ′ characterizes the class of all triangles homothetic
to DEF . Moreover, this triangle is similar to the original one.

Proof. Vertices ofD′E′F ′ depends only on direction of sidelinesDE, EF, FD and conversely. Sim-
ilarity between DEF and D′E′F ′ can be proved in many ways. Brute force method : Pythagoras
Theorem 7.4.4 applied to both triangles leads to proportional sidelengths.

Remark 11.4.3. (Proof of similarity follows from Theorem 6E in TCCT, as the "gamma triangle"
there is the dual of a triangle whose sidelines are respectively perpendicular to those of DEF .)

Definition 11.4.4. DC point. Suppose U = u : v : w is a point having cevian triangle DEF
and dual triangle D′E′F ′. It happens that the later triangle is also the circum-anticevian triangle
of some point. This point will be described as DC (U). Using barycentrics :

DC (U) =
a2

u (v + w)
:

b2

v (w + u)
:

c2

w (u+ v)

Remark 11.4.5. The barycentrics of triangle D′E′F ′ are :

a2

wu− vu
−a2

wu+ vu

a2

wu+ vu
b2

vu+ wv

b2

vu− wv
−b2

vu+ wv
−c2

wv + wu

c2

wv + wu

c2

wv − wu
Proposition 11.4.6. To construct DC(U) from U and D′E′F ′, let A′ = AD′ ∩ BC and let A”
be the harmonic conjugate of A′ with respect to B and C. Define B” and C” cyclically. The lines
AA”, BB” and CC” concur in DC(U). We have also the formula :

DC (U) = cevamul (isog (U) , X (6))

Example 11.4.7. There are 115 pairs (I,J) such that I<2980 and X(J) = DC(X(I)). Among them
(1,81), (2,6), (3,275), (4,2), (5,288), (6,83), (7,1), (8,57), (9,1170), (10,1171). The longest chain for
this relation is : 69 7→ 4 7→ 2 7→ 6 7→ 83 7→ 3108.

Proposition 11.4.8. Inversely, the circum-anticevian triangle of a point P is the dual of the
cevian triangle of a point CD(P), given for P = p : q : r by the inverse of the DC-mapping; that is:

1

−a2qr + b2pr + c2pq
:

1

a2qr − b2pr + c2pq
:

1

a2qr + b2pr − c2pq
In other words, we have :

CD (P ) = isog (cevadiv(P, X(6)))

11.5 Saragossa points
Definition 11.5.1. Saragossa points. Let P be a point not on the circumcircle of ABC. Let
T ′ = A′B′C ′ be the cevian triangle of P and T ′′ = A′′, B′′, C ′′ the circumcevian triangle of P.
Consider triangle T that is the crosstriangle of T ′ and T ′′, i.e. the triangle whose vertices are
U = B′C ′′ ∩B′′C ′, V = C ′A′′ ∩C ′′A′ and W = A′B′′ ∩A′′B′. Then (Figure 11.1) triangles ABC,
T ′, T ′′ and T are pairwise perspective ((Grinberg, 2003d). The first, second and third Saragossa
points of P are the perspectors of T with, respectively, ABC, T ′ and T ′′. The name Saragossa
refers to the king who proved Ceva’s theorem before Ceva did (Hogendijk, 1995).
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A

B

C

P

C"

C'

B"

B'U

A"

A'

V
W

Q3
Q2

Q1

Figure 11.1: Saragossa points of point P

Proposition 11.5.2. The barycentrics of the Saragossa points of P = p : q : r are (cyclically) :

g1(a, b, c) =
a2

a2qr − (a2qr + b2pr + c2pq)
(11.3)

g2(a, b, c) = p−
(

1

c2q
+

1

b2r

)(
a2qr + b2pr + c2pq

)

g3(a, b, c) = 2 p−
(

1

c2q
+

1

b2r

)(
a2qr + b2pr + c2pq

)

Points P, Q2, Q3 are clearly collinear. When one of the Saragossa points is equal to P then P is
X(6) or lies on the circumcircle.

Proof. Computations are straightforward.

Example 11.5.3. The following table give the Saragossa points of the X (I) whose number is
given in the first line.

1 2 3 4 5 6 19 21 24 25 28 31

58 251 4 54 1166 6 284 961 847 2 943 81

386 1180 1181 ? ? 6 1182 1183 ? 1184 ? 1185

1193 1194 185 389 ? 6 1195 ? ? 1196 ? 1197

11.6 Vertex associates
Definition 11.6.1. Vertex associate. Consider the circumcevian triangles ApBpCp, AuBuCu
of points P, U (not both on the circumcircle) and draw their may be degenerate vertex triangle T
i.e. the triangle whose sidelines are ApAu, BpBu, CpCu. It happens that T is perspective to ABC
: the corresponding perspector X is called the vertex associate of P and U .

Proposition 11.6.2. When P ∈ Γ but U /∈ Γ, ApBpCp and T are totally degenerate at P , so that
X = P (regardless of U). Otherwise, the barycentrics of the vertex associate of p : q : r and u:v:w
are (cyclically) :

vertexthird (P,U) =
a2

wra4qv − p (wb2 + vc2)u (rb2 + c2q)

Proof. When both P,U are on Γ, both circumcevians are totally degenerate and X is not defined.
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Remark 11.6.3. The definition of vertex conjugate allows X = U. To extend the geometric inter-
pretation to the case that X = U, as X approaches U, the vertex triangle approaches a limiting
triangle which we call the tangential triangle of U, a triangle perspective to ABC with perspector
U-vertex conjugate of U.

Proposition 11.6.4. When P is not on Γ, but U is on P ∗Γ (the Γ-polar of P ), then T is totally
degenerate to a point X that is the Γ-pole of line PU . Finally, triangle PUX is autopolar wrt Γ.

Proof. Concurrence of ApAu, BpBu, CpCu in a point X is straightforward, and X ∈ P ∗Γ too.

Proposition 11.6.5. Operation vertexthird is commutative and "formally involutory" i.e. :

vertexthird (P, vertexthird (P,U)) ' U

unless P lies on the circumcircle (where vertexthird (P,U) = P , regardless of U).

Proof. Commutativity is from the very definition, and the formal involutory property is from
straightforward computations. It remains only to track degeneracies. Determinant of the vertex
triangle T is the square of determinant of the corresponding trigone (T is either a genuine triangle,
or totally degenerate). The factors are the conditions for U ∈ Γ, P ∈ Γ and the condition for one
point to be on the Γ-polar of the other.

Exercise 11.6.6. In the general case, what can be said about the way the three circumcevian
triangles are lying on Γ ?

Example 11.6.7. Here are some vertex conjugates X(I), X(J), X(K) :

1 2 3 4 5 6 7 8 9

1 56 3415 84 3417 2163 3418 3420

2 3415 25 3424 3425 1383

3 84 3424 64 4 3426 3427

4 3417 3425 4 3 3431

5 3432

6 2163 1383 3426 3431 6

7 3418 3427 3433

8 3435

9 3420 1436

Proposition 11.6.8. For a given U, not on the circumcircle, the associated first Saragossa point
(11.3) is the sole and only point X such that vertexthird (U,X) = X.

Proof. We want U = V T (X,V T (X,U)) = V T (X,X) while sarag1 (V T (P, P )) = P is straight-
forward.

Proposition 11.6.9. Vertex association wrt X3 maps the Darboux cubic to the Darboux cubic
(X3 is the reflection center of this cubic, whose pole is X6 and pivot X20). The appearance of (I,J)
in the following list means that X(I),X(J) are on the Darboux cubic and that X(3),X(I),X(J) are
vertex associates :

1 3 4 20 40 1490 1498 2131 3182

84 64 4 3346 3345 3347 3348 3183 3354
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Chapter 12

About conics

Notation 12.0.1. C is a conic, C is the matrix of the punctual equation while C∗ is the matrix
of the tangential equation. Point P is (often) the perspector, U ' u : v : w is (often) the center,
Q ' f : g : h the auxiliary point (of an inconic), Fj ' fj : gj : hj the focuses i.e. F0 for a parabola
and F1, F2 otherwise.

12.1 Tangent to a curve

Definition 12.1.1. An algebraic curve C is the set of all the points x : y : z that satisfy a
polynomial equation C (x, y, z) = 0. In order to be a projective property, the polynomial C (x, y, z)
is required to be homogeneous (this is ever assumed in what follows).

Proposition 12.1.2. Consider an algebraic curve C (not necessarily a conic). The line tangent
to C at point P = p : q : r is given by :

−−→
grad (C)p:q:r =

[(
∂C
∂x

)

X=P

,

(
∂C
∂y

)

X=P

,

(
∂C
∂z

)

X=P

]
(12.1)

Proof. Let P ∈ C be the contact point and P + kQ be a point in the vicinity. If we require
P + kQ ∈ C, we must have C (P + kQ) − C (P ) = O

(
k2
)
and this is

−−→
grad (C)p:q:r · U = 0. But

polynomial C is homogeneous and we have
−−→
grad (C)p:q:r · P = dg (C) C. The result follows.

Exercise 12.1.3. Use parametrization (7.17) to describe the points P of the circumcircle. Obtain
the tangent at P . Take the orthodir and obtain the normal. Differentiate and wedge to catch the
contact point of the envelope of all the normals... and obtain X(3).

Definition 12.1.4. Pole and polar. The polar line of point X with respect to an algebraic
(homogeneous) curve C is the line whose affix is the gradient of C evaluated at point X. Point X
is called a pole of its polar.

Remark 12.1.5. When point X is a simple point on an algebraic curve, its polar is nothing but the
line tangent at X to the curve. Finding all the points whose polar is a given line is not an easy
task in the general case.

Proof. Well-known result. In fact, this is the rationale for the concept of polarity.

Definition 12.1.6. To avoid misunderstandings, it is often useful to specify the curve used to
polarize. So we will use circumpolar to describe polarity wrt the circumcircle, and conipolar to
describe polarity wrt a given specified conic.

Remark 12.1.7. Triangle ABC can be seen as the curve xyz. Gradient evaluated at point P ' p :
q : r is [qr, rp, pq] i.e. the already defined tripolar. And we can see why the tripolar transform is
not "as nice as" the usual conipolar transform: the degree of the underlying curve is not 2: there
is no more "reciprocity".
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120 12.2. Folium of Descartes

12.2 Folium of Descartes
The curve know as the "folium of Descartes" is surely not a conic ! But, in our opinion, it could
be useful to see how some general methods are working in the general case, before using them in
the rather specific situation of the algebraic curves of degree two.

Definition 12.2.1. The folium F is the curve which Descartes used to check his methods re-
garding the coordinate system. The Cartesian equation of this curve is x3 + y3 − 6xy = 0, and its
homogeneous equation is

X3 + Y 3 − 6X Y T = 0

Proposition 12.2.2. The folium presents a double point at 0 : 0 : 1. If we cut by the line Y = pX,
we obtain the parametrization : M ' 6p : 6p2 : 1 + p3. A better parametrization is :

M ' 3 (1 + q) (1− q)2
: 3 (1 + q)

2
(1− q) : 3 q2 + 1 (12.2)

Then the tangent ∆M at M ∈ F is given by

N = x : y : z ∈ ∆M when
[
3X2 − 6T, 3Y 2 − 6T, −6XY

]
·




x

y

z


 = 0

Proof. Homography q = (p− 1) / (p+ 1) has been used to move point p = −1 at q = ∞ in order
to have a "one piece" curve. Tangency condition is

−−→
gradφ · −−→MN = 0, while, due to the Darboux

property, we already have
−−→
gradφ ·M = 0.

Example 12.2.3. When q1 = 1/3 and q2 = −3, we obtain points M1 = 4 : −5 : 8 and M2 =

24 : −12 : 7. Tangents are
[

4 −5 8
]
,
[

17 20 24
]
while their common point is (see

Figure 12.1) given by :
[

4 −5 8
]
∧
[

17 20 24
]

= 56 : −8 : −33 ≈ −1.70 : +0.24 : 1

Visible asymptote is the tangent at the visible T = 0 point, i.e. at +1 : −1 : 0. Using the gradient
at that point, we see that asymptote is [3, 3,−6] ' [1, 1,−2].

(a) Two intersecting tangents (b) Dividing the plane in three regions

Figure 12.1: Folium of Descartes

Proposition 12.2.4. Tangential equation of the folium (i.e. the condition for a line ∆ ' [u, v, w]
to be tangent to the curve is :

F∗ (u, v, w)
.
= 48u2v2 − 32w

(
u3 + v3

)
+ 24uvw2 − w4 = 0

April 5, 2025 14:49 published under the GNU Free Documentation License



12. About conics 121

Proof. Tangency requires a contact point, so that :
{

(q − 1)
(
3 q3 + 9 q + 3 q2 + 1

)
= Kv, (q + 1)

(
3 q3 + 9 q − 3 q2 − 1

)
= Ku, 6 (q + 1)

2
(q − 1)

2
= Kw

}

is required. Apart from w = 0 or q = ±1, last equation gives a K value, that can be substituted
into the other equations. Writing that the remaining two polynomials have the same roots, we
obtain the resolvant :

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−w − 6 v −9w − 6 v −3w + 6 v −3w + 6 v 0 0

0 −w − 6 v −9w − 6 v −3w + 6 v −3w + 6 v 0

0 0 −w − 6 v −9w − 6 v −3w + 6 v −3w + 6 v

w + 6u −9w − 6u 3w − 6u −3w + 6u 0 0

0 w + 6u −9w − 6u 3w − 6u −3w + 6u 0

0 0 w + 6u −9w − 6u 3w − 6u −3w + 6u

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Suppressing the non vanishing factors leads to the given result.

Example 12.2.5. Start from a point N ' x : y : z and search the u, v, w such that

{ux+ vy + wz = 0, Ψ = 0}
We have three different possibilities, that are exemplified by :

N ' 1 : 1 : 1,

u v w

1.0 −0.51903− 1.16372 i −0.48097 + 1.16372 i

1.0 −0.31967 + 0.71674 i −0.68033− 0.71674 i

1.0 −0.51903 + 1.16372 i −0.48097− 1.16372 i

1.0 −0.31967− 0.71674 i −0.68033 + 0.71674 i

N ' 4 : 2 : 1,

u v w

1.0 1.0 −6.0

1.0 −1.52334 −0.95333

1.0 −0.73833− 1.09791 i −2.52334 + 2.19582 i

1.0 −0.73833 + 1.09791 i −2.52334− 2.19582 i

N = −1

2
: −1

2
: 1,

u v w

1.0 1.35307 1.17653

1.0 0.73906 0.86953

1.0 −0.43584 0.28208

1.0 −2.29442 −0.64721

In other words, the curve and its asymptote are dividing the plane into three zones. From a
magenta point (see Figure 12.1b) no tangents can be drawn to the curve, but two from a green
point and four from a cyan point.

Proposition 12.2.6 (Plucker formulas). Let d, δ, κ be respectively the degree of a curve C, its
number of nodes (double points with two tangents), its number of cups (double point with a single
tangent) and d′, δ′, κ′ be the corresponding numbers for the dual curve C′ then we have the following
relations :

d′ = d (d− 1)− 2δ − 3κ

κ′ = 3d (d− 2)− 6δ − 8κ

d = d′ (d′ − 1)− 2δ′ − 3κ′

κ = 3d′ (d′ − 2)− 6δ′ − 8κ′

g
.
=

1

2
(d− 1) (d− 2)− δ − κ =

1

2
(d′ − 1) (d′ − 2)− δ′ − κ′

Proof. Proof is not obvious since the formula turns weird when points with multiplicity greater
than two are occurring. There is no simpler formula giving δ than g = g′. A remark : we have
3d − κ = 3d′ − κ′. Application : see Figure 12.2. Cups are occurring at x = y = 1/2 and at
x = j/2, y = j2/2 and conjugate.
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Figure 12.2: Dual curve of the folium

12.3 General facts about conics

Definition 12.3.1. A conic C is a curve whose barycentric equation is an homogeneous polynomial
of second degree. This can be written using the usual matrix apparatus :

X ∈ C ⇐⇒ tX · C ·X = (x, y, z)




m11 m12 m13

m12 m22 m23

m13 m23 m33






x

y

z


 = 0

Lemma 12.3.2. Comatrix. Let M be a n×n matrix and M∗ the matrix of the cofactors (at
the right place, such that cofactors of a row form a column). Then :

M · M∗ = M∗ · M = det
(
M
)
1n

Moreover rank M∗ = n when rank M = n, rank M∗ = 1 when rank M = n−1, and otherwise
M∗ is the 0 matrix.

Proof. When det M 6= 0, both matrices can be inverted. In the second case a row of M∗

describes the hyperplane obtained by any non-zero wedge of two columns of M . In the last one,
all minors are 0 since rank is less than n− 1.

Remark 12.3.3. Comatrix M∗ is also called the adjoint matrix of M . Frenchies are usually
proud to dispose wrongly the cofactors... and then are reduced to use the transpose of what they
are wrongly calling "comatrices".

Definition 12.3.4. Proper conic. A quadratic form can be written as the sum of as many
squares of independent linear forms as its rank, leading to the following classification :

1. When rank is one, C is a straight line, whose points are each counted twice (strange object).

2. When rank is 2, C is the union of two intersecting lines. When these lines are complex
conjugate of each other (not real), only their intersection is real and this point appears as an
isolated point. When one of these lines is the line at infinity, C is considered as some kind of
extended circle (see Chapter 13).

3. When det C 6= 0, intersection of C and any straight line contains exactly two points (real or
not, may be a double point). A such conic is called a proper conic.
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Proposition 12.3.5. Conic by five points. Let Pj ' pj : qj : rj be five fixed points and
P = P6 ' x : y : z be a generic sixth point. In this section we define the (conic) Veronese map as

V er
b

: [p : q : r] 7→
[
p2 : q2 : r2 : pq : qr : rp

]

Let Q̂ be the 6 × 6 matrix
[
V er
b

(Pj)

]
. Then the six points P1...P5,P are coconic when the six

Veronese are co-hyperplanar, i.e. when Q (x, y, z)
.
= det Q̂ = 0. Let Q be the matrix of Q so

that Q = tP · Q · P . Then :

1. When none of the 10 Pj-triples are collinear, then Q defines a proper conic.

2. When four of the five points Pj are collinear, then Q ≡ 0 and no conic is defined.

3. Otherwise, the conic degenerates into the reunion of two lines.

Proof. In all of the cases, a simple computation leads to the "ten determinants formula"

det Q =

10∏

j,k,l

det (PjPkPl)

while the relation P3 = aP1 + b P2 leads to the factorization:

det Q̂ = abdet (P1P2P4) det (P1P2P5)× det (P1P2P ) det (P4P5P )

Proposition 12.3.6. Proper parametrization. Given a proper conic C, a basis can be found
where the equation of C becomes xz − y2 = 0. And then, a parametrization is u2 : uv : v2.

Proof. Rewrite the equation as a sum of three squares. And then use x2 + z2 = (x− i z) (x+ i z).
More precisely, defining

K2 .
= m22m33 −m2

23 ; χ
.
=




m12 m22 m23

1 0 0

m22m13 −m23m12 0 K2


 ·




1 0 1

0 2 0

−iK 0 iK




leads to tχ · C · χ '




0 0 K2

0 2m22 det C 0

K2 0 0




Definition 12.3.7. Pole and polar. According to the general definitions, the polar of a point
X wrt a proper conic C is the line tX C , i.e. the locus of the points Y such that tX C Y = 0,

while the pole of line {Y | ∆Y = 0} is the point X = Adjoint
(
C
)
t∆.

Remark 12.3.8. This polarity is not to be confused with polarity wrt the main triangle. Therefore,
it can be useful to describe line tX C as the conipolar of X and line t

isotom (X) as the tripolar
of X.

Remark 12.3.9. The relation "point Q belongs to the polar of P" is symmetric. When point P
belongs to C, its polar wrt the conic is nothing but the line tangent at X to the conic.

Proposition 12.3.10. For two distinct points A,B, and for two distinct lines ∆1,∆2, we have

polar (A ∧B) = (polarA) ∧ (polarB)

polar (∆1 ∧∆2) = (polar ∆1) ∧ (polar ∆2)

Proof. When M is a 3× 3 invertible matrix, then, for any columns A,B, we have:
(
tA ·M

)
∧
(
tB ·M

)
= M∗ · t(A ∧B)
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This can be seen by taking coordinates, and expanding
(
tA ·M

)
∧
(
tB ·M

)
−M∗ · t(A ∧B) to 0.

Another proof is using a generic row, called X in what follows, and check that:

X ·
(
tA ·M

)
∧
(
tB ·M

)
= det

[
X ·M−1 ·M, tA ·M, tB ·M

]

= det
[
X ·M−1, tA, tB

]
× detM

= det
[
X ·M∗, tA, tB

]

= X ·M∗ ·
(
tA ∧ tB

)
= X ·M∗ · t(A ∧B)

Definition 12.3.11. Taking the polar lines of the vertices of a triangle T gives a trigone. The
associate triangle is called the polar triangle of T and noted polar T. When both triangles are
equal, we say that T is autopolar wrt C.
Proposition 12.3.12. When quadrangle A,B,C,D is inscribed in a proper conic C, its diagonal
triangle, i.e. AB ∩ CD, AC ∩BD, AD ∩BC is autopolar wrt C.
Computed Proof. From 12.3.6, we can describe the problem by:

C '




0 0 −1

0 2 0

−1 0 0


 ; A,B,C,D '




u2
1

u1v1

v2
1


 ,




u2
2

u2v2

v2
2


 ,




u2
3

u3v3

v2
3


 ,




u2
4

u4v4

v2
4




and t
(AB ∧ CD) · C · (AC ∧BD) = 0 is easy to verify.

Construction 12.3.13. The polar line of a point P wrt a conic C is the locus of the points
AC ∩ BD where AB and CD are chords of C that meet in P . As a result, the required conipolar
is the line AC ∩BD ; AD ∩BC.
Proof. Obvious from the previous proposition.

Proposition 12.3.14. Triangle T is autopolar wrt a proper conic C if and only if the matrix of C
wrt triangle T is diagonal.

Proof. Use T as barycentric basis. Then eliminate and see that either C is diagonal, or contains a
null column

Proposition 12.3.15. Perspector of a conic wrt a triangle. When the polar triangle of T
is not T itself, then both triangles are in perspective. This defines a perspector and a perspectrix
(related to the triangle). When T is the reference triangle itself, the polar triangle is C∗ so that:

P '




(m22m13 −m23m12) (m33m12m13m23)

(m33m12 −m13m23) (m11m23 −m13m12)

(m11m23 −m13m12) (m22m13 −m23m12)


 ; ∆ ' [m13m12,m23m12,m13m23]

When nothing vanishes, the following shorter formulas can be used:

isotomP ' m11m23 −m13m12 : m22m13 −m23m12 : m33m12m13m23

tripolar ∆ ' m23 : m13 : m12

Proof. The T = ABC case is easy to compute. And suffices to prove the general case.

Definition 12.3.16. Dual of a conic. The dual of a given conic C1 is the conic C2 such that
point x : y : z belongs to C2 when line (x, y, z) is tangent to C1. When dealing with proper conics,
we have C2 = Adjoint

(
C1
)
and conversely. When rank is 2, the dual is rank 1 : all tangents

have to pass through the common point.

Definition 12.3.17. The center U of a conic C is the pole of the line at infinity Lb with respect
to the conic. Its barycentrics are :

−m2
23 + (m13 +m12)m23 +m22m33 −m13m22 −m12m33

−m2
13 + (m12 +m23)m13 +m33m11 −m12m33 −m23m11

−m2
12 + (m23 +m13)m12 +m11m22 −m23m11 −m13m22
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Definition 12.3.18. A parabola is a conic whose center is at infinity (more about parabolas in
Section 12.21). Two parallel lines make a non proper parabola. The union of the line at infinity
and another line is ... some kind of circle rather than a "special special" parabola.

Fact 12.3.19. When a conic goes through its center and this center is not at infinity, the conic
is the union of two different straight lines. When a conic is a single line whose points are counted
twice, det C vanishes and center has no meaning.

Proposition 12.3.20. When C is not a parabola, its center is the symmetry center of the conic.

Computed Proof. Substitute (3.1) into the equation and obtain C (x, y, z) times the square of the
condition to be a parabola.

Proposition 12.3.21. Let P be a point not on the sidelines of ABC. Six points are obtained by
intersecting a sideline with a parallel through P to another sideline. These points are on the same
conic C. Equation, perspector T and center U are :

C =
∑

(q + r)qrx2 −
∑

(p2 + pq + pr + 2qr)pyz

T =
p

2 pr + 2 pq + qr
:

q

2 pq + pr + 2 qr
:

r

pq + 2 pr + 2 qr

U = p
(
2 qr + pr + pq − p2

)
: q
(
2 pr + pq + qr − q2

)
: r
(
2 pq + pr + qr − r2

)

Center U is at infinity (and C is a parabola) when P is at infinity or on the Steiner inconic. Points
P and Q = p (q + r − p) : q (r + p− q) , r (p+ q − r) are leading to the same center U . Point Q is
at infinity when P is on the Steiner inconic.

Proof. Equation in Q is of third degree. The discriminant factors into minus a product of squares.
Other computations are straightforward. Examples are [P,U], [115, 523], [1015, 513], [1084, 512],
[1086, 514], [1146, 522], [2482, 524], [3163, 30] where P is on the Steiner inconic and [P,U], [2, 2],
[6, 182], [3, 182], [9, 1001], [1, 1001], [190, 1016], [664, 1275] for other points.

Exercise 12.3.22. Show that points X(13),X(14),X(15),X(16),X(17),X(18) belong to a same conic
(Evans, 2002). Identify 50 ETC points on its perimeter. Center is X(3054).

12.4 Tangential conics
Definition 12.4.1. A point-conic is a ’conic as usual’, i.e. a locus of points, whose equation is
tM · C ·M = 0. In the general case, a line is tangent to C when ∆ · C∗ · t∆ = 0. A line-conic or

tangential conic is what is obtained when seeing C in equation ∆ · C · t∆ = 0 as the primitive
object, and seeing the punctual conic tM · C∗ ·M = 0 as a derivative object.

Proposition 12.4.2. Degenerate line-conic. When det C = 0, the equation splits in two first
degree factors, and a line belongs to the conic when it goes through either of the fixed points (the
centers) defined by each factor (supposed distinct).

Example 12.4.3. The degenerate line-conic of the isotropic lines (see Proposition 7.6.7).

Proposition 12.4.4. The degenerate conic formed by the two tangents drawn from a point X0 to
a given conic C is given by

tX · D0 ·X '
(
tX0 · C ·X0

)
∗
(
tX · C ·X

)
+ (−1) ∗

(
tX0 · C ·X

)2

D0 '
(
tX0 · C ·X0

)
C − C ·X0 · tX0 · C (12.3)

Computed Proof. From 12.3.6, we can describe the problem by:

C '




0 0 −1

0 2 0

−1 0 0


 ; X1, X2 '




u2
1

u1v1

v2
1


 ,




u2
2

u2v2

v2
2




tan1, tan2 ' [v2
1 ,−2u1v1, u

2
1], [v2

2 ,−2u2v2, u
2
2] ; X0

.
= tan1 ∧ tan2 ' 2u1u2 : u1v2 + u2v1 : 2 v1v2

Then compute (tan1 ·X) ∗ (tan2 ·X) and check the formula.
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more geometrico. Consider the pencil of all the conics that are bi-tangent to conic C. Among them,
we have C itself, the required D0 and the polar line of X0... when counted twice. Thus:

D0 ' α
(
C
)

+ β
(
C ·X0 · tX0 · C

)

It remains to choose α, β so that D0 goes through X0.

12.5 Locusconi

Theorem 12.5.1. locusconi. Suppose that the projective coordinates of a point P (s) are second
degree polynomials in a given parameter s. Then the locus of P (s) is a conic. Moreover, we have
the following algorithm.

Require: tmp is the column of the coordinates, and s is the parameter to eliminate
locusconi := proc tmp, s, conitan :: uneval ; local tmp1 , tmp0 , coni2
tmp1 := Matrix ([seq ](map(coeff , reduce(tmp), s, j ), j = [2 , 1 , 0 ]))
tmp0 := Matrix ([[0 , 0 , 2 ], [0 ,−1 , 0 ], [2 , 0 , 0 ]])
coni2 := reduce(tmp1 .tmp0 .Tr(tmp1 ))
if nargs = 3 then assign(conitan, coni2 ) end if
reduce(Adjoint(coni2 ))

Listing 12.1: The locusconi procedure

Proof. When using Z : T : Z as the algebraic basis, the equation of the fundamental circle is
ZZ − T2. We are doing the same here, using 1 : t : t2 as algebraic basis. This leads to the
tangential equation of the conic... and we save it immediately. Don’t compute it afterwards by
taking the adjoint of the main result ! See also Kimberling (2001, p. 2).

Exercise 12.5.2. Use the example P (s) =




7 s2 − 12

3 s2 + 2 s

3 s2 − 2 s− 6


. Show that the brute force iden-

tification method, i.e. solve
(
tP · mjk · P = 0,mjk

)
amounts to write

[s4, s3, s2, s, 1] ·




49 9 9 42 18 42

0 12 −12 28 0 −28

−168 4 −32 −72 −44 −156

0 0 24 −48 −24 48

144 0 36 0 0 144



·




m11

m22

m33

m12

m23

m13




= 0

and then to compute the 6 cofactors of this 5× 6 matrix, while locusconi amounts to write

t


s2

s

1


 · Γ ·




s2

s

1


 = 0 where Γ

.
= tQ · mjk ·Q ; Q

.
=




7 0 −12

3 2 0

3 −2 −6




and then to solve this system as: Adjoint
(
mjk

)
.
= tQ ·Adjoint

(
Γ
)
·Q.

12.6 Founding configuration

Definition 12.6.1. Let us start from triangle ABC and perspector p : q : r. Its tripolar ∆ '
[qr : rp : pq] goes through points Qa ' 0 : +q : −r, Qb ' −p : 0 : +r, Qc ' +p : −q : 0. From
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Figure 12.3: Starting from perspector P

Proposition 3.8.12, all the triangles that can be written as Tt '




tp p p

q tq q

r r tr


 share P and ∆

as perspector and perspectrix. And their vertices are on the P -cevian lines (dotted cyan).

Proposition 12.6.2. We have cross_ratio (A,AP , P,At) = cross_ratio (∞, 0, 1, t) = t, etc.

Proof. Obvious since the cevian vertex Ap is nothing but A0.

Proposition 12.6.3. Vertices of Tt and Ts are on the same conic (noted C (s, t)) if and only if

2ts+ t+ s− 4 = 0 ; s = σ (t)
.
=
−t+ 4

2t+ 1

Fixed points of σ are t = 1, t = −2. And we have the decomposition:

Ct =
(
t2 + 2

)



2 q2r2 −pqr2 −pq2r

−pqr2 2 p2r2 −p2qr

−pq2r −p2qr 2 p2q2


− 2 (t− 1)

2



q2r2 0 0

0 p2r2 0

0 0 p2q2




Proof. The corresponding 6×6 determinant factors into (t− 1)
2

(s− 1)
2

(t− s)3
q4r4p4 (2 st+ s+ t− 4).

Proposition 12.6.4. The center Kt of conic Ct belongs to line PP 2. More precisely, we have

(
t2 + 2

)
(p+ q + r)




p

q

r


− 2 (t− 1)

2




p2

q2

r2




And we have the formula:

cross_ratio (K (tj)) = cross_ratio (t1, t2, t3, t4)× cross_ratio (σ (t1) , σ (t2) , t3, t4)

= cross_ratio (t1, t2, t3, t4)× cross_ratio (t1, t2, σ (t3) , σ (t4))

Proof. Mind the fact that cross_ratio (σ (t1) , σ (t2) , σ (t3) , σ (t4)) = cross_ratio (t1, t2, t3, t4) !
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Exercise 12.6.5. Prove that cross_ratio
(
Kin, P

2, P,Kout

)
= −1. that involves the conic t = 1 =

σ (1) which is centered at P and degenerates into 3
(
jqr x+ j2rp y + pq z

) (
j2qr x+ jrp y + qp z

)

and the conic t2 + 2 = 0 which is centered at P 2.

Example 12.6.6. We have the following cases of interest:

C (−2,−2) degenerates into −6 (qr x+ rp y + pq, z)
2, i.e. the tripolar line QaQbQc.

C1 .
= C (1, 1) is centered at P , and degenerates into

3
(
j qr x+ j2rp y + pq z

) (
j2qr x+ j rp y + pq z

)
= 0

Cdiag = C
(
±i
√

2
)
is centered at P 2 and is diagonal.

Cout .= C (∞,−1/2) is the so called P -circumconic (see Section 12.7). It goes through the vertices
(t =∞) and the extra points Ka = −p : 2q : 2r, etc (t = −1/2).

Cin .
= C (0, 4) is the so called P -inconic (see Section 12.8). It goes through the cevian points

APBPCP (t = 0) and the extra points Ra = 4p : q : r, etc (t = +4).

T (−1) is the anticevian triangle PAPBPC , obtained from the orange trigone AQa, BQb, CQc.

Proposition 12.6.7. The six sidelines of the following triangles:

T (κ (t)) , T (σ (κ (t))) where κ (t)
.
=

2− t
t

are tangent to the conic C (t, σ (t)) at the vertices of the defining triangles. Note that (σκσ) = κ,
enforcing the symmetry, while Qa, Xb, Xc are aligned for any triangle T.

Proof. Obvious computations

Example 12.6.8. Three tangents to Cin .
= C (0, 4) are provided by T (−1/2), see the green lines

QaRaKbKc, etc . As it should be, the other triangle is T (∞). i.e. the ABC triangle itself.
Six tangents to Cout .= C (∞,−1/2) are provided by T (−5) and, as it should be, by the anticevian

triangle T (−1), see the orange lines QaAPBPC , etc.
Moreover, we have the alignments QaRbRc not drawn), QaBPCP (black dotted).

12.7 Circumconics
Definition 12.7.1. A circumconic is a conic that contains the vertices A,B,C of the reference
triangle. Its equation can be written as :

CC (P ) = tX Cc X = 0 where Cc =




0 r q

r 0 p

q p 0


 (12.4)

Construction 12.7.2. Graphical tools can construct any conic from five points. Given the perspec-
tor P ' p : q : r, the other points on the cevian lines are −p : 2q : 2r, etc i.e points 2qB+2rC−pA.

Proposition 12.7.3. When p : q : r is the perspector, a parametrization of CC(P) is

M (t) ' p

1
:
q

t
:
−r

1 + t
(12.5)

Proof. Direct inspection.

Theorem 12.7.4 (circumconics). We have the following four properties :
(i) Point P is the perspector of the conic, and the polar triangle of ABC wrt CC (P ) is the
anticevian triangle of P wrt ABC (in other words, CC (P ) is tangent at A to PBPC etc.
(ii) When U is the center of CC (P ) then P is the center of CC (U). Both are related by :

U = cevadiv(X2, P ) = P ∗
b
anticomplem (P )
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(iii) Circumconic CC (P ) is the P isoconjugate of Lb. Inter alia,

X ∈ circumcircle⇐⇒ isog (X) ∈ Lb

(iv) The polar line ofM ' x : y : z wrt CC (P ) is '[qz + ry, rx+ pz, py + qx] ... aka the polarmul
of (P, M).

Proposition 12.7.5. Points at infinity. A circumscribed conic is an ellipse, a parabola or an
hyperbola when its perspector is inside, on or outside the Steiner in-ellipse. Moreover, its points
at infinity, expressed from the perspector P = p : q : r have the following barycentrics :

M∞ '




−2 p

p+ q − r −W
p+ r − q +W


 where W 2 = p2 + q2 + r2 − 2 pq − 2 qr − 2 rp

When the point at infinity of a circumparabola is u : v : w, its perspector is P = u2 : v2 : w2.

Proof. Immediate computation. Mind the fact that W 2 = −3 when P is at X(2). For the second
part, start from T = u : v : −u− v, and compute the circumconic relative to u2 : v2 : (u+ v)

2.

Remark 12.7.6. Properties of the CircumRH, aka the circumscribed rectangular hyperbola, are
collected at Subsection 12.22.2

Proposition 12.7.7. The four common points of two (non equal) circumconics CC (P ) and
CC (Q) are the three vertices and the tripole of line PQ.

Proof. Conics that share five distinct points are equal. The value of X follows by direct inspection.

Exercise 12.7.8. A stupid person would rewrite this property as "the fourth point is isotom (P ∧Q).
But the clever reader wouldn’t. Explain why !

Proposition 12.7.9. The perspector P of the circumconic through point Q lies on the tripolar of
Q. In other words,

P = Q ∗
b
T where T ∈ Lb

Therefore, the perspector of the circumconic which goes through additional points Q1, Q2 is the
intersection of the tripolars of Q1 and Q2 (caveat: this is not the tripole of line Q1Q2). In other
words, :

P = Q1 ∗
b
Q2 ∗

b

t
(Q1 ∧Q2)

Proof. Direct inspection.

Remark 12.7.10. Collineations can be used to transform any circumconic into the circumcircle or
the Steiner out-ellipse, so that many proofs can be done assuming such special cases. More details
in Proposition 16.4.3.

Proposition 12.7.11. Let be given ∆ and K where ∆ is a line (tripole G) that cuts the sidelines
BC, CA, AB in A′, B′, C ′ and K is a circumconic (perspector P) . Let M = x : y : z be a point
on ∆, and A” the other intersection of MA with K and cyclically B” ∈MB ∩K, C” ∈MC ∩K.
Then lines A′A”, B′B”, C ′C” are concurrent on a point Q ∈ K. Moreover, the conjugacy that
exchanges P and G exchanges also M and Q (M).

Proof. Use ∆ ' [ρ, σ, τ ], P = p : q : r, M = 1/ρ : t/σ : − (1 + t) /τ (where t is a parameter) and
obtain

Q =
p

ρx
:
q

σy
:
r

τz
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Figure 12.4: Conjugacy between a line and a circumconic

12.8 Inconics
Definition 12.8.1. An inconic is a conic that is tangent to the three sides of the reference triangle.

Exercise 12.8.2. Compute the determinant wich asserts that pB + (1− p+K)C, etc and pB +
(1− p−K)C, etc are con-conics where K is evanescent. Conclude.

Theorem 12.8.3 (inconics). The punctual and tangential equations of an inconic Ci can be written
as :

tX · Ci ·X, ∆ · C∗i · t∆ where Ci '




f2 −fg −fh
−fg g2 −hg
−fh −hg h2


 , C∗i '




0 h g

h 0 f

g f 0


 (12.6)

where ∆ = [f, g, h] is the so-called auxiliary line of the conic. Let us note P .
= tripolar (∆) '

1/f : 1/g : 1/h and Q = isotomP ' f : g : h. The dual conic of Ci is precisely CC (Q) (that acts
over lines). The contact points of Ci are 0 : h : g, etc (mind the order !). They are the cevians of
point P . This point P is the perspector between triangle ABC and its polar triangle with respect
to the conic, while ∆ is its perspectrix. Finally, the center of Ci is the complement of isotom (P ).

Proof. By definition, C∗i must have a zero diagonal. Then Ci is its adjoint. Perspectivity is
obvious, while center is the pole of the line at infinity.

Corollary 12.8.4. Direct relations between center and perspector are as follows :

U = complem (isot (P )) = crossmul(X2, P ) = P ∗
b
complem (P )

P = isot (anticomplem (U)) = crossdiv (U,X2)

Construction 12.8.5. (inconics) A graphical tool can construct any conic from five points. Given
the perspector P ' p : q : r, the points on the cevian lines are A1 = qB + rC, etc and A2 =
qB + rC + 4pA, etc. And therefore,

cross_ratio (A,A1, P,A2) = 4

Proposition 12.8.6. When p : q : r is the perspector, a parametrization of IC(P) is

M (t) ' p : q t2 : r (1 + t)
2 (12.7)

Proof. Direct inspection.

Proposition 12.8.7. The ’complem formula’ is as follows:

1
Mcc (t)

tripolar (P ) ·Mcc (t)
+ 2

Mic (t)

tripolar (P ) ·Mic (t)
= 3

P

tripolar (P ) · P = P
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where Mcc (t) is the standard parametrization of CC(P) and Mic (t) the standard parametrization
of IC(P). This amounts to use tripolar (P ) as ’line at infinity’ to normalize the columns in the
assertion Mcc + 2Mic ' P .

Proof. From (12.5), (12.7) and the obvious :

1×


 1

t2 + t+ 1



t (1 + t) p

(1 + t) q

−tr





+ 2×


 1/2

t2 + t+ 1




p

qt2

r (1 + t)
2





 = 3×


1

3



p

q

r







Construction 12.8.8. An inscribed conic can be generated as follows. Given the perspector P '
p : q : r, draw the cevians, obtain APBPCP and draw the cevian triangle. Draw an arbitrary line
∆ through B. Define Ba = (BPAP ) ∩∆ and Bc = (BPCP ) ∩∆. Then M = BaCP ∩BcAP is on
the conic. Thereafter, you can define ∆ by a point X on the circumcircle, and generate Ci as the
locus of M (parametrization by a turn).

Proof. Use X = x : y : z so that ∆ ' [−z, 0, x]. Thereafter :

Ba '




prx

pqz − qrx
zpr


 , Bc '




prx

qrx− pqz
zpr


 , M '




pr2x2

q (pz − rx)
2

z2p2r




One can check that M is on the conic and that t =
pz

rx
− 1.

Figure 12.5: How to generate an inscribed conic from its perspector.

Proposition 12.8.9. Points at infinity. An inscribed conic, with auxiliary point Q ' f : g : h,
perspector P ' p : q : r and center U ' u : v : w is an ellipse, a parabola or an hyperbola when
quantity

W 2 = fgh (f + g + h) =
pq + pr + rq

p2q2r2
= (u+ v + w) (v + w − u) (u+ v − w) (w + u− v)

is, respectively, positive, null or negative. The boundaries are the line at infinity and the sidelines
of ABC for Q, the Steiner circum-ellipse for P and the line at infinity and the sidelines of the
medial triangle for U . Moreover, its points at infinity have the following barycentrics :

M±∞ '




(h+ g)
2

fg − (f + g + h)h± 2
√
−W 2

fh− (f + g + h) g ∓ 2
√
−W 2



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Proof. Immediate computation for the M∞, followed by P = isotom (Q), U = anticomplem (Q).

Proposition 12.8.10. When center U is given, the perspectors Pi, Pc of the corresponding in-
and circum-conics are related by :

Pi ∗
b
Pc = U ; Pi = anticomplem (Pc)

When perspector P is given, the centers Ui, Uc are aligned with P = p : q : r together with
p2 : q2 : r2.

Proof. Direct inspection.

Proposition 12.8.11. Let P be a fixed point, not on the sidelines, and Q be a point moving point
on tripolar (P ). The envelope of all the lines ∆

.
= tripolar (Q) is the inconic IC (P ). Moreover,

the contact point of ∆ is T = Q ∗
b
Q÷

b
P .

Proof. This result has already be given. But now, this is the right place to prove it. Write :

P = p : q : r

Q = p (σ − τ) : q (τ − ρ) : r (ρ− σ)

∆ ' (1÷ p(σ − τ) : 1÷ q(τ − ρ) : 1÷ r(ρ− σ))

T = p (σ − τ)
2

: q (τ − ρ)
2

: r (ρ− σ)
2

and check that : ∆ · Adjoint
(
Ci
)
· t∆ = 0, ∆ · T = 0 and tT · Ci · T = 0 where Ci is given in

(12.6)

12.9 Poncelet porism
Definition 12.9.1. We will say that two conics Cin, Cout form a Poncelet configuration when it
exists a triangle A,B,C inscribed in Cout and circumscribed to Cin.
Proposition 12.9.2. Poncelet porism. Let A,B,C be the existing triangle, taken as reference,
and P ' p : q : r, U ' u : v : w the perspectors of the circumconic Cout and inconic Cin. Then any
point M ∈ Cout can be taken as the initial vertex of a poristic triangle.

The vertices and the contact points are given by

Mt ∈ Cout ' p :
q

t
:
−r

1 + t

Nt ∈ Cin ' u : v t2 : w (1 + t)
2

where parameters t = t1, t2, t3 are bound by the relations

t1 + t2 + t3 = µ

t1t2 + t2t3 + t3t1 = −µ− 1− (qu÷ pv)− (ru÷ pw)

t1 t2 t3 = (qu)÷ (pv)

In other words, parameter µ describes the poristic triangle as a whole, while the tj describe the
individual vertices and contact points.

Proof. Start from Mt,Ms ∈ Cout and write that MtMs is tangent to Cin. This gives an equation
in s where

s1 + s2 = −p vw t (1 + t) + q wu (1 + t) + r uv t

t (1 + t) pvw
; s1s2 =

q u

t p v

And now, compute the line

Ms;1 ∧ Ms;2 ' [qr, pr s1s2, pq (1 + s1 + s2 + s1s2)]

This gives M2M3 '
[

1

u
,

1

v t
,

−1

w (1 + t)

]
, which is indeed tangent to Cin, while the contact point is

N1 ' u : v t2 : w (1 + t)
2.

From now on, using t = t1 as main parameter would be an error: due to the symmetry, each
object would be described three times, increasing the degree of the expressions by a factor 3.
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Proposition 12.9.3. Synchronization: M ′
.
= M ÷

b
P and N ÷

b
U belong, respectively, to the

out-Steiner and in-Steiner conics. And then N ′ ∗
b
M ′ ∗

b
M ′ ' G =X(2).

Proposition 12.9.4. When both conics are circles, we have R(R − 2r) = d2 where R, r are both
radiuses and d the distance between the centers. When they are the circum- and the in-circle of
ABC then we have the so called Brisse Transform (2001):

N = isogon (M) ∗
b

isogon (M) ∗
b
X(7)

Proof. First part is the Euler’s formula, second part is the previous proposition.

12.10 Conic cross-ratios

Proposition 12.10.1. All the lines λ through a given point P form a linear projective family F .
Consider a transversal line D (i.e. a line that doesn’t go through P ). Then cross ratio remains
unchanged by application F ↪→ D, λ 7→ λ ∩D.

Proof. Obvious since the wedge operator is a linear transform λ 7→ λ ∧D: the parametrization is
preserved.

Proposition 12.10.2. Consider four fixed points A, B, C, U with no alignments and define the
moving cross-ratio of a point M in the plane as the cross-ratio of lines MA, MB, MC, MU . The
level lines of this function are the conics passing through A,B,C,U . Using barycentrics with respect
to ABC, we have the more precise statement: the level line of a given µ is the circumscribed conic
whose perspector is P ' −u : vµ : w (1− µ), on the tripolar of U = u : v : w.

Definition 12.10.3. Conic-cross-ratio. Consider a fixed proper conic C, and four points
A,B,C,U lying on this conic. Then the cross-ratio of lines MA, MB, MC, MU does not depends
upon the choice of the auxiliary point M as long as this point M remains on the conic. If we
consider C as a circumconic with perspector P = p : q : r wrt triangle ABC, we have :

cross_ratio (A,B,C,U) = µ when U '




(
µ2 − µ

)
p

(1− µ) q

µ r




Remark 12.10.4. In the complex plane, the quantity defined in Theorem 3.2.10 is nothing but the
usual cross-ratio, as computed from complex affixes. In order to be sure that, given four points on
a circle, the conic cross-ratio and the usual C cross-ratio are the same quantity, let us consider the
stereographic projection.

Definition 12.10.5. Stereographic projection. See Figure 12.6. Use cartesian coordinates.
The North and South points are (+1, 0) and (−1, 0).

Start from P (c, s). Define M (C, S) by doubling the rotation and T (0, t) by intersection of
SM with the y-axis. Apply Thales to similar triangles SOT and SKM , and Pythagoras to OHP .
This gives :

c2 + s2 = 1, (C, S) =
(
c2 − s2, 2cs

)
,
t

1
=

S

1 + C

and leads to t = s/c, proving that (SO, ST ) = (ON,OP ) and therefore that

cos 2ϑ =
1− t2
1 + t2

, sin 2ϑ =
2t

1 + t2

Moreover, circular cross-ratio between Mj points is equal to linear cross-ratio between Tj points
(this is the definition), while complex cross-ratio betweenMj points is equal to complex cross-ratio
between Tj points due to the homography :

z = (1 + i t)/(1− i t) ; t = i (1− z)/(1 + z)
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Figure 12.6: Stereographic projection

P IC center CC center

X1 X37 X9

X2 inSteiner 12.19 X2 circumSteiner X2

X3 X216 outMacBeath 12.11.3 X6

X4 orthic X6 X1249

X5 X233 X216

X6 Brocard 12.20 X39 circumcircle 13.4 X3

X7 incircle 13.5 X1 Soddy conic 12.14.1 X3160

X8 Mandart X9 X3161

X99 Kiepert parabola 15.5.3 IX523 ???
X190 Yff parabola IX514 ???
X264 inMacBeath 12.11.2 X5 ???
∞X523 X115 Kiepert RH 13.22.2 X115

X598 inLemoine12.2 X597 ???
X647 ??? Jerabek RH 12.22.12 X125

X650 ??? Feuerbach RH 12.22.13 X11

RH is rectangular hyperbola

Table 12.1: Some Inconics and Circumconics

12.11 Some in- and circum- conics

A list of specific in- and circum- conics is given in Table 12.1. Kiepert RH is studied at Brocard
Section.

Example 12.11.1. The Steiner ellipses (centers=perspector=X2) are what happen to both the
circum- and in-circle of an equilateral triangle when this triangle is transformed into an ordinary
triangle by an affinity. The Steiner circumellipse (S) is the isotomic conjugate of Lb and the isogonal
conjugate of the Lemoine axis. Since isog (Lb) is the circumcircle (C), the mapping X 7→ X ∗

b
X6

sends (S) onto (C). Steiner in-ellipse is the envelope of the line whose tripole is at infinity (more
about Steiner in-ellipse in Section 12.19).
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Example 12.11.2. The MacBeath-inconic was introduced as follows:

Lemma 1: Let O,H be the common points of a coaxal system of circles. Let a
variable circle of the system cut the line of centers at C. Let T be a point on the
circumference such that TC = k ∗OC, where k is a fixed ratio. Then the locus of T is
a conic with foci at O,H (Macbeath, 1949)

Its perspector is X(264), center X(5) and foci X(3) and X(4) . Its barycentric equation is :

∑ a4
(
−a2 + b2 + c2

)
x2

(c2 + a2 − b2) (a2 + b2 − c2)
− 2

∑ b2c2yz

b2 + c2 − a2

and this conic goes through X(I) for I =

339, 1312, 1313, 2967, 2968, 2969, 2970, 2971, 2972, 2973, 2974

(spoiler) imaginary foci are X(5)± 4iS X(523), on "the shortest cubic" Proposition 22.4.28.

Example 12.11.3. The MacBeath-circumconic , is the dual to the MacBeath-inconic. Its
perspector is X(3) and its center X(6). Its barycentric equation is :

a2(b2 + c2 − a2)yz + b2(c2 + a2 − b2)zx+ c2(a2 + b2 − c2)xy = 0

and it goes through X(I) for I =

110, 287, 648, 651, 677, 895, 1331, 1332, 1797, 1813, 1814, 1815

12.12 Cevian conics

Proposition 12.12.1. Cevian conic. For any points P = p : q : r and Q = u : v : w, not on
a sideline of ABC, the cevians of P and Q are on a same conic, whose equation in x : y : z is
conicev (P,Q) given by :

1

up
x2 +

1

qv
y2 +

1

rw
z2 −

(
1

qu
+

1

vp

)
yx−

(
1

ru
+

1

wp

)
zx−

(
1

rv
+

1

qw

)
zy = 0

conicev (P,Q) '




2 qr vw − (pv + uq) rw − (pw + ru) qv

− (pv + uq) rw 2 rp uw − (qw + rv) pu

− (pw + ru) qv − (qw + rv) pu 2 pq uv




Proof. Apply (x, y, z)→
[
x2, xy, y2, yz, z2, zx

]
to the six points and check that rank isn’t 6.

Example 12.12.2. Any inconic is a cevian conic : IC (P ) = conicev (P, P ). For example, the
incircle is IC (X7) = conicev (X7, X7).
A non trivial example is the nine-points circle, aka conicev (X2, X4).

Proposition 12.12.3. Assume that a conic C encounters the sidelines of ABC in six (real) points,
none of them being a vertex A,B,C. Three of these points are the cevians of some point P if and
only if :

m33m22m11 −m11m
2
23 −m22m

2
13 −m33m

2
12 − 2m13m23m12

= detM − 4m13m23m12 = 0

In this case, the remaining three intersections are the cevians of some point Q and both P, Q are
given by :

P,Q '




(
+m13m12 +m11m23 +m13

√
m2

12 −m22m11

)
/m11(

−m22m13 −m23m12 +m23

√
m2

12 −m22m11

)
/m22

−
√
m2

12 −m22m11




—– pldx : Translation of the Kimberling’s Glossary into barycentrics – vA2 —–



136 12.13. Direction of axes

Proof. Hypotheses are implying m11 6= 0 (A /∈ C) and m2
12 −m22m11 ≥ 0 (existence of intersec-

tions).

Exercise 12.12.4. The fourth common point F between cevian conics conicev (P,Q1) and conicev (P,Q2)
can be obtained from the tripolars of Q1, Q2. We have :

F ' anticomplem

(
X ÷

b
P

)
∗
b
X where

X
.
= tripolar (Q1) ∩ tripolar (Q2) = (Q1 ∧Q2) ∗

b
Q1 ∗

b
Q2

Exercise 12.12.5. When Q =X(2), then conicev (P,Q) contains also points (P +A) /2, etc
(de Villiers, 2006).

Proposition 12.12.6. For any points P = p : q : r and Q = u : v : w, not on a sideline of ABC,
the eight points ±p : ±q : ±r and ±u : ±v : ±w (i.e. P,Q and their anticevians) are on a same
conic, whose equation in x : y : z is conacev (P,Q) given by :

conacev (P,Q) '



g2r2 − h2q2 0 0

0 h2p2 − f2r2 0

0 0 f2q2 − g2p2




Proof. Straightforward computation. Formally, the coefficients are
[
f2 : g2 : h2

]
∧
[
p2 : q2 : r2

]
.

12.13 Direction of axes
Proposition 12.13.1. Let C be a conic, but not a circle, and γ an auxiliary circle. Consider, in
any order, the common points X1, X2, X3, X4 of C and γ. Then axes of C have the same directions

as bisectors of angle
(︷ ︸︸ ︷
X1X2, X3X4

)
.

Proof. Use rectangular Cartesian coordinates. Then C is y2 = 2px + qx2 and γ is (x− a)
2

+

(y − b)2
= r2. Substitution y2 = Y gives :

2 by = (1 + q)x2 + (2 p− 2 a)x+ b2 + a2 − r2 ; Y = 2px+ qx2

By substitution and reorganization :

2b

(
y2 − y1

x2 − x1
+
y4 − y3

x4 − x3

)
= 4 (p− a) + (1 + q) (x1 + x2 + x3 + x4)

But the fourth degree equation 0 = Y − y2 = (1 + q)
2
x4 − 4 (1 + q) (a− p)x3 · · · leads to ∑xi =

4 (a− p) / (1 + q). This proves that lines X1X2 and X3X4 are symmetric wrt the axes and the
conclusion follows. By the way, it has been proven that points Xi can be sorted in any order
without changing the result.

Definition 12.13.2. Gudulic point. The gudulic point of a circumconic is defined as its fourth
intersection with the circumcircle. Its barycentrics are rational wrt the barycentrics of the per-
spector.

Gu = isotom
(
b2r − c2q : c2p− a2r : a2q − b2p

)

= tripole (P ∧X (6)) (12.8)

Definition 12.13.3. Gudulic point (general method). The former proposition shows that any
pair of orthogonal directions can be specified by giving a point M on the circumcircle Γ of ABC

such that the bisectors of
(︷ ︸︸ ︷
BC, AM

)
have the required directions. This method was firstly used

by Lemoine (1900) who called it "the point M method". In order to have a more specific name,
the expression "gudulic point" was coined in a discussion at www.les-mathematiques.net. May
be in honor of St Gudula of Brussels.
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Proposition 12.13.4. When C is a circumconic, but not the circumcircle itself, directions of axes

are given by the bisectors of
(︷ ︸︸ ︷
BC, AGu

)
where Gu is the fourth common point of C and Γ. When

C is not a circumconic, it exists nevertheless an unique point Gu ∈ Γ so that axes of C have the

same directions as the bisectors of
(︷ ︸︸ ︷
BC, AGu

)
. We have the formulas :

C '



m11 m12 m13

m12 m22 m23

m13 m23 m33


 7→ Gu '




1

(m11 − 2m12 +m22) b2 − (m11 − 2m13 +m33) c2
1

(m22 − 2m23 +m33) c2 − (m11 − 2m12 +m22) a2

1

(m11 − 2m13 +m33) a2 − (m22 − 2m23 +m33) b2




CC (P ) 7→




1/
(
rb2 − qc2

)

1/
(
pc2 − ra2

)

1/
(
qa2 − pb2

)


 ; IC (U) 7→




1/
(
w2b2 − v2c2

)

1/
(
u2c2 − w2a2

)

1/
(
v2a2 − u2b2

)




Proof. First part is the preceding proposition. For the second part, we have :

tan

(︷ ︸︸ ︷
BC, BU

)
+ tan

(︷ ︸︸ ︷
AGu, BU

)
= 0

tan

(︷ ︸︸ ︷
BU1, BU

)
+ tan

(︷ ︸︸ ︷
BU2, BU

)
= 0

where U1, U2 are the points at infinity of the conic, U is the unknown direction of either axis and
Gu is the required gudulic point. We use the usual parametrization of points at infinity (using
t, t1, t2, s) to describe U,U1, U2, isogon (Gu). We extract t1 + t2 and t1t2 from the very equation of
the conic, and substitute. This gives a quadratic equation in t alone, and a linear equation in s,
with t as parameter. Eliminating leads to s and thus to Gu.

Proposition 12.13.5. (Spoiler) Let α, β, γ, δ be four turns on the unit circle. Then bisectors of
the two lines obtained by pairing these four points have clinant τ2 where τ4 = αβγδ.

Proof. Write that tan(AB,OT ) + tan(CD,OT ) = 0, and factor the numerator.

12.14 Focuses of a conic

Definition 12.14.1. A point F is a focus for a curve when the isotropic lines from this point are
tangent to the curve.

Proposition 12.14.2. The geometric focuses of a conic are examples of the preceding definition.
But a conic has, in the general case, four analytical focuses : the two geometrical ones, and two
extra focuses which stay on the other axis and are not visible

Proof. Let us consider ellipse x2/a2 + y2/b2 = 1 and isotropic line (x− x0) + i (y − y0) = 0. Their
intersection is given by a second degree equation whose discriminant is (x0 + i y0)

2−
(
a2 − b2

)
= 0.

It vanishes when y0 = 0, x0 = ±f (as usual) but also when x0 = 0, y0 = ±i f .

Proposition 12.14.3. (spoiler) When using the Morley space to compute the focuses, one equation
applies to map Z : T and the other one applies to map Z : T. When going back to the Morley
space, there are four ways of pairing the two "focuses" of the first map with the two "focuses" of
the second map.

Proof. When, for a visible conic, the first map says z = u±v√w, the second map says ζ = u±v√w
(with w ∈ R). But the conjugate of

√
w is either

√
w or −√w, depending of the sign of the real

number w.
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Proposition 12.14.4. Let be given two points F1 ' f1 : g1 : h1 and F2 ' f2 : g2 : h2. All
the conics that admit F1, F2 as foci form a tangential pencil. This pencil is generated by (1) the
tangential conic {F1, F2} of all the lines ∆ ' [u, v, w] through F1 or F2, whose equation is :

(f1u+ g1v + h1w) (f2u+ g2v + h2w)

and (2) the tangential conic {Ω+, Ω−} of all the isotropic lines (through one or another umbilic),
whose equation is : ∆ · Mb · t∆.

Proof. Giving the focuses gives four lines that are tangent to the conic.

Remark 12.14.5. The "Joint Orthoptic Circle" of two confocal conics is now described at 12.25.
Remark 12.14.6. Non parabolic inconics are considered at 12.18, while inscribed parabola and
circumscribed parabola are considered at Section 12.21

12.14.1 Soddy Conic
Definition 12.14.7. The Soddy line is the line that goes through X(1) [incircle], X(7) [Gergonne],
X(20) [Longchamps], 77, 170, X(175) and X(176) [Soddy focuses], 269, 279, 347, 390, 481, 482, 516
[infinity] ... 360 ETC points (in 2024).

Definition 12.14.8. The Soddy conic is the circumconic whose perspector is X(7).

Proposition 12.14.9. Center is X(3160). Gudulic point is X(927). Direction of axes are X(516)
and X(514). The foci are X(175) and X(176). This curve is bi-tangent with the polar circle (along
the [a, b, c] line).

Proof. Foci can be obtained by the Plucker method. This leads to a fourth degree equation, that
factors easily. For the contact, one can check that:

Soddy = polar_circle + (ax+ by + cz)
2

12.15 Heptagonal triangle
Remark 12.15.1. I am not sure about the right place of this section in this Glossary. For the
moment, this section rather deals with conics and focuses.

Definition 12.15.2. Symbols δ, τ are intended to be unevaluated, inert variables, while quantities
δ̂, τ̂ are defined as "the first root after z = 1" of polynomials δ7 − 1 and τ28 − 1. Introducing the
algebraic number δ̂ to study the heptagon is self-explanatory. And then τ̂ is introduced in order
to deal with surds of surds. As a result

δ = δ̂
.
= RootOf

(
Z6 + Z5 + Z4 + Z3 + Z2 + Z + 1

)
≈0.6235 + 0.7818i

τ = τ̂
.
= RootOf

(
Z12 − Z10 + Z8 − Z6 + Z4 − Z2 + 1

)
≈0.9749 + 0.2225i

Moreover, companion matrices of these polynomials will be noted δ and τ .

Theorem 12.15.3. Surd
√

7 belongs to Q (δ, i) and, therefore, belongs to Q (τ). Moreover,

rac7δ
.
= −i

(
2δ4 + 2δ2 + 2δ + 1

)
=

√
7

rac7τ
.
= −2τ11 + 2τ9 − τ7 + 2τ =

√
7

Proof. Let C be the conic through the points 1, δ, δ2, δ4 and Z. Then
〈
Mz | C

〉
= 0 is the

equation of the RH through 1, δ, δ2, δ4. Its matrix is

H '




2 −1−K 0

−1−K −2 K

0 K 2




where K .
= δ + δ2 + δ4. It happens that K =

(
−1 + i

√
7
)
/2. This can be seen by obtaining

7I12 when substituting δ = δ into (−i (2K + 1))
2... and obtaining a non negative value when

substituting δ by an approximate value before squaring.
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Proposition 12.15.4. Algebraic number δ is constructible by circles and conics.

Proof. This result is attributed to Archimedes (Hogendijk, 1984). Quantity
√

7 is constructible.
Vertices of H are

(
1±
√

2 + i
√

7
)
/4, while the center of H is

(
1 + i

√
7
)
/4 and can be used to

construct the replicas of z0 = 1 (axes are directed along X,Y axes).

Proposition 12.15.5. Sidelength a, b, c don’t belong to Q (δ). Nevertheless, one has:

a2 =δ5 + δ4 + δ3 + δ2 + 3 b2 =− δ4 − δ3 + 2 c2 =− δ5 − δ2 + 2

a =− τ9 + τ5 b =− τ11 + τ9 − τ7 + τ5 − τ3 + 2τ c =− τ11 + τ3

together with S =
√

7/4.

Proof. Direct computation.

Exercise 12.15.6. Consider the Kiepert RH, which goes throughABCGH (see Definition 13.22.1).
Compute the focuses –they belong to Q (τ). One of them is on the circumcirle, the other on the
Euler line.

Exercise 12.15.7. Consider the conic which goes through A,B,C,G,O. Compute the focuses
–they belong to Q (τ). What can be said about the circle [F1, F2] ?

12.16 PPPP, the four points pencil
Definition 12.16.1. The conics C that are going through four fixed pointsM1 = A,M2 = B,M3 =
C,M0 = D form a linear pencil, called a PPPP, i.e. a "four points pencil".

Notation 12.16.2. Using triangle ABC as barycentric basis, the fourth point is described as 1/p :
1/q : 1/r while the pencil will be parametrized by E∗ ' 1 : t : −1− t ∈ Lb, i.e. by E ' a2 : b2/t :
−c2/ (1 + t) – the gudulic point of C (see (12.8)).

Proposition 12.16.3. The matrix of C, the ABCDE conic, is



0 c2
(
b2q − a2pt

)
−b2

(
a2p (1 + t) + c2r

)

c2
(
b2q − a2pt

)
0 a2

(
b2q (1 + t) + c2rt

)

−b2
(
a2p (1 + t) + c2r

)
a2
(
b2q (1 + t) + c2rt

)
0




The tangents at ABC determine a trigone. Let TP .
= PaPbPc be the corresponding triangle. Then

Pa ' a2
(
b2q (1 + t) + c2rt

)
: b2

(
a2p (1 + t) + c2r

)
: c2

(
a2pt− b2q

)

Triangle TP is perspective with T0 = ABC, perspector P , and with TG(the midpoints triangle),
perspector U . Point P is the usual perspector of C when seen as an ABC circumconic, while U is
the center of C. The locus of P when E ∈ Γ is the tripolar of D, while the locus of U is the conic
G through the six midpoints of quadrangle ABCD.

Proof. One has loc (P ) = [p, q, r] and loc (U) =



−2 p p+ q p+ r

p+ q −2 q q + r

p+ r q + r −2 r


.

Proposition 12.16.4. Let Na = BC ∩DA, etc be the diagonal points of quadrangle ABCD. All
three are on G. The locus of the foci is a sixth degree algebraic curve, say K6, with six double
points: the three Nj and the three Rjwhere

Na '




0

r

q


 ; Ra '




2 rq
(
a2p+ Sb r + Sc q

)

r
(
p2a2 − q2b2 + c2r2 + 2Sb rp

)

q
(
p2a2 + q2b2 − c2r2 + 2Sc qp

)




Triangles T0 and TN are perspective (at D), while T0 and TR are perspective at

KR '



qr
(
2Sa rq − p2a2 + q2b2 + c2r2

)

rp
(
2Sb rp+ p2a2 − q2b2 + c2r2

)

pq
(
2Sc qp+ p2a2 + q2b2 − c2r2

)



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Moreover, Ra belongs to line NbNc, so that triangles TN and TR are perspective at:

K ' crossmul (P,KR)

'




(
a2p+ Sb r + Sc q

) (
2Sa rq − p2a2 + q2b2 + c2r2

)
(
b2q + Sc p+ Sa r

) (
2Sb rp+ p2a2 − q2b2 + c2r2

)
(
c2r + Sa q + Sb p

) (
2Sc qp+ p2a2 + q2b2 − c2r2

)




Proof. Direct computation. Moreover, one has Ra ∗
b
Rb ∗

b
Rc ' K ∗

b
KR ∗

b
D.

12.17 FF, the focal tangential pencil
Definition 12.17.1. All of the tangential conics that share the same foci (homofocal conics) form
a linear pencil. We will use B,C to note the foci, and A for a specific point (on the punctual
conic).

Proposition 12.17.2. The FF pencil is generated by hypA∗ and lipA∗ which are, respectively,
the hyperbola and the ellipse through A. One has:

hypA '




0 2 c (b− c) 2 b (c− b)
2 c (b− c) a2 − (b− c)2 −a2 − (b− c)2

2 b (c− b) −a2 − (b− c)2
a2 − (b− c)2


 (12.9)

lipA '




0 2 c (b+ c) 2 b (b+ c)

2 c (b+ c) (b+ c)
2 − a2 a2 + (b+ c)

2

2 b (b+ c) a2 + (b+ c)
2

(b+ c)
2 − a2




Proof. The four isotropic tangents provide four equations implying the matrix C∗ . Taking the
adjoint matrix of the result and saying that A ∈ C leads to a second degree equation, which provides
two solutions (as a reminder of the fact that the set of the C is not a linear pencil).

Proposition 12.17.3. Tangent at A to hypA is the internal bisector (through I0, Ia), while the
tangent to lipA is the external one (through Ib, Ic). Moreover (spoiler !) the (12.16) formulas are
giving:

σ, π, f4 =
(b− c)2

2
− a2

4
,

−S2 (b− c)2

(b+ c− a) (b+ c+ a)
,
a4

16

σ, π, f4 =
(b+ c)

2

2
− a2

4
,

+S2 (b+ c)
2

(a+ b− c) (a+ c− b) ,
a4

16

Proof. Obvious computations. Moreover, the value of f4 shouldn’t be a surprise, while the signum
of π characterizes beyond any doubt which one is the hyperbola and which one is the ellipse among
this pair of conics.

12.18 Focuses of an inconic

Proposition 12.18.1. Let F = p : q : r be a point not lying on the sidelines. As in Figure 12.8,
we note Fa, Fb, Fc and F ′a, F ′b, F

′
c the projections and the reflections of F about the sidelines ; G

the isogonal conjugate of F , ω = (F +G) /2 and Pa = FG′a ∩ F ′aG, etc. Then points Pa, Pb, Pc
are the cevians of P = (isotom ◦ anticomplem) (ω), and are the contact points of C .

= inconic (P ).
This conic admits ω as center and F, G as geometrical focuses. Moreover circle F ′aF ′bF

′
c, centered

at G is the circular directrix of this conic wrt focus F while circle FaFbFcGaGbGc (the common
pedal circle of F and G) is the principal circle of C (tangent at major axis).

When either F or G is at infinity, the other is on the circumcircle, P is on the Steiner circum-
conic, and C is a parabola.
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P F1 F2 P F1 F2 P F1 F2 P F1 F2 P F1 F2

2 2239162 39163 4555 900 901 18811 8 56 34393 102 515 35172 9111 9055

7 1 1 4569 934 3900 18812 10 58 34410 20 64 35174 2222 3738

13 13 15 4577 826 827 18813 17 61 34413 40 84 35179 1296 1499

14 14 16 4586 824 825 18814 18 62 35136 3565 3566 35181 4160 8691

69 46357 46358 4597 4588 4777 18815 36 80 35137 7927 7953 35510 42411 42412

80 39150 39151 5641 542 842 18816 104 517 35138 3906 11636 39626 39624 39625

99 110 523 6189 1380 3414 18817 186 265 35139 476 526 41072 30664 30665

190 101 514 6190 1379 3413 18818 187 671 35140 1297 1503 42371 688 689

264 3 4 6528 107 520 18819 371 485 35141 17768 28471 43091 530 2378

290 98 511 6540 4977 8701 18820 372 486 35142 3563 3564 43092 531 2379

598 2 6 6606 6362 ? 18821 528 840 35143 35101 35105 43093 674 675

648 112 525 6613 42337 ? 18822 537 2382 35145 2249 8680 43094 702 703

664 109 522 6635 6550 6551 18823 543 843 35147 2703 2787 43095 716 717

666 918 919 6648 3910 8687 18824 696 697 35148 2702 2786 43097 752 753

670 99 512 9487 9136 ? 18825 712 713 35149 2708 2792 43099 760 761

671 111 524 10512 23 67 18827 740 741 35150 2700 2784 46132 788 789

886 888 9150 10604 25 69 18830 932 4083 35151 2699 2783 46133 912 915

889 891 898 11117 532 2380 18831 933 6368 35152 2711 2795 46134 924 925

892 690 691 11118 533 2381 23895 5995 23870 35156 1290 8674 46135 926 927

903 106 519 14727 42341 ? 23896 5994 23871 35157 6366 14733 46136 952 953

1494 30 74 14970 732 733 32036 16806 23872 35159 35104 35108 46137 971 972

2481 105 518 15164 1113 2574 32037 16807 23873 35162 17770 28482 46138 1141 1154

2966 2715 2799 15165 1114 2575 32038 23880 32693 35164 2717 2801 46139 930 1510

3225 698 699 18026 108 521 32040 26716 ? 35168 545 2384 46142 2698 2782

3227 536 739 18810 7 55 32041 4762 8693 35171 1308 3887 46143 2705 2789

Figure 12.7: Inconics: some P, F1, F2

—– pldx : Translation of the Kimberling’s Glossary into barycentrics – vA2 —–
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Figure 12.8: Focus of an inconic

Proof. One obtains easily :

G′a = −a
4

p
:
Sca

2

p
+
a2b2

q
:
Sba

2

p
+
a2c2

r

leading to the symmetric expression :

|F ′aG|
2

=

(
c2q2 + 2Saqr + b2r2

) (
a2r2 + 2Sbrp+ c2p2

) (
b2p2 + 2Scpq + a2q2

)

(r + q + p)
2

(a2qr + b2pr + c2pq)
2

proving that γ .
= F ′aF

′
bF
′
c is centered at G. When P is inside ABC, we can define an ellipse C

by focus F and circular directrix γ. We have Pa ∈ C since |FPa| = |F ′aPa|. Moreover BC is
the bisector of (PaF, PaF

′
a), again by symmetry. Therefore C is the inscribed conic tangent at

Pa, Pb, Pc and we have :

ω '




(
rb2 + qc2

)
p2 + (2 p+ q + r) qra2

(
pc2 + ra2

)
q2 + (p+ 2 q + r) rpb2(

qa2 + pb2
)
r2 + (p+ q + 2 r) pqc2


 ; P '




rq

q2c2 + 2Sarq + r2b2

rp

c2p2 + 2Sbrp+ a2r2

qp

b2p2 + 2Scqp+ q2a2




When P is outside ABC, the simplest method is to revert the process and define P , and therefore
C, using the given formula and, thereafter, check that lines FΩ± are tangents to C.
Remark 12.18.2. When substituting F = p : q : r by an umbilic Ω±, the ω formula gives 0 : 0 : 0.
Therefore, umbilics are expected to appear as artifacts when trying to revert the ω formula to
obtain the foci.
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P ω F G FG HK nom

2 2 see 12.19 Steiner

7 1 1 1 X1 X1 inscrit

598 597 2 6 X597±X524 X597± i

4S
X1499 Lemoine

264 5 4 3 X5±X30 X5± i4S X523 MacBeath

6 39 ω+ ω− X39±X512 X39± i

4S
X511 Brocard

80 44 X44±
√

3

4S
X517 X44± i

√
3X513

673 3008 X3008±W X514 X3008± i

4S
W X516

694 3229 X3229±W X512 X3229± i

4S
W X511

Table 12.2: Perspector and focuses of some in-conics

Remark 12.18.3. The Moebius-Steiner-Cremona transform (Section 10.6) provides another point
of view... but computations aren’t easier (nor worse).

Proposition 12.18.4. The focus of an inconic can be obtained from the perspector by two succes-
sive second degree equations (ruler and compass construction). Let P = p : q : r be the perspector.
Then the four focuses can be written as :

Fi '




p (r + q) +
√
K

q (r + p) + t
√
K

r (q + p)− (1 + t)
√
K




Then t is homographic in K, while K is solution of a second degree equation. The converse is true :
K is homographic in t, while t is solution of a second degree equation (with same discriminant).
Obviously, the two solutions in t lead to orthogonal directions (orthopoints at infinity)

Proof. Straightforward elimination.

Example 12.18.5. Table 12.2 gives some examples of perspectors and focuses. In this table,
expressions like X5 ±X30 are not "up to a proportionality factor", but are addressing the usual
simplified values. All expressions are "centered" at the center, the ± term being at infinity.
Imaginary focuses associated with perspector X(80) have a very simple expression, namely a : bj :
cj2 and a : bj2 : cj where j is the third of a full turn.

W673 =
√
a2 + c2 + b2 − 2 bc− 2 ac− 2 ba

W694 = a2b2c2

√(
1

a
+

1

b
+

1

c

)(
1

a
+

1

b
− 1

c

)(
1

a
− 1

b
+

1

c

)(
−1

a
+

1

b
+

1

c

)

Proposition 12.18.6. Figure 12.7 gives some triples (P, F1, F2) where P is the perspector of an
inscribed conic while F1, F2 are the corresponding focuses (isogonal conjugate of each other).

Proof. For each point of the Kimberling’s database taken as F1, compute F2 = isogon(F1) and see
if the corresponding P is also on the database.
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144 12.19. Focuses of the Steiner inconic

12.19 Focuses of the Steiner inconic

Remark 12.19.1. While having the simplest equation, this inconic rather illustrates that going from
perspector to focuses is a hard road to follow !

Definition 12.19.2. The Steiner in-ellipse S is what happen to the incircle of an equilateral
triangle when this triangle is transformed into an ordinary triangle by an affinity. One has center
=perspector = X(2). Moreover, the Steiner inconic is the envelope of the lines whose tripoles are
at infinity.

Lemma 12.19.3. Conic S goes through (B + C) /2, etc and therefore goes also throught (4A+B + C) /6.

12.19.1 Using barycentrics

Notation 12.19.4. In this section, the following radicals will be used :

W =
√
a4 + b4 + c4 − a2b2 − b2c2 − c2a2

Wa =

√
(a2 +W )

2 − b2c2 ; Wb =

√
(b2 +W )

2 − c2a2 ; Wc =

√
(c2 +W )

2 − a2b2

Proposition 12.19.5. Equation of the Steiner inconic S is :

x2 + y2 + z2 − 2xy − 2yz − 2zx = (x, y, z)




+1 −1 −1

−1 +1 −1

−1 −1 +1







x

y

z


 = 0

When point P ' p : q : r is inside the medial triangle, then Q ' p2 : q2 : r2 is inside S. Moreover
point Ma

.
= (q + r)

2
: q2 : r2 is the intersection of S and segment [AQ].

Proof. Direct computation.

Exercise 12.19.6. Applying the mksigpi formulas, we have:

â =

√
Sω +W

18
, b̂ =

√
Sω −W

18
, f =

√
W

9

Proposition 12.19.7. The four radicals W,Wj are real. Moreover, assuming c > a, c > b, we
have :

(
c2 − b2

)
Wb = WWa +

(
b2 − a2

)
Wa

Wc = Wa +Wb

Proof. For each of the Wj : let Ŵa =

√
(a2 −W )

2 − b2c2. Then (1) W 2
a , Ŵa

2
are real ; (2)

W 2
a × Ŵa

2
= −16S2

(
b2 − c2

)2
< 0 ; (3) W 2

a > Ŵa

2
. Therefore W 2

a > 0 and, since Wa is real, we
can assume that Wa ≥ 0.

Consider now the expression Q1
.
=

(Wa +Wb +Wc) (−Wa +Wb +Wc) (Wa −Wb +Wc) (Wa +Wb −Wc)

Depending only on the W 2
i , quantity Q is intended to be rational in W . Substituting the value of

W 2, one obtains Q = 0 so that one of the Wi is the sum of the other two. If c is the greatest side,
this leads to Wc = Wa +Wb.

In the same manner, the product Q2
.
=

((
c2 − b2

)
Wc +

(
c2 − a2 +W

)
Wa

) ((
c2 − b2

)
Wc −

(
c2 − a2 +W

)
Wa

)

simplifies to 0. If c is the greatest side, the first factor cannot vanish. And the Wb formula results
using Wc = Wa +Wb.
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Lemma 12.19.8. Points X(3413) and and X(3414), given by



(
b2 − c2

) (
a4 − b2c2 − a2W

)
(
c2 − a2

) (
b4 − a2c2 − b2W

)
(
a2 − b2

) (
c4 − a2b2 − c2W

)


 , =




(
b2 − c2

) (
a4 − b2c2 + a2W

)
(
c2 − a2

) (
b4 − a2c2 + b2W

)
(
a2 − b2

) (
c4 − a2b2 + c2W

)




belong to Lb and are orthopoints of each other.

Proposition 12.19.9. The foci of the Steiner inconic are X(39162)...X(39165). The visible one’s
are given by F± = X2 ±X3413/WQ where X(2)=1 : 1 : 1, X(3413) is as given just above while

WQ
.
=
√

2a2b2c2W 3 − 16 (a4b4 + b4c4 + c4a4)S2 + a2b2c2 (a2b2 + b2c2 + c2a2) (a2 + b2 + c2)

Proof. Isotropic lines through a focus are tangent to the curve. Write that FΩ+ is tangent to C
and separate real and imaginary parts. Eliminate one of the coordinates of F from this system. It
remains a fourth degree equation (E) giving the two real and two imaginary foci. The discriminant
of this equation contains W 4 in factor. Using this indication, we factorize (E) over R (W ) and
obtain :

(
c2v2 −

(
2wa2 + 2wW

)
v + b2w2

) (
c2v2 −

(
2wa2 − 2wW

)
v + b2w2

)
= 0

The discriminants of these second degree factors are W 2
a and

(
Ŵa

)2

. And we obtain the non
symmetric expression :

F+ '




(
W + b2

) (
b2 − c2

)
+
(
W + b2 − a2

)
Wa(

b2 − c2
) (
Wa +W + a2

)
(
b2 − c2

)
c2




In order to obtain a more symmetric expression, one can compute U = Lb ∧ (F+ ∧ F−), i.e. the
point at infinity of the focal line. This point happens to be X3413, the first Kiepert infinity point.
The existence of WQ is obvious since X2 is the middle of the foci. A straightforward computation
leads to the given formula.

Figure 12.9: The Steiner in ellipse

Remark 12.19.10. Figure 12.9 summarizes these properties. The hyperbola is Kiepert RH, the
Tarry point X(98) is the gudulic point of the KRH axes, while it’s circumcircle antipode, the Steiner
point X(99), is the gudulic point of both the KRH asymptotes and the Steiner axes. Moreover WQ

is the Vassillia’s radical in LMN, while the ETC radical at X(39162) is 4S (2Sω −W )
∏

3

(
b2 − c2

)
÷

WQ
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12.19.2 Using Morley affixes
Lemma 12.19.11. Using Morley affixes, the tangential equation of the Steiner inconic is :

C∗z '




2σ2σ3 2σ1σ3 σ2σ1 − 3σ3

2σ1σ3 6σ3 2σ2

σ2σ1 − 3σ3 2σ2 2σ1




Proof. Start from barycentric equation and transmute. The ponctual equation is not so handy,
and we know that the adjoint matrix will look better.

Proposition 12.19.12 (Marden’s theorem). (1945). When the vertices aren’t aligned, the foci of
the Steiner in-ellipse relative to the triangle ABC are the roots of the derivative polynomial, i.e.
the roots of ∂

∂Z (Z− α) (Z− β) (Z− γ). Therefore, the four foci are given by :

Fj '




σ1 ±W0Wf

3
σ2

σ3
± Wg

W0


 where W0 =

√
σ3, Wf =

√
σ2

1 − 3σ2

σ3
, Wg =

√
σ2

2 − 3σ1σ3

σ3

Proof. Write that isotropic lines Ω±Fj are tangent to the ellipse. The only difficulty is a sound
management of the conjugacies: the conjugate of W0 is 1/W0, while Wf , Wg are the conjugate of
each other. From all the four possibilities for the ±, two of them lead to visible points (the real
focuses), the other two lead to non visible points (the analytical focuses).

12.19.3 Using one of the focuses
Remark 12.19.13. The main result at 12.19.9 is mostly that going from a, b, c to focuses is a hard
road. In this subsection, the road from focuses to a, b, c will be examinated.

Proposition 12.19.14. Let F1 ' p : q : r be the first focus of the Steiner inconic. Then



a2

b2

c2


 '




p (−p+ 2q + 2r)

q (+2p− q + 2r)

r (+2p+ 2q − r)




As it should be, the other focus is F2 ' a2/p : b2/q : c2/r, so that F1 + F2 = 2X(2).

Proof. As said at 12.19.9, isotropic lines through the focus f : g : h are tangent to the curve. Write
that FΩ+ is tangent to C and separate real and imaginary parts. And now, solve in a, b, c instead
of solving in f : g : h.

12.20 The Brocard ellipse, aka the K-ellipse
Remark 12.20.1. Since the K-circumconic, i.e. CC(X(6)), is nothing but the circumcircle, the name
"K-ellipse" applies only to the K-inconic.

1. Equation of the K-ellipse is :

x2

a4
+
y2

b4
+
z2

c4
− 2

xy

a2b2
− 2

yz

b2c2
− 2

zx

a2c2
= 0

perspector is X(6)= a2 : b2 : c2, center U is X(39) = a2
(
b2 + c2

)
, etc.

2. Draw the circumcircle of the contact points AKBKCK and obtain :

a2yz + b2xz + xyc2 − (x+ y + z)

∑
xb2c2

(
b4 + c4 + a2b2 + b2c2 + a2c2 − a4

)

2 (b2 + c2) (a2 + c2) (a2 + b2)
= 0

3. Compute the fourth intersection of this circle with the conic and obtain :

Q = a2
(
b2 − c2

)2 (
a4 + a2b2 + a2c2 − b4 − b2c2 − c4

)2
, etc
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Figure 12.10: The K-ellipse

4. The axes are the lines through the center that are parallel to the bisectors of
(︷ ︸︸ ︷
AKCK , BKQ

)
.

Therefore, compute :

T = tan

(︷ ︸︸ ︷
AKCK , AKBK

)

t = tan

(︷ ︸︸ ︷
AKCK , UV

)

where V ' ρ : 1 : −1 − ρ is an unknown point at infinity, substitute into T = 2t/
(
1− t2

)

and solve. Solutions are rational, leading to V1 = a2
(
b2 − c2

)
, etc =X(512) and V2 =

a2
(
a2b2 + a2c2 − b4 − c4

)
, etc =X(511).

5. Compute the axes as U ∧ V1 =
(
a4 − b2c2

)
÷ a2, etc and U ∧ V2 =

(
b2 − c2

)
÷ a2, etc : the

Brocard axis X(3)X(6).
Having the perspector on an axis is special.

6. The sideline AC and the perpendicular to AC through BK cut the first axis in P1, Q1 and
the second in P2, Q2. The idea is to draw circle having diameter [P1, Q1], then the circle
centered at U orthogonal to the former and obtain the focuses by intersection with the axis.

7. More simpler, write Fi = µP1+(1− µ)Q1 and find µ such that
(
UFi/UP1

)
÷
(
UFi/UQ1

)
= 1.

These ratios involve vectors that all have the same direction, and no radicals are appearing.
In our special case, the equation factors, leading to a well-known result (the Brocard points) :

F1 = a2b2 : b2c2 : c2a2 ; F2 = c2a2 : a2b2 : b2c2

8. Proceed the same way with the other axis. Obtain an equation that doesn’t factors directly,
but whose discriminant splits nevertheless when using the Heron formula (7.8). Finally,

F3, F4 =




4
(
a2b2 + a2c2

)
S + i

(
b4 + c4 − a2c2 − a2b2

)
a2

4
(
b2c2 + b2a2

)
S + i

(
a4 + c4 − a2b2 − b2c2

)
b2

4
(
c2a2 + c2b2

)
S + i

(
a4 + b4 − a2c2 − b2c2

)
c2




9. To summarize, F1, F2 =X(39)±X(512), F3, F4 =X(39)±i X(511)/4S. As it should be, the
focal distance (from center to a focus) is the same since X(512) and X(511)/4S are obtained
by a rotation (in space

−→V ).
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12.21 Parabola

For the sake of completeness, let us recall the definition.

Definition 12.21.1. A parabola is a conic tangent to the infinity line. Two parallel lines make a
non proper parabola. The union of line at infinity and another line is ... some kind of circle rather
than a "special special" parabola.

Corollary 12.21.2. The conic defined by matrix C is a parabola when

Lb ·Adjoint
(
C
)
· tLb = 0

Definition 12.21.3. The directrix of a parabola is the polar line of the focus.

Remark 12.21.4. This directrix is also the orthoptic cycle of the parabola. See Section 12.25.

12.21.1 Inscribed parabola

Proposition 12.21.5. The focus F of an inscribed parabola is the isogonal conjugate of its point at
infinity U (and is therefore on the circumcircle), while the perspector P is the isotomic conjugate of
U (and is therefore on the Steiner circumconic). Moreover line FP goes through X(99), the fourth
intersection of the circumcircle and the outSteiner ellipse. Finally, the directrix is the Steiner line
of F and therefore goes through the orthocenter H =X(4).

Proof. The first part is from Proposition 12.18.1, the last one is detailed at Section 12.25. And
the X(99) part is easy to compute.

12.21.2 Circumscribed parabola

Remark 12.21.6. Let T0 = u : v : w be the barycentrics of the point at infinity of a circumparabola.
Then, from Proposition 12.22.9, its perspector is P = u2 : v2 : w2 and lies on the inSteiner ellipse.

Remark 12.21.7. The perspectors of the two circumparabolas through the four points A,B,C,D
are the intersection of tripolar D and the inSteiner conic.

Proposition 12.21.8. Using Morley affixes, let κ : 0 : 1 be the point at infinity of a given
circumparabola. Then equation, perspector and focus are:

Cz '




2σ3 −κ2 − σ1σ3 −2σ3κ

−κ2 − σ1σ3 2σ1κ
2 + 4σ3κ+ 2σ2σ3 −σ2κ

2 − σ2
3

−2σ3κ −σ2κ
2 − σ2

3 2σ3κ
2




P '




(
3σ2 − 4σ2

1

σ3
+
σ1σ

2
2

σ2
3

)
κ+

4σ2
2

σ3
− 12σ1 + (σ2σ1 − 9σ3)

1

κ(
2σ2

2

σ2
3

− 6
σ1

σ3

)
κ+ 2

σ2σ1

σ3
− 18 +

(
2σ2

1 − 6σ2

) 1

κ(
σ2σ1

σ2
3

− 9

σ3

)
κ+

4σ2
1 − 12σ2

σ3
+

(
3σ1 +

σ2
1σ2 − 4σ2

2

σ3

)
1

κ




F '




(
4σ1

σ3
− σ2

2

σ2
3

)
κ2 + 8κ+ 2σ2 −

σ2
3

κ2

4

(
1

σ3
κ2 +

σ2

σ3
κ+ σ1 + σ3

1

κ

)

−1

σ2
3

κ3 +
2σ1

σ3
κ+ 8 +

(
4σ2 − σ2

1

) 1

κ




Proof. Use point κ+ i κ h with h→ 0 as the fifth point of the conic and compute the determinant.
Thereafter, compute the polar triangle and its perspector. Finalize by writing that Ω ± F are
tangent to the conic.
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Proposition 12.21.9. The locus of the foci of all the circumscribed parabola is a circular quintic.
Singular focus (not on the curve) is X(143), the nine points center of the orthic triangle. Other
asymptotes are through points whose barycentrics are respectively, 2 : 1 : 1, 1 : 2 : 1, 1 : 1 : 2. Its
equation is :

1024σ3
3 ZZ

(
Z + βγ Z

) (
Z + γαZ

) (
Z + αβ Z

)

−256




(
4σ2 − σ2

1

)
σ2

3Z
4 +

(
4σ2

2 + 9σ1σ3 − σ2
1σ2

)
σ2

3Z
3Z

+
(
3σ2

3 + 13σ1σ2σ3 − σ3
1σ3 − σ3

2

)
σ2

3Z
2Z2

+
(
4σ2

1σ3 + 9σ2σ3 − σ1σ
2
2

)
σ3

3ZZ
3

+ σ4
3

(
4σ1σ3 − σ2

2

)
Z4


T

+64




512σ2
3

((
σ3 + 4σ2σ1 − σ3

1

)
Z3 +

(
σ3

3 + 4σ1σ2σ
2
3 − σ3

2σ3

)
Z3
)

+
(
σ3

1σ
2
2 − 4σ4

1σ3 − 8σ1σ
3
2 + 30σ2

1σ2σ3 + 28σ2
2σ3 + 33σ1σ

2
3

)
σ2

3ZZ
2

+
(
σ2

1σ
3
2 − 4σ4

2 − 8σ3
1σ2σ3 + 30σ1σ

2
2σ3 + 28σ2

1σ
2
3 + 33σ2σ

2
3

)
σ3Z

2Z


T2

+16σ3




2
(
−σ3

1σ
2
2 + 4σ1σ

3
2 + 12σ4

1σ3 − 42σ2
1σ2σ3 − 24σ2

2σ3 − 29σ1σ
2
3

)
Z2

(
12σ1σ

4
2 − 3σ3

1σ
3
2 +

(
12σ4

1σ2 − 31σ2
1σ

2
2 − 28σ3

2

)
σ3

−
(
28σ3

1 + 177σ1σ2

)
σ2

3 − 77σ3
3

)
ZZ

2
(
−σ2

1σ
3
2 + 4σ3

1σ2σ3 + 12σ4
2 − 42σ1σ

2
2σ3 − 24σ2

1σ
2
3 − 29σ2σ

2
3

)
σ3Z

2




T3

+32σ3

((
σ2

1σ
4
2 − 5σ3

1σ
2
2σ3 + 4σ4

1σ
2
3 − 4σ5

2 + 14σ1σ
3
2σ3 + 6σ2

1σ2σ
2
3 + 13σ2

2σ
2
3 + 35σ1σ

3
3

)
Z

+
(
σ4

1σ
2
2 − 5σ2

1σ
3
2 + 4σ4

2 − 4σ5
1σ3 + 14σ3

1σ2σ3 + 6σ1σ
2
2σ3 + 13σ2

1σ
2
3 + 35σ2σ

2
3

)
Z

)
T4

+

(
σ4

1σ
4
2 − 8σ2

1σ
2
2

(
σ3

2 + σ3
1σ3

)
+ 16

(
σ6

2 + σ6
1σ

2
3

)
− 80

(
σ4

1σ2σ3 + σ1σ
4
2

)
σ3

+52
(
σ3

1σ
3
2 + 2σ2

1σ
2
2σ3 − 4σ1σ2 σ

2
3

)
σ3 − 104

(
σ3

2 + σ3
1σ3

)
σ2

3 − 343σ4
3

)
T5

Proof. Elimination is straightforward. The real asymptotes are parallel to the sidelines.

12.22 Hyperbola

Definition 12.22.1. An hyperbola is a conic that intersects the line at infinity in two different
points. An ellipse is a special hyperbola (the intersection points are not visible) and a parabola is
not an hyperbola.

Proposition 12.22.2. Let ∆1 ' (ρ, σ, τ) and ∆2 ' (u, v, w) be the asymptotes of an hyperbola C.
Then equation of C can be written as :

(ρx+ σy + τz) (ux+ vy + wz)− k (x+ y + z)
2

= 0 (12.10)

Proof. Consider the line ∆1 ' (ρ, σ, τ) and its point at infinity T1 = σ − τ : τ − ρ : ρ − σ. The
matrix of the quadratic form is :

C =
1

2

(
t∆1 ·∆2 + t∆2 ·∆1

)
− k

(
tLb · Lb

)
(12.11)

It can be seen that tT1 · C · T1 = 0 (T1 belongs to conic) while tT1. C = ∆1 (the tangent to the

conic at T1 is line ∆1). Another method is ∆1 ·Adjoint
(
C
)
· t∆1 = 0 (line ∆1 is tangent to the

conic) while C · t∆1 = T1 (the contact point of ∆ is T ).

Corollary 12.22.3. Equation (12.10) is the parametrization in k of the pencil of hyperbola that
share a given pair of asymptotes.

Proposition 12.22.4. The angle between the asymptotes ∆1, ∆2 of a conic is characterized by

tan2 (∆1,∆2) =

(
∆1 · Wb · t∆2

∆1 · Mb · t∆2

)2

= (−4)
Lb ·Adjoint C · tLb
〈
Mb | C

〉2 (12.12)

See some additional comments at Corollary 12.23.6.
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Proof. The first equality is the general formula for the tangent, while the second part is easily
checked using (12.11). As it should be, tanV itself is not accessible, since it depends on the order
chosen for the asymptotes.

Caveat: everything must be used "as is", without any reduction by a proportionality factor.

Remark 12.22.5. This amounts to restate (12.10) as searching k so that

det
(
C − ktLb · Lb

)
= det C − k

(
Lb ·Adjoint C · tLb

)

vanishes. Solution is unique... except when C is a parabola.

Proposition 12.22.6. A rectangular hyperbola is an hyperbola with orthogonal asymptotes. Such
an RH is characterized among all the conics by :

〈
C | Mb

〉
.
= trace

(
C · Mb

)
= 0 (12.13)

Spoiler: when using Morley coordinates, this reduces to m13 = 0.

Proof. Obvious from the previous proposition. Another method: for any matrix Q, we have
trace

(
t∆1 ·∆2 ·Q

)
= ∆2 · tQ · t∆1. Since matrix Mb is symmetric, trace

(
C · Mb

)
equals

∆2 · Mb · t∆1 and the result follows.

12.22.1 Circum-hyperbolas
Proposition 12.22.7. A circumconic C can be characterized by one asymptote ∆1 ' (ρ, σ, τ).
Then the second asymptote ∆2 is k/ρ : k/σ : k/τ where k is the constant appearing in (12.10).
Perspector P , center U , points at infinity T1, T2 are given by :

P = ρ (σ − τ)
2

: σ (τ − ρ)
2

: τ (ρ− σ)
2

U = ρ
(
σ2 − τ2

)
: σ

(
τ2 − ρ2

)
: τ

(
ρ2 − σ2

)

T1 = σ − τ : τ − ρ : ρ− σ
T2 = ρ (σ − τ) : σ (τ − ρ) : τ (ρ− σ)

while the equation of the conic can be rewritten into T1∗
b
T2÷

b
X ∈ Lb, and asymptotes as T1∗

b
X÷

b
T2 ∈

Lb and T2 ∗
b
X ÷

b
T1 ∈ Lb. Moreover, P = T1 ∗

b
T2 and U = T1 ∗

b
T2 ∗

b
polarmul (T1, T2).

Proof. Direct examination.

Proposition 12.22.8. Consider a circumconic and its perspector P . The points at infinity are
given by : 



(
q2 + r2 − pq − pr

)
p+ p (q − r) IST(

r2 + p2 − qr − qp
)
q + q (r − p) IST(

p2 + q2 − rp− qr
)
r + r (p− q) IST




where IST 2 = p2 + q2 + r2 − 2pq − 2qr − 2rp is the equation of the Steiner in-ellipse.

Proof. Direct inspection.

12.22.2 Circum-rectangular-hyperbolas
Proposition 12.22.9. When a circumscribed conic is a rectangular hyperbola, its perspector is on
the tripolar of H =X(4) –the so-called orthic axis–, while its center C = cevadiv (X2, P ) is on the
Euler circle (see also Corollary 12.23.8).

Proof. Write that trace
(
Mb C

)
= 0 and obtain a first degree equation for the perspector. Then

substitute P = cevadiv(X2, U). Even better: write U = 2G− V and see that V ∈ Γ.

Proposition 12.22.10. Let M1,M2,M3 be three distinct points on a RH. Then the Euler circle
of M1M2M3 goes through the center of the RH.
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Proof. Obvious from preceding proposition.

Fact 12.22.11. The perspector of a circumRH can be written as:

1

Sa
:
−µ
Sb

:
µ− 1

Sc

on the tripolar of X(4), while the RH itself is :

−Sax (Sby − zSc)µ+ Sby (Sax− zSc) = 0

Kiepert RH is µ =
(
a2 − c2

)
Sb ÷

(
b2 − c2

)
Sa.

Proof. A direct proof is that H belongs to the pencil generated by BC ∪AH and AC ∪BH.

Example 12.22.12. JRH, the Jerabek hyperbola, is the circumscribed RH through O and also
the isogonal conjugate of the Euler line. Its perspector is X(647), on the H tripolar, its center is
X(125), on the NPC. Points at infinity are X(2574) and X(2575), characterized by ω4 =

1
σ3σ2/σ1.

Example 12.22.13. FRH, the Feuerbach hyperbola, is the circumscribed RH through I and
also the isogonal conjugate of the line (circumcenter,incenter). Its perspector is X(650), on the H
tripolar, its center is X(11), on the NPC, Gu=X(104). Points at infinity are X(3307) and X(3308),
characterized by ω4 =

2
s3

3s1/s2.

12.22.3 Inscribed hyperbolas
Proposition 12.22.14. An inconic C can be characterized by one asymptote ∆1 ' (ρ, σ, τ). Then :

∆1 ' ρ , σ , τ

T1 = σ − τ : τ − ρ : ρ− σ
N1 ' ρ σ + ρ τ − σ τ : ρ σ + σ τ − ρ τ : ρ τ + σ τ − ρ σ
∆2 ' ρ/f ; σ/g ; τ/h

T2 = (σ − τ) f2 : (τ − ρ) g2 : (ρ− σ)h2

N2 ' (ρ σ + ρ τ − σ τ)
−1

; (ρ σ + σ τ − ρ τ)
−1

; (σ τ + ρ τ − ρ σ)
−1

P = 1÷
(
(σ − τ) ρ2

)
: 1÷

(
(τ − ρ)σ2

)
: 1÷

(
(ρ− σ) τ2

)

C = (σ − τ) f : (τ − ρ) g : (ρ− σ)h

where (f, g, h) ' N1 ' anticomplem (isot (∆)) is the Newton line associated with line ∆1 (cf
Proposition 12.27.6). Therefore :

∆2 = ∆1 ÷
b
N1 ; T2 = T1 ∗

b
N1 ∗

b
N1 ; N2 = G÷

b
N1

C = T1 ∗
b
N1 = T2 ∗

b
N2 = crossmul (G,P ) ; P = crossdiv (G,C)

Proof. Let M be the matrix IC (p : q : r) of the general inconic with perspector p : q : r. Then

formula giving P from ∆ is obtained by elimination from ∆ · Adjoint
(
M
)
· t∆ = 0 (tangency)

and Lb ·Adjoint
(
M
)
· t∆ = 0 (T ∈ Lb). Thereafter, all formulas are proven by direct computing

from matrix C = IC (P ) where P is as given (cf. Stothers, 2003a).

Proposition 12.22.15. Consider an inconic and its center U . The points at infinity are given
by :



u2
(
v4 + w4 − u2v2 − u2w2

)

v2
(
u4 + w4 − v2w2 − u2v2

)

w2
(
u4 + v4 − u2w2 − v2w2

)


±OST (v + w − u) (w + u− v) (u+ v − w)




(
v2 − w2

)
u2

(
w2 − u2

)
v2

(
u2 − v2

)
w2




where OST 2 = −qr − rp− pq is the equation of the Steiner out-ellipse.

Proof. Direct inspection.
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Proposition 12.22.16. Consider point U = v − w : w − u : u − v ∈ Lb and its tripolar ∆0 '
[1/ (v − w) , 1/ (w − u) , 1/ (u− v)]. This line is tangent to Steiner in-ellipse and the contact point
is T0 = (v − w)

2
: (w − u)

2
: (u− v)

2. Define (index i=inscribed, c=circumscribed) lines ∆i =
tripole (T0), ∆c ' [v − w, w − u, u− v] and point

C = TG (U) = (v − w)2 (v + w − 2u) : (w − u)
2

(u+ w − 2v) : (u− v)
2

(u+ v − 2w)

Then C is the common center of a circum-hyperbola with asymptotes ∆0,∆c and an in-hyperbola
with asymptotes ∆0,∆c. The locus of C (and also of the circum-perspector) is K219 :

∑

3

x3 −
∑

6

x2y + 3xyz = 0

while the locus of the in-perspector is :
∑

6 x
2y − 6xyz = 0. All lines ∆c contain G = X2 while

envelope of the ∆i is cubic :
∑

3 x
3 + 3

∑
6 x

2y − 21xyz = 0.

Proof. In all these cubics, G is an isolated point (and don’t belong to the locus). Otherwise,
computing as usual.

12.22.4 Inscribed-rectangular-hyperbolas
Proposition 12.22.17. An inscribed conic is a rectangular hyperbola if, and only if, its auxiliary
point is on the Longchamps circle. Equivalently, its center is on the polar circle. See Section 13.7
and Section 13.8. As a result, such conics are visible only for obtuse triangles.

Proof. Use Proposition 12.22.6 and write that trace
(
Mb C

)
= 0.

12.23 Metric elements
Proposition 12.23.1. When a conic C degenerates in the reunion of two lines ∆j then

cos2 (∆1,∆2) =

〈
Mb | C

〉2

2
〈
Mb · C | Mb · C

〉
−
〈
Mb | C

〉2 (12.14)

Proof. Use ∆1 = [f, g, h] ; [u, v, w], obtain tan (∆1,∆2) from 7.22 and then use cos2 = 1/
(
1 + tan2

)
.

This gives a 4, 4, rational fraction in u, v, w, f, g, h. What is given is the matrix (mjk) of the bi-
linear form (fx+ gy + hz)× (ux+ vy + wz). An identification leads to a 2, 2 rational fraction in
the mjk. And the cos2 formula follows.

Definition 12.23.2. The metric elements of a proper conic are the a and b that are used to write
the "standard equation relative to the standard axes"

P ∈ C ⇐⇒ x2

a2
+
y2

b2
= 1

when the only allowed transforms are isometries. Due to their symmetry properties, the following
quantities will remain useful in every context:

σ
.
= a2 + b2 ; π

.
= a2b2

Remark 12.23.3. In the elementary situation, were we have an ellipse and b < a can be assumed,
it is convenient to introduce f as the focal distance |UF |, δ as the distance center-directrix, e as
the excentricity i.e. the constant ratio dist (M,F ) /dist (M,∆) and p, the parameter, as e (δ − f),
all these quantities being ruled by:

f =
√
a2 − b2 ; δ = a2/f ; e = f/a ; p = b2/a = e (δ − f) (12.15)

In a context of dynamic geometry, the elementary quantities a, b, f, δ, e, p have to be replaced
because we can only assume a2, b2 ∈ R while |b| < |a| is not granted. On the contrary, using
σ
.
= a2 + b2 ; π

.
= a2b2 don’t require to know who is the "main" axis and who is the "other" axis

to be able to even define them.
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Proposition 12.23.4. Using 〈 | 〉 to denote the scalar product of two matrices (the trace of their
product), we have:

σb = (−2S)

〈
Mb | Adjoint C∗b

〉

(
Lb · C∗b · tLb

)2 ; πb = (−2S)
2

det C∗b
(
Lb · C∗b · tLb

)3

= (−2S)

〈
Mb | Cb

〉
det Cb

(
Lb ·Adjoint Cb · tLb

)2 = (−2S)
2

det2 Cb
(
Lb ·Adjoint Cb · tLb

)3 (12.16)

σz =

(
iR2

2

) 〈
Mz | Adjoint C∗z

〉

(
Lz · C∗z · tLz

)2 ; πz =

(
iR2

2

)2 det C∗z
(
Lz · C∗z · tLz

)3

Quantities f, e are only accessible through:

f4 = σ2 − 4π ;
π

σ2
= φ (e)

.
=

1− e2

(2− e2)
2

so that we have four focuses for a conic (not a parabola), while φ (e) = φ (e′) leads to e′ = ±e but
also to e′ = ±e/

√
e2 − 1 for hyperbolas.

Proof. Formulas for f4 and φ (e) come from elimination between equations (12.15). Concerning
(12.16), one can establish them for x2/a2 + y2/b2 − 1 in the Morley context and extend them to
the barycentrics. Another method is the following algorithm.

Algorithm 12.23.5. Consider a conic C∗ not tangent to the infinity line (i.e. not a parabola).
Its center is U ' C∗· tLb. Consider the point at infinity δ ' 1 : t : −1− t , and draw line ∆ = Uδ.
Then consider line ∆′

.
= Uδ + µLb and determine µ such that ∆′ is tangent to the conic. This

results in an equation that can be written as:
(
Lb · C∗· tLb

) (
µ2 + poly2 (t)

)
= 0

The first factor is the condition for U ∈ Lb (parabola). The other factor gives µ2. Then we consider
D2 (t) = dist2 (U,∆′), that occurs to be a rational fraction of degrees (+2,−2).

Condition ∂
(
D2 (t)

)
/∂t = 0 is second degree in t. Let us call s, t its two roots. Then s+ t and

st are known from C∗ . And therefore σ = D2 (s) +D2(t) and π = D2 (s)×D2(t) are accessible.

Corollary 12.23.6. The formula (12.12) that gives the angle between the asymptotes ∆1, ∆2 of
a conic can be completed as:

tan2 (∆1,∆2) = (−4)
Lb ·Adjoint C · tLb〈

Mb | C
〉2 = −4φ (e) =

−4π

σ2
= −4

(
1− e2

)

(2− e2)
2

Proof. The first part is (12.12), the others are immediate from preceding results.

Remark 12.23.7. The excentricity of the conic is controlled by this quantity φ (e), which is the

quotient of Lb ·Adjoint C · tLb which is null when C is a parabola, and of
〈
Mb | C

〉2

which is null
when C is a rectangular hyperbola RH.

Therefore, φ (e) can be perceived as the quotient of the measure of the parabolic character, by
the measure of the RH character. The square at denominator allows for a formula that remains
homogeneous in C. The above formula doesn’t depends on k since all hyperbolas that share the
same asymptotes are similar to each other.

Corollary 12.23.8. Applied to the circumscribed conic with perspector P ' p : q : r, we obtain:

φ (e) =
π

σ2
=

(
1− e2

)

(2− e2)
2 = −S

2
(
p2 + q2 + r2 − 2 pq − 2 qr − 2 rp

)

(Sap+ Sbq + Scr)
2

We re-obtain that perspectors of the circumscribed parabolas stay on the in-Steiner conic, while
those of the RH stay on the orthic axis.
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154 12.24. Diagonal conics

Corollary 12.23.9. Applied to the inscribed conic with perspector P ' p : q : r, auxiliary point
isotomP ' f : g : h and center U ' u : v : w we obtain:

φ (e) =
π

σ2
=

(
1− e2

)

(2− e2)
2 =

16S2p2q2r2 (pq + pr + rq)

(a2q2r2 + b2p2r2 + c2p2q2 + 2Sa p2qr + 2Sb pq2r + 2Sc pqr2)
2

=
16S2f g h (f + g + h)

(a2f2 + b2g2 + c2h2 + 2Sa gh+ 2Sb hf + 2Sc fg)
2

=
S2 (v + w − u) (w + u− v) (u+ v − w) (w + v + u)

(Sa u2 + Sb v2 + Sc w2)
2

We re-obtain that perspectors of the inscribed parabolas stay on the out-Steiner conic, auxiliary
points and centers at infinity. On the contrary, auxiliary points of the inscribed RH are on the on
Longchamps circle and centers on the polar circle.

12.24 Diagonal conics

Triangle ABC is autopolar wrt conic C if, and only if, the non-diagonal coefficients vanish. Such
conic is called either autopolar or diagonal.

Remark 12.24.1. The only autopolar circle is the polar circle (see Section 13.7).

Remark 12.24.2. An autopolar parabola is tangent to [1, 1, 1] (the line at infinity) and therefore to
[±1,±1,±1] the sidelines of the medial triangle A′B′C ′. If U is its point at infinity, its focus F is
the A′B′C ′-isogonal of U (on the Euler circle) while the A′B′C ′-perspector is the A′B′C ′-isotomic
of U .

12.24.1 Pencils of diagonal conics

Proposition 12.24.3. Let γ (µ) be a pencil of diagonal conics :

γ (µ)
.
= (1− µ) (α1x

2 + β1y
2 + γ1z

2) + µ ∗ (α2x
2 + β2y

2 + γ2z
2) = 0

and U = u : v : w a point, not a vertex of ABC. Then polar lines of U wrt all the conics of the
pencil are concurring at a point U∗ that will be called the isoconjugate of U wrt the pencil. In fact,
U∗ = U∗P –cf (18.4)– where :

P = β1γ2 − γ1β2 : γ1α2 − α1γ2 : α1β2 − β1α2

The four fixed points (real or not) of the conjugacy, i.e. the points ±√p : ±√q : ±√r, are the
points common to all conics of the pencil.

When a pair of isoconjugates U1 and U2 is known, P is known and therefore the isoconjugacy.
The pencil contains the conic γ1 through U1, cevadiv (U2, U1) and the vertices of their respective
anti-cevian triangles. Conic γ2 is defined cyclically. Both conics are tangent to U1U2.

Circumconic CC (P ) is together the P -isoconjugate of Lb, the locus of centers of the conics of
the pencil and the conic that contains the six midpoints of the quadrangle formed by the four fixed
points.

12.25 Orthoptic cycle

Proposition 12.25.1. The orthoptic cycle O of a given conic C is the locus of points m where
the tangents from m to C are orthogonal to each other. When C is a parabola, O is nothing but its
directrix. Otherwise, O is concentric with C and its radius is given by:

ρ2 =
(−2S) det C

〈
Mb | C

〉

(
Lb ·Adjoint C · tLb

)2 =
(−2S)

〈
Mb | Adjoint C∗

〉

(
Lb · C∗ · tLb

)2 = a2 + b2
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Proof. This can be seen as an obvious corollary of 12.25.7. A direct proof is obtained by using
(12.3) to describe the reunion D0 of the two tangents issued from m as a (degenerate) RH. We
have:

tM · D0 ·M .
=

(
tM · C ·M

)(
tm · C ·m

)
−
(
tm · C ·M

)2

D0 = C
(
tm · C ·m

)
− C ·m · tm · C

The required condition is
〈
Mb | D0

〉
= 0. One can check that the result is not only a conic, but

actually a cycle. In the general case (not a parabola), center and ρ2 are straightforward. The C∗
part comes from Adjoint (AdjointM) = (detM)M , while the a2 + b2 part comes from 12.16.

Corollary 12.25.2. The orthoptic cycle of an RH is the point-circle concentric with C.

Corollary 12.25.3. The orthoptic cycle of a parabola is its directrix.

Proof. From the previous proposition, this is a cycle with ρ = ∞, and therefore is a line. At
Proposition 12.25.4, i.e. in the special case of an inscribed parabola, this line will be proven to be
the directrix. But a parabola can ever be inscribed in some triangle.

Proposition 12.25.4. Orthoptic cycle of an inscribed conic. Let P ' p : q : r be the
perspector of an inscribed conic. Its auxiliary point is Q .

= isotomP
.
= f : g : h , while the center

is U ' p (q + r) , etc. The orthoptic circle is described by:

C∗ '




0 h g

h 0 f

g f 0


 ; O '




f Sa

g Sb

hSc

f + g + h


 '




(v + w − u)Sa

(w + u− v)Sb

(u+ v − w)Sc

w + v + u


 '




qrSa

prSb

pqSc

qr + rp+ pq




(12.17)
and is orthogonal to γ, the polar circle of ABC.

When C is not a parabola, circle O and conic C are concentric at u : v : w ' g+h : h+f : f+g,
while the radius of O is given by:

ρ2 =
a2f2 + b2g2 + c2h2 + 2Sa gh+ 2Sb hf + 2Sc fg

4 (h+ g + f)
2 =

Sa u
2 + Sb v

2 + Sc w
2

(w + v + u)
2

(so that the center of any inscribed RH is on the polar circle).
When C is an inscribed parabola, Q ∈ Lb and the orthoptic circle becomes a line (ρ = ∞) and

this line is the directrix of the conic.

Proof. Since γ ' t
[Sa, Sb, Sc, 1], orthogonality is straightforward. For a RH, ρ = 0 implies U ∈ γ.

For a parabola (see Proposition 12.21.5), one has Q ∈ Lb, while the center is U ' f2 : g2 : h2 (on
in-Steiner), the focus is isogonQ (on the circumcircle) and its polar –the directrix, going through
X(4)– is [f Sa, g Sb, h Sc], as required.

Proposition 12.25.5. Circle O is the locus of points M such that:

f
−−→
MB · −−→MC + g

−−→
MC · −−→MA+ h

−−→
MA · −−→MB = 0

Construction 12.25.6. Construct the orthoptic circle of an inconic. Let P be the perspec-
tor and APBPCP its cevians. Circle δ .

= [AAP ] cuts circle ε .=[BC] in two points, etc. These six
points belong to the required circle.

Proof. One has δ ' Sa : 0 : 0 : 1 ; ε ' 0 : rSb : qSc : q + r. And xδ + (1− x) ε = O holds when
x = qr/ (pq + pr + qr). Remark: all these circles are orthogonal to the polar circle.

–
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156 12.26. PTPT, the bitangent pencil

Figure 12.11: Confocal conics and orthoptic circles.

Theorem 12.25.7. Joint-orthoptic circle. When Ct and Cs are two confocal conics, but not circles,
the punctual pencil they generate contains exactly one circle Ω. Then Ω, Cs, Ct are concentric while
Ω is the locus of points from which one can issue a tangent ∆t to Ct and a tangent ∆s to Cs so that
∆t ⊥ ∆s. As special cases, using Cs = Ct leads to previously described orthoptic cycle, while using
CF .

= {F1, F2} as conic Cs leads to the auxiliary circle of Ct. Moreover, using obvious notations,
we have:

2ρ2 (Cs, Ct) = ρ2 (Cs) + ρ2 (Ct) ; ρ2 (Ct) = a2 + b2 ; ρ2 (CF ) = f2

Proof. The conics having their foci at F1 (z = −1) and F2 (z = +1) are:

C∗t ' (1− t)




0 0 1

0 0 0

1 0 0


+



−1 0 −1

0 1 0

−1 0 −1


 =



−1 0 −t

0 1 0

−t 0 −1


 ; Ct '



−1 0 t

0 1− t2 0

t 0 −1




Thus the circle that belongs to the punctual pencil generated by Ct and Cs is Ct − Cs , whose
center is z = 0 while 2ρ2 = s + t. Consider now a generic point m ' z0 : t0 : ζ0. Using (12.3) to
describe the tangents issued from m to Ct, we obtain:

(
tM · Ct ·M

)(
tm · Ct ·m

)
−
(
tm · Ct ·M

)2

= 0

where M ' Z : T : Z is the generic point. The ω2 of the tangents are obtained by substituting
T = 0, leading to (

Z

Z

)2

− 2

(
t× t20 − z0 ζ0

)

(t20 − ζ2
0 )

(
Z

Z

)
+

(
t20 − z2

0

)

(t20 − ζ2
0 )

= 0

Their product is constant, well known property: the tangents are reflected by the bisectors of
(mF1,mF2). Thus the orthogonality involves also the other pair of tangents, so that the sums of
the ω2 are opposite. But this gives (t+ s) t20 − z0ζ0 = 0, i.e. the joint circle.

12.26 PTPT, the bitangent pencil
PTPT means point,tangent,point,tangent.

Remark 12.26.1. Many properties are better stated when using complex projective coordinates
(the Morley frame) and therefore, it could be better to read the corresponding chapter before the
present section.
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12.26.1 The focal cubic
Definition 12.26.2. All of the conics that are tangent to two fixed lines at two given points form
a linear pencil, called the bitangent pencil F . We define B,C as the contact points and A as the
intersection of the tangents.

Definition 12.26.3. A′, R, Fs. Midpoint A′ is defined by A′ = (B + C) /2. Then A′ 'b 0 : 1 : 1.
Gudulic point R is the second intersection of the ABC circumcircle and the A-symmedian of this
triangle. We have:

R 'b a2 : −2 b2 : −2 c2 ; R 'z
αβ + αγ − 2 γ β

2α− γ − β : 1 :
2α− γ − β

αβ + αγ − 2 γ β

Lastly, we define Fs as (A+R) /2.

Proof. One can verify that:

ωAR × ωAM =
α (γ α+ αβ − 2β γ)

β + γ − 2α
× αβ γ (β + γ − 2α)

γ α+ αβ − 2β γ
= (−αβ)× (−αγ) = ωAB × ωAC

Theorem 12.26.4. The punctual and tangential equation of the conics Cλ of the tangential pencil
F are :

Cb '




λ 0 0

0 0 1

0 1 0


 ; C∗b =




1 0 0

0 0 λ

0 λ 0




Their centers are Oλ ' 1 : λ : λ (on the median line AA′). Their two focuses Fλ lie on the cubic
K, whose barycentric equation is :

Kb (x, y, z) =
(
c2y2 − b2z2

)
x+ 2Sb y

2z − 2Sc z
2y

= (z − y)(a2yz + b2zx+ c2xy) + (b2 − c2)yz(x+ y + z) (12.18)

This curve goes through the umbilics, while the singular focus Fs = (A+R) /2 ' 2Sa : b2 : c2

belongs to the curve. The curve goes also through points B,C and twice the point A. The asymptote
∆∞ is the parallel to the median AM through point Ω′ = (3A−R) /2.

As a consequence, the curve is unicursal, i.e. has rational parametrizations.

Figure 12.12: The tangential pencil
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158 12.26. PTPT, the bitangent pencil

Proof. Usual computations, using the Plucker’s method, i.e. (F ∧ Ωx) · C∗ · t(F ∧ Ωx) = 0 and
then taking real and imaginary parts. Other properties are straightforward from the gradient.

Proposition 12.26.5. Line FA is a bisector of angle FB,FC. This comes from the following
relations between parameter λ and focuses Fλ described as Z : T : Z in the Morley frame:

−1

2λ
=

(Z− βT) (Z− γT)

(Z− αT)
2 =

(
Z −T/β

) (
Z −T/γ

)
(
Z −T/α

)2 (12.19)

Moreover, the Morley equation of the "focal cubic" is Kz:
(

2

α
− 1

β
− 1

γ

)
Z2Z + (γ + β − 2α)ZZ2

+

(
1

β γ
− 1

α2

)
Z2T +

(
α2 − β γ

)
Z2

T+

2

(
α

γ
+
α

β
− β + γ

α

)
ZZT+

(
β + γ

α2
− 2α

β γ

)
ZT2+

(
2βγ

α
− α2

γ
− α2

β

)
ZT2+

(
α2

β γ
− β γ

α2

)
T3

Proof. Use Cz =
t
Lu
−1

· Cb · Lu
−1

; C∗z = Lu · C∗b ·
t
Lu to obtain the matrices, and then

use the Plucker’s equations. A separation of the variables occurs, giving one equation in the upper
view Z : T and another in the lower view Z : T. Equation of Kz is easily obtained from Kb and
even more easily by subtracting both sides of (12.19).

Proposition 12.26.6. In the Morley frame, the focal cubic can be parametrized by a turn τ :

Fτ '




(α− γ) (α− β) τ2 + α (2β γ − αβ − αγ) τ + β γ
(
α2 − β γ

)

(2β γ − αβ − αγ) τ + β γ (2α− β − γ)

1

1

α τ

(
β γ − α2

)
τ2 + β γ (2α− β − γ) τ + β γ (α− γ) (α− β)

(2β γ − αβ − αγ) τ + β γ (2α− β − γ)




Proof. Let K be the point τ : 1 : 1/τ . Cut the cubic by line AK, and obtain A (twice) and F .

Proposition 12.26.7. Three points F (τ) , F (κ) , F (δ) on the focal cubic are aligned when:

(β γ + δ κ+ δ τ + κ τ) (2β γ − αβ − αγ) + (β γ (δ + κ+ τ) + τ κ δ) (2α− β − γ) = 0(12.20)

Therefore, the tangential of F (τ), i.e. the point where the tangent of F (τ) cuts again the curve,
is F (δ) where:

δ = −2β γ (β + γ − 2α) τ +
(
β γ + τ2

)
(αβ + αγ − 2β γ)

2 (αβ + αγ − 2β γ) τ + (β γ + τ2) (β + γ − 2α)

while points F (τ) and F (τ ′) have the same tangential when ττ ′ = βγ.

point A B C Ωx Ωy ∞ Fs

±√βγ β γ ∞ 0
β γ (2α− β − γ)

αβ + αγ − 2β γ
zR

∓√βγ −α zR =
αβ + αγ − 2β γ

2α− β − γ −zR
tang. A TBC Fs = (A+R) /2 T∞

Proof. Compute the determinant of the three points.

12.26.2 More constructions of the focal cubic

The focal cubic can be constructed in many ways (apart from the parametrization given at Propo-
sition 12.26.6).
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Figure 12.13: Two constructions of the focal cubic

Proposition 12.26.8. Using the tau+kappa property. When points F (τ)and F (κ) are
aligned with Fs then τ + κ = 0 and circle with diameter [F (τ) , F (κ)] goes through A. This
gives a construction of the focal cubic (see Figure 12.13): choose a point J ∈ AA′. The circle
(J,A) cuts line JFs in two points Lj that belongs to the cubic.

Proof. Use the (12.20) formula and then J = (F (τ) + F (−τ)) /2.

Proposition 12.26.9. Using the median pencil. Draw a circle γk tangent at A to the median
AM (and center K, see Figure 12.13). Draw the tangents from Fs to this circle. The contact
points Mj are on the focal cubic, while M1M2 goes through Ti, the common tangential of Fs and
F∞.

Proof. The equation of the circles γk are parametrized by:



−1

2α

−α2

α


+ k




(αβ + αγ − 2β γ)

(β + γ)
(
β γ − α2

)

αβ γ (2α− β − γ)

0




Multiply by the Veronese of F (τ) and obtain the condition F (τ) ∈ γk: first degree in k, second
degree in τ . And conclude, since this condition divides the condition ensuring that FsF (τ) is
tangent to γk. Then substitute the k values of τ + κ and τκ into (12.20).

Proposition 12.26.10. Using the circumcircle. Start from the variable point K = τ : 1 : 1/τ
on the circumcircle It defines a variable line AK. Reflect B,C into AK and obtain Bk, Ck. Then
point F = BCk ∩ CBk is on the cubic.

Proof. The idea comes from the bisector property of the last proposition.

Proposition 12.26.11. Using the A-Apollonian circle. The isogonal K∗ of the focal cubic is
the circle:

K∗ ' a2
(
yc2 − zb2

)
(x+ y + z) +

(
b2 − c2

) (
a2yz + b2xz + c2xy

)

i.e. the A-Apollonian circle, centered at 0 : b2 : −c2 and going through A (a diameter is given by
the feet of the A-bisectors).

Proof. Obvious from (12.18). Using the Morley isogonal formula (18.5), one obtains:

F ∗ '




α (αβ + αγ − 2β γ)

α2 − β γ − (α− γ) (α− β)

(α2 − β γ)

β γ

τ

1
2α− β − γ
α2 − β γ +

(α− γ) (α− β)

(α2 − β γ)

τ

βγ



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160 12.26. PTPT, the bitangent pencil

Figure 12.14: Two transformations of the focal cubic.

Proposition 12.26.12. Knowing the center. When center Oλ is given on the median AA′,
the focuses F, F ′ can be constructed as follows (see Figure 12.15). Draw the bisectors ∆1, ∆2 of
OλA, OλR. Cut them at H1, H2 by the perpendicular bisector of [A,R]. Draw circle γ1 (H1, A)
and cut ∆2. Additionally, draw circle γ2 (H2, R) and cut ∆1. This gives the four focuses.

Proof. This comes from the involutory homography ψ.

Proposition 12.26.13. Using the cissoidal property. Consider a point P on the circle γ
through A and centered at Ω′ = (3A−R) /2. Define Q as the intersection of AP with ∆∞. Then
F

.
= A+Q− P belongs to the cubic. The cissoidal property is the relation :

−→
AF =

−−→
PQ.

Proof. A possible parametrization of the cissoidal circle is :

Pµ '




3α2 + β γ − 2α (β + γ)

2α− β − γ +
(α− γ) (α− β)

αβ + αγ − 2β γ
τ

1
2α (β + γ)− α2 − 3β γ

α (αβ + αγ − 2β γ)
− (α− γ) (α− β)

(2α− β − γ)α

1

τ




Here A is µ = (αβ + αγ − 2β γ)÷ (β + γ − 2α). Everything else is straightforward.

Proposition 12.26.14. The two visible focuses F, F ′ of a given conic Cλ are exchanged :

1. in the parametrization of Proposition 12.26.6 by τ τ ′ = βγ.

2. in the construction of Proposition 12.26.10 by using lines AK and AK ′ that are equally
inclined on lines AB,AC.

3. in the upper Riemann sphere by the involutory homography

ψ :

(
Z′

T′

)
'
(

β γ − α2 α2β + γ α2 − 2αβ γ

β + γ − 2α α2 − β γ

)(
Z

T

)
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Figure 12.15: Constructions of paired focuses

The fixed points of ψ are A and R (the second intersection of the A-symmedian with the
circumcircle).

4. in the isogonal parametrization of Proposition 12.26.11, points F ∗, F ′∗ are symmetric with
respect to BC.

5. in the construction Proposition 12.26.13, P ′ is the reflection of P into the asymptote ∆∞while
Q′ is the reflection of Q′ in the cissoidal circle.

Proof. (1) One has
−1

2λ
=

(τ − γ) (τ − β)

(
τ − γ α− β

α− γ

)(
τ − β α− γ

α− β

)

(τ2 − β γ)
2 . Then λ (τ) − λ (τ ′) =

0 gives four values for τ , since there are four focuses. But, apart τ itself, only τ ′ = βγ/τ is
unimodular. The other two are not turns (and lead to both non visible focuses). (2) κτ = βγ.

(3) Write and factor λ (Z : T) − λ (z : t) from (12.19). This gives (zT− tZ) together with
another first degree factor with respect to Z,T and also with respect to z, t: this is our homography.
The fixed points of ψ are α and zR = (αβ + αγ − 2β γ) / (2α− β − γ).

(4) Reflection into the asymptote is obvious from parametrization. Reflection into the circle

comes from
−−→
Ω′Q · −−→Ω′Q′=

∣∣∣
−−→
Ω′A

∣∣∣
2

.

12.27 LLLL, the Miquel pencil

Definition 12.27.1. All of the conics that are tangent to four fixed lines form a pencil, called the
Miquel pencil F of these four lines.

Lemma 12.27.2. Let us use describe our four lines as the three sidelines of ABC and the transver-
sal whose tripole is p : q : r. In other words, L0 '

b
[qr, rp, pq]. See Theorem 3.5.5 for more details.

In the Lubin frame, the transversal points, the Newton line, the Miquel pointMq of the quadrilateral
and the Clawson-Schmidt homography Ψ are :

A′, B′, C ′ '
z




β q − γ r
q − r
q

β
− r

γ


 ,




γ r − αp
r − p
r

γ
− p

α


 ,




αp− β q
p− q
p

α
− q

β




Newton '
z

[2 c2, −s2 c1 − c3, 2 s3 c1]
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Mq '
z




c2/c1

1

c1/c2


 ; Ψ




Z

T

Z


 '

z




Zc2 −Tc3
Zc1 −Tc2

1

c1Z − c0T
c2Z − c1T




where





c3 = α2 (γ − β) p+ β2 (α− γ) q + γ2 (β − α) r

c2 = α (γ − β) p+ β (α− γ) q + γ (β − α) r

c1 = (γ − β) p+ (α− γ) q + (β − α) r

c0 = 1
α (γ − β) p+ 1

β (α− γ) q + 1
γ (β − α) r

Remark 12.27.3. The Miquel point is the pole of the Clawson-Schmidt homography.

Remark 12.27.4. The four quantities cj are bound by relations :

c2
σ1

σ3
+ c0 = c3

1

σ3
+ c1

σ2

σ3
∈ iR

ck = −c3−k
σ3

Proposition 12.27.5. The four fixed points of the isoconjugacy Ψ are given by :

Φ '




c2/c1 +Wu/c1

1

c1/c2 +Wd/c2




where the up and down radicals are given by :

W 2
u = (α− β) (β − γ) (γ − α)× d1

W 2
d =

(α− β) (β − γ) (γ − α)

αβγ
× d2

where

{
d2 = α (γ − β) qr + β (α− γ) rp+ γ (β − α) pq

d1 = (γ − β) qr + (α− γ) rp+ (β − α) pq

They can be constructed as follows. Lines ∆1, ∆2 are the common bisectors of ΩA,ΩA′, ΩB,ΩB′,
ΩC,ΩC ′ and δA is the perpendicular bisector of [A,A′]. Then H1 = ∆1 ∩ δA (resp. H2 = ∆2 ∩ δA)
is the center of a circle by A,A′ that cuts ∆2 (resp ∆1) at the four Φj points.

Proof. These points are characterized by

c1Z
2 − 2 c2 ZT + c3T

2 = 0 ; c2Z
2 − 2 c1ZT + c0 T

2 = 0

Proposition 12.27.6 (Newton). All the conics that are tangent to four given lines have their cen-
ters on a line, that goes through the midpoints Mj of the diagonal pairs AA′, BB′, CC ′ (called the
Newton axis of the quadrilateral). When this center U ∈ Newton is defined as KMb + (1−K)Mc

the conic can be written as :

C∗b ' (r − p)




0 0 −p
0 0 q

−p q 0


+K p




0 p− q r − p
p− q 0 q − r
r − p q − r 0




Proof. Let ρ : σ : τ be the "service point" of a conic C ∈ F . We have C∗b = [0, τ, σ; τ, 0, ρ;σ, ρ, 0]

and therefore pρ+ qσ + rτ = 0. Since U = σ + τ : τ + ρ : ρ+ σ, the Newton line is :

[q + r − p, r + p− q, p+ q − r]

and the conclusions follow (remember that p : q : r is the tripole of the transversal).
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Theorem 12.27.7. The Morley affixes Z : T : Z of a focus of the conic C (K) ∈ F are bound to
the parameter K by :

K =
(p− r) (Z− γT) ((q − p)Z + (αp− β q)T)

pT (c1Z− c2T)
(12.21)

=
(p− r)

(
T−Zγ

) (
αβ (p− q)Z + (αq − pβ)T

)

pT
(
c1T− c2Z

) (12.22)

and therefore the focuses are located on the "focal cubic" K :

c2
σ3

Z2Z + c1 ZZ
2 − c1

σ3
Z2T− c3 + c1σ2

σ3
ZZT− c2Z

2
T +

c1σ1

σ3
ZT2 +

c2σ2

σ3
ZT2 +

c3 − c2σ1

σ3
T3

Proof. Matrix C∗z is obtained as Lu · C∗b ·
t
Lu and then Plucker method is used. Some factors

(q − r) are appearing during the elimination process, but not all the (p− q) (q − r) (r − p). Nothing
special occurs when P is on a median (but not at the centroid). One can check that the cubic K
is turned into its opposite when taking the (complex) conjugate.

Theorem 12.27.8. This focal cubic is nothing else than the vanRees cubic studied at Section 28.11.

Proof. Check the six pointsA,B,C, A′, B′, C ′ together with the six points nA, nB , nC , nA′ , nB′ , nC′
More than nine is used to avoid a Cayley-Bacharach phenomenon.

Theorem 12.27.9. The focuses Fj of a given conic C (K) ∈ F are exchanged by homographies
ψ, ψ. They can be constructed as follows. Call New⊥ the perpendicular to the Newton line at Ω.
Draw the bisectors ∆1, ∆2 of UΦ1, UΦ2. Cut them at H1, H2 by New⊥. Draw circle γ1 (H1, Φ1)
and cut ∆2. Additionally, draw circle γ2 (H2, Φ2) and cut ∆1.

Proof. Write and factorK
(
Z : T : Z

)
−K (z : t : ζ) from (12.21). This gives (p− q) (p− r) but not

(q − r), being smooth except at the centroid (i.e. when the fourth line at infinity). Otherwise, this
gives (zT− tZ) together with another first degree factor with respect to Z,T and also with respect
to z, t. In the upper view Z : T, this induces the identity together with another homography. Since
the later has to provide A ←→ A′, B ←→ B′, C ←→ C ′, it has to be ψ. The same occurs in the
lower view Z : T, and the conclusion follows.

Remark 12.27.10. In the Geogebra Figure 12.16, the orange conic is drawn as follows. Reflect
focuses F, F ′ into sideline AC and obtain Fb, F

′
b. Then point Eb = FF ′b ∩ F ′Fb on sideline AC

belongs to the conic. In the same way, obtain the point Ec on AB. We draw both conics, an ellipse
and an hyperbola, with focuses F, F ′ that go through Eb, but only the one that goes also through
Ec is displayed.

Proposition 12.27.11. When the transversal is tangent to one of the inexcircles of triangle ABC,
the pencil contains one circle and the focal conic has a double point. This point is the center of
the circle (see Figure 12.16b). When the transversal touches two of the inexcircles, the focal cubic
degenerates into the Newton line and a circle having the corresponding inexcenters as antipodal
points.

Proof. Only circles have equal focuses.

12.28 Tg and Gt mappings

Definition 12.28.1. Tg and Gt mappings. Suppose U is a point not on a sideline of ABC.
Let :
gU= isogonal conjugate of U , tU= isotomic conjugate of U
tgU= isotomic conjugate of gX, gtU= isogonal conjugate of tU
GtU= intersection of lines U − tU and gU − gtU ,
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(a) The general case

(b) The unicursal case

Figure 12.16: The Miguel pencil and its focal cubic
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TgU= intersection of lines U − gU and tU − tgU .
If U = u : v : w (barycentrics), then :

GtU =
a2
(
b2 − c2

)

(v2 − w2)u
:
b2
(
c2 − a2

)

(w2 − u2) v
:
c2
(
a2 − b2

)

(u2 − v2)w

TgU =
b2 − c2

(w2b2 − v2c2)u
:

c2 − a2

(u2c2 − w2a2) v
:

a2 − b2
(v2a2 − u2b2)w

Proposition 12.28.2. For any point U , not on a sideline of ABC, points A, B, C, gU, tU, TgU, GtU
are on a same conic (Tuan, 2006). The perspector of this conic is X512 ÷

b
U . This conic is the

isogonal image of line U − gtU and also the isotomic image of line U − tgU .

Proof. Straightforward computation.

Example 12.28.3. Points X(3112) to X(3118) are related to Gt and Tg functions.
The X(31)-conic passes through X(I) for

I = 75, 92, 313, 321, 561, 1441, 1821, 1934, 2995, 2997, 3112, 3113
The X(32)-conic passes through X(I) for

I = 76, 264, 276, 290, 300, 301, 308, 313, 327, 349, 1502, 2367, 3114, 3115
The X(76)-conic passes through X(I) for

I = 6, 32, 83, 213, 729, 981, 1918, 1974, 2207, 2281, 2422, 3114, 3224, 3225

12.29 Polar coordinates
Definition 12.29.1. The polar equation of a curve is zϑ = exp (iϑ) f (ϑ). Quantity ρ .

= f (ϑ) is
the so called algebraic radius and equals +dist (O, M) ... or −dist (O, M).

Proposition 12.29.2. The polar equation of the circle through O and centered at a+ ib is

f (ϑ) = 2a cosϑ+ 2b sinϑ

Proof. Parametrize using t = tan (ϑ/2).

Proposition 12.29.3. Equation ρ =
p

1 + e cos(θ)
describes the conic whose focuses are O and

2pe/
(
e2 − 1

)
, with excentricity e = f/a and parameter p = b2/a.

Proof. Parametrize as above and obtain the matrix




e2 −2pe e2 − 2

−2pe 4p2 −2pe

e2 − 2 −2pe e2


 '




f2 −2b2f −a2 − b2
−2b2f 4b4 −2b2f

−a2 − b2 −2b2f f2




Exercise 12.29.4. When ρ ranges over the four intersections of the conic and the circle of the
former two propositions, then

∑
1/ρ doesn’t depends on the circle (Koehler, 1886-1888, n°32, p.37).
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Chapter 13

More about circles

13.1 General results

Let us start by recalling two key results.

Theorem 13.1.1 (Already stated in Section 7.5 as Theorem 7.5.2). Let Ω be the circle centered
at P with radius ω. The power formula giving the Ω-power of any point X = x : y : z from the
power at the three vertices of the reference triangle is :

power (Ω, X)
.
= |PX|2 − ω2 =

ux+ vy + wz

x+ y + z
− a2yz + b2xz + c2xy

(x+ y + z)
2 (13.1)

where u = power (Ω, A) , etc

Definition 13.1.2 (Already stated in Section 7.5 as Definition 7.5.3). From power (Γ, A) = 0, etc,
we have defined the standard equation of the circumcircle as :

Γstd (x, y, z)
.
= −a

2yz + b2xz + c2xy

x+ y + z
= 0 (13.2)

Proposition 13.1.3. Let C be a conic, with matrix C = (mjk) (notations of Definition 12.3.1) .
Then C is a cycle if and only if, for a suitable factor k, we have :

C − 1

2




2m11 m11 +m22 m33 +m11

m11 +m22 2m22 m22 +m33

m33 +m11 m22 +m33 2m33


 = k




0 c2 b2

c2 0 a2

b2 a2 0




Proof. Obvious from (13.1).

Proposition 13.1.4. Four points at finite distance belong to the same cycle (aka circle or straight
line) when their barycentrics pi : qi : ri are such that :

i=4

det
i=1

[pi, qi, ri, Γstd (pi, qi, ri)] = 0 (13.3)

Proof. Obvious from (13.1). Don’t forget how Γstd was defined in (13.2) !

Computed Proof. Denominators are a reminder of the fact that circles don’t escape to infinity.
Write the Cartesian equation of the circle as :

∆cart
.
=

i=4

det
i=1

[
ξ2
i + η2

i , ξi, ηi, 1
]

= 0

where ξ, η are the Cartesian coordinates of the points. Substitute these coordinates by :

ξ =
xξa + yξb + zξc
x+ y + z

, η =
xηa + yηb + zηc

x+ y + z

167
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and obtain another determinant ∆′ (x, y, z). Then compute F ·∆′ ·T−1 ·G where F is the diagonal
matrix diag (pi + qi + ri) and

T =




1 0 0 0

0 ξa ηa 1

0 ξb ηb 1

0 ξc ηc 1


 , G =




−1 0 0 0

ξ2
a + η2

a 1 0 0

ξ2
b + η2

b 0 1 0

ξ2
c + η2

c 0 0 1




Matrix F acts on rows and kills quite all denominators, T acts on the last three columns and
goes back to barycentrics while G acts on the first column to kill all square terms. After what
everything simplifies nicely and leads to (13.3)

Proposition 13.1.5. The barycentric equation of circle with center P = p : q : r and radius ω is :

(u0x+ v.0y + w0z) (x+ y + z)− ω2 (x+ y + z)
2 −

(
a2 yz + b2 zx+ c2 xy

)
= 0 (13.4)

where quantities u0, v0, w0 are defined as :

u0
.
= |PA|2 =

(
c2q2 + b2r2 +

(
b2 + c2 − a2

)
qr
)
÷ (p+ q + r)

2

v0
.
= |PB|2 =

(
a2r2 + c2p2 +

(
c2 + a2 − b2

)
rp
)
÷ (p+ q + r)

2 (13.5)

w0
.
= |PC|2 =

(
b2p2 + a2q2 +

(
b2 + a2 − c2

)
pq
)
÷ (p+ q + r)

2

Proof. Obvious from (13.1). The added value here is the emphasis on center and ω2. It must be
noticed that u : v : w is not a point nor a line. Quantities u, v, w are strongly defined objects and
are not defined up to a proportionality factor. They are to be considered exactly as ω2, i.e. are of
the same nature as a surface. It can be observed that u (or v or w) is zero-homogeneous wrt the
barycentrics of point P = p : q : r. More details are given in Chapter 14

Proposition 13.1.6. Center. The center of a circle defined by its equation (13.1) is given by :

center ' 1

2
vX(3)− K · tU =




a2 Sa

b2 Sb

c2 Sc


−




a2 −Sc −Sb
−Sc b2 −Sa
−Sb −Sa c2


 ·




u

v

w


 (13.6)

' 1

2S

(
a2Sa : b2Sb : c2Sc

)
− Mb · tU (13.7)

Proof. As stated in Definition 12.3.17, the center of a conic is the pole of the line at infinity wrt
the conic. Computations are straightforward. It can be noticed that product K · tU gives the
orthodir of line U (i.e. the point at infinity in the orthogonal direction). Since the line of centers is
orthogonal to the radical axis of Γ and Ω, this formula describes the coefficients to be used when
the circumcenter X(3) is described as in ETC by vX (3) = a2

(
b2 + c2 − a2

)
::. Let us recall the

Al-Kashi formula K = 2S Mb .

Remark 13.1.7. In both the center and the radius formulas, everything must be used exactly as
written, and not to a proportionality factor. A more efficient formulation will be given later, with
formula (14.15)

Proposition 13.1.8. Radius. The radius of a circle defined by its equation (13.1) is given by :

ω2 =
1

16S2

(
U · K ·t U − U.vX (3) + a2b2c2

)
(13.8)

Proof. Subtract formula (13.1) from |PX|2 obtained from (13.6) and Pythagoras formula.

Definition 13.1.9. kitW . Some usual square roots are given in Table 13.1, and some other
notations in Table 13.2.

Example 13.1.10. Table 13.3 describes some of the usual circles in triangle geometry. For further
information on many circles, refer to
http://mathworld.wolfram.com/Circle.html
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name # value where

Lemoine W1

√
a2b2 + a2c2 + b2c2 eiω =

a2 + b2 + c2 + 4 iS

2W1
(13.11)

Brocard W2

√
a4 + b4 + c4 − a2b2 − a2c2 − b2c2 |OK| = 2W2R

a2 + b2 + c2
(13.12)

Euler W3

√∑
3 a

6 −∑6 a
4b2 + 3 a2b2c2 |OH| = W3

4S
=

R

abc
W3 (13.13)

Fuhrmann W4

√∑
3 a

3 −∑6 a
2b+ 3 abc |HN | = 2W4R

√
1

abc
(13.14)

Table 13.1: Some usual square roots (kitW)

# value name

s (a+ b+ c) /2 half-perimeter

R
abc√

s (s− a) (s− b) (s− c)
circumradius

S
abc

4R
area of triangle

ω exp (i ω) =
a2 + b2 + c2

2W1
+ i

2S

W1
Brocard angle

e
√

a4+b4+c4

b2c2+c2a2+a2b2 − 1
√

1− 4 sin2 ω

r
S

s
=

a b c

2R (a+ b+ c)
inradius

Table 13.2: Some usual notations (circle kit 2)

Definition 13.1.11. Pencil of cycles. When C1 and C2 are two circles, then λC1 + µC2 is also a
cycle. The family generated from two given circles is called a pencil. Then all centers are on the
same line, which is orthogonal to the only line contained in the pencil (the so called radical axis).
More details in Chapter 14

Definition 13.1.12. The radical trace of two non-concentric circles is the point of intersection
of the radical axis of the circles and the line of the centers of the circles. (For examples, see X(I)
for I = 6, 187, 1570, 2021-2025, 2030-2032.)

13.2 Inversion in a circle
Remark 13.2.1. All results relative to the inversion in a cycle have moved to Section 14.8.

13.3 Antipodal Pairs on Circles
Remark 13.3.1. Since the previous section has moved, the present section is now orphaned... and
probably should be moved.

Proposition 13.3.2. Suppose (O1) and (O2) are circles and that P, P ′ are antipodes on (O1).
Let U = insim(O1, O2) and V = exsim (O1, O2) be the respective internal and external center of
homothety of circles (O1) and (O2). Define Q = P ′U ∩ PV and Q′ = PU ∩ P ′V . Then Q, Q′ are
antipodes on (O2). Moreover, the lines PP ′ and QQ′ are parallel.

Proof. The result is quite obvious, but giving a non-circular proof is not so obvious... except from
using z : t : ζ coordinates. Write the antipodal points as P = z1/t1 + r1τ and P ′ = z1/t1 − r1τ
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Name Center Radius

circumcircle X(3) R 13.4
incircle X(1) r 13.5

nine-point circle X(5) 1
2R 13.6

polar circle X(4)
√−SaSbSc ÷ 2S 13.7

Longchamps circle X(20)
√−SaSbSc ÷ S 13.8

Bevan circle X(40) 2R 13.9
Spieker circle X(10) r/2 13.10

Apollonius circle X(970)
(
r2 + s2

)
÷ 4 r 13.13

1st Lemoine X(182) R÷ 2 cosω 13.14
2nd Lemoine X(6) abc/

(
a2 + b2 + c2

)
13.15

Sin-triple-angle X(49) Rsta 13.16
Brocard circle X(182) eR÷ 2 cosω 13.17
Brocard second X(3) eR 13.17
Orthocentroidal X(381) |OH| /2 13.19

Fuhrmann X(355) |HN | /2 13.20

Table 13.3: Some circles

where τ is a turn. Point U, V are obtained as

U = (r2z1/t1 + r1z2/t2) / (r2 + r1) ; V = (r2z1/t1 − r1z2/t2) / (r2 − r1)

Two wedges later, we have:

Q = z2/t2 + r2τ ; Q′ = z2/t2 − r2τ

and we are done.

In the following examples, suppose P = p : q : r on the first circle.

13.4 Circumcircle

Definition 13.4.1. The circumcircle is the circle through A,B,C. Perspector is X6 and center
X3. Equation, matrix, column are :

a2yz + b2zx+ c2xy = 0 ; Pythb ;




0

0

0

1




Its standard parametrization is (7.17), i.e. :

a2

σ − τ :
b2

τ − ρ :
c2

ρ− σ | ρ : σ : τ 6= Lb

Lemma 13.4.2. The distance |PX3| to center from any point of the plane is given by :

|PX3|2 = R2 − a2qr + b2rp+ c2pq

(p+ q + r)2

Proof. Direct inspection using Theorem 7.4.4. As it should be, |X3X3| = 0 while the equation of
the circumcircle is |PX3|2 = R2.
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Proposition 13.4.3. For any finite point, other than the circumcenter X3, the inverse-in-circumcircle
of P = p : q : r has barycentrics u : v : w obtained cyclically from :

u = −p2 +
c2 − a2

b2
pq +

b2 − a2

c2
pr +

a2
(
b2 + c2 − a2

)

b2c2
qr

1 36 24 403 54 1157 352 353 1692 3053

2 23 25 468 55 1155 371 2459 2482 2930

4 186 26 2072 56 1319 372 2460 2935 3184

5 2070 27 2073 57 2078 399 1511 3110 3286

6 187 28 2074 58 1326 667 1083 3438 3480

10 1324 29 2075 67 3455 859 3109 3439 3479

15 16 32 1691 115 2079 1054 1283 3513 3514

20 2071 35 484 131 2931 1145 2932

21 1325 39 2076 182 2080 1384 2030

22 858 40 2077 237 1316 1687 1688

Proof. Points X(3), P, U are on the same line, and distance from X(3) to U is R2/|PX3|. Therefore,
in normalized barycentrics, we have : u = x3 + (p− x3)R2/|PX3|2.

Remark 13.4.4. On ETC n ≤ 3587, there are :

• 258 named points that belongs to Γ

• 47 pairs of "true" inverses that both are named

• 220 named points of Γ that have a named isogonal conjugate (among the 229 points of Lb)

• 62 pairs of named antipodal points

13.5 Incircle
Definition 13.5.1. The incircle is one of the four circles that are tangent to the sidelines. This
circle is inside the triangle, and also inside the nine point circle (these circles are tangent). Center
X(1), perspector X(7), radius r = S/s = abc÷ 2R (a+ b+ c), while equation and column are :

Γstd +
1

4

∑
x (b− a+ c)

2
;




(−a+ b+ c)
2

(+a− b+ c)
2

(+a+ b− c)2

4


 (13.9)

Proof. well-known properties.

Remark 13.5.2. On ETC n ≤ 3587, there are :

• 39 named points on the incircle

• 7 pairs of "true" inverses that both are named

• 10 pairs of named antipodal points

Proposition 13.5.3. Centers of homothety with the circumcircle are in=X(55), and ex=X(56).
When p : q : r ∈ Γ, then Q, Q′ are antipodal points on the incircle :

Q =
(

(b− c)2
p+ a2q + a2r

)
(b+ c− a) , etc

Q′ =
(b+ c)

2
p+ a2q + a2r

b+ c− a , etc

Proof. Proposition 13.3.2.
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Proposition 13.5.4. Incircle transform. Let U = u : v : w be a point other than the symmedian
point, X6. Then reflection of T7 (the intouch triangle) in the line UX1 is perspective with triangle
ABC. The isogonal conjugate of the corresponding perspector is called the incircle transform of U .
Its barycentrics are :

IT (u : v : w) =
a2 (bw − cv)

2

b+ c− a :
b2 (cu− aw)

2

a+ c− b :
c2 (av − bu)

2

b+ a− c

and this point is on the incircle.

Proof. Line UX1 is a diameter of the incircle and the reflected triangle T is also inscribed in the
incircle. The barycentrics of UX1 are [bw − cv, cu− aw, av − ub]. Reflection in this line is obtained
using (7.28), and barycentrics of T are obtained. Perspectivity and perspector are easily computed
and conclusion follows by substituting in the incircle equation.

Remark 13.5.5. In ETC another formula is given... and the point is also on the incircle :

IT2 (U) =
a2
(
b2w − c2v

)2

b2c2 (b+ c− a)
:
b2
(
c2u− a2w

)2

a2c2 (c+ a− b) :
c2
(
a2v − b2u

)2

a2b2 (a+ b− c)

One has IT (X) = IT (U) when U,X aligned with X1 while IT2 (X) = IT (U) when U,X aligned
with X6.

13.6 Nine-points circle

Definition 13.6.1. The nine point circle is the circumcircle of the orthic triangle. It goes also
through the six midpoints of the orthocentric quadrangle ABCH. Center X(5), radius R/2 (half
the ABC circumradius), perspector X(3613) :

1

b2c2 + 2Sa a2
:

1

a2c2 + 2 b2Sb
:

1

b2a2 + 2 c2Sc

while equation, matrix, column are :

Γstd +
1

2
(xSa + ySb + zSc) ;




2Sa −c2 −b2
−c2 2Sb −a2

−b2 −a2 2Sc


 ;




Sa

Sb

Sc

2


 (13.10)

Proposition 13.6.2. Centers of homothety with Γ are in=X(2), and ex=X(4). Ω intersects Γ
when ABC is not acute. Radical trace X(468), direction of center axis (Euler line) X(30), direction
of radical axis X(523). Standard parametrization (homothety from circumcircle) :

U '




(σ − τ)
(
c2τ − b2σ + b2ρ− c2ρ

)

(τ − ρ)
(
a2ρ− c2τ + c2σ − a2σ

)

(ρ− σ)
(
b2σ − a2ρ+ a2τ − b2τ

)




Remark 13.6.3. On ETC n ≤ 3587, there are :

• 37 named points on the nine points circle

• 9 pairs of "true" inverses that both are named

• 12 pairs of named antipodal points

Proposition 13.6.4 (Feuerbach). The nine-point circle is tangent to the incircle and the three
excircles. The contact with incircle is X(11), the so-called Feuerbach point.

Proof. Use (13.9) and (13.10) to obtain the radical axis.
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13.7 Polar circle
Definition 13.7.1. The polar circle is the only circle whose matrix is diagonal (and triangle ABC
is autopolar). Center X(4), the orthocenter, radius

√−SaSbSc ÷ 2S, equation and column are :

1

x+ y + z

∑
Sax

2 = Γstd + (xSa + y Sb + z Sc) = 0 ;




Sa

Sb

Sc

1




Proposition 13.7.2. This circle belongs to the same pencil as the circum- and the nine-points
circles. This circle is real only when triangle ABC is not acute. Therefore, no named points can
belong to this circle.

Proposition 13.7.3. The polar circle is the locus of the centers of the inscribed rectangular hy-
perbolas (cf Section 12.8).

13.8 Longchamps circle
Definition 13.8.1. The Longchamps circle of ABC is the polar circle of the antimedial triangle.
Center X(20), the Longchamps point, radius

√−SaSbSc/S, equation, matrix and column are :

Γstd +
(
x a2 + y b2 + z c2

)
= 0 ;



a2 Sc Sb

Sc b2 Sa

Sb Sa c2


 ;




a2

b2

c2

1




Proposition 13.8.2. The Longchamps circle is the locus of the auxiliary points of the inscribed
rectangular hyperbolas (cf Section 12.8).

13.9 Bevan circle
Definition 13.9.1. The Bevan circle is the circumcircle of the excentral triangle. Perspector
X(57), center X(40), radius 2R, equation and column :

Γstd + (−bcx− acy − abz) = 0 ;




−bc
−ac
−ba

1




Proposition 13.9.2. Centers of homothety with Γ are in=X(165), and ex=X(1). Radical trace
X(1155), center axis X(517), radical axis X(513). Moses parametrization leads to Q (bad looking)
and Q′ = − (a+ 2 b+ 2 c) p+ aq + ar.

Remark 13.9.3. On ETC n ≤ 3587, there are :

• 9 named points on the Bevan circle, namely : 1054, 1282, 1768, 2100, 2101, 2448, 2449, 2948,
3464

• 5 pairs of "true" inverses that both are named

• 2 pairs of named antipodal points

13.10 Spieker circle
Definition 13.10.1. Spieker circle is the incircle of the medial triangle. Perspector X(2), center
X(10), radius r/2 (half the ABC inradius), equation :

Γstd +
1

16

∑
x
(
5 c2 + 5 b2 − 3 a2 + 2 ac+ 2 ab− 6 bc

)
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174 13.11. Alt-Spieker circle

Proposition 13.10.2. Centers of homothety with Γ are in=X(958), and ex=X(1376). Radical
trace not named, center axis X(515), radical axis X(522). Moses parametrization leads to :

Q = (b+ c− a)
((
ab2 + ac2 + b3 − b2c− c2b+ c3

)
p+ a (q + r)

(
a2 + ab+ ac+ 2 bc

))

Q′ =
(
ab2 + c2a+ b2c+ c2b− c3 − b3

)
p+ a (q + r)

(
+a2 − ab− ac+ 2 bc

)
, etc

Centers of homothety with the incircle are in=X(8) and ex=X(2).

Remark 13.10.3. On ETC n ≤ 3587, there are :

• 8 named points on the Spieker circle, namely : 3035, 3036, 3037, 3038, 3039, 3040, 3041,
3042

• no pairs of "true" inverses that both are named

• 2 pairs of named antipodal points [3035,3036], [3042,3042]

13.11 Alt-Spieker circle
Definition 13.11.1. The alt-Spieker circle is the common orthogonal cycle to the three excircles
(see Subsection 14.11.4). Center X(10), radius

√
r2
0 + s2 ÷ 2, equation and column :

4 Γstd −
∑

x (a− b+ c) (a+ b− c) = 0 ;




− (a− b+ c) (a+ b− c)
− (b− c+ a) (b+ c− a)

− (c− a+ b) (c+ a− b)
4




13.12 Apollonian circles
Definition 13.12.1. Let Ja and Pa be the points where the interior and exterior bisectors of angle
A meet the opposite sideline. In other words, the Jk and Pk are, respectively, the cevians and the
cocevians of I0 =X(1). The circle drawn using [Ja, Pa] as diameter is called the A-Apollonian
circle. It goes obviously through vertex A.

Proposition 13.12.2. The equation of the A-circle is 0 : −a2c2 : a2b2 : b2 − c2. Its center is
Ea

.' 0 : −b2 : c2, the cocevian of X(6). The three (Ek) belong to a same pencil (the so-called
Lemoine pencil) whose base points are the isodynamic points X(15), X(16), while the radical axis
is the Brocard line.

(Spoiler) Since Ja, Pa are Lemoine-conjugates, the Apollonian circles can be described in the
Lubin-1 frame. One obtains:

(Ea) '
1
β + γ − 2α : α2 − β γ : α (2βγ − αβ − αγ) : α2 − β γ

Proof. Straightforward from
∧

3 (A, Ja, Pa).

13.13 Apollonius circle
Definition 13.13.1. The Apollonius circle is tangent to the three excircles and encloses them
(see Subsection 14.11.4). Center X(970), perspector not named, equation :

Γstd −
a+ b+ c

4

∑ a2 + ab+ ac+ 2 bc

a
x = 0 ;




a+ b+ c+ 2bc÷ a
a+ b+ c+ 2ca÷ b
a+ b+ c+ 2ab÷ c
−4÷ (a+ b+ c)




radius = (abc+
∑

6

a2b)÷ 8S =
r2
0 + s2

4 r0
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Proposition 13.13.2. Centers of homothety with Γ are in=X(573), and ex=X(386). Radical trace
not named, center axis X(511), radical axis X(512). Moses parametrization leads to bad looking Q
and

Q′ = − (b+ c)
2

(a+ c) (a+ b) p+
(
ab+ ac+ bc+ b2 + c2

)
a2q + r

(
ab+ ac+ bc+ b2 + c2

)
a2, etc

Centers of homothety with the nine-points circle are in=X(10) and ex=X(2051).

Remark 13.13.3. On ETC n ≤ 3587, there are :

• 8 named points on the Apollonius circle, namely : 2037, 2038, 3029, 3030, 3031, 3032, 3033,
3034

• no pairs of "true" inverses that both are named

• 1 pairs of named antipodal points [2037, 2038].

13.14 First Lemoine circle

Definition 13.14.1. The first Lemoine circle of ABC is obtained as follows. Draw parallels to
the sidelines of ABC through Lemoine point X6. The six intersections of these lines with sidelines
are concyclic on the required circle. The following surd is useful :

W1 =
√
a2b2 + a2c2 + b2c2 (13.11)

Proposition 13.14.2. Center is X(182) (i.e. [O, K] midpoint), radius R÷2 cosω = W1R/
(
a2 + b2 + c2

)
,

perspector :

a2

2 a2b2 + 2 a2c2 + b2c2
,

b2

a2c2 + 2 a2b2 + 2 b2c2
,

c2

a2b2 + 2 a2c2 + 2 b2c2

is not named, equation :

Γstd +
1

(a2 + b2 + c2)
2

∑
x
(
b2 + c2

)
b2c2

This circle is concentric with and external to the first Brocard circle.

Proof. Difference of squared radiuses factors into
(
abc/

(
a2 + b2 + c2

))2.

Proposition 13.14.3. Centers of homothety with Γ are in=X(1342), and ex=X(1343). Radical
trace X(1691), center axis X(511), radical axis X(512). Moses parametrization leads to bad looking
Q and Q′. Poncelet centers of the pencil : X(1687) (inside) and X(1688) outside.

Proof. In order to see that X(1687) is inside, compute Ω (X(182)) × Ω (X (1687)) and obtain a
quantity that is clearly positive.

Remark 13.14.4. On ETC n ≤ 3587, there are :

• 2 named points on the first Lemoine circle, namely : 1662, 1663 (intersection with the Brocard
axis, X(3)X(6)).

• 7 pairs of "true" inverses that both are named :
[

3 6 32 39 371 372 1687

2456 1691 1692 2458 2461 2462 1688

]

• 1 pairs of named antipodal points [1662, 1663].
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13.15 Second Lemoine circle

Definition 13.15.1. The second Lemoine circle of ABC is obtained as follows. Draw parallels
to the sidelines of orthic triangle through Lemoine point X6. The six intersections of these lines
with sidelines are concyclic on the required circle.

Proposition 13.15.2. Center is X(6) itself, radius abc/
(
a2 + b2 + c2

)
, perspector X(3527), equa-

tion :
Γstd +

4

(a2 + b2 + c2)
2

∑
xSa b

2c2 = 0

Centers of homothety with Γ are in=X(371), and ex=X(372). Radical trace X(1692), center axis
X(511), radical axis X(512). Moses parametrization leads to bad looking Q and Q′. Poncelet
centers of the pencil are involving radical

√
6
∑
a2b2 − 5

∑
a4 and are not named. Moreover, the

second Lemoine circle is bitangent to the Brocard ellipse.

Remark 13.15.3. On ETC n ≤ 3587, there are :

• 2 named points on the second Lemoine circle, namely : 1666, 1667 (intersection with the
Brocard axis, X(3)X(6)).

• 5 pairs of "true" inverses that both are named :
[

3 576 1316 1351 2452

1570 1691 2451 1692 3049

]

• 1 pairs of named antipodal points [1666, 1667].

13.16 Sine-triple-angle circle

Definition 13.16.1. Define inscribed triangles T1 and T2 by the properties :

∠ (AB, AC) = ∠ (B1A, B1C1) = ∠ (C2B2, C2A) , etc

the idea being to obtain isosceles "remainders". Then all the six vertices are on the same circle.

Figure 13.1: Sin triple angle circle

Proof. Using the tangent formula, the six points are easily obtained. T1 is a central triangle, and
each vertex of T2 is obtained by a transposition.

A1 '




0(
a2 − ac− b2

) (
a2 + ac− b2

) (
a2 + b2 − c2

)
(
a2 − bc− c2

) (
a2 + bc− c2

)
c2




April 5, 2025 14:49 published under the GNU Free Documentation License



13. More about circles 177

Proposition 13.16.2. Center X(49), perspector not named, equation horrific, radius Rtsa =

R3/
(
|OH|2 − 2R2

)
. Centers of homothety with Γ are in=X(1147), and ex=X(184), direction of

radical axis X(924). Moses parametrization leads to bad looking Q and :

Q′ = a2
(
a2 − c2

) (
a2 − b2

)
p− a4

(
b2 + c2 − a2

)
(q + r) , etc

Remark 13.16.3. On ETC n ≤ 3587, there are :

• 6 named points on the Sine Triple Angle circle, namely : 3043, 3044, 3045, 3046, 3047, 3048

• 0 pairs of "true" inverses that are both named

• 1 pairs of named antipodal points [3043, 3047].

13.17 Brocard 3-6 circle
Definition 13.17.1. The Brocard 3-6 circle has [X3, X6] for diameter. Center X(182). Radius
eR÷ 2 cosω = W2R/

(
a2 + b2 + c2

)
where :

W2 =
√
a4 + b4 + c4 − (b2c2 + a2b2 + a2c2) (13.12)

while the perspector :
a2

2a4 + b2c2
:

b2

2b4 + a2c2
:

c2

2c4 + a2b2

is not named. Equation :

Γstd +
1

(a2 + b2 + c2)

(
x b2c2 + y c2a2 + z a2b2

)
= 0

Proposition 13.17.2. Centers of homothety with Γ are in=X(1340), and ex=X(1341). Radical
trace X(187), center axis X(511), radical axis X(512). Moses parametrization leads to :

Q =

(
a2
(
a4 − a2c2 − a2b2 − 2 b2c2

)
(p+ q + r)

±W
((
a2b2 + a2c2 + 2 b2c2 − b4 − c4

)
p− a2

(
b2 + c2 − a2

)
(q + r)

)
)
, etc

Poncelet centers of the pencil are X(15) and X(16), the isodynamic points (see Section 14.10).

Remark 13.17.3. On ETC n ≤ 3587, there are :

• 4 named points on the first Brocard circle, namely : 3, 6, 1083, 1316. Moreover, this circle
goes through the Brocard points (cf 7.11.1).

• 47 pairs of "true" inverses that are both named

• 1 pairs of named antipodal points [3, 6].

13.18 Second Brocard circle
Definition 13.18.1. First anti-Brocard circle: circumcircle of the first anti-Brocard triangle.
Equation:

Γstd −
∑

3

a2
(
b2 + bc+ c2

) (
b2 − bc+ c2

)

W 2
2

x = 0

Definition 13.18.2. The Brocard second circle is centered on X(3) and goes through the
Brocard’s centers. Radius eR = W2R/

√
a2b2 + b2c2 + c2a2, while the perspector :

a2

2a4 − a2b2 − a2c2 + b2c2
, etc

is not named. Equation :

Γstd +
a2b2c2

a2b2 + a2c2 + b2c2
= 0
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Remark 13.18.3. On ETC n ≤ 3587, there are :

• 6 named points on the second Brocard circle, namely : 1670, 1671, 2554, 2555, 2556, 2557.
Moreover, this circle goes through the Brocard points (cf 7.11.1).

• 17 pairs of "true" inverses that are both named

6 39 62 3106 1340 3558 2026 2561

15 3105 76 99 1341 3557 2027 2560

16 3104 182 3095 1666 2563

32 3094 371 3103 1667 2562

61 3107 372 3102 1689 1690

• 3 pairs of named antipodal points [1670, 1671], [2554, 2555], [2556, 2557].

13.19 Orthocentroidal 2-4 circle
Definition 13.19.1. Orthocentroidal circle has [X2, X4] for diameter. Center is X(381) and radius
RW3 ÷ 3abc where :

W3 =
√
a6 + b6 + c6 − (a4b2 + a4c2 + a2b4 + a2c4 + b4c2 + b2c4) + 3a2b2c2 (13.13)

while the perspector :
1

b2c2 + 2 a2 (b2 + c2 − a2)

is not named. Equation and column are :

Γstd +
2

3
(xSa + y Sb + z Sc) = 0 ;




2Sa

2Sb

2Sc

3




Proposition 13.19.2. Centers of homothety with Γ are in=X(1344), and ex=X(1345). Radical
trace X(468), center axis X(30), radical axis X(523). Moses parametrization leads to :

Q =

(
abc
(
a4 + a2b2 + a2c2 − 2 b4 + 4 b2c2 − 2 c4

)
(p+ q + r)

±W
((
a2b2 + a2c2 + 2 b2c2 − b4 − c4

)
p− a2

(
b2 + c2 − a2

)
(q + r)

)
)
, etc

Poncelet points are real when triangle is acute.

Remark 13.19.3. On ETC n ≤ 3587, there are :

• 2 named points on the orthocentroidal circle, namely (antipodal) 2, 4

• 45 pairs of "true" inverses that are both named

Proposition 13.19.4. The orthocentroidal circle goes through points A′ = (A+ 2AH) /3, etc.
where AHBHCH are the feet of the altitudes.

Proof. One has AH ' a2 : 2Sc : 2Sb. Then one has V er (AH) · V
b

= 0.

Proposition 13.19.5. Among the four in/ex-centers, the in-center is inside the orthocentroidal
circle, and the other three are outside.

Proof. One can check that

|O I0|2 − 4 |N I0|2 = +2r0 (R− 2r0) = |O I0|2 × (+2r0/R) ≥ 0

|O IA|2 − 4 |N IA|2 = −2rA (R+ 2rA) = |O IA|2 × (−2rA/R) ≤ 0

while the locus of |OM |2 = 4 |N M |2 is precisely the said circle (M = H and M = G are
solutions).
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Proposition 13.19.6. Let O,N, I be three points on the plane and let ψ (Φ) be the image of the
curve

Φ : 3Z2
Z2 + 14ZZ

(
Z + Z

)
T + 27

(
Z2 +

4

3
ZZ + Z2

)
T2 + 54

(
Z + Z

)
T3 + 27T4 = 0

by the similitude ψ which sends z = −1 to O and z = 0 to N. When I is outside ψ (Φ), it exists a
triangle such that O is the circum-center, N is the Euler-center and I is one of the in/ex-centers.
When I is inside this exclusion curve, no such triangle can be found.

Sketch of the proof, more details in Guinand, 1984. Consider the polynomial:

P (X)
.
= X3 −X2

(
3

2
− 2σ

ρ

)
+X

(
2σ (σ − κ)

ρ2
− 3σ

ρ
+

3

4

)
− 1

8
+

2σ κ

ρ2

When ρ = |OI0|2, σ = |NI0|2, κ = |ON |2, the roots of P are the three cosA, etc. When a is
changed into −a, I0 becomes Ia and the roots of P become cosA, − cosB, − cosC. This is easily
checked using the Al-Kashi formula. (How to obtain P is another story, see Guinand).

Since all roots have to be real, we must have

0 ≥ ∆ (P ) = 16
σ2 S2 (ρ, σ, κ)

ρ6

(
32σ κ− 27 ρ2 + 40σ ρ− 16σ2

)

And then Φ is obtained by substituting

ρ =
(
Z + T

)
(Z + T) /T2 ; σ = ZZ/T2 ; κ = 1

in the last factor. When ∆ = 0, the roots are X = −1 (simple) and X = 5/4− σ/ρ (double).

Remark 13.19.7. Due to the relation A+B + C = π, the three cosines are related by

cos2A+ cos2B + cos2 C = 1− 2 cosA cosB cosC.

In other words, we have s2
1 − 2 s2 + 2 s3 − 1 = 0. And this can be checked for polynomial P . The

Lemoine’s transforms changes two signs, and the relation remains.

Exercise 13.19.8. Generate "a lot" of α, β, γ on the unit circle, and draw the corresponding

ψ−1 (I) = − (α+ β + γ)
2

α2 + β2 + γ2

(the green points). Superpose the graph of Φ, and draw the circle [−1/3; +1].

13.20 Fuhrmann 4-8 circle
Definition 13.20.1. Fuhrmann circle has [X4, X8] for diameter (see also ???). Center X(355),
radius RW4 ÷

√
abc where :

W4 =
√
a3 + b3 + c3 − (a2b+ a2c+ ab2 + ac2 + b2c+ bc2) + 3 abc (13.14)

perspector not named (and not handy). Equation and column are :

Γstd +
2

a+ b+ c
(x aSa + y bSb + z cSc) = 0 ;




2Sa a

2Sb b

2Sc c

b+ a+ c




Remark 13.20.2. The only named points of this circle are X(2) and X(4). Five inverse pairs are :
1 11 72 2475 3434

80 1837 3419 3448 3436
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Figure 13.2: The exclusion curve

13.21 Taylor circle
Definition 13.21.1. Project the foot of any altitude onto the two other sidelines. The six points
obtained are concyclic, defining the Taylor circle. Center X(389) with barycentrics

a2
(
4S2 + Sb Sc

) (
2S2

a − b2c2
)
− a4b2c2Sa, etc

squared radius
4S4

a2b2c2
+

S2
aS

2
bS

2
c

16 a2b2c2S2
=
rad4

H + 4S2

16R2

where radH is the radius of the polar circle (so that rad4
H ≥ 0), perspector not so simple (and not

named). No named point on it. Equation and column are :

Γstd +
4S2

a2b2c2
(
xS2

a + y S2
b + z S2

c

)
= 0 ;




4S2S2
a

4S2S2
b

4S2S2
c

a2b2c2


 '




S2
a

S2
b

S2
c

4R2




13.22 Kiepert RH and isosceles adjunctions
Definition 13.22.1. Kiepert RH is the rectangular hyperbola through A,B,C,G. It goes
through X(4) (general RH property) ad also through 10,13,14,17,18... and circa 400 other ETC
centers. Center is X(115), perspector X(523), points at infinity X(3413) and X(3414), i.e.

b2 − c2 : a2 − b2 ±W2 : c2 − a2 ∓W2

where W2 =
√
a4 − a2b2 − a2c2 + b4 − b2c2 + c4 is the Brocard radical

Proposition 13.22.2. . Chose angle φ and construct isosceles triangles BA′C, CB′A, AC ′B
with basis angle ∠ (BC, BA′) = φ (φ < 0 when A′ is outside). Then triangles ABC and A′B′C ′
are perspective wrt a point N (φ) :

N (φ) ' 1

2S cotφ− Sa
, etc ' a

sin (A− φ)
, etc (13.15)

and Kiepert RH is the locus of such points.

Proof. One has : A′ = a2 tanφ : 2S − Sc tanφ : 2S − Sb tanφ.
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Remark 13.22.3. Triangle A′B′C ′ is perspective from X(3) to the tangential triangle of ABC...

Proposition 13.22.4. For a given K, the points A′B′C ′are on the same cubic as the vertices,
the inexcenters, orthocenter, circumcenter and the points A′B′C ′ relative to the opposite value of
K. This cubic can be written as

(
K2 + 1

)
K001 +

(
3−K2

)
K003 where K001 and K003 are the

standardized equations of, respectively, the Neuberg and the McKay cubics, as given in Proposi-
tion 22.4.25 and Proposition 22.4.24. The pole is X(6), while pivot is 3 vX(2)−K2

vX(20) i.e. :(
1 +K2

)
s1 s3 :

(
3−K2

)
s3 :

(
1 +K2

)
s2.

Proof. Details are given in Proposition 22.4.22.

Remark 13.22.5. Points at infinity of Kiepert RH are parametrized by :

cotφ =
−1

3

(
1 +

2W2

a2 + b2 + c2

)
cot (ω) =

−1

12S

(
a2 + b2 + c2 + 2W2

)

Remark 13.22.6. Fixed values of angle φ can be obtained by adding some regular shape to each
side of the reference triangle. This created a race for the most inventive adjunction. Among them
is the Pelle à Tarte, whose name was coined from a charade whose solution was "neon lamp, pie
shovel" (i.e. lampe au néon, pelle à tarte, an approximation for Napoleon Bonaparte)

Example 13.22.7. In Figure 13.3, a Pelle à Tarte (pie shovel) like AFUGC is made of a square

AFGC and an equilateral triangle FUG. It defines the angle φ =

(︷ ︸︸ ︷
AU, AC

)
= −75◦. When

the triangle is inside the square, we obtain a Pelle Pliée (folded shovel) like AFWGC that defines

angle φ =

(︷ ︸︸ ︷
AU, AC

)
= −15◦.

Figure 13.3: Cake server (Pelle a Tarte)

Example 13.22.8. Arbelos. Another idea to obtain some adding object is as follows. Divide
[AB] in a given ratio, obtaining D. Use the same ratio to obtain E,F . Draw the half circles
and perpendicular DM , then the tangent circles. The triangle of the centers is perspective with
ABC if and only if the ratio is

(√
5− 1

)
/2. Perspector is X(2672). And belongs to Kiepert RH.

Therefore, we have isosceles triangle. Value is ± tanφ = 3−
√

5 (plus is inward, minus is outward).

Figure 13.4: Arbelos configuration
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-90° -0° -75° -15° -72° -18° -at3 -67.5° -22.5°
4 2 3391 3366 1139 3370 1327 ??? 3387 3373
4 2 3367 3392 1140 3397 1328 ??? 3374 3388

+90° +0° +75° +15° +72° +18° +at3 +67.5° +22.5°
H G Pelle à Tarte pentagons arctan 3

-at2 -60° -30° -54° -36° -arb -45°
1131 3316 13 17 3381 ??? ??? 2671 485
1132 3317 14 18 ??? 3382 ??? 2672 486
+at2 +60° +30° +54° +36° +arb +45°

Fermat Napol. Arbelos Vecten
−2ω 2ω − π

2 −ω ω − π
2 − 1

2ω
1
2ω − π

2 − 1
2ω − π

4

3407 3399 83 262 1676 ??? ???
1916 3406 76 98 ??? 1677 2010
+2ω π

2 − 2ω +ω π
2 − ω + 1

2ω
π
2 − 1

2ω + 1
2ω + π

4

Gibert Brocart Lemoine circ Galaty circ

Table 13.4: Blocks related to Kiepert adjunctions

Example 13.22.9. When using the center of a regular triangle, square, pentagon, we have φ = 30◦,
φ = 45◦, φ = 54◦ ; when using the farthest vertex (or the midpoint of the farthest side), φ = 60◦,
φ = at2

.
= arctan 2, φ = 72◦. We even have points relative to at3 = arctan 3. Points are collected

into 2× 2 blocks corresponding to −φ, φ− 90◦, 90◦ − φ, φ, see Table 13.4

Example 13.22.10. Brocard angle is often involved since :

Pφ ' 1

(b2 + a2 + c2) cot (φ)− Sa cot (ω)
, etc

Proposition 13.22.11. Let σ be a constant value. Then all lines N (φ)N (σ − φ) are passing
through point T (σ) where :

T (σ) '




a2Sa

b2Sb

c2Sc


+ 2S cotσ




a2

b2

c2




Therefore all the N (φ)N (−φ) lines (columns in a block) are passing through X(6), the Lemoine
point. And all the N (φ)N

(
π
2 − φ

)
lines (rows in a block) are passing through X(3) the circum-

center. All the T (σ) are on the Brocard axis X(3)X(6).

Proof. Obvious from (13.15).

Proposition 13.22.12. Let δ be a constant value. Then all lines N (φ)N (φ+ δ) are tangent to
a conic D (δ). When δ = 0 this conic is the Kiepert RH itself. When δ = π/2 (diagonals in a
block), the conic reduces to a real point : the Euler center X(5). In the general case, D (δ) =
16S2

(∏(
a2 − b2

))
cot2 (δ) D (0) +D (π/2).

Proof. This can be proved using the usual techniques : differentiate and wedge. When δ is rational
wrt π, conics D (δ) and D (0) are in a Poncelet configuration.

Lemma 13.22.13. Consider circle C0 : x2 + y2 = 1 and points U = (u, 0), V = (v, 0) in the
Cartesian plane. When u + v 6= 0, these points are the centers of homothety of circles C0 and
C (P, ρ) where

P =

(
2uv

u+ v
, 0

)
, ρ =

∣∣∣∣
u− v
u+ v

∣∣∣∣

Proof. Consider M = (0,+1) and N = (0,−1). Their counterparts in circle C are obtained by the
intersections J = UM∩V N andK = UN∩VM . We have P = (J +K) /2 and ρ = |J −K| /2.
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13. More about circles 183

Proposition 13.22.14. A circle C (P, ρ) can be found such that points U = N (φ), V = N (φ+ π/2)
are the centers of homothety between C and the nine-points circle. We have :

P ' cot (2φ)




a2Sa

b2Sb

c2Sc


− 2S




a2

b2

c2


 ∼= cot (2φ) X3 − 2S X6

ρ =
abc
√

1 + cot2 (2φ)

a2 + b2 + c2 − 4S cot (2φ)

Proof. These two points are aligned with E=X(5). Define W = (U + V ) /2. From the above
lemma, we have :

P = E + k (U − E) ; ρ = (1− k)
R

2
where k =

V − E
W − E

Computations are greatly simplified when remarking that the results depends not really from cotφ
itself, but rather from cotφ − 1/ cotφ. That is the reason why all these formulas are involving
cot (2φ).

13.23 Cyclocevian conjugate
Definition 13.23.1. Two points are called cyclocevian conjugates when their cevian triangles
share the same circumcircle. This definition has to be compared with cyclopedal conjugacy, see
Section 9.3.

Proposition 13.23.2 (Terquem). Each point not on the sidelines has a cyclocevian conjugate. Its
barycentrics are given by (Grinberg, 2003b) :

U = cyclocevian (P ) = (isot ◦ anticomplement ◦ isog ◦ complement ◦ isot) (P )

Proof. This proposition asserts that the other intersections of the circumcircle of APBPCP with the
sidelines are the vertices of another cevian triangle. As it should be, the formula is involutory.

Example 13.23.3. Some examples :

point code bary cycc circumcenter

Gergonne X (7)) 1/ (−a+ b+ c) X (7) X (1)

centroid X (2) 1 X (4) X (5)

orthocenter X (4) 1/
(
−a2 + b2 + c2

)
X (2) X (5)

Nagel X (8) −a+ b+ c X (189) X (1158)

Point X7 is the only center that is invariant by cyclocevian. Three other points share this
property, obtained by changing one of the a, b, c into its opposite in the barycentrics of X7.

13.24 Mixtilinear circles
Definition 13.24.1. In triangle ABC, the circle γ tangent to the sidelines AB, AC and the
circumcircle is called the A mixtilinear circle when γA is inside the circumcircle. The other circle
tangent to these three lines is called the external mixtilinear circle and noted γ̂A.

Proposition 13.24.2. Using barycentrics or Lubin-2 lead to:

γA '
b




4 b2c2

c2 (a− b+ c)
2

b2 (a+ b− c)2

(b+ a+ c)
2


 ; γA '

z







(α s2 + s3)
2

α2 (β − γ)
2

(α+ s1)
2


 ; ρ =

2 (s1 s2 − s3)

(β − γ)
2
α




The external mixtilinear circle is obtained using the A-Lemoine transform.
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φ U V P ρ name

0 2 4 3 R circum

π/12 3392 3391 16
2
√

3abc

12S −
√

3 (a2 + b2 + c2)

−π/12 3366 3367 15
2
√

3abc

12S +
√

3 (a2 + b2 + c2)

π/10 3397 1139 3393

−π/10 3370 1140 3379

arctan (3) 1328 ? ?
5 abc

16S + 3 (a2 + b2 + c2)

− arctan (3) 1327 ? ?
5 abc

16S − 3 (a2 + b2 + c2)

π/8 3388 3387 372

√
2abc

4S − (a2 + b2 + c2)

−π/8 3373 3374 371

√
2abc

4S + (a2 + b2 + c2)

arctan (2) 1132 3316 ?
5 abc

12S + 4 (a2 + b2 + c2)

− arctan (2) 1131 3317 ?
5 abc

12S − 4 (a2 + b2 + c2)

π/6 18 13 62
2 abc

4S −
√

3 (a2 + b2 + c2)

−π/6 17 14 61
2 abc

4S +
√

3 (a2 + b2 + c2)

π/5 3382 3381 3395 −−
−π/5 ? ? 3368 −−

arctan
(
3−
√

5
)

2672 ? ?
3
(
4
√

5 + 5
)
abc

44S − 2
(
9 + 5

√
5
)

(a2 + b2 + c2)

− arctan
(
3−
√

5
)

2671 ? ?
3
(
4
√

5 + 5
)
abc

44S + 2
(
9 + 5

√
5
)

(a2 + b2 + c2)

π/4 486 485 6
abc

a2 + b2 + c2
2◦ Lemoine

arccot
(a+ b+ c)

2

4S
10 2051 970

r2 + p2

4 r
Apollonius

−arccot
(a+ b+ c)

2

4S
? ? ?

2ω 1916 3399 ?

(
a2b2 + a2c2 + b2c2

)
R

a4 + b4 + c4 + a2c2 + a2b2 + b2c2

−2ω 3407 3406 ?

ω 76 262 3095 R

−ω 83 98 3398

(
a2b2 + a2c2 + b2c2

)
R

a4 + b4 + c4 + a2c2 + a2b2 + b2c2

ω/2 ? ? 511 ∞ Linfty

−ω/2 1676 1677 182
R

2 cos (ω)
1◦ Lemoine

π/4 + ω/2 2010 2009 39 R sin (ω) Gallatly

−π/4− ω/2 ? ? 32
abc
(
b2 + a2 + c2

)

2 (b4 + c4 + a4) cos (ω)

Table 13.5: Similicenters on Kiepert RH
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Proof. Formulas are easy to verify... and then non-displayed ones are rather huge !

Construction 13.24.3. The second intersection of line A-X(56) cuts again the circumcircle at
A1 ∈ γA. Line OA1 cuts line AI0 at Ka,the center of γA. Contacts Ab, Ac with the sidelines are
aligned with I. Moreover AbAc ⊥ AI0.
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Chapter 14

Pencils of Cycles in the Triangle Plane

14.1 Introductory remarks

14.1.1 How many points at infinity should be used ?

In the context of the (barycentric) Triangle Plane, points are described by projective columns
living in PR

(
R3
)
. In the same vein, the present chapter will describe the circles and their pencils

by projective columns V living in PR
(
R4
)
. Later, the Morley plane will be introduced, where

points are described by columns living in PC
(
C3
)
while, in Chapter 19, circles will be described

by projective columns V living in PC
(
C4
)
.

Efficient notations are powerful, but poor notations can be confusing. Thus we will use
V
b
,V
c
,V
p
,V
s
to distinguish between barycentric, general Morley, Pedoe and spherical objects. When

a formula is valid in all the four contexts, indices will be omitted.
Using such 4D spaces is not the most frequent method to describe the circles and their pencils.

The tradition (Poncelet, 1822, 1865) is rather to use the Riemann sphere PC
(
C2
)
where (z1, z2) '

(λz1, λz2) for any non-zero λ ∈ C . But Triangle Geometry deals with points and lines living in
projective 3D-spaces, i.e. described as x : y : z where x : y : z ' kx : ky : kz for any non-zero
multiplier k.

Obviously, the 2D and 4D points of view are reducing to the same elementary Cartesian co-
ordinates when restricted to the finite domain. But they are conflicting where they are the most
useful, i.e. where they are implementing the Poncelet’s continuity principle for objects at infinity.
This is even more true concerning the "circular points at infinity", the so-called umbilics of the
plane.

An ordinary line must be completed in a way or another to become a "circle with infinite radius"
and having a clear definition of this completion is required in order to unify the three concepts of
circle (0 < ρ <∞), point (ρ = 0) and line (ρ =∞) into a single concept of cycle.

But the intuition of an "infinite sphere whose center is everywhere and its circumference
nowhere"1 (?, p. 3 [83)pascal:pensees has to be formulated in minute detail to become effective
and fruitful.

In the Riemann sphere PC
(
C2
)
, there exists only one point at infinity (noted ∞). In this

context, a "circle with infinite radius" is an ordinary line ∆ completed with the point noted ∞,
i.e. ∆ = ∆ ∪ {∞}, while point-circles are either the set {∞} or a circle with radius 0 around an
ordinary point.

In the Triangle Plane PR
(
R3
)
, there exists a whole line Lb of points at infinity, verifying

x + y + z = 0. In this document, barycentrics are used. Using trilinears would only change
some formulas, but not the very nature of the underlying space. In this context, the barycentric
equation of an ordinary circle leads to define a cycle as a second degree curve (a conic) that
goes through the so-called umbilics Ω±. Therefore, the equation of a completed line becomes
(x+ y + z) (ux+ vy + wz) = 0 so that we must define ∆ as ∆ ∪ Lb, while the role of {∞} in
PC
(
C2
)
is played now by the horizon circle C∞ defined by (x+ y + z)

2
= 0, i.e. defined as the

object having the same points as Lb but each of them counted twice.
In Chapter 7, orthogonality of lines has been reduced to a polarity wrt operator Mb . Here,

1une sphère infinie dont le centre est partout, la circonférence nulle part,
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the same treatment will be applied to cycles, i.e. the family of all curves that are either a circle or
a line. This leads to a fundamental quadric Q in a 4-D projective space PR

(
R4
)
[here] or PC

(
C4
)

[some chapters later]. Finite points on the quadric can be interpreted as representatives of point-
circles, quite the same thing as an ordinary point in the triangle plane. Points outside this quadric
are representatives of cycles, while points inside are assigned to the later defined virtual circles.

When dealing with tangency of cycles, a better description would be secured by using oriented
cycles, living in a Lie sphere, embedded into a 5D space obtained by a double coating of the
ordinary 4D space of cycles. We haven’t developped this concept here.

14.1.2 Umbilics

Lemma 14.1.1. We have OrtOb · OrtOb · Wb = − Wb . Therefore, restricted to
−→V , OrtOb

2

is nothing but an half turn. Multiplied by Pythb , this leads to OrtOb

3
+ OrtOb = 0, so that

eigenvalues of OrtOb are 0, +i, −i.

Notation 14.1.2. CAVEAT (2024-12-19). Among the two hands, the right hand is the hand where
the thumb is on the left hand side. Notations Ωx,Ωy,Ω

+,Ω− have been used in this document.
But a strict application of the rules may have been lacking. Here is the eternal rule ! Ωy = Ω+ '

z

1 : 0 : 0. Let the heretics tremble with fear!

Definition 14.1.3. Umbilics. Let U ∈ Lb be a point at infinity, i.e. a point such that u+v+w =
0. The associated umbilics are the complex points :

Ω+ '
(
i 1 + OrtO

)
· U ; Ω− '

(
i 1 − OrtO

)
· U

Ω+ = Ωy ' 4SX512 − iX511

' 4S




a2
(
b2 − c2

)

b2
(
c2 − a2

)

c2
(
a2 − b2

)


± i




a2
(
a2
(
b2 + c2

)
− b4 − c4

)

b2
(
b2
(
c2 + a2

)
− c4 − a4

)

c2
(
c2
(
a2 + b2

)
− a4 − b4

)


 (14.1)

where i is the imaginary unit and S the area of the triangle. Another choice is :

Ω+ = Ωy '




Sb + 2 iS

Sa − 2 iS

−c2


 ; Ω− = Ωx '




Sb − 2 iS

Sa + 2 iS

−c2


 (14.2)

These expressions are no more symmetric, but computations become easier.

Remark 14.1.4. Spoiler. Using Morley representation zA = α, etc, we obtain:

Ωy '
z




1

0

0


 '

b




1

γ
− 1

β
1

α
− 1

γ
1

β
− 1

α




; Ωx '
z




0

0

1


 '

b




β − γ
γ − α
α− β


 (14.3)

Proposition 14.1.5. When seen as elements of
−→V C, all Ω± are eigenvectors of operator OrtOb ,

with eigenvalues (respectively) ±i and therefore belong to the light cone. When seen as elements
of PC

(
C3
)
, points Ω+ and Ω− are now independent of the choice of U , and are the fixed points

of the orthopoint transform. They both belong to the circumcircle, and are isogonal conjugates to
each other.

Proof. See Postnikov (1982, 1986) for better insights on real-complex spaces. Property Lb · Ω = 0
is obvious. Umbilics are eigenvectors because of

OrtO · Ω+ = OrtO ·
(
i 1 + OrtO

)
· U

April 5, 2025 14:49 published under the GNU Free Documentation License



14. Pencils of Cycles in the Triangle Plane 189

OrtO · Ω+ = OrtO ·
(
i 1 + OrtO

)
· U =

(
i OrtO − 1

)
· U = +i×

(
i 1 + OrtO

)
· U

Since eigenvalues of OrtO are simple, the C-dimension of eigenspaces is one, and uniqueness
in PC

(
C3
)
follows. For this reason, points Ω± are also called the "circular points at infinity".

Finally, intersection of circumcircle and the infinity line must be invariant by isogonal conjugacy,
while Ω+ ∗

b
Ω+ cannot be real, even up to a complex proportionality factor.

Remark 14.1.6. And now, 2024-12-19, the "+" in Ω+ is linked to the "+" in the OrtO ·Ω+ = +iΩ+

formula. Whaow !

Proposition 14.1.7. A circle is a conic that goes through the umbilics Samuel (1986, p. 53).
Above all, choosing the umbilics is deciding which of the circum-ellipses is *the* circumcircle.

Proof. By definition, umbilics are the (non real) points where the line at infinity intersects the
circumcircle. By (13.3), these points belong to any circle. For the converse, consider the values
taken by x2, y2, z2, xy, yz, zx at A,B,C together with both umbilics. This gives a 5 × 6 matrix
whose rank is 5 : the first three lines are 1, 0, 0, 0, 0, 0 etc. and it remains only to show that rank of
submatrix 4..5,4..6 is two. A direct inspection shows that critical factors are a2 + b2 − c2 (straight
angle, that can occur only once) and a4 + b4 + c4− b2c2− a2b2− a2c2 (condition of equilaterality).
In such a case, the property remains when umbilics are written as 1 : j : j2 and 1 : j2 : j.

Remark 14.1.8. When the umbilics are given, the euclidian structure of the Triangle Plane is
known. From Ω+ ∗

b
Ω− = a2 : b2 : c2, the Pythb matrix is known (up to the value of R), while

the orthopoint transform, and its matrix OrtOb is characterized by its diagonal shape, namely
(0, +i, −i), when using the triple X(3), Ω+, Ω− as barycentric basis.

14.1.3 Notations
We have done our best effort to use unified notations. In this whole chapter,
Notation 14.1.9. Conventions about letters.

P,Q denote some flat true points in the Triangle Plane and Xn a Kimberling-named triangle
center, all of them being 3-columns.

Γ,Ω Γ denotes the circumcircle of the fundamental triangle ABC (and nothing else) while
Ω denotes a cycle, both of them being curves, i.e. a set of points. The 3 × 3-matrices
describing their equations as a quadratic form are noted using a box.

U,V
b

U denotes the representative of a circle-point, while V
b
denotes the representative of

any cycle, all of them being columns in PR
(
R4
)
.

Y denotes the representative of an oriented cycle in PR
(
R5
)

G denotes a Gram matrix. The elements of this matrix are noted w2 along the diagonal
and W for the non-diagonal elements.

Notation 14.1.10. To design a circle known by a pair center/radius, parentheses will be used,
exemplified by Γ = (X3, R). Using parentheses around a single Roman letter –e.g. (P )– will be
reserved to denote the circle (P, 0) i.e. the circle whose unique real point is P itself.

14.2 Cycles and representatives
Definition 14.2.1. The (barycentric) Veronese map is the correspondence that maps a PR

(
R3
)

column into a PR
(
R4
)
row proportional to:

t


x (x+ y + z)

y (x+ y + z)

z (x+ y + z)

−a2yz − b2xz − c2xy



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Proposition 14.2.2. The Veronese map is obviously homogeneous. Both umbilics are send to
[0, 0, 0, 0] (points of indeterminacy). The other points at infinity are send to [0, 0, 0, 1]. Otherwise,
the map is injective.

Definition 14.2.3. Veronese map. For points at finite distance, we will use (7.14) and define
V er (x, y, z) by the simpler formula:

V er (x : y : z) ' [x, y, z, Γstd (x, y, z)] (14.4)

Remark 14.2.4. Requiring that four points are on the same circle leads to Proposition 13.1.4, i.e.
to equation :

i=4

det
i=1

[pi, qi, ri, Γstd (pi, qi, ri)] = 0

But, conversely, this equation only implies that our four points are on the same circle or on the
same straight line. To summarize both situations under a single concept, we introduce :.

Definition 14.2.5. The cycle Ω associated with the representative V
b
' u : v : w : t ∈ PR

(
R4
)

is Samuel (1988) the locus of the points X ∈ PR
(
R3
)
that satisfy the equation :

V er
b

(X) · (u : v : w : t) = 0 (14.5)

For example, the representative of circumcircle Γ is V
b

Γ ' 0 : 0 : 0 : 1.

Remark 14.2.6. When t 6= 0, cycle Ω is the (ordinary) circle whose standardized equation is :

u

t
x+

v

t
y +

w

t
z + Γstd (x, y, z) (14.6)

Remark 14.2.7. The representative of a circle is seen as a 3D point (described by a column). The
Veronese of a 2D point is an action over the 3D points: i.e. a plane, described by a row.

Definition 14.2.8. Cycle C∞ represented by V
b
∞ ' 1 : 1 : 1 : 0 has to be understood as the line at

infinity Lb described twice, and will be called the horizon circle. This object has to be perceived
as a circle "whose center is everywhere and circumference nowhere" (Empedocles).

The representative itself, i.e. the point V
b
∞ ' 1 : 1 : 1 : 0, will be called Sirius, following

Kimberling (1998-2024) in using stars to coin the name given to a point. While using that specific
star for a very distant point is from (Voltaire, 1752).

Definition 14.2.9. Otherwise, the cycle represented by u : v : w : 0 is the union of an ordinary
line and Lb, and will be called a completed line.

Theorem 14.2.10. The representative of the point-circle (P ) associated with a point at finite
distance P ' p : q : r is the column given by:

UP ' Q
b

−1 · tV er (P ) where Q
b

−1 =




0 c2 b2 1

c2 0 a2 1

b2 a2 0 1

1 1 1 0


 (14.7)

UP = c2q2 + b2r2 + 2Saqr : c2p2 + a2r2 + 2Sbpr : b2p2 + a2q2 + 2Scpq : (p+ q + r)
2 (14.8)

Conversely, we have:

V er (P ) ' tUP · Q
b

where Q =
−1

8S2




a2 −Sc −Sb −a2Sa

−Sc b2 −Sa −b2Sb
−Sb −Sa c2 −c2Sc
−a2Sa −b2Sb −c2Sc a2b2c2


 (14.9)

Proof. Direct computation. Mind the fact that both formulas are hard equalities, and that, when
both matrices are written exactly that way, the obvious result Q

b
· Q

b

−1 = +1 is enforced !
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Remark 14.2.11. It must be taken into account that radiuses that are not "up to a proportionality
factor". The values of matrix Q

b
and Q

b

−1 were chosen to obtain the best looking formula at

(14.10) and the normalized Minkowski formula (14.12)

tV
b

1 · Q
b
· V
b

2 = d2 − r2
1 − r2

2

The price to pay is the appearence of a −2 factor when computing radiuses, at the general
formula (14.15), and at the orthogonal formula (14.18). Be prudent, don’t over-simplify !

Remark 14.2.12. Sometimes, "the representative of the point-circle P" will be shortened into "the
representative of P". This object (a column) is not to be confused with the Veronese image of P
(a row) !

Example 14.2.13. Here are some point representatives :

P \ x u v w t

1 : 0 : 0 0 c2 b2 1

0 : 1 : 1 2 b2 + 2 c2 − a2 a2 a2 4

X(1) bc (b+ c− a) ac (c+ a− b) ab (b+ a− c) a+ b+ c

X(2) 2 b2 + 2 c2 − a2 2 a2 + 2 c2 − b2 2 b2 + 2 a2 − c2 9

X(3) R2 R2 R2 1

X(4) R2a2
(
b2 + c2 − a2

)2
R2b2

(
c2 + a2 − b2

)2
R2c2

(
a2 + b2 − c2

)2
a2b2c2

X(6) b2c2
(
2 b2+2 c2−a2

)
a2c2

(
2 c2+2 a2−b2

)
a2b2

(
2 a2+2 b2−c2

) (
a2+b2+c2

)2

umb 0 0 0 0

∞ 1 1 1 0

The fact that formula (14.8) *would* give Sirius ' 1 : 1 : 1 : 0 for each point on Lb is the
reason of their exclusion from the definition of the point representatives.

Corollary 14.2.14. The representative of the circle (P, ω) where P ' p : q : r is a point at
finite distance is obtained by :

Q
b

−1 · tV er
(

P

p+ q + r

)
− ω2Sirius (14.10)

where Sirius is exactly t
[1, 1, 1, 0] and Q

b

−1 is exactly as in (14.7).

Proof. Obvious from the above theorem.

Example 14.2.15. Compute the representative of the incircle. Two equivalent methods are:

mQQI.(Tr@FActor@Ver@norb@vX)(1)-ri^2*Sirius:
method1:= (FActor@subs)(kitcircleS, valS6, %);
method2:= (nor4@wedge3)(seq(Ver(j), j=Column(matcev(vX(7)), 1..3)));

incircle =
1

4

(
(a− b− c)2

: (b− c− a)
2

: (c− a− b)2
: 4
)

Remark 14.2.16. Assuming that representatives are living in PR
(
R4
)
has many advantages. The

top one could be to enforce the fact that a representative is not a point in the Triangle Plane.
It is a key fact that the triple [û, v̂, ŵ] appearing in the standardized equation (14.6) is not
defined up to a proportionality factor. The same remark applies to the so-called "circle function"
[û÷ bc, v̂ ÷ ca, ŵ ÷ ab] ∈ R3 that appears when using trilinears as in Weisstein (1999-2009).
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192 14.3. Fundamental quadric and orthogonality

14.3 Fundamental quadric and orthogonality

Theorem 14.3.1. Any point representative U = u : v : w : t belongs to the quadric Q :

tU · Q
b
· U = 0 = 0 (14.11)

where Q
b

is as given in (14.9).

Proof. One has V er (P ) . Q
b

−1 · tV er (P ) = 0 by the very definition of V er (P ).

Proposition 14.3.2. Object Sirius ' 1 : 1 : 1 : 0 is the only (real) point at infinity of the quadric
Q. Therefore, Q is a paraboloid.

Proof. Substitute t = 0, then compute the discriminant with respect to w and obtain −(u −
v)2a2b2c2/R2. This requires u = v, etc.

Remark 14.3.3. In the usual PC
(
C2
)
model, Lb is "in the South plane" while the horizon circle C∞

is nothing but the point-circle {∞}.

Proposition 14.3.4. An element V
b

= u : v : w : t of PR
(
R4
)
is the representative of a (real) cycle

if only if V
b
is outside of Q (i.e. on the same side as 0 : 0 : 0 : 1 characterized by t

(u : v : w : t) ·
Q
b
· (u : v : w : t) ≥ 0 when (14.11) is used.

Proof. Obvious from (14.10), that states that representative of (P, ω) is "below" the representative
of (P ) , while representatives of completed lines are at infinity in PR

(
R4
)
and therefore outside of

paraboloid Q.

Theorem 14.3.5. Orthogonal cycles. Consider two cycles Ω1, Ω2 with representatives V
b

1,V
b

2.
When V

b
2 belongs to the polar plane of point V

b
1 wrt the fundamental quadric then cycles Ω1 and

Ω2 are orthogonal –and conversely.

Computed Proof. Begin with two circles. Write representative V
b
j as in (14.10) from representative

Uj of point-circle (Pj).This implies that V
b
j [4] = 1. Compute tV

b
1 · Q

b
· V
b

2 and –using (7.12)–

obtain :
tV
b

1 · Q
b
· V
b

2 =
(
|P1P2|2 − ω2

1 − ω2
2

)
(14.12)

Compute now tV
b

1 · Q
b
· V
b

3 where V
b

3 = u3 : v3 : w3 : 0 and obtain :

tV
b

1 · Q
b
· V
b

3 = (p1u3 + q1v3 + r1w3)÷ (p1 + q1 + r1) (14.13)

In both cases, the result is the orthogonality condition times a non vanishing factor. Finally, when
the representatives of two lines are involved, the conclusion follows directly from the properties of
the orthopoint transform.

Remark 14.3.6. The elementary formula tV
b

1 · Q
b
· V
b

2 = d2 − r2
1 − r2

2 has to be enforced at any

cost. But this implies that tV
b
· Q
b
· V
b

= −2r2, and we have to live with this disgracious −2 factor

when computing the radius of a circle.

Corollary 14.3.7. The locus of the representatives of the points of a given cycle Ω is the inter-
section between Q and the polar plane –wrt Q– of the representative of Ω.

Proof. By definition, point P belongs to cycle Ω if and only if Ω and (P ) are orthogonal.
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Theorem 14.3.8. Back to barycentrics. Let V
b

= u : v : w : t ∈ PR
(
R4
)
be a representative.

Then either
(1) V

b
' 1 : 1 : 1 : 0. Then V

b
is Sirius, i.e. represents the horizon circle

(2) t = 0, but V
b
6= Sirius. Then V

b
represents a line.

(3) t 6= 0. Then V
b
represents a circle (may be reduced to a point). The associated center and

squared radius are given by :

(p : q : r) '
(
Q · V

b

)

1..3

(14.14)

ω2 =

(−1

2

) tV
b
· Q

b
· V
b

t2
(14.15)

Moreover, the representative of the center (as a point-circle) is U = V
b
/t+ ω2 Sirius ∈ Q.

Proof. The radius formula is a corollary of the preceding theorem. Let V
b

= x : y : z : τ be any

cycle representative and U ∈ Q be the representative of point P = p : q : r. Then tW · Q
b
·U = 0

implies
xp+ yq + zr + τ Γstd (p, q, r) = 0

where Γstd (p, q, r) = −
(
a2qr + b2rp+ c2pq

)
÷ (p+ q + r), so that equation (14.14) must hold for

rank reason (and can be checked directly). Conversely, starting from any V
b
and applying (14.14)

and then (14.8) leads back to V
b
.

Example 14.3.9. Re obtain the radius of the incircle.

factor(Tr(incircle).mQQ.incircle); subs(kitcircleS, valS6, %/ri^2); 7→
1

Proposition 14.3.10. Power of a point wrt a circle. When W is the Veronese of a point M
and V

b
is the representative of circle (P, ω), then

power (M, (P, ω))
.
= |PM |2 − ω2 =

W
W1 +W2 +W3

·
V
b

V
b

4
(14.16)

This requires that W1 +W2 +W3 6= 0, i.e. M /∈ Lb and that V
b

4 6= 0, i.e. that (P, ω) is a true

circle (and not a completed line).

Proof. Obvious from definitions. Mind the normalizations !

Exercise 14.3.11. Compute the power of X(3) wrt the circumcircle (and obtain −R2). Compute
the power of X(4) wrt the same circle. This formula enforces the fact that X(4) is inside the circle
when triangle is acute.

Proposition 14.3.12. The angle of two circles is defined as:

cos (Ω1, Ω2) =

−tV
b

1 · Q
b
· V
b

2

√
tV
b

1 · Q
b
· V
b

1

√
tV
b

2 · Q
b
· V
b

2

(14.17)

Proof. When the circles intersect at a visible point M , this value is nothing but the Al-Kashi
formula applied to triangle Mω1ω2. In any case, this formula is homogeneous wrt each of Q

b
, V
b

1

and V
b

2.
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Theorem 14.3.13. Common orthogonal cycle. Let be given three cycles Ω1,Ω2,Ω3. If they
don’t belong to the same pencil, the bundle they generate is exactly the set of all the cycles orthogonal
to a fixed cycle Ω⊥. We have the formulas (see (14.7), (14.9) for the precise values of the matrices):

W
.
=

∧

3

(
V
b

1, V
b

2, V
b

3

)
(a 4-sized row) (14.18)

V
b
⊥ = Q

b

−1 · tW

(14.19)
center = W1 : W2 : W3

squared radius =

(−1

2

) tV
b
⊥ · Q

b
· V
b
⊥

(
V
b
⊥ [4]

)2 =

(−1

2

) W · V
b
⊥

(
V
b
⊥ [4]

)2

Proof. Let j = 1, 2, 3. By definition, W · V
b
j = 0, so that tV

b
j · Q

b
·
(
Q
b

−1
· tW

)
vanishes. Then

the center follows by (14.14) and the radius as well.

Remark 14.3.14. Mind the normalizing factor in the formula just above (see Remark 14.2.11).
Don’t simplify anything in the formula giving the radius ! Remember that

tV
b

1 · Q
b
· V
b

2 =
(
d2

12 − r2
1 − r2

2

)
×
(
V
b

1 [4] V
b

2 [4]

)

Example 14.3.15. Compute the radius of the Euler circle (useless factor K, means whatever).

seq(mQQI.Tr(Ver(j)), j= Column(matcev(vX(2)),1..3) ):;
tmp1:= K*(wedge3)(%):;
tmp2:= FActor(mQQI.Tr(tmp1)): # (Tr@reduce)(tmp1[1..3]); ency(%);
methode1:= (-1/2)* tmp1.tmp2/tmp2[4]^2: subs(rapbpc, factor(%));
methode2:= (-1/2)* Tr(tmp2).mQQ.tmp2/tmp2[4]^2: subs(kitRcircle, factor(%));
And obtain R2/4 by each method.

Definition 14.3.16. Radical center. The ever visible pointW1 : W2 : W3 in the former theorem
is called the radical center of the three cycles. Having the same power wrt all the cycles of the
bundle is a characteristic property of this point.

Remark 14.3.17. As emphasized later, the nature of the radius of Ω4, i.e. real, zero or imaginary
fixes the nature of the bundle defined by Ω1,Ω2,Ω3.

Example 14.3.18. The example of the three excircles is examined in Subsection 14.11.4. Center
is X(10) and radius is

ω4 =

√
b2c+ ab2 + bc2 + a2b+ ac2 + a2c+ acb

4 (a+ b+ c)

14.4 Pencils of cycles

Definition 14.4.1. Pencil. When Ω1,Ω2 are distinct cycles (with non proportional representa-
tives), all curves λ1Ω1 +λ2Ω2 = 0, where (λ1, λ2) 6= (0, 0), are cycles and the set of all these cycles
is called the pencil generated by Ω1,Ω2. It is clear that representatives of the cycles of a given
pencil are on the same projective line in PR

(
R4
)
–called the representative of the pencil.

April 5, 2025 14:49 published under the GNU Free Documentation License



14. Pencils of Cycles in the Triangle Plane 195

Example 14.4.2. Formula (14.6) describes circle Ω as a member of the pencil generated by the
circumcircle and a completed line. Therefore, the ordinary line ux + vy + wz = 0 is the radical
axis ∆ of both circles Ω and Γ. That’s another way to see that knowing u : v : w is not enough to
determine a circle.

Example 14.4.3. Formula (14.10), i.e. Ω (P, ω) = Q
b

−1
· tV er

(
P

p+ q + r

)
− ω2C∞, describes

the circle (P, ω) as a member of the pencil generated by the point-circle (P ) and the horizon circle,
i.e. the pencil of all circles concentric with (P, 0).

Remark 14.4.4. Here again, the triple u : v : w is not sufficient to specify P , and [u; v;w; t] must
be used. It can be checked that representative is well specified, i.e. doesn’t depends on whichever
triple (kp, kq, kr) is chosen as barycentrics of point P .

14.5 Classification of pencils

Theorem 14.5.1 (Classification). Pencils of cycles fall in three classes, depending on the way
their representative line P intersects –in PR

(
R4
)
– the fundamental quadric Q.

Q, P tangent : P is the tangent pencil of all the cycles containing a given point ω0 and tangent
at ω0 to a line ∆1 containing ω0. Archetype : ω0 =∞ and P is "all the lines parallel
to a given line ∆1".

Q, P secant : P is the isotomic pencil generated by two different point-circles {ω1} and {ω2}
(ωi are the limit points of P). Archetype : ω2 = ∞ and P is, apart from {∞}, "all
the circles centered at a finite point ω1".

Q, P disjoint : P is the isoptic pencil of all the cycles going through two different points ω1 and
ω2 (the base points). Archetype : ω2 =∞ and P is "all the lines through a finite point
ω1".

When P is a tangent pencil, so is P⊥ (using ω0 and ∆⊥1 orthogonal to ∆1 at ω0). When P is
isoptic (ω1, ω2) then P⊥ is isotomic (ω1, ω2) and conversely. In all cases, representative of P and
P⊥ are conjugate lines wrt Q.

Proof. Everything goes as in (Pedoe, 1970) –using another paraboloid– or (Douillet, 2009) –using
a sphere. The only striking thing is that the usual point at infinity of the complex plane, namely
∞ ∈ PC

(
C2
)
, has to be replaced by the horizon circle C∞ : (x+ y + z)

2
= 0.

Proposition 14.5.2. A pencil of cycles that contains two lines is a pencil of lines. A concentric
pencil contains the horizon cycle. All other pencils (i.e. all the non archetypal pencils) contain
exactly one straight line (the radical axis of the pencil).

Proof. The representative of P ever intersects the plane at infinity of PR
(
R4
)
.

Proposition 14.5.3. Let P = p : q : r be a point in the Triangle Plane. Define its shadow in the
Triangle Plane as point S = u : v : w where u, v, w are defined in (14.8). Then S is not outside the
inconic IC(X76). Any point on the border of IC (X76) is the shadow of exactly one point on the
circumcircle, while a point inside IC (X76) –except from X2– is the shadow of exactly two points.
Moreover, these points are inverse in the circumcircle.

Remark 14.5.4. Figure 14.1 shows the shadows of all the named points in ETC (Kimberling, 1998-
2024), using the standard values a = 6, b = 9, c = 13. One can see two lines of points : L (X2, X6)
and L (X2, X39) containing the shadows of points from L (X3, X2) –Euler line– and L (X3, X6)
–Brocard axis– respectively.

Proof of Proposition 14.5.3 . The locus of representatives of the points P0 that belongs to Γ is the
intersection of quadric Q and the polar plane

∏
of 0 : 0 : 0 : 1, namely :

ua2
(
b2 + c2 − a2

)
+ vb2

(
c2 + a2 − b2

)
+ wc2

(
a2 + b2 − c2

)
− 2 ta2b2c2 = 0
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Figure 14.1: No point-shadow fall outside of the IC(X76) inconic

Extracting t and substituting in Q leads (apart from a constant non-zero factor) to :

u2a4 + b4v2 + c4w2 − 2uva2b2 − 2 vwb2c2 − 2wuc2a2 = 0

i.e. the equation of IC (X76).
When two points P1, P2 in the Triangle Plane share the same shadow, then points U1, U2

and 0 : 0 : 0 : 1 are collinear in PR
(
R4
)
so that cycles (P1), (P2) and Γ belongs to the same

pencil. Therefore P1, P2 are inverse in the circumcircle. Moreover U0
.
= U1U2 ∩

∏
is inside

IC (X76) –otherwise U0 would be the representative of a real circle belonging to pencil (P1) , (P2)
and orthogonal to Γ.

Proposition 14.5.5. Points inside of Q are representative of virtual circles (real center, imaginary
radius). The reason to imagine such circles is that inversion in such a circle is a real transform.
Moreover a real cycle Ω is orthogonal to (X, iω) when Ω cuts (X, ω) along a diameter.

Proof. Straightforward computation.

Proposition 14.5.6. Formally, the isoptic (ω1, ω2) pencil is also the isotomic (ω3, ω4) pencil where
ω3 + ω4 = ω1 + ω2 and ω3 − ω4 = i (ω1 − ω2)

⊥ (ω1, ω2 are supposed to be at finite distance and
normalized , while orthopoint is obtained using OrtO ).

Proof. Denote the common middle by ω0 and use Pythagoras theorem to compute |ω1ω3|2. One
has |ω1ω3|2 = |ω0ω1|2 + |ω0ω3|2 = 0 and thus both {ω3},{ω4} are orthogonal to {ω1},{ω2}. Using
OrtO , i.e. a rotation acting over

−→V .

14.6 Quadrimatrix of a pencil
Proposition 14.6.1. Orthogonality formula (Spoiler). Let V

b
j , j = 1..4 be the representatives

of four cycles Cj. Describe the pencil generated by C1, C2 using the matrix ∆12 =

(
V
b

1 ∧
6
V
b

2

)
, and

the pencil generated by C3, C4 using the matrix ∆34 =

(
V
b

3 ∧
6
V
b

4

)
. When each pencil is orthogonal

to the other, then
∆34 ' Q

b
· ∆∗12 · Q

b
(14.20)

Proof. Cut ∆12 by the four base hyperplanes. Among the four expressions obtained, at most
two are 0 : 0 : 0 : 0. Do the same with ∆34 , and assert that all the 16 orthogonality relations
are fulfilled. Use eliminate to solve in Cx, Cy, Cz. Use eliminate onto the three shortest
remaining equations and solve in Fx, Fy, Fz (up to a common multiplier). Use the Klein’s relation
t∆12 · Q

b
·∆12 = ExBx + EyBy + EzBz = 0 to simplify the results, obtain first degree formulas
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and check the compliance with our claim. This is for the necessity. Sufficiency is easily checked
by direct examination (if you don’t trust the Maple’s eliminate ). One can also check that the
process is involutive, as it should be.

Exercise 14.6.2. Check this formula using the following circles

C1 .
= C (A ; 0 : b : +c ; 0 : b : −c) ; C2 .

= C (B ; a : 0 : +c ; a : 0 : −c)

The second pencil is supposed to contain both the circumcircle and the 3-6 Brocard circle. See
Section 14.10 for more details.

14.7 Apexes
Definition 14.7.1. We define the (barycentric) apex of a point, or of a cycle, as the columns:

A (M)
.
=

t
V er
b

(M)

A (C) .
= Q

b
· V
b

(C)

With this definition, the apex of a point is the same as the apex of the null-radius circle centered
at this point.

Maple 14.7.2. One can check these assertions by:

mQQ. bar2colu(vp,0), (Tr@Ver)(vp): subs(sapbpc, zipd(%));

Proposition 14.7.3. The apex of a line lies on the "South plane" [1 : 1 : 1 : 0].

Proof. Obvious from V
b

([p, q, r]) = p : q : r : 0 and [1, 1, 1, 0] . Q
b

= [0, 0, 0, 1].

14.8 Inversion

14.8.1 One cycle
Definition 14.8.1. Two points X1, X2 are inverses in a given circle with center P and radius ω
when P, X1, X2 are in straight line and

〈−−→
PU1 |

−−→
PU2

〉
= ω2. Here ω ∈ iR is allowed.

Proposition 14.8.2. The inverse of a point X = x : y : z in the circle Ω having center
P = p : q : r and radius ω is given by :

nor (inv (X)) = nor (P ) + (nor (X)− nor (P ))
ω2

pytha (X, P )
(14.21)

This can be rewritten as

inv (X) =

(
Γstd (X)

x+ y + z
+

Γstd (P )

p+ q + r
− ω2

)
nor (P ) +

(
ω2 − 2

(p+ q + r)
2 P ·

tP · Pythb

)
· nor (X)

This formula is to be compared with formula (14.22) given in Theorem 14.8.4.

Proof. The first formula is nothing but the definition. Multiplying by pytha (X, P ), we obtain
inv (X) '

(
pytha (X, P )− ω2

)
nor (P )+ω2 nor (X). Then pytha is expanded using its definition,

and we conclude using
(
tP ·X

)
P =

(
P · tP

)
·X.

Remark 14.8.3. When circle Ω is given by its equation (13.1) and (P, ω) are obtained from (13.6)
and (13.8), the following identity can be useful :

Γstd (P )

(p+ q + r)
2 − ω2 =

U · (vX (3) /2)− a2b2c2

8S2

(remember: U and vX (3) are "as is" and not "up to a proportionality factor", while P is projective
and ω is a number).
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Theorem 14.8.4. Inversion of cycles in a cycle. Let Ω0 be a fixed cycle with representative
V
b

0 and Ω1 another cycle with representative V
b

1. Assume that Ω0 is not a point-circle and call V̂
b

1

the intersection of line V
b

0V
b

1 with the polar plane of V
b

0. Define σ as the transform Ω1 7→ Ω3 where

V
b

3, the representative of Ω3, is such that division V
b

0, V̂
b

1,V
b

1,V
b

3 is harmonic. Then the cycle Ω3

is the inverse of Ω1 in cycle Ω0 (inversion in a straight line is the ordinary reflection in this line)
while the matrix of the transform V

b
1 7→ V

b
3 is given by :

σ = Id− 2

V
b

0 · tV
b

0 · Q
b

tV
b

0 · Q
b
· V
b

0

(14.22)

Moreover, when V
b

2 is yet another cycle representative, we have the conservation law :

t

σ

(
V
b

1

)
· Q

b
· σ
(
V
b

2

)
= tV

b
1 · Q

b
· V
b

2 (14.23)

Proof. Write V̂
b

1 as α1V
b

0 +V
b

1 in tV
b

0 · Q
b
· V̂
b

1 = 0 and then obtain V
b

3 as 2α1V
b

0 +V
b

1 since division

(∞, 1, 0, 2) is harmonic. Equation (14.23) is obvious from (14.21), and shows that σ preserves
orthogonality. Moreover, (14.21) shows that cycles orthogonal to Ω0 are invariant while cycles
concentric with Ω0 are transformed into cycles concentric with Ω0 : all together, this proves that
σ is the inversion in cycle Ω0.

14.8.2 Two cycles

Here, all barycentrics are supposed to be in their normalized form.

Proposition 14.8.5. Centers of homothety. Let Cj (Oj , rj) , etc be two circles. Points U, V
defined by :

U =
r1O2 + r2O1

r1 + r2
, V =

r1O2 − r2O1

r1 − r2

are respectively the internal and the external centers of homothety of these two circles. At Kim-
berling, ETC, they are called insimilicenter and exsimilicenter. When X1 ∈ C1 then :

(r1 + r2)U − r2X1 ∈ C2 and (r1 − r2)V + r2X1 ∈ C2

Proof. When r1 = r2, point V defines a translation, not an homothety. Otherwise, all steps are
obvious.

Proposition 14.8.6. Let Cj (Oj , rj) , etc be two circles, X1 the generic point of C1 and U =
(r1O2 + r2O1) / (r1 + r2) as above. Then the line UX1 cuts C2 in two points. The first one is
X2 = ((r1 + r2)U + r2X1) /r1, obtained by homothety. The second one is Y2, obtained by inversion
into the circle centered at U with power :

ρ2 =

(
1− |O1O2|2

(r1 + r2)2

)
r1 r2

Changing one of the radiuses into its opposite give the results relative to V (assuming r1 6= r2)

14.8.3 Three circles

Notation 14.8.7. We start with three generic circles Cj (zj , rj), i.e. the centers are not aligned and
all the radiuses are different. And we note γj(Uj , ρj) and γ′j

(
Vj , ρ

′
j

)
the six circles

γ1
.
=
r3C2 + r2C3
r3 + r2

, etc ; γ′1
.
=
r3C2 − r2C3
r3 − r2

, etc
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so that γj is the internal circle of homothety of Ci, Ck, and γ′j is the external one. As stated in the
previous subsection, we have:

U1, V1
.
=
r3O2 ± r2O3

r3 ± r2
; (ρ1)

2
= r2r3

(
1− |z3 − z2|2

(r3 + r2)2

)
; (ρ′1)

2
= r2r3

(
|z3 − z2|2
(r3 − r2)2

− 1

)

Finally, C4 is the common orthogonal cycle to all these circles.

Lemma 14.8.8. The product of three inversions α, β, γ wrt circles of a same pencil is another
inversion wrt a circle of the pencil. Thus the chain M0 7→

α
M1 7→

β
M2 7→

γ
M3 7→

α
M4 7→

β
M5 7→

γ
M6

closes withM6 = M0. Moreover, these 6 points are on a same circle, which belongs to the orthogonal
pencil.

Proof. (Spoiler) Use Morley affixes and consider the circles −p : 0 : −p : 1 (where p, q, r,∈ R).
Then

α




Z

T

Z


 '




pZ + T

Z − pT
1

pZ + T

Z− pT




; γβα




Z

T

Z


 '




(pqr + p− q + r)Z + (pq − pr + qr + 1)T

(pq − pr + qr + 1)Z − (pqr + p− q + r)T

1
(pqr + p− q + r)Z + (pq − pr + qr + 1)T

(pq − pr + qr + 1)Z− (pqr + p− q + r)T




Moreover the six points are on the circle
[
−
(
T2 + ZZ

)
, 2T

(
Z−Z

)
, T2 + ZZ, T

(
Z−Z

)]
.

Proposition 14.8.9 (Monge). Centers V1V2V3 are aligned, and also centers VjUiUk (even number
of internal centers).

Proof. Alignment of the Vj comes from:r1 (r2 − r3)V1+r2 (r3 − r1)V2+r3 (r1 − r2)V3 =
−→
0 . When

changing rj into −rj , two circles are impacted, inducing the parity requirement.

Proposition 14.8.10. Starting by M0 ∈ C2, the inversions γ′1, γ′2, γ′3, γ′1, γ′2, γ′3 are leading to a
set of six concyclic points where Mj belongs to Cj+2 (indexes taken modulo 3) and M6 = M0. All
circles (Mk) are centered on the perpendicular to line V1V2V3 issued from z4 (radical axis of circles
γ′1, γ

′
2, γ
′
3).

C1 (z1) , C2 (z2) , C3 (z3): black ; C4 (cenrad): blue ; γ′j (vj): green ; γj (uj): dot-red

Figure 14.2: Three circles, six inversions
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200 14.9. Euler pencil and incircle

Proof. Circles Cj are orthogonal to C4 and circles γj inherit of this property. By Monge proposition,
they are orthogonal to line V1V2V3. Therefore circles γj belong to a same pencil, the lemma applies
and the conclusion follows. When M0 ∈ C2 ∩ C4, all the Mj are concyclic on C4. See Figure 14.2
where the Mj are obtained using V1V2V3. The inverse of this circle in C4 is also given (both in
magenta).

Fact 14.8.11. N0 can be chosen on C2 so that N3 = N0. And then circle N0N1N2 is tangent to
the Cj circles. See Figure 14.2 where the Nj are obtained using V1U2U3. The inverse of this circle
in C4 is also given (both in violet). And then line V1U2U3 is the radical axis of these two circles.
See Section 14.11

14.8.4 Steiner porism
Definition 14.8.12. A n-Steiner chain of circles is a series of n circles, finite in number, each
tangent to two fixed circles and to two other circles of the series (borrowed from Johnson, 1929, p.
113)).

Proposition 14.8.13. If two circles α, β admit a n-Steiner chain, they admit an infinite number
of such chains, and any circle tangent in the same way to α, β is a member of one chain.

Proof. Use an inversion and transform α, β in two concentric circles. The whole chain transforms
into another chain.

14.9 Euler pencil and incircle
Consider C1 = (X1, r), C3 = (X3, R), C5 = (X5, R/2) and Cz = (Xz = X381, |GH| /2) i.e., respec-
tively, the in-, circum- nine points and orthocentroidal circles (Figure 14.3a). Let Uj , V

b
j , xj , cj

be the respective representatives of centers and circles, together with their respective shadows
(Figure 14.3b). Then :

1. Circles (X1) , C1, C∞ are concentric so that U1, V
b

1, Sirius are aligned and therefore x1, c1, G

are aligned too. The same happens for j = 5 and j = z.

2. Cycles C3, C5, Cz belong to the same (Euler) pencil, together with their radical axis AR3,5,
so that representatives V

b
3, V

b
5, V

b
z, V

b
3,5 are aligned and therefore c3, c5, cz, ar3,5 are aligned

too. Since c3 is "far below the paper sheet", we have c5 = cz = ar3,5. For the same reason,
c1 = ar3,1.

3. Circles C1 and C5 are tangent at F .
= X11, the Feuerbach point. Thus cycles (F ) , C1, C5

belong to the same pencil, together with their common tangent AR1,5. Representatives
Uf , V

b
1,V

b
5,V

b
1,5 are aligned and so are xf , c1, c5, ar1,5.

4. Cycles AR1,3, AR1,5, AR3,5 are on the same pencil (they concur in the radical center Xk)
and their shadows ar1,3, ar1,5, ar3,5 are aligned.

5. In fact line c1c5 is not representative of a specific pencil, but rather of the bundle generated
by C1, C3, C5. We have :

V
b

1 '

t


(b+ c− a)
2

(c+ a− b)2

(a+ b− c)2

4


, Vb 5 '

t


b2 + c2 − a2

c2 + a2 − b2
a2 + b2 − c2

4


, Vb 3 '

t


0

0

0

1




and therefore :

V
b
k '

t


(c− b) (b+ c− a)
(
b2 + c2 − a2

) (
b2 + c2 − ab− ac

)

(a− c) (c+ a− b)
(
c2 + a2 − b2

) (
c2 + a2 − bc− ba

)

(b− a) (a+ b− c)
(
a2 + b2 − c2

) (
a2 + b2 − ca− cb

)

4 (a− b) (b− c) (c− a) (a+ b+ c)




From V
b
k, the well-known result Xk = X676 and the obvious rk = |XkXf | can be re-obtained.
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(a) lines and circles

(b) shadows

Figure 14.3: Euler pencil and incircle
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each Apoll circle cuts the others at 60° (see (14.17))

Figure 14.4: Lemoine and Brocard pencils

6. As it should be, xk, ck, G are aligned (small insert, at the bottom of Figure 14.3b ).

7. Consider Wk at intersection between line (VkSirius) and plane (V1, V3, V5). This points rep-
resents a circle that is both concentric and orthogonal to Ck. This circle is therefore (Xk, i rk)
and its shadow co belongs to both Gxk and c5c1. Moreover, division G, xk, co, ck is harmonic.

14.10 The Brocard-Lemoine pencils

Notation 14.10.1. The cevians of a point M are usually noted Ma, etc. When dealing with the
incenter I0, this would collide with Ia, etc, the usual notation of the excenters. Thus we will use
Ja, etc to note the cevians of I0 (i.e. the feet of the internal bisectors).

Proposition 14.10.2. Let Ja and Pa be the points on sideline BC met by the interior and exterior
bisectors of angle A. In other words, the Jj and Pj are respectively the cevians and the cocevians
of I0. The circle (Ea) having diameter [Ja, Pa] goes through A and is called the A-Apollonian
circle. The B- and C- Apollonian circles are similarly constructed, while the centers Ej are the
cocevians of K =X(6).

The Apollonian circles belong to a same (Lemoine) pencil whose base points are the isodynamic
points X(15), X(16), while the radical axis is the Brocard line. The orthogonal (Brocard) pencil
contains the circumcircle and the Brocard 3-6 circle, while the radical axis is the Lemoine line.

Proof. These assertions depend of the following Lemmas.

Lemma 14.10.3. Lemoine pencil (of Apollonian circles). Point Ja is the A cevian of X(1).
Thus Ja ' 0 : b : c and Pa ' 0 : b : −c. Now, we take the wedge of the Veronese of A, Ja, Pa and
obtain the column describing the A-Apollonian circle:

V
b
a '

∧

3

(
[1, 0, 0, 0], [0, b (b+ c) , (b+ c) c,−a2bc] [0, b (c− b) , c (b− c) ,−a2bc]

)
'




0

−a2c2

a2b2

b2 − c2




Let us remember that V
b
a is a column that describe a point in PC

(
C4
)
, while each Veronese is a

plane incident to this point. Here, it is obvious that the three V
b
j are not independent from each
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other. Using the usual formalism to describe the corresponding pencil, one obtains :

Lemoinepoint
.
=

(
V
b
a ∧

6
V
b
b

)
'




0 a2b2
(
b2 − a2

)
a2c2

(
c2 − a2

)
a4b2c2

a2b2
(
a2 − b2

)
0 b2c2

(
c2 − b2

)
a2b4c2

a2c2
(
a2 − c2

)
b2c2

(
b2 − c2

)
0 a2b2c4

−a4b2c2 −a2b4c2 −a2b2c4 0




where the index ’point’ is used to remember that this object has to be multiplied by a point in
PC
(
C4
)
, i.e. a column, to determine if the point belongs to the pencil.

Lemma 14.10.4. In order to determine the point-circles that belong to the pencil, we solve
V er(x : y : z) · Q

b

−1 · Lemoinepoint = 0. We obtain both umbilics, together with

E± '




a2 ∓ ia2
√

3

−2 b2

c2 ± ic2
√

3


 '




a2
(
2 a2 − b2 − c2

)
± i
√

3a2
(
b2 − c2

)

b2
(
2 b2 − a2 − c2

)
± i
√

3b2
(
c2 − a2

)

c2
(
2 c2 − b2 − a2

)
± i
√

3c2
(
a2 − b2

)




The fact that E± ' X (187) ± i
√

3 X (512) is not real indicates that the pencil is an isoptic one.
From these values, one sees that the line of centers is the Lemoine axis (eponymous property).

Lemma 14.10.5. The polar planes Πj of the V
b
j are obtained by Πj

.
= tV

b
j · Q

b
. Their pencil is

described by

Brocardplane
.
=
(

Πa ∧
6

Πb

)
'




0 0 0 b2c2

0 0 0 a2c2

0 0 0 a2b2

−b2c2 −a2c2 −a2b2 0




where the index "plane" is to remember that this object has to be multiplied by a plane (i.e. a row)
to determine if the plane belongs to the pencil of planes.

Lemma 14.10.6. Brocard pencil (of Γ and 3-6 Brocard) . The dual of the Brocardplane pencil
is called the Brocard pencil. Its matrix (acting over points, i.e. over representatives of cycles), is
the dual of the former matrix:

Brocardpoint '




0 a2b2 −a2c2 0

−a2b2 0 b2c2 0

a2c2 −b2c2 0 0

0 0 0 0




This pencil contains both the circum-circle and the 3-6 Brocard circle (obvious).
Moreover, the point circles of the pencil are both umbilics, together with the isodynamic points

points X(15),X(16) .

Proof. Using the same algorithm as before gives an expression which isn’t symmetric... and rather
complicated. The best thing to do is using the Kimberling’s search keys. Thereafter, one can check
that:

F± =




a2
(
2 a2 − b2 − c2

)
+
√

3
4S a

2
((
b2 + c2

)
a2 − b4 − c4

)

b2
(
2 b2 − c2 − a2

)
+
√

3
4S b

2
((
c2 + a2

)
b2 − c4 − a4

)

c2
(
2 c2 − a2 − b2

)
+
√

3
4S c

2
((
a2 + b2

)
c2 − a4 − b4

)




i.e. F± ' X (187)±
√

3 OrtO ·X (512) (see Proposition 14.5.6). From these values, one sees that
the line of centers is the Brocard axis (eponymous property).

Remark 14.10.7. These pencils are reexamined at Section 19.3.2 (using Morley coordinates).
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204 14.11. The Apollonius configuration

14.11 The Apollonius configuration
In the general case, it exists eight cycles Ω tangent to three given cycles Ω1, Ω2, Ω3 (not from the
same pencil). Two surveys of this question are Gisch and Ribando (2004) and Kunkel (2007). The
usual decomposition into ten cases is Wikipedia: WillowW et al. (2006); Bogomolny (2009). The
best space where this Apollonius problem can be discussed is PR

(
R5
)
(cf Section 20). Nevertheless,

most of the results can be formulated in PR
(
R4
)
... and it will appear that only one situation is

really special (cycles through the same point), all the other belonging to the same general case.

14.11.1 Tangent cycles in the representative space
Proposition 14.11.1. Two cycles are tangent when their pencil line is tangent to the fundamental
quadric. Therefore, the locus of the representatives of all cycles tangent to a given (real) cycle Ω
represented by V (not inside Q) is the cone whose vertex is V and that goes through Q∩polar (V ).

Proof. Two tangent cycles are defining a tangent pencil !

Remark 14.11.2. When Ω is a point circle, its representative U belongs to the fundamental quadric,
and the cone of the tangent cycles degenerates into a doubly coated plane.

Definition 14.11.3. The Gram matrix Gp,q,··· ,r of Xp, Xq, · · · , Xr ∈ R4 is the matrix of all the
products tXp Q Xq. In this context, notation Wpq = tXp · Q

b
·Xq and w2

p = tXp · Q
b
·Xp will be

used, leading to

Gpq =

(
w2
p Wpq

Wpq w2
q

)
(14.24)

Proposition 14.11.4. Two cycles Ω1,Ω2 are secant, tangent or external when signum det G12 is
(respectively) +1, 0 or −1.

Theorem 14.11.5. Special cases of the Apollonius problem are (1) cycles from the same pencil
and (2) cycles through the same point (tangent bundle). Otherwise, representatives Vj of the three
given cycles and their common orthogonal cycle Ω4 form a basis that splits the problem into four
pairs of solutions. One of the solutions is given by V0 =

∑
kj Vj where :

k1 = (w2 w3 −W23 ) (−w1 w2 w3 − w1 W23 + w2 W13 + w3 W12 )

k2 = (w1 w3 −W13) (−w1 w2 w3 + w1 W23 − w2 W13 + w3 W12 )

k3 = (w1 w2 −W12) (−w1 w2 w3 + w1 W23 + w2 W13 − w3 W12 )

k4 =
√
−2 (w2 w3 −W23 ) (w1 w3 −W13) (w1 w2 −W12) G123 /w4 (14.25)

and the others are obtained by changing k4 into −k4 (inversion through Ω4) or changing the signs
of w1, w2, w3. A solution is real/imaginary or "unimaginable" (object that would have a non real
center) according to the sign of k2

4. Globally, the number of "imaginable" solutions changes when
the tangency condition

∏
Gjk vanishes.

Proof. When Ωj , j = 1, 2, 3 is a basis of a non tangent bundle, then Ωj , j = 1, 2, 3, 4 is a basis
of the whole representative space. The fundamental quadratic form is described, in this basis, by
matrix G1234 where Wj4 = 0 for j = 1, 2, 3. Computing, in this basis, the tangency condition of
Ω0 and any of the Ωj leads to 0. Since the wj are defined as

√
Wjj we have 4 choices of signs

leading, due to the possibility of a global proportionality factor, to eight different values.

14.11.2 An example: the Soddy circles
Proposition 14.11.6. Soddy circles are three mutually, externally, tangent circles. Let A,B,C
be their centers. Then the common orthogonal circle of the Soddy’s is the incircle of ABC (see
Oldknow, 1996).

Proof. Let x be the radius of circle (A) , etc. We have a = y + z, b = z + x, c = x+ y. Therefore
x = b+ c− a, etc. The contact point of the (B) , (C) circles is Ga ' 0 : y : z, etc. As a result, the
Gj are the cevians of the Gergonne point Ge =X(7), and the conclusion follows.
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Proposition 14.11.7. The Apollonius circles of the Soddy circles are twice each of them, a small
circle (inside the intouch triangle) and an outer circle. The center of the smaller circle is called
X(176), the other is called X(175). Let Ha be the branch of hyperbola that goes through A, Ga and
has B,C as focuses. Then the three branches through a vertex of the hyperbolas concur at X(176),
while the other three branches concur at X(175).

Proof. This is clear from a = y + z, etc.

Proposition 14.11.8. Centers and radiuses of the Soddy circles are given by :

nX(175) =
2s

2s− (4R+ r0)
nX(1)− 4R+ r0

2s− (4R+ r0)
nX(7) '



a− 2S

b+ c− a
:

:




nX(176) =
2s

2s+ (4R+ r0)
nX(1) +

4R+ r0

2s+ (4R+ r0)
nX(7) '



a+

2S

b+ c− a
:

:


 (14.26)

1

ρ6
− 1

ρ5
=

4

r0
;

1

ρ6
+

1

ρ5
= 2

4R+ r0

s r0
; ρ5 =

r0 s

2 s− (4R+ r0)

Proof. Using (14.10), the representatives of circles Ω1 · · ·Ω4 are :




(b+ c− a)
2

(b+ c− a) (b− 3 c− a) (b+ c− a) (c− a− 3 b) (b+ c− a)
2

(c+ a− b) (a− b− 3 c) (c+ a− b)2
(c+ a− b) (c− 3 a− b) (c+ a− b)2

(a+ b− c) (a− 3 b− c) (a+ b− c) (b− c− 3 a) (a+ b− c)2
(a+ b− c)2

−4 −4 −4 4




Their Gram matrix is :



(b+ c− a)
2 − (b+ c− a) (c+ a− b) − (a+ b− c) (b+ c− a) 0

− (b+ c− a) (c+ a− b) (c+ a− b)2 − (c+ a− b) (a+ b− c) 0

− (a+ b− c) (b+ c− a) − (c+ a− b) (a+ b− c) (a+ b− c)2
0

0 0 0
16S2

(a+ b+ c)
2




Then (14.25) gives the decomposition of the Soddy’s circles on the Ω basis. We have :

tK '
[

1

b+ c− a ;
1

c+ a− b ;
1

a+ b− c ;
a+ b+ c

2S

]

and the conclusion follows (since a+ b+ c = 2s).

Remark 14.11.9. We have cross_ratio (X1, X7, X175, X176) = −1, while condition 4R+ r0 = 2s is
not excluded. In this case, the X(1) and X(7) are on Ω6, the inner Soddy circle, while X(175) is at
infinity and Ω5 is a straight line. When ABC (a = b = c = 1), then s = 3, R =

√
1/3, r0 =

√
1/12

and (14.26) provides a positive ρ6.

Proposition 14.11.10. The Soddy radiuses satisfy the following "curvature formula" :

(
1

ρ1
+

1

ρ2
+

1

ρ3
+

1

ρ5

)2

= 2

(
1

ρ2
1

+
1

ρ2
2

+
1

ρ2
3

+
1

ρ2
5

)

Proof. For an elementary proof: substitute and simplify. For a stratospheric (and interesting !)
proof, see Pedoe (1967). See Soddy (1936) for a poetic statement of this property.

Proposition 14.11.11. Let εa, etc be the cocevians and Ga, etc be the cevians of Ge =X(7). Draw
circles Ej centered at εj and going through Gj. Then Ej cuts Cj at the contact points with the
Soddy circles. Moreover the three Ej circles concur at X(3638) and X(3639).

—– pldx : Translation of the Kimberling’s Glossary into barycentrics – vA2 —–



206 14.11. The Apollonius configuration

Proof. It is easy to check that each of the Ej ∩ Cj points belongs to one Soddy circle. Moreover,
one has

X (1323) ' 2 a2 − a (b+ c)− (b− c)2

b+ c− a ::

X (516) ' 2 a3 − b3 − c3 +
(
bc− a2

)
(b+ c)

X (3638) = 3X(516) + 4
√

3SX(1323)

And it is easy to check that X(3638) belongs to the three Ej circles. Caveat: the Soddy points are
not the common points of the Ej circles, but they are the Poncelets of the Soddy circles.

14.11.3 An other example: the not so Soddy circles
Proposition 14.11.12. The not so Soddy circles of a triangle are the circles centered at A
with radius a = BC, etc. Their common orthogonal circle is the Longchamps circle λ (i.e. the
polar circle of the antimedial triangle).

Proof. The circle γa, centered at A with radius a is described by :

yza2 + b2zx+ c2yx+ (x+ y + z)
(
a2x+ y

(
a2 − c2

)
+ z

(
a2 − b2

))
= 0

Its intersections with the circumcircle are :

Qb ' a2 − c2 : −b2 : c2 − a2 and Qc ' a2 − b2 : b2 − a2 : −c2

while its intersections with γb (resp. γc) are Qc and Uc ' 1 : 1 : −1 (resp. Qb and Ub ' 1 : −1 : 1).
Points Ua, Ub, Uc are on circle (H, 2R) and form the antimedial triangle. Lines QaUa are the
altitudes of UaUbUc and concur at L .

= H ′ =X(20). But they are also the radical axes of our
circles. The radius rL of the orthogonal circle is obtained by :

r2
L = |AL|2 − a2, etc =

−SaSbSc
S2

= 4 (2R+ ρ+ s) (2R+ ρ− s)

Proposition 14.11.13. The Apollonius circles of the not so Soddy circles are obtained by ex-
traversions (i.e a 7→ −a) from their central versions. These central circles are centered at the
Soddy points X(175) and X(176).

Proof. The representatives and the Gram matrix of γa, γb, γc, λ are :



−a2 c2 − b2 b2 − c2 a2

c2 − a2 −b2 a2 − c2 b2

b2 − a2 a2 − b2 −c2 c2

1 1 1 1


 ,




a2 Sc Sb 0

Sc b2 Sa 0

Sb Sa c2 0

0 0 0 −Sa Sb Sc ÷ S2




Changing w1 7→ −w1 is a 7→ −a, proving the extraversions. Formula(14.25) gives the coefficients :

K '




(bc− Sa) (−bca− aSa + bSb + cSc)

(ca− Sb) (−bca− bSb + cSc + aSa)

(ab− Sc) (−bca− cSc + aSa + bSb)

16S3 ÷ (a+ b+ c)




Organizing the obtained equations, we have :

γ6 = λ+ 2 (x+ y + z) (ax+ by + cz) ρ6 where ρ6 =
+2s (2R+ ρ+ s)

4R+ ρ+ 2s

γ5 = λ+ 2 (x+ y + z) (ax+ by + cz) ρ5 where ρ5 =
−2s (2R+ ρ− s)

4R+ ρ− 2s

This leads to γ6 = (X176, ρ6) , etc. Additionally, this proves that ax + by + cz = 0 is the radical
axis of the three circles. Moreover, the Soddy conic (through A,B,C, with focuses X(175), X(176)
and perspector X(7)) is tangent to the Longchamps circle at the common points of λ, γ6, γ5 since
we have :

conic = λ+ (ax+ by + cz)
2
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Figure 14.5: Apollonius circles of the not so Soddy configuration.
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208 14.11. The Apollonius configuration

14.11.4 The three excircles
Taking the three excircles as Ω1,Ω2,Ω3 leads to a well-known situation (Stevanovic, 2003).

1. The representative of the point-circle (X1; 0) is :

U0 = [bc (b+ c− a) ; ca (c+ a− b) ; ab (a+ b− c) ; a+ b+ c]

while radius of the incircle is :

r =

√
(b+ c− a) (c+ a− b) (a+ b− c)

4 (a+ b+ c)

2. The representative of the incircle, given by (14.10), is :

V0 =
[
(b+ c− a)

2
; (c+ a− b)2

; (a+ b− c)2
; 4
]

3. Centers, radiuses and representatives Va, Vb, Vc of the excircles are obtained by changing one
of the sidelengths into its opposite in the respective formulas for the incircle.

4. The alt_Spieker circle is defined as the common orthogonal circle to the three excircles. From
(14.18), this circle can be computed as :

V4 = [(c+ a− b) (a+ b− c) ; (a+ b− c) (b+ c− a) ; (b+ c− a) (c+ a− b) ;−4]

5. The radius of this circle, as computed from (14.15), is :

ω4 =

√
b2c+ ab2 + bc2 + a2b+ ac2 + a2c+ acb

4 (a+ b+ c)

=
1

2

√
r2
0 + s2

while the representative of the center is :

U4 =

t


2 a
(
b2 + c2

)
− acb+ b3 + c3 − a3

2 b
(
c2 + a2

)
− acb+ c3 + a3 − b3

2 c
(
a2 + b2

)
− acb+ a3 + b3 − c3

4 (a+ b+ c)




and the center itself is :
b+ c : a+ c : a+ b = X10

6. The pairs of solutions of the Apollonius problem, as given by (14.25), are :

(
S1

S5

)
=




b2 + c2 − a2 c2 + a2 − b2 a2 + b2 − c2 4

a+ b+ c+
2 bc

a
a+ b+ c+

2 ca

b
a+ b+ c+

2 ab

c

−4

a+ b+ c




S2 =

t


1

0

0

0


, S6 =

t


(a+ b+ c)
(
b2 + ab+ ac+ c2

)

(b+ c) (a− b− c) (a+ b− c)
(b+ c) (a− b− c) (a− b+ c)

4 (b+ c)




where point S1 is the representative of the nine-points circle, centered at X5 while S5 is
related to the Apollonius circle, centered ad X970. Points S2, S3, S4 are the representatives
of lines BC, CA, AB while S6 and S7, S8 (obtained cyclically) are the representatives of the
last three solutions.
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Figure 14.6: Alt-Spieker configuration

14.11.5 The special case
Proposition 14.11.14. Let Ω1, Ω2, Ω3 be three cycles generating a bundle whose common orthog-
onal cycle is a point-cycle (ω5), and ω4 be any other point. The representative of one of the cycles
tangent to Ω1, Ω2, Ω3 is given by V0 =

∑3
1 kj Vj + 4U4 where :

k1 =

(
w2w3 −W2,3

(w1w3 −W1,3) (w1w2 −W1,2)
G1,2,3,4−2 G2,3,4

)
÷∆1,2,3

2,3,4 (14.27)

∆1,2,3
2,3,4 is the minor obtained by deleting row 1 and column 4 in G1,2,3,4, while k2, k3 are obtained

cyclically. Three other cycles are obtained by changing one of the w1, w2, w3 into its opposite. The
other solutions are four times the point cycle ω5.

Proof. In this special case, G1,2,3 = 0 and Ω4 is chosen so that w4 = 0. When assuming that
Ω1, Ω2,Ω3 aren’t pairwise tangent, a direct substitution shows that Ω0 is tangent to any of the
given cycles.

Example 14.11.15. Using Ω1 = 1 : 0 : 0 : 0 (representative of line BC) etc, leads to ω5 = Sirius.
An efficient choice for ω4 is any vertex. Using, for example, U4 = 0 : c2 : b2 : 1, one re-obtains
easily the in/excircles.

Example 14.11.16. The Apollonius circles relative to the three circles (ABH), (BCH), (CAH)
are (H, 0) four times, (H, 2R) once and three other circles, Ta, Tb, T c.

Circles Ta, Tb, T c are ever external to each other, and their common orthogonal circle To is
real. Condition of (external) tangency is :

(
a2 − b2

)2 −
(
a2 + b2

)
c2 = 0

(etc) or ABC rectangular. The Apollonius circles of Ta, Tb, T c are (ABH) etc, their inverses in
To and two others. Center X = x : y : z and radius ω of the first one are :

x =
(
b2 + c2 − a2

)
×

(
a8 − 2

(
b2 + c2

)
a6 + 2

(
b4 − b2c2 + c4

)
a4 − 2

(
b2 + c2

) (
b2 − c2

)2
a2 +

(
b2 − c2

)4)

ω = 2
a2b2c2R

a6 + b6 + c6 − a2b4 − a4b2 − c2b4 − a4c2 − b2c4 − c4a2 + 4 a2b2c2

while the second is less simple.
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Chapter 15

Morley and complex numbers

Our aim in this chapter is to describe how to translate into complex numbers all of the methods
we have described in the previous chapters. This is equivalent to give the complex version of all
the operators which were described as of now.

In fact, some of these operators have a very simple form when using complex numbers and could
have been introduced directly. In any case, we will prove the equivalence between "the Morley
version" and "the barycentric version" of these operators.

15.1 Inclusive coordinates
When working with points M = (ξ, η) ∈ R2 and describing curves C by polynomials P so that
M ∈ C when P (ξ, η) = 0, one has to face the following theorem:

Theorem 15.1.1 (Bezout). Two algebraic curves C (Pn) and C (Pm) of respective degrees m,n
have exactly m × n common points when polynomials Pn and Pm have no non-constant common
factor. To obtain this result, all the points have to be taken into account, including points with non
real coordinates as well as points at infinity, and also considering the multiplicities of the solutions
(Bezout, 1764).

Obviously, a better formulation of this result can be obtained using the so called complex affixes

Definition 15.1.2. Complex affixes of a point. Let ξP , ηP be the Cartesian coordinates of a
point P in the euclidian plane. The C-affix of this point is defined as

zP
.
= ξP + i ηP

In this definition, quantity i is a quarter turn. Since two quarter turns performed one after another
is nothing but one half turn, we have i2 = −1. This equation has another solution, namely −i, the
quarter turn in the opposite orientation. Obviously, the very choice of a frame to obtain Cartesian
coordinates like ξP , ηP ensures a choice of orientation of the plane: when Bob looks at the plane
from above, he measures angles by placing his protractor onto the plane, seeing zP = ξP + i ηP .
But Alice, the girl who lives on the other side of the looking glass, will be watching from her seat.
She will place her protractor on her side of the plane and, therefore, Alice will see

ζP
.
= ξP − i ηP

Remark 15.1.3. The Conjugate Coordinate System describes points as (zP , ζP ) ∈ C2 and curves
as z = f (t) where z ∈ C and parameter t ranges in R ∪ {∞}. See Carver (1956) for a survey.

Definition 15.1.4. Inclusive Coordinate System is the projective version of the Conjugate
Coordinate System. When the projective cartesian coordinates of a point are P '

c
X : Y : T, the

inclusive coordinates of this point are defined by

P '
z




Z

T

Z


 .

=




X + iY

T

X − iY



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212 15.1. Inclusive coordinates

where Z,T,Z are to be read as: "big z", "big tea" and "big zeta". In other words:



Z

T

Z


 = cΦm ·




X

Y

T


 where cΦm =




1 +i 0

0 0 1

1 −i 0




Remark 15.1.5. An algebraic variable is a placeholder used to write polynomials. It was therefore
necessary to find a notation in order to satisfy the following constraints:

1. Use capital letters, since polynomials are usually written P (X1, X2, · · · , Xk)

2. Avoid indices, and deal with the fact that the usual capitalization of the letter "ζ" has the
same shape as the letter "big z" (nevertheless, letter Z has to be read as "big zeta").

3. Have a robust cursive version, to facilitate hand computations: a Z is clearly a Z, while a Z
is clearly a Z !

4. Don’t suggest the stupid feeling that the variable Z could be the C-conjugate of the variable
Z. What could be the C-conjugate of a placeholder ?

The name "inclusive coordinates" has been coined in order to emphazise the fact that we are
avoiding a choice of orientation by including both of the Bob’s and Alice’s viewpoints. 1

Proposition 15.1.6. When an algebraic curve is defined by a cartesian polynomial Pn (X : Y : T),
it is also defined by the complex polynomial Qn

Qn
(
Z, T, Z

)
= Pn

(
Z + iZ

2
,
Z− iZ

2 i
, T

)

The complex polynomial associated to polynomial Pn (obtained by complex conjugation of the coef-
ficients) is noted conj (Qn) and is therefore

conj

( ∑

p+q+r=n

cp, q, r Z
pZq Tr

)
=

∑

p+q+r=n

cp, q, r Z
q ZpTr

in other words, conjugate the coefficients and exchange Z with Z.

Definition 15.1.7. Visible points. When a point P ' Z : T : Z ∈ PC
(
C3
)
can be written as

zP : 1 : zP for some zP ∈ C, then P will be referred as a visible finite point (aka an ordinary point).
When P can be written as τ : 0 : 1/τ for some τ = exp (iϑ) ,ϑ ∈ R, then P will be referred as
visible point at infinity (aka an ordinary direction). Taken together, ordinary points and ordinary
directions are referred as the visible points. All the other points of PC

(
C3
)
are described as

being not-visible.

Remark 15.1.8. The not-visible points of PC
(
C3
)
correspond to the points that cannot be written

as (x : y : t) with x, y, t ∈ R in the cartesian projective representation. In the PR
(
R3
)
context, they

are referred as "non real" objects. In the context of PC
(
C3
)
, this designation is no more suitable,

and another name must be coined.

Proposition 15.1.9. An algebraic curve is said to be "reduced to a point" when it contains only one
visible point, and "visible" when it contains an infinite number of visible points. The (homogeneous)
polynomial of an irreducible visible curve must be proportional to its conjugate.

Remark 15.1.10. From an abstract point of view, using a constant factor to enforce conj(P ) = P
is always possible. But in real life, this can only be done by carrying annoying factors and has to
be avoided. Before any simplification, a polynomial obtained from a determinant, like the equation
of a line or a circle, verifies conj(P ) = −P .

1On the other hand, it cannot be totally excluded that such a name could has been coined in order to provide
the additional result of infuriating some old salafs
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15.2 Morley method to deal with complex conjugacy

As everybody knows, complex conjugacy is not a smoth transform. Using it poisons the well and
kills all polynomial properties. As a result, complex conjugacy has to be avoided at all costs.
Therefore all parameters should either

1. belong to R ∪ {∞}, and then k = k

2. belong to the unit circle, and then τ = 1/τ

Definition 15.2.1. Following Morley and Morley (1933), we define a turn as a complex number
τ used to describe a point on the unit circle, leading to M

.' τ : 1 : 1/τ . On the other hand, we
define a clinant as a complex number κ used to describe a point on the line at infinity, leading
to N

.' κ : 0 : 1. When M,N are supposed to be visible, the numbers τ, κ are supposed to be
unimodular. But "strange" values like 0 or ∞ are allowed (spoiler: they are used to describe the
umbilics).

Definition 15.2.2. In the Morley space, the line at infinity is defined as

Lz .
= [0, 1, 0] (15.1)

Taken up to a proportionality factor, this would only be a a repetition of "T = 0 implies P ∈ Lz".
Here, an hard equality is used.

Theorem 15.2.3. In the Morley space, the area of triangleABC is given by :

area (ABC) =
z

(
−1

4
i

)
∣∣∣∣∣∣∣

zA zB zC

1 1 1

zA zB zC

∣∣∣∣∣∣∣
(15.2)

Proof. Despite it’s great consequences, this result has a very short proof: formula (7.7) using
Cartesian coordinates has to be modified by factor −i/2 since this is the value of 1/ det cΦm .

Definition 15.2.4. bΦm , the bartomor Matrix. Let ABC be a non degenerate triangle and
(O,R) its circumcircle. The complex Lubin’s coordinate system associated to ABC is centered at
O and we have

bΦm
.
= R2




α β γ

1 1 1

1/α 1/β 1/γ


 =

z
(ABC) (15.3)

where α, β, γ are some turns.

Definition 15.2.5. Since our interest is directed toward central objects, we will largely use the
so-called elementary symmetric functions :

σ1 = zA + zB + zC , σ2 = zAzB + zBzC + zAzC , σ3 = zAzBzC (15.4)
σ4 = i (zA − zB) (zB − zC) (zC − zA)

Remark 15.2.6. Quantity s4, i.e. i times the Vandermonde of the three numbers, is skew-symmetric
and verifies :

s2
4 = −s2

1s
2
2 + 4 s3 s

3
1 + 4 s3

2 − 18 s3 s1 s2 + 27 s2
3

so that s4 will not appear by a power greater than one. These "big" symmetric functions are not
to be confused with the "small" ones, that will be defined later.

Exercise 15.2.7. Use the sj to write the polynomial
∏

(X − Ik) where Ik ranges over the four
in/excenters ±βγ ± γα± αβ. Then rewrite it using the σj and obtain

X4 − 2σ2X
2 + 8σ3X +

(
σ2

2 − 4σ1σ3

)
.
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Proposition 15.2.8. In the Morley space, the matrix Pythz of the quadratic form that gives the

squared length of a vector in the
−→V space can be written as :

Pythz =
1

2




0 0 1

0 0 0

1 0 0


 (15.5)

Proof. Here, equalities are required since a length is not defined up to a proportionality factor.
Remember that an element of

−→V is obtained as the difference of the normalized columns of two
finite points, and therefore looks like z1/t1 − z2/t2, 0, z1/t1 − z2/t2. The resulting formula is
nothing but the usual |ζ|2 = ζ ζ.

Proposition 15.2.9. We have the following forward substitutions formulae:

S =
iR2 (α− β) (β − γ) (γ − α)

4αβ γ
, a =

R (β − γ)√
−β γ

, etc (15.6)

Proof. Direct examination. These partial results are required when trying to use

Pythz =
t

bΦm
−1
· Pythb · bΦm

−1

as a method to prove the Pythz formula from the Pythb formula.

15.3 Morley version of the usual operators
Remark 15.3.1. The usual building process is cartesian coordinates 7→ complex coordinates 7→
barycentrics. In this book, barycentric coordinates have been treated first, and it only remains
now to deduce the properties of complex coordinates from those of barycentric coordinates and
from the Lz, Pythz and bΦm formulae that were obtained in the previous section.

Proposition 15.3.2. Let V be the point at infinity of a line ∆ given by their z-coordinates. Then
we have

V
.
= ∆ ∧ Lz ' Wz · t∆ where Wz = 2i




0 0 −1

0 0 0

+1 0 0


 (15.7)

Proof. This assertion is nothing but the very definition of the ∧ operator, while the 2i coefficient
is not involved in this property. This can also be seen as Wz = bΦm · Wb ·

t
bΦm

Proposition 15.3.3. Orthopoint. In the Morley space, the operator that transforms a direction
V ∈ Lz into its orthogonal direction while transforming the circumcenter into 0 : 0 : 0, is described
by :

OrtOz = i




1 0 0

0 0 0

0 0 −1


 (15.8)

Proof. One can use OrtOz = bΦm · OrtOb · bΦm
−1

and then the usual substitutions. On the

other hand, eigenvectors of OrtOz are obviously both umbilics Ωy ' 1 : 0 : 0, Ωx ' 0 : 0 : 1 and
0 : 1 : 0 (the circumcenter): umbilic Ωy is rotated by a quarter of turn, and umbilic Ωx is rotated
by the opposite amount.

Proposition 15.3.4. The orthodir operator gives the orthopoint V ⊥ of the point at infinity of a
line ∆. In the Morley space, this operator can be written using matrix Mz according to :

V ⊥ = Mz · t∆ where Mz
.
= 2




0 0 1

0 0 0

1 0 0


 = OrtOz · Wz (15.9)
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Proof. Obvious from definitions. One can check that |V | =
∣∣V ⊥

∣∣. This can also be seen as

Mz = bΦm · Mb ·
t

bΦm .

Theorem 15.3.5. Tangent of two lines. In the Morley space, the oriented angle from a visible
line ∆1 to a visible line ∆2 is characterized by :

tan

(︷ ︸︸ ︷
∆1, ∆2

)
=

∆1 · Wz · t∆2

∆1 · Mz · t∆2

(15.10)

where Wz , Mz are exactly as given in (15.7) and (15.9) (not up to a proportionality factor).

Proof. Formulas (7.22) and (15.10) have exactly the same shape and each of them generates the
other through bΦm . This can also be obtained from the fact that tan (D1, D2) is obviously

(p2 − p1)÷ (1 + p1p2)

when considering the two Cartesian lines y = p1x + m1 and y = p2w + m2. Indeed, the slope of
a line is the tangent of the angle from the x axis to the line: it only remains to use the addition
formula. Numerator tell us when lines are parallel, and denominator when they are orthogonal.

Proposition 15.3.6 (Laguerre Formula). Consider two (distinct) lines ∆1,∆2 and their common
point M . Then

cross_ratio (MΩy,MΩx,∆1,∆2) = exp

(
2i

(︷ ︸︸ ︷
∆1, ∆2

))

Proof. A tedious proof: compute and check using (15.10).

Proof. A better proof: the four lines are cutting the line at infinity, and we have:

cross_ratio







1

0

0


 ,




0

0

1


 ,




τ

0

1/τ


 ,




σ

0

1/σ





 =

σ2

τ2

Proposition 15.3.7. In the Morley space, distance from point P to line ∆ is given by :

dist (P, ∆) =
∆ · P

(Lz · P )
√

∆ · Mz · t∆
=
fp+ gq + hr

2q
√
hf

(15.11)

where Lz = [0, 1, 0] and Mz is as given in (15.9) (not up to a proportionality factor).

Proof. Immediate consequence of the barycentric formula (7.24). One can also transpose the proof
given there.

Remark 15.3.8. Formula (15.11) is invariant when coordinates of P or ∆ are modified by a propor-
tionality factor. Denominators are enforcing the fact that P is supposed to be at finite distance,
and ∆ is supposed not to be isotropic. The square root is the operator norm of the application

φ : Z : T : Z 7→
(
zZ + tT + ζ Z

)
/ (T)

Replace Z : T : Z by Z + T r τ : T : Z + T r/τ . Derive wrt τ and obtain r z − r ζ/τ2. Solve in τ
and obtain τ =

√
ζ/z. So that ∆φ = 2

√
zζ r.

Proposition 15.3.9. The Clawson-Schmidt homography is defined by:

Ψ : A 7→ A′, B 7→ B′, C 7→ C ′

where A,B,C form a true triangle, while A′ ∈ BC, etc. Then A′, B′, C ′ are aligned if and only if
Ψ is involutive.

Proof. Let A′ = pB + (1− p)C, etc. Compute Ψ, use the a + d = 0 rule and obtain the usual

pqr + (1− r) (1− q) (1− p) = 0
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15.4 Lubin representation of first degree
Proposition 15.4.1. The Morley-affix of a point P whose barycentrics are p : q : r ∈ PR

(
R3
)

with respect to triangle ABC is given by :

ζP '




zA zB zC

1 1 1

zA zB zC


 ·




p

q

r


 (15.12)

Proof. When p + q + r 6= 0, this is nothing but the usual definition of a barycenter, and ζP is
a Morley finite point. When p + q + r = 0, P is at infinity and ζP is a Morley direction. The
condition p, q, r ∈ R ensures that no invisible points in the Morley-space can be generated from a
real point in the Kimberling space.

Definition 15.4.2. The Lubin parametrizations are obtained by assuming that the circumcircle
of triangle ABC is nothing but the unit circle of the complex plane, together with the relations :

zA = αn, zB = βn, zC = γn

Remark 15.4.3. The zA = α1, etc parametrization has already been introduced at (15.3) in order to
avoid conjugacies. Here, an additionnal aim is to avoid the fractional powers that would otherwise
appear from a =

√
a2 and other angle division.

Definition 15.4.4. Since our interest is directed toward central objects, we will largely use the
so-called elementary symmetric functions. The "big" ones are the already defined σ1 =
zA + zB + zC , etc, while the "small" ones are:

s1
.
= α+ β + γ =, s2

.
= αβ + β γ + αγ, s3

.
= αβ γ, s4 = i (α− β) (β − γ) (γ − α) (15.13)

Theorem 15.4.5 (Newton). For any commutative ring A, every symmetric polynomial in n vari-
ables has a unique representation as a polynomial into the elementary symmetric functions of the
said variables.

*** listing the algorithm would be great ***

Theorem 15.4.6. Forward substitutions. Suppose that barycentrics p : q : r of point P depends
rationally on a2, b2, c2, S. Then Morley-affix of P is obtained by substituting the identities (15.6),
i.e. :

S =
iR2 (α− β) (β − γ) (γ − α)

4αβ γ
, a =

R (β − γ)√
−β γ

, etc

into p : q : r and premultiplying by bΦm . The result obtained is a rational fraction in α, β, γ
whose degree is +1. When P is a triangle center, ζP depends only on σ1, σ2, σ3. When P is
invariant by circular permutation, but not by transposition, a σ4 term appears.

Proof. Cancellation of radicals is assured by condition p, q, r ∈ Q
(
a2, b2, c2, S

)
. Elimination of R

comes from homogeneity. Symmetry properties are evident.

Proposition 15.4.7. Backward substitutions. Let zP ∈ C (α, β, γ) be an homogeneous ra-
tional fraction, supposed to be the complex affix of a finite point. Then deg (zP ) = 1 is required.
Alternatively, let ω2 ∈ C (α, β, γ) be an homogeneous rational fraction, supposed to describe the
Morley affix of a direction. Then deg

(
ω2
)

= 2 is required. When these conditions are fulfilled, the
ABC-barycentrics p : q : r of these objects can be obtained as follows. Compute the corresponding
vector : 


p

q

r


 = bΦm

−1
·




zp

1

zp


 or




p

q

r


 = bΦm

−1
·




ω2

0

1




then apply substitutions

β =

(
a4 + b4 + c4 − 2

(
a2 + b2

)
c2

2 a2b2
+ 2iS

a2 + b2 − c2
a2b2

)
α

γ =

(
a4 + b4 + c4 − 2

(
a2 + c2

)
b2

2 a2c2
− 2iS

c2 + a2 − b2
a2c2

)
α
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to this vector and simplify the obtained expression using the Heron formula :

S2 = − 1

16
(a+ b+ c) (b+ c− a) (c+ a− b) (a+ b− c)

Proof. Transform α, β, γ into αδ, βδ, γδ. Since this transform is a similarity, barycentrics must
remain unchanged and the zP affix is turned by δ. On the other hand, polynomial zP is homoge-
neous and zP is multiplied by δk where k = deg (zP ). Concerning the directions, arg

(
ω2
)
is twice

the angle with the real axis, and degree 2 is required.
Alternatively, the degrees of rows of ζP are +k, 0, −k while the degrees of columns of bΦm

−1

are −1, 0, +1. Quantities p, q, r will therefore be a sum of terms whose degrees are respectively
k − 1, 0, 1− k. But homogeneity is required in order that a transformation β = B α, γ = C α can
eliminate α, leading to k = 1.

To obtain the substitution formulas, compute β from c2 αβ = −R2 (α− β)
2. A choice of

branch (a sign for i) has to be done. Exchange b and c (and therefore change S into −S) and
obtain the corresponding γ.

Remark 15.4.8. The substitution formulas can be written as:

β =

(
2

(
Sc
a b

)2

− 1 + 2i

(
2S

a b

)(
Sc
a b

))
α ; γ =

(
2

(
Sb
a c

)2

− 1− 2i

(
2S

a c

)(
Sb
a c

))
α

i.e. β = α exp (2i C), γ = α exp (−2i B). This result is indeed symmetric, since B̂ = (BC, BA)

while Ĉ = (CA,CB).

Remark 15.4.9. When starting with a symmetric Morley-affix, the obtained p : q : r remains
symmetric in α, β, γ. The given substitutions are breaching the symmetry of individual coefficients
p, q, r, that can only be reestablished by cancellation of asymmetric common factors between the
p, q, r. Most of the time, its more efficient to proceed by numerical substitution and use the
obtained search key to identify the point (and proceed back to obtain a proof of the result).

Proposition 15.4.10. The Kimberling search key associated to a visible finite point defined by its
Morley affix (short= Morley’s search key) is obtained by substituting :

zA = 1 ; zB = −391

729
− i

104

729

√
35 ; zC =

401

1521
− i

248

1521

√
35

into Z/T and then computing :

searchkey

(
Z

T

)
.
= <

((
157

840

√
35− i

22

3

)
Z

T

)
+

321

280

√
35

Proof. Kimberling’s search keys are associated with triangle a = 6, b = 9, c = 13. The radius
of the circumcircle is R = (351/280)

√
35. One can see that sidelengths of triangle αβγ are

6/R, 9/R, 13/R. We apply these substitutions to obtain the numerical value of the "wayback"
matrix, and then use (6.1)

Remark 15.4.11. When using Lubin-n with n > 1, adequate substitutions have to be used to
calculate Z/T.

Proposition 15.4.12. The Morley’s searchkey of a visible point at infinity (T = 0) is obtained
from Ω = Z/Z by :

1108809
(
241 + 16 i

√
35
)

Ω2 − 907686
(
157 + 176 i

√
35
)

Ω +
(
−224394311 + 30270800 i

√
35
)

389191959 Ω2 −
(
106136082 + 118980576 i

√
35
)

Ω +
(
19397664 i

√
35− 371888361

)

Another method is identifying the isogonal conjugate of the given point, which is simply : σ3/Ω :
−1 : Ω/σ3.

Proof. The searchkey of an point at infinity is : x
a ×

(
a
x + b

y + c
z

)
, leading to this tremendous

expression. But after all, this formula is not designed for hand computation but rather to a
floating evaluation by a computer... .
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15.5 Some examples of first degree
Example 15.5.1. The circumcenter O. By definition, ζO = 0 : 1 : 0. The preceding transforma-
tions are giving :




p

q

r


 '




α (β − γ) (β + γ)

β (γ − α) (α+ γ)

γ (α− β) (α+ β)


 '




a2
(
b2 + c2 − a2

)

b2
(
c2 + a2 − b2

)

c2
(
a2 + b2 − c2

)




Example 15.5.2. Symmedian point X(6), aka Lemoine point.

1. Consider the middle A′ of segment [B,C] and define the A symmedian as the line ∆A that
goes through A and verifies ∠ (AB,∆A) = ∠ (AA′, AC). We will use P instead ζP since
this is more readable ... and hand-writable. A remark : symmetry wrt bisectors would be
irrelevant, since bisectors are unreachable in the Lubin-1 representation !

2. We have A′ = B + C, AA′ = A ∧A′ etc. and our equations are

∆A ·A = 0

tan (AB, ∆A) + tan (AC, AA′) = 0

solving this system, then permuting, gives :

∆A '
(

2α− β − γ ; (αγ + αβ − 2β γ)α ; −2α2 + 2β γ
)

∆B '
(

2β − γ − α ; (αβ + β γ − 2αγ)β ; −2β2 + 2αγ
)

3. Intersecting two symmedians gives a symmetric result. Therefore, the three symmedians are
concurrent at some point. This point is well-known as the Lemoine point, and we have :

K = ζ (6) = ∆A ∧∆B =




2σ2
2 − 6σ3 σ1

σ2 σ1 − 9σ3

2σ2
1 − 6σ2




4. Going back to barycentrics, we obtain the well-known result :

X (6) '




α (γ − β)
2

β (α− γ)
2

γ (α− β)
2


 '




a2

b2

c2




Example 15.5.3. The Kiepert parabola.

1. Morley equation of the circumcircle is ZZ −T2 = 0. The Morley affix ∆P of the polar line
of point K = z : 1 : ζ wrt the circumcircle is therefore given by :

∆P
.
=
[
z 1 ζ

]
·




0 0 1

0 −2 0

1 0 0




2. The coefficients of the tangential conic determined by five given lines [uj , vj , wj ] are obtained
as : ∧

j=1..5

[
u2
j , v

2
j , w

2
j , ujvj , vjwj , wjuj

]

by universal factorization of the corresponding 6×6 determinant. Let us consider the inconic
tangent to the infinity line (parabola) and to the circumpolar of point K. Using (BC) '
B ∧ C, etc together with the previous equation, we obtain the symmetric matrix :

C∗ '




2σ3 z
2 − 2σ2 σ3 z ζ + 4σ2

3 ζ qsp −σ1 z
2 + σ2 σ3 ζ

2 + 2σ2 z − 2σ3 σ1 ζ

−σ3 σ1 zζ + σ2
3ζ

2 + 2σ3 z 0 −z2 + σ2 z ζ − 2σ3 ζ

−σ1 z
2 + σ2 σ3 ζ

2 + 2σ2 z − 2σ3 σ1 ζ qsp 2σ1 z ζ − 2σ3 ζ
2 − 4 z



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Degrees of all these expressions are :

dg
(
C∗
)

=




5 4 3

4 . 2

3 2 1




3. A focus is a point such that both isotropic lines through that point are tangent to the conic.
Writing that Q =

(
Z : T : Z

)
∧ (1 : 0 : 0) satisfies Q · C∗ · tQ = 0 and the similar with the

other umbilic gives two equations whose solution is

F (z) '




z2 − σ2 zζ + 2σ3 ζ

2 z − σ1 zζ + σ3 ζ2

1
2 z − σ1 zζ + σ3 ζ

2

z2 − σ2 zζ + 2σ3 ζ




and this point is on the circumcircle.

4. Take K at the Lemoine point X(6). Its circumpolar line is called the Lemoine axis. One
obtains the Kiepert parabola, where :

C∗ '




2σ2 σ3 σ3 σ1 0

σ3 σ1 0 −σ2

0 −σ2 −2σ1


 , C '




−σ2
2 2σ3 σ

2
1 −σ2 σ3 σ1

2σ3 σ
2
1 −4σ2 σ3 σ1 2σ2

2 σ3

−σ2 σ3 σ1 2σ2
2σ3 −σ2

1 σ
2
3




5. As stated in Proposition 12.3.15, the triangle of the circle-polars of the sidelines of triangle
T is described by matrix C∗ ·

t
T ∗ . Both triangle are in perspective (lines AA′, etc are

concurrent). The perspector is obtained as AA′ ∧ BB′ and concurrence is verified by the
symmetry of the result. It is well-known that P =X(99), the Steiner point.

F =
σ2

σ1
, P =

σ3σ
2
1 − 3σ2σ3

σ2
2 − 3σ3σ1

6. Applying the preceding transformations, the p : q : r associated with z = σ2/σ1 is obtained
as :




p

q

r


 '




α (β − γ)
(
αβ − γ2

) (
γ α− β2

)

β (γ − α)
(
β γ − α2

) (
αβ − γ2

)

γ (α− β)
(
γ α− β2

) (
β γ − α2

)


 '




a2

(b+ c) (b− c)
b2

(c+ a) (c− a)
c2

(a+ b) (a− b)




and we can identify X(110), the focus of the Kiepert parabola.

Example 15.5.4. Isogonic, isodynamic and Napoleon.

1. Define j = exp (2 iπ/3). Start from triangle ABC. Construct PA such that triangle PABC
is equilateral. More precisely, the z affix of PA is such that z + j β + j2 γ = 0, deciding
of the orientation. The three lines APA, BPB , CPC are concurrent, leading to the first
isogonic center X(13). Changing j into j2 leads to the second isogonic point X(14). A simple
computation leads to :

9σ2σ3 − 12σ3σ
2
1 + 3σ1σ

2
2

6σ2
2 − 18σ3σ1

±
√

3
σ4 σ2

6σ2
2 − 18σ3σ1

2. When trying to transform the former expression into barycentrics, the formal computer is
poisoned by the following fact. Quantity σ4 describes the orientation of the triangle, while
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the choice of ±
√

3 depends on the orientation of the whole plane. We better generalize the
problem using tan (AB, AA′) = K. This leads to :

ζK '




4K
(
σ2

2 − 3σ3 σ1

)
+ σ4

(
K2 + 1

)
σ1

2K (σ2 σ1 − 9σ3) + σ4

(
3 +K2

)

4K
(
σ2

1 − 3σ2

)
+ σ4

(
K2 + 1

) σ2

σ3







p

q

r


 '




γ − β
(β + γ)K + i (γ − β)

α− γ
(α+ γ)K + i (α− γ)

β − α
(α+ β)K + i (β − α)



'




1

2S − SaK
1

2S − SbK
1

2S − ScK




3. And we obtain a lot of results when changing K, and even more by isogonal conjugacy. In
the following table, line K lists usual values for the tangent of an angle, while the other two
lines give the Kimberling number of the corresponding points. The PK points are on the
Kiepert RH (more details in Proposition 13.22.2).

K −
√

3 −1 −1
2

−1√
3

0 +1√
3

+1
2 1

√
3 ∞

PK 13 485 3316 17 2 18 3317 486 14 4

isog (PK) 15 371 3311 61 6 62 3312 372 16 3

15.6 Lubin representation of second degree

When dealing with half angles, we have to introduce the mid-arcs on the circumcircle of ABC, i.e.
the circumcevians of the in-excenters.

Proposition 15.6.1. Lubin-2 parametrization. When using parametrization zA = α2, etc, the
mid-arcs Mj are ±βγ,±γα,±αβ. But there are only four choices of sign since

product of midarcs = (−1)× product of vertices

must be enforced. When using the symmetric choice, i.e. −αβ,−βγ,−γα then the three lines
AMa, BMb, CMc concur at −αβ − βγ − γα = −s2.

Remark 15.6.2. Lemoine transform. As already stated at Theorem 2.1.9, the Lemoine trans-
forms are obtained by α 7→ −α or β 7→ −β or γ 7→ −γ when using the Lubin-2 parametrization.
And then, the Lubin-1 points (aka the strong points) remain unchanged under these actions.

Proof. Here again, the fact that La◦Lb = Lc comes from the homogeneity required for the formulas
of interest. Remember: a theorem is a proposition with the biggest consequences, not something
difficult to prove.

Proposition 15.6.3. Forward-2 and backward-2 matrices. Using the Lubin-2 parametriza-
tion, we have :

Lu2 =




α2 β2 γ2

1 1 1

1/α2 1/β2 1/γ2


 ; det Lu2 =

iσ4

σ3
=

i s4

s3

s1 s2 − s3

s3
=

4i

R2
S (15.14)

Lu−1
2 =

1

iσ4



α2
(
β2 − γ2

)
α2
(
γ4 − β4

)
σ3

(
β2 − γ2

)

β2
(
γ2 − α2

)
β2
(
α4 − γ4

)
σ3

(
γ2 − α2

)

γ2
(
α2 − β2

)
γ2
(
β4 − α4

)
σ3

(
α2 − β2

)




Proof. These formulas come from (15.2). Remember that s1 = α+ β + γ while σ1 = zA + zB + zC
etc.
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Theorem 15.6.4. Forward-2 substitutions. Suppose that barycentrics p : q : r of point P
depends rationally on a, b, c, S. Then Morley-affix of P is obtained by substituting the identities :

S =
i R2

(
α2 − β2

) (
γ2 − α2

) (
β2 − γ2

)

4 α2 β2 γ2
; a = iR

(
γ

β
− β

γ

)
, etc (15.15)

into p : q : r and applying (15.12). The result obtained is a rational fraction in α, β, γ whose
degree is +2. When P is a triangle center, ζP depends only on s1, s2, s3. When P is invariant by
circular permutation, but not by transposition, a s4 term appears.

Proof. Elimination of R comes from homogeneity. Symmetry properties are evident. Sign chosen
for a is irrelevant, but signs of b, c must be chosen accordingly.

Proposition 15.6.5. Backward substitutions. Let zP ∈ C (α, β, γ) be an homogeneous ra-
tional fraction, supposed to be the Lubin-2 affix of a finite point. Then deg (zP ) = 2 is required.
Alternatively, let ω2 ∈ C (α, β, γ) is an homogeneous rational fraction, supposed to describe the
Lubin-2 affix of a direction. Then deg

(
ω2
)

= 4 is required. When these conditions are fulfilled, the
ABC-barycentrics p : q : r of these objects can be obtained as follows. Compute the corresponding
vector : 


p

q

r


 = Lu−1

2 ·




zp

1

zp


 or




p

q

r


 = Lu−1

2 ·




ω2

0

1




then apply substitutions

α = −1 ; β =
Sc + 2 iS

ab
; γ =

Sb − 2 iS

ac
(15.16)

to this vector and simplify the obtained expression using the Heron formula :

S2 = − 1

16
(a+ b+ c) (b+ c− a) (c+ a− b) (a+ b− c)

Proof. Result about degrees follows Proposition 15.4.7. Substitutions are α = −1, β = exp (+iC) , γ =

exp (−iB). This result is indeed symmetric, since B̂ = (BC, BA) while Ĉ = (CA,CB).

15.7 Poncelet representation
Notation 15.7.1. In this section zM denotes the Lubin(2) affix of a point M , while ζM denotes the
Poncelet affix of the same point M . The respective "coordinates in the view from below" will be
noted as zM and ζM , leading to

M '
Lubin




zM

1

zM


 '

Poncelet




ζM

1

ζM




Definition 15.7.2. The parameters of this representations are the contact points of the incircle,
described as ρ, σ, τ in a frame using this circle as unit circle. Thus ρ = 1/ρ, etc.

Proposition 15.7.3. This representation describes the triangle ABC by:

Pon =




2τ σ

σ + τ

2 ρ τ

τ + ρ

2 ρ σ

ρ+ σ
1 1 1

2 (σ + τ)
−1

2 (τ + ρ)
−1

2 (ρ+ σ)
−1




The algebraic direct substitutions are:

a =
2 iρ (σ − τ)

(τ + ρ) (ρ+ σ)
r0 ; b =

2 iσ (τ − ρ)

(ρ+ σ) (σ + τ)
r0 ; c =

2 iτ (ρ− σ)

(σ + τ) (τ + ρ)
r0 (15.17)

S = i r2
i

(ρ− σ) (σ − τ) (τ − ρ)

(τ + ρ) (ρ+ σ) (σ + τ)
; R = −ri

2 τ ρ σ

(τ + ρ) (ρ+ σ) (σ + τ)
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while the backward substitutions are:

σ =
−2 iρS

ab
− ρ

(
a2 + b2 − c2

)

2ab
; τ =

2 iρS

ac
− ρ

(
a2 − b2 + c2

)

2ac
(15.18)

Proof. Tangent Tρ at ρ to the unit circle is [ρ−1,−2, ρ], and A = Tσ ∩ Tρ, etc. Signum for a
can be chosen at will, but the other two have to be synchronized. The σ, τ formulas are using
σ = ρ exp i (π + C) , τ = ρ exp i (π −B) i.e. the π −A property, and correct orientations.

Proposition 15.7.4. Going back from the Poncelet affix ζM of a point M to the Lubin-2 affix zM
of this point only requires the similarity:

zM = −s2 +
1

2
(s2s1 − s3) ζM = −s2 − s3

r0

R
ζM

Proof. Due to homogeneity, we can multiply all the ρ, σ, τ by a same non vanishing factor, and
enforce ρ = α. Then substituting (15.15) into (15.18) leads to:

{
ρ = α ; σ = β ; τ = γ ; r0 = −R (β + γ) (α+ γ) (α+ β)

2 αβ γ
= −R s1 s2 − s3

2 s3

}

And then, it only remains a change of the projective basis, that is given by:

subs
(
ρ = α, Lu · Pon−1

)
=




0 −s2
1

2
(s2 s1 − s3)

0 1 0
s2 s1 − s3

2 s2
3

−s1

s3
0




Fact 15.7.5. The Poncelet affix of an ordinary point (i.e. ζM ) is an homogeneous fraction whose
total degree is +1. The Lubin-2 affix (i.e. zM ) of the same point has total degree 2... and this is
verified in zM = −s2 + 1

2 (s2s1 − s3) ζM since the degree of ζ is -1.

Remark 15.7.6. In fact, formula zM = −s2 − s3

(
r0
R

)
ζM is rather obvious.

• The translation −s2 is required to move I0 from point ζ = 0 to its new place in the Lubin-2
frame, i.e. z = −βγ − γα− αβ.

• Homothety ri/R is required to acknowledge that the radius of the "unit" circle has changed.

• Exchanging the umbilics is required by the orientations, i.e. the values of :

det Lu /S = 4i/R2 ; det Pon /S = −4i/r2
0

• And lastly, the −s3 is required by the property used in the Acknowledgment of this book:
the intouch triangle is perspective with the circumcevian triangle of the incenter, while the
perspector X(56) is the similicenter of the incircle and the circumcircle: the mid-arcs are
−βγ, etc. By complex conjugacy, they become −1/βγ and multiplying by −αβγ is the
rotation that gives the required α, etc.

Remark 15.7.7. The only notable difference between the Poncelet and the Lubin-2 parametrizations
is their behavior wrt the Lemoine transform. Since Lubin-2 coordinates are relative to the strong
points Ω± and Ω0=X(3), all of the strong points are invariant by the Lemoine transforms. When
using Poncelet representation, the origin changes, and therefore the coordinates of the strong points
don’t remain unchanged, an annoying property.
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15.8 Poulbot’s points (using the Lubin-4 parametrization)
Proposition 15.8.1. When using half angles, i.e. A/2, etc, we can introduce α, etc such that
zA = α4, etc. The intermediate points on the circumcircle can be described as:

β4 ; iβ3γ,−β2γ2,−iβ γ3 ; γ4 ; γ3 α, γ2α2, γα3 ; α4 ; α3β, α2β2, α β3 ; β4

And then we have:

cot
A

2
=
bc+ Sa

2 S
; cos

A

2
=

√
b+ c+ a

√
b+ c− a

2
√
b
√
c

; sin
A

2
=

√
a+ b− c

√
a− b+ c

2
√
b
√
c

cos
A

2
= i

β2 − γ2

2 β γ
; sin

A

2
= −β

2 + γ2

2 β γ

Proof. Everything goes like in Lubin-2: product of points 2,5,8 must be i times the product of
points 1,4,7, etc.

Remark 15.8.2. The following quantity belongs to Lubin-2 :

sin

(
A

2

)
sin

(
B

2

)
sin

(
C

2

)
=

ri
4R

=
S3 − S1 S2

8S3

Remember that s1 = α+ β + γ, S1 = α2 + β2 + γ2, σ1 = α4 + β4 + γ4.

Example 15.8.3. Consider the circles going through the incenter I and tangent to AB and AC .

1. Clearly the centers of these circles, say Aj , must be on the AI line. Thus:

Aj = µA+ (1− µ) I =




µα4 + (1− µ)
(
−α2β2 − α2γ2 − β2γ2

)

1

µ

α4
− (1− µ)

(
α2 + β2 + γ2

)

α2β2γ2




2. Equating the distance to I and the distance to AB (15.11)we obtain :

±µ
(
α2 + γ2

) (
α2 + β2

)

α2β γ
= (1− µ)

(
β2 + γ2

) (
α2 + γ2

) (
α2 + β2

)

2 α2β2γ2

leading to µ =
(
β2 + γ2

)
÷
(
β2 ± 2β γ + γ2

)
, and to:

A1 =




S2 α
3 − α s2

3 + 2S2 s3

−α3 + S1 α− 2 s3

1
S1 s3 − α2s3 + 2S1 α

3

α3s3 (−α3 + S1 α− 2 s3)




; A0 =




S2 α
3 − α s2

3 − 2S2 s3

−α3 + S1 α+ 2 s3

1
S1 s3 − α2s3 − 2S1 α

3

α3s3 (−α3 + S1 α+ 2 s3)




Here s3 = αβγ while S1 = α2 + β2 + γ2, etc. Point A1 is unchanged by α 7→ −α (since this
leads also to s3 7→ −s3). But β 7→ −β changes only s3 and exchanges A1 and A0.

3. Obviously, circles (A1) and (A0) are tangent at I.

4. Let us note Xjk the second intersection of circle Yj and circle Zk. For example, B31 is
(C3) ∩ (A1). We obtain:

z (A11) =

(
2α3βγ

(
β2 + γ2

)
+ 2αβ3γ3 + β2γ2 (β + γ)

(
β2 + γ2

)

+α2
(
β2 + βγ + γ2

) (
β2 − βγ + γ2

)
(β + γ)

)

α2 (β + γ)− 2αβγ

And then, we use β + γ = s1 −α and βγ = s2 −αs1 +α2. This leads to "huge" polynomials
in α, that can be reduced using the relation α3 − s1α

2 + s2α− s3 = 0. As a result:

z (A11) =

(
2 s3

1s3 − s2
1s

2
2 + s3

2

−2 s1 s2 s3 + s2
3

)
α+

(
−2 s4

1s3 + s3
1s

2
2 + 4 s2

1s2 s3

−2 s1 s
3
2 − 7 s1 s

2
3 + 3 s2

2s3

)

α s2 − 3 s3
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α β γ I0 Ia Ib Ic Aj Bj Cj Ajk Bkn Cnj Ajk Bkn Cnj

iα β γ Ia I0 Ic Ib

α β γ I0 Ia Ib Ic A1 B1 C1 A11 B11 C11 A00 B00 C00

−α +β γ I0 Ia Ib Ic A1 B0 C0 A00 B01 C10 A11 B10 C01

+α −β γ I0 Ia Ib Ic A0 B1 C0 A10 B00 C01 A01 B11 C10

α β −γ I0 Ia Ib Ic A0 B0 C1 A01 B10 C00 A10 B01 C11

Table 15.1: Action of the Klein group

5. And now consider circles (A,Ajk, I), (B,Bkn, I), (C,Cnj , I). On the Figure, we can see that
these circles concur in a second point. Under the action of the Klein group of the α 7→ −α
transforms, the parity of j + k + n is kept, as described in Table 15.1: two situations are
encountered.

6. Construction. The center B4 of circle (B,B00, I) can be obtained as A0C0 ∩MaMc where
A0, C0 are the centers described above, and Ma,Mc are the mid-arcs relative to the incenter
I0.

7. Spoiler (Veronese map). Use z (A) = α4, z (I) = 2s1s3 − s2
2 and z (A11) as above. Take the

Veronese of these points, and then the wedge of these three rows. Reduce this column, and
take the remainder of each element wrt α3 − s1α

2 + s2α − s3. Now, the representative of
circle (I, A,A11) is written as

Va = V1 + αV2 + α2V3

were V1, V2, V3 are symmetric in α, β, γ. One can see that the family V1, V2, V3 is not inde-
pendent, so that the Va, Vb, Vc belong to a same pencil.

8. Spoiler (pencil of circles). Determine the point-circles in this pencil, i.e. determine K so that
t
(V1 +K V2) · Q

z
· (V1 +K V2) = 0. This equation factors gently, giving K and therefore the

point-circles. Going back to the equations in Z,T,Z, we obtain factored equations:

((
s2

1 − 2 s2

)
T

+Z s2
3

)
×
((

2 s4
1s2 s3 − s3

1s
3
2 − 2 s3

1s
2
3 − 3 s2

1s
2
2s3

+2 s1 s
4
2 + 10 s1 s2 s

2
3 − 4 s3

2s3 − 4 s3
3

)
T +

(
s3

1s2 − 2 s1 s
2
2

−3 s2
1s3 + 4 s2 s3

)
Z

)
= 0

and conjugate. This characterizes the base points of an isoptic pencil. Thus the jkn = 111
case leads to Poulbot’s points of first kind (Ayme et al., 2014) :

zU =
−2 s4

1s2s3 + s3
1s

3
2 + 2 s3

1s
2
3 + 3 s2

1s
2
2s3 − 2 s1s

4
2 − 10 s1s2s

2
3 + 4 s3

2s3 + 4 s3
3

s3
1s2 − 2 s1s2

2 − 3 s2
1s3 + 4 s2s3

9. In the same vein, the jkn = 000 case leads to Poulbot points of second kind:

zW =
s2

1s
3
2 − 2s3

1s2s3 − 2s4
2 + 3s1s

2
2s3 + 2s2

1s
2
3 − 2s2s

2
3

s2
1s2 − 2s2

2 + s1s3

and it can be seen that this point is on the Bevan circle JaJbJc. So are the other three.

15.9 More about the foci of a conic
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(a) Whole figure

(b) Core figure

orange: 11 circles, blue 00 circles, magenta: 01 or 10 circles

Figure 15.1: Poulbot’s points
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Chapter 16

Collineations

16.1 Definition

Definition 16.1.1. A collineation is a reversible linear transformation of the barycentrics, i.e.
U = φ (P ) determined by :




u

v

w


 '




m11 m12 m13

m21 m22 m23

m31 m32 m33







p

q

r




where ' is a reminder of the fact that barycentrics are determined up a proportionality factor.

Proposition 16.1.2. A collineation is determined by two ordered lists four points: Pi, i = 1, 2, 3, 4,
Ui, i = 1, 2, 3, 4 such that no triples of P points are on the same line, and the same for the U points.

Proof. If φ is reversible, then detM 6= 0 is required and the φ (Pi) haven’t alignments when the
Pi haven’t. Conversely, we have the following algorithm.

Algorithm 16.1.3. Collineation algorithm. Let be given the two lists of points Pi, i = 1, 2, 3, 4,
Ui, i = 1, 2, 3, 4. With obvious notations, the question is to find the mij (not all being 0) and the
ki (none being 0) in order to ensure :



u1 u2 u3 u4

v1 v2 v3 v4

w1 w2 w3 w4







k1 0 0 0

0 k2 0 0

0 0 k3 0

0 0 0 k4


 =



m11 m12 m13

m21 m22 m23

m31 m32 m33






p1 p2 p3 p4

q1 q2 q3 q4

r1 r2 r3 r4




This system has 13 unknowns and 12 equations, since a global proportionality factor remains
undetermined. The ki are determined (up to a global proportionality factor) by

1

ki
det U
6=i

= det P
6=i

detM

where a 3 × 4 matrix subscribed by an 6= i refers to the square matrix obtained by deleting the
i-th column. Thereafter, M is easily obtained. To summarize :

ki = det U
6=i
÷ det P

6=i
M = U

6=4
· K
6=4
·
(
P
6=4

)−1

With the given hypotheses, transformation φ is clearly reversible.

Remark 16.1.4. An efficient choice of the Pi, Ui is eight centers, or a central triangle and a center
for the P and the corresponding U . In such a case, any center is transformed into a center, and
homogeneous curves into homogeneous curves of the same degree.
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16.2 Involutory collineations
Proposition 16.2.1. . Let M1,M2, N1, N2 be four (different points). The collineation ψ that
swaps the (M1, M2) pair and also the (N1, N2) pair is involutory. The line through the crossed
intersections M1N1 ∩ M2N2 and M1N2 ∩ M2N1 is a line of fixed points (the axis of ψ). The
paired intersection, i.e. point P = M1M2 ∩ N1N2 is an isolated fixed point (the pole of ψ).
Reciprocally, given an axis ∆ and a pole P (outside of the axis), we obtain an involutory transform
U 7→ X = ψ (U) by requiring P,U,X aligned together with (P, U, PU ∩∆, X) = −1 (harmonic
conjugacy).

Proof. Consider ψ defined by A ←→ P and B ←→ C. Its matrix ψ can be obtained by the
general Alg. 16.1.3. Then the cevian triangle of P provides a diagonalization basis and we have :

ψ '




1 0 0
q

p
0 −q

r
r

p
−r
q

0


 ; TP =




0 p p

q 0 q

r r 0




TP
−1
· ψ · TP =



−1 0 0

0 1 0

0 0 1




In the general case, we can chose matrix ψ to enforce det ψ = −1. Then minimal polynomial is

µ2 − 1 while characteristic polynomial is χ (µ) = (µ− 1)
2

(µ+ 1).

16.3 Usual affine transforms as collineations
Remark 16.3.1. Umbilics have been defined in Subsection 14.1.2. A possible choice can be described
as Ω± ' abcX512 ± iRX511. The exact value is given in (14.2).

Proposition 16.3.2. Translation. The matrix of the translation U 7→ U+
−→
V where

−→
V = (p, q, r)

is given by : 


1 + p p p

q 1 + q q

r r 1 + r


 =




1 0 0

0 1 0

0 0 1


+

−→
V · Lb (16.1)

Proof. Use Pi = A, B, Ω+, Ω− and Qi = C, D, Ω+, Ω−. Characteristic polynomial is

χ (µ) = (µ− 1)
2

(µ− 1− p− q − r)
For a translation, p+ q + r = 0, and the matrix is not diagonalizable.

Remark 16.3.3. The translation operator is linear, meaning thatM
(−→
V1

)
+M

(−→
V2

)
= M

(−→
V1 +

−→
V2

)
.

Proposition 16.3.4. Homothety. When p+ q + r is different from 0 and −1 then (16.1) char-
acterizes the homothety centered at point P = p : q : r with ratio µ = 1/ (1 + p+ q + r).

Proof. The factor is the reciprocal of the eigenvalue λP since a fixed point should be described by
λ = 1 : all the eigenvalues have to be divided by λP . This result can also be obtained by direct
examination of

−−−−−−−→
f (P ) f (U).

Remark 16.3.5. When computing P , the column t
(p, q, r) can be viewed as "defined up to a

proportionality". This does not apply to the computation of µ. In any case, we are re-obtaining
(7.29).
Remark 16.3.6. The matrix π∆ of the orthogonal projector onto line ∆ ' [p, q, r] is :

π∆ = ∆ · Mb · t∆− Mb · t∆ ·∆

while the matrix σ∆ of the orthogonal reflection wrt line ∆ ' [p, q, r] is :

σ∆ = ∆ · Mb · t∆− 2 Mb · t∆ ·∆
These formulas are recalled from Section 7.12, where more details are given.
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Proposition 16.3.7. The matrix of the rotation centered at finite point P = p : q : r with angle
φ is :

(p+ q + r) Φ =



p p p

q q q

r r r


+




r + q −p −p
−q r + p −q
−r −r q + p


 cosφ+ OrtO (Lb · P − P.Lb) sinφ

Proof. It suffices to check what happens to P, Ω+, Ω− : they are fixed points, with respective
eigenvalues : 1, exp (+iφ) , exp (−iφ), while the global factor p + q + r is a remainder of the
constraint P /∈ Lb.

Stratospherical proof. A rotation with angle φ is multiplication by Φ = cosφ+i sinφ in the complex
plane. Therefore, rotation with center P and angle φ can be written as :

Φ (X) = P +
(

1 cosφ+ i sinφ
)−−→
PX

Since matrix OrtO describes a "project and turn" action, we have OrtO
3

= − OrtO , so that

i = OrtO . Multiplying, we get : OrtO
4

= − OrtO
2
and − OrtO

2
is a projector onto space

−→V . This gives : 1 = − OrtO
2
. Canceling the denominators, we obtain :

Φ




x

y

z


 ' (x+ y + z)




p

q

r


+

(
sinφ OrtO − cosφ OrtO

2)

(p+ q + r)




x

y

z


− (x+ y + z)




p

q

r







leading to the required matrix :

Φ = proj +
(

sinφ OrtO − cosφ OrtO
2)
. (1− proj) where proj

.
=

1

Lb · P
(P · Lb)

Proposition 16.3.8. Similarity. When A, B, C, D are points at finite distance, with A 6= B,
C 6= D it exists two similarities φ, ψ, respectively called direct and skew, that sends A 7→ C and
B 7→ D. As collineations, they are characterized by :

φ = collineate
(
A, B, Ω+, Ω− ; C, D, Ω+, Ω−

)

ψ = collineate
(
A, B, Ω+, Ω− ; C, D, Ω−, Ω+

)

Proof. The group of all the similarities is the stabilizer subgroup of the pair {Ω+, Ω−} under the
action of the group of all the collineations. This comes from the fact that any similarity transforms
circles into circles, and therefore must preserve the umbilical pair.

Proposition 16.3.9. Similarity (Morley plane). Spoiler: in the Morley plane, the matrix of
the similarity σ defined by center M ' z : t : ζ, ratio k and turn τ is:

σ '




kτ
z

t
(1− kτ) 0

0 1 0

0
ζ

t

(
1− k

τ

)
k

τ




Stratospherical proof. Take Ωy, M, Ωx as basis and say that eigenvalues are kτ, 1, k/τ .

Computational proof. Say that σ = collineate (Ωy,Ωx,M,N,Ωy,Ωx,M,N ′) while |MN ′|2 = k2 |MN |2
and tan (MN,MN ′) = i

(
1− τ2

)
/
(
1 + τ2

)
. Solve for N ′ and obtain the former result. In fact

there is another solution, obtained by kτ 7→ −kτ . But we must obtain the unit matrix when
kτ = 1.
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16.4 Barycentric multiplication as a collineation

Proposition 16.4.1. Barycentric multiplication by P = p : q : r is what happens to the plane
when using collineation φ : (A,B,C,X2) 7→ (A,B,C, P ). In other words :

X ∗
b
P = P ·X where P

.
=




p 0 0

0 q 0

0 0 r




Remark 16.4.2. Obviously, trilinear multiplication can be described using collineations involving
X1.

Proposition 16.4.3. The collineation whose matrix is diagonal, with elements U ÷
b
P transforms

(A,B,C, P ) into (A,B,C,U) and circumconic CC (P ) into CC (U).

Proof. Direct examination. One obtains :

pqr

uvw

t


u

p
0 0

0
v

q
0

0 0
w

r


 ·




0 w v

w 0 u

v u 0


 ·




u

p
0 0

0
v

q
0

0 0
w

r


 =




0 r q

r 0 p

q p 0




Construction 16.4.4. The following recipe constructs F .
= D ∗

b
E.

1 Points A,B,C,D,E given

2 Line ab through A, B

3 Line bc through B, C

4 Line ca through C, A

5 Point X1 Intersection of bc, Line[A, D]

6 Point X2 Intersection of bc, Line[A, E]

7 Point Kx Intersection of ab, Line[X2, ca]

8 Point Hx Intersection of ca, Line[X1, ab]

9 Point Y1 Intersection of ca, Line[B, D]

10 Point Y2 Intersection of ca, Line[B, E]

11 Point Hy Intersection of ab, Line[Y1, bc]

12 Point Ky Intersection of bc, Line[Y2, ab]

13 Point Qx Intersection of Line[B, Hx], Line[C, Kx]

14 Point Qy Intersection of Line[C, Hy], Line[A, Ky]

15 Point F Intersection of Line[A, Qx], Line[B, Qy]

Proof. The idea is to construct parallelograms AK1X1H1, AK2X2H2 and use them as pantographs.
Using D ' p : q : r and E ' u : v : w, we have

X1 X2 Kx Hx Y1 Y2 Hy Ky Qx Qy F

0 0 w q p u p 0 wq up up

q v v 0 0 0 r u qv ur qv

r w 0 r r w 0 w wr wr wr
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16. Collineations 231

Figure 16.1: Construction of barymul

16.5 Complement and anticomplement as collineations

Proposition 16.5.1. Complement is what happens to the plane when using collineation (A,B,C,X2) 7→
(A2B2C2, X2) where A2B2C2 is the medial triangle. In other words :

complem (X) = C ·X where C .
=




0 1 1

1 0 1

1 1 0




anticomplem (X) = C−1 ·X where C−1 =



−1 1 1

1 −1 1

1 1 −1




Proof. Direct computation.

Proposition 16.5.2. The cevian collineation wrt point P is defined as collineation (A,B,C, P ) 7→
(APBPCP , P ). Its matrix is :

φP = P · C · P−1 =




0 p/q p/r

q/p 0 q/r

r/p r/q 0




where P−1 is to be understood as the reciprocal of matrix P .

Proof. Composition of the two former collineations.

Proposition 16.5.3. We have the following relation between conics :

complem (X) ∈ conicev (isotom (U) , X2)⇐⇒ X ∈ conicir (complem (U))

16.6 Collineations and cevamul, cevadiv, crossmul, crossdiv

In this Section 16.6, the start point will ever be Table 3.2 (II) i.e. T1 = CP (the cevian of P ),
T2 = ABC, T3 = AU (the anticevian of U).

Proposition 16.6.1. Start as described, and use φU = U · C · U−1 . This collineation is tailored
so that : φ (T3) = ABC, φ (T2) = CU and φ (T1) is the cevian triangle of φ (P ) wrt CU . Then :

φ · cevadiv (P, U) = crossdiv (φ · P, φ · U) = u2

p : v
2

q : w
2

r = P#
U

cevamul
(
φ−1.X, φ−1.U

)
= φ−1 · crossmul (X, U) = u2

x : v
2

y : w
2

z = X#
U
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232 16.7. Cevian conjugacies

Proof. Direct computation. The symmetry between U,X is broken by using φU .

Exercise 16.6.2. Explain why one obtains sqrtdiv (U, P ) and sqrtdiv (U,X), reverting the sym-
metry.

Proposition 16.6.3. Start as described and use ψP = P · C−1 · P−1 . This collineation
is tailored so that ψ (T1) = ABC, ψ (T2) = AP and ψ (T3) is the anticevian of ψ (U) wrt AP .
Triangles ψ (T3) and ψ (T2) are perspective wrt ψ (U) while ψ (T3) and ψ (T1) are perspective wrt
ψ (X) and :

ψ · cevadiv
(
ψ−1 · P,ψ−1 · U

)
= sqrtdiv (P, U) =

p2

u
:
q2

v
:
r2

w
= U#

P

Proposition 16.6.4. Start as before, but use instead collineation (ABC,X2) 7→ (ceva (P ) , P )

i.e. ψP = C−1 · P−1 . Then ψ (T1) is ABC while ψ (T2) is the anticomplementary trian-
gle. Perspector between ψ (T1) and ψ (T2) is ψ (U) = X2, perspector between ψ (T2) and ψ (T3) is
ψ (P ) = anticomplem (U/P ) while perspector between ψ (T1) and ψ (T3) is isotomic conjugate of
the former. In other words :

X = cevadiv (P, U) =
(
ψ−1 ◦ isotom ◦ ψ

)
(U)

16.7 Cevian conjugacies

Definition 16.7.1. The psi-Kimberling collineation of pole P is the collineation ψP such that
ABC 7→ cevian (P ) and X1 → P . Therefore :

ψP (U) = P ∗
b

complem (U ÷b X1 ) (16.2)

= p
(v
b

+
w

c

)
: q
(u
a

+
w

c

)
: r
(u
a

+
v

b

)

ψ−1
P (U) = X1 ∗

b
anticomplem (U ÷b P )

= a

(
−u
p

+
v

q
+
w

r

)
: b

(
u

p
− v

q
+
w

r

)
: c

(
u

p
+
v

q
− w

r

)

Remark 16.7.2. It is clear that ψP , ψ−1
P are type-keeping when X1 (a : b : c), P (p : q : r) and

U(u : v : w) are transformed. Moreover, ψP (A) = Ap = 0 : q : r, ψP (X1) = P (from the very
definition) while ψP (−a : b : c) = A is obvious.

This ψP collineation has been used by Kimberling (2002a) to construct some new functions,
following the patterns :

φ 7→ ψP ◦ φ ◦ ψ−1
P or φ 7→ ψ−1

P ◦ φ ◦ ψP

1. cevadivision of P by U can be re-obtained as ψP ◦ isogon ◦ ψ−1
P . The result X is the

perspector of cevian (P ) and anticevian (U). More about this operation in Section 3.11.
One has the formulas :

X = (−uqr + vrp+ wqp)u : (uqr − vrp+ wqp) v : (uqr + vrp− wqp)w
P = (vz + wy)

−1
: (uz + wx)

−1
: (yu+ xv)

−1

(a) cevadivision and ceva-multiplication are both type-keeping with respect to P and U .
Using isogonal conjugacy result in the disappearing of a, b, c from the equations.

(b) fixed points are P = ψP (X1) and the three vertices A = ψP (−a : b : c), since ±a : ±b :
±c are the fixed points of isogon. A brute force resolution leads also to the cevians
of P . A Taylor expansion around 1 : 0 : 0 shows that vertices are really fixed points
of cevadivision, while a Taylor expansion around 0 : p : q shows that undetermined
ψP (0 : q : r) = 0 : 0 : 0 must be determined as ψP (0 : q : r) = 0 : −q : r
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2. alephdivision of P by U : ψ−1
P ◦ isogon ◦ψP (Hyacinthos #4111, Oct. 11, 2001). Formulas

(cyclically) :

x ' a
(
p2r2v2 + q2p2w2 − q2r2u2

)
+
p2r2b2 + q2p2c2 − q2r2a2

bc
(vaw + ubw + cuv)

p2 : q2 : r2 =
1

(bw + cv) (bz + cy)
:

1

(cu+ aw) (cx+ az)
:

1

(av + bu) (ay + bx)

Therefore, the alephmultiplication gives four result, one inside the triangle ABC and three
outside

3. bethdivision of P by U : ψP ◦ sym3 ◦ ψ−1
P (Hyacinthos #4146, Oct. 26, 2001) where

involution sym3 is the reflection in the circumcenter X3. This involution sym3 is related to
the Darboux cubic. Barycentrics are :

x ' a u− p (c+ b) (a+ c− b)
q (−a+ b+ c)

v − p (c+ b) (b+ a− c)
r (−a+ b+ c)

w

= −a u+
p̂

q̂
(c+ b) v +

p̂

r̂
(c+ b) where p̂ : q̂ : r̂ = P ∗X7

(a) This operation is type-keeping with respect to P,U .

(b) The fixed points of U 7→ β (P,U) are obtained by ψP from the fixed points of sym3.
They are ψP (X3) together with ψP (Lb), namely the line : u/p̂+ v/q̂ + w/r̂ = 0.

(c) Bethdivision of X21 = a (b+ c− a) / (b+ c) by the circumcircle gives the circumcircle.

(d) Bethdivision of P by U is P if and only if U = P ∗
b
X57.

(e) Bethmultiplication is not simple (equation of third degree).

Exercise 16.7.3. What are the situations where the discriminant vanishes ?

4. gimeldivision of P by U : ψ−1
P ◦ sym3 ◦ ψP . Using barycentrics, one obtains :

F (U ) = 16σ2 U − αβ X1 + 2α

(
X48 ∗

b
isot (P)

)
where

16σ2 = (b+ c− a) (a+ c− b) (b+ a− c) (b+ a+ c)

α =
(q + r)u

a
+

(r + p) v

b
+

(p+ q)w

c

β =

(
b2 + c2 − a2

)
a2

p
+

(
c2 + a2 − b2

)
b2

q
+

(
a2 + b2 − c2

)
c2

r

(a) The fixed points of U 7→ γ (P,U) are obtained by ψ−1
P from the fixed points of sym3.

They are ψ−1
P (X3) together with ψP (Lb), namely the line : u bc (q + r) + v ca (r + p) +

w ab (p+ q) = 0.

(b) Gimel multiplication leads to three points on the triangle sides, and three other points.

5. mimosa aka "much ado about nothing" X(1707)-X(1788). As with other names in ETC,
the name Mimosa is that of a star. Define mimosa (P ) as ψ−1

P (X3). Using barycentrics, one
obtains :

mimosa (p : q : r) = u : v : w where

u = a

(
−
(
−a2 + b2 + c2

)
a2

p
+
b2
(
a2 − b2 + c2

)

q
+
c2
(
a2 + b2 − c2

)

r

)

and also :

mimosa (P ) = cevadiv

(
X92 ∗

b
P, X1

)

mimosa−1 (U) = cevamul (U, X1) ∗
b
X63

—– pldx : Translation of the Kimberling’s Glossary into barycentrics – vA2 —–
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Then, marvelously, the Mimosa transform M(X) arises in connection with the equation
gimeldiv(P,X) = X. And there are too many such cases of gimel conjugates for all to
be itemized in ETC... Here is a list of pairs (I,J) for which X(J) = M(X(I)).

1 46 20 1712 48 43 71 846 85 1729

2 19 21 4 54 47 72 191 86 1730

3 1 27 1713 55 1721 73 1046 88 1731

4 920 28 1714 56 1722 74 1725 89 1732

6 1707 29 1715 57 1723 75 1726 90 90

7 1708 31 1716 58 1724 77 57 95 92

8 1158 35 1717 59 109 78 40 96 91

9 1709 36 1718 60 580 80 1727 97 48

10 1710 37 1719 63 9 81 579 98 1733

19 1711 40 1720 69 63 84 1728 99 1577

6. zosma, yet another star. X(1824)-X(1907). The Zosma transform of a pointX is the isogonal
conjugate of the inverse mimosa transform of X.

7. dalethdivision of P by U : ψP ◦ hirst1 ◦ ψ−1
P where hirst1 (X) = hirstpoint (X1, X) and

thus U 6= P . Using barycentrics, one obtains :

x '
(
w

r
− v

q

)2

p−
(
u

p
+
v

q
+
w

r

)
u− 3

u2

p

(a) This operation is type-keeping with respect to P,U .
(b) The locus of fixed points of hirst1 is the circumconic cc (X1). Therefore, the locus of

fixed points of dalethP is the conic cvc (P, P ) tangent to the sidelines of ABC at the
cevian points of P .

8. hedivision of P by U : ψ−1
P ◦φ◦ψP where φ (X) = hirstpoint (X1, X) and thus U 6= ψ−1

P (P ).
Using barycentrics, one obtains :

x ' −p
(v
b

+
w

c

)2

+
qa

b

(u
a

+
w

c

)2

+
ra

c

(u
a

+
v

b

)2

+
rqa2

cbp

(u
a

+
v

b

)(u
a

+
w

c

)
− qcp

br

(u
a

+
w

c

)(v
b

+
w

c

)
− brp

qc

(u
a

+
v

b

)(v
b

+
w

c

)

(a) The locus of fixed points is a conic, but not a conic of cevians.

16.8 Miscellany

16.8.1 Poles-of-lines and polar-of-points triangles
In what follows, indexes are to be taken modulo 3.

Definition 16.8.1. Polars-of-points triangle. Consider the general triangle T with vertices Ti,
for i = 1, 2, 3. Taking the tripolars, we obtain a trigone. Taking the dual, we obtain the (may be
degenerate) polars-of-points triangle TU = pntpoltri (T). Its vertices are :

Ui = tripolar (Ti+1) ∧ tripolar (Ti+2) (16.3)

Definition 16.8.2. Poles-of-lines triangle. Consider the general triangle T with vertices Ti,
for i = 1, 2, 3. Taking the dual trigone and then the tripoles, we obtain the (may be degenerate)
poles-of-lines triangle TP = linpoltri (T). Its vertices are :

Pi = tripole (Ti+1 ∧ Ti+2) (16.4)

Remark 16.8.3. An example of flat line-polar triangle is given by triangles sharing the circumcircle
of ABC
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Lemma 16.8.4. The determinants of these triangles are:

det TU = (det Tisot)2
; det TP =

(det T)2
det Tisot∏

9 Adjoint (T)

where det Tisot is either the determinant of the triangle of the isotomics or the determinant of the
trigone of the tripolars, and Π9 is the condition expressing that two vertices of T are aligned with
a vertex of ABC.

Proposition 16.8.5. When isotomic conjugates are collinear, TU is totally degenerate. Otherwise
pntpoltri (T) is a triangle. Point-polarity is type-keeping (and both tribes share the same formula).

Proof. For example, the polar of P1 is the line x/p1 + y/q1 + z/r1 = 0, and the polars of P2 and
P3 are defined cyclically. Then U1 is obtained as the common point of the last two lines.

Proposition 16.8.6. When T is flat (aligned points), then TP is totally degenerate. When isotomic
conjugates are collinear, TP is flat, i.e. simply degenerate. Otherwise, linpoltri (T) is a triangle.
The line-polarity transform is type-keeping (and both tribes share the same formula).

Proof. For example U2 ∧ U3 gives the barycentrics of line U2U3, while tripole is transpose and
invert : being the product of two type-crossing transforms, linpoltri is type-keeping.

Proposition 16.8.7. Line-polar and point-polar transforms are converse of each other... in the
generic case. More precisely, pntpoltri (linpoltri (T)) gives T times det T, going back to any non
degenerate triangle. On the contrary, linpoltri (pntpoltri (T)) gives T times 1/ det Tisot: the con-
verse relation holds certainly when isotomic conjugates of points Pi aren’t collinear and points Pi
aren’t collinear either and points Pi aren’t on the sidelines.

16.8.2 Unary cofactor triangle, eigencenter
Definition 16.8.8. The unary cofactor triangle of triangle Ui (i = 1, 2, 3) is the triangle
whose vertices are the isoconjugates of the vertices of the line-polar triangle of the points Ui. This
operator is type-crossing over the Ui, but is nevertheless type-keeping over all involved points when
using any fixed point F instead of P = F 2. Using barycentrics :

Xi =
t
(Ui+1 ∧ Ui+2) ∗

b
P

Proposition 16.8.9. When triangle U1U2U3 is degenerate (collinear vertices), then triangle X1X2X3

is totally degenerate (reduced to a point). Apart this situation, the unary cofactor transform is in-
volutory.

Definition 16.8.10. Eigencenter. Any triangle U1U2U3 and its unary cofactor X1X2X3 are
perspective. Their perspector is called the eigencenter of these triangles (formula don’t simplify,
and has Maple-length 945).

When the original triangle is the cevian or the anticevian of a point U , formula shorten into :

eigencenter (CU ) = anticomplem

((
U ∗

b
U

)∗

P

)
∗
b
U∗p = cevadiv (U, U∗)

eigencenter (AU ) = anticomplem

(
U ∗

b
U ÷

b
P

)
∗
b
U

These points are called, respectively, the eigentransform and the antieigentransform of point U
(see Section 22.4.8).
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Chapter 17

Perspective Drawing

17.1 Working out an example
In the Euclidean plane, let us consider an equally divided square, where A = (−1,−1) and C =
(+2,+2). And apply the following rules:

1. Perspective preserves alignment.

2. Real world parallels intersect in the drawing at a "vanishing point". All such points are on
a same line (the horizon).

3. On a parallel to the horizon, the ratios of algebraic measurements are preserved.

In the drawing plane, let us take three points at random: A (12, 0), B (19, 6), D (9, 5). Here, "at
random" means: change these coordinates if you want to, but dont expect simpler numerics...).

1. /home/douillet/docs/Forums/Phorum/0_Geometrie_projective/Perspective_in_art

2. /home/douillet/docs/Forums/Phorum/0_Geometrie_projective/Stfj_cobars

(a) figures gauche - droite

(b) en particulier macros ABCx, ABCLx (à la fin)

3. Enseigner_projective_2024 : Swingmustard msg-2479049

4. Enseigner_projective_2024: Swingmustard msg-2479253 – 1 May 2024

5. même quand @pldx1 disait (p.3 de Cobars): — extrait de Swingmustard msg-2479577 – 3
May 2024 7:48PM

——————
Eléments de biblio

Figure 17.1: Drawing a divided square
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238 17.1. Working out an example

1. Capstone WeiPing Li

2. https://www.nationalgallery.org.uk/research/research-resources/exhibition-catalogues/building-
the-picture

3. perspectives paradoxales, Macary-Garipuy and Vannesson (2010)

4. Arasse

(a) Longo thesis, about Arasse Longo (2014)

(b) Rowley, Neville: Daniel Arasse en perspective: une apostille à l’Annonciation italienne
(Rowley, 2006)

5. Léo Battista ALBERTI "De Pittura" 1436. Edition Claudius Popelin

(a) 001 (009) Prologue

(b) 029 (037) Leon-Battista Alberti

(c) 065 (073) De la statue

(d) 095 (103) De la peinture

(e) 189 (197) Epilogue

6. Léo Battista ALBERTI "De Pittura” 1436. Préface et traduction de Jean-Louis Schefer,
introduction de Sylvie Deswarte-Rosa, Collection «La Littérature Artistique» Macula Dédale,
Paris 1992

(a) review: Vuilleumier: https://www.persee.fr/doc/rvart_0035-1326_1993_num_99_1_348099_t1_0084_0000_004

(b) review: Jodogne Pierre Jodogne (1995)

7. Léo Battista ALBERTI "De Pittura" 1436. Traduction de Jean- Pierre Le Goff. Texte et
traduction originaux dans Les Cahiers de la Perspective n° 4 Irem de Basse-Normandie Caen.

8. Heinich: Heinich (1983) https://www.persee.fr/doc/arss_0335-5322_1983_num_49_1_2198:
La perspective académique [article] Peinture et tradition lettrée : la référence aux mathéma-
tiques dans les théories de l’art au 17ème siècle

9. https://www.math.utah.edu/~treiberg/Perspect/Perspect.htm.

10. https://elccarignanhistoiredelart1ereannee.blogspot.com/2021/10/blog-post.html
see lyx document.

(a) https://drive.google.com/file/d/0Bz4Gx3D4ZlgGZ1EtcUxibGNaVVU/view?resourcekey=0-
kRXXD77eHG9ysBB5VdGV2w

(b) https://drive.google.com/file/d/0Bz4Gx3D4ZlgGZzlsaG1hb0hxX1U/view?resourcekey=0-
m59GO8_MKDzwPf_hut3Ggg

11. http://elccarignanhistoiredelart2emeannee.blogspot.com/

12. https://www.essentialvermeer.com/technique/perspective/history.html
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Chapter 18

Cremona group and isoconjugacies

Notation 18.0.1. From now on, the four upright bold letters a,b, c,d are four complex numbers
involved in a Cremona homographic transforms, not to be confused with the slanted letters a, b, c
which are used to note the sidelengths of a given triangle. In this context, a′,b′, c′,d′ are four other
(independent) complex variables, the relations a′ = a, etc being assumed only for visible objects.

The context should be sufficient to avoid any confusion between a and a, etc. Moreover, a
careful reader will not confuse upright characters with italic ones.

18.1 Homographic Cremona transforms of the projective plane

Definition 18.1.1. The upper spherical map of the Morley space PC
(
C3
)
is the projection Z :

T : Z 7→ Z : T, while the lower spherical map is the projection Z : T : Z 7→ Z : T. Each of them
sends PC

(
C3
)
onto (yet another copy) of the Riemann sphere PC

(
C2
)
.

Definition 18.1.2. (reminder) An homography ψ is an element of PGLC
(
C2
)
. Such object can

be seen as

z 7→ ψ (z)
.
=

a z + b

c z + d

acting on the Riemann sphere C.

Construction 18.1.3. Construct the middle of a subtangent [J,K], even if E is inside
the conic (so that only polE and BC are available, see Figure 18.1). Obtain T , the contact
point and join to the center O. Then OT cuts FG = polE at some point L. And finally, EL
cuts BC at M which is the required middle of [J,K]. See pappus (2017) for some context, and
Construction 27.10.12 for an application.

Figure 18.1: Construct the middle of a subtangent

239
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Proof. A first step is to prove the result for the unit circle when E lies outside the circle and
nothing goes at infinity, so that ordinary complex numbers can be used. Let F be a point on the
unit circle, note zF = α and let zG = 1/α. The tangents at F and G cut at a pointE on the real
axis, and xE = 2α/

(
1 + α2

)
. We have FG '

[
α : −1− α2 : α

]
.

Then define J = E + k
−−→
EF , K = E + k′

−−→
EG. If we require that JK remains tangent to C, this

induces an homography between parameters:

k′ =
−4k + 4

(α+2 − 2 + α−2) k + 4
=

x2
E k − x2

E

(x2
E − 1) k − x2

E

Straightforward computations are leading to:

zT =
k α
(
1− α2

)
− 2α

k (α2 − 1)− 2α2
; zL = α

(
α2 − 1

)2
k2 + 4

(
α2 − 1

)
k + 4

(α2 − 1)
2
k2 + 4α2

zM =
α
((
α2 − 1

)
k + 2

) ((
α2 − 1

)2
k + 6α2 + 2

)

2 (α2 + 1)
(

(α2 − 1)
2
k + 4α2

)

And we can check that zJ + zK = 2zM .
The key point is that line FG is the polar of E and therefore remains visible even if E goes

inside the circle, while α ceases to be a "true" turn and J,K become conjugate invisible points on

the visible line BC '
[
k
(
α2 − 1

)
− 2α2

α (k (α2 − 1) + 2)
, 2,

α
(
k
(
α2 − 1

)
+ 2
)

k (α2 − 1)− 2α2

]
.

Definition 18.1.4. A Cremona homography combines two ordinary homographies, each of
them acting on its own Riemann sphere. This can be seen as:

(ψ,ψ′)




Z

T

Z


 .

=




aZ + bT

cZ + dT
1

a′Z + b′T

c′Z + d′T



'




(aZ + bT)
(
c′Z + d′T

)

(cZ + dT)
(
c′Z + d′T

)
(
a′Z + b′T

)
(cZ + dT)




A visible homography is such that visible points are transformed into visible points. This implies
the obvious relations of complex conjugacy between the coefficients of ψ and ψ′.

Theorem 18.1.5. Consider a proper conic C in the projective plane and two fixed tangents ∆1, ∆2

to that conic. A moving tangent ∆ cuts ∆1 at M and ∆2 at N . If we adopt two linear parametriza-
tion, k on ∆1 and K on ∆2, the relation M 7→ N induces an homography between parameters k
and K. Moreover correspondence ∆1 ↪→ ∆2 : M 7→ N can be extended into a transform Ψ that
acts into PC

(
C3
)
and looks like a pair of homographies ψ, ψ, each of them acting onto one of the

spherical maps.

Proof. Consider the inscribed conic whose auxiliary line is Q = [u, v, w]. Consider lines AB, AC
and parametrize by M = k A+ (1− k)B, N = KB + (1−K)C. Assume that MN is tangent to
C and obtain :

K =
kw

(u+ v + w) k − v
This proves the first part. Using the Lubin transmutation, we have :

Mz
.
=




Z

T

Z


 ' aller ·




k

1− k
0


 '




αk + β (1− k)

1
k

α
+

1− k
β




Nz
.
=




Z′

T′

Z ′


 ' aller ·




K

0

1−K


 '




αkw + γ (ku+ vk − v)

k (u+ v + w)− v
kw

α
+
ku+ vk − v

γ




April 5, 2025 14:49 published under the GNU Free Documentation License



18. Cremona group and isoconjugacies 241

Identifying with respect to parameter k, we are conducted to define

ψ =

(
(γ (u+ v) + αw) − (βγ u+ γα v + αβ w)

u+ v + w − (α v + β (u+ w))

)

in order to have :



1 0 0

0 1 0

0 0 0







Z′

T′

Z ′


 =




ψ11 ψ12 0

ψ21 ψ22 0

0 0 0







Z

T

Z







0 0 0

0 1 0

0 0 1







Z′

T′

Z ′


 =




0 0 0

0 ψ22 ψ21

0 ψ12 ψ11







Z

T

Z




Theorem 18.1.6. (Continued). Finally, the four focuses of C are the fixed points of the transform
Ψ that acts into PC

(
C3
)
while the projections of the focuses onto the upper spherical map are the

two ordinary fixed points of ψ ∈ PGLC
(
C2
)
.

Proof. Fixed points of ψ are the roots of :

(u+ v + w)Z2 − (α (v + w) + β (w + u) + γ (u+ v))ZT + (βγ u+ γα v + αβ w)T2 = 0

This equation can be rewritten into :
u

Z− αT +
v

Z− βT +
w

Z− γT = 0

and this equation characterizes the focuses of the conic in the upper map.

Notation 18.1.7. We will use concurently f1, f2 ∈ C, but also z1 : t1 : ζ1 and z2 : t2 : ζ2 ∈ PC
(
C3
)

to describe the fixed points of ψ.

Proposition 18.1.8. Let z 7→ (az + b) / (cz + d) be an homography ψ of the Riemann sphere. If
we assume that the fixed points are not equal, then ψ is characterized by a number k ∈ C that is
neither 0 nor ∞. We call it the multiplier of ψ and we have :

k
.
= cross_ratio (f1, f2, z, ψ (z)) =

c f1 + d

c f2 + d
= ψ′ (f2) =

1

ψ′ (f1)

Conversely, when f1, f2, k are given, then ψ is given by:

a = k
z1

t1
− z2

t2
,b =

z1z2

t2t1
− k z1z2k

t2t1
, c = k − 1,d =

z1

t1
− k kz2

t2

So that ψ ∈ PGLC
(
C2
)
induces a transformation Ψ : PC

(
C3
)
↪→ PC

(
C3
)
defined by

Ψ




Z

T

Z


 '




(kt2z1 − z2t1)Z− z1z2 (k − 1)T

(k − 1) t2t1 Z− (z2t1k − z1t2)T

1

(κt2ζ1 − t1ζ2)Z − ζ1ζ2 (κ− 1)T

(κ− 1) t2t1Z − (κζ2t1 − ζ1t2)T




(18.1)

and,in turn, Ψ has four fixed points:

F1 '
z2

t2
: 1 :

ζ2
t2

; F2 '
z2

t2
: 1 :

ζ1
t1

; F3 '
z1

t1
: 1 :

ζ2
t2

; F4 '
z1

t1
: 1 :

ζ1
t1

(18.2)

Proof. To see that cross_ratio (f1, f2, z1, ψ (z1)) = cross_ratio (f1, f2, z2, ψ (z2)), use the fact that
cross_ratio (f1, f2, z1, z2) is invariant by ψ. The rest is obvious from definitions.

Lemma 18.1.9. A more symmetric quantity is :

σ
.
= k +

1

k
− 2 =

(k − 1)
2

k
=

(a− d)
2

+ 4 b c

a d− b c
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Proof. Direct computation.

Remark 18.1.10. An homography z 7→ (az + b) / (cz + d) of the Riemann sphere is involutory when
a + d = 0.

Proposition 18.1.11. The focal transform described at (18.1) is transmuted into the following
standardized transform :

Ψ0
.
= Z : T : Z 7→ (1 + µ)Z + (1− µ)T

(1− µ)Z + (1 + µ)T
: 1 :

(1 + ν)Z + (1− ν)T

(1− ν)Z + (1 + ν)T

by similarity : 


f1 − f2 f1 + f2 0

0 2 0

0 f1 + f2 f1 − f2




while Ψ can be factored into :

Ψ = trans ◦ σ ◦multi ◦ trans
where the Cremona transform σ, the multiplication and the translation (the same translation is
applied once and again, not once and the reverse afterward) are defined by :

σ




Z

T

Z


 '




1/Z

1/T

1/Z


 , multi =




σµ 0 0

0 −4 0

0 0 σν


 , trans =




1
µ+ 1

µ− 1
0

0 1 0

0
ν + 1

ν − 1
1




Proof. Direct computation.

18.2 Defining the general Cremona transforms
Definition 18.2.1. The Cremona group is defined as the set of the bi-rational transforms of
PC
(
C3
)
. Therefore a transformation Ψ ∈ Cremona can be written as :

Ψ
(
Z : T : Z

)
= ψ1

(
Z,T,Z

)
: ψ2

(
Z,T,Z

)
: ψ3

(
Z,T,Z

)

where the ψj are three homogeneous polynomials of the same degree. And the existence of another
transform Φ ∈ Cremona is assumed so that, at least formally, (Φ ◦Ψ)

(
Z : T : Z

)
'
(
Z : T : Z

)
.

Exercise 18.2.2. What can be said about the degrees when two transforms are inverse of each
other ? See Diller (2011)

Definition 18.2.3. Given a Cremona transform, we define the indeterminacy points and the
exceptional curves by :

Ind (Ψ) = {M |ψ1 (M) = ψ2 (M) = ψ3 (M) = 0 }

Exc (Ψ) =

{
M

∣∣∣∣∣det
∂ (ψ1, ψ2, ψ3)

∂
(
Z, T, Z

) = 0

}

Exercise 18.2.4. What do you think about : A quadratic transformation f ∈ Cremona acts by
blowing up three (indeterminacy) points Ind (f) =

{
p+

1 , p
+
2 , p

+
3

}
and blowing down the (excep-

tional) lines joining them. Typically, the points and the lines are distinct, but they can occur with
multiplicity. Then f−1 is also a quadratic transformation and Ind

(
f−1

)
=
{
p−1 , p

−
2 , p

−
3

}
consists

of the images of the three exceptional lines ?

Remark 18.2.5. This simple relation between indeterminacy points and exceptional curves does
not hold for higher degree transforms.

Theorem 18.2.6. The Cremona group is generated by collineations and the "inverse everything"
transform i.e. σ :

(
Z : T : Z

)
7→
(
TZ : ZZ : ZT

)
.

Proof. A detailed proof can be found in Alberich-Carramiñana (2002), and an historical sketch is
given in Déserti (2009a). The idea is to separate infinitely neighbor points in Ind (ψ) if required
and then proceed to a descending recursion over the cardinal of Ind (ψ).
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18.3 Working out some examples
*** references Alexander (1916) Coble (1922) Trkovska (2008) should be introduced here ***

Example 18.3.1. Transform ρ is ρ
(
Z : T : Z

)
=
(
ZZ : TZ : T2

)
. This is an involution. The

set Ind (ρ) contains 1 : 0 : 0 (twice) and 0 : 0 : 1. The exceptional locus is the reunion of the
contraction lines T = 0 and Z = 0. The decomposition of this transform can be conducted as
described in Table 18.1.

result Ind (ψ) transform

1




xz

yz

y2







1

0

0


 =




1

0

0


 ,




0

0

1







1 1 0

0 1 0

0 −1 1




2




(x+ y) z

yz

(y − z) y







1

0

0


 =




1

0

0


 ,




0

0

1


 σ

3




(y − z) y
(x+ y) (y − z)

(x+ y) z







1

0

0


 ,




0

0

1


 ,




+1

−1

−1







1 0 0

0 1 0

0 1 1




4




(y − z) y
(x+ y) (y − z)

(x+ y) y







1

0

0


 ,




0

0

1


 ,




+1

−1

−1


 σ

5




x+ y

y

y − z


 none




1 −1 0

0 1 0

0 1 −1




6




x

y

z


 none

Table 18.1: Reduction of a Cremona transform

Example 18.3.2. Transform µ is µ
(
Z : T : Z

)
=
(
ZZ : Z2 −TZ : Z2

)
. This is an involution.

The points of indeterminacy form a sequence of infinitely close neighbor µ+
3 � µ+

2 � µ+
1 = 0 : 1 : 0.

Similarly, the exceptional locus is line Z = 0, counted three times. Due to this specificity, its
Cremona factorization is longer. A description of this process is given in Déserti (2008–2009),
leading to a nine steps process (φ5σφ4σφ3σφ2σφ1).

.

18.4 Isoconjugacy and sqrtdiv operator
Definition 18.4.1. Let us recall the heuristic definition of the sqrtdiv operator that was
already given at Definition 1.4.10. We start from triangle ABC and ’fix’ a point F not on the
sidelines. If we call f : g : h it’s ABC-barycentrics, then U#

F , the sqrtdiv image of U ' u : v : w is
defined by :

sqrtdivF (U)
.
= U#

F
.
=
f2

u
:
g2

v
:
h2

w
(18.3)
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244 18.4. Isoconjugacy and sqrtdiv operator

Remark 18.4.2. Maps sqrtdiv and sqrtmul are related with cevian nests (Table 3.2, case III).

Proposition 18.4.3. The operator sqrtdiv is globally type-keeping and therefore is a pointwise
transform. Seen as a U 7→ U#

F transform, we have clearly a Cremona-wise involution. The fixed
points are the four ±f : ±g : ±h, i.e. F and its associates under the Lemoine transforms wrt
triangle ABC... In other words, any of the Fj and the vertices of its anticevian triangle.

Proof. Obvious from definition.

Corollary 18.4.4. When U is on line FjFk, so is U#
F and we have :

cross_ratio
(
Fj , Fk, U, U

#
F

)
= −1

Proof. We have : det
(
F1, F2, U

#
F

)
= (−gh/vw)× det (F1, F2, U).

Construction 18.4.5. . When a pair P, P# is known, the image M# of a given point M can be
constructed by ruler only. As a proof, the coordinates of the corresponding points are given, using
P ' p : q : r, P# ' u : v : w, M ' x : y : z)

1. E0
.
= AM ∩ CP# ' [uy, vy, vz]

2. E1
.
= PM ∩BC ' [0, qx− py, rx− pz]

3. E2
.
= AP ∩ E0E1 ' [puy, qvx, rvx]

4. E3
.
= AB ∩ E0E2 ' [uy (pz − rx) , vx (qz − ry) , 0]

5. M# .
= CE2 ∩ E3P

# '
[
pu

x
,
qv

y
,
rw

z

]

Theorem 18.4.6. Formal definition of the sqrtdiv operator. Start from four independent
points F1, F2, F3, F4 (three of them are never on the same line). Call ABC their diagonal triangle,
i.e. define

A = F1F4 ∩ F2F3 ; B = F2F4 ∩ F1F3 ; C = F3F4 ∩ F1F2

For any point U in the plane, draw both conics :

C12
.
= C (U, F1, F2, F1F4 ∩ F2F3, F2F4 ∩ F1F3) = C (U, F1, F2, A, B)

C34
.
= C (U, F3, F4, F1F4 ∩ F2F3, F2F4 ∩ F1F3) = C (U, F3, F4, A, B)

Their fourth intersection is independent of the order chosen for the set {Fj} and is the sqrtdivF
image of U that was formerly defined wrt ABC, the diagonal triangle of the Fj.

Proof. Choose an order over set {Fj}, use the above defined triangle ABC as the reference triangle
and let f : g : h be the barycentrics of F4 in this context. Then F1, F2, F3 is the anticevian triangle
of F4 wrt ABC, enforcing F1 = −f : g : h, etc. Compute the conics using the usual 6 × 6
determinant and obtain :

C12 '




0 h2w (fv + gu) −g
(
fgw2 + h2uv

)

h2w (fv + gu) 0 −f
(
fgw2 + h2uv

)

−g
(
fgw2 + h2uv

)
−f
(
fgw2 + h2uv

)
2 fgw (fv + gu)




C34 '




0 h2w (gu− fv) g
(
fgw2 − h2uv

)

h2w (gu− fv) 0 f
(
h2uv − fgw2

)

g
(
fgw2 − h2uv

)
f
(
h2uv − fgw2

)
2 fgw (fv − gu)




Computing their re-intersection is straightforward, and the symmetry of the result implies the
independence from the way the set {Fj} was ordered.

Construction 18.4.7. The fixed points. Given generic A,B,C,U, V the fixed points of the
ABC-isoconjugacy that exchanges U, V are obtained as intersection of conics γU and γV where γU
is the conic that goes through U , the anticevians of U and cevadiv (V,U), etc. Remark: line UV
is tangent at U to γU and at V to γV .
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Proof. Equation of γU is
(
g2r2 − h2q2

)
x2 +

(
h2p2 − f2r2

)
y2 +

(
f2q2 − g2p2

)
z2 = 0. It is obvious

that the four Fj belong to this conic.

Construction 18.4.8. The fourth harmonic (harmonic conjugate of point U ∈ (F1, F2) wrt
points F1, F2) can be constructed by choosing two arbitrary points F3F4 and then using the sqrtdiv
operator having the four Fj as fixed points. If we chose F3, F4 in order to obtain the middle of
F1F2 and the two umbilics as triangle ABC, we obtain the usual construction using one circle from
the pencil admitting F1F2 as base points and one from the pencil admitting F1F2 as limit points.

Definition 18.4.9. Isoconjugacy. Forget that f2 : g2 : h2 are the squares of the barycentrics of
four points, and consider them as the barycentrics of a new point, called the pole P = p : q : r of
the transform. Then the isoconjugate of U = u : v : w wrt pole P is obtained by:

U∗P = (u : v : w)
∗
P
.
= p vw : q wu : r uv (18.4)

Remark 18.4.10. This transform was introduced in order to unify isotomic conjugacy (Section 3.4)
and isogonal conjugacy into a common frame... and also to deal with the reluctance towards
imaginary focuses. When using barycentrics, isotomic conjugacy is obtained with P = X2 and
isogonal conjugacy with P = X6. When using trilinears, you have to use (respectively) P = X75

and P = X1. When X2 is special, its isogonal conjugate X6 is special too. When X1 is special, its
isotomic conjugate X75 is special too.

Remark 18.4.11. Isoconjugacy U 7→ U∗, considered as a function of U alone is type-crossing, so
that it is not so clear to say that this mapping has four fixed points (real or not), namely the points
Fi

.
= ±√p : ±√q : ±√r.

Remark 18.4.12. Most of the time, barycentric multiplication appears as the result of two successive
isoconjugacies, according to :

(X∗U )
∗
P = X ∗

b
U∗P

For example, isot (isog (X)) = (X∗6 )
∗
2 = X∗

b
isot (X6) while isog (isot (X)) = (X∗2 )

∗
6 = X∗

b
isog (X2)

18.4.1 Some other constructions

Remark 18.4.13. A construction has already be given at Construction 3.12.1. It "suffices" to draw
T2 as the anticevian of F and then T3 as the anticevian of U wrt triangle T2. Then sqrtdivF (U)
is the perspector of T1 = ABC with T3. But constructing anti-cevian triangles is not so easy.

Fact 18.4.14. Let be given A,B,C,U, V in generic position (without alignments). Then the ABC-
isoconjugacy ψ that exchanges U, V can be constructed as follows. Once for ever, point R is chosen
on line UV and its cevian triangle ARBRCR is obtained, and triangle T1 is constructed as :

A1 = V A ∩ UAR, B1 = V B ∩ UBR, C1 = V C ∩ UCR

Then consider a point X not on the sidelines, define triangle T2 by A2 = A1X ∩ BC (etc) and
triangle T3 as cross (T1, T2) i.e. A3 = B1C2 ∩ C1B2 (etc). It happens that triangle ABC and
A3B3C3 are perspective, and this perspector is the required point ψ (X).

Proof. Put V = p : q : r and U = u : v : w. Express R as R = V − ρU . Existence of A1 requires
wq − vr 6= 0, i.e. A,U, V not collinear. The result is :

T1 =




ρu p p

q ρv q

r r ρw


 , T2 =




0 ρvx− py ρwx− pz
ρuy − qx 0 ρwy − qz
ρuz − rx ρvz − ry 0




T3 =




p (yw + zv)− ρvwx puz puy

qvz q (zu+ xw)− ρwuy qxv

rwy rwx r (xv + yu)− ρuvz




and the perspector is : pu/x : qv/y : rw/z as required. In (Dean and van Lamoen, 2001), ψ was
called reciprocal conjugacy.
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Fact 18.4.15. Another construction, with same hypotheses (A,B,C,U, V given, without align-
ments). Consider the conic γ that goes through A,B,C,U, V , and the traces of UV on the side-
lines, i.e. Ta

.
= UV ∩ BC, etc. For a moving point X, call shadows of X the re-intersections

Xa, Xb, Xc of lines AX, BX, CX and the conic γ. Then traces and shadows are collinear, i.e. Ya
is the second intersection of TaXa with γ, etc.

Proof. Direct computation. Here again wq − vr 6= 0, etc is required.

18.4.2 Morley point of view
Proposition 18.4.16. Isogonal conjugacy. The Morley affix of the isogonal conjugate of point
P = Z : T : Z is given by :

isog




Z

T

Z


 '




σ3Z
2 − ZT− σ2ZT + σ1 T

2

T2 − ZZ
1

σ3
Z2 − σ1

σ3
ZT−ZT +

σ2

σ3
T2


 (18.5)

Proof. This formula can be stated using the representation of first degree. Start from point P and
obtain ∆A, the A-isogonal of line AP , by solving :

∆A ·A = 0

tan (AB, ∆A) + tan (AC, AP ) = 0

Compute ∆A ∧ ∆B and obtain a symmetric expression, proving that ∆C goes also through this
point. One can check that isog (Ω+) = Ω− and vice versa.

Exercise 18.4.17. Use unimodular α, β, γ to describe the reference triangle of the complex plane.
Let P ' Z : T : Z be the generic point, P ∗ its isogonal conjugate wrt ABC and U = (P + P ∗) /2.
Let O be the circum-center, and N =X(5) the Euler center. Use formula (18.5), (15.10), and the
usual law s ? t = (s+ t)/(1− s t) to check that quantity :

ψ (P )
.
= tandrs (Ox,OP ) ? tandrs (Ox,OP ∗) ? tandrs (Ox,NU)

is independent of P . One can also use barycentrics, and use BC instead of Ox as reference line.
The question is: what does this prove ?

Proposition 18.4.18. The four in-excenters of triangle ABC are enumerated by the polynomial :

ζ4 − 2σ2 ζ
2 + 8σ3 ζ +

(
σ2

2 − 4σ1 σ3

)
(18.6)

Proof. The fixed points of the isogonal transform are obtained by solving the equation
T isog (M)−

(
T2 − ZZ

)
M = 0. This gives two polynomials of degree 3, that are not self-conjugate

but conjugate of each other. The corresponding algebraic curves are not visible. Intersecting these
curves, we obtain nine points. Among them, are both umbilics. The umbilical pair is fixed, but
a given umbilic is not fixed. They are nevertheless appearing since both T and T2 − ZZ are
vanishing here. When computing the Z resultant of these polynomials, we obtain an eight degree
polynomial that factors into :

T×
∏

3

(Z− αT)× poly4 (Z, T)

The umbilical pair is represented by T, vertices are appearing and it remains the required
polynomial of degree 4: this gives the 2 + 3 + 7 = 9 intersections of two degree 3 curves. To be
sure of what happens, we can compute the T resultant of both polynomials and obtain :

ZZ ×
∏

3

(
Z− α2Z

)
× poly4

(
Z, Z

)

where each point is represented by a specific factor.

Remark 18.4.19. When substituting α = α2, etc (i.e. using the Lubin representation of second
degree), polynomial (18.6) splits, with roots ±βγ ± γα± αβ as required.
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18.4.3 The isogonal Morley formula

Proposition 18.4.20. Points Z : T : Z and z : t : ζ are isogonal conjugate of each other if and
only if :





σ3ζZ + tZ + zT− σ1tT =
1

0

zZ +
(
ζT + tZ

)
σ3 − σ2 tT =

1
0

(18.7)

Since these equations are complex conjugates of each other, only one relation is required for visible
points.

Proof. This is Corollary 10.6.3. A method to find such an expression ϑ is as follows. We search
coefficients such that :

zZc00 + tZc01 + ζZc02 + zTc10 + tTc11 + ζTc12 + zZc20 + tZc21 + ζZc22 = 0

when conjugacy occurs. This formula must be symmetric in M and M∗, so that c10 = c01,
c20 = c02, c12 = c21. Writing that in-excenters are fixed points gives us 4 equations, leaving two
indeterminate coefficients. One obtains, for example, c01ϑ+c12 ϑ

′. And we can go back to Lubin-1.
But ϑ′ happens to be the complex conjugate of ϑ. Exactly as written, equation ϑ = 0 defines a
line. But this equation is not self-conjugate, and only a point of the line is visible. When cutting
by conjϑ, we obtain a point (and a 2nd degree equation, as it should be).

Exercise 18.4.21. Apply the same method to the isotomic conjugacy, obtain the only possible
formula... and conclude.

18.4.4 Isoconjkim

In the old ancient times, Kimberling (1998) introduced another definition of the isoconjugacy, in
an attempt to unify isotomic and isogonal conjugacies into a broader concept. Thereafter, this
definition was changed into the one given above. To avoid confusion with (18.4), we will use the
term isoconjkim to describe the older concept.

Definition 18.4.22. isoconjkim. For points outside the sidelines of ABC, the Kimberley P -
isoconjkim of U is the point X such the product of the trilinears of P,U,X gives 1 : 1 : 1.
Restated into barycentrics, this gives :

P ∗
b
U ∗

b
X = X1 ∗

b
X1 ∗

b
X1 (18.8)

In this transformation, P and U play the same role so that isoconjkim acts like a multiplication.
On the other hand U and X play also the same role, so that isoconjkimP is involutory. Description
X = isoconjkimP (U) reflects the fact that second point of view is the more useful.

Example 18.4.23. Here is a list of various isoconjkim transformations. The isogonal conjugation
is X1-isoconjkim while the isotomic conjugation is X31- isoconjkim.

P barycentrics trilinears pole bar(pole) fixed
X (1) a2 1

u 1 1
u X (6) a2 X (1)

X (2) a3 1
u a 1

u X (31) a3 X (365)

X (3)
(
a2/ cosA

)
1
u (1/ cosA) 1

u X (19) a/Sa X (???)
X (4) a2 cosA 1

u cosA 1
u X (48) a3Sa X (???)

X (6) a 1
u (1/a) 1

u X (1) a X (366)

X (19) a cosA 1
u (cos (A) /a) 1

u X (3) a2Sa X (???)

X (31) 1 1
u

(
1/a2

)
1
u X (2) 1 X (2)

X (48) (a/ cosA) 1
u 1/ (a cosA) 1

u X (4) 1/Sa X (???)
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18.5 Angular coordinates

18.5.1 The general case
Remark 18.5.1. In this section, α, etc are not the later defined Lubin affixes. This remark can be
understood as an anti-spoiler !

Definition 18.5.2. Let M be a point neither at infinity nor on the circumcircle. The three angles
α = (MB,MC) , etc are called the angular coordinates of M . According to the following
proposition, the point M is characterized by α, β, γ.

Proposition 18.5.3. Let be given three finite numbers cotα, cotβ, cot γ. The locus of the points
such that cot (MB,MC) = cotα is a circle µa. The three circles µj are concurrent in a point M
if and only if

(cotα− cotA) (cotβ − cotB) (cot γ − cotC) 6= 0

α+ β + γ = 0

and then we have : M ' 1

cot (α)− cot (A)
:

1

cot (β)− cot (B)
:

1

cot (γ)− cot (C)
Conversely, if M = p : q : r then

cot (α)− cot (A) = −a
2qr + b2pr + c2pq

2S (p+ q + r)

1

p
(18.9)

Proof. Obtain µa ' Sa − 2S cotα : 0 : 0 : 1, etc from the very definition of µa. Then compute
ν
.
=
∧

3 (µa, µb, µc) and require that ν · Q
b

−1 ·tν = 0. This gives a product of four factors. Condition

cotα = cotA leads to A or to the whole circumcircle, and is to be discarded. The last factor is the
denominator of the well known addition formula. Thereafter, obtaining M is straightforward.

Example 18.5.4. Here are some points having simple angular coordinates

X(1) X(80) X(36) X(1) X(265) X(3) X(4) X(186)
A+ π

2

π −A
2

3A− π
2

−2A 2A −A 3A

a aX(80) aX(1) 33599 aX(3) aX(265) x 5962
i 10260 iX(1) iX(36) 5961 x iX(186) iX(4)
g gX(1) 36 80 gX(1) gX(186) gX(4) gX(3) gX(265)

X(14) X(13) X(15) X(16)

+
π

3
−π

3
A+

π

3
A− π

3
α -α A+ α A− α

a aX(13) aX(14) 11600 11601 * *
i 6105 6104 iX(16) iX(15) * *
g gX(16) gX(15) gX(13) gX(14)4 * *

Proposition 18.5.5. WhenM,M ′ are isogonal conjugates (g), then α+α′ = A, etc. WhenM,M ′

are inverse in the circumcircle (i), then α+ α′ = 2A, etc.

Proof. Obvious from the definitions. One can also substitute the isogonal formula into 1/ cot(α+
α′ −A), or the invincircum formula into 1/ cot(α+ α′ − 2A)... and conclude using 18.9.

18.5.2 Steiner triangle
Definition 18.5.6. Let Pa, Pb, Pc be the orthogonal reflections of a point P in the sidelines
BC,CA,AB of the reference triangle. Due to Proposition 10.2.1, this triangle is called the Steiner
triangle P .

Proposition 18.5.7. The complex coordinates of triangle [Pj ] are:
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Steiner




z

t

ζ


 '

z




β + γ − βγ ζ
t

α+ γ − γαζ
t

α+ β − αβ ζ
t

1 1 1
1

γ
+

1

β
− z

γβt

1

γ
+

1

α
− z

γαt

1

β
+

1

α
− z

βαt


 (18.10)

while the direct and the skew homographies φ and ψ defined by A 7→ Pa, B 7→ Pb, C 7→ Pc are

φ
(
Z : T : Z

)
' t2 Z−

(
s1 t

2 − s2ζt+ s3 ζ
2
)
T

tζ Z− t2 T : 1 :
s3 t

2Z −
(
s2 t

2 − s1zt+ z2
)
T(

s3ztZ − s3t2 T
)

ψ
(
Z : T : Z

)
'

(
s1 t

2 − s2ζt+ s3 ζ
2
)
Z − t2 T

t
(
tZ − ζ T

) : 1 :

(
s2 t

2 − s1zt+ z2
)
Z− s3 t

2T

s3t (tZ− zT)

Their poles are, respectively iP ' tz : zζ : tζ and P itself. Moreover φ is involutive.

Proof. Direct computation.

Proposition 18.5.8. The circles APbPc, PaBPc, PaPbC are going through a common point on the
unit circle, the celebrated Miquel point.

Mq '
s3ζ − s2t

z − s1t
: 1 :

z − s1t

s3ζ − s2t

Therefore the circles PaPbPc, PaBC,APbC,ABPc are going through a same point, namely φ (Mq).
See Figure 18.2 (Schoute, 1882).

Fact 18.5.9. One has the result:

Steiner (M) . isogon (M) 'M

18.5.3 Antigonal conjugacy

Theorem 18.5.10. Points P and Q
.
= (φ ◦Mq) (P ) from 18.5.8 are antigonal conjugates,

i.e. satisfy (PB,PC) + (QB,QC) = 0, etc. Using the formerly given notations, this amounts to
α+ α′ = 0, , etc. Thus the antigon transform is involutive and satisfies

antigon = isogon @ invincircum @ isogon

Proof. One has clasim ((φ ◦Mq) (P ) , B,C) ∗
b

clasim (P,B,C) ' 1 : 0 : 1.

Proposition 18.5.11. When point P is given either by Pb ' p : q : r (barycentrics) or by
Pz ' Z : T : Z (Lubin affixes), its antigonal Q is given by :

Q '
b




p

(a2 − b2 − c2) p2 + (a2 − b2) pq + (a2 − c2) pr + a2qr
q

(b2 − c2 − a2) q2 + (b2 − c2) qr + (b2 − a2) qp+ b2rp
r

(c2 − a2 − b2) r2 + (c2 − a2) rp+ (c2 − b2) rq + c2pq




Q '
z




−σ3ZZ
2

+
(
σ2ZZ + σ3σ1Z

2
)
T− σ1ZT

2 + (σ3 − σ1σ2)ZT2 +
(
σ2

1 − σ2

)
T3

(
σ3Z

2 − ZT− σ2ZT + σ1T2
)
T

1

−σ3Z
2Z +

(
σ2Z

2 + σ1σ3ZZ
)
T− (σ1σ2 − σ3)T2Z− σ2σ3ZT2 +

(
σ2

2 − σ1σ3

)
T3

σ3

(
Z2 − σ1ZT− σ3ZT + σ2T2

)
T




Proof. Direct computation.
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Figure 18.2: Antigonal conjugacy

Proposition 18.5.12. The conic that goes through A,B,C, P,Q .
= antigon (A,B,C, P ) is a rect-

angular hyperbola (and therefore, its center is on the NPC). It goes not only through Q and through
H

.
= X(A,B,C, 4) but it goes also through aA

.
= antigon (P,B,C,A) , etc and X (P,B,C, 4) , etc.

Moreover, (P,Q) are antipodes on this conic (and so are (A, aA) , etc. Circle PaPbPc is centered
at isogon (P ) and goes also through Q.

Proof. Direct computation. One obtains, inter alia,

aA ' 1 :
2 (pSa − rSc) q

q (p+ r) a2 − p (q + r) b2
:

2r (pSa − qSb)

r (p+ q) a2 − p (q + r) c2

These results confirm the involutory nature of this transform.

Proposition 18.5.13. Antigonal conjugacy is a 5th degree Cremona transform. The indetermi-
nacy set contains six points: A,B,C,H and both umbilics. The exceptional locus is the reunion of
six conics. Each of them goes through five points of Ind (antigon): circumcircle is blown-down into
H, circle BCH (centered at B + C − O) is blown-down into A, idem for the other two vertices.
Finally, curve :

γy = Z2 − σ1ZT− σ3ZT + σ2T
2

that goes through A,B,C,H,Ωy is blown-down into Ωy (the same umbilic), idem for the other
umbilic.

Proof. Direct computation.

Proposition 18.5.14. Define the ig transform as ig = invincircum ◦ isogon then point ig (A,B,C, P )
is independent of the ordering of points A,B,C, P (Hyacinthos 20929).

Proof. Transform triangle ABC into ABP , and thus C into φ−1 (P ). Then use the usual change
of triangle formula. Since ig only involves even powers of the sidelengths, everything goes fine...
and the result follows.

Proposition 18.5.15. Seen as a Cremona map, the ig transform has the same indeterminacy
locus as the antigonal transform. The exceptional locus contains three lines and three conics. A
sideline like BC blows-down into the opposite vertex A. Curve γx (the same as before) now blows
down to Ωy, while γy blows-down to Ωx. Finally, the circumcircle blows-down to its center X(3),
while X (3) 7→

ig
X(186) is regular and X(265) is the only regular point that maps onto H =X(4).
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Proof. This lack of symmetry (a curve that blows down to a regular point, a point of indeterminacy
that does not blows-up under the reverse transform) is related to the fact that ig is not involutory.

18.6 Isogonality and perspectivity
Lemma 18.6.1. Results from Proposition 3.8.11. Let T2 be a triangle perspective wrt T1 = ABC.
Then triangle T2, perspector P and perspectrix ∆ can be written as :

T2 =




u p p

q v q

r r w


 ; P ' p : q : r ; ∆2 =

[
1

p− u ;
1

q − v ;
1

r − w

]

Point U ' u : v : w is the perspector of T1 and T3
.
= cross (T1, T2). But, in these for-

mulas, the same proportionality factor must be applied to (p, q, r) and (u, v, w), so that factor
k
.
= (u+ v + w) / (p+ q + r) is a projective quantity.

Proposition 18.6.2. Assume that vertices of T2 are not on the sidelines of T1, and perspectivity
as in Lemma 18.6.1. Define T ∗2 as the triangle whose vertices are the isogonal images of the T2

vertices. Then triangles T1 and T ∗2 are perspective, and P, U are replaced by P ∗ and U∗. Moreover,
T2 and T ∗2 share the same perspectrix if and only if U = k P ∗. In this case, the isogon T ∗2 and the
crosstri T3 are equal.

Proof. Computations are easy from the lemma. If A1 is on BC then A2 = A and everything
degenerates, etc.

Remark 18.6.3. This obviously occurs with the 27 Taylor-Marr triangles since, for example, A,B1, C2

are aligned on the same trisector (and cyclically).
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Chapter 19

Pencils of cycles in the complex plane

In this chapter we will transpose to the Complex Plane what has already been done for the Triangle
Plane at Chapter 14. There are three usual ways for this purpose, each of them using its own basis
for the cycles space.

Veronese V er
z

(
Z : T : Z

)
'
[
ZT,T2,ZT,ZZ

]

Pedoe V er
p

(
Z : T : Z

)
'
[
ZT,T2,ZT,ZZ −T2

]

Spherical V er
s

(
Z : T : Z

)
'
[
2XT, 2YT,ZZ−T2,ZZ + T2

]

The first choice is the simpler, the better. Dividing by four the size of each element of a 4× 4
matrix divides the whole size by 64. The second choice is for comparison with the illuminating
Pedoe (1970).

The third choice is rather an introduction to the stereographic formalism. This allows the most
nice and intuitive figures (but there is a price to pay: computations are slower!).
Notation 19.0.1. For the the further use of the reader, we summarize here all the notations that
will be introduced throughout this chapter.

index barycent. z Morley p Pedoe s Spherical

Veronese Ver Verz Verp Vers
Verx(∞) Sirius Sirius Sirius South pole

Verb2Verz Verp2Verb Verb2Vers
Q mQQ zQQ pQQ sQQ
Q−1 mQQI zQQI pQQI sQQI

[Cj ] 7→ G mkgram mkzgram mkpgram mksgram
eq 7→ V eq2colu eq2coluz eq2colup eq2colus

V 7→
(
M,ρ2

)
colu2bar coluz2mor colup2mor colus2mor(

M,ρ2
)
7→ V bar2colu mor2coluz mor2colup mor2colus

C 7→ V mmz2colu mmp2colu mms2colu
h 7→ action mhatz mhatp mhats:

The induced objects will be named using the relevant index (z,p,s). For example, the (barycentric)
matrix Q

b
will be declined as Q

z
, Q

p
and Q

s
.

Fact 19.0.2. In the Morley space, the equation

pZZ +
(
q1Z + q2Z

)
T + rT2 = 0

253
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describes an ordinary, visible circle when p = 1, q .
= q2 = q1 and ρ2 .

= qq − r > 0 (center is −q,
radius is ρ). When p = 0, this describes the union of an ordinary line and the line at infinity (or
the line at infinity where each point is counted twice, i.e. the horizon circle).

Definition 19.0.3. We will say that four points Mj are concyclic when

4

det
j=1

(
V er
z

(Mj)
)

= 0

Due to linearity, the V er
z

can be replaced (all the four at the same time) by the V er
p

or the V er
s

.

Definition 19.0.4. Alternatively, we can say that a cycle is a conic that goes through the um-
bilics, i.e. the points :

Ωx
.
=




1

0

0


 , Ωy =




0

0

1




We call it a "circle" when the conic is either T2 (the horizon circle) or isn’t degenerate, and a
"line" when it degenerates into the union of the line at infinity and another line.

Remark 19.0.5. When searching the intersection of two circles, we better subtract the normalized
equations, and obtain T∆ where ∆ is the "flat" radical axis (first degree equation).

19.1 Pencil of cycles in the complex plane

19.1.1 Veronese map

lubo Lu luboo Lu luboq Lv lurett luretq

Definition 19.1.1. The Veronese map used in the barycentric triangle plane was defined at (14.4).
The Veronese map used in the Morley space is simply:

V er
z

(
Z : T : Z

)
'
[
ZT,T2,ZT,ZZ

]
(19.1)

Proposition 19.1.2. Both umbilics are mapped to [0, 0, 0, 0] (points of indeterminacy) while
all other points at infinity are mapped to [0, 0, 0, 1], called Sirius. When using

(
Z : T : Z

)
=

bΦm . (x : y : z), we have

V er
z

(
bΦm . (x : y : z)

)
' V er

b
(x : y : z) ·

t
bΨm where bΨm =

(
bΦm 0

R2, R2, R2 1

)

Proof. The bΦm part is obvious, while the R2 acknowledge the fact that (X3, R) is the model of
all the circles in the triangle plane.

Maple 19.1.3. One can check this result by:
subs(les1lon, VerB(1/bar2mor.vz)).Tr(vbartomor): FActor(%);

Verz(norz(vz1)).zQQI. Tr(Verz(norz(vz2))); factor(% / zpytha(vz1,vz2));

Remark 19.1.4. The Veronese map amounts to generate the projective space of all the cycles
from four of them, namely the horizon circle T2 (i.e. the line at infinity described twice), the
fundamental isotropic lines (each of them completed by the line at infinity to obtain ZT and ZT)
and the "factored" circle ZZ.

Proposition 19.1.5. The polar hyperplanes related to the V er
z

(Mτ ) of all the points Mτ of a

given cycle C are going through a same point of PC
(
C4
)
, called the circle representative, that will

be noted V
c

(C).
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Proof. When the cycle is a circle, then it’s generic point can be written as

τ ' 1

t
(z : t : ζ) + ρ

(
τ : 0 :

1

τ

)

and we only have to check that
∧

3

(
V er
z
Mτ , V er

z
M+1, V er

z
M−1

)
doesn’t depends on τ . As a

result, we have:

V
c

[
(z : t : ζ) , ρ2

] .
=

(
−ζ :

z ζ

t
− t ρ2 : −z : +t

)

When the cycle is the line ∆ ' [a, b, c] then V
c

(∆) = a : b : c : 0.

Corollary 19.1.6. The locus of the representatives V
c
of the PC

(
C3
)
lines is the plane

Pz ' [0 : 0 : 0 : 1]

Proposition 19.1.7. The Veronese row-images of the ordinary PC
(
C3
)
points belong to a 3D

quadric:

V er
z

(P ) · Q
c

−1 · tV er
z

(P ) = 0 where Q
c

−1 =




0 0 −1 0

0 0 0 1

−1 0 0 0

0 1 0 0


 (19.2)

Proof. We even have a more precise result: for any points at finite distance M1,M2, one has:

V er
z

(
M1

Lz ·M1

)
· Q

c

−1 ·
t

V er
z

(
M2

Lz ·M2

)
= |M1M2|2

when V er
z

and Q
c

−1 are taken as exactly egal to their definitions (i.e. not up to a proportionality

factor).

Maple 19.1.8. One can check this result by:
Verz(norz(vz1)). zQQI. Tr(Verz(norz(vz2))); factor(% / zpytha(vz1,vz2));

Proposition 19.1.9. The column-representatives of point-circles, i.e. the V
c

(P ) ' Q
c

−1 ·tV er
z

(P ),

belong to the 3D paraboloid defined by Q
z
. When two circles are involved, we have the more precise

result :

tV
c

(M1, ρ1) · Q
z
· V
c

(M2, ρ2)

(
Pz · V

c
1

)
×
(
Pz · V

c
2

) = |M1M2|2 − ρ2
1 − ρ2

2 (19.3)

where Q
z

=




0 0 −1 0

0 0 0 1

−1 0 0 0

0 1 0 0




Proof. We have Q
c

−1 = bΨm
−1
· Q

b

−1 ·
t

bΨm
−1

and Q
z

= bΨm · Q
b
·
t

bΨm .

Remark 19.1.10. A failed attempt has been done in the past to use a set of factors −2 and -1/2 in
order to obtain the squared radius itself in formula 19.3. But our final choice is to keep the value
d2 − ρ2

1 − ρ2
2 as the result of ??.

Maple 19.1.11. One can check these results by:
(vbar2mor).(FActor@subs)(les1lon, mQQ).Tr(vbar2mor): FActor(%); zipd(zQQ,%);
Tr(1/vbar2mor).(FActor@subs)(les1lon, mQQI).(1/vbar2mor): FActor(%): zipd(zQQI,%);
(mor2coluz)(vz,K^2): %/(plinfz.%): factor(Tr(%).zQQ.%)/(-2);
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Proposition 19.1.12. Two point-circles are orthogonal wrt the quadric when their centers share
one of their two coordinates.

Proof. Quite obvious from (19.3) and |M1M2|2 =
(
z2
t2
− z1

t1

)(
ζ2
t2
− ζ1

t1

)

Maple 19.1.13. The Maple package ’faisceaux’ contains:

constants: "zQQ"= Q
z
, "zQQI"= Q

c

−1 ,"plinfz"= Pz

functions: "Verz"= V er
z

, "mor2coluz"= V
c
, "coluz2mm", "coluz2mor", "eq2coluz", "mhatz", "mm2coluz",

"mkzgram", "zaction"

Theorem 19.1.14. Common orthogonal cycle. Let be given three cycles Ω1,Ω2,Ω3. If they
don’t belong to the same pencil, the bundle they generate is exactly the set of all the cycles orthogonal
to a fixed cycle Ω⊥. We have the formulas:

W
.
=

∧

3

(
V
c

1, V
c

2, V
c

3

)
(a 4-sized row) (19.4)

V
c
⊥ = Q

c

−1 · tW

center = W1 : W2 : W3

squared radius =

(−1

2

) W · V
c
⊥

(
Pz · V

c
⊥
)2 =

(−1

2

) tV
c
⊥ · Q

z
· V
c
⊥

(
Pz · V

c
⊥
)2

Remark 19.1.15. These formulas are –and should remain– exactly the same as the barycentric
formulas (14.18). Don’t even think of using any trick to "simplify" anything. Only remember that

tV
c

1 · Q
z
· V
c

2 =
(
d2

12 − r2
1 − r2

2

)
×
(
V
c

1 [4] V
c

2 [4]
)

Proposition 19.1.16. When the 4× 4 matrix ∆
z

=
(
V
c

1 ∧
6
V
c

2

)
describes the pencil generated by

cycles C1, C2, the orthogonal pencil is described by:

∆
z

⊥ ' Q
z
· ∆∗

z
· Q
z

(19.5)

Proof. See the proof of (14.20).

19.1.2 Homographic actions over the cycles’ space
CAVEAT: in this subsection, letters a,b, c,d, a′,b′, c′,d′, k, κ are general complex numbers, while
a′ = a, etc is intended for visible objects.

Proposition 19.1.17. We will say that H, a Cremona transform H acting over PC
(
C3
)
, is an

homography when H is seen as h : z 7→ (a z + b) / (cz + d) on the upper sphere Z : T and seen as
h : ζ 7→ (a′ζ + b′) / (c′ζ + d′) on the lower sphere Z : T. As already said, a,b, c,d, a′,b′, c′,d′ ∈ C,
together with a d− b c 6= 0, a′ d′ − b′ c′ 6= 0 are assumed. Therefore, we have:

H :




Z

T

Z


 '




(aZ + bT)
(
c′Z + d′T

)

(cZ + dT)
(
c′Z + d′T

)

(cZ + dT)
(
a′Z + b′T

)


 (19.6)

Assuming that c c′ 6= 0, the points of indeterminacy are both umbilics, and the so-called pole:
P

.
= −d/c : 1 : −d′/c′. The exceptional locus is the union of Lz, PΩx, PΩy while H (Lz) collapses

to a single point, the elop E ' a/c : 1 : a′/c′ (i.e. the pole of H−1).
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19. Pencils of cycles in the complex plane 257

Proof. This is nothing but the usual formulas: h−1 (∞) = −d/c and h (∞) = a/c.

Proposition 19.1.18. Homography H, as an action over the points of PC
(
C3
)
, induces an action

which is linear over the columns of PC
(
C4
)
. Its matrix is :

Ĥz '
1

|det|




+d a′ −c a′ +c b′ −d b′

−b a′ +a a′ −a b′ +b b′

+b c′ −a c′ +a d′ −b d′

−d c′ +c c′ −c d′ +d d′


 (19.7)

and we have
t

Ĥz · Q
z
· Ĥz = Q

z
where |det| =

√
(a d− b c) (a′ d′ − b′ c′) (19.8)

As a result, the image of a pencil of cycles is a pencil of cycles, while orthogonality is preserved.

Proof. H−1 is obtained by the substitution a↔ −d ; a′ ↔ −d′ into (19.6). And then one identifies

V er
z

(
H−1

(
Z : T : Z

))
= V er

z

(
Z : T : Z

)
· Ĥz .

Proposition 19.1.19. Inversion of cycles in a cycle. Let Ω0 be a fixed cycle, and define the
transformation σ by

σ
.
= Id− 2

V
c

(Ω0) · tV
c

(Ω0) · Q
z

tV
c

(Ω0) · Q
z
· V
c

(Ω0)
(19.9)

Then a point circle is mapped onto a point circle, and the corresponding action is the reflection
into the circle Ω0.

Proof. Compute
t(
σ .
−→
X
)
. Q
z
·
(
σ .
−→
X
)
and re-obtain

t−→
X. Q

z
· −→X . Moreover, γ is invariant (λ =

−1) and so is any cycle orthogonal to γ (λ = +1). One can also use (14.22) .

Proposition 19.1.20. When the PC
(
C2
)
homography has exactly two fixed points f1, f2 ∈ C,

we introduce the multipliers k, κ as described at (18.1). As already said,

Ψ




Z

T

Z


 '




(kt2z1 − z2t1)Z− z1z2 (k − 1)T

(k − 1) t2t1 Z− (z2t1k − z1t2)T

1

(κt2ζ1 − t1ζ2)Z − ζ1ζ2 (κ− 1)T

(κ− 1) t2t1Z − (κζ2t1 − ζ1t2)T




(19.10)

This Ψ has four fixed points Fj and Ĥz admits a basis of eigencolumns, namely the Fj ' V
c

(Fj).
And we have:

Fz '




−t2 ζ2 −ζ1 t2 −t1 ζ2 −t1 ζ1
z2 ζ2 z2 ζ1 z1 ζ2 z1 ζ1

−t2 z2 −z2 t1 −t2 z1 −t1 z1

t22 t2 t1 t2 t1 t21




F−1
z · Ĥz · Fz '




kκ 0 0 0

0 k 0 0

0 0 κ 0

0 0 0 1


 ; tFz · Q

z
· Fz '




0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0




Proof. Straightforward computations.

Proposition 19.1.21. When the ordinary homography h, acting over PC
(
C2
)
, has exactly one

fixed point z1 then conjugating by g : z 7→ 1 ÷ (z − z1) leads to
(
g−1 ◦ h ◦ g

)
(z) = z + k (where
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258 19.2. Revisiting the Euler pencil

k ∈ C \ {0}). Acting over PC
(
C3
)
, H has only one fixed point F ' z1 : t1 : ζ1, while Ĥz can be

reduced in Jordan form according to:

Fz '




−k kκ ζ1
t1

−k 0

kz1

t1
− κ ζ1

t1
−kκ z1 ζ1

t21

kz1

t1
+
κ ζ1
t1

1

κ
kκ z1

t1
−κ 0

0 −kκ 0 0




F−1· Ĥz

n

·F '




1 0 0 0

0 1 −2 −1

0 0 1 1

0 0 0 1




n

=




1 0 0 0

0 1 −2n −n2

0 0 1 n

0 0 0 1


 ; tF· Q

z
·F ' kκ




−2 0 0 0

0 0 0 1

0 0 2 0

0 1 0 0




Proof. The factorization is easy to check. Let us give some rationales for this choice of the matrix F.
One has cross_ratio (z − k, z + k, z,∞) = −1. By conjugacy, one has also cross_ratio

(
h2M,M,hM,F

)
=

−1. Therefore, each cycle (F,M, hM) is globally invariant.
Let P and E be the pole and the elop, i.e. P = h−1 (∞) and E = h (∞). From the previous

result, the line (PFE) is invariant (our first column). The tangent pencil generated by the circle
point (F ) and line (PE) is therefore invariant. So is its orthogonal pencil, so that med [E,F ] is a
good candidate for the third column. And we use Lz for the last one.

Finally, the expansion of F−1 · Ĥz

n

· F is obtained using 1/

(
1−X × F−1 · Ĥz · F

)
.

Exercise 19.1.22. For n ∈ N, let γn = hn (γ0) be the iterated images of a cycle γ0. Describe this
circle by x : y : z : t, the coordinates of V

c
0 wrt F as a basis, and find the condition such that γ0

and γ1 are tangent. Show that, in this case, cycles γn and γn+1 are tangent for all n . A first case
is when all the circles are going through F .

Otherwise, let Nn be the contact point of γn and γn+1. Show that all the Nn belong to a same
circle q0 while all the circles γn are tangent to two fixed circles q1, q2 that are inverse wrt q0. Check
your results by inversion into C4.
Exercise 19.1.23. Explore the following situation. A similitude (M,k, τ) acts over the cycles
space. And the four proper spaces are:

k : Lb ;
1

k
: C (M, 0) ; τ : Ωy ∧M ;

1

τ
: Ωx ∧M

19.2 Revisiting the Euler pencil

Remark 19.2.1. Cycles representatives V are columns. Thus
(
V1 ∧

6
V2

)
is a square matrix.

The Euler pencil has been treated in detail at Section 14.9. Let us examine again this pencil,
in the light of the new formalism.

1. We use the Lubin-1 representation, i.e. Az ' α : 1 : 1/α. The representative of Γ is known
to be Vcir ' 0 : −1 : 0 : 1. The Euler circle goes through the midpoints. It’s normalized
representative is therefore:

∧

3

(
V er
z

(Az +Bz) , etc
)
' V

c
eul '

1

4σ3




−2σ2

σ1σ2 − σ3

−2σ1σ3

4σ3




2. Applying (19.3), we have
t

V
c
eul · Q

z
·
(
V
c
eul

)
=

(
σ1

2
, 1,

σ2

2σ3
,
σ1σ2 − σ3

4σ3

)
.V
c
eul =

−1

2

i.e. a confirmation of center X(5) z = σ1/2 and radius 1/2.
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19. Pencils of cycles in the complex plane 259

(a) Acute triangle (b) Obtuse triangle

Figure 19.1: The Euler pencil

3. The line representative of the Euler pencil (generated by circum- and Euler circles) is there-
fore:

Eulerzcolu
.
=
(
V
c
cir ∧

6
V
c
eul

)
'




0 2σ1σ3 σ1σ2 + 3σ3 2σ1σ3

−2σ1σ3 0 2σ2 0

−σ1σ2 − 3σ3 −2σ2 0 −2σ2

−2σ1σ3 0 2σ2 0




4. Consider a point F ' z : t : ζ. Its Veronese image is
[
zt, t2, ζt, zζ

]
and the associated point

circle is represented by VF ' −tζ : zζ : −tz : t2. This circle belongs to the Euler pencil when
tV
c
F · Eulerzcolu =

−→
0 . One obtains the so-called Walsmith points X(5000) and X(5001).

F± '




σ1σ2 + 3σ3

σ2
± σ3W

σ2

4
σ1σ2 + 3σ3

σ1σ3
± W

σ1


 where W 2 .

=

(
9− σ1σ2

σ3

)(
1− σ1σ2

σ3

)

5. The midpoint of F+, F− is X(468). This is recognizable to the fact that z468 = (z4 + 3z186) /4
where z4 = σ1 is the affix of the orthocenter X(4) and z186 = σ3/σ2 is the affix of the inverse
of X(4) in the circumcircle, i.e. X(186).

6. The direction of line F+F− is σ1σ3 : 0 : σ2 i.e. X(30)... the direction of the Euler line. This
was obvious from the beginning.

7. Both factors of quantity W 2 are real. This can be seen from σ1 = σ2/σ3. Since |σ1| < 3, the
first factor is ever positive. The second factor can be split into :

+1− σ1σ2

σ3
= − (β + γ) (α+ γ) (β + α)

αβ γ

Thus W 2 = 1 for equilateral triangles (σ1 = 0) and vanishes only for right-angled triangles,
so that W 2 > 0 characterizes acute triangles. One can also use:

9− σ1 σ2

σ3
=

32Sω S
2

a2b2c2
; 1− σ1 σ2

σ3
=

8Sa Sc Sb
a2b2c2

8. Points F± are the base points of the Euler pencil, seen as an isotomic pencil. Consider now
the isoptic pencil of the cycles that are orthogonal to all of the cycles of the Euler pencil
(i.e. the orthic pencil). When V

c
1,V

c
2 are the representatives of two orthogonal cycles, then
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260 19.3. Isodynamic points

tV
c

1 · Q
z
· V
c

2 = 0. Thus tV
c
eul · Q

z
is an hyper-plane that describes the bundle of cycles

orthogonal to Ωeul. And therefore

Orthiczcolu
.
= dual

(((
tV
c
a · Q

z

)
t∧

6

(
tV
c
b · Q

z

)))

'




0 −2σ1 σ3 0 2σ1 σ3

2σ1 σ3 0 2σ2 σ1 σ2 + 3σ3

0 −2σ2 0 2σ2

−2σ1 σ3 −σ1 σ2 − 3σ3 −2σ2 0




9. Using the same method as above, we search the centers of the point-circles that belong to
the Orthic pencil. We obtain:

E± '




σ1σ2 + 3σ3

σ2
± σ3W

σ2

4
σ1σ2 + 3σ3

σ1σ3
∓ W

σ1


 where W is as above

10. The midpoint of E+, E− is X(468) again, while the direction of E+E− is σ1σ3 : 0 : −σ2, i.e.
X(511).

11. When the triangle is acute, W 2 is positive, and W is real. Thus conjugate (W ) = W so that
the F±are visible, while the E±are not. When the triangle is obtuse, W 2 is negative, and W
is imaginary. Thus conjugate (W ) = −W so that the E±are visible, while the F±are not...
as can be seen at Figure 19.1.

19.3 Isodynamic points

19.3.1 Equianharmonic points
Definition 19.3.1. A set of four points A,B,C,D are said to be equianharmonic set when one of
their cross-ratio is either J or J2, where J2 + J + 1 = 0.

Proposition 19.3.2. All the 24 cross-ratios of an equianharmonic set are either J or J2. When
a set {A,B,C,∞} is equianharmonic, then the triangle ABC is equilateral (with one or the other
orientation)..

Proof. Brute force.

19.3.2 Revisiting the Brocard-Lemoine pencil
Notation 19.3.3. Here, Ja, etc are the cevians of the incenter I0 while Pa, etc are its cocevians.
See Section 14.10 for more details.

The Brocard-Lemoine pencils are build from the so-calledApollonian circles, whose diameters
are the segments [Ja, Pa] , etc. They have been treated in detail at Section 14.10. Let us examine
again these pencils, in the light of the new formalism.

1. We start from the Lubin-2 representation i.e. Az ' α2 : 1 : α−2 and obtain :

Jza , P
z
a '

2




β γ
(
α2β2 + α2β γ + α2γ2 − β2γ2

)
(
α2 + β γ

)
β γ

β2 − α2 + β γ + γ2


 ,




β γ
(
α2β2 − α2β γ + α2γ2 − β2γ2

)
(
α2 − β γ

)
β γ

α2 − β2 + β γ − γ2




2. Now, we take the wedge of the Veronese of A, Ja, Pa. Since Ja, Pa are Lemoine-conjugates,
the result can be expressed in the Lubin-1 frame, leading to:

V
c
a '

2

∧

3

(
V er
z
Az, V er

z
P za , V er

z
Jza

)
'
1




β + γ − 2α

α2 − β γ
α (2βγ − αβ − αγ)

α2 − β γ


 ' Lv−1

1 · V
b
a
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3. When computing the line describing the pencil generated by V
c
a,V

c
b, one obtains a symmetric

expression, proving that V
c
c belongs to the pencil.

Lemoinezcolu
.
=

(
V
c
a ∧

6
V
c
b

)
'
1

t
Lv1 · Lemoinebcolu · Lv1

'
1




0 3σ1 σ3 − σ2
2 0 σ2

2 − 3σ1 σ3

σ2
2 − 3σ1 σ3 0 σ2

1 − 3σ2 σ1 σ2 − 9σ3

0 3σ2 − σ2
1 0 σ2

1 − 3σ2

3σ1 σ3 − σ2
2 9σ3 − σ1 σ2 3σ2 − σ2

1 0




4. All these circles are going through X(15), X(16), the isodynamic points (as described §6
below).

5. The conjugate pencil is obtained by:

Brocardzcolu
.
= Q

z
· dual

(
Lemoinezcolu

)
. Q
z
'
t
Lv · Brocardcolu · Lv

'
1




0 σ2
2 − 3σ1σ3 σ1σ2 − 9σ3 σ2

2 − 3σ1σ3

3σ1σ3 − σ2
2 0 σ2

1 − 3σ2 0

9σ3 − σ1σ2 3σ2 − σ2
1 0 3σ2 − σ2

1

3σ1σ3 − σ2
2 0 σ2

1 − 3σ2 0




6. Solving V erz
(
Z : T : Z

)
· Q
z

−1
· Brocardzcolu =

−→
0 give the point-circles that generate the

Brocard pencil. One obtains :

F z± '
1




σ1 σ2 − 9σ3

σ2
1 − 3σ2

±
√

3σ4

σ2
1 − 3σ2

2

σ1 σ2 − 9σ3

σ2
2 − 3σ1 σ3

±
√

3σ4

σ2
2 − 3σ1 σ3



'




β γ + αβ J + αγ J2

− (α+ γ J + β J2)

1

−
(
α+ β J + γ J2

)

βγ + αγ J + αβ J2




(19.11)

where J .
= J+

.
=
(
−1 + i

√
3
)
/2 (and thus J−

.
= J2). One can check that F+ is X(15) while

F− is X(16), i.e. the isodynamic points already obtained using barycentrics.

7. Solving V erz
(
Z : T : Z

)
· Q
z

−1
· Lemoinezpoint =

−→
0 give the point-circles that generate the

Lemoine pencil. One obtains :

Ez± '




σ1 σ2 − 9σ3

σ2
1 − 3σ2

±
√

3σ4

σ2
1 − 3σ2

2

9σ3 − σ1 σ2

3σ1 σ3 − σ2
2

±
√

3σ4

3σ1 σ3 − σ2
2




8. Obviously, pairs F± and E± share the same midpoint, while their directions are orthogonal.
But there is a huge difference between both pairs: points of the F pair are visible, the others
are not. Finally, one can check the usual relation: if one pair is noted z1 : 1 : z1, z2 : 1 : z2,
the other one is z1 : 1 : z2, z2 : 1 : z1.

19.3.3 Homographic stabilizer

Remark 19.3.4. Isodynamic points X(15),X(16) were characterized at Subsection 7.11.4 as the
centers whose pedal triangle is equilateral. Just above, they appeared as the base points of the
Brocard pencil, and therefore as the Poncelet points of the Lemoine pencil. Another point of view
is as follows.
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262 19.3. Isodynamic points

Definition 19.3.5. In the complex plane PC
(
C3
)
, the set of all the Cremona homographies which

are fixing a given set of three distinct points is called the homographic stabilizer of this set.

Proposition 19.3.6. The homographic stabilizer of a given triple is a copy of the dihedral group
D6 = S3 oS2.

Proof. Let ρ be the inversion wrt the circle Γ (z1, z2, z3). Then for each µ̂ ∈ S3, the relations
zj 7→ µ̂ (zj) are defining a direct Cremona-homography µ of the whole plane, while µ ◦ ρ = ρ ◦ µ is
a skew Cremona-homography.

Proposition 19.3.7. The skew homography τa defined by α 7→ α, β ←→ γ is the inversion into
the circle γA through A,A′ and orthogonal to Γ (A,B,C), where A′ is defined by

cross_ratio z (A,A′, B,C) = cross_ratio ζ (A,A′, B,C) = −1

Proof. Orthogonality is required since Γ has to be invariant.

Theorem 19.3.8. Circles γA, etc are the already defined Apollonian circles. As a result, their
common points (the isodynamic centers) are conveyed by any Cremona-homography of the stabi-
lizer. In other words,

{
µ (X (A,B,C, 15)) = X (µA, µB, µC, 15) when µ is direct

µ (X (A,B,C, 15)) = X (µA, µB, µC, 16) when µ is skew

Proof. All the circles involved are conveyed by the group of the Cremona homographies.

Proposition 19.3.9. When A,B,C are defined by their inclusive coordinates zj , t1, zj, then

X(15), X(16) =




−t1z3z2 − t3z1z2J − t2z1z3J
2

t2t3z1 + t1t2z3J + t3t1z2J2

1
−t1ζ2ζ3 − t2ζ3ζ1J − t3ζ1ζ2J2

t2t3ζ1 + t3t1ζ2J + t1t2ζ3J2




where J =
(
−1±

√
3
)
/2.

Proof. Consider the direct homography M1 7→M2 7→M3 7→M1. Its fixed points are the required
isodynamic points. One can check that any direct homography h transports X(15) onto h (X(15)).

Proposition 19.3.10. When applying these properties to the standard triangle, one obtains the
following table, where σ is the cycle α 7→ β 7→ γ 7→ α and ρτbc is the inversion into the A-
Apollonian circle through A,X(15),X(16). Moreover, h (∞) is the image of ∞ ' 0 : 1 ∈ (Z : T).

elop elop
h name hz (∞) ρh name hb (∞) hz (∞)

1 1E ∞ 7 ρ X3 circ 0

2 σ
9 s3 − s1 s2 − is4

6 s2 − 2s2
1

8 ρσ Br1 a2b2 ::
6 s1 s3 − 2s2

2

9 s3 − s1 s2 + is4

3 σ2 9 s3 − s1 s2 + is4

6 s2 − 2s2
1

9 ρσ2 Br2 a2c2 ::
6 s1 s3 − 2s2

2

9 s3 − s1 s2 − is4

4 τbc E′a κs1 − s2

3κ− s1

10 ρτbc Ea
κs2 − 3 s3

κs1 − s2
5 τca E′b 11 ρτca Eb

6 τab E′c 12 ρτab Ec

Proof. Inversion wrt the A-Apollonian circle maps the values α, γ, β onto α, β, γ.

Fact 19.3.11. The following properties are left as exercises.
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Figure 19.2: Lemoine and Brocard revisited

1. Points 4, 5, 6, 7, 8, 9 are on the Brocard 3-6 circle (diameter [O,K]). Points 8,9 are the Brocard
points themselves.

2. Points 1, 2, 3, 10, 11, 12 are on the Lemoine axis (tripolar of X6). In fact, 10,11,12 are the
cocevians Ej of X6.

3. Points n, n+ 6 are inverse in the circum- circle (and thus aligned with O).

4. Points A,X6, (4) = E′a and A′′ are aligned, etc.

5. The fixed points of homographies σ, σ2 are the isodynamics points X15, X16, while the fixed
points of homography τbc are A and A′′.

6. The Apollonian circles are at 60° from each other (consider the multiplier of an homography
such that σ3 = id).

Remark 19.3.12. The previous results aren’t invalidated when points ABC are aligned while re-
maining distincts.

19.4 The Pedoe formalism

19.4.1 The Pedoe map
Definition 19.4.1. The Pedoe map, as defined in Pedoe (1970), uses the unit circle instead of the
"factored" one. One has:

V er
p

(
Z : T : Z

)
'
[
ZT,T2,ZT,ZZ −T2

]
(19.12)

Proposition 19.4.2. Both umbilics are mapped to [0, 0, 0, 0] (points of indeterminacy) while
all other points at infinity are mapped to [0, 0, 0, 1], called Sirius. When using

(
Z : T : Z

)
=

Lu . (x : y : z), we have

V er
p

(
Z : T : Z

)
' V er (x : y : z) ·

t
Lvp where Lvp =

(
Lu 0

0 1/R2

)

Proof. The Lu part is obvious. The 1/R2 acknowledges the fact that (X3, R) is the model of all
circles in the triangle plane.

Proposition 19.4.3. The polar hyperplanes related to the V er
p

(Mτ ) of all the points Mτ of a

same cycle are going through a same point of PC
(
C4
)
, called the circle Pedoe-representative, that

will be noted V
p
.
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Proof. Similar to the V
c
proof. And we have:

V
p

[
(z : t : ζ) , ρ2

] .
=

(
−ζ :

z ζ

t
+ t− t ρ2 : −z : +t

)

When the cycle is the line ∆ ' [a, b, c] then V
c

(∆) = a : b : c : 0.

Corollary 19.4.4. The locus of the representatives V
p
of the PC

(
C3
)
lines is the plane

Pp ' [0 : 0 : 0 : 1]

Proposition 19.4.5. The Pedoe row-images of the PC
(
C3
)
points belong to a 3D quadric:

V er
p

(P ) · Q
p

−1 · tV er
p

(P ) = 0 where Q
p

−1 =




0 0 −1 0

0 +2 0 +1

−1 0 0 0

0 +1 0 0


 (19.13)

And the columns representative of point-circles, i.e. the V
p

(P ) ' Q
p

−1 · tV er
p

(P ), belong to the

3D paraboloid defined by Q
p
. For a circle (γ), we have the more precise result :

ρ2 =
−1

2
×

tV
p

(γ) · Q
p
· V
p

(γ)

(
Pp · V

p
(γ)

)2 (19.14)

where Q
p

=




0 0 −1 0

0 0 0 +1

−1 0 0 0

0 +1 0 −2




Proof. See the proof of (14.9).

Proposition 19.4.6. Two point-circles are orthogonal wrt the quadric when their centers share
one of their two coordinates.

Proof. Assuming Mj ' zj : tj : ζj , we have the more precise result:

t(
V
p

[
M1, r

2
1

])
· Q
p
·
(
V
p

[
M2, r

2
2

])

(
Pp · V

p
1

)
×
(
Pp · V

p
2

) =

(
z2

t2
− z1

t1

)(
ζ2
t2
− ζ1
t1

)
− r2

1 − r2
2 (19.15)

Remark 19.4.7. And then, business as usual, using the adapted matrices.

Maple 19.4.8. The Maple package ’faisceaux’ contains:

constants: "pQQ"= Q
p
, "pQQI"= Q

p

−1 , "plinfp"= Pp

functions: "Verp"= V er
p

, "mor2colup"= V
p
, "colup2mm", "colup2mor", "eq2colup", "mhatp",

"mm2colup", "mkpgram", "paction"
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19.4.2 Pedoe version of the homographic actions
CAVEAT: in this subsection, letters a,b, c,d, a′,b′, c′,d′, k, κ are general complex numbers, while
a′ = a, etc is intended for visible objects.

Proposition 19.4.9. The homography H, defined at (19.6), is an action over the points of
PC
(
C3
)
. It induces an action Ĥp which is linear over the Pedoe-columns. Its matrix is :

Ĥp '
1

|det|




d a′ −c a′ c b′ c a′ − d b′

−b a′ − d c′ a a′ + c c′ −a b′ − c d′ −a a′ + b b′ − c c′ + d d′

b c′ −a c′ a d′ a c′ − b d′

−d c′ c c′ −c d′ −c c′ + d d′


 (19.16)

and we have
t

Ĥp · Q
p
· Ĥp = Q

p
where |det| =

√
(a d− b c) (a′ d′ − b′ c′)

Proof. Same proof as for (19.7).

Proposition 19.4.10. Inversion of cycles in a cycle. Consider is the reflection s into cycle γ
which acts over PC

(
C3
)
. Then s induces a linear action over the affixes, described by the matrix:

σ
.
= Id− 2

V
p
γ · tV

p
γ · Q

p

tV
p
γ · Q

p
· V
p
γ

(19.17)

Proof. Same proof as for (14.22).

Proposition 19.4.11. When the ordinary homography h, acting over PC
(
C2
)
, has exactly two

fixed points f1, f2 then, using notations of (18.1), a basis of eigencolumns for Ĥp is made of the
V
p

(Fj), i.e.

Fp '




−t2 ζ2 −ζ1 t2 −t1 ζ2 −t1 ζ1
t22 + z2 ζ2 t2 t1 + z2 ζ1 t2 t1 + z1 ζ2 t21 + z1 ζ1

−t2 z2 −z2 t1 −t2 z1 −t1 z1

t22 t2 t1 t2 t1 t21


 leading to

F−1
p · Ĥp · Fp '




kκ 0 0 0

0 k 0 0

0 0 κ 0

0 0 0 1


 ; tFp · Q

p
· Fp '




0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0




Proof. Same as the proof for Fz

Proposition 19.4.12. .When homography h has exactly one fixed point z1 then a basis of trian-
gulation is ****

Fp '




−k kκ ζ1
t1

−k 0

kz1

t1
− κ ζ1

t1
−kκ− kκ z1 ζ1

t21

kz1

t1
+
κ ζ1
t1

1

κ
kκ z1

t1
−κ 0

0 −kκ 0 0



'
[
V
p
EP , V

p
F , V

p
med[E,P ], V

p
Lz

]

F−1· η n·F '




1 0 0 0

0 1 −2 −1

0 0 1 1

0 0 0 1




n

=




1 0 0 0

0 1 −2n −n2

0 0 1 n

0 0 0 1


 ; tF· Q

z
·F ' kκ

2




−2 0 0 0

0 0 0 1

0 0 2 0

0 1 0 0



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Proof. Having a basis made of the fixed point and three independent lines is clearly interesting.
To understand this specific choice, one can start from cross_ratio (z − k, z + k, z,∞) = −1, and
obtain cross_ratio

(
h2M,M,hM,F

)
= −1. Therefore, each cycle (F,M, hM) is globally invariant,

the line (PFE) among them. Since two of them cannot have any other common point apart F ,
these cycles form a tangent pencil F , generated by the circle-point (F ) and the line (PFE). Since
F is invariant as a pencil, then F ⊥ is globally invariant. For the expansion of F−1 · η n ·F, consider
the generating series 1/

(
1−X × F−1 · η · F

)
.

Exercise 19.4.13. Consider the homographic transposition β ↔ γ, α↔∞. Determine the asso-
ciated Cremona transform, and its action over the cycles space. Determine a basis of ker (+1) and
a basis of ker (−1). A line and a circle centered somewhere on BC would be a great choice. Check
for the (14.20)(19.4). The images of the four in-ex-circles are the so-called four A-mixtilinear
circles tangent to the circumcircle and to the AB,AC sidelines.

19.5 The Spherical formalism

On 2021-10-05, it has been decided to adopt the South pole point of view. As a result, the
hyperplane containing the line representatives is the North plane !

19.5.1 The Spherical map

Definition 19.5.1. The projective sphere of PC
(
C4
)
is defined as the locus of the points V such

that v2
4 − v2

1 − v2
2 − v2

3 = 0. In other words

V ∈ S4 

(
tV · Mink · V = 0

)
where Mink :=




−1

−1

−1

+1




By analogy with the Pedoe formalism, we will also use Q
s

.
= Q

s

−1 .
= Mink

Remark 19.5.2. When restricted to E3, i.e. to the real points where v4 6= 0, this is nothing but the
ordinary unit sphere of the elementary geometry.

Definition 19.5.3. The Spherical version of the Veronese map uses both the unit visible circle
and the unit imaginary circle and is defined by:

V er
s

(
Z : T : Z

)
'
[
2TX, 2TY, T2 − ZZ, T2 + ZZ

]
(19.18)

where 2X
.
= Z + Z ; 2Y

.
= −i

(
Z−Z

)
so that X + iY = Z ; X − iY = Z

Remark 19.5.4. These four cycles are orthogonal to each other, since d2 − r2
1 − r2

2 applied to the
last two gives obviously zero. And thus, the associated matrices Q will be diagonal.

Remark 19.5.5. Due to the relation:

V er
s

(M) = V er
z

(M) ·
t

Z2S where Z2S =




+1 0 +1 0

−i 0 +i 1

0 +1 0 −1

0 +1 0 +1


 ,

we shall not expect some breaking results compared to Section 19.1. Nevertheless, the Veronese
quadric v4 v2−v3 v1, with signature (+2,−2) , has been replaced by the spherical quadric v2

4−v2
1−

v2
2 − v2

3 , with signature (+1,−3).

Proposition 19.5.6. Both umbilics are mapped to [0, 0, 0, 0] (points of indeterminacy) while
all other points at infinity are mapped to [0, 0,−1, 1], the so-called South pole. When using

April 5, 2025 14:49 published under the GNU Free Documentation License



19. Pencils of cycles in the complex plane 267

(
Z : T : Z

)
= Lu . (x : y : z), we have

V er
s

(
Z : T : Z

)
' V er (x : y : z)·

t
Lvs where Lvs =




1

α
+ α

1

β
+ β

1

γ
+ γ 0

i

α
−iα i

β
−iβ i

γ
−i γ 0

0 0 0 −1/R2

2 2 2 +1/R2




Proof. One has Lvs = Z2S · Lvz .

Proposition 19.5.7. The polar hyperplanes related to the V er
s

(Mτ ) of all the pointsMτ of a same

cycle are going through a same point of PC
(
C4
)
, called the cycle spherical-representative, that will

be noted V
s
.

Proof. Similar to the V
c
proof. And we have:

V
s







z

t

ζ


 , ρ2


 .

=




ζ + z

iζ − iz
+t2 − z ζ

t
+ t ρ2

−t2 − z ζ
t

+ t ρ2



'




z

t
+
ζ

t

i
ζ

t
− i

z

t

+1− z ζ

t2

−1− z ζ

t2




+ ρ2




0

0

+1

+1




When the cycle is the line [f, g, h], it’s generic point is Mt '
1

f
:
t

g
: −1 + t

h
. Like above, the

wedge of three of the V er
s

(Mj) doesn’t depend on the tj and we obtain:

V
s

[[f, g, h]]
.
=




f + h

i f − ih

g

g


 (19.19)

Corollary 19.5.8. The locus of the representatives of the non-circles among the cycles (i.e. the
completed lines) is the plane

Ps .
=
(

1/
√

2
)
× [0, 0,−1,+1]

whose equation is V4 − V3 = 0. This plane goes through the North pole... and will therefore be

called the North plane. The 1/
√

2 factor comes from
√

2 =

√
(−1)

2
+ (+1)

2 and will be required
when dealing with measurements..

Proposition 19.5.9. The spherical row-images of the PC
(
C3
)
points belong to the 3D sphere

V er
s

(P ) · Q
s

−1 · tV er
s

(P ) = 0 (19.20)

For a circle (γ), we have the more precise radius formula:

ρ2 =
−1

2
×

t(
V
s

(γ)
)
· Q

s
·
(
V
s

(γ)
)

(
Ps · V

s
(γ)
)2 (19.21)

On the other hand, the columns representative of point-circles, i.e. the V
s

(P ) ' Q
s

−1 · tV er
s

(P ),

belong to the 3D sphere defined by Q
s
.
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Proof. Obviously, the two spheres are two copies of S4. But one of them is a punctual object,
while the other is a tangential one, whose elements are hyper-planes. In a later step (stereographic
formalism), we will only consider one sphere.

Proposition 19.5.10. Two point-circles are orthogonal wrt the quadric when their centers share
one of their two coordinates. And then each center lies on one of the isotropic lines through the
other center.

Proof. We have the more precise formula:

t(
V
s

[
M1, r

2
1

])
· Q

s
·
(
V
s

[
M2, r

2
2

])

(
Ps · V

s
1

)
×
(
Ps · V

s
2

) =

(
z2

t2
− z1

t1

)(
ζ2
t2
− ζ1
t1

)
− r2

1 − r2
2 (19.22)

Maple 19.5.11. The Maple package ’faisceaux’ contains:

constants: "sQQ"= Q
s
, "sQQI"= Q

s

−1 , "plinfs"= Ps

functions: "Vers"= V er
s

, "mor2colus"= V
s
, "colus2mm", "colus2mor", "eq2colus", "mhats", "co-

lus2mm", "mm2colus", "mksgram", "saction"

19.5.2 Spherical version of the homographic actions

CAVEAT: in this subsection, letters a,b, c,d, a′,b′, c′,d′, k, κ are general complex numbers, while
a′ = a, etc is intended for visible objects.

Proposition 19.5.12. The Cremona-homography H, defined at (19.6), is an action over the points
of PC

(
C3
)
. It induces an action Ĥs wich is linear over the Spherical-columns. Its matrix is :

Ĥs '
1

2 |det| × (19.23)



−ad′−da′−bc′−cb′ i (da′−ad′+bc′−cb′) ac′+ca′−bd′−db′ ac′+ca′+bd′+db′

i (ad′−da′+bc′−cb′) −ad′−da′+bc′+cb′ i (ca′−ac′+bd′−db′) i (ca′−ac′−bd′+db′)

ab′+ba′−cd′−dc′ i (ab′−ba′−cd′+dc′) −aa′+bb′+cc′−dd′ −aa′−bb′+cc′+dd′

ab′+ba′+cd′+dc′ i (ab′−ba′+cd′−dc′) −aa′+bb′−cc′+dd′ −aa′−bb′−cc′−dd′




moreover
t

Ĥs · Q
s
· Ĥs = Q

s
where |det| =

√
(a d− b c) (a′ d′ − b′ c′)

Proof. Same as the Ĥz proof. Mind the following fact: as it should be, a point-circle is mapped
onto a point-circle.

Proposition 19.5.13. Assume that s, acting over PC
(
C3
)
, is the reflection into cycle γ. This

induces a linear action over the spherical affixes, described by the matrix: ****

σ
.
= Id− 2

V
s

(γ) · tV
s

(γ) · Q
s

tV
s

(γ) · Q
s
· V
s

(γ)
(19.24)

Proof. Same proof as for (14.22). Moreover, one can check that, in C4, V
s

(γ) is changed into its
opposite, while the representative of any cycle orthogonal to γ is unchanged.
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Proposition 19.5.14. When the ordinary homography h, acting over PC
(
C2
)
, has exactly two

fixed points f1, f2 then, using notations of (18.1), a basis of eigencolumns for Ĥs is made of the
V
s

(Fj), i.e. ****

Fs '
1

|F1F2|




−z2

t2
− ζ2
t2

−z2

t2
− ζ1
t1

−ζ2
t2
− z1

t1
−z1

t1
− ζ1
t1

i

(
z2

t2
− ζ2
t2

)
i

(
z2

t2
− ζ1
t1

)
i

(
z1

t1
− ζ2
t2

)
i

(
z1

t1
− ζ1
t1

)

z2 ζ2
t22
− 1

z2 ζ1
t1 t2

− 1
z1 ζ2
t1 t2

− 1
z1 ζ1
t21
− 1

z2 ζ2
t22

+ 1
z2 ζ1
t1 t2

+ 1
z1 ζ2
t1 t2

+ 1
z1 ζ1
t21

+ 1




leading to

detFs = +4i ; F−1
s · Ĥs · Fs =




k 0 0 0

0 κ 0 0

0 0 1/κ 0

0 0 0 1/k


 ; tFs · Q

s
· Fs ' 4




0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0




Proof. Direct computation using

a = k
z2

t2
− z1

t1
; b =

z1 z2

t1 t2
(1− k) ; c = k − 1 ; d = −k z1

t1
+
z2

t2
, etc

|det| =
√

(a′ d′ − b′ c′) (a d− b c) = |F1F2|2
√
k κ

Example 19.5.15. The following table describes how to generate the four actions vj 7→ −vj :

eqn param V
s

action

X z : 1 : −z 1 : 0 : 0 : 0 v1 7→ −v1

Y z : 1 : +z 0 : 1 : 0 : 0 v2 7→ −v2

−T2 + ZZ +τ : 1 : 1/τ 0 : 0 : 1 : 0 v3 7→ −v3

+T2 + ZZ −τ : 1 : 1/τ 0 : 0 : 0 : 1 v4 7→ −v4

19.6 Stereographic projection

On 2021-10-05, it has been decided to adopt the South pole point of view. Vae victis !

Definition 19.6.1. When C is identified with the z = 0 plane in E3, the ’tangential’ Riemann
sphere is defined by its diameter [S,O] where S = [0, 0,−1] is the South pole and O = [0, 0, 0] is
the origin. And the ’tangential’ stereography is defined by M on the plane, Pt on the tangential
sphere, and S,M,Pt aligned.

Remark 19.6.2. This stereography is the projection used by cartographers to draw maps of the
circumpolar places. Obviously, both local metrics in the vicinity of O (on the plane and on the
sphere) are the same. Nevertheless, having the center of the sphere at the origin is more handy
when studying the isometries of the sphere itself.

Definition 19.6.3. The sphere in E3 whose equator is the trigonometric circle (in the z = 0 plane)
should be called the equatorial Riemann sphere. But we will rather call it as the Riemann sphere.
And the correspondence where A is on the plane, while P is on the sphere and S,A, P are aligned
will be called the stereographic projection.

—– pldx : Translation of the Kimberling’s Glossary into barycentrics – vA2 —–



270 19.6. Stereographic projection

Proposition 19.6.4. The stereographic correspondence can be computed as

π̂ :




z

t

ζ


 ∈ PC

(
C3
)
7→ 1

t2 + zζ




t (z + ζ)

−i t (z − ζ)

+t2 − zζ


 (19.25)

π̂−1 :




x

y

r


 ∈ R3 7→




x+ i y

1 + r

x− i y


 ∈ PC

(
C3
)

where ζ is the conjugate of z and x2 + y2 + r2 = 1 is assumed.

Proof. Write P = µA+ (1− µ)S and obtain µ using x2 + y2 + r2 = 1.

Theorem 19.6.5. The spherical map tV er
s

introduced at 19.18 is the projective version of the
stereographic map (from the South pole) introduced at 19.25. While the mapM 7→ V

s
(2O −M, 0)

is the projective version of the stereographic map relative to the North pole.

Proof. Simple comparison between both formula. Remember: a theorem is characterized among
the propositions by its efficiency, not by the difficulty of the proof.

Example 19.6.6. Let us consider two visible points: z1 = 1 + 2i, z2 = 3 + i . We have

F1
.
= V

s
(z1) '




2

4

−4

−6


 ; F4

.
= V

s
(z2) '




6

2

−9

−11




One computes the family :

(1− µ)F1 + (1 + µ)F4 7→ Ponc (µ) = V
s

[
(1− µ) z1 + (1 + µ) z2, R

2 =
5

4

(
µ2 − 1

)]

= V
s







4 + 3 i

2

4− 3 i


+ µ




2− i
0

2 + i


 , R2 =

5

4

(
µ2 − 1

)



When µ is real and |µ| > 1 we obtain a set of visible circles.

Figure 19.3: Both projections of A,B in the plane.
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Let us consider the orthogonal point circles and their representatives:

F2
.
= V

s







z1/t1

1

ζ2/t2


 , 0


 '




4 + i

3 + 2 i

−4− 5 i

−6− 5 i


 ; F3

.
=V

s







z2/t2

1

ζ1/t1


 , 0


 '




4− i
3− 2 i

−4 + 5 i

−6 + 5 i




One computes the family:

(1 + i µ)F2 + (1− i µ)F3 7→ Arcs (µ) '




4

3

−4

−6


+ µ




−1

−2

+5

+5




= V
s







4 + 3 i

2

4− 3 i


+ i µ



− (2− i)

0

+ (2 + i)


 , R2 =

5

4

(
µ2 + 1

)



When µ is real, we obtain a set of visible circles (visible center, real radius). All of them are
orthogonal to F1 and F4: these circles are going through points z1 and z2. And therefore, the first
pencil is the isotomic (Poncelet) pencil of points z1 and z2, while the second one is their isoptic
pencil.

19.7 Quaternary

Proposition 19.7.1. Consider the visible Cremona transform σ̂ defined by

σ

(
Z

T

)
'
(
a b

c d

)(
Z

T

)
where detσ = 1

and suppose that σ̂ induces a rotation Ĥ in E3, then it exists reals A, f, g, h such that
(
a b

c d

)
' cosA

[
1 0

0 1

]
+ sinA

[
−h −f + ig

−f − ig +h

]
(19.26)

Proof. In a rotation of the sphere, the antipodal relation is preserved. **** This amounts to the

invariance by v4 7→ −v4, and matrix Ĥs as to commute with Q
s
, leading to α =

δ d

a
, β = −δ c

a
,

γ = −δ b
a

where δ = a can be chosen. This leads to

a = c′ − ih′ ; b = g′ − if ′ ; c = −g′ − if ′ ; d = c′ + ih′

It only remains to put c′ = cosA and then normalize f ′ : g′ : h′.

C
h - C PC

(
C3
) H- PC

(
C3
)

PC
(
C3
) H- PC

(
C3
)

S2

π

?
ĥ - S2

π

?
S2

π̂

?
ĥ - S2

π̂

?
PC
(
C4
)

Arn

?
Ĥ- PC

(
C4
)

Arn

?

Proposition 19.7.2. Conversely, the equation defined at (19.26) induces a rotation of the unit
sphere in E3. Seen from the unit vector t[f, g, h], its angle is +2A... while seen from t

[−f,−g,−h],
its angle is −2A.
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Proof. Substitute (19.26) into (19.23), use:

sinA2 = U − cosA2 ; sinA =
1

2

sinB

cosA
; cosA2 =

1

2
cosB +

U

2

and collect in U, sin, cos. Restore U = 1 and obtain:

Ĥs = mU + sin 2A mS − cos 2A mS
2

where mU =




f2 fg fh 0

fg g2 gh 0

fh gh h2 0

0 0 0 1


 ; mS =




0 h −g 0

−h 0 f 0

g −f 0 0

0 0 0 0




Remark 19.7.3. One has: χ
(
Ĥs , X

)
= (X − 1)

2
(X − k) (X − κ) where κ = k = exp iBπ, while

χ
(
h , X

)
= (X − µ1) (X − µ2) where µ2 = µ1 = exp iAπ. But the multipliers of h are the ratios

of the eigenvalues, giving again k and κ.

Theorem 19.7.4. When rotations are composed in E3, quaternions are multiplied as 2×2 matrices.
This amounts to use the Hamilton’s rule: +

−→
j · −→k =

−→
i = −−→k · −→j , etc.

19.8 Stereographic formalism
Here, we will use the stereographic projection from the South pole, and apply the Theorem 19.6.5
to obtain a visual formalism using:

Definition 19.8.1. We define the apex of a point, or of a cycle, as the columns:

A (M)
.
=

t
V er
s

(M)

A (C) .
= Mink · V

s
(C)

Proposition 19.8.2. The apex of a point Z = X + iY in the xOy plane is the stereographic
projection of this point. All apexes are columns and live in the same copy of PC

(
C4
)
. Moreover,

the apex of a point is the same as the apex of the point circle centered at this point.

Proof. From former results,
t
A (M) · Mink · A (M) = 0, so that A (M) ∈ S4. One can check eas-

ily that M .
= X : Y : 0 : T and the apex A (M) are aligned with South, proving the stereographic

property. Moreover

A (M)
.
=
t
V er
s

(M) '




(z + ζ) t

−i (z − ζ) t

t2 − z ζ
t2 + z ζ


 ' Mink · V

s
(M, 0)

.
= A [M, 0]

This is the rationale for using the same name for both objects.

Example 19.8.3. Consider the points

Mj = 0.22 + 0.84 i ; 1.34− 0.28 i ; 0.22− 0.44 i

They define a circle with center B = 0.7 + 0.2i and radius ρ = 0.8. Computing the apexes, we
obtain:

AB , A0, A1, A2 '




1.40

0.40

0.47

1.53


 ,




0.440

1.680

0.246

1.754


 ,




+2.680

−0.560

−0.874

+2.874


 ,




+0.440

−0.880

+0.758

+1.242



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and therefore,

U
.
= A (C (Mj)) = Mink ·

t∧

3

(Aj) =




1.40

0.40

0.47

1.53


+




0

0

+0.64

−0.64




Proposition 19.8.4. The apex of a line lies in the South plane, and we have:

A ([f, g, h])
.
=




(f + h)

i (f − h)

+g

−g


 (19.27)

Proposition 19.8.5. When using apexes, the orthogonality formula between two circles is now:

t(A
[
M1, r

2
1

])
· Mink ·

(
A
[
M2, r

2
2

])
t
(A [M1, r2

1]) · N
k
· (A [M2, r2

2])
=

(
z2

t2
− z1

t1

)(
ζ2
t2
− ζ1
t1

)
− r2

1 − r2
2 (19.28)

where N
k

=
1

2




0 0 0 0

0 0 0 0

0 0 1 1

0 0 1 1




so that M ∈ C can be restated as A (M) ⊥ A (C).

Proof. In (19.21) the normalization has to be changed due to the product by Mink .

Remark 19.8.6. Sending the plane A4 = 0 at infinity "discards" the circles orthogonal to ZZ+T2 =
0 and the quadric appears as a sphere in the remaining space E3. On the contrary, sending the
South plane A4 + A3 = 0 at infinity "discards" the (completed) straight lines and allows for a
normalization of the circle-representatives.

Proposition 19.8.7. Define the shadow of a cycle C as the locus of the apexes of the points of
C. The shadow of a cycle is a circle on the sphere S4. Its center belongs to line [O,U ] and, in fact,
is the inverse of U wrt the sphere. When C is a circle, the line [S,B] describes the pencil of all
circles centered at B, and therefore goes through A (B) and U = A (C) (see Figure 19.4).

Proposition 19.8.8. Let Aj , j = 1..4 be the apexes of four cycles Cj. Describe the pencil generated
by C1, C2 using the matrix ∆12 =

(
A1 ∧

6
A2

)
, and the pencil generated by C3, C4 using the matrix

∆34 =
(
A3 ∧

6
A4

)
. When each pencil is orthogonal to the other, then

∆34 = Mink · ∆∗12 · Mink

Using electrical notation (see Definition 8.1.5), if ∆12 =
(−→
E ,
←−
B
)
then ∆34 =

(←−
B, −−→E

)
.

Proof. Cut ∆12 by the four base hyperplanes. Among the four expressions obtained, at most two
are 0 : 0 : 0 : 0. Do the same with the proposed matrix. And check that all the 16 orthogonality
relations are fulfilled (this computation is rather easy since most results are obviously 0, while the
others involve ExBx + EyBy + EzBz.

19.9 Comparison with Cartesian and Artinian metrics
To be written.

For all metrics, OrtO
∗

=
(

OrtO
2)∗

while trace
(

OrtO
∗)

= 1.
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Figure 19.4: Stereographic projection and apexes
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Chapter 20

The Lie Sphere

20.1 Elementary properties
Remark 20.1.1. In this chapter, the radius of a circle is noted either as rj or as ρj . The rj radiuses
are unsigned quantities (only r2

j is meaningful). On the contrary, the ρj are signed quantities. The
first point of view is more adapted to orthogonality, the second one is more adapted to contact
properties.

Remark 20.1.2. Let us recall the following matrices

Q
b

.
= − 1

8S2




a2 −Sc −Sb −a2Sa

−Sc b2 −Sa −b2Sb

−Sb −Sa c2 −c2Sc

−a2Sa −b2Sb −c2Sc b2a2c2


 ; Q

z

.
=




0 0 −1 0

0 0 0 1

−1 0 0 0

0 1 0 0




and how they are applied (see Remark 19.1.15)

(
d2

12 − ρ2
1 − ρ2

2

)
=

tV1 · Q · V2

(P∞ · V1)× (P∞ · V2)

As a result, the PC
(
C4
)
formalism only deals with squared radiuses. And therefore the r2 ∈ R

property allows the existence of imaginary radiuses (i.e. r2 < 0).

Definition 20.1.3. The Lie Sphere formalism assigns a sign to the radius of a circle, and stores this
signed radius into the fifth coordinate of the Lie sphere representative of this cycle, according
to

V̂ (P, ρ)
.
= (V (P, |ρ|) : ρ) ∈ PC

(
C5
)

where the V is normalized using P∞ · V = 1. How to deal with completed lines will be stated later.

Proposition 20.1.4. All the V̂ belong to a quadric, the so-called Lie sphere quadric.

tV̂ · Q̂ · V̂ = 0 where Q̂ .
=

[
Q 0

0 +2

]

Here, the Q matrix is one of the "official" matrices, i.e. exactly Q
b

or Q
z

etc.

Proof. Obvious from tV · Q · V = −2r2.

Definition 20.1.5. Oriented contacts: we will say that two circles are gearing when
tV̂1· Q̂ ·V̂2 = 0

and that they are anti-gearing when

tV̂1 · Q̂x · V̂2 = 0 where Q̂x .
=

[
Q 0

0 −2

]
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Theorem 20.1.6. Assume that a circle is clockwise oriented when ρ > 0, and counterclockwise
oriented when ρ < 0. When two circles are gearing, we have d2

12− (ρ1 − ρ2)
2

= 0. If , additionally,
we assume that both circles have the same orientation, this implies (d12 − r1 + r2) (d12 + r1 − r2)
and one circle is internal to the other. If, on the contrary, we assume that both circles are ori-
ented differently, this implies (d12 − r1 − r2) (d12 + r1 + r2) = 0 and the two circles are external to
eachother.

When the two circles are anti-gearing, we have d2
12 − (ρ1 + ρ2)

2
= 0 and the conclusions are

reversed.

Proof. Obvious from definitions. This is nevertheless the key property here.

Remark 20.1.7. Let us recall that the distance from a point to a line is given by (7.24), (15.11) i.e.
by

dist (P, ∆) =
∆ · P

(L∞ · P )
√

∆ · M · t∆

Moreover, due to the choice of the b and z bases, we have

Mb
.
= −2 submatrix

(
Q
b
, 1..3, 1..3

)
; Mz

.
= −2 submatrix

(
Q
z
, 1..3, 1..3

)

Proposition 20.1.8. In order to use
tV̂1 · Q̂ · V̂3 = 0 as a condition for an "oriented contact"

between circle C
1
and line ∆3, the representative V̂3 as to be defined as:

[f, g, h] 7→
z

(
f : g : h : 0 : ±

√
fh
)

and more generally by using :
(

2 V̂3 [5]
)2

=
b

∆ · M · t∆ i.e. by replacing Mz with its equivalent
in the other formalisms.

Proof. Direct computation. For two lines, "contact" means parallelism !

Remark 20.1.9. When using the Lie representation, objects that don’t belong to Q5 are meaning-
less, while Q5 itself is obtained by a double coating of the outside of Q in PC

(
C4
)
. Therefore,

imaginary circles are lost : when the radius decreases to 0 in an isotomic pencil, the differen-
tiable continuation is going back to real radiuses (with the other orientation) and not escaping to
imaginary values.

Definition 20.1.10. When V̂0 is not a point-circle, the inversion wrt V̂0 is the linear application
defined by the matrix

Σ0
.
=

[
σ0 0

0 −1

]

where the 4× 4 matrix σ is defined as in Theorem 14.8.4, i.e. by

σ0 = Id− 2
(
V0 · tV0 · Q

)
÷
(t
V0 · Q · V0

)

Proposition 20.1.11. Assuming that V0 is not a point-circle, we have the following properties:

1. Σ0 is involutive.

2. ker (Σ0 + 1) is generated by V̂ and 0 : 0 : 0 : 0 : 1,
while ker (Σ0 − 1) is the plane [−uz, ut,−ux, uy, 0] , [0, 0, 0, 0, 1].

3. As a result, V̂0 and it’s opposite are invariant (with their orientation), i.e. Σ0 (V0 : +ρ0) '
(V0 : +ρ0) and Σ0 (V0 : −ρ0) ' (V0 : −ρ0) while orthogonal circles are reverted.

Proof. Direct examination.
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Theorem 20.1.12. Following Searby (2009), we define

Searby
(
V̂1, V̂2

)
=

t

V̂1 · Q̂ · V̂2

2 V̂1 [5]× V̂2 [5]
− 1 =

d2
12 − ρ2

1 − ρ2
2

2 ρ1ρ2

Then this quantity is projective, and invariant by inversion. Moreover, Searby
(
V̂1, V̂2

)
equals

respectively +1, 0,−1 when the cycles are respectively gearing, orthogonal and anti-gearing.

Proof. Direct examination. One can remark that ρj 7→ −ρj so that a squared difference remains a
squared difference.

20.2 Example 1: the incircle

1. Using barycentrics, we have BC ' [1, 0, 0] so that sidA '
b

1 : 0 : 0 : 0 : − a

4S
. Solving

{
t

X · Q̂
b
· J | J = sidA, sidB , sidC , X

}

we obtain two solutions

(1 : 1 : 1 : 0 : 0) ;

(
(b+ c− a)

2

4
:

(c+ a− b)2

4
:

(a+ b− c)2

4
: 1 :

2S

a+ b+ c

)

i.e Sirius and the usual incenter.

2. Using Lubin2 coordinates, we have

A '
2
α2 : 1 :

1

α2
; BC '

2
[1,−β2 − γ2, γ2β2] ; sidA '

2
1 : −β2 − γ2 : γ2β2 : 0 : −βγ

Solving the z-system, we obtain again Sirius (aka 0 : 1 : 0 : 0 : 0) together with:

Ω̂0 '
z

s1

s3
: −s2

2 s2
1

4s2
3

+
3s2s1

2s3
− 1

4
: s2 : 1 : − (β + γ) (γ + α) (α+ β)

2αβγ

3. Solving the s-system, we obtain 0 : 0 : 1 : 1 : 0 together with:

Ω̂0 '
s




−4s3 (s1 + s2 s3)

−4 is3 (s1 − s2s3)

s2
2s

2
1 − 6s2s3s1 + 5s2

3

s2
2s

2
1 − 6s2s3s1 − 3s2

3

2
√

2 s3 (s1s2 − s3)




4. And, obviously, the three formalisms z, p, s lead to the same

I0 '
z
−s2 : 1 : −s1

s3
; r0 '

z
− (β + γ) (γ + α) (α+ β)

2αβγ

20.3 Exemple 2: the three excenters

1. Let’s use Lubin-2 and the z-formalism. We have Â '
z

(
− 1

α2
: 1 : −α2 : 1 : 0

)
and BC '

5(
1 : −β2 − γ2 : γ2β2 : 0 : βγ

)
.

2. The incircle is

V̂ '
z

[
α+ β + γ

αβγ
:

6s2s3s1 − s2
2 s2

1 − s2
3

4s2
3

: αβ + αγ + βγ : 1 :
(β + γ) (α+ γ) (α+ β)

2αβγ

]
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3. The ex-circles V̂j are obtained by using α 7→ −α, etc.
4. Solving the Apollonius equations

{
t

X · Q̂
z
· J | J = V̂A, V̂B , V̂C , X

}

one re-obtains S1 ' −
σ2

2σ3
:
σ1σ2 − σ3

4σ3
: −σ1

2
: 1 :

1

2
(i.e. the Euler circle1) together with S5,

the Apollonius circle itself (see Subsection 14.11.4).

5. The common orthogonal circle is the alt-Spiecker circle V̂4 '
z




2s1s3 − 2s2
2

−7s2
3 +

(
−2s3

1 + 6s1s2

)
s3 + s2

2

(
s2

1 − 2s2

)

−2s2
3

(
s2

1 − s2

)

4s2
3

2Ws3




where W =
√
s3

1s3 − 5s2s3s1 + s3
2 + 7s2

3

and one can check that the S2 solution is the sideline BC, etc, while the four S4+j are the
inverses of the Sj wrt V̂4.

6. And we have the following Searby products:

Searby
([
V̂a, V̂b, V̂c

]
�
[
S1, S5, Sa, S6, Sb, S7, Sc, S8, V̂4

])

=



−1 +1 −1 +1 +1 −1 +1 −1 0

−1 +1 +1 −1 −1 +1 +1 −1 0

−1 +1 +1 −1 +1 −1 −1 +1 0




7. The same computations cans also be conducted within the b-formalism. One only has to deal
with the usual radicals.

20.4 Mixtilinear circles
1. Use barycentrics and consider cycles Γ, AB,AC. Their representants are:

0 : 0 : 0 : 1 : −abc
4S

; 0 : 0 : 1 : 0 : − c

4S
; 0 : 1 : 0 : 0 : − b

4S

2. Solutions of the Apollonius equations are 0 : c2 : b2 : 1 : 0 (i.e. the point-circle A) and

4b2c2

(b+ c− a)
2 :

c2 (a+ b− c)2

(b+ c− a)
2 :

b2 (a− b+ c)
2

(b+ c− a)
2 : 1 :

bc (a+ b− c) (a− b+ c)

2S (b+ c− a)

3. Using the z-formalism, the three cycles are

0 : −1 : 0 : +1 : 1 ; −1 : α2 + β2 : −β2α2 : 0 : αβ ; −1 : α2 + γ2 : −γ2α2 : 0 : αγ

and one obtains (A, 0) together with





α2 (αβ + αγ + 2βγ)

2

α2 (β − γ)
2

(2α+ β + γ)
2


 , 2 (β + γ) (α+ γ) (α+ β)

(β − γ)
2
α




4. When using the s-formalism, we have

Γ ' 0 : 0 : −2 : 0 :
√

2 ; AB ' −β2α2 − 1 : iβ2α2 − i : α2 + β2 : α2 + β2 :
√

2αβ, etc

and obviously, one obtains the same results.

5. The difficulty here is the choice of the orientations of the circles...
1caveat: σ1 =

∑
α2 6= s1 !
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20.5 Arbelos
Proposition 20.5.1. Consider points I0 ' +ih : 0 : −ih, A ' a : 1 : a, etc and circles C0 .

=
C (I0, 1) and Ca ' C ([B,C]) , etc, where h, a, b, c ∈ R. If we assume that the four circles are tangent
by pairs, we have

h = ±2 ; {a, b, c} ∈
{
x, ψ (x) , ψ2 (x)

}
where ψ (x) =

x− 3

x+ 1
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Chapter 21

Hyperbolic geometry

In a first step, hyperbolic geometry was created to prove that a geometry can be build which
satisfies all of the usual axioms except from the Euclidean one about the parallel lines. As a result,
it becomes proven that the Euclidean axiom is independent from the other axioms. See Cannon
et al. (1997) and Arlan Ramsay (1995).

Notation 21.0.1. For the further use of the reader, we summarize here all the notations that will
be introduced throughout this chapter.

• Prefixes "C-", "P-" and "K-" are used to distinguish the usual cartesian/complex objects
from their Poincare or Klein counterparts.

• Letter O is ever the common origin to all spaces. The C-unit circle, i.e. γC (O, 1), is noted Γ.
The same circle, when used as the P- or the K- horizon circle, is noted ∂H, while H denotes
the open disk limited by ∂H.

• A line through points A,B is noted AB, a circle centered at A and going throughM is noted
(A;M). When enforcing the brand of a specific object seems useful, notations ∆X (A,B) or
γX (A;M) are used.

• Coordinates AP ' z : t : ζ of a P-point are the usual C-coordinates, while a widehat denote
the C-reflection of a point into Γ, i.e. Â '

C
t/ζ : 1 : t/z.

• Coordinates AK ' k : 1 : κ are used for a K-point. From

W =
√

1− kκ = (1− zζ) / (1 + zζ) ∈ R

the K-points are not supposed to cross the boundary Γ.

21.1 The Poincaré plane

Remark 21.1.1. Our strategy is as follows. We start from the C-objects which occur in the vicinity
of O, and then we convey everything to the vicinity of the generic point AP . Therefore, the P-lines
through O are the C-diameters of Γ, while the P-circles (O;M) are identified with the C-circles
(O;M). Moreover, the space is assumed to be locally Euclidian at O, i.e.

(dsO)
2

= Cte2 (dz dζ)

Definition 21.1.2. The Poincaré model is what is obtained by using homographies as conveyors.

Theorem 21.1.3. The Poincaré conveyor is the Cremona homography defined by:

τA : O 7→ AP '




z

t

ζ


 ;




Z

T

Z


 7→




tZ + zT

ζ Z + tT
1

tZ + ζ T

zZ + tT




281
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Proof. Conveyor τA has to keep globally invariant both the horizon circle ∂H and the line OA.
Therefore points OA ∩ Γ, i.e. ±

√
z/ζ : 1 : ±

√
ζ/z, are the fixed points. Knowing 3 points and

their images, we conclude using the cross-ratio.

Remark 21.1.4. Seen as a quadratic Cremona transform, τA has two more fixed points (on ∂H,
but not visible) ±

√
z/ζ : 1 : ∓

√
ζ/z, while the three points of indeterminacy are the umbilics

Ωx ' 0 : 0 : 1 Ωy ' 1 : 0 : 0 together with 1/ζ : −1/t : 1/z (the reflection of A into the unit
imaginary circle). Moreover, τ−1

A is obtained by t 7→ −t.

Theorem 21.1.5. The P-metric near the P-point AP is induced by the P-metric near O and
we have :

(dsP )
2

(A) = Cte2 dzdζ

(1− zζ)
2 (21.1)

Proof. Use the τ−1
A conveyor to carry back A+ dA ' z+ dz : 1 : ζ + dζ and then use the P-metric

at O.

Proposition 21.1.6. The P-line through points A,B is the visible part of the C-circle through
A,B, Â, B̂Goodman-Strauss (2001, p. 42). When A is fixed, the supports of the P-lines through A
are the members of the C-isoptic

(
A, Â

)
pencil.

Proof. Since τA is conformal, we have ∆P (A,B) ⊥ Γ and therefore Â belongs to the C-circle which
supports the P-line.

Proposition 21.1.7. The P-circles γP (A, ρ) are the members of the C-isotomic
(
AP , ÂP

)
pencil,

orthogonal to the former C-pencil of the P-lines through AP .
When M1 ' z1 : t1 : ζ1, then γP (A,M1) = γC (U, ρC) where

U '
C




t z
(
t21 − z1 ζ1

)

t1
(
t2t1 − t z ζ1 − t ζ z1 + z ζ t1

)

t ζ
(
t21 − z1 ζ1

)




ρ2
C =

(ζ1 t− t1 ζ) (z1 t− z t1) (t t1 − z1 ζ) (t t1 − ζ1 z)
t21 (t2t1 − t z ζ1 − t ζ z1 + z ζ t1)

2

ρC =
distance(M,A)distance

(
M, Â

)

2 distance
(
M,med

(
A, Â

))

Proof. Adjust the value of p in V
c

(γ) '
C
pV
c

(A, 0) + (1− p)V
c

(
Â, 0

)
so that γ goes through M1

and obtain

γP '
C




t ζ
(
ζ1 z1 − t21

)

−
(
z ζ + t2

)
z1 ζ1 + t t1 (z ζ1 + ζ z1)

z t
(
ζ1 z1 − t21

)
(
z ζ + t2

)
t21 − t t1 (z ζ1 + ζ z1)




Proposition 21.1.8. As points on the C-line AÂ, the C-center U and the diametrical points
u1, u2 = γC ∩AÂ are given by the following Geogebra commands
U =barycenter({A,A’},{distance(M,A’)^2, -distance(M,A)^2})
u1=barycenter({A,A’},{distance(M,A’), +distance(M,A)})
u2=barycenter({A,A’},{distance(M,A’), -distance(M,A)})

Proof. Simple substitution.

Remark 21.1.9. Spoiler: the line med
(
AP , ÂP

)
is the Γ polar of the later defined AK .
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Proposition 21.1.10. The P-symmetry σA : M 7→ M ′ where M ′ belongs together to the P-line
AM and to the P-circle (A;M) is the following homography:

Z 7→ (zζ + 1)Z− 2 z

2Zζ − (zζ + 1)
;




Z

T

Z


 7→




(
zζ + t2

)
Z− 2tzT

2tζ Z− (zζ + t2)T

1(
z ζ + t2

)
Z − 2tζ T

2tzZ − (z ζ + t2)T




Proof. One has σA = τA ◦ σO ◦ τ−1
A where σO = Z : T : Z 7→ −Z : T : −Z. As a result, Â is also

invariant and we have cross_ratioC

(
A, Â,M,M ′

)
= −1.

Construction 21.1.11. Construct the P-circle when a P-diameter [M,N ] is known

1. Draw the C-circle (B)
.
=
(
M,N, M̂, N̂

)
. This is the P-line MN .

2. Draw the C-tangents MC and NC to the C-circle (B) and obtain C

3. The required P-circle γ is the C-circle (C;M).

4. Add point Q on γ. The C-tangent to γ at Q cut the C-mediatrix of
[
Q, Q̂

]
at some point

BQ. Then the C-circle (BQ;Q) is another P-diameter of γ

5. The intersection of both diameters gives A(visible, in H) and Â (visible, but transfinite).

Construction 21.1.12. Construct the P-midpoint Jof the P-segment [O,A].

1. Draw the C-circle δ having [A,O] for diameter.

2. Add a point R on this circle. Draw the C-tangent at R. Cut by the C-mediatrix of
[
R, R̂

]

and obtain BR.

3. Then the C-circle (BR;R) is another diameter of δ, obtaining J .

21.2 The Klein plane

Definition 21.2.1. The Klein model is what is obtained by using collineations as conveyors.

Theorem 21.2.2. The Klein conveyor is the collineation defined by:

ϑA : O 7→ A '




k

1

κ


 ;




Z

T

Z


 7→




1 +W

2
k

k

κ

(
1−W

2

)

κ/2 1 k/2
κ

k

(
1−W

2

)
κ

1 +W

2



·




Z

T

Z




where W =
√

1− k κ

Proof. Matrix ϑA fulfills its requirements. Moreover, this matrix diagonalizes as




1 +Wa

1−Wa√
1−W 2

a


 ;




k k −k
Wa −Wa 0

κ κ κ


 where Wa =

√
kκ

The proper columns are related to the unavoidable fixed points, namely the intersections OA ∩ Γ
and the Γ-pole of the OA line, while one has also λ1λ2 = λ2

3. As a result, we have not only the

existence, but also the unicity of ϑA. Moreover, here again, ϑA
−1

is nothing but ϑ−A .
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Theorem 21.2.3. The K-metric near the K-point AK ' k : 1 : κ is:

(dsK)
2

(AK) =
Cte2

4

(
dkdκ

1− kκ +
(κdk + k dκ)

2

4 (1− k κ)
2

)

See Theorem 21.2.3 for the fact that Cte = 2.

Proof. Use the ϑ−1
A conveyor to carry back AK + dA ' k+ dk : 1 : κ+ dκ near the origin and then

use the K-metric at O.

Remark 21.2.4. The K-line through A,B is nothing but the C-line through the same points. Circles
centered at AK will be studied later.

Proposition 21.2.5. The K-symmetry sA : M 7→M ′ centered at AK is the involutive collineation
defined by:

sA '
1

1− k κ



−1 2 k −k2

−κ 1 + kκ −k
−κ2 2κ −1


 (21.2)

Proof. This comes from sA = ϑA ◦ sO ◦ ϑ−1
A . Alternate proof: diagonalize and obtain:




+1

−1

−1


 ;



k κ−1 −k
1 1 0

κ k−1 κ




The proper columns are related to the unavoidable fixed points, namely AK itself together with
ÂK and the Γ-pole of OA. As a result sA is an homology.

21.3 From a model to the other
Proposition 21.3.1. Consider ∆P and ∆K , the P- and K-lines sharing the same C-turns α, β
as points at horizon ∂H. When written in PC

(
C4
)
, the projective space of the C-cycles, the maps

PtoK : ∆P 7→ ∆K and KtoP : ∆K 7→ ∆P (Klein to Poincaré and conversely) are:

V
c

(KtoP (∆K)) = V
c

(∆K) + V
c

(horz)

V
c

(PtoK (∆P )) = V
c

(∆P )− V
c

(horz)

(when normalizing the C-circles by U4 = 1 and the C-lines by U2 = 2).

Proof. We have Γ ' 0 : −1 : 0 : 1 while V
c

(∆P ) ' ∗ : 1 : ∗ : 1 and V
c

(∆K) ' ∗ : ∗ : ∗ : 0.

Proposition 21.3.2. The map PtoK transforms the pencil of all the P-lines through a given AP
into the pencil of all the K-lines through a same point AK . And one has the punctual maps:

PtoK (AP ) =PtoK




z

t

ζ


 =




2 z t

t2 + z ζ

2 ζ t


 =AK (21.3)

KtoP (AK) =KtoP




k

1

κ


 =




(
1−
√

1− κ k
)
÷ κ

1(
1−
√

1− κ k
)
÷ k


 =AP

Proof. Straightforward computation. Moreover: k =
2z

1 + zζ
= ̂(z + ẑ) /2.

Proposition 21.3.3. The Poincaré ↔ Klein maps can be illustrated by involving the 3D sphere S
having Γ as equatorial circle. Let N be the North pole of S. Start from a point AP in the P-plane.
Draw the C-line NA. It cuts the sphere at a point Q (the stereographic projection). And then draw
the vertical of Q, intersecting the equatorial plane at AK .
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Proof. Assume t = 1 and describe Q as a point in C2 × R. Then
(
zQ

tQ

)
=

1

1 + zζ

(
2 z

1− zζ

)
=

(
k√

1− kκ

)

The first = sign is the stereographic formula, the second one is (21.3).

Figure 21.1: The Poincaré to Klein transform

Proposition 21.3.4. The value of the Cte at Theorem 21.1.5 and Theorem 21.2.3 is Cte = 2.

Proof. At Figure 21.1, one sees that AP ≈ O implies dS = 2dAP together with dS = dAK .

Remark 21.3.5. The P-symmetry wrt the P-point z : t : ζ induces the following involutive map on
∂H

α 7→ β =

(
t2 + z ζ

)
α− 2 z t

2 ζ t α− (t2 + z ζ)
=

α− k
ακ− 1

while the P-symmetry wrt the H-line (γ, δ) induces the map

α 7→ β =
(γ + δ)α− 2 γ δ

2α− (γ + δ)

Remark 21.3.6. One has the following relation

cross_ratio (a, b, u, v)× cross_ratio (b, c, u, v) =

(u− a) (v − b)
(u− b) (v − a)

× (u− b) (v − c)
(u− c) (v − b) = cross_ratio (a, c, u, v)

and therefore the function ln ◦cross_ratio is additive.

Proposition 21.3.7. Consider the C-circles corresponding to the P-lines (α, β) and (γ, δ). And
then define the four points

Uud
.'




αβ − δ γ ±W (β − γ) (α− δ)
α+ β − δ − γ

1
αβ − δ γ ±W (β − γ) (α− δ)
β δ α+ αγ β − αγ δ − β δ γ




where W =

√
(β − δ) (α− γ)

(β − γ) (α− δ)

Then the points U+
+ , U

−
− are Γ-inverse of each other and belong to the given P-lines (seen as full

C-circles), while the points U+
− , U

−
+ belong to ∂H and define a P-line orthogonal to the two given

P-lines.
When W 2 < 0, points (α, β) and (γ, δ) are tangled, points U+

+ , U
−
− are C-visible and one of them

belongs to H. When W 2 > 0, points (α, β) and (γ, δ) are untangled, points U+
− , U

−
+ are C-visible

and define a (visible) H line.

Proof. Being the cross-ratio of the four given turns, quantityW 2 is real. Everything else comes from
direct computation. Remark: when the given lines are orthogonal to each other, thenW 2 = −1.
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21.4 More about hyperbolic distance
Notation 21.4.1. In what follows, δAB is distance(A,B), i.e. δ2

AB =

Proposition 21.4.2. In the K-plane, the distance between the K-points M1,M2 is
∣∣∣∣
1

2
ln cross_ratio (M1,M2,M3,M4)

∣∣∣∣ (21.4)

where M3,M4 ∈ Γ and the Mj are K-aligned (in any order).

Proof. Use M1,M2,M3,M4 = x1, x2,−1,+1 on the x-axis. Substitute k = κ = x and dk = dκ =
dx into

(dsK)
2

=
Cte2

4

(
dkdκ

1− kκ +
(κdk + k dκ)

2

4 (1− k κ)
2

)

and obtain ds =
Cte

4

(
1

1− x +
1

x+ 1

)
dx. Integrating, we obtain

δ =
Cte

4
ln

(
(x2 + 1) (x1 − 1)

(x2 − 1) (x1 + 1)

)
=

Cte

4
ln

(
(x1 − x4) (x2 − x3)

(x2 − x4) (x1 − x3)

)

i.e. the required cross-ratio formula. This applies to all pair of points since the cross-ratio is
invariant under any conveyor. When the Mj are not in this order, it becomes necessary to take
the absolute value of the expression.

Proposition 21.4.3. In the P-plane, the distance between the P-points M1,M2 is

|ln cross_ratio (M1,M2,M3,M4)| (21.5)

where M3,M4 ∈ Γ and the Mj are P-aligned.

Proof. Let C,D ' γ : 1 : γ−1, δ : 1 : δ−1 ∈ Γ. They define the circle γ '
[ −2

γ + δ
, 1,
−2 δ γ

δ + γ
, 1

]
.

Therefore the points AP , BP on ∆P (C,D) can be written as

AP , BP '




2 γ δ

δ + γ
1
2

δ + γ


+

i (δ − γ)

δ + γ




α

0
1

α


 , etc

where α, β are some turns. And a straightforward computation leads to:

cross_ratio (AK , BK , C,D) =

(
(iα+ γ) (iβ − δ)
(iβ + γ) (iα− δ)

)2

= cross_ratio (AP , BP , C,D)
2

Proposition 21.4.4. With the same hypotheses, we have

dP (M1,M2) =

∣∣∣∣ln
dC (M1,M3)× dC (M2,M4)

dC (M1,M4)× dC (M2,M3)

∣∣∣∣

Proof. Continue using the same method as above. Rem: method used in geogebra.

Theorem 21.4.5. There are algebraic expressions for the cosh of the hyperbolic distances:

cosh (dP (AP , BP )) = 1 +
2 δ2

AB

pA pB

cosh (dK (AK , BK)) =
δ2
AB − pA − pB

2
√
pA
√
pB

=

(
t2 t1 − 1

2 (z1 ζ2 + z2 ζ1)
)

√
t22 − z2 ζ2

√
t21 − ζ1 z1

(21.6)
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Proof. For the P formula: obtain M3,M4 from ∆P ∩ Γ. This involves the radical

W =
√

(t1 t2 − ζ1 z2) (t1 t2 − z1 ζ2) (t1 z2 − t2 z1) (t1 ζ2 − ζ1 t2)

Then substitute into (21.5) and take the cosh. For the K formula, the same method can be used,
but using PtoK is another possibility.

Corollary 21.4.6. In the Poincaré model, we have the additional formula:

cosh2 (dP (AP , BP ) /2) =
(t2 t1 − z1 ζ2) (t2 t1 − ζ1 z2)

(t21 − z1 ζ1) (t22 − z2 ζ2)
= 1 +

δ2
AB

pA pB

sinh2 (dP (AP , BP ) /2) =
(ζ2 t1 − ζ1 t2) (z2 t1 − z1 t2)

(t21 − z1 ζ1) (t22 − z2 ζ2)
=

δ2
AB

pA pB

tanh (dP (AP , BP ) /2) =
|z1 − z2|
|1− z1 ζ2|

=
δAB√

δ2
AB + pA pB

Remark 21.4.7. Another way to write (21.6) is

cosh (dK (M,N)) =
1− 〈M | N〉√

(1− 〈M |M〉) (1− 〈N | N〉)

Proposition 21.4.8. Hyperbolic Pythagoras Theorem. When a, b are the right-angled sides and c
is the third side, one has

cosh c = cosh a cosh b

Proof. Consider the triangle 0, x, iy and use either the Klein or the Poincaré formulas.

Proposition 21.4.9. The C-homology whose center AK and axis ∆ are Γ-polar of each other
describes the K-symmetry wrt AK ' k : 1 : κ when this point is inside the Klein disk H but
describes the K-symmetry wrt ∆ when AK is in the outer world (and ∆K is a real K-line).

Proof. The matrix sA of this homology is given at (21.2). We have:

cosh2 (dK (AK ,Mj)) =

(
κZ + kZ − 2T

)2

4
(
T2 − ZZ

)
(1− κ k)

cosh2 (dK (UK ,Mj)) = 1 +

(
κZ + kZ − 2T

)2

4
(
T2 − ZZ

)
(κ k − 1)

where M2
.
= sA ·M1 and UK = ∆ ∩M1M2.

Proposition 21.4.10. In the P -plane, the previous proposition becomes:

M2,M
′
2 '




(
t2 + ζ z

)
Z− (2 t z)T

(2 t ζ)Z− (t2 + ζ z)T

1(
t2 + ζ z

)
Z − (2 t ζ)T

(2 t z)Z − (t2 + ζ z)T



,




(2 t z)Z −
(
t2 + ζ z

)
T

(t2 + ζ z)Z − (2 t ζ)T

1

(2 t ζ)Z−
(
t2 + ζ z

)
T

(t2 + ζ z)Z− (2 t z)T




where M2 is the P -symmetric of M1 wrt AP ' z : t : ζ when AP ∈ H, while M3 is the P -symmetric
of M1 wrt the P -line which is C-centered at AP when AP /∈ H.

Proof. Substitute k : 1 : κ with PtoK (z : t : ζ) , etc, compute and then goes back using KtoP.
Remark: M2,M

′
2 are C-inverse wrt Γ.

Exercise 21.4.11. When the radius ρ varies, the K-circles γK (A, ρ) form a family of C-ellipses.
Find the locus of their C-focuses

Exercise 21.4.12. Consider the P-points A,B. Determine the parameter R corresponding to the
K-circles (A,B).

—– pldx : Translation of the Kimberling’s Glossary into barycentrics – vA2 —–



288 21.5. Hyperbolic triangle

21.5 Hyperbolic triangle
(list of results)

21.5.1 Sideline
1. The K-line is equal to the C-line, while the P -line is C

(
B, B̂, C, Ĉ

)

2. The point OBC
.
= Polar (klinA, horz) = Center (plinA) is outside of H.

21.5.2 Line-bisectors
1. The P -formula are:

V
c

(µP ) ' pBV
c

(CP )− pCV
c

(BP )

ω =

(
p2
z3

t3
− p3

z2

t2

)
/ (p2 − p3) ; ρ2 = ω ω − 1

2. The K-formula are (where lines are normalized using ∆2 = 1)

medA
.' √pC Polar (B)−√pBPolar (C)

3. The three H-line-bisectors are ever collinear. As a result, the K-line-bisectors are ever going
through some point OK ∈ C. When this point belongs to H, there exists an H-circle going
through A,B,C (and centered at OH). Otherwise, OH is the pole of an H-line and this line
is the common perpendicular to the three line-bisectors.

Exercise 21.5.1. Let B,C be given in H. Find all the A ∈ H such that the H-circle (A,B,C)
exist. Hint: use the K-model together with B,C = ±k ; A = x+ iy and obtain the horicycles:

(
k2y2 + k2 − x2 − 2 y2

)
± 2 y

(
k2 − 1

)

as boundaries. One obtains also
(
2 k2y2 − k2 + x2 − y2

)
± 2 ixy

(
k2 − 1

)

Any opinion on this extra-locus ?

21.5.3 Medians
Definition 21.5.2. Cut medP (B,C) with ∆P (B,C) and obtain GA. Then ∆P (A,GA) is called
the Amedian.

Proposition 21.5.3. The three medians of a triangle form a pencil.

Proof. Computations are straightforward.

21.5.4 Altitudes
1. paltA = C

(
A, Â,Reflect (A, plinA)

)

2. kaltA = ∆ (A,OBC)

3. the three C-lines kaltX are concurrent (inside H or outside !)

4. The three H-altitudes are ever collinear. As a result, the K-altitudes are ever going through
some point HK ∈ C. When this point belongs to H, the triangle admits an H-orthocenter.
Otherwise, HH is the pole of an H-line and this line is the common perpendicular to the three
altitudes.

Exercise 21.5.4. Let B,C be given in H. Find all the A ∈ H such that (A,B,C) admits an
H-orthocenter. Hint: use the K-model together with B,C = ±k ; A = x+ iy and obtain

(
k2y2 + k2 − x2 − 2 y2

)
± 2 y

(
k2 − 1

)

as boundary.
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21.5.5 Trigonometry
Proposition 21.5.5. When triangle A,B,C is rectangular in C then:

sinA =
sinh a

sinh c
; cosA =

tanh b

tanh c
; tanA =

tanh a

sinh b

cosh(b) =
cosB

sinA
, cosh(c) = cosh(a)cosh(b) =

cosA cosB

sinA sinB

Proof. Consider the standard rectangular triangle zA = k, zB = iK, zC = 0 and use the usual
formula for the angle between two circles.

21.6 The Upper-half plane
Taking a point P on Γ and reflecting everything from the P-plane wrt the circle γC (P, 2) leads to
another model of the hyperbolic plane, where U-circles are C-circles and U-lines are half-C-circles,
ending at the horizon line.

Exercise 21.6.1 (Soland’s porism). (2018)Take n points aj on circle Γ, with the intent to construct
a sequence of n circles, sequentially tangent to each other and internally tangent to Γ. When n
is odd, there is exactly one solution. When n is even, the n-th point is determined by the others.
And then, one of the radiuses can be chosen at will.

Hint: at Figure 21.2, P is taken at a0 and cirP, the inversion circle, is tangent to Γ. This leads
to aj 7→ Aj . Find a relation between d12 = dC (A1, A2) and r1, r2, the C-radiuses of the C-circles
O1, O2.

Figure 21.2: The Poincaré to Upper-half transform

21.7 Teaching tensors to a computer
Informally, tensors are friendly multi-dimensional arrays implementing the "two" Einstein’s rules:
(0_1) in Xk

j , there aren’t exponents, but only indices, the j being "down" while the k is "up"
(0_2) indices are implying ranges and variables
(1): repeated index (one up, one down): Xk

jk means (j) 7→∑
k∈range(k)X

k
jk

(2): comma: Xj,k means (j, k) 7→ ∂Xj/∂xk (assuming that index k implies variable x)

Notation 21.7.1. In the end, we will use four set of variables, two external and two internal. Using
an index will imply which variable is indexed. For example, Nm

,ν (where N means Jacobian) is to
be read as ∂xm

∂uν while Nν
,σ is to be read as ∂uν

∂tσ . Everything will be introduced in details but, for
the reader’s convenience, these associations are summarized here, in Table 21.1.
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index range tag variables comment here
m,n, p, q, r 1..3 x x, y, z external cartesian
a, b, c, d, e 1..3 w u, v, w extended
µ, ν,φ, ψ, ρ 1..2 u u, v 1° internal stereographic
σ, τ, ε, ω,κ 1..2 t t, s 2° internal spheric

Table 21.1: Indices and the associated variables

Definition 21.7.2. We define a tensor as a triple [index_list,updo_list,Maple_rtable]. The
index_list is a Maple list of unassigned names, where repetitions are allowed. The updo_list is
a list of booleans, coded 1 for "up" and 0 for "down". When a name is repeated in the index_list,
only two occurrences are allowed, one being tagged as "up" and the other as "down".

Remark 21.7.3. Another method would have been to build a stratospheric theory using the mar-
velous operator ⊗ (read it as otimes). But we need something else, i.e. a practical computing
tool. Using Mathematica, Sage or any other formal computing tool instead of Maple is probably
possible... mind the details, they are where the devil lives.

Fact 21.7.4. When X is a Maple_rtable, the command ArrDim, defined by
macro(ArrDim=ArrayTools[Dimensions])

returns a list of Maple ranges, i.e. something like 1..3,1..2,1..4 and then X[tut1,tut2,tut3]
returns some value, assuming that variables tut1,tut2,tut3 contain integer numbers inside the
right ranges. Here, the tutj are freshly build Maple variables, and not the names given in the
index_list.

Maple 21.7.5. In order to implement Einstein’s (1) or (2), the naming conventions must be
explicitly stated. When assuming Table 21.1 the following procedure will inform the computer of
our choices:

1: setvars := proc (var) ; global glodex
2: if member(var , [m,n, p, q , r ]) then glodex := [m,n, p, q , r ] ; return [x , y , z ]
3: else if member(var , [a, b, c, d , e]) then glodex := [a, b, c, d , e] ; return [u, v ,w ]
4: else if member(var , [µ, ν, φ, ψ, ρ]) then glodex := [µ, ν, φ, ψ, ρ] ; return [u, v ]
5: else glodex := [σ, τ, ε, ω, κ] return [s, t ]
6: end if

Listing 21.1: Procedure setvars tells our naming conventions to the computer

Maple 21.7.6. Applying some process to each element of the internal array is done by procedure
Alg. 21.2. As examples, action can be factor or U-> simplify(U,symbolic).

1: atens := proc (qui , action) ; local tt1 , tt2 , tt3
2: tt1 , tt2 , tt3 := op(qui)
3: return [tt1 , tt2 ,map(action, tt3 )]

Listing 21.2: The atens procedure (A means Action)

Maple 21.7.7. While the reader is supposed to decipher Xj
,µ as ∂Xj/∂uµ, this has to be explained

to a computer by procedure Alg. 21.3.

Maple 21.7.8. While the reader is supposed to decipher ambn as another tensor build using
(m,n) 7→ am × bn, this has to be explained to a computer by procedure Alg. 21.4.
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Require: qui depends on the var indexed variables
1: dtens := proc (qui , var , updo)
2: local laproc, tt1 , tt2 , tt3 , nn, lesdex , ttq , vars
3: tt1 , tt2 , tt3 := op(qui) ; vars := setvars(var)
4: nn := nops(tt1 ) ; lesdex := seq(Catenate(tut , j ), j = 1 ..nn)
5: (lesdexx , ttq) 7→ diff (tt3 [lesdexx ], vars[ttq ])
6: laproc := subs(lesdexx = lesdex ,%)
7: tt1 := [op(tt1 ), var ] ; tt2 := [op(tt2 ), updo]
8: return [tt1 , tt2 , rtable(op(ArrDim(tt3 )), 1 ..nops(vars), eval(laproc))]

Listing 21.3: The dtens procedure (D means Derivation)

1: ctens := proc (v1 , v2 )
2: local ss1 , ss2 , ss3 , tt1 , tt2 , tt3 , tmp, lesdex1 , lesdex2 , lesdex , laproc
3: ss1 , ss2 , ss3 := op(v1 ) ; tt1 , tt2 , tt3 := op(v2 )
4: lesdex1 := seq(Catenate(tut , j ), j = 1 ..nops(ss1 ))
5: lesdex2 := seq(Catenate(tvt , j ), j = 1 ..nops(tt1 ))
6: lesdex := lesdex1 , lesdex2
7: lesdexx 7→ ss3 [lesdexx1 ] ∗ tt3 [lesdexx2 ]
8: laproc := subs(lesdexx = lesdex , lesdexx1 = lesdex1 , lesdexx2 = lesdex2 ,%)
9: tmp := [op(ss1 ), op(tt1 )], [op(ss2 ), op(tt2 )]

10: return [tmp, rtable(op(ArrDim(ss3 )), op(ArrDim(tt3 )), eval(laproc))]
Ensure: Some tests are done on indices: repetition requires one index up, one down.
——
The "arrow" procedure defined at line 7 must go through the cryptic substitutions of line 8 in
order to be accepted by the Maple constructor rtable at line 10.
Accept this state of affairs... or rewrite the whole array package !

Listing 21.4: The ctens procedure (C means Catenate)

Maple 21.7.9. While the reader is supposed to decipher amnnµ as a two indices tensor, build using
(m,µ) 7→∑

n a
mn
nµ , this new tensor has to be explicitly created by procedure Alg. 21.5.

1: rtens := proc (qui , vas) ; global tt3 , laproc
2: local tt1 , tt2 , ou1 , ou2 , lemu, lesdex , lesdey , lesdim, lestt2 , lestt1
3: tt1 , tt2 , tt3 := op(qui)
4: member(vas, tt1 , ou1 ) ; member(vas, subsop(ou1 = KKK , tt1 ), ou2 )
5: lesdex := [seq ](Catenate(tut , j ), j = 1 ..nops(tt1 ))
6: lesdey := (op@subsop)(ou1 = NULL, ou2 = NULL, lesdex )
7: lesdim := (op@subsop)(ou1 = NULL, ou2 = NULL,ArrDim(tt3 ))
8: lesdex := (op@subsop)(ou1 = vas, ou2 = vas, lesdex )
9: lestt1 := subsop(ou1 = NULL, ou2 = NULL, tt1 )

10: lestt2 := subsop(ou1 = NULL, ou2 = NULL, tt2 )
11: lemu := ArrDim(tt3 )[ou1 ] ; lesdeyy 7→ add(tt3 [lesdexx ], vas = lemuu)
12: laproc := subs(lesdexx = lesdex , lesdeyy = lesdey , lemuu = lemu,%)
13: if nops(lestt2 ) = 0 then return eval(laproc)()
14: return [lestt1 , lestt2 , rtable(lesdim, eval(laproc))]

Listing 21.5: The rtens procedure (R means Reduce)

Example 21.7.10. xm,µ duµ means
[(

∂xj
∂u du+

∂xj
∂v dv

)
, j = 1..3

]
. In our formalism, a sequence

DCR is used to construct this 1-index tensor. From a complexity point of view, this is far from
being optimal. But, in what we are doing, the underlying arrays are not sufficiently large to require
a careful optimization.
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Maple 21.7.11. Adding two tensors require that indices lists are exactly the same (and the
up/down list also). Reorderering of indices is done by 21.6, while the addition itself is done by
21.7.

1: xtens := proc(qui , org) ; global tt3_
2: local tt1 , tt2 , ss2 , frum, vers, lafun_, udpo, dims
3: tt1 , tt2 , tt3_ := op(qui)
4: if convert(org , set) <> convert(tt1 , set) then Error(”wrong set of indices”)
5: frum := cat(‘@‘(op,map2 )(sprintf , ”%a, ”, org))[1 ..− 2 ]
6: vers := cat(‘@‘(op,map2 )(sprintf , ”%a, ”, tt1 ))[1 ..− 2 ]
7: cat(”(”, frum, ”) − > tt3_(”, vers, ”)”) ; lafun_ := parse(Ditto1 ())
8: udpo := table([seq ](tt1 [j ] = tt2 [j ], j = 1 ..nops(tt1 ))) ; ss2 := [seq ](udpo[j ], j = org)
9: dims := table([seq ](tt1 [j ] = ArrDim(tt3_)[j ], j = 1 ..nops(tt1 )))

10: return [org , ss2 , eval(rtable(seq(dims[j ], j = org), lafun_))]

Listing 21.6: The xtens procedure (X means Xcross)

1: addtens2 := proc(trr , tss, laproc := factor , {mul1 := 1 ,mul2 := 1})
2: local tt1 , tt2 , tt3 , ss1 , ss2 , ss3
3: tt1 , tt2 , tt3 := op(trr) ; ss1 , ss2 , ss3 := op(tss)
4: if tt1 <> ss1 or tt2 <> ss2 then error (”indices doesn′t match”)
5: return [tt1 , tt2 ,map(‘@‘(eval , laproc),mul1 ∗ tt3 + mul2 ∗ ss3 )]

Listing 21.7: The addtens2 procedure

21.8 The sphere: dealing with an example

21.8.1 External and internal coordinates
Fact 21.8.1. When describing a "surface", the simplest way to proceed is embedding the surface
into some larger space, leading to something like

(x, y, z) ∈ (E) means x2 + y2 + z2 − 1 = 0

The first step towards a more intrinsic way of doing is to describe these external coordinates from
"the real world" i.e. from the surface itself, as if there was nothing outside.

Example 21.8.2. One can check that equations [u, v, w] = W and [x, y, z] = X̂ where :

W a =
x

[
[a], [1],

[
x

1 + z
,

y

1 + z
,
x2 + y2 + z2 − 1

1 + z

]]

X̂m =
w

[
[m], [1],

[
u (w + 2)

1 + u2 + v2
,
v (w + 2)

1 + u2 + v2
,

1 + w − u2 − v2

1 + u2 + v2

]]

describes a pair of bijections (x, y, z) 7→ (u, v, w) 7→ (x, y, z). They are differentiable quite every-
where. When making w = 0, we are selecting the points of the sphere x2 + y2 + z2 = 1.

Let us define U and X by:

Uµ =
x

[
[µ], [1],

[
x

1 + z
,

y

1 + z

]]

Xm =
u

[
[m], [1],

[
2u

u2 + v2 + 1
,

2 v

u2 + v2 + 1
,

1− u2 − v2

1 + u2 + v2

]]

Then the pairs U = (u,w) are a system of internal coordinates for the sphere, while the triples
(x, y, z) are a system of external coordinates for the same surface, bound by the so called implicit
equation of the sphere.
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We will also introduce another set of internal coordinates Tσ = [t, s] by equations

Tσ =
u

[
[σ], [1],

[
arcsin

(
1− u2 − v2

1 + u2 + v2

)
, arctan

(
v

1 + u2 + v2
,

u

1 + u2 + v2

)]]

=
x

[[σ], [1], [ arcsin (z) , arctan (y, x)]]

and their converses:

Uµ =
s

[
[µ], [1],

[
cos (s) cos (t)

1 + sin (t)
,

sin (s) cos (t)

1 + sin (t)

]]

Xm = [[m], [1], [cos s cos t, sin s cos t, sin t]]

21.8.2 Jacobians

Notation 21.8.3. More than ever, notations of Table 21.1 are used.

Fact 21.8.4. The external description of the tangent plane at M is

∂
(
x2 + y2 + z2 − 1

)

∂ (x; y; z)
· −−−−−−−→[dx, dy, dz] = 0

At a regular point, i.e. almost everywhere, the [ dx, dy, dz] variations of the external coordinates
[x, y, z] are linearly correlated with the variations of any other set of coordinates. In fact, this is
the very existence of such an invertible transform which decides if changing from a set of coordi-
nates to another set is allowed or not. The matrices expressing these transformations are called
the Jacobians and noted Nµ

,m (where N indicates Jacobian, µ indicate new=u, v and m indicates
old=x, y, z. In other words: dµ = Nµ

,m dm.

21.8.2.1 Internal versus another internal

Proposition 21.8.5. The 2× 2 tensors Nµ
,σ1

ν
µN

τ
,ν and Nµ

,σ1
σ
τN

τ
,ν are respectively equal to and 1τσ

and 1µν .

Proof. Both tensors describe respectively [ ds, dt] and [ du, dv] wrt themselves, so that obvious is
obvious. But, in order to check the procedures given above, let us compute explicitly the Jacobians
of (u, v) versus (s, t) and conversely. And then rewrite them using the other set of variables. This
leads to:

∂ (u, v)

∂ (s, t)
≡ Nµ

,σ =
t


[µ, σ], [1, 0],




− cos (s)

1 + sin (t)

− cos (t) sin (s)

1 + sin (t)
− sin (s)

1 + sin (t)

cos (t) cos (s)

1 + sin (t)







=
u


[µ, σ], [1, 0],




−u
(
1 + u2 + v2

)

2
√
u2 + v2

−v
−v
(
1 + u2 + v2

)

2
√
u2 + v2

+u







=
x


[µ, σ], [1, 0],




−x
(1 + z)

√
1− z2

−y
1 + z

−y
(1 + z)

√
1− z2

+x

1 + z






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∂ (s, t)

∂ (u, v)
≡ Nσ

,µ =
u


[σ, µ], [1, 0],




−2u

(1 + u2 + v2)
√
u2 + v2

−2 v

(1 + u2 + v2)
√
u2 + v2

−v
u2 + v2

+u

u2 + v2







=
t


[τ, ν], [1, 0],



− cos s (1 + sin t) − sin s (1 + sin t)
− sin s (1 + sin t)

cos t

cos s (1 + sin t)

cos t






=
x


[σ, µ], [1, 0],



−x (1 + z)√

1− z2

−y (1 + z)√
1− z2

−y
1− z

x

1− z







Therefore, Nµ
,σ1

ν
µN

τ
,ν can be computed using any of u, t, x as algebraic basis, leading to

seq(rtens(ctens(
Jac(sigma,mu,X),Jac(nu,tau,X),kron(mu,nu)), mu, nu), X=[u,t,x]);

The same remarks apply to
seq(rtens(ctens(

Jac(sigma,mu,X),Jac(nu,tau,X),kron(tau,sigma)), sigma,tau), X=[u,t,x]);

21.8.2.2 internal versus external

Exercise 21.8.6. Show that the (u, v) versus (x, y, z) Jacobians are respectively:

Nµ
,m =

x


[µ,m], [1, 0],




1

1 + z
0

−x
(1 + z)

2

0
1

1 + z

−y
(1 + z)

2







=
u

[
[µ,m], [1, 0],

1

2

(
1 + u2 + v2

)
[

1 0 −u
0 1 −v

]]

Nm
,µ =

u


[m,µ], [1, 0],

2

(1 + u2 + v2)
2




1− u2 + v2 −2uv

−2uv 1 + u2 − v2

−2u −2v







=
x


[n, ν], [1, 0],




1− x2 + z −yx
−yx 1− y2 + z

−x (1 + z) −y (1 + z)







Moreover, compute Nµ
,m1mn Nn

,ν and Nµ
,m1νµN

n
,ν .

Exercise 21.8.7. Show that the (t, s) versus (x, y, z) Jacobians are respectively:

Nσ
,m =

x


[σ,m], [1, 0],




0 0
1√

1− z2

−y
1− z2

+x

1− z2
0







=
t


[σ,m], [1, 0],


 0 0

1

cos t
−2 sin s +2 cos s −2 cos s






=
u

[
[σ,m], [1, 0],

1 + u2 + v2

2 (u2 + v2)

[
0 0

√
u2 + v2

−v +u 0

]]
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Nm
,σ =

t


[m,σ], [1, 0],



− cos s sin t − sin s cos t

− sin s sin t cos s cos t

cos t 0







=
x


[m,σ], [1, 0],




−xz√
1− z2

−y
−yz√
1− z2

+x
√

1− z2 0







=
u




[m,σ], [1, 0],




−u
(
1− u2 − v2

)
√
u2 + v2 (1 + u2 + v2)

−2 v

1 + u2 + v2

−v
(
1− u2 − v2

)
√
u2 + v2 (u2 + v2 + 1)

+2u

1 + u2 + v2

2
√
u2 + v2

1 + u2 + v2
0







Moreover, compute Nσ
,m1mn Nn

,τ and Nσ
,m1τσN

n
,τ .

21.8.3 More about the projectors
Proposition 21.8.8. The 2 × 2 tensor Nσ

,m1mn Nn
,τ equals 1στ , while the 3 × 3 tensor Nσ

,m1τσN
n
,τ

describes a projector onto the tangent plane.

Proof. The first tensor describes [ dt, ds] wrt itself and therefore is the Kronecker tensor. The
second assertion comes from the fact that the normal vector necessarily belongs to orthogonal of
colspan

(
Nn
,σ

)
. This can be checked using

pt_x, pt_u, pt_t:= seq(rtens(ctens(
Jac(m,sigma,X),Jac(tau,n,X),kron(sigma,tau)), sigma,tau)[3], X=[x,u,t]):

which produces a matrix having X (X − 1)
2 as characteristic polynomial:

Ut =
x


[m,n], [1, 0],

1

x2 + y2




+y2 −yx −xz
−yx +x2 −yz

0 0 x2 + y2





 =

u

1

u2 + v2




v2 −uv u

2

(
u2 + v2 − 1

)

−uv u2 v

2

(
u2 + v2 − 1

)

0 0 1




And now, we can consider matrices P,Q where:

P =




x

y Nm
,σ

0


 =



x −zx −y
y −yz +x

0 1− z2 0


 · diag

(
1,

1

W
, 1

)

Q =




1

1− z2

[
x y z

]

Nσ
,m




=
1

1− z2




x y z

0 0 W

−y +x 0




Then P.Q = 1 while Q · Ut · P = diag(0, 1, 1).

21.8.4 The metric tensor
Proposition 21.8.9. For each set of variables, the metric tensor Gmn is defined by

ds2 = dxmGmn dxn

This is indeed a tensor, since a change of variable results into

Gµν = Nm
µ Nn

νGmn (21.7)

Proof. Substitute dxn = Nn
ν duν , etc and obtain an equality which must hold for all the

−→
du
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Example 21.8.10. Here are the values of the two metric tensors Gµν and Gστ .

Gµν =
u

[
[µ, ν], [0, 0],

(
2

1 + u2 + v2

)2
[

1 0

0 1

]]

=
x

[
[µ, ν], [0, 0],

1

(1 + z)
2

[
1 0

0 1

]]

Gστ =
t

[
[σ, τ ], [0, 0],

[
1 0

0 cos t2

]]

=
u


[σ, τ ], [0, 0],




1 0

0

(
2
(
u2 + v2

)

1 + u2 + v2

)2







=
x

[
[σ, τ ], [0, 0],

[
1 0

0 1− z2

]]

21.9 Christoffel symbols

Notation 21.9.1. More than ever, notations of Table 21.1 are in use.

21.9.1 Covariance

Definition 21.9.2. God said to Abraham: "down is covariant, up is contravariant. Don’t discuss
any more about that".

Remark 21.9.3. Before the divine decree, some theologians were arguing that

−→v .
= [−→e1 ,

−→e2 ] ·
(

dx1; dx2
)

= dx1−→e1 + dx2−→e2

provides a model for covariant/contravariant. If −→v is supposed to be a real, observable thing then
the dxj have to be divided by a factor 2 when the −→ej are multiplied by the same factor 2. Indeed,
observable doesn’t means that all observers obtain the same figures for their measurements, but
that each observer can compute and predict which figures another specified observer will obtain
for her measurements.

But the devil is in the details. The symbol dx1 means the first element in the set of all the
( du)u∈J , while dj means all of them... i.e. another copy of dk = ( du)u∈J .

Remark 21.9.4. In linear algebra, x
old

= P · x
new

implies x
new

= P−1 · x
old

where P is the change of
basis matrix. And this is because basis

new
= P · basis

old
. Here, in tensor calculus, you only have to

write:
Gµν = GmnN

m
,µN

n
,ν ; Gmn = GµνN

µ
,mNn

,ν

and the pairing of indices tells you which is the one to use from Nm
,µor Nµ

,m.

21.9.2 Taking the steepest line as an example

Definition 21.9.5. Vector
−→
k

.
=
−−−−−−→
k1, k2, k3

.
=

t
[k1, k2, k3] is a "true" vector in the C3 space. Its

tensor representation is [[m] , [1] , [k1, k2, k3]]. Then the tensor:

(
∧−→k

)m
n

.
=


[m,n], [1, 0],




0 k3 −k2

−k3 0 k1

k2 −k1 0







implements the rule
(
∧−→k

)m
n

(−→v )
n

=
(−→v ∧ −→k

)
.
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Fact 21.9.6. When seeing the usual sphere (E) as embedded into C3, a normal vector to (E) at
M = (x, y, z) is −→n =t (x, y, z) while the vertical vector is −→ez = t (0, 0, 1). Then an horizontal
vector at M and a North pointing vector at M are respectively Bm and Am where

Bm
.
=
(
∧−→k

)m
n

(−→ez)
n

=
x

[[m], [1], [−y, x, 0]]

Am
.
=
(
∧−→k

)m
n
An =

x

[
[m], [1], [xz, yz,−x2 − y2]

]

On the other hand, the horizontal line and the steepest line at M are respectively GmnB
n and

GmnA
n.

Fact 21.9.7. This requires that Am and Bm aren’t null, i.e. that (x, y, z) 6= (0, 0,±1). Moreover,
these vectors belong to the tangent plane. Therefore, it makes sense to compute the "local coor-
dinates" of these vectors using the formula already in use for the d, namely dµ

.
= dmNµ

,m. We
have:

Bµ
.
=BmNµ

,m = [[µ], [1], [−v,+u]] ; Aµ
.
=AmNµ

,m = [[µ], [1], [+u,+v]]

Bσ
.
=BmNσ

,m = [[σ], [1], [0, 1]] ; Aσ
.
=AmNσ

,m = [[σ], [1], [− cos t, 0]]

And we can check that Bσ = BµN
µ
,σ, etc, as required for a covariant tensor while we can check that

Aµ = AσNµ
,σ, etc, as required for a contravariant tensor.1

21.9.3 Computing the Christoffels
A theoretical definition of the Christoffel symbols is delayed to a later subsection. Indeed, we want
to discuss how to correctly define these objects, and indicate some wrong ways of doing. There-
fore, we will introduce these symbols by taking their most important property... as a provisional
definition, which can be used to check every equalities given in this document.

Definition 21.9.8. Quantities Γψ|µν and Γφµν (where µ, ν, φ, ψ are internal indices) are respectively
called the Christoffels of first kind and second kind. They are not tensors, but will be used to form
other tensors by contraction. They are computed from the metric, using

Γψ|µν =
1

2
(Gµψ,ν + Gψν,µ −Gνµ,ψ)

Γφµν = Γψ|µνG
φψ ⇐⇒ Γψ|µν = GψφΓφµν

Maple 21.9.9. The Alg. 21.8 algorithm implements the computation of the Christoffel symbols.

Require: σ, τ, υ, t must be compatible with ω
1: chdotens := proc (ω, σ, τ, t) ; global glodex , part1_
2: local setglodex , lesvars, part1 , fu1 , gu2 , qqq , qq , tmp1 , tmp2
3: lesvars := setvars(ω) ; setglodex := convert(glodex , set)
4: if {ω, σ, τ} ‘minus‘ setglodex 6= {} then Error(”wrong indexes”) end if
5: if not member(t , lesvars) then Error(”wrong variable”) end if
6: qqq := setglodex minus {ω, σ, τ} ; qq := qqq [1 ] – un test a lieu
7: part1_ := dtens(GG(σ, τ, t), qq) ; fu1 := mkfu(part1_)
8: gu2 := ω, σ, τ 7→ eval((fu1 (ω, σ, τ) + fu1 (ω, τ, σ)− fu1 (τ, σ, ω))/2 )
9: tmp1 := [[ω, σ, τ ], [0 , 0 , 0 ], rtable(1 ..2 , 1 ..2 , 1 ..2 , gu2 )]

10: tmp2 := ctens(uGG(qq , ω, t), tmp1 )
11: return tmp1 , rtens(tmp2 , ω)
Ensure: in Γω|στ and Γυστ the first index is the "derivative" index

Listing 21.8: The chdotens procedure

1If you are affected by a dyslexia disorder more severe than 5%, then never ever use "contravariant" and "like"
in the same sentence. Better use: A is contravariant, while dx is also contravariant. Don’t create a mess like "the
north end of a compass is attracted to the south magnetic pole of the earth, which lies close to the geographic north
pole".
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Exercise 21.9.10. Consider the usual unit sphere x2 + y2 + z2 = 1 and introduce the usual
geographic coordinates (t, s) by the equations

[x, y, z] = [cos t cos s, cos t sin s, sin t] ,

where the latitude t ranges from −π/2 (aka 90° South) to +π/2 (aka 90° North). Everybody acts
like that, except from a small minority of snobs. Therefore, cos t ≥ 0 is ever assumed. Show that
the corresponding Christoffels are:

[t, s] 111 112 211 212

121 122 221 222

Γω|στ 0 0 0 − cos t sin t

0 cos t sin t − cos t sin t 0

Γεστ 0 0 0 − tan t

0 cos t sin t − tan t 0

Exercise 21.9.11. Consider now the usual stereographic coordinates (u, v) defined by:

[x, y, z] =

[
2u

1 + u2 + v2
,

2v

1 + u2 + v2
,

1− u2 − v2

1 + u2 + v2

]

and show that the corresponding Christoffels are:

[u, v] K 111 112 211 212

121 122 221 222

Γψ|µν
8

(u2 + v2 + 1)
3 −u −v +v −u

−v +u −u −v

Γφµν
2

u2 + v2 + 1
−u −v v −u
−v +u −u −v

21.9.4 Defining the Christoffels
Definition 21.9.12. Consider two tensors Xm

Z , Y
m
Z where Z is a set of internal indices in the same

upper or lower places for both tensors and m is an external index (here m ∈ 1..3 is assumed). We
will say that X and Y are equal up to their normal components, and note

Xm
Z = Y mZ +O

(−→n
)

when the property −−−−−−−−→
X1
z , X

2
z , X

3
z −
−−−−−−−→
Y 1
z , Y

2
z , Y

3
z ∈ C−→n ⊂ C3.

holds for all the instanciations z of Z.

Proposition 21.9.13. Equivalently, tensors Xm
Z , Y

m
Z are equal up to their normal components

when
(Xm

Z -Y mZ )GmnN
n
,ν = (0)Zν where ν 6∈ Z

Proof. When dν varies, the 3D-vectors
−−−−−−−−−−−−−−−→
N1
,ν dν ,N2

,ν dν ,N3
,ν dν span the whole tangent plane. Thus

an O
(−→n
)
vector is orthogonal to all of them, and conversely.

Definition 21.9.14. The Christoffel symbols are defined by

∂2xm

∂uµ ∂uν
= Γφµν

∂xm

∂uφ
+O

(−→n
)

; Γψ|µν = GψφΓφµν

Equivalently, we have:

Gmn

(
∂2xm

∂uµ ∂uν
− Γφµν

∂xm

∂uφ

)
∂xn

∂uψ
= (0)ψµν (21.8)
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Γψ|µν = GφψΓφµν = GmnN
m
,µνN

n
,ψ

Remark 21.9.15. In cyril@ERE (2016), Γφµν is defined by Γφµν =
∂uφ

∂xm
∂2xm

∂uµ∂uν
... but this formula

is wrong when we simply replace each quantity by its (correct) definition. On the contrary, we
have to define the Γφµν by the already given formula

xm,µν = xm,φ Γφµν +O
(−→n
)

Theorem 21.9.16. When the Christoffels are defined by (21.8), then the provisional definition

Γψ|µν =
1

2
(Gµψ,ν + Gψν,µ −Gνµ,ψ) (21.9)

Γφµν = Γψ|µνG
φψ ⇐⇒ Γψ|µν = GψφΓφµν

becomes a theorem.

Proof. Start from gµν
.
= ηmn

∂xm

∂uµ
∂xn

∂uν
and obtain the following relations:

∂gµν
∂uφ

=
∂

∂uφ

(
ηmn

∂xm

∂uµ
∂xn

∂uν

)

∂gµν
∂uφ

= ηmn

(
∂2xm

∂uφ ∂uµ

)
∂xn

∂uν
+ ηmn

(
∂2xn

∂uφ ∂uν

)
∂xm

∂uµ

= ηmn

(
∂xm

∂uψ
Γψµφ

)
∂xn

∂uν
+ ηmn

(
∂xn

∂uψ
Γψνφ

)
∂xm

∂uµ

=

(
ηmn

∂xm

∂uψ
∂xn

∂uν

)
Γψµφ +

(
ηmn

∂xm

∂uµ
∂xn

∂uψ

)
Γψνφ

∂gµν
∂uφ

= gψν Γψµφ + gµψ Γψνφ = gψν Γψµφ + gψµ Γψφν

Then call F (µ, ν, φ) this formula, and compute F(µ, ψ, ν) + F(ψ, ν, µ)−F(ν, µ, ψ).

Proposition 21.9.17. The Christoffels transform according to the rules:

Γεστ = Γφµν N
µ
,σN

ν
,τ N

ε
,φ + Nν

,σ,τ N
ε
,ν

Γω|στ = Γφ|νµN
φ
,ωN

ν
,σN

µ
,τ + Nν

,στ GνφN
φ
,ω (21.10)

In other words, the "linear tensorial" term which depends on the up/down nature of the indices
is completed by a second term containing some second order derivatives.

Proof. The formula Γω|στ = Gmnx
m
,στ x

n
,ω can be extended into:

Γω|στ = Gmn
∂

∂tτ

(
∂xm

∂uν
∂uν

∂tσ

) (
∂xn

∂uψ
∂uψ

∂tω

)

=
∂

∂tτ

(
∂xm

∂uν

)
∂xn

∂uψ
∂uψ

∂tω
∂uν

∂tσ
+

∂

∂tτ

(
∂uν

∂tσ

) (
Gmn

∂xm

∂uν
∂xn

∂uψ

)
∂uψ

∂tω

= Gmn

(
∂2xm

∂uν∂uµ
∂uµ

∂tτ

)
∂xn

∂uψ
∂uψ

∂tω
∂uν

∂tσ
+

(
∂2uν

∂tσ∂tτ

)
Gνψ

∂uψ

∂tω

=

(
Gmn

∂2xm

∂uν∂uµ
∂xn

∂uψ

)
∂uµ

∂tτ
∂uψ

∂tω
∂uν

∂tσ
+

(
∂2uν

∂tσ∂tτ

)
Gνψ

∂uψ

∂tω

= Γψ|νµN
ψ
,ωN

ν
,σN

µ
,τ + Nν

,στ GνψNψ
,ω
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21.9.5 Moving
From the external point of view, the most probable result when moving, even a little bit, from a
point M ∈ (E) is to left the surface, evading into the external world. Therefore we need a more
elaborated concept of "moving".

Definition 21.9.18. We distinguish three different notions of "variation".

1. ∆x denotes a non elaborated difference, according to the model ∆x = x2 − x1;

2. δx denotes an "infinitesimal variation", obeying to the informal rules δx 6= 0 together with
(δx)

2
= 0... and to the formal rules stated by Newton, Leibniz and Landau.

3. dx denotes a "long range variable", not submitted to the ( dx)
2

= 0 rule, but bound to some
specific tangent plane.

Remark 21.9.19. Let B be a covariant vector, depicted at a pointM by the pair of tensor equations:
Bµ = xm,µBm and Bm = uµ,mBµ. Then we move it from the map in use at point M to the map in
use at point M + δM . In an ordinary cartesian frame, we simply have δBm = 0. In another frame,
we have:

δBµ = δ
(
xm,µBm

)
= δ

(
xm,µ
)
Bm = xm,µν duν Bm =

(
xm,µν u

ψ
,m

)
Bψ duν

= Γψµν Bψ duν

Definition 21.9.20. The variation due to a parallel transport of quantity Bµ is defined by

δBµ
.
= +Bψ Γψµν duν

δAµ
.
= −Aψ Γµψν duν

and this is extended to any tensor (a corrective term per index, with the right sign). Therefore
this variation doesn’t depend on the embedding chosen to introduce the surface, but depends only
on its (intrinsic) metric G.

Proof. For a contravariant vector Aσ, the constraint δ (Bσ A
σ) = 0 leads to

δ (BµA
µ) = Aµδ (Bµ) +Bµδ (Aµ)

= AµBψ Γψµν duν −AψBµ Γµψν duν

Definition 21.9.21. The variation dBσ = Bσ,τ duτ of a vector is seen as the sum of two terms.
One of them is due to the parallel transport, i.e. the change of the local map due to the displace-
ment. And the difference can be seen as "the true variation" of the vector. This term is called the
covariant derivative of Bσ and noted with a semi-colon. In other words:

Bσ;τ
.
= Bσ,τ − ΓεστBε ; Aσ;τ

.
= Aσ,τ + ΓεστBε

Proposition 21.9.22. The covariant derivative of a tensor is another tensor.

Proof. Starting from the definition, we have:

Bσ;τ = Bσ,τ − ΓεστBε =
(
tµ,σ Bµ

)
,τ
−
(
Γφµν t

µ
,σ t

ν
,τ u

ε
,φ + tν,στ u

ε
,ν

)
tψ,εBψ

= tµ,στ Bµ + tµ,σ Bµ,ν t
ν
,τ − Γφµν t

µ
,σ t

ν
,τ Bψ

(
uε,φ t

ψ
,ε

)
− tν,στ Bψ

(
uε,ν t

ψ
,ε

)

=
(
tµ,στ Bµ − tν,στ Bψ

(
uε,ν t

ψ
,ε

))
+ tµ,σ t

ν
,τ Bµ,ν − Γφµν t

µ
,τ t

ν
,σ Bψ

(
uε,φ t

ψ
,ε

)

=
(
tµ,στ Bµ − tν,στ Bν

)
+ tµ,σ t

ν
,τ

(
Bµ,ν − Γφµν Bφ

)
= tµ,σ t

ν
,τ Bµ;ν

21.10 Curvature
Definition 21.10.1. Explicit coordinates. Consider the surface (E) = {(x, y, z) |z = F (x, y)},
where the [x, y, z] are living in an euclidean 3D space. Then we can use [u, v]

.
= [x, y] as internal

coordinates.
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Notation 21.10.2. Using indices µ, ν, φ, ψ, ρ in association with variables u, v and indicesm,n, p, q, r
in association with variables x, y, z, we have:

Nk
,µ =


[k, µ], [1, 0],




1 0

0 1

Fu Fv





 ; Gµν =

[
[µ, ν], [0, 0],

[
F 2
u + 1 FuFv

FuFv F 2
v + 1

]]

where the Fu, Fv are the Frenet symbols (in any case, we will never use i, j, u, v as tensorial indices).

Fact 21.10.3. Let −→n be a normal vector to the tangent plane and Nq an associated tensor. We
have:

Nq = [[q], [1], [−Fu,−Fv, 1]]

Remark 21.10.4. We have the matrix product:



0 0 Fuu

0 0 Fuv

0 0 Fvv


 =

1

1 + F 2
u + F 2

v



−FuFuu −FvFuu Fuu

−FuFuv −FvFuv Fuv

−FuFvv −FvFvv Fvv


 ·




1 0 −Fu
0 1 −Fv
Fu Fv 1




where the coefficients are



−Γ1

11 −Γ2
11 L

−Γ1
12 −Γ2

12 M

−Γ1
22 −Γ2

22 N




Proposition 21.10.5. When cutting (E) by a moving plane Pϑ containing n, we obtain a curve γϑ
and we examine its curvature κϑ. This quantity is obtained by dividing twice the normal increment
by the squared tangential increment. When the moving point r on the curve depends on a single
parameter, we have the formula :

κ
.
=

∣∣∣∣r̈ ∧
ṙ

|ṙ|

∣∣∣∣÷ |ṙ|
2

=
|r̈ ∧ ṙ|
|ṙ|3

where the fluxions are taken wrt the parameter of the curve.

Proof. Well known formula.

Proposition 21.10.6. The curvature is given by the quotient of two quadratic forms:

κϑ =
1√

detGµν

II (dx, dy)

I (dx, dy)

where I (dx, dy) is the metric form (noted Gµν here) and gives the squared tangential increment,
while the normal increment is measured using:

II (dx, dy) = 2 (δr) · n = ( dx, dy)

(
Fxx Fxy

Fxy Fyy

)(
dx

dy

)

Proof. We have |n|2 = 1 + F 2
u + F 2

v = detGµν , while x ∧P ṙ
|ṙ| = x · n

|n| holds for any vector x in
the tangent plane.

Exercise 21.10.7. Use F (u, v) =
√
R2 − u2 − v2 and obtain

−→n =
[u
z
,
v

z
, 1
]

; |−→n | = R2

z2
; I =

1

z2

[
R2 − v2 uv

uv R2 − u2

]
; II = −zI

Finally, κϑ = −1/R (−→n is the outer normal... and the center is "inside").

Lemma 21.10.8. When II and I are two quadratic forms (and I is definite), then

max

(II (x, y)

I (x, y)

)
∗min

(II (x, y)

I (x, y)

)
=

det II
det I

—– pldx : Translation of the Kimberling’s Glossary into barycentrics – vA2 —–



302 21.10. Curvature

Proof. Let II = [ L M
M N ] and I = [E F

F G ].

(1) brute force method: differentiate κ .
=
Lu2 + 2Muv +Nv2

Eu2 + 2Fuv +Gv2
and solve in u and v. Then substi-

tute and simplify κmin ∗ κmax

(2) educated method: diagonalize the matrix II/I. This allows a simultaneous reduction of the
quadratic forms, so that κmin and κmax are the eigenvalues of matrix II/I.

Lemma 21.10.9. The following quantity is a tensor, named the Riemann-Christoffel curvature
tensor.

Bijkl = Γirk Γrjl − Γirl Γ
r
jk + Γijl,k − Γijk,l

This tensor is anti-symmetric wrt k, l, and doesn’t contains any third order derivative of F .

Proof. Tensorial property comes from the Christoffel formula. Morover, we have:

Bijkl =

(
FuuFvv − F 2

vu

)

(1 + F 2
u + F 2

v )
2







1121 −FuFv
2221 +FuFv

1112 +FuFv

2212 −FuFv


 ;




2121 +
(
F 2
u + 1

)

1221 −
(
F 2
v + 1

)

2112 −
(
F 2
u + 1

)

1212 −
(
F 2
v + 1

)







Bijkl =

(
FuuFvv − F 2

vu

1 + F 2
u + F 2

v

)






2121 −1

1221 +1

2112 +1

1212 −1







(other components being nul).

Theorem 21.10.10. The product of the extremal curvatures, i.e.

K = κminκmax =
FuuFvv − F 2

uv

(1 + F 2
u + F 2

v )
2

doesn’t depends on the chosen explicit parametrization.

Proof. Contract Bijkl on i, l and obtain the Ricci tensor :

Rjk = Bijki =

[
[µ, ν], [0, 0],

(
FuuFvv − F 2

vu

)

(F 2
u + F 2

v + 1)
2

[
−
(
F 2
u + 1

)
−FuFv

−FuFv −
(
F 2
v + 1

)
]]

Contract again and obtain the scalar curvature

R
.
= gjk Rjk = (−2)

FuuFvv − F 2
uv

(1 + F 2
u + F 2

v )
2 = −2K

Being tensorial, this quantity is therefore an invariant of the surface (E).

Remark 21.10.11. Formula Bijkl is top and formemost about general Riemann spaces, with dimen-
sions greater then 2. When dealing with surfaces, due the skew-symmetry of Bijkl wrt pairs of
indices (i, j) et (k, l), B1212 is the only independent component of the Riemann-Christoffel tensor.
And then, the curvature formula simplifies into:

K = B1212/det gij
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21.11 Back to Poincaré and Klein

Kleinµ =

[
[µ], [1],

[
2 z

1 + ζ z
,

2 ζ

1 + ζ z

]]

Poincareσ =

[
[σ], [1],

[
1−W
κ

,
1−W
k

]]

W =
1− ζ z
1 + ζ z

=
√

1− kκ

As a mnemonic, k, κ are related to Klein, while z, ζ are related to Poincaré.

Exercise 21.11.1. Compute the Jacobians and obtain:

Nσ
,µ =

[
[σ, µ], [1, 0],

1 + zζ

2 (1− zζ)

[
1 z2

ζ2 1

]]
=

Nµ
,σ =

[
[µ, σ], [1, 0],

2

(1 + zζ)
2

[
1 −z2

−ζ2 1

]]
=

[
[µ, σ], [1, 0],

1

2

[
(1 +W )

2 −k2

−κ2 (1 +W )
2

]]

Check they are inverse of each other.

Exercise 21.11.2. Formulate the metrics in tensor form, and obtain:

Gστ =
z

[
[σ, τ ], [0, 0],

2

(1− zζ)
2

[
0 1

1 0

]]

=
k

[
[σ, τ ], [0, 0],

(1 +W )
2

2 (1− kκ)

[
0 1

1 0

]]

Gµν =
z

[
[µ, ν], [0, 0],

(1 + zζ)
2

2 (1− zζ)
4

[
2ζ2 1 + z2ζ2

1 + z2ζ2 2z2

]]

=
k

[
[µ, ν], [0, 0],

1

4 (1− kκ)
2

[
κ2 2− kκ

2− kκ k2

]]

Check the validity of the transformation formula (21.7).

Exercise 21.11.3. Compute the Christoffels and obtain:

111 112 211 212

121 122 221 222

Γεστ
2 ζ

1− zζ 0 0 0

0 0 0
2 z

1− zζ

Γφµν
κ

1− kκ
k

2 (1− kκ)
0

κ

2 (1− kκ)
k

2 (1− kκ)
0

κ

2 (1− kκ)

k

1− kκ
Check the validity of the transformation formula (21.10)

Exercise 21.11.4. Compute the Riemann-Christoffel tensors and obtain:

1

(1− zζ)
2




1121 +2

2221 −2

1112 −2

2212 +2


 ;

1

4 (1− kκ)
2




2121 −κ2 1121 −kκ+ 2

1221 +k2 2221 +kκ− 2

2112 +κ2 1112 +kκ− 2

1212 −k2 2212 −kκ+ 2




Check the validity of the tensor transformation formula.
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Proposition 21.11.5. The Gauss curvature of both the Poincaré and the Klein hyperbolic planes
is −1.

Proof. Obvious from the former results.
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Chapter 22

About cubics

For a catalog with sketches, visit Gibert (2004-2024), especially Ehrmann and Gibert (2005). Some
notations used there :

I G O H N K L

X(1) X(2) X(3) X(4) X(5) X(6) X(20)

22.1 Characterisation of a cubic

Definition 22.1.1. A cubic is a curve defined by an homogeneous polynomial of degree 3. Using
barycentrics, or trilinears or Morley affixes is irrelevant, the degree is the same. Notation : K.

Proposition 22.1.2. A cubic is defined by nine general points.

Proof. There are ten coefficients, defined up to a global proportionality factor. We found them by
computing

det
j=10

[
x3, x2y, xy2, y3, y2z, yz2, z3, z2x, zx2, xyz

]
(22.1)

applied to the nine given points and the generic point.

Example 22.1.3. Pivotal isocubics. Let F, U be two points not on the sidelines. Then
pK (#F,U) is the cubic that goes through the nine points: ABC, AUBUCU (the cevians of U) and
FAFBFC (the anticevians of F ). This important class will be studied in details at Section 22.4.

Proposition 22.1.4 (Cayley Bacharach). When two cubics K1,K2 haven’t a line or a conic in
common, they cut into exactly nine points. But, even when they are distincts, these nine points
aren’t "general points" with respect to the previous proposition. More precisely the family F of the
cubics that are going through eight of these points is exactly λK1 +µK2, and all of these cubics are
going through the last point.

Proof. The first part is Bezout theorem. The second one is obvious: the nine points are not
characterizing a cubic, since F contains at least two cubics. The last part, i.e. that F doesn’t
contain any other cubics is proven in great details in Eisenbud et al. (1996).

22.1.1 More about the folium

Some properties of the Descartes curve have already be given at Section 12.2.

Exercise 22.1.5. Using the parametrization Mp ' 6p : 6p2 : 1 + p3, give the condition for three
points of the folium be aligned. Deduce the parameter of the tangential, i.e. the point where the
tangent at Mp cuts again the curve. And then, determine the ’conjugate’ of Mp, i.e. the point
having the same tangential.

Exercise 22.1.6. Using the same parametrization, find the ninth point of eight distincts points
on the Folium (i.e. illustrate the Cayley Bacharach property).
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306 22.2. Group structure of a cubic

Figure 22.1: Pascal’s theorem: A”,B”,C” are aligned

22.1.2 Pascal’s theorem

Theorem 22.1.7 (Pascal’s theorem). Let A,C ′, B,A′, C,B′ be six points on a conic. Define
A′′

.
= BC ′ ∩ CB′, etc. Then A′′, B′′, C ′′ are on a same line.

Proof. Draw the magenta, orange and green cubics of Figure 22.1, i.e. the cubics by A,B,C,
A′, B′, C ′, A′′, B′′ and Mj where M1 = (A+B′) /2, M2 = (A+ C ′) /2, M3 = (A′′ +B′′) /2 and
conclude by Cayley Bacharach.

22.2 Group structure of a cubic
Definition 22.2.1. Suppose that the cubic K is not singular (no cusp, no nodes). When A 6= B
are on the cubic, notation A@B will be used to design the third point where the line (AB) cuts
again the cubic. In the same vein, A@A will denote the tangential of A, i.e. the point where the
tangent at A cuts again K.

Proposition 22.2.2. Operation @ is commutative, but not associative. By convention, A@B@C
is to be understood as (A@B) @C. And we have
1. P@Q@P = Q
2. P@Q = R@Q if and only if P = R
3. P@Q = R if and only if R@Q = P

Definition 22.2.3. Chose a special point O ∈ K and note + the operation

(A,B) 7→ A+B
.
= A@B@O

Proposition 22.2.4. (1) Operation + is commutative
(2) O is the neutral point, i.e. P +O = P ;
(3) Defining N by N .

= O@O = Ot, then −N = Nt;

Proof. (1) Obvious. (2) P +O = (P@O) @O = P since P,O,Q .
= P@O are the three intersections

of some line with the cubic, while Q@O is "not Q nor O" on this line
(3) One has N +Nt

.
= N@Nt@O = N@O = Ot@O = O.

Theorem 22.2.5. Operation + is associative, and therefore (K,+) is a group.
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Figure 22.2: Using Cayley-Bacharach to prove the cubic associativity

Proof. See Figure 22.2 and Durège (1871, p. 135). Since the operation is commutative, what is to
be proved can be written as:

(∀P,Q,R ∈ K) (E = F ) where E
.
= (Q+R) @P ; F

.
= (Q+ P ) @R

1. Let us introduce two degenerate cubics: K2 as the union of the three magenta lines

L1 = [P,Q+R,E] , L2 = [Q,R,Q@R] , L3 = [O,Q@P,Q+ P ]

and K3 as the union of the three blue lines

N1 = [R,Q+ P, F ] , N2 = [Q,P,Q@P ] , N3 = [O,Q@R,Q+R]

2. So we see that cubic K intersects the other two at

K ∩ K2 = O,P,Q,R,Q@R,Q@P,Q+R,Q+ P,E

K ∩ K3 = O,P,Q,R,Q@R,Q@P,Q+R,Q+ P, F

Since K3 goes by eight of the nine K ∩ K2 points, the third cubic must go also through E.

3. Suppose that E lies on N3 = [O,Q@R,Q+R]. Since L1 already goes through Q + R,
this would induce L1 = N3 and therefore P ∈ (O,Q+R). Suppose that E lies on N2 =
[Q,P,Q@P ]. Since L1 already goes through P , this would induce L1 = N2 and therefore
P ∈ (Q,Q+R).

4. It remains E ∈ N1, enforcing either E = R or E = Q+P or E = F . The first two possibilities
couldn’t be the general case, since E .

= P@ (Q+R) depends on the three points. It remains
only E = F as the general case, implying O@E = O@F as required.

5. Remark: the cyan cubic goes through the eight points and the random point A. One can see
that it goes also through the ninth point Q+R@P

Theorem 22.2.6. 3k points Pi ∈ K are on a curve of order k if and only if
∑
Pi = kN .

Proof. When k = 1, P@Q@O@R@O = N = O@O leads to P@Q@O@R = O, and to P@Q@O =
R@O, implying P@Q = R.
When k = 2, define X .

= P@Q,Y
.
= R@S,Z

.
= T@U and prove the equivalence: the Pj are on a

conic with XY Z aligned. The property results since P +Q+X = N, etc.
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308 22.3. Isocubics

Remark 22.2.7. We have to be careful to the existence of torsion points i.e points with the property
k P = O. Indeed the equation k X = Q has k^2 solutions (complex) for the point X.

Some complements are given at Subsection 22.4.2 (concerning only the pK cubics).

22.3 Isocubics
Proposition 22.3.1. Define an isocubic K with pole P as a cubic which is invariant wrt the
P isoconjugacy. Then K is either a "pivotal isocubic" (see Section 22.4 for more details) with
equation:

pK (P,U)
.
= pK (#F,U)

.
=
(
h2y2 − g2z2

)
ux+

(
f2z2 − h2x2

)
vy +

(
g2x2 − f2y2

)
wz (22.2)

or a "non pivotal isocubic" (see Section 22.5 for more details) with equation :

nK (P,U, k)
.
= ux

(
r y2 + qz2

)
+ vy

(
p z2 + r x2

)
+ wz

(
q x2 + p y2

)
+ k xyz (22.3)

Proof. Direct inspection from K (X∗P ) = λK (X). It can be seen that terms like xy2 and xz2 are
to be paired, and that terms like x3 are to be avoided. As a corollary, such a cubic goes through
the vertices A,B,C.

Proposition 22.3.2. When the pole P is fixed, and X∗P is defined by (18.4), i.e. by x∗ = pyz,
the property "K is an isocubic" is characterized by the exact formula:

K (X∗P ) /K (X) = ∓ (pqr xyz)

Sign "-" characterizes a pK cubic, sign "+" characterizes a nK cubic. Each class form a projective
space, whose dimensions are respectively 3 and 4.

Definition 22.3.3. The triangular cubic is the union of the three sidelines: nK0 = (BC) ∪
(CA) ∪ (AB). The standard equations of this cubic are defined by :

nK0 (X) =
b

xyz (22.4)

=
z

(
Z γ β −Tβ −Tγ + Z

) (
Z αγ −Tα−Tγ + Z

) (
Z αβ −Tα−Tβ + Z

)
÷ s3

Proposition 22.3.4. When substituting the isogonal formulas (18.5) into the equation of a #X(1)
pivotal cubic and using (22.4), we have the following equalities :

pK (isog (X)) = −pK (X)× nK0 (X)

nK (isog (X)) = +nK (X)× nK0 (X)

that are exact identities, not up to a proportionality factor. Once again, the set of the X(6)-isocubics
splits into two projective subspaces, the pK one (dimension 3) and the nK one (dimension 4).

Example 22.3.5. The cubic "circumcircle union infinity" is a nK cubic, characterized by:

nK,




a

b

c


 ,




1

1

1


 , a2 + b2 + c2


 =

b
(x+ y + z)

(
a2yz + b2zx+ c2yx

)
=
z
T
(
ZZ −T2

)

22.4 Pivotal isocubics pK(P,U)
Definition 22.4.1. Pivotal isocubics. Let F, U be two points not on the sidelines and define
pK (#F,U) as the cubic that goes through the nine points: ABC, AUBUCU (the cevians of U)
and FAFBFC (the anticevians of F ). Then U and F0

.
= F are also on the cubic. Its equation is :

pK (P,U)
.
= pK (#F,U)

.
=
(
h2y2 − g2z2

)
ux+

(
f2z2 − h2x2

)
vy +

(
g2x2 − f2y2

)
wz (22.5)

Remark 22.4.2. Part of the time, isocubics are defined using the pole of the conjugacy, i.e. P '
p : q : r

.
= f2 : g2 : h2 .
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pK name F U ,U∗ E,E∗ D,D∗ some other points on the cubic
pKA vertex 22.4.20 1 A

ZU(1) 22.4.21 1 X(1)
E1, E3 hidden 22.4.23 1 Ω

K002 Thomson 22.4.29 1 2,6 3,4 9,57 223, 282, 1073, 1249
K003 McKay 22.4.24 1 3,4 1075,? 1745,3362
K006 1 4,3 155,254 46,90 371, 372, 485, 486, 487, 488
K005 1 5,54 2120,2121 3460,3461 3, 4, 17, 18, 61, 62, 195, 627, 628
K004 Darboux 22.4.5 1 20,64 2130,2131 3182,3347 3, 4, 40, 84, 1490, 1498
K001 Neuberg 22.4.25 1 30,74 2132,2133 3464,? 3, 4, 13, 14, 15, 16, 399, 484, ...

1 98,511 ?,? 1756,? 1687, 1688, 2009, 2010
K035 1 99,512 39,83 1019,1018 1379, 1380

1 100,513 1,1 513,100 1381, 1382
1 110,523 5,54 ?,? 1113, 1114

K020 1 384,695 ?,? ?,? 3,4,32,39,76,83
K021 1 512,99 2142,2143 ?,?
K1155 shortest 22.4.28 1 523,110 39138 21381,39137
K007 Lucas 22.4.5 2 X(69) 4, 7, 8, 20, 189, 253, 329... (15)
K170 22.4.9 2 X(4)
K155 EAC2 22.4.55

√
31 238

K060 22.4.7
√

1989 265

nK F root
∆ 22.3.3 1

circle 22.3.5 1
K137 1 513 Z+(X1X6) 1, 44, 88, 239, 241, 292, 294, 1931
??? 1 649 Z+(X1X2) 1, 238, 291, 899, 2107

K040 Pelletier 1 650 Z+(X1X3) 1,105,243,296,518,1155,1156, 2651, 2652
K018 Brocar2 22.14 1 523 Z+(X3X6) 2, 6, 13, 14, 15, 16, 111, 368, 524
K010 Simson 22.5.3 2 cK (#X2, X69) 2, X(2394) upto X(2419)
K162 22.5.19 6 cK (#X6, X3) 6, X(2420) upto X(2445)

F =
√
P (central fixed point), U , U∗P , E = cevadiv (U,U∗), E∗, D = cevadiv(U,

√
P )

Table 22.1: Some well-known cubics

Definition 22.4.3. A Kimberling ZU cubic is a pK (X6, U), giving a special place to isogonal
conjugacy. Some examples are given in Table 22.1.

Remark 22.4.4. Only 8 ZU cubics have a reflection center : the Darboux cubic (center= X3), the
four degenerate cubics that are union of the three bisectors through an inexcenter, and three other
(Maple length = 135712 using RootOf, [4948, 5345, 4215] using alias).

Theorem 22.4.5. pivotal isocubic property. When point X is on a sideline of triangle ABC,
then X#

F is undefined (geometrically), while the formula gives the third vertex. Otherwise, X#
F

belongs to pK (#F,U) if and only if X belongs to pK (#F,U). And then U, X, X#
F are collinear.

For this reason, point U is called the pivot of the cubic. Alternate formulation: pK (#F,U) is
the locus of the X such that U, X, X#

F are collinear (to be taken ’Cremona more’ , i.e. allowing
indeterminacies)

Proof. Compute the determinant of the 10 rows (22.1) relative to the nine points given in the
definition and the variable point X = x : y : z. And remark that this quantity is proportional to
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310 22.4. Pivotal isocubics pK(P,U)

det
(
U, X, X#

F

)
.

Theorem 22.4.6. cevadiv property. When X is on the sidelines of the cevian triangle of U ,
then Y = cevadiv (U,X) is undefined geometrically, while the formula gives 0 : 0 : 0. Otherwise,
this Y belongs to pK (#F,U) if and only if X belongs to pK (#F,U). And then U#

F , X, cevadiv (U,X)

are collinear. This fact is underlined by the name isopivot given to the point U#
F .

Proof. Compute pK (#F,U) (cevadiv (U,X)) and obtain pK (#F,U) (X) times the incidence rela-
tions, i.e. the rows of Adjoint (cevian (U)) ·X . And remark that this quantity is proportional to
det
(
U#
F , X, cevadiv (U,X)

)
.

Proposition 22.4.7. The 22 points property. The pK (#F,U) cubic goes through

1. U ,AUBUCU and their conjugates U#
F , ABC (8)

2. F0FAFBFC (cf Theorem 22.4.5) (4)

3. cevadiv
(
U, U#

F

)
, the four cevadiv (U, Fj) and their isoconjugates (10)

Proof. Follows directly from the two theorems.

Example 22.4.8. When U is one of the fixed points of the isoconjugacy (i.e. P = U ∗
b
U), the

pK (P,U) cubic degenerates into the lines through the remaining three fixed points.

Example 22.4.9. K170 is pK (X2, X4). Equation
∑
x
(
y2 − z2

)
/Sa = 0. On Figure 22.3, one

can see the following alignments (general properties, applicable to any pK) :

1. Fixed points : F0, Fa, A are collinear, and cyclically for the other fixed points and the other
vertices ;

2. From U : U, X, X#
F are collinear (e.g. E and E∗ are aligned with U). Therefore, each line

from U to a fixed point is tangent to the cubic at this fixed point ; in the same vein, point
Ub = UB ∩ AC is on the cubic and viewing B as (Ub)

#
F makes sense, but not viewing Ub as

B#
F (this object would be "quite all points on line AC").

3. From U#
F : U#

F , X, cevadiv (U,X) are collinear (e.g. F and D are aligned with U#
F ).

Therefore, each line from U#
F to a vertex or to U is tangent to the cubic at this point.

Definition 22.4.10. The PK#
F (X) point is the intersection of the trilinear polars of points X

and X#
F . Using barycentrics and F = f : g : h, we have :

PK#
F (X) = f2x

(
g2z2 − h2y2

)
: g2y

(
h2x2 − f2z

)
: h2z

(
f2y2 − x2g2

)

Proof. Direct computation.

Remark 22.4.11. This transform was introduced by Ehrmann and Gibert (2005) as PKP , i.e.
putting forwards the pole of the conjugacy rather than its fixed points, and turned into Defini-
tion 25.4.1.

Example 22.4.12. Using F=X(1), i.e. P=X(6), we have PK(X(I)) = X(J) for these (I,J):

I 2 3 4 5 6 9 19 31 44 54 57 63

J 512 647 647 2081 512 663 810 2084 3251 2081 663 810

Proposition 22.4.13. Points of indeterminacy of PK#
F are the fixed points Fj and their diagonal

vertices i.e. A,B,C. The exceptional curves are the six lines through two of the fixed points.
Otherwise, each point P = PK#

F (X) characterizes a pair
{
X, X#

F

}
(so that PK# is not a

Cremona transform !).
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Figure 22.3: pK(2,4)

Proof. Solving P = 0 : 0 : 0 gives the first result, and solving the Jacobian gives the second.
Otherwise, set P ' p : q : r and obtain :




2h2qf2prg2

−rg2
(
+g2h2p2 − f2g2r2 + f2h2q2

)
− rg2W

−qh2
(
+g2h2p2 + f2g2r2 − f2h2q2

)
+ qh2W




where W = 4i f2g2h2 S
(
p
f ,

q
g ,

r
h

)
and S is the usual Heron formula for the area (7.8).

Proposition 22.4.14. When PK#
F (X) belongs to the tripolar line of U#

F , then point X belongs to
the cubic pK(P,U). This amounts to say that X is on pK if and only if the tripolars of X, X#

F , U
#
F

are concurrent.

Proof. Direct computation. In Kimberling (1998, p. 240) the corresponding cubic is noted Z(U, Y )
where P = Y ∗

b
X6.

Proposition 22.4.15. When point U = u : v : w is at infinity, the pK (P,U) cubic can be rewritten
as : (

p

x
+
q

y
+
r

z

)
(xρ+ yσ + zτ)− (x+ y + z)

(
a2ρ

x
+
b2σ

y
+
c2τ

z

)
= 0

where [ρ, σ, τ ] is any line whose direction is U . In other words u = σ − τ, etc.
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Proof. Direct examination. We can check that pK (P,U) contains the intersections of both conics
—vertices A,B,C and U∗P—, the points at infinity of Ccir (P ), the intersections of line [ρ, σ, τ ] with
the associated conic, and U itself !

22.4.1 Another description
1. Consider pK (#F, P ) and use Fj ' ±f : ±g : ±h (isoconjugacy), P ' p : q : r (pivot). The

name U ' u : v : w will be used for the generic point of the cubic. Let CP(F,P) be the
diagonal conic that goes through P and the four Fj . In fact, this conic goes also through the
3 associates of P since

CP (F, P ) '



g2r2 − h2q2 0 0

0 h2p2 − f2r2 0

0 0 f2q2 − g2p2




2. Cut this conic by line PU and obtain point N . Acting that way, we obtain a symmetric
expression. Cut rather by line UU#

F and say that P is the other solution.. We obtain :

N '




−f2pv2 + 2 f2quv − g2pu2

f2qv2 − 2 g2puv + g2qu2

2w
(
f2qv − g2pu

)
+ r

(
g2u2 − f2v2

)




Now, define N (U) by this formula. Then N (U) = N
(
U#
F

)
is equivalent to U ∈ pK... except

when P is one of the Fj .

3. Cut the tangent at N to CF(F,P) with line PP#
F and obtain the point M

M '




qw − rv
r2g2 − q2h2

ru− pw
p2h2 − r2f2

pv − qu
q2f2 − p2g2




; t = − (pw − ru) q

(qw − rv) p

4. For all U , point M is aligned with P, P#
F . When U is on the cubic,

• N = cevadiv (M,P ).

• M is aligned with N,N#
F .

• N#
F is the intersection of tangents at U and U#

F to the cubic.

• M#
F is the intersection of the line P,U, U#

F and the fixed circumconic through P, P#
F .

5. Line cevadiv (P,U) ; cevadiv
(
P,U#

F

)
goes through the fixed point Q =

(
cevadiv

(
P, P#

F

))#

F
.

Conversely, the locus of such U is the union of pK (#F, P ) et nK
(
#F,Q,−1÷ p2q2r2

)
.

22.4.2 Group structure (pivotal cubics)
Proposition 22.4.16. When using the pivot Uas the neutral point, then

1. N .
= Ut = U∗ = [f2vw : g2uw : h2uv]

2. X,Y, Z are collinear if and only if X + Y + Z = N . (generic property)

3. X@X∗ = U ; X@U = X∗ ; X∗@U = X ; X +X∗ = N (isocubic property)

4. X + Y = (X@Y )
∗ ; X@Y = (X + Y )

∗

5. −X = X@N = U/X (cevadiv property)

6. On the cubic, A∗ = AU (the cevian of U) ; grad (A) = [0,−h2v,+g2w] ; At = N
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7. A+A = B +B = C + C = U ; A+B + C = U

Proof. (7) A+A = A@A@U = At@U = Ut@U = U
B + C = B@C@U = UA@U = A;

Proposition 22.4.17. Four points are said to form a tangential quadruple when they have the
same tangential.

1. The four Fj form such a quadruple, the tangential being U .

2. The four A,B,C,U form such a quadruple, , the tangential being N .

3. When (X1, X2, X3, X4) is a tangential quadruple, then (X∗1 , X
∗
2 , X

∗
3 , X

∗
4 ) is such a quadruple.

4. Every tangential quadruple is of the form (X,X +A,X +B,X + C).

Proof. (3) From the tangential definition, and the isocubic property

N = T + 2P ∗ = S + 2P = S + 2Q

N = P + P ∗ = Q+Q∗ then

T + 2Q∗ = N − 2P ∗ + 2Q∗ = N − 2 (N − P ) + 2 (N −Q) = N + 2P − 2Q

= N + (N − S)− (N − S) = N

so that T is the tangential of Q∗ too.
(4)(P +A)t = N − 2 (P +A) = N − 2P − 2A = N − 2P = S.

Exercise 22.4.18. Find the tangential common to AU , BU , CU , U∗.

22.4.3 ABCIJKL cubics: the Lubin(2) point of view
Notation 22.4.19. All visible curves are normalised by C ÷ conj C = ±1.

Proposition 22.4.20. Cubics PKA. The set of all cubics that go through points ABCIJKL
is a projective space. Its dimension is 3. A generating family is given by the three cubics pKA =
(BC) ∪ (AI) ∪ (KL) , etc. Pivot of pKA is A. Its fully factored equation requires Lubin(2), but
Lubin(1) is sufficient to use det (X, X∗, A) = 0 where X∗ is given by the isogonal conjugacy
formula. One has:

pKA =
2

1

s32

(
−Z β2γ2 + Tβ2 + Tγ2 − Z

) (
−Z α2β γ + Tα2 + Tβ γ − Z

) (
Z α2β γ + Tα2 −Tβ γ − Z

)

=
1

1

s3

(
−Z β γ + Tβ + Tγ − Z

) (
−α2β γ Z2

+ 2TZ αβ γ + T2α2 −T2β γ − 2αZT + Z2
)

Proof. Equation of pK (F,U) is det
(
X, X#

F , U
)

= 0, leading to dimension 3, and allowing to
check that pivot of pKA is the vertex A. After that, we can go back to Lubin(1) since isogonal
conjugacy doesn’t require to identify which is the incenter among the inexcenters.

Example 22.4.21. The Kimberling Z(X(1)) cubic, i.e. (IJ) ∪ (IK) ∪ (IL), is obtained as :

Z(X(1)) =
2

α (β + γ)

(α− β) (α− γ)
pKA +

β (α+ γ)

(β − γ) (β − α)
pKB +

γ (α+ β)

(γ − α) (γ − β)
pKC

Proposition 22.4.22. The Kiepert RH construction (see Proposition 13.22.2 for more details)
can be summarized as follows. Let K = cotφ be a fixed real and define circularly the points A′B′C ′
by :

cot

(︷ ︸︸ ︷
BC, BA′

)
−K = 0 ; cot

(︷ ︸︸ ︷
CB, CA′

)
+K = 0

These 3 points and the 7 ABCIJKL are on a same cubic, together with X(3), X(4) and the A′B′C ′
points related with the other orientation. Naming this cubic pK(K), we have:

pK(K) = pKDarboux +K2 × pKThomson
=

(
K2 + 1

)
pKNeuberg +

(
1− 3K2

)
pKMcKay

(See below for more details on these four cubics). The pivot of pK(K) is
(
3K2zX (2)− zX (20)

)
÷(

3K2 − 1
)
.
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Proof. Let us compute the points A′, B′, C ′ and obtain:

A′ '
1
β + γ + i (γ − β ) /K : 2 : (β + γ + i (γ − β ) /K)÷ βγ, etc

Then substitute A′ and B′ into
∑

3 xj pKj = 0. This system has non zero solutions, proving the
result. The circumcenter X(3) (the T3 coefficient), the orthocenter (isogonality) and the A′B′C ′
points related to the other orientation (pK(K) depends only on K2).

22.4.4 Using a more handy basis
Proposition 22.4.23. The hidden IJKL cubics. Let pKΩx and pKΩy be the isogonal cubics
whose pivots are the umbilics Ωx ' 0 : 0 : 1 and Ωy ' 1 : 0 : 0. Then

pKΩx =
1

Z2Z + T
(
σ3Z

2
)
−T2

(
2Z + σ2Z

)
+ T3σ1

pKΩy =
1

ZZ2
+ T

(
1

σ3
Z2

)
−T2

(
σ1

σ3
Z + 2Z

)
+
σ2

σ3
T 3

They are conjugate of each other, but not self conjugate (hidden curves). Their nine intersections
are ABCIJKL (stable by isogonal conjugacy) and the two umbilics (stable as a pair).

Proof. When M ∈ PC
(
C3
)
, and isog (M) is taken from (18.5), then

E
.
=
(
T2 − ZZ

)
M −T isog (M) = E1 : 0 : E3

The nine points property comes from (1) at an umbilic, column E vanishes since both multipliers
are zero; (2) at a vertex, the circle vanishes and isog (X) is 0 : 0 : 0; (3) at a fixed point of the
conjugacy, column E is proportional toM but E2 is ever 0 and theM aren’t at infinity. Obviously,
this result can also be checked in Lubin(2) by substitution. Or even by factoring the T resultant
of both equations.

Proposition 22.4.24. K003, the McKay Cubic, pK (6, 3). A visible cubic is described by the
expression

(
Z pKΩx − Z pKΩy

)
/T. And then, pole=X(6), pivot=X(3) and equation:

pKMcKay =
1
− 1

σ3
Z3 + σ3Z

3
+ T

(
σ1

σ3
Z2 − σ2Z

2
)

+ T2

(
−σ2

σ3
Z + σ1Z

)

K003 goes through X(3) and X(4). Its points at infinity are Θ : 0 : 1/Θ where Θ3 = σ3. These
points are the directions of the Morley triangles. The asymptotes are :

[
3

Θ2

σ3
;

σ2

Θ2
− σ1 Θ2

σ3
; −3

σ3

Θ2

]

where Θ ranges over the three cubic roots, using jΘ or j2 Θ. They concur at X(2).

Proof. Coeff of T 3 is 0. Thus X(3) and then X(4). Asymptotes are obtained from the gradient.
Pivot can be guessed as the intersection of two well chosen lines MM∗, for example for two of the
points at infinity.

Proposition 22.4.25. K001, the Neuberg cubic, pK (6, 30). A visible cubic is described by
expression (σ2/σ3) pKΩx − σ1pKΩy. And then pole=X(6), pivot=X(30) and equation:

pKNeuberg =
σ2

σ3
Z2Z − σ1 ZZ

2
+ T

(
−σ1

σ3
Z2 + σ2Z

2
)

+ T2

(
σ2

1 − 2σ2

σ3
Z− σ2

2 − 2σ1 σ3

σ3
Z
)

This is a circular curve. The third point at infinity is σ1σ3 : 0 : σ2, i.e. X(30), the direction of the
Euler line. The asymptotes are :

[
0 −σ1 σ2

]
,
[
−σ1 σ2 0

]
,
[
σ2

2σ1 ; −σ3
1σ3 + σ3

2 ; −σ2 σ
2
1 σ3

]

Intersecting the first two asymptotes, we obtain a singular focus at σ2
2 : σ1 σ2 : σ2

1, i.e. point
X(110). Moreover, the cubic goes through X(3) and therefore through X(4). Visible asymptote
goes through X(74), the isogonal of X(30).
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Proof. X(30) is the pivot because it is the only common point to the curve and lineMM∗ whenM
is an umbilic. An asymptote is the gradient evaluated at the corresponding point at infinity.

Corollary 22.4.26. The Neuberg cubic is the locus of points X such that the isogonal line XX∗

is parallel to the Euler line. See (Gibert, 2004-2024, 2005). Its (barycentric) equation is :
∑

cyclic

x
(
y2c2 − z2b2

) (
2 a4 −

(
b2 + c2

)
a2 −

(
b2 − c2

)2)
= 0 (22.6)

and can be rewritten as :
(
a2

x
+
b2

y
+
c2

z

)
(xρ+ yσ + zτ)− (x+ y + z)

(
a2ρ

x
+
b2σ

y
+
c2τ

z

)
= 0

where [ρ, σ, τ ] is the Euler line –remember: tripole = X(648). In other words,
K001=circumcircle×Euler - infinity×Jerabek.
Proof. See Proposition 22.4.15. We can check that K001 contains the intersections of Γ and Jerabek
—vertices A,B,C and X(74)—, the points at infinity of the circumcircle —the umbilics—, the
intersections of Euler line and Jerabek hyperbola —X(3) and X(4)— and X(30) itself.

Remark 22.4.27. The name "shortest cubic" was introduced here, in v42 (2012), as the circular
pK cubic whose expression requires the shortest number of characters. Its main property was to
provide an handy basis when used together with the McKay and the Neuberg cubics.

Proposition 22.4.28. Shortest cubic, pK (6, 523). The expression (1/σ1) pKΩx + (σ3/σ2) pKΩy

gives a visible cubic, with pole=X(6), pivot=X(523) and equation:

pKshortest =
1

σ1
Z2Z +

σ3

σ2
ZZ2

+ T

(
1

σ2
Z2 +

σ3

σ1
Z2
)
−
(
σ2

1 + 2σ2

σ2 σ1
Z +

σ2
2 + 2σ1 σ3

σ2 σ1
Z
)

+ 2T 3

The third point at infinity is −σ1σ3 : 0 : σ2, i.e. X(523), the orthodir of the Euler line. This is also
the pivot. The three asymptotes concur at X(110), giving a singular focus. Barycentric equation
of this curve is ;

(
b2 − c2

)
x
(
b2z2 − c2y2

)
+
(
c2 − a2

)
y
(
c2x2 − a2z2

)
+
(
a2 − b2

)
z
(
a2y2 − b2x2

)

The ETC databasis provides U = 523, U∗ = 110, D = 39138, E = 21381, E∗ = 39137 and no other
points. Moreover the imaginary foci of the MacBeath inconic Example 12.11.2 are here. Thus we
have 3 vertices, 4 inexcenters, 3 points at infinity, and 6 others, i.e. 16 points.

Proposition 22.4.29. K002, the Thomson cubic, pK (6, 2). The expression
((
Ts2/s3 − 3Z

)
pKΩx − (Ts1 − 3Z) pKΩy

)
/T

gives a visible cubic, with pole=X(6), pivot=X(2) and equation:

pKThomson =

3

σ3
Z3+

σ2

σ3
Z2Z−σ1 ZZ

2−3σ3Z
3
+T

(
−4σ1

σ3
Z2 + 4σ2Z

2
)

+T2

(
σ2 + σ2

1

σ3
Z− σ2

2 + σ1 σ3

σ3
Z
)

This cubic is the locus of points X whose trilinear polar is parallel to their polar line in the cir-
cumcircle. This is the K =∞ cubic of the Kieper RH construct.

Proposition 22.4.30. K004, the Darboux cubic, pK (6, 20). The expression
((
Ts2/s3 + Z

)
pKΩx − (Ts1 + Z) pKΩy

)
/T

gives a visible cubic, with pole=X(6), pivot=X(20) and equation:

pKDarboux = −Z3

σ3
+
σ2

σ3
Z2Z − σ1 ZZ

2
+ σ3Z

3
+ T2

(
σ2

1 − 3σ2

σ3
Z− σ2

2 − 3σ1 σ3

σ3
Z
)

This is the K = 0 cubic of the Kieper RH construct. See the next section for more details.
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Proposition 22.4.31. Resulting pencils. We have the following pencils :

1. The pencil generated by pKNeuberg and pKshortest is the set of all the circular pK cubics.
Their pivots are at infinity.

2. The pencil generated by pKMcKay et pKNeuberg is the set of the pK cubics that goes through
the X(3), X(4) pair. Their pivots are on the Euler line.

3. The pencil generated by pKMcKay et pKshortest is the set of pK-cubics whose pivots are on
the line X(3), X(523), i.e. the line through X(3) and perpendicular to the Euler line. The
common points of these cubics are on ∆ (horrible formula, with a 24th degree radicand).

Exercise 22.4.32. Does it exist a cubic XXX such that :

1. XXX, K001, K003 provide a basis of the ZU cubics space

2. XXX contains "many" ETC points

3. Pencils (XXX,K001) and (XXX,K003) contain "many" known cubics

4. Lubin equation of XXX remains practicable

22.4.5 Darboux and Lucas cubics
In this section, P ∈ Darboux and U ∈ Lucas while pole and pivot are noted otherwise.

22.4.5.1 Presentation of K004 and K007

Definition 22.4.33. The Darboux cubic K004 is the locus of point P such that the pedal triangle
of P is the Cevian triangle of some other point U , while the Lucas cubic K007 is the locus of point
U such that the cevian triangle of U is the pedal triangle of some other point P .

Proposition 22.4.34. Darboux cubic is a pK cubic, with X(6) as pole and X(20) as pivot. X(20)
is the de Longchamps point. Lucas cubic is a pK cubic, with X(2) as pole and X(69) as pivot.
X(69) is the anticomplement of X(6). Their equations are :

det (X20, P, isog (P )) = 0 (22.7)
det (X69, U, isot (U)) = 0 (22.8)

Moreover, K004 has a reflection center at X(3), the circumcenter. Using Morley affixes and ex-
panding, we have :

pKDarboux = −Z3

σ3
+
σ2

σ3
Z2Z − σ1 ZZ

2
+ σ3Z

3
+
σ2

1 − 3σ2

σ3
T 2Z +

3σ1 σ3 − σ2
2

σ3
T 2Z

pKLucas =




3

s3
Z3 +

s2

s3
Z2Z − s1 ZZ

2 − 3 s3Z
3 −

(
s1

s3
+
s2

2

s2
3

)
Z2T +

(
s2

1 + s2

)
Z2

T

−
(

3 s2
1

s3
− s1s

2
2

s2
3

− 4 s2

s3

)
ZT2 +

(
3 s2

2

s3
− s2

1s2

s3
− 4 s1

)
Z T2 +

(
s3

1

s3
− s3

2

s2
3

)
T3




Their common points are A,B,C,X(4),X(20) and four other points.

Proof. Straightforward from (9.1) and (3.6).

Fact 22.4.35. The barycentric equations of these cubics can be rewritten as:

Darboux =
∑

3

(
2S2 − Sb Sc

)
x
(
b2z2 − c2y2

)
; Lucas =

∑

3

Sa x
(
y2 − z2

)

while, as of 2019, the following points are known:

P 1 3 4 20 40 64 84 1490 1498 2130 2131 3182 3183

U 7 2 4 69 8 253 189 329 20 14362 ? 5932 14361

P 3345 3346 3347 3348 3353 3354 3355 3472 3473 3637

U 1034 1032 ? 14365 ? ? ? ? ? ?

Asymptotes of the Darboux cubic are the perpendicular bissectors of the sidelines.
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Figure 22.4: The Darboux and Lucas cubics

Definition 22.4.36. The ψ transform sends a point P onto the intersection of lines AAP and
BBP where APBPCP is the pedal triangle of P , while the ψ−1 transform sends a point U onto
the intersection of the perpendicular to BC through UA with the perpendicular to AC through
UB where UAUBUC is the cevian triangle of U .

Proposition 22.4.37. When defined that way, i.e. using the same vertex of ABC to play the
non-symmetric role, then ψ and ψ−1 are reciprocal Cremona transforms of the whole plane and
satisfy:

ψ




p

q

r


 '




(
ra2 + pSb

) (
pb2 + qSc

)
(
qa2 + pSc

) (
rb2 + q Sa

)
(
rb2 + q Sa

) (
ra2 + pSb

)


 (22.9)

ψ−1




u

v

w


 '




a2
(
uw b2 + u v Sa − v w Sc

)

b2
(
v wa2 + u v Sb − uw Sc

)

v w Sb Sc + uw Sa Sc − u v Sa Sb + 4S2w2


 (22.10)

Points of indeterminacy of ψ are a2 : −Sc : −Sb, −Sc : b2 : −Sa (the directions of AH and BH)
and a2Sa : b2Sb : −Sa Sb(the antipode of C, i.e. the point 2O − C) while points of indeterminacy
of ψ−1 are A,B and Gc = A+B − C.

Proof. Direct computation shows that:

Eψ = 8 a2b2S2 ×
(
rb2 + qSa

) (
a2r + pSb

)
(p+ q + r)

Eψ−1 = 32 a2b2S4 × (v + w) (u+ w) (w)

while we have an exact reciprocity on the whole plane when taking eclatements into account.
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Proposition 22.4.38. When angle in C is not a straight one, then P ∈ Darboux is equivalent to
the alignment of P,ψ (P )with X(20), while U ∈ Lucas is equivalent to the alignment of U,ψ−1 (U)
with X(20).

Proof. Both determinants are the product of Sc by the equation of the corresponding cubic and
the corresponding E . When Sc = 0, then X(20) comes at Gc and degeneracy is not a surprise.

Remark 22.4.39. When restricted to both cubics, ψ and ψ−1 define two reciprocal central trans-
forms and doesn’t depend on the choice of the special vertex.

Proposition 22.4.40. Darboux, i.e. pK (6, 20), is invariant by isog and by sym3, the reflection
about X(3), while Lucas, i.e. pK (2, 69) is invariant by isot and cycl, the cyclopedal transform
(as defined at Section 13.23). Moreover, ψ−1 ◦ isot ◦ ψ = sym3 holds over the whole plane, while
ψ−1 ◦ cycl ◦ ψ = isog holds when restricted to the cubics.

Proof. When P is on Darboux, then isog (P ) is also on Darboux. By Section 9.3, they share the
same pedal circle. Therefore, the corresponding U ∈ Lucas are cyclocevian. The other formula is
easily computed.

Corollary 22.4.41. The known points on Lucas cubic can be used to build the following chains.
They were emphasized in Kimberling (2002a). When P = X3, then gP = X4, and the center of
the cyclopedal circle is X5; when P = X20, this center is X5894 ; when P = X40, this center is
X1158, , etc.

X1
sym3−−−−→ X40

isog−−−−→ X84
sym3−−−−→ X1490

isog−−−−→ X3345
sym3−−−−→ X3182

isog−−−−→ X3347

1
yψ

yψ 1158
yψ

yψ ??
yψ

yψ
yψ

X7
isot−−−−→ X8

cycl−−−−→ X189
isot−−−−→ X329

cycl−−−−→ X1034
isot−−−−→ X5932

cycl−−−−→ X???

X3
isog−−−−→ X4

sym3−−−−→ X20
isog−−−−→ X64

sym3−−−−→ X1498
isog−−−−→ X3346

sym3−−−−→ X3183yψ 5
yψ

yψ 5894
yψ

yψ ??
yψ

yψ

X2
cycl−−−−→ X4

isot−−−−→ X69
cycl−−−−→ X253

isot−−−−→ X20
cycl−−−−→ X1032

isot−−−−→ X14361

Since X1 is fixed by isog and X3 by sym3, these chains are unidirectional.
Claim 22.4.42. Let Q = (sym3 ◦ isog ◦ sym3 ◦ isog ◦ sym3)P . Then P is on darboux if and only
if cevamul (P, Q) =X(20). When P is on the branch of X3, so is Q (obvious).

When P is not on Darboux, ??? In any case, a simple division by polynomial (22.7) isn’t
sufficient.

22.4.5.2 The Orion bundle

Lemma 22.4.43. The nine intersections of K004 and K007 are: A, B, C, X(4)= H, X(20)=
2O −H and four other points called the Orion points. Their affixes are the solutions of:

64Z4 − 16

(
s1 +

s2
2

s3

)
TZ3 +

(
−4 s4

1 +
s3

1s
2
2

s3
+ 18 s2

1s2 − 4
s1 s

3
2

s3
− 75 s1 s3 + 16 s2

2

)
T4

+

(
16
s1 s

2
2

s3
+ 64 s2 − 48 s2

1

)
T2Z2 +

(
28 s3

1 − 7
s2

1s
2
2

s3
− 78 s1 s2 + 12

s3
2

s3
+ 125 s3

)
T3Z

Proof. Direct elimination from the equations.

Definition 22.4.44. Reflect point P ' p : q : r through the sidelines of its cevian triangle
APBPCP . The obtained triangle is perspective with triangle ABC, and the perspector is called
the Orion transform of P (Ehrmann, 2003). Notation and barycentrics are:

O (M) '




(
b2r2 + c2q2 + 2Sa rq

)
p3 − a2q2r2p(

a2r2 + c2p2 + 2Sb pr
)
q3 − b2p2qr2

(
a2q2 + b2p2 + 2Sc pq

)
r3 − c2p2q2r



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Remark 22.4.45. When M is on the sidelines, O (M) = M .

Example 22.4.46. One can identify the following pairs:

1 2 3 4 6 7 8 13 14 15 16 20

35 69 2055 24 2056 57 2057 11581 11582 2058 2059 2060

40 63 69 74 75 98 99 100 101 102 103 104

2061 2062 2063 10419 2064 2065 249 59 15378 15379 15380 15381

105 106 107 108 109 110 111 112 190 253 476 477

15382 15383 15384 15385 15386 250 15387 15388 4998 14572 15395 15396

523 651 675 1113 1114 1141 1292 1293 1294 1295 1296 1297

12064 7339 15397 15461 15460 15401 15402 15403 15404 15405 15406 15407

Definition 22.4.47. The A-Orion cubic KA is the locus of points M such that MMa ⊥ MbMc

where MaMbMc is the cevian triangle of M .

Proposition 22.4.48. For M not on the sidelines, M ∈ KA is equivalent to the alignment of
A,M,O (M). Equation of KA is

KA ' c2xy2 − b2xz2 + Sb y
2z − Sc yz2

so that KA goes once through B,C and twice through vertex A. Tangent at B,C are going through
Ta = 2O−A (on circumcircle and Darboux as well), while tangents at A are the bissectors of angle
A. The 6th point on Γ is a2 : c2 − b2 : b2 − c2, the 3rd one on BC is 0 : Sc : Sb (the foot of the
A-altitude).

Proof. Direct computation, using the gradient (at B,C) and the hessian (at A).

Figure 22.5: The Orion points
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Proposition 22.4.49. The four Orion points are the only ones which are the orthocenter of their
cevian triangle. Moreover, the three Orion cubics KA,KB ,KC generate the bundle of all the cubics
through the 3 vertices and the 4 Orion points.

Proof. Since B counts twice on KB , it counts also twice in KB ∩KC . The same with C, while A
counts for one. Thus it remains four other common points. For each of them,M is on two altitudes
of MaMbMc and therefore belongs to the third one, so that M ∈ KA. Therefore the cevian and
the pedal triangle of M are equal, and M is on both K004 and K007. Moreover, neither X(4) nor
X(20) are the orthocenter of their cevian triangle.

Proposition 22.4.50. Let P ' p : q : r be a fixed point. When M is not on the sidelines, the
alignment of P,M,O (M) is equivalent to M ∈ KP where KP is defined by KP

.
= pKA + q KB +

rKC .

Proof. Determinant is linear wrt any column. Moreover, one can check that

lucas = K006 = Ka +Kb +Kc

darboux = K004 = a2SaKa + b2SbKb + c2ScKc

Proposition 22.4.51. When P is on the Thomson cubic, then Kp is a pK (F,U) cubic and we
have

F 2 ' cevadiv (G,P ) '




(q + r − p) p
(r + p− q) q
(p+ q − r) r


 ; U ' anticomplemP ∗ '




b2rp+ c2pq − a2qr

c2pq + a2qr − b2rp
a2qr + b2rp− c2pq




Proof. P ∈ K002 comes from elimination. Then symmetric formula for F 2 and U can be checked
modulo K002.

Example 22.4.52. Here are some of the Kp cubics.

P F 2 U Kxxx name

X(1) X(9) X(8) K199
X(2) X(2) X(69) K007 Lucas
X(3) X(6) X(20) K004 Darboux
X(6) X(3) X(2) K168

Proposition 22.4.53. Consider the six conics

fa (x, y, z) = b2y2 − c2z2 + x (Scy − Sbz) , etc

ga (x, y, z) = a2
(
c2y2 − b2z2

)
+ x

(
c2Scy − b2Sbz

)
, etc

Then the fj are going through the isotomic conjugates of the Orion points while the gj are going
through their iogonal conjugates

Proof. Since A is double in KA, then x2yz comes in factor at both isotomKA and isogonKA.

22.4.6 Equal areas (second) cevian cubic aka K155
Definition 22.4.54. Cubic shadow. Triangle centers on a cubic K yield non-central points on the
cubic; e.g., if Q1 and Q2 are on K, then the line Q1Q2 meets K in a "third" point, L (Q1, Q2),
possibly Q1 or Q2. If A′B′C ′ is a central triangle (cf Section 2.2), R a triangle center, A′′ =
L (R,A′) and cyclically, then triangle A′′B′′C ′′ is a central triangle on K.
Definition 22.4.55. Cubic EAC2, the equal areas (second) cevian cubic is K155 in Gibert (2004-
2024). This cubic is pK(X31, X238), i.e self-isoconjugate wrt P = X31 = a3 : b3 : c3 and pivotal
wrt U = X238 = a3 − abc : b3 − abc : c3 − abc.
Proposition 22.4.56. It happens that P ∈ EAC2. When a point Q is on EAC2, its isoconjugate
Q∗P aka X31÷

b
Q is on EAC2 too. In the following table, for each (I,J), the centers X(I) and X(J)

are on EAC2 and are an isoconjugate pair. Each pair is collinear with the pivot X(238).
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R A′ A′′ B′′

a3/2 A −a3/2 b3/2

X(2) A −a2 bc

X(238) −a2 : bc : −abc b3

X (31) A −abc b3

X (1) A −a2 (a+ b+ c) b (bc+ ca+ ab)

X(238) upright −a (bc+ ca+ ab) b2 (a+ b+ c)

X (6) A −a (bc+ ca+ ab) b2 (a+ b+ c)

X (6) −a2 : bc : a2 (a+ b+ c) b
(
a2 + b2 − c (a+ b)

)

X (1) −abc : b3 : a2 (bc+ ca+ ab) (c− b) a2b+ b3 (c− a)

X (31) −a2 : bc : 2 a2
(
b2 + ca

) (
c2 + ab

)

b
(
b2 + ca

) (
a3 + b3 − c3 − abc

)

X (1) −a2 : bc : a (a+ b) (c+ a)
(
a2 + b2 + c2 + bc+ ca+ ab

)

b2 (c+ a)
(
a2 + b2 + ab− c (a+ b+ c)

)

X (2) −abc : b3 : 2 a3bc
(
b2 + ca

) (
c2 + ab

)
(
b2 + ca

) (
b4c3 + a3bc3 − a3b4 − b3a2c2

)

X (6) −abc : b3 : a (a+ b) (c+ a)
((
c2 + bc+ b2

)
a2 + bc (b+ c) a+ b2c2

)

b2 (c+ a)
((
c2 − bc− b2

)
a2 + abc (−b+ c) + b2c2

)

Table 22.2: Some cubic shadows on EAC2

[
1 2 105 238 365 1423 1931

6 31 672 292 365 2053 2054

]

[
2106 2108 2110 2112 2114 2116 2118 2144 2146

2107 2109 2111 2113 2115 2117 2119 2145 2147

]

Table 22.2 gives some cubic shadows on EAC2. Column 1 gives the perspector R ∈ K. Column
2 gives A′ ∈ K, the A vertex of the original triangle. Columns 3 and 4 give A′′ ∈ K, the A
vertex of the shadow triangle. When expressions are growing, these coordinates are given in two
rows. For example, in row 1, the perspector is the centroid, the original triangle is ABC itself and
A′′ = −a2 : bc : bc, the third coordinate being obtained by swapping b and c. Points X2, A′ = A
and A′′ are collinear. Obviously, (A′′)∗P , (B′′)∗P , (C ′′)∗P , is another central triangle inscribed in K.

22.4.7 The cubic K060

Proposition 22.4.57. Let A′, B′, C ′ be the reflections of a pointM into the sidelines BC, CA, AB.
When triangle A′B′C ′ is perspective with ABC, point M lies on the Neuberg cubic K001, while
the resulting perspector N lies on another cubic (K060).

Proof. The matrix of the reflection into the sideline BC is :

σA '




−a2 0 0

a2 + b2 − c2 a2 0

a2 − b2 + c2 0 a2




Start from M = p : q : r. Compute A′ = σA (M) , etc and obtain :

A′B′C ′ '




−pa2
(
a2 + b2 − c2

)
q + pb2

(
a2 − b2 + c2

)
r + pc2(

a2 + b2 − c2
)
p+ a2q −qb2

(
b2 + c2 − a2

)
r + qc2(

a2 − b2 + c2
)
p+ a2r

(
b2 + c2 − a2

)
q + b2r −rc2



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Then det (AA′, BB′, CC ′) is computed and identified with K001. Now, start from N = u : v : w.
Compute δA = σA (AN) = (A ∧N) · σA −1

, etc and obtain :




δA

δB

δC


 '




2 vSb − 2wSc −wa2 va2

wb2 2wSc − 2uSa −ub2
−vc2 uc2 2uSa − 2 vSb




Then det (δA, δB , δC) is computed, and we obtain yet another pK cubic, defined as K060.

Proposition 22.4.58. K060, the pK (1989, 265) cubic. The pole P , the pivot U and the Morley
equations of this cubic are respectively :

P =
1

b2c2 − 4S2
a

etc ; zP =
σ3

1σ
2
2 − σ1σ

3
2 −

(
4σ4

1 − 9σ2
1σ2 + 9σ2

2

)
σ3

3σ2
1σ

2
2 − 6σ3

2 + (9σ1σ2 − 6σ3
1) σ3

U =
Sa

b2c2 − 4S2
a

:
Sb

a2c2 − 4S2
b

:
Sc

a2b2 − 4S2
c

; zU =
σ2

1 − σ2

σ1




s2

s3
Z2Z − s1 ZZ

2
+

(
2s1

s3
− s2

2

s2
3

)
TZ2 +

(
s2

1 − 2 s2

)
TZ2

+

(
s2 − 3 s2

1

s3
+
s2

2s1

s2
3

)
T2Z +

(
3 s2

2 − s2
1s2

s3
− s1

)
T2Z +

(
s3

1

s3
− s3

2

s2
3

)
T3




Both umbilics belong to the curve. The corresponding asymptotes intersect at X(3448). The real
asymptote :

[σ1σ
2
2 , 2σ3σ

3
1 − 2σ3

2 ,−σ2
1σ2σ3]

is parallel to the Euler line. The sixth intersection with the circumcircle is X(1141).

Proof. Direct inspection.

D on K001, F=isogD on K001

Nd = antig(D) = (isg ◦ inv ◦ isg) (D)

Nf = antig (F ) = (isg ◦ inv) (D)

22.4.8 Eigentransform

Definition 22.4.59. The mapping U 7→ cevadiv
(
U,U#

F

)
is called eigentransform of U wrt pole

P = F 2. In ETC, F =X(1), i.e. P =X(6), is assumed, and notation ET (U) is used. Here, the
same notation is used, but isogonal conjugacy isn’t assumed.

Example 22.4.60. Assuming P =X(6), pairs (I,J) such that X(J) = ET(X(I)) include :

1 1 13 62 81 3293 174 266 664 2082 1156 1

2 3 14 61 86 3294 190 1 673 1 1492 1

3 1075 19 2128 88 1 512 2142 694 384 1821 1

4 155 20 2130 92 47 648 185 771 1 1942 1941

5 2120 30 2132 94 49 651 1 799 1

6 194 37 2134 99 39 653 1 811 2083

7 218 57 2136 100 1 655 1 823 1

8 2122 63 1712 101 2140 658 1 897 1

9 2124 69 2138 110 5 660 1 1113 3

10 2126 75 2172 162 1 662 1 1114 3

Proposition 22.4.61. For any point U not on a sideline of triangle ABC, the following properties
of eigentransform are easy to verify :
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1. The barycentrics of ET (U) are (cyclically) :

vwf2
(
u2v2h2 + u2w2g2 − v2w2f2

)

2. ET (U) is the eigencenter of the cevian triangle of U as well as the eigencenter of the antice-
vian triangle of U∗P .

3. ET (U) = F
.
= f : g : h (fixed point of the isoconjugacy) if and only if U = F or U lies

on the CC (F ) circumellipse. When P =X(6), then F =X(1) and this locus is the Steiner
circumellipse: yz + zx+ xy = 0.

4. Points U , ET (U) and (ET (U))
#
F are collinear points of the cubic pK (P,U) .

5. Points F , ET (U) and (cevadiv (U,F ))
#
F are collinear. The last point is also on the cubic.

6. ET(U) is the tangential of U∗F .

22.5 Non pivotal isocubics nK(P,U,k) and nK0(P,U)
Definition 22.5.1. The non pivotal isocubic with pole P , root U and parameter k is defined by
the equation :

nK (P,U, k)
.
= ux

(
y2r + qz2

)
+ vy

(
z2p+ rx2

)
+ wz

(
qx2 + py2

)
+ k xyz (22.11)

When k = 0, the cubic is noted nK0 (P,U).

Remark 22.5.2. The more efficient method for specifying k is to indicate a point that belongs to
the cubic. This is noted nK (P,U,X).

Proposition 22.5.3. The "third intersections" of a nK (P,U, k) with the sidelines are the cocevians
of the root U . Therefore, they are aligned. This is to be compared with the fact that, for a pK
cubic, these points are the cevians of the pivot.

Proof. Direct inspection.

Remark 22.5.4. In the general case, a nK0 (P,U) contains neither P nor U nor any of the four
fixed points F of the conjugacy.

Definition 22.5.5. We define the F -crosssum of two points U = u : v : w and X = x : y : z that
aren’t lying on a sideline of ABC as :

crosssumF (U,X) = f2 (wy + vz) : g2 (uz + wx) : h2 (vx+ uy)

Remark 22.5.6. In ETC, F =X(1) is assumed. Defined as above, the operation (F,U,X) 7→
crosssumF (U,X) is globally type-keeping and provides a point when the entries are points (F is
any of the four fixed point of the conjugacy X 7→ X∗P ).

Definition 22.5.7. TheNKP (X) point is the pole of the lineXX∗P with respect to the circumconic
that passes through X and X∗P (Bernard Gibert, 2003/10/1). Using barycentrics and P = p : q :
r = f2 : g2 : h2, we have :

NKp(X) = p x
(
r y2 + q z2

)
: q y

(
p z2 + r x2

)
: rz

(
q x2 + p y2

)

= crosssumF (X, X∗P ) = crossmul (X, X∗P ) = (cevamul (X, X∗P ))
∗
P

Proof. Direct computation.

Remark 22.5.8. Here, X∗P is the perspector of the cevian triangle of NKP (X) and the anticevian
triangle of X.

Example 22.5.9. Using F=X(1), i.e. P=X(6), we have NK(X(I)) = X(J) for these (I,J):

I 1 2 3 4 6 9 19 31 57 63

J 1 39 185 185 39 2082 2083 2085 2082 2083
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Proposition 22.5.10. When NKP (X) belongs to the tripolar line of U∗P , then point X belongs to
the cubic nK0(P,U).

Proof. Direct computation. In Kimberling (1998, p. 240), notation Z + (XY ) is used to denote
the nK0 (#1, U) cubic where the pole U is the isogonal of the tripole of line XY . Therefore,

Z+(X1X6) = nK0 (#1, 513)

Z+(X3X6) = nK0 (#1, 523)

Z+(X1X2) = nK0 (#1, 649)

Z+(X1X3) = nK0 (#1, 650)

22.5.1 vanRees cubic
Remark 22.5.11. vanRees cubics are studied in detail at Section 28.11. Seen from triangle ABC,
they are described by


nkcub,#F '



a

b

c


 , U '



p

q

r


 , X̂ '



q − r
r − p
p− q







Remember: #F=X(1) means P=X(6), while X̂ is a point on the cubic, only intended to define
the coefficient of xyz in the equation.

22.5.2 Conicopivotal isocubics cK(#F,U)
Definition 22.5.12. A conico-pivotal isocubic cK (#F,U) (Ehrmann and Gibert, 2005) is a
non pivotal isocubic nK (P,U, k) that contains one of the fixed points of the isoconjugacy (F 6=
U is assumed). When using F = f : g : h instead of P = p : q : r = f2 : g2 : h2, k =
−2 (ghu+ fhv + fgw), the equation becomes :

x(gz − hy)2u+ y(fz − hx)2v + z(fy − gx)2w = 0 (22.12)

Proposition 22.5.13. The pivotal conic is defined as the conic C tangent to the six lines FBFC ,
AA′U and cyclically where FAFBFC are the anticevian of F and A′UB

′
UC
′
U the cocevian of U . Then

the dual conic of C is conicev (1/F, 1/U) and C itself has equation :
∑

cyclic

(gw − hv)
2
x2 − 2

(
gu2h+ 3 f (gw + vh)u+ f2vw

)
zy = 0

Proof. We have the equations :

(FBFC) = FB ∧ FC =




f

−g
h


 ∧




f

g

−h


 = [0, 2fh, 2fg] =

[
0,

1

g
,

1

h

]

AA′U = UBUC =

[
0,

1

v
,

1

w

]

The equation of C follows by duality. Barycentrics of the center are 2 fu−(v + w) f−(g + h)u, etc.

Proposition 22.5.14. The contact conic (K) is defined as the circumconic whose perspector is

K '
(

2
f

u
+
g

v
+
h

w

)
f, etc

Assuming F 6= U , three of the intersections of the pivotal and contact conics are the three contacts
of cK with C, the fourth point being :

T4 '
(

2
f

u
+
g

v
+
h

w

)
÷ (gw − vh) , etc

April 5, 2025 14:49 published under the GNU Free Documentation License



22. About cubics 325

Centroid G = X2 is isolated, but belongs nevertheless to the cubic.

Figure 22.6: The Simson cubic (as depicted in Gibert-CTP)

Proof. Eliminate z between (K) and C. Obtain P1 (x, y) P3 (x, y), where degrees are respectively
1 and 3. Solving for P1 gives directly T4. Eliminate z between cK and C. This leads again to P3,
proving that each common point is a contact and belongs also to (K).

Example 22.5.15. A special case is obtained when U = F , i.e. when the root is a fixed point
of the isoconjugacy. Then C = (K) is a circumconic. The Tucker cubic K015 is obtained with
F =X(2), while K228 is obtained with F =X(1) and K229 is obtained with F =X(6).

22.5.3 Simson cubic, aka K010
Notation 22.5.16. In this section, the involved pole is the centroid, so that X∗ = isot (X). Due
to the nature of the cubic, the key point is F = X2 (involved as fixed point) rather than P = X2

(involved as pole). Therefore, letter P has been used not to describe the pole, but the independent
moving point of various parametrization.

Definition 22.5.17. The Simson cubic is the locus of the tripoles of the Simson lines. Depicted
as K010 (cf. Figure 22.6) in Gibert (2004-2024). Founding paper is Ehrmann and Gibert (2001).

Proposition 22.5.18. The Simson cubic (K010) is nK (#X2, X69, X2) shortened into cK (#X2, X69).
Centroid G = X2 belongs to K010 (Simson line of Q is Lb when Q ∈ Lb). Apart from this isolated
point, a parametrization of K010 is given in (28.3), starting from Lb. An other parametrization,
using the barycentrics of the involved point on Γ is as follows :




u

v

w


 ∈ Γ 7→




b2wu2 − c2vu2 +
(
b2 − c2

)
wvu

c2uv2 − a2v2w +
(
c2 − a2

)
wuv

a2vw2 − w2b2u+
(
a2 − b2

)
wuv


 ∈ K010

Definition 22.5.19. Cubic K162 is the isogonal transform of the Simson cubic (that can also be
obtained by Q 7→ Q÷

b
X6). Therefore, K162 is cK (#X6, X3).

Definition 22.5.20. The Gibert-Simson transform is another parametrization of the Simson
cubic that also uses an U ∈ Γ :

GS (U) = cyclic

[(
b2
(
c2 + a2 − b2

)

va2
− c2

(
a2 + b2 − c2

)

a2w

)
u

]

The lack of uniqueness is due to the binding relation
∑
a2vw = 0. Definition introduced in ETC on

2003/10/19, leading to points X(2394) - X(2419) on the Simson cubic and points X(2420)-X(2445)
–their isoconjugates– on K162.
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Remark 22.5.21. Regarding triangle centers that do not lie on the circumcircle, GS(X(I)) = X(J)
for these (I,J): (32,669), (48,1459), (187,1649), (248,879), (485,850), (486,850). Of course, other
realizations of U 7→ K give other results. Here again, only parametrization (28.3) ensures unique-
ness.

Example 22.5.22. Use tP = tX525 as entry point Figure 22.7 (arrow at the left of the bottom
diagram). Obtain X30 = Q1 ∈ Lb by (7.16), then X74 = U1 ∈ Γ by isogonal conjugacy. The
Steiner line St1 hasn’t received any name, while the Simson line Si1 of U1 is tX247. The trilinear
pole of this line, i.e. X2394 = K1 ∈ K010, can be obtained by isot ◦ (t) from Si1, by gs from U1

and also directly from P (the dotted line) using parametrization (28.3).

Si2
t

K1 ∈ K010
isotom

K2 ∈ K010
t

Si1

St2

th
(
U2,

1
2

)
✻

✛ φ.....
.....

.....
.....

.....
.....

....✲

U2 ∈ Γ σ3

gs

✲

U1 ∈ Γ
φ ✲

✛

gs

St1

th
(
U1,

1
2

)
✻

Q1 ∈ L∞

∞
❄

orthopoint

isog

Q2 ∈ L∞

∞
❄

isog

where φ(U) =t isog (U1 ∗b X4) and ∞(L) = L ∧ L∞

t2394
t

2394
isotom

2407
t t2407

✲ t525

th
(
110, 12

)
✻

✛ φ.....
.....

.....
.....

.....
.....

...✲

110 σ3

gs

✲

74
φ✲

✛

gs

St1 (?)

th
(
74, 12

)
✻

✛................................

30

∞

❄ ⊥

iso
g

523

∞

❄

isog

Figure 22.7: The Simson diagram

Proposition 22.5.23 (Fools’ Day Theorem). Direct arrows U1 7→ K2 and U2 7→ K1 have a
geometrical meaning : (gs (U))

∗ is the eigencenter of the pedal triangle of U.

Proof. Point K2 has no other choice : he *is* the unary cofactor of the pedal triangle of U , and
therefore the perspector of this triangle with anything else.

Proposition 22.5.24. The barycentric equation of the Simson cubic is
∑

cyclic

x(z2 + y2)(b2 + c2 − a2)− 2(a2 + b2 + c2)x y z (22.13)

In other words, the Simson cubic is nK (X2, X69, #X2394). Moreover, one of the fixed points
(namely G = X2) belongs to the cubic and the Simson cubic is in fact cK (#X2, X69).
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Proof. Obtained from the parametric representation. The converse property is more easily obtained
from next coming proposition.

Definition 22.5.25. Special points wrt K010. Points on sidelines of triangle ABC or of
antimedial triangle, together with the centroid are said to be special wrt K010 (because quite
every "general" formula turns wrong when dealing with these points).

Proposition 22.5.26. Among the special points, the following are the sole and only elements of
K010 :
(i) then centroid itself (fixed point under isoconjugacy)
(ii) the vertices of triangle ABC, the cocevians of X69 (the root) and points b+ c : b− c : c− b or
b− c : b+ c : −b− c and cyclically.

Proof. Direct inspection.

Proposition 22.5.27. When point X is on the Simson cubic but not G,A,B,C then :
(i) the trilinear polars of X and X∗ are perpendicular
(ii) the trilinear polars of X and X∗ are concurrent on the nine-point circle
Conversely, when X is not special and either property holds, then X is on the cubic.

Proof. When X is on the Simson cubic, tripolar (X) is a Simson line and conclusion follows from
tripolar = t◦isot. Conversely, if (i) then points tX∗∧Lb and tX∧Lb are the infinity points of both
tripolars. They have to be the orthopoint of each other, and (22.13) is re-obtained by elimination.
If (ii) then dividing nineq (X ∧X∗) by (22.13), leads to

∏
(y + z) /x2. When X is on a sideline

of ABC, conjugacy is no more defined, and when y + z = 0 (implying X on the sidelines of the
antimedial triangle) then X ∧X∗ is ever 0 : 1 : 1. Outside of these six lines, both conditions are
equivalent.

22.5.4 Brocard second cubic aka K018
Definition 22.5.28. The Brocard second cubic is inventoried as K018 in (Gibert, 2004-2024). This
cubic is nK0 (X6, X523). It is a circular isogonal focal nK cubic with root X(523) and singular
focus X(111). The real asymptote is parallel to GK. It is also the orthopivotal cubic O(X6) and
Z+(L) with L = X(3)X(6) in TCCT p.241. See also Z+(O) = CL025 and CL034.

Proposition 22.5.29. The barycentric equation of K018 is :
∑

cyclic

x(b2z2 + y2c2)(b2 − c2) = 0 (22.14)
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Chapter 23

Tripolar curves

Definition 23.0.1. Given three fixed distinct points E,F,G, and three real numbers u, v, w, "this
branch of a tripolar curve" W (u, v, w) is the locus of points M such that :

u |EM |+ v |FM |+ w |GM | = 0

On the contrary, the corresponding algebraic tripolar curve is the locus of points M such that

± u |EM | ± v |FM | ± w |GM | = 0 (23.1)

Remark 23.0.2. When one of the u, v, w vanishes, a tripolar curve degenerates into an ordinary
conic (this is excluded in what follows).

Notation 23.0.3. In this chapter, quantities α, β, γ, δ are related to points E,F,G,H, while u, v, w
are some multipliers. Quantities S

Q
, Su, Sv, Sw are related to these multipliers u, v, w. They mimic

the usual area and Conway symbols. In other words,

S
Q

2 =
1

16
(u+ v + w) (−u+ v + w) (u− v + w) (u+ v − w) , Su =

1

2

(
v2 + w2 − u2

)

On the contrary, symmetric functions are related to α, β, γ, δ. In other words,

q1
.
=
∑

4

α ; q2 =
∑

6

αβ ; q3 =
∑

4

αβγ ; q4 = αβγδ (23.2)

Remark 23.0.4. Section Section 23.1 provides some background by studying the whole space of the
bicircular quartics. Then a section describes how to use Maple and Geogebra to draw the tripolar
curves. A later section gives some further properties of these curves.

23.1 The bicircular space

Definition 23.1.1. A general quartic q requires 5+4+3+2+1=15 coefficients. When q is singular
at each umbilic, its gradient has to vanish there, so that

q40 = q31 = q30 = q03 = q13 = q04 = 0

The set of all bicircular quartics is therefore a copy of PC
(
C9
)
. In this chapter, "quartic" is

assumed everywhere, and this space will simply be depicted as "the bicircular space P (Q)" (see
Werner, 2012, p.86)).

Proposition 23.1.2. The equation of any curve q ∈ P (Q) can be written in the following matrix
form:

q (M)
.
=

t

Z2

ZT
T2


 ·



q22 q21 q20

q12 q11 q10

q02 q01 q00


 ·




Z2

ZT

T2


 = 0
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Therefore, any homography H acting over the points of PC
(
C3
)
according to

(Z : T : Z) 7→
(

aZ + bT

cZ + dT
: 1 :

a′Z + b′T

c′Z + d′T

)

induces an action which is linear over the bicircular space P (Q) according to

q 7→




d′2 −c′ d′ c′2

−2 b′ d′ a′ d′ + b′ c′ −2 a′ c′

b′2 −a′ b′ a′2


 · q ·




d2 −2 b d b2

−c d a d + b c −a b

c2 −2 a c a2




Proof. Obvious from the definitions.

Proposition 23.1.3. The bicircular quartic q admit four singular foci, namely

−q21 ±
√
q2
21 − 4 q22 q20

2 q22
: 1 :

−q12 ±
√
q2
12 − 4 q22 q02

2q22

Proof. Direct computation: cut by MΩx, factor, substitute T = 0,Z = 1 and equate to 0.

Proposition 23.1.4. Among the elements of P (Q), we have (1) the union (=product) of two
cycles ; (2) the image of any conic by an homography.

Proof. Direct computation

Proposition 23.1.5. Whatever could be meaning of
√
ux, etc, then the three terms relation (TTR)

√
ux+

√
vy +

√
wz = 0 (23.3)

can be rewritten as:

TTR ⇐⇒ u2x2 + v2y2 + w2z2 − 2 (uv xy + vw yz + wu zx) = 0

⇐⇒ [x, y, z] ·




u2 −uv −uw
−uv v2 −vw
−uw −vw w2


 · t[x, y, z] = 0

1. When x, y, z are the coordinates of a line wrt the reference trigone, the TTR describes a
tangential conicC∗. The associated punctual conic is the circumscribed conic

C '




0 w v

w 0 u

v u 0




2. When x, y, z are circles’ equations, one obtains the equation of a quartic Q . And this quartic
is bitangent to each of these circles.

Proof. Direct computation.

Proposition 23.1.6. Assume that u, v, w be three coefficients and Cj , j = 1..3 be three circles, with
centers zj and radiuses rj. This defines a common orthogonal cycle C0, and a zj-circumscribed
conic C. A moving point P ∈ C defines a circle CP orthogonal to C0. Then, the enveloppe of the
circles CP is the bicircular quartic Q of the just above proposition.

Proof. The usual property of the enveloppes !(Casey, 1871, §5, p.459)

Example 23.1.7. All the three sub-figures of Figure 23.1 have been drawn with z1 = −2 − 3i,
z2 = 2 + 3i, z3 = 3− i and u = 5, v = 6, w = 11 Thus, they share the same focal conic. But using
1, 2, 1, resp 3, 2, 1 and 3, 2, 3 as radiuses lead to different orthogonal circles. As a result, there are
resp. four, none and two visible intersections of C with C0. are visible on the top. A not visible
point is alluded with its Z : T part, noted F ′j . Then a "true" intersection is F34 ' F ′3 : 1 : F ′4, etc
(on the C0 circle), while F ′3 and F ′4 are inverse in the focal circle.
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Figure 23.1: Does the focal conic intersect the orthogonal circle?
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Proposition 23.1.8. The four intersections of the focal conic and the orthogonal cycle, visible or
not, are four of the 16 foci of the quartic.(Casey, 1871, §16, p.464) On the other hand, the foci of
the focal conic are the singular foci of the quartic.

Proof. (1) Each of these intersections define a null circle which is bitangent to the curve. But a
null circle is the product of the isotropic lines through its center. (2) Direct computation.

23.2 Define and draw
Maple 23.2.1. The Maple library tcurv.m deals with the following objects:

zptE1;zptF1;zptG1;zptH1 the four focuses

zptDe_1;zptDf_1;zptDg_1;les3dia_1 the diagonal triangle

VALdelta1 value of δ from a, b, c, α, β, γ

VALeq11 raw Z,T,Z equation from a, α, b, β, c, γ

VALmeth2 new values of a, b, c when changing the poles

ledeb vector a : b : c

valabc_1;valabc_2 values of a, b, c from α, β, γ, δ, ν

zptK0_2;zptKa_2;zptKb_2;zptKc_2;les4cir_2;VALnu the four points on the focal circle.

zptX60_1;zptX6e_1;zptX6f_1;zptX6g_1

rotEFG;rotEFG3;les4moines rotate the variables

Maple 23.2.2. contains the procedures

geotcurv

and buildmeth .
The procedure receives u, v, w ∈ R together with E,F,G ∈ C and produces α, β, γ, δ ∈ Γ (the

reduced coordinates of the four focuses). The seventh argument ν ∈ Γ is used to select a connected
piece of the curve. When given, the procedure checks that ν in one of the four acceptable values.
Otherwise, one of the four possibilities is returned.

The result is two Maple sequences (to be used in Lubin1 or Lubin2 context), together with a
set of commands to be transmitted to geogebra.

Maple 23.2.3. The curve, already depicted using a set of three focuses, is depicted using the
other triples of focuses. And then, one can check that all the four descriptions are leading to the
same cartesian equation eqq1 .

23.3 The generic case
Proposition 23.3.1. The tripolar curve is globally invariant under the reflection µ into the EFG
cycle.

Proof. This is obvious if EFG are aligned. Otherwise, let U be the center of the reflection circle.
Then, for generic P,Q, the triangles (U,P,Q) and (U, µ (Q) , µ (P )) are similar, leading to

|µ (P )µ (Q)| = |PQ| × R2

|UP | |UQ| therefore |Eµ (P )| = |EP | × R

|UP |
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Require: VALeq11 (23.4), VALnu (23.5), VALdelta1 (23.6) are already stored somewhere
1: geotcurv := proc u_, v_, w_, E_, F_, G_, nu_
2: global icidou1 , icidou2 , eqq1 , cen_, rad2 , rad1 , VALeq11 , VALnu, VALdelta1
3: local msg , H_, z0_, icinu
4: (op@map)(z2mor , [E_,F_,G_]) ; cen_, rad2 := (colu2mor@zcircle3 )(%)
5: rad1 := sqrt(rad2 ) ; z0_ := mor2z (cen_)
6: icidou1 := α = (E_− z0_)/rad1 , β = (F_− z0_)/rad1 , γ = (G_− z0_)/rad1
7: icidou1 := u = u_, v = v_,w = w_, icidou1
8: H_ := (factor@subs) (icidou1 , VALdelta1 )
9: icidou2 := α =

√
(E_− z0_)/rad1 , β =

√
(F_− z0_)/rad1 , γ =

√
(G_− z0_)/rad1

10: icidou2 := u = u_, v = v_,w = w_, icidou2
11: if nargs = 7 then
12: icinu := nu_ ;
13: {seq} ((factor@subs) (j = −j , icidou2 , VALnu) , j = {u, v ,w , qxq})
14: print(%) ; ASSERT (member(icinu,%))
15: else
16: icinu := (factor@subs)(icidou2 , valnu)
17: end if
18: icidou1 := icidou1 , delta = H_,nu = icinu
19: icidou2 := icidou2 , delta = sqrt(H_),nu = icinu

20: eqq1 := collect

(
subs(icidou1, Z = x+ I y, ZZ = x− I y, T = 1, V ALeq11),

[x, y], real, factor, distributed

)

21:

convert(‘\n\nExecute






”I = ToComplex[(0, 1)]”, ”O = (0, 0)”, ”cir = Circle[O, 1]”,

”u = AAA”, ”v = BBB”, ”w = CCC”,

”α = EEE”, ”E = O + α”, ”β = FFF”, ”F = O + β”, ”γ = GGG”, ”G = O + γ”,

”δ = HHH”, ”H = O + δ”, ”tcur = ImplicitCurve(TTCCUR)”, ”nu = NUU”








\n\n‘, string)

22: SubstituteRec




%,

AAA, convert(u_, string), EEE, convert(subs(icidou1, α), string),

BBB, convert(v_, string), FFF, convert(subs(icidou1, β), string),

CCC, convert(w_, string), GGG, convert(subs(icidou1, γ), string),

HHH, convert(subs(icidou1, δ), string),

TTCCUR, convert(eqq1, string), NUU, convert(icinu, string)




23: return convert(%, symbol)

Listing 23.1: The geotcurv procedure
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Require: geotcurv has already been executed
1: buildmeth := proc; global icimeth, VALmeth2 , icidou2
2: local mynu, ddist , rr , test , k , mymeth
3: map(evalc, subs(icidou2 ,VALmeth2 ))
4: (combine@redurow@SubMatrix ) (%, 1 ..4 , 4 ..6 )
5: icimeth := 〈SubMatrix (%%, 1 ..4 , 1 ..3 ),%,SubMatrix (%%, 1 ..4 , 7 ..9 ))〉
6: mynu := subs(icidou2 ,nu)
7: ddist := (α, β) 7→

√
abs ((α− β)2/α/β)

8: for rr to 4 do
9: test := add(icimeth[rr , j ] ∗ ddist(mynu, icimeth[rr , j + 3 ]), j = 4 ..6 )

10: if factor(test) = 0 then
11: print(rr ,OK , 0 )
12: else
13: for k to 3 do
14: mymeth := Copy(icimeth)
15: mymeth[rr , 3 + k ] := −mymeth[rr , 3 + k ]
16: test := add(mymeth[rr , j ] ∗ ddist(mynu,mymeth[rr , j + 3 ]), j = 4 ..6 )
17: if factor(test) = 0 then
18: print(rr ,OK , k) ; icimeth := Copy(mymeth) ; Break()
19: end if
20: end for
21: end if
22: end for
23: return icimeth

Listing 23.2: The buildmeth procedure

Notation 23.3.2. For this reason, we will use turns α, β, γ, δ to represent the points E,F,G (and
the next coming point H). Part of the time, Lubin-1 will be used, and results are written as
zE =

1
α, etc. Part of the time Lubin-2 will be used and results are written as zE =

2
α2. Increasing

the degree allows to split some algebraic equations at the price of lengthening the expressions.
Coexistence of both systems requires to tag any equal sign. This third option is the one we have
chosen.

Proposition 23.3.3. When S
Q
6= 0, the equation of the tripolar curve can be written as

W (M) =
2

(
Z2Z2

+ T4
)

+
(
ZZ + T2

) (
W21Z +W12Z

)
T + T2

(
W20 Z

2 +W11 ZZ +W02Z
2
)

=

t

Z2

ZT
T2


 ·




1 W12 W02

W21 W11 W12

W20 W21 1


 ·




Z2

ZT

T2


 where (23.4)

W21 = −2
∑

3

Su u
2

8S
Q

2

1

α2
; W12 = −2

∑

3

Su u
2

8S
Q

2 α2 ; W20 =
1

16S
Q

2

∏

4

(
u

α2
± v

β2
± w

γ2

)

W11 =
−1

4S
Q

2

∑
u4 +

1

8S
Q

2

∑

3

v2w2

(
β

γ
+
γ

β

)2

; W02 =
∏

4

(
uα± vβ ± wγ
u± v ± w

)

and the curve is a bicircular quartic. Coefficients in H21, H12 are the usual normalized barycentrics
of the circumcenter (as of now, no interpretation has been given). When u±v±w=0 ,the curve
degenerates into a simply-circular cubic. Otherwise, the visible part of W is bounded.

Proof. This equation can be rationalized into :
∑

3

(
u4 |EM |4

)
− 2

∑

3

(
v2w2 |FM |2 |GM |2

)
= 0

leading to a not so huge expression and, when making T = 0, it only remains :

(u+ v + w) (−u+ v + w) (+u− v + w) (+u+ v − w)× α2β2γ2Z2Z2
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Proposition 23.3.4. There are four intersections with the circumcircle. One has:

K0
.
=




ν

1

1/ν


 '

2




uα+ v β + w γ

u/α+ v/β + w/γ

1
u/α+ v/β + w/γ

uα+ v β + w γ




(23.5)

together with KαKβKγ obtained by replacing the corresponding α by its opposite.

Proof. The main occasion to use Lubin-2 here. It must be noted that the α, β, γ used in this
Lubin-2 formula are only defined up to a change of sign, so that none of the four is the "true
uα+ v β + w γ"

Proposition 23.3.5. The tripolar curve has four focuses, the already involved E,F,G =
1
α, β, γ

and a fourth point, H, also on the unit circle and given by:

δ =
1

1

αβγ

id

conj

(∑

3

u2
(
α2 − αβ − αγ + β γ

)
)

(23.6)

Proof. We cut by a line PΩy. Since the curve is bi-circular, the degree falls and we only have to
nullify the discriminant of a second degree equation. One can notice that:

δ2 =
2

id

conj

(
1

αβγ

[
α2, β2, γ2

]
· Mb · t

[
α2, β2, γ2

])
(23.7)

where Mb is the usual matrix (7.20) build on (u, v, w).

Definition 23.3.6. There are three bi-transpositions of the set {E,F,G,H}. We note them σj
by using who is paired with H. Thus σβ notes α ↔ γ, β ↔ δ. This convention will also be
used to describe the Cremona homography of the whole plane (see Definition 18.1.4) specified by
α↔ γ, β 7→ δ. We have

σβ :




Z

T

Z


 7→

1




(δ β − αγ)Z + ((β + δ)αγ − (α+ γ)β δ)T

(β + δ − α− γ)Z− (δ β − αγ)T

1

(δ β − αγ)Z + (α+ γ − β − δ)T
((β + δ)αγ − (α+ γ)β δ)Z − (δ β − αγ)T




Theorem 23.3.7. The tripolar curve remains globally unchanged by the 2×2×2 group Q generated
by µ and the σj.

Proof. Invariance by µ has been proven at Proposition 23.3.1. Invariance by σα is direct compu-
tation. The type 2× 2× 2 of the group Q comes from the underlying action on {E,F,G,H}.

Definition 23.3.8. Transformation πβ
.
= µ ◦ σβ is involutory and is necessarily a reflection into a

circle Cβ .

πβ :




Z

T

Z


 7→

1




((β + δ)αγ − (α+ γ)β δ)Z − (δ β − αγ)T

(δ β − αγ)Z + (α+ γ − β − δ)T
1

(β + δ − α− γ)Z− (δ β − αγ)T

(δ β − αγ)Z + ((β + δ)αγ − (α+ γ)β δ)T




Let Dβ and ρβ be the center and radius of Cβ .

Proposition 23.3.9. Triangle DαDβDγ is the common diagonal triangle to both the quadrangle
D,E, F,G and the quadrangle of the Kj, while the four circles Γ and Cj are orthogonal to each
other.
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Proof. By construction, the set {E,F,G,H} is invariant by σβ . Since Γ and W are globally
invariant, so is their intersection, the set of the four Kj . And the first conclusion follows, since
object and image of a reflection in a circle are aligned with the center. Moreover, orthogonality is
required for a given circle be invariant by reflection into another circle.

We can also take the representatives of all these circles



0

0

0

1







β + γ − α− δ
2 (δ α− β γ)

(α+ δ)β γ − (β + γ)α δ

δ α− β γ







γ + α− β − δ
2 (δ β − γ α)

(β + δ) γ α − (γ + α)β δ

δ β − γ α







α+ β − δ − γ
2 (δ γ − αβ)

(γ + δ)αβ − (α+ β) γ δ

δ γ − αβ




then use the generic formulas to obtain center and power

Dβ '
1




βδ (α+ γ)− αγ (β + δ)

βδ − αγ
β + δ − α− γ


 ; ρ2

β =
1
− (δ − α) (δ − γ) (β − α) (β − γ)

(δβ − αγ)
2 (23.8)

and finally conclude by taking the Gramm matrix of the four circles.

Exercise 23.3.10. Prove that product ραρβργ is imaginary, so that one of the circles is imaginary.

Exercise 23.3.11. The 12 fixed points of the three homographies σj are the intersections of the
four circles Γ and Cj . To obtain the visible points among them, we have to discard the imaginary
circle (see previous exercise).

Exercise 23.3.12. The action of πA on the four intersections with the circumcircle amounts to
change the sign of a in the formulas (23.5). Hint: use Lubin2, and substitute δ2 from (23.7).

23.4 Cross-ratios
Lemma 23.4.1. Equation (23.1) can be rewritten using cross-ratio, transforming M ∈ W into:

W (M) =
1

(
u

(γ − β)
√
α

)
+

(
v

(α− γ)
√
β

) ∣∣∣∣
(M − F ) (G− E)

(M − E) (G− F )

∣∣∣∣+
(

w

(β − α)
√
γ

) ∣∣∣∣
(M −G) (F − E)

(M − E) (F −G)

∣∣∣∣
(23.9)

Proof. One has |GF | = |G− F | = ±i (β − γ)÷√βγ, etc.

Proposition 23.4.2. The defining equation (23.1) can be rewritten for each triple of focuses. And
we have




u

v

w



E,F,G

7→




d

e

f



E,H,G

'
1




+w

√
α

γ
(γ − β) (γ − δ)

−v
√
δ

β
(β − α) (β − γ)

+u

√
γ

α
(α− δ) (α− β)




Iterating the process, we get the final table:

E F G u v w α β γ

F G H wKe v Ke
γ (β − δ) (β − α)

β (α− γ) (δ − γ)
uKe

(β − α)
√
δ
√
γ

(δ − γ)
√
α
√
β

β γ δ

E G H wKf uKf
γ (α− δ) (α− β)

α (β − γ) (δ − γ)
v Kf

(α− β)
√
δ
√
γ

(δ − γ)
√
α
√
β

α γ δ

E F H vKg uKg
β (α− δ) (α− γ)

α (γ − β) (δ − β)
wKg

(α− γ)
√
δ
√
β

(δ − β)
√
α
√
γ

α β δ

Proof. On the one hand, substitute [E = H,F = G,G = F ] (and nothing else) into formula (23.9).
On the other hand, substitute not only [E = H,F = G,G = F ] but also [α = δ, β = γ, γ = β] and
[u = kh, v = kg, w = kf ]. And equate both results. The second move is only a flat application
of the formula, the first one is using the invariance of the curve under the cross-ratio preserving
homography σα.
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23.5 Introducing the cut parameter
Definition 23.5.1. Choosing one of the four intersections of W with Γ as K0 ' ν : 1 : 1/ν breaks
the symmetry of the problem. But this provides what is required to split the action of µ, σ, π.

Proposition 23.5.2. Using the cut parameter, we obtain: t(u, v, w) =
1

1

αβγ
√
δ




√
α (β − γ)

(
(α+ δ − β − γ) ν − 2 (δ α− β γ) +

δ α (β + γ)− β γ (δ + α)

ν

)

√
β (γ − α)

(
(β + δ − γ − α) ν − 2 (δ β − γ α) +

δ β (γ + α)− αβ (δ + β)

ν

)

√
γ (α− β)

(
(γ + δ − α− β) ν − 2 (δ γ − αβ) +

δ γ (α+ β)− αβ (δ + γ)

ν

)



∈ R3

Proof. Compute the Dj from the K0,Kj and compare with those obtained at (23.8). Then the
simultaneous reality of the multipliers is proven by their invariance under conjugacy.

Corollary 23.5.3. Equation of W can be rewritten using the symmetric functions (23.2) The
Z2ZT coefficients are a sum of terms like

−2 q4
1 − 32 q1 q3 + 32 q2

2 − 128 q4

q2
4

ν4

i.e. a power νk (where −4 ≤ k ≤ 4) times a Z [q1, q2, q3, q4] polynomial divided by a power of q4,
leading to a zero global degree in α, β, γ, δ, ν. It remains to say that the resulting expressions have
a rather huge length:

H22 H12 H02 H11

705 800 773 876

Fact 23.5.4. We can use a varying ν as in Figure 23.2 to see that focuses cut the circle into arcs

that contains either 2 or 0 intersections with the curve. Starting from violet arcs
_
EG and

_
FH, we

get something like two bananas surrounding both pairs of focuses. Then they cross each other at

circle cinvG and reduce back to the original arcs. Then we get arcs
_
EF and

_
HG, etc.

Example 23.5.5. Figure 23.2 has been constructed by choosing

u = 11
√

5, v = 5
√

5, w = 26, α =
1
−4/5 + 3/5 i, β = 4/5 + 3/5 i, γ = −i

Then the fourth focus is δ = 1. The multipliers are given by columns 4,5,6 to obtain the branch
containig ν = (−28− 45i) /53 and are given by columns 7,8,9 to obtain the branch containing
ν′ = (80 + 39i) /89.

ν ν′

E F G 11
√

5 −5
√

5 −26 11
√

5 5
√

5 −26

F G H 13
√

5 −5 −22
√

2 13
√

5 5 −22
√

2

E G H 13
√

5 −33 −10
√

2 13
√

5 −33 +10
√

2

E F H 5
√

5 33
√

5 −52
√

2 5
√

5 33
√

5 −52
√

2

23.6 Barycentrics wrt the diagonal triangle
Proposition 23.6.1. When using the diagonal triangle DαDβDγ as barycentric basis, we obtain:

H0
.
= (f : g : h) '

b,1

(
(α δ − γ β) (α− δ)
2δ (α− γ) (α− β)

:
(β δ − αγ) (β − δ)
2δ (β − γ) (β − α)

:
(γ δ − αβ) (γ − δ)
2δ (γ − β) (γ − α)

)

where the f, g, h are real with f + g + h = 1, while the other three focuses HeHfHg are given by
±f : ±g : ±h, leading to an anticevian configuration.

Proof. Direct computation.
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Figure 23.2: Tripolar curve

Proposition 23.6.2. The point O, center of the focal circle, is the orthocenter of the diagonal
triangle. Its matrix is

diag

(
1

(δ − α) (γ − β) (α δ − β γ)
2 ,

1

(δ − β) (α− γ) (β δ − γ α)
2 ,

1

(δ − γ) (β − α) (γ δ − αβ)
2

)

Proof. From the±f : ±g : ±h property, the matrix of Γ has to be diagonal. But the orthocentroidal
circle is the only one to share this property.

Definition 23.6.3. For each triple of focuses, we introduce the Lemoine center Lh and the mass
center Mh by:

Lh
.
=

(
|FG|2E + |GE|2 F + |EF |2G

)
/
(
|FG|2 + |GE|2 + |EF |2

)

Mh
.
=

(
u2E + v2F + w2G

)
/
(
u2 + v2 + w2

)

The first time, we ponder by the squared lengths of the sidelines, the second time, we ponder by
the square of the coefficients involved in (23.1).

Proposition 23.6.4. Wrt the diagonal triangle, the barycentric coordinates of L0 and K0 are

L0 '
b,1




(δ α− γ β) (β − γ)
2

(δ − α)
2

(δ β − αγ) (γ − α)
2

(δ − β)
2

(δ γ − β α) (α− β)
2

(δ − γ)
2




K0 '
b,1




(δ − α) (β − γ) (δ α− βγ)
(
(δ + α− β − γ) ν2 + 2 (βγ − αδ) ν + (β + γ)αδ − (δ + α)βγ

)

(δ − β) (γ − α) (δ β − γα)
(
(δ + β − γ − α) ν2 + 2 (γα− βδ) ν + (γ + α)βδ − (δ + β) γα

)

(δ − γ) (α− β) (δ γ − αβ)
(
(δ + γ − α− β) ν2 + 2 (αβ − γδ) ν + (α+ β) γδ − (δ + γ)αβ

)




and we have Mj = Kj ∗
b
Kj ∗

b
Lj ÷

b
Ej ÷

b
Ej .
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Figure 23.3: Tripolar curve, after the meltdown of two focuses

Proof. Everything remains in the Lubin1 domain, since we are using K0 '
1
ν : 1 : ν−1. A direct

computation is easy. One can also use the fact that:

K0 ' H0 ∗
b




u/FG

v/GE

w/EF


 ; L0 ' H0 ∗

b




HE FG

HF GE

HGEF


 ; M0 ' H0 ∗

b



u2HE/FG

v2HF/GE

w2HG/EF




23.7 When E is on the curve
u |EE|+ v |EF |+ w |EG| = 0 implies v : w ' |EG| : |EF |.

Proposition 23.7.1. *** pompous *** Point De is on the curve when either S = 0 (this case will
be studied in detail at Section 23.8) or one of the F,G is on the curve (focuses are supposed to be
different).

Proof. When substituting (23.8) into (23.4), we get:

S2
α4γ4β4 |EF |4 |GE|4

(
v2 |FG|2 − u2 |GE|2

)2 (
u2 |EF | − w2 |FG|

)2
(√
β
√
γ |GE| |EF | u2 +

√
γ
√
α |EF | |FG| v2 +

√
α
√
β |FG| |GE| w2

)4

23.8 The tripolar circular cubics
Definition 23.8.1. In this section ±u ± v ± w = 0 is assumed. Parametrization u : v : w ' 1 :
s : −1 − s will be overused. And notation K will be used when asserting properties that doesn’t
apply to the whole family of tripolar curves W.

Example 23.8.2. Figure 23.5 has been drawn using the following data:

u = 1, v = 2, w = 3, E0 = 12i, F0 = 5, G0 = 0

This results into

α =
1

=
−5 + 12 i

13
, β =

1

5− 12 i

13
, γ =

1

−5− 12 i

13
, ν =

12− 35 i

37

δ =
1

−1555− 48348 i

48373
; δ =

2

153 − 158i

793

√
13
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Figure 23.4: Tripolar cubic

while the coefficients describing the connected piece containing ν are

E F G 1 2 −3

F G H 33 28 −61

E G H 33 −155 122

E F H 28 155 −183

Exercise 23.8.3. Values a = 1, b = 2, c = −3, α =
1

−12 + 5i

13
, β =

12− 5i

13
, γ =

5− 12i

13
are

given. Apply everything.

Proposition 23.8.4. Coefficients from focuses. When ±u ± v ± w = 0, but uvw 6= 0,
the resulting curve is a circular cubic. It admits four concyclic focuses as any other W. When
parametrizing u : v : w by 1 : s : −1− s, formula (23.6) can be reverted into:

s‖ =
2
−β

(
α2 − γ2

)
(αγ − δ β)

α (β2 − γ2) (β γ − α δ) ; s⊥ =
2
−β

(
α2 − γ2

)
(αγ + β δ)

α (β2 − γ2) (β γ + α δ)

And then the coefficients can be re-obtained as:




a

b

c




‖

'




1

s

−1− s


 '

2




α
(
β2 − γ2

)
(α δ − β γ)

β
(
γ2 − α2

)
(δ β − αγ)

γ
(
α2 − β2

)
(δ γ − β α)


 '




FG (α δ − β γ)

GE (β δ − γ α)

EF (γ δ − αβ)




Proof. Obvious computation. Naming both values of s as "parallel" and "perpendicular" will be
explained later. When s is known, the sign of δ is supposed to be chosen so that s = s‖ (δ), rather
than the contrary.

Proposition 23.8.5. Asymptotes. Using q1 = α + β + γ + δ, etc (the so called symmetric
functions), the equation of the tripolar cubic becomes:

K (α, β, γ, δ) =
2

4
(
T2 + ZZ

) (
q4Z − Z

) (
q2
1q4 − q2

3

)
+

T

((
8 q1q3q

2
4 − 4 q2q

2
3q4 + q4

3

)
Z2

+
(
q4
1 − 4 q2

1q2 + 8 q1q3

)
Z2

+
(
4 q2

1q2q4 − 2 q2
1q

2
3 − 16 q1q3q4 + 4 q2q

2
3

)
Z Z

)
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Figure 23.5: Tripolar cubic

The third point at infinity is U (δ)
.
= αβγδ : 0 : 1. Thus the asymptotes ∆‖ and ∆⊥ are orthogonal.

Their intersection is the gravity center of EFGH. When s is known, sign of δ is supposed to be
chosen so that K = K‖ (δ), rather than the contrary.

Proof. When substituting, one can see the symmetry of the expression, allowing to use the qj .
Then straightforward computations. Equations found for both asymptotes are:

∆‖ '
2

[
4,−q2

1 + q2
3/q4,−4q4

]
; ∆⊥ '

2

[
4,−q2

1 + q2 − q2
3/q4,+4q4

]

Corollary 23.8.6. The leading factor
(
q2
1q4 − q2

3

)
=
∏

3 (α δ − β γ) forbids a possible degeneracy
into a conic and the line at infinity.

Proposition 23.8.7. Tangentials. Each of the K‖ and K⊥ curves are invariant under the Q
group. Their 9 = 3× 3 common points are Ωx,Ωy, O, the De and their inverses D′e, etc in the unit
circle. They form an orbit under the Q group... when taking into account the indeterminacy at O
for the inversion into Γ. Moreover:

1. U‖ is the tangential of O,De, Df , Dg wrt K‖.

2. The tangentials of U‖ and U⊥wrt their own curve are :

U
‖
t '




4 q2 q3q4 − 8 q1q3q
2
4 − q4

3 + 16 q3
4

4 q4

(
q2
1q4 − 4 q2 q + q2

3

)

q4

(
4 q2

1q2 − 8 q1q3 − q4
1 + 16 q4

)


 ; U⊥t '



−q3

(
8 q1 q

2
4 − 4 q2 q3 q4 + q3

3

)

4 q4

(
q2
1q4 − q2

3

)

q1 q4

(
q3
1 − 4 q1 q2 + 8 q3

)




Point Ut is also the tangential of D′e, D′f , D
′
g. And it happens that Ut (−δ) is the singular

focus of K (δ).

3. Apart from Ω±, the 8 intersections of both K and the unit circle are obtained from −σ3 ÷ σ1

by changing the signs of α, β, γ, τ (odd changes move to K⊥, even ones remain on K‖). Each
group of 4 forms an orbit under Q. Point O is the common tangential of all these points.

4. Both curves are orthogonal at each of their intersections.

Proof. Due to the choice zA = α2, everything factors and computations are easy. The six Dj , D
′
j

depend only on the squares α2, etc: that is the reason why they can belong to both curves.
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Exercise 23.8.8. Consider the straight lines which are the bisectors of the angles
(−−→
OE,

−−→
OH

)

and
(−−→
OF,

−−→
OG
)
. And then consider the gudule which bisects these two lines. How to help some

constructions with this object ?

23.8.1 When the fourth focus is moving
Exercise 23.8.9. The locus of Ut, Fs is a circular quintic, and the directions of sidelines are the
other points at infinity. The corresponding asymptotes are going through (2A+B + C) /4, etc
while it exists a singular focus at X(143).

Exercise 23.8.10. The envelope of ∆ is the deltoid :

M (τ) =

(
1

4
s2

1 −
1

2
s2

)
− 1

4
τ2 − s3

2 τ

whose center is X(140)= (A+B + C +O) /4, its internal and external radiuses being 1/4 and 3/4.
Cups are given by τ3 = s3, i.e. the Morley’s directions. Moreover ∆‖ ∩∆⊥− describes the inner
circle. Hint: use dτ = ikτ where k is evanescent.

Exercise 23.8.11. The reflection of K wrt a circle centered at a focus leads to Cartesian ovals
whose focuses are the images of the remaining three original focuses (see Figure 23.7). Choosing
ρ = 1 is a great choice, which leads to O 7→ O).

Figure 23.6: Angels
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Figure 23.7: Cartesian ovals by inversion
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Chapter 24

Special Triangles

Central triangles have been defined in Section 2.2.

24.1 Changing coordinates, functions and equations
Proposition 24.1.1. Any triangle T can be used as a barycentric basis instead of triangle ABC.
When columns of triangle T are synchronized, the old barycentrics x : y : z (relative to ABC) can
be obtained from the new ones ξ : η : ζ (relative to T) by :




x

y

z


 = T ·




ξ

η

ζ




while the converse transformation can be done using the adjoint matrix.

Proof. A column of synchronized barycentrics acts on the matrix of rows containing the projective
coordinates of the vertices of the reference triangle by the usual matrix multiplication.

Remark 24.1.2. By definition of synchronized barycentrics, Lb · T ' Lb and the line at infinity is
(globally) invariant.

Proposition 24.1.3. Let α, β, γ the side lengths of triangle T (computed using Theorem 7.4.4).
Consider a central punctual transformation Φ that can be written as :

p : q : r 7→ u : v : w = φ (a, b, c, p, q, r)

with all the required properties of symmetry and homogeneity. Consider now the corresponding
punctual transformation Φ′ with respect to triangle T (written in its normalized form) and define
φT as the action of Φ′ on the old barycentrics (the ones related to ABC). Then :

φT


a, b, c,




p

q

r





 = T · φ


α, β, γ, T −1 ·




p

q

r







Example 24.1.4. Applied to the isogonal transform and some usual triangle, this leads to for-
mulas given in Figure 24.1. The term "complementary conjugate" is a synonym for "medial isogo-
nal conjugate", as is "anticomplementary conjugate" for "anticomplementary isogonal conjugate".
Also, "excentral isogonal conjugate" is "X(188)-aleph conjugate" and "orthic isogonal conjugate"
is "X(4)-Ceva conjugate".

Proposition 24.1.5. Let α, β, γ the side lengths of triangle T. Consider a conic Φ whose matrix
can be written as M (a, b, c) with the required properties of symmetry and homogeneity. Consider
now the corresponding conic Φ′ with respect to triangle T (written in its normalized form) and
define MT as the matrix defining Φ′ wrt the old barycentrics. Then :

MT (a, b, c) =
tT −1 ·M (α, β, γ) · T −1

Example 24.1.6. Applied to the circumcircle and some usual triangles, this leads to formulas
given in Figure 24.1.
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346 24.2. Residual triangles

24.2 Residual triangles

Definition 24.2.1. The residual triangles of a triangle A′B′C ′ inscribed in a bigger one ABC are
the triangles AB′C ′, A′BC ′, A′B′C. Mind the fact that the residuals are oriented counterclockwise
wrt triangles ABC and A′B′C ′.

Proposition 24.2.2. Suppose that A′B′C ′ is inside the convex hull ABC and note A,A0,Aa,Ab,Ac
the absolute values of the areas of the five triangles. Then A = Aa+Ab+Ac+A0. Moreover, A0 ≥
min (Aa,Ab,Ac). More precisely(Bottema et al., 1969), A0 ≥ min

(√AaAb,
√AbAc,

√AcAa
)
.

And equality occurs only when A′B′C ′ are the mid-points.

Proof. Write A′ ' 0 : x : x′, B′ ' y′ : 0 : y, C ′ ' z : z′ : 0 where x′ = 1− x, etc. Then

A0 = xyz + x′y′z′ ≥ 2
√
xyzx′y′z′ = 2

√
AaAbAc

Suppose Aa ≥ Ab ≥ Ac. If Aa ≤ 1/4, then A0 ≥ 1/4 ≥
√
AjAk. If Aa ≥ 1/4 then 2

√Aa ≥ 1.
Equality occurs only if xyz = x′y′z′ and Aa = 1/4.

Definition 24.2.3. The residual cevian triangles associated with point P are the triangles APbPc,
PaBPc, PaPbC where PaPbPc is the cevian triangle of P (mind the order...).

Proposition 24.2.4. The A-residual of the orthic (i.e. wrt X(4)) and the intouch (i.e. wrt X(7))
triangles have the following sidelengths :

[α, β, γ]orthic =
Sa
bc

[a, b, c]

[
α2, β2, γ2

]
intouch

=
(b+ c− a)

2

4 bc
[(a+ b− c) (a− b+ c) , bc, bc]

The incenters of the orthic residuals are the orthocenters of the intouch residuals.

24.3 Incentral triangle

definition cevian triangle of the incenter X(1)

pythagoras (strong values)

α2 =
abc

(
a3 + a2b+ a2c− ab2 − ac2 + 3 abc− b3 + b2c+ bc2 − c3

)

(a+ b)
2

(a+ c)
2

barycentrics (normalized)

C1 =




0
a

a+ c

a

a+ b
b

b+ c
0

b

a+ b
c

b+ c

c

a+ c
0




(f, g) (0; b)

24.4 Excentral triangle

definition triangle of the excenters. And thus, anticevian triangle of the incenter X(1)

pythagoras (strong values)

[
α2, β2, γ2

]
=

2R

ρ
[a (b+ c− a) , b (c+ a− b) , c (a+ b− c)]

thus similar with the intouch triangle (center X(57), ratio 2R/ρ)
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barycentrics (normalized)

A1 =




−a
b+ c− a

a

c+ a− b
a

a+ b− c
b

b+ c− a
−b

c+ a− b
b

a+ b− c
c

b+ c− a
c

c+ a− b
−c

a+ b− c




(f, g) (−a; b)

24.5 Medial triangle

definition cevian triangle of the centroid X(2)

side_length (strong values)

[α, β, γ] =
1

2
[a, b, c]

barycentrics (normalized)

C2 =
1

2




0 1 1

1 0 1

1 1 0




24.6 Antimedial triangle

definition anticevian triangle of the centroid X(2)

side_length (strong values)
[α, β, γ] = 2 [a, b, c]

barycentrics (normalized)

A2 =



−1 1 1

1 −1 1

1 1 −1




24.7 Orthic triangle

definition cevian triangle of the orthocenter X(4)

side_length (strong values)

[α, β, γ] =
1

abc

[
a2Sa, b

2Sb, c
2Sc
]

circumcircle center=X(5), Rorthic = 1
2 RABC

incircle center=X(4), rorthic =
SaSbSc
2abc S

barycentrics (synchronized)

C4 =




0 Sc/b
2 Sb/c

2

Sc/a
2 0 Sa/c

2

Sb/a
2 Sa/b

2 0




angles π − 2A, π − 2B, π − 2C
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24.8 Tangential triangle

definition The sidelines are the tangents to the ABC-circumcircle at the vertices.

key_property Anticevian triangle of X(6).

side_length (strong values)

[α, β, γ] =
abc

2SaSbSc

[
a2Sa, b

2Sb, c
2Sc
]

Therefore, this triangle is similar to the orthic triangle.

barycentrics (synchronized)

A6 =




− a
2

Sa

a2

Sb

a2

Sc
b2

Sa
− b

2

Sb

b2

Sc
c2

Sa

c2

Sb
− c

2

Sc




24.9 Brocard triangle (first)

Remember that Brocard points are defined by ω+ = a2b2 : b2c2 : c2a2 and ω− = c2a2 : a2b2 : b2c2

(see Proposition 7.11.1).

definition A1
.
= Bω−∩Cω+ ' a2 : c2 : b2 etc. This triangle is inscribed in the Brocard 3-6 circle,

see , diameter X(3)X(6).

side_length (strong values)

[α, β, γ] =
W2

2Sω
[a, b, c]

and therefore Broc1 is (anti-)homothetic to ABC. Perspector X(76), the third Brocard
point. Moreover, anti-similar to ABC with center X(2).

barycentrics (synchronized)

Broc1 =




a2 c2 b2

c2 b2 a2

b2 a2 c2




24.10 Brocard triangle (second)

definition Ua ' b2 + c2 − a2 : b2 : c2 is the projection of X(3) on the A-symmedian, etc. (and
therefore belongs to the 3-6 Brocard circle).

key_property Triangle ABC and triangle Broc2 share the same isodynamic centers X(15), X(16).

Exercise 24.10.1. The center Ea of circle A,X(15), X(16) is the inverse in circumcircle of Ua,
etc.

24.11 Brocard triangle (third)

definition A3
.
= Cω− ∩Aω+ ' b2c2 : b4 : c4 = isog (A1).

perspector with ABC: X(32)
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24.12 Intouch triangle (contact triangle)
definition Cevian triangle of the Gergonne point X(7).

key_property contacts of the incircle and the sidelines.

pythagoras (strong equality)
[
α2, β2, γ2

]
=

ρ

2R
[a (b+ c− a) , b (c+ a− b) , c (a+ b− c)]

thus similar with the excentral triangle (ratio ρ/2R)

barycentrics (normalized)

C7 =




0
a+ b− c

b

c+ a− b
c

a+ b− c
a

0
b− a+ c

c
c+ a− b

a

b− a+ c

b
0




24.13 Extouch triangle
definition cevian triangle of the Nagel point X(8).

side_length easy to compute, but nothing great !

barycentrics (normalized)

C8 =




0
b− a+ c

b

b− a+ c

c
c+ a− b

a
0

c+ a− b
c

a+ b− c
a

a+ b− c
b

0




24.14 Hexyl triangle
definition symmetric of the excentral triangle JaJbJc wrt the circumcircle. Thus HaJbHcJaHbJc

is an hexagon whose opposite sides are parallel.

key_property Vertex Ha is the point in which the perpendicular to AB through the excenter Jb
meets the perpendicular to AC through the excenter Jc.

pythagoras (strong values)
[
α2, β2, γ2

]
=

2R

ρ
[a (b+ c− a) , b (c+ a− b) , c (a+ b− c)]

thus similar with the intouch triangle (center I, ratio 2R/ρ).

barycentrics (normalized)Ha ' a (aSa + bSb + cSc + abc) : b (aSa + bSb − cSc − abc) : c (aSa − bSb + cSc − abc)
circumcircle centered at X(1), radius 2R.

24.15 Fuhrmann triangle
Definition 24.15.1. Fuhrmann triangle is A′′B′′C ′′ where A′B′C ′ is the circumcevian triangle
of X1 and A′′ is the reflection of A′ in sideline BC (and cyclically for B′′ and C ′′).

Proposition 24.15.2. Side length of Fuhrmann triangle are :

W4 ×
(√

a

(a+ b− c) (a− b+ c)
,

√
b

(b− c+ a) (b+ c− a)
,

√
c

(c+ a− b) (c− a+ b)

)

where W4 =
√
a3 + b3 + c3 − (a2b+ a2c+ ab2 + ac2 + b2c+ bc2) + 3 abc

Quantity W4 is the Fuhrmann square root (13.14). Circumcircle of the Fuhrmann triangle is the
Fuhrmann circle of ABC (whose diameter is [X4, X8]
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Remark 24.15.3. As noticed in (Dekov, 2007), OIFuNa and OIHFu are parallelograms, whose
respective centroids are the Spieker center and nine-point center, respectively, where IFu = 2NI
or IFu = R− 2r.

24.16 Star triangle
Definition 24.16.1. Star triangle. Consider the midpoints A′B′C ′ of the sidelines of triangle
ABC. Draw from each midpoint the perpendicular line to the corresponding bisector. These three
lines determine a triangle A∗B∗C∗. This is our star.

Proposition 24.16.2. The synchronized barycentrics and the sidelengths of the star triangle are :

T∗ '




b+ c c− b b− c
c− a c+ a a− c
b− a a− b b+ a


 ·




b+ c− a 0 0

0 c+ a− b 0

0 0 a+ b− c




−1

[
α2, β2, γ2

]
=

(
R

2 ρ

)2

× [a (b+ c− a) , b (c+ a− b) , c (a+ b− c)]

Similar to the intouch triangle (k2 = R3 ÷ 2ρ3) and to the excentral triangle (k2 = R ÷ 8ρ). We
have the following central correspondences :

T∗ T T∗ T T∗ T T∗ T
2 3817 133 121 542 2801 2393 527

3 946 134 122 647 3835 2501 4885

4 10 135 123 690 3887 2574 3308

5 5 136 124 804 926 2575 3307

6 142 137 125 924 522 2679 1566

20 4301 138 126 974 1387 2777 2802

25 3452 139 127 1112 3035 2781 528

30 517 143 140 1154 30 2782 2808

39 2140 184 226 1205 3254 2790 2810

51 2 185 1 1495 908 2794 2809

52 3 235 1329 1503 518 2797 2821

53 141 389 1125 1510 523 2799 2820

65 178 403 3814 1531 1512 2848 2832

113 119 418 2051 1562 4904 3258 3259

114 118 427 2886 1568 1532 3564 971

115 116 428 3740 1596 3820 3566 3900

125 11 511 516 1637 4928 3574 442

128 113 512 514 1824 2090 3575 960

129 114 520 3667 1843 9 3917 1699

130 115 523 513 1986 214

131 117 525 3309 1990 3834

132 120 526 900 2052 3840

For example, orthocenter X(4, T∗) is Spieker center X(10, T ).

Proof. Straightforward computations. In fact, A′A∗ and B∗C∗ are orthogonal and the orthic
triangle of T∗ is the medial triangle of T .

April 5, 2025 14:49 published under the GNU Free Documentation License



24. Special Triangles 351

φT when φ is the isogonal conjugacy
medial C2 (v + w − u)

(
(u+ v − w) b2 + (u− v + w) c2

)

antimedial A2
−a2

v + w
+

b2

u+ w
+

c2

u+ v
orthic C4 u (−Sau+ Sbv + Scw)

tangential A6 a2

( −a2

c2v + wb2
+

b2

uc2 + wa2
+

c2

ub2 + a2v

)

excentral A1 a
(

−1
(b+c−a)(cv+bw) + 1

(a−b+c)(cu+aw) + 1
(b+a−c)(bu+av)

)

circumcircle of T
medial C2

∑(
b2 + c2 − a2

)
x2 − 2

∑
a2yz

antimedial A2

∑
a2x2 +

(
a2 + b2 + c2

)∑
yz

orthic C4
∑(

b2 + c2 − a2
)
x2 − 2

∑
a2yz

tangential A6 a2b2c2
∑(

b2 + c2 − a2
)
x2 +

(∑
6 a

4b2 −∑3 a
6
)∑

a2yz

excentral A1

∑
bcx2 + (a+ b+ c)

∑
ayz

Figure 24.1: Special Triangles

Figure 24.2: The star triangle
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Chapter 25

Formal operations

Let us examine again some already defined operations, and consider in more details their formal
properties

25.1 Unary operators
1. DP1, see 3.13

DP1 (U) = u2(v + w) : v2(w + u) : w2(u+ v)

2. DP2, see 3.14
DP2 (U) = u(v − w)2 : v(w − u)2 : w(u− v)2

25.2 cevamul, cevadiv, crossmul, crossdiv
These operations were considered in Kimberling to formalize various properties related to cevian
nests.

Remark 25.2.1. cevadiv has been defined in Section 3.11 by :

cevadiv (P ; U)
.
= persp (Cevian (dividend, ABC) , Anticevian (divisor, ABC))

' u(−q r u+ r p v + p q w) : v(q r u− r p v + p q w) : w(q r u+ r p v − p q w)

Property X = cevadiv (P,U) is sometimes stated as "X is the P-ceva conjugate of U". This
operation is clearly a type-keeping (P,U)-map and an involutory U -map (when P is fixed).

Remark 25.2.2. The cevamul operation is the converse of the previous one, and is sometimes
called cevapoint.

cevamul (u : v : w, x : y : z) = (uz+wx)(uy+vx) : (vz + wy) (uy + vx) : (vz + wy) (uz + wx)

This operation is clearly commutative and type-keeping.

Remark 25.2.3. The crossdiv has been defined in Section 3.10 by :

crossdiv (P ; U)
.
= persp (ABC, Cevian (dividend, Cevian (divisor, ABC)))

' u

quw + ruv − pvw :
v

pvw + ruv − quw :
w

pvw + quw − ruv

Property X = crossdiv (P,U) s sometimes stated as "X is the P-crossconjugate of U". This
operation is clearly a type-keeping (P,U)-map and an involutory U -map (when P is fixed).

Remark 25.2.4. The crossmul operation is the converse of the previous one, and is sometimes
called crosspoint.

crossmul (u : v : w, x : y : z) = (v z + w y)ux : (u z + w x) v y : (u y + v x)w z

This operation is clearly commutative and type-keeping.
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354 25.3. Formal operators and conics

Proposition 25.2.5. ’div’ formula. The isoconjugacy that exchanges P,U also exchanges

P ↔ U ; crossdiv (P,U)↔ cevadiv (U,P ) ; crossdiv (U,P )↔ cevadiv (P,U)

Proof. We have crossdiv (P,U) ∗
b

cevadiv (U,P ) = P ∗
b
U .

Proposition 25.2.6. ’mul’ formula. For any isoconjugacy, we have :

cevamul (U,X) = crossmul
(
U#
F , X

#
F

)#

F

crossmul (U,X) = cevamul
(
U#
F , X

#
F

)#

F

Proof. Direct examination is shorter, using the "div" formula just above is more stratospheric.

25.3 Formal operators and conics
Since they are all Cremona transforms of second degree, operators wrt a triangle can be transformed
into operators wrt a well chosen conic.

Proposition 25.3.1. barymul. Let ψ be the ABC-isoconjugacy that swaps points P,U (not on
the sidelines). Then ψ swaps CPU .

= conic (A,B,C, P, U) and LPU .
= line (P,U). The pole F 2 of

the conjugacy is the barymul of P,U and therefore the "barysquare" of the four fixed points of ψ:

F 2 ' P ∗
b
U ; f2 = kp u, g2 = kq v, h2 = kr w, k 6= 0

Proposition 25.3.2. We have the various ’cross’ formulas

formula name usefulness inverse

1

qw
− 1

rv
intersections of the tripolars, perspector of CPU X ∈ CPU

1

rv
+

1

qw
crossmul conipole of LPU wrt CPU crossdiv

1

qw − rv tripole of LPU X ∈ LPU
1

qw + rv
cevamul U = persp (Acev (P ) , cev (X)) cevadiv

Thus the ’odd ones’1 aren’t Cremona transforms.

25.4 crossdiff, crosssum, polarmul, polardiv
Definition 25.4.1. The F -crossdiff of two points U = u : v : w and X = x : y : z that aren’t
lying on a sideline of ABC is defined by :

crossdiffF (U,X) = f2 (wy − vz) : g2 (uz − wx) : h2 (vx− uy)

Remark 25.4.2. In ETC, F =X(1) is assumed. Defined as above, the operation (F,U,X) 7→
crossdiff F (U,X) is globally type-keeping and provides a point when the entries are points (F is
any of the four fixed point of the conjugacy X 7→ X∗).

Proposition 25.4.3. The F -crosssum of U,X that was defined at Definition 22.5.5 is constructible
using crossmul, cevamul and isoconjugacies. Therefore a better definition is the globally type-
keeping function :

crosssumF (U,X) = f2 (wy + vz) : g2 (uz + wx) : h2 (vx+ uy)

= (cevamul (U,X))
#
F = crossmul

(
U#
F , X

#
F

)

where F = f : g : h is any of the fixed points of the conjugacy.
1English joke. Can not be translated.
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Remark 25.4.4. Defined that way, crosssumF (U,X) is really different from the polar line of X wrt
the circumconic CC (U) : u yz + v zx+ w xy = 0 since this line is the next coming polarmul.

Proposition 25.4.5. Given U and P .
= crosssumF (U,X) one can find X using

X ' cevadiv
(
P#
F , U

)

Proof. Direct inspection (here P is generic, not the "square" of the fixed point F ).

Proposition 25.4.6. The polarmul of two points U,X is a line ∆. When U = u : v : w and
X = x : y : z are not on the sidelines, then line ∆ is defined as the conipolar of the point X wrt
the circumconic CC (U). We have polarmul (U,U) = tripolar (U) and

polarmul (U,X) = complem

(
X ÷

b
U

)
÷
b
U

= crossmul(tripolar(U), tripolar(X)) = tripolar (cevamul (U, X))

= [wy + vz ; uz + wx ; vx+ uy]

Operation polarmul is commutative and type-crossing (i.e output is a line when entries are points).

Proposition 25.4.7. The polarmul of two lines D, ∆ is the point P obtained by applying
"the same rules" as above, i.e.

polarmul ([u, v, w] , [x, y, z])
.
= wy + vz : uz + wx : vx+ uy

Then polarmul (∆,∆) is tripolar (∆) and polarmul (D,∆) is the conipolar of line ∆ wrt the inconic
whose perspector is tripolar (D).

Proof. Direct inspection. Remember that the dual of an inconic "goes through" the sidelines.

Definition 25.4.8. The polardiv of a line ∆ ' [ρ;σ; τ ] and a point U ' u : v : w is the reverse
operation of the previous one. One has the formula :

polardiv(∆, U) = cevadiv(tripolar(∆), U)

= (σv + τw − ρu)u : (τw + ρu− σv) v : (ρu+ σv − τw)w

that correctly defines a point when P is a line and U is a point.

25.5 Complementary and anticomplementary conjugates

V ✛ anticompl
X

complem ✲ U

V ′

anticomcon.....❄

.......

✛
anticompl

X ′

kP

❄

complem
✲ U

comcon......❄

.......

xcomcon =
g2

u− v + w
+

h2

u+ v − w

xanticomcon = − f2

v + w
+

g2

u+ w
+

h2

u+ v

Figure 25.1: The complementary and anticomplementary conjugates

Definition 25.5.1. comcon, anticomcon. For points P = f2 : g2 : rh2 and U = u : v : w,
neither lying on a sideline of ABC, the P -complementary and P -anticomplementary conjugates of
U are defined as in Figure 25.1, where k is the P-isoconjugacy. Most of the time, P = X1 and the
conjugacy reduces to isogonal conjugacy.
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25.6 Hirstpoint aka Hirst inverse
Definition 25.6.1. Hirstpoint. Suppose P = p : q : r and U = u : v : w are distinct points,
neither lying on a sideline of ABC. The hirstpoint X is the point of intersection of the line PU
and the polar of U with respect to the circumconic CC (P ) conic :

p yz + q zx+ r xy = 0.

Proposition 25.6.2. We have the following properties :
(i) H is a type-keeping operation as a "ramified product" of type-crossing transforms and :

hirstpoint (P,U) = (P ∧ U) ∧ polarmul (P,U)

= u2 q r − p2 v w : p v2 r − u q2 w : p q w2 − u v r2 (25.1)

(ii) H is commutative from the duality properties of polarization.
(iii) H (P,U) = 0 : 0 : 0 occurs only when U = P
(iv) H (P,U) = P if and only if U lies on the polar line of P
(v) H (P, H (P, U)) is either 0 : 0 : 0 or U . Indeterminate form is obtained (a) on the polar line
of P and (b) on a conic containing P and having P has perspector ... i.e. a conic whose only real
point is P .

Proof. Direct inspection for all properties. To be precise, these properties are valid only on the
real part of the world. For example, (i) gives U = p : jq : j2r where j3 = 1, i.e. U = P and two
other "imagined" solutions.

All these properties show that "Hirst inverse" is a poorly chosen term, since we aren’t dividing,
but multiplying. Concerning the designation "Hirst inverse," see the contribution Gunter Weiss:
http://mathforum.org/kb/message.jspa?messageID=1178474.

25.7 Line conjugate
Suppose P = p : q : r and U = u : v : w are distinct points, neither equal to A, B, or C. The
P -line conjugate of U is the point whose trilinears are given by :

p(v2 + w2)− u(qv + rw) : q(w2 + u2)− v(rw + pu) : r(u2 + v2)− w(pu+ qv)

This is the point of intersection of line PU and the tripolar of the isogonal conjugate of U .
Using the same formula with barycentrics, another point is obtained, that is the intersection of

PU and the dual of U . So what ?

25.8 Collings transform
Lemma 25.8.1. Let Mi, 1 ≤ i ≤ 5, be five (different) points, not four of them on the same line,
such that midpoint (M1,M2) = midpoint (M3,M4) = P . They determine uniquely a conic whose
center is P and contains reflection(P,M5).

Proof. Take P as origin of the euclidian coordinate system and consider determinant γ whose lines
are

[
x2
i , xiyi, y

2
i , xi, yi, 1

]
, the last line (i = 6) referring to the generic point of the plane. Since

x2 = −x1, · · · γ can be factored into (x1y3 − x3y1) times an expression without terms of first
degree in x6, y6.

Lemma 25.8.2. Let Mi, 1 ≤ i ≤ 4, be four different points, not on the same line. The locus :

Θ = {center (γ) | γ is a conic andM1,M2,M3,M4 ∈ γ}

is a conic. It contains the six midpoint(Mi,Mj) and its center is K =
∑
Mi/4.

Proof. Θ is a conic since degree is two. When P = midpoint (M1,M2), the preceding lemma can be
applied to M1,M2,M3, reflection (P,M3) ,M4, defining a conic whose center is P , so that P ∈ Θ.
Now, the lemma can be applied to Θ itself, sinceK = midpoint (midpoint (M1,M2) ,midpoint (M3,M4))
–and cyclically.
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P

C

C'

B

B'

A

A' Q

Figure 25.2: Collings configuration

Proposition 25.8.3. Let P be a point not on a sideline of ABC, and A′, B′, C ′ the reflections of
A,B,C in P .
(i) It exists a conic γ through the six points A,B,C,A′, B′, C ′, its center is P and its perspector
is U = P ∗

b
anticomplem (P ), so that γ = CC (U). This conic intersects the circumcircle at point

Q = isotom (X6 ∧ U), i.e. the tripole of line UX6. Moreover, the circumcircles of triangles AB′C ′,
A′BC ′ and A′B′C are also passing through point Q.
(ii) Conversely, when Q is given on the circumcircle, the locus of P is conicev (X2, Q). This conic
goes through the three AB∩CQ points, the three midpoint (A,Q) and through four fixed points : the
vertices of medial triangle and through the circumcenter X3. Moreover, this conic is a rectangular
hyperbola, its center is K = (A+B + C +Q) /4 and belongs to the nine points circle of the medial
triangle.
(iii) The anticomplement of this RH is the rectangular ABC-circumhyperbola whose center is the
complement of Q.

Proof. For (i), only Q belongs to circumcircle of AB′C ′ has to be proved. Barycentric computation.
For (ii), point AB ∩ CQ lead to the degenerate conic AB ∪ CQ (and cyclically) while the six
midpoints come from the lemma. When P = X3, conic γ is the circumcircle... and passes through
A,B,C,Q and X3 ∈ Θ. But X3 of ABC is X4 of the medial triangle, and Θ contains an orthic
configuration, characteristic property of a rectangular hyperbola.

For the sake of exhaustivity, if barycentrics of P are p : q : r then barycentrics of Q are

Qx : Qy : Qy where Qx =
1

r (p+ q − r) b2 − q (p− q + r) c2

(and cyclically in a, b, c and p, q, r too). The transformation P 7→ Q was described by Collings
(1974) and was further discussed by (Grinberg, 2003c).

Example 25.8.4. Examples are as follows :
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A

B
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C

8G

7
10

P
A'

B'
C'

Q

3

1
2

K
4

5 6

Figure 25.3: Collings locus is a ten points rectangular hyperbola

Q points on the conic wrt medial triangle
X74 125
X98 115, 868
X99 2, 39, 114, 618, 619, 629, 630, 641, 642, 1125 Kiepert hyperbola
X100 1, 9, 10, 119, 142, 214, 442, 1145 Feuerbach hyperbola
X107 4, 133, 800, 1249
X110 5, 6, 113, 141, 206, 942, 960, 1147, 1209 Jerabek hyperbola
X476 30
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Chapter 26

Sondat theorems

26.1 Perspective and directly similar
Remark 26.1.1. When triangle ABC is translated into A′B′C ′, these triangles are in perspective
and the perspector is the direction of the translation. The converse situation is not clear, so that
translations will be excluded from what follows, implying the existence of a center. When using
composition, we have to examine if nevertheless translations are reappearing.

Lemma 26.1.2. When σ is a direct similarity (but not a translation) with center S = z : 0 : ζ
and ratio kκ (k is real while κ is unimodular, and kκ 6= ±1) then its matrix in the Morley space
is :

σ =




kκ
z

t
(1− kκ) 0

0 1 0

0
ζ

t

(
1− k

κ

)
k

κ




Proof. One can check that umbilics are fixed points of this transform. The characteristic polyno-
mial of matrix σ is χ (µ) = (µ− 1) (µ− k κ) (µ− k/κ). Excluding kκ = ±1 ensures the existence
of a center.

Proposition 26.1.3. When a direct central similarity σ (S, kκ) and a perspector P 6= S are given,
the locus C of points M such that P, M, M ′ = σ (M) are collinear is the circle through S, P, σ−1P .

Proof. The locus contains certainly the five points such that M = P or M ′ = P or M = M ′ i.e. S
and both umbilics. The general case results from the fact that det [P, M, M ′] is a second degree
polynomial in Z, Z, T so that C is a conic.

Proposition 26.1.4. Suppose that triangles T1 and T2 are together in perspective (center P ) and
strictly similar (center S, ratio kκ, κ 6= ±1). Then P and S are the two intersections of their
circumcircles (P = S cannot occur).

Proof. Use Lubin coordinates relative to T1 = ABC, and note S ' z : t : ζ. Then A′B′C ′ is
obtained as :

A′B′C ′ ' σ · ABC
The determinant of lines AA′, BB′, CC ′ factors as :

σ4

σ3

k

κ

(
1− κ2

)(
1− k

κ

)
(1− k κ)×

(
z ζ − t2
t2

)

proving S ∈ Γ. Then perspector is also on this circle (from preceding proposition). We even have
the more precise result :

P =




ω 0 0

0 1 0

0 0 ω−1


 · S where ω =

1− kκ
1− k

κ

359



360 26.1. Perspective and directly similar

Proposition 26.1.5. Consider a fixed triangle ABC, and describe the plane using the Lubin
frame. Consider points P = Φ : 1 : 1/Φ and S = Θ : 1 : 1/Θ on the unit circle (P as Phi, and S as
Sigma. But Sigma is sum, use the next Greek letter). Assume P 6= S. Then all triangles A′B′C ′
that are P -perspective and S-similar to triangle ABC are obtained as follows. Let point O′ on the
perpendicular bisector of (P, S) be defined by property (SO, SO′) = κ where κ2 is a given turn.
Draw circle γ centered at O′ and going through P and S. Then A′ = γ ∩ SA, etc.

Proof. Point O′ can be written as P + S + x (ΘΦ : 0 : 1). This point is the σ (S, kκ) image of O if
and only if :

k = κ
Φ−Θ

Φ− κ2Θ
, σ =




κ2 (Φ−Θ)
(
1− κ2

)
Θ Φ 0

0 Φ− κ2Θ 0

0 1− κ2 Φ−Θ




As it should be, σ depends only on κ2, while the sign of k depends on the choice of κ among the
square roots of κ2. The matrix of circle γ is :

γ =
t
σ
−1 · Γ · σ −1 '




0 1− κ2 κ2Θ− Φ

1− κ2 2
(
κ2Φ−Θ

) (
1− κ2

)
Θ Φ

κ2Θ− Φ
(
1− κ2

)
Θ Φ 0




And it can be checked that P, A, A′ = σ (A) are collinear.

Proposition 26.1.6. With same hypotheses, the perspectrix of triangles ABC and A′B′C ′ is the
line :

XY Z =
[(

Φ− κ2 Θ
)

Φ, −ΦΘ
(
Φ− κ2 σ1

)
+ κ2

(
κ2 σ3 − σ2Φ

)
, κ2

(
Φ− κ2 Θ

)
σ3

]

Points S,C,C ′, X, Y are concyclic (and circularly). When κ2 reaches Φ/α, then A′ moves to P
and XY Z becomes the sideline BC. When S is not a vertex A,B,C, the envelope of line XY Z is
the Steiner parabola of point S (focus at S, directrix the Steiner line of S). The tangential equation
of this parabola is given by matrix :

P∗ '




2 Θσ3 σ3 σ2 − σ1Θ

σ3 0 −Θ

σ2 − σ1Θ −Θ −2




Proof. Since XY Z is given by second degree polynomials, the envelope is a conic. It can be
obtained by diff and wedge, then eliminate. Parabola comes from the central 0. Focus is obtained
in the usual way, and one recognizes S. Directrix ∆ is the locus of the reflections of the focus in
the tangents. From the special cases, this is the Steiner line of S.

Last point, compute circle (S,X, Y ). Special cases Θ = α, etc, and Φ = κ2Θ (O′ at infinity)
are appearing in factor. Otherwise, the equation is :

α
(
Φ− κ2 Θ

)
ZZ +

(
κ2 α− Φ

) (
Z + αΘZ

)
T +

(
Φ Θ− α2κ2

)
T2

and this circle goes through A and A′.

Proposition 26.1.7. When A,B,C, S, P are according the former hypotheses, let H, H ′ be the
respective orthocenters of ABC and A′B′C ′. Then midpoint of H,H ′ belongs to XY Z if and only
if κ2 = −1 (so that κ is a quarter turn) or :

κ2 = −Φ2 (Θ− σ1)

σ2 Θ− σ3
, i.e. κ = (BC, OP ) + (SA, SH)

In the second case, XY Z is the perpendicular bisector of (H,H ′).

Proof. We have H ′ = σ (H) and equation in κ2 is straightforward. Then we have :

ω2 (BC) = −βγ, ω2 (OP ) = Φ2, ω2 (SA) = −Θα, ω2 (SH) = −σ3Θ
Θ− σ1

σ2Θ− σ3
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26. Sondat theorems 361

Corollary 26.1.8. Start from triangle ABC, and assume that XY Z = [ρ, σ, τ ] while κ is a
quarter turn. Then X,Y, Z are X = 0 : τ : −σ, etc. Lines XδA =

[
Scσ + Sbτ, a

2σ, a2τ
]
, etc are

the perpendicular at X to BC, etc. Finally, point A′ is Y δB ∩ ZδC , etc. In other words :

A′ '




ρ (ρSbSc + σScSa + τSaSb)− 4S2στ

b2ρ
(
τc2 − σSa − ρSb

)

c2ρ
(
σb2 − τSa − ρSc

)


 , etc

The perspector and the similicenter are :

P = isogon
(
Mb · t∆

)
; S = isogon ((σ − τ) ρ : σ (τ − ρ) : τ (ρ− σ))

while the ratio of the similarity is :

k =

(
a2 + b2 + c2

)
ρστ − Saρ

(
σ2 + τ2

)
− Sbσ

(
ρ2 + τ2

)
− Scτ

(
ρ2 + σ2

)

2S (σ − τ) (ρ− τ) (ρ− σ)

Proof. Straightforward computation.

26.2 Perspective and inversely similar
Lemma 26.2.1. A circumscribed rectangular hyperbola goes through A,B,C,H,Gu where H is the
orthocenter and Gu is the gudulic point, the intersection of the RH and the circumcircle. Directions
of axes are given by the bisectors of, for example, AGu and BC. Then directions of asymptotes
are obtained by a 45◦ rotation (or taking again the bisectors).

Lemma 26.2.2. When a rectangular hyperbola H is known by its implicit equation

κ2Z2 − 1

κ2
Z2 +

(
W Z + V Z

)
T +QT2

then points M ∈ H can be parametrized as :

M =
1

2




+V κ2

1

−W 1

κ2


+X




κ

0
1

κ


+ Y




+i κ

0

−i 1

κ


 (26.1)

where X,Y are real quantities linked by :

Y X =
−i
16

(
κ2V 2 + 4Q− W 2

κ2

)

Proof. This way of writing may look weird but, most of the time, hyperbola equations are appearing
that way.

Lemma 26.2.3. Consider four points Mj on a rectangular hyperbola, parametrized by (26.1).
These points form an orthocentric quadrangle if and only if :

256x1x2x3x4 =

(
κ2V 2 + 4Q− W 2

κ2

)2

Proof. We write that (M1 ∧M2)· Mz ·t(M3 ∧M4) = 0, and obtain this condition. The conclusion
follows from the symmetry of the the result.

Lemma 26.2.4. When ψ is a central inverse similarity (reflections in a line are allowed, but not
the other isometries), then its matrix in the Morley space can be written as :

ψ =




0
z

t
− k κ2 ζ

t
kκ2

0 1 0
k

κ2

ζ

t
− k

κ2

z

t
0




Point S = z : 0 : ζ is the center, axes are directed by ±κ2 and ratio is k (κ is unimodular while k is
real and k = ±1 is a dubious case). One can check that umbilics are exchanged by this transform.
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362 26.2. Perspective and inversely similar

Proof. Let z2 : t2 : ζ2 be the image of the origin 0 : 1 : 0. The characteristic polynomial of matrix :



0 z2/t2 k κ2

0 1 0
k

κ2
ζ2/t2 0




is χ (µ) = (µ− 1) (µ− k) (µ+ k). Excluding k = ±1 ensures the existence of a center. Consider
the reflection δ about line through S and κ2 : 0 : 1. We have :

δ = subs
(
k = ±1, ψ

)
; ψ · δ = δ · ψ =




k (1− k)
z

t
0

0 0

0 (1− k)
ζ

t
k




Remark 26.2.5. The unimodular κ was an intrinsic quantity when we were dealing with direct
similarities. Now, κ2 measure the angle between the real axis and one of the axes of the skew
similarity.

Proposition 26.2.6. When a central skew similarity ψ (S, kκ) and a perspector P 6= S are given,
the locus H of points M such that P, M, M ′ = ψ (M) are collinear is the conic through S, P, ψ−1P
and directions of the ψ-axes (and this conic is a rectangular hyperbola).

Proof. The locus contains certainly the five points such that M = P or M ′ = P or M = M ′ i.e.
S and both directions ±κ2 : 0 : 1. The general case results from the fact that det [P, M, M ′] is a
second degree polynomial in Z, Z, T so that C is a conic.

Proposition 26.2.7. Suppose that triangles T1 and T2 are together in perspective (center P ) and
strictly antisimilar (center S, ratio k 6= ±1, direction of axes ±κ2 : 0 : 1). Let X be one of the
points S, P , ±κ2 : 0 : 1. Then the other three are obtained as the remaining intersections between
conic H through A,B,C,H,X and conic H′ through A′, B′, C ′, H ′, X.

Proof. Use Lubin coordinates relative to T1 = ABC, and note S ' z : t : ζ. Then A′B′C ′ is
obtained as :

A′B′C ′ ' ψ · ABC

The determinant of lines AA′, BB′, CC ′ factors as :

σ4

t2σ3
k
(
k2 − 1

)
× conic

proving that S belongs to the rectangular hyperbola whose implicit and parametric equations are :

−1

κ2
Z2 + κ2Z2

+

(
σ1

κ2
− κ2

σ3

)
TZ +

(
σ2κ

2

σ3
− σ3

κ2

)
TZ +

(
σ1κ

2

σ3
− σ2

κ2

)
T2

M (x) '




xκ− κ4 − σ1σ3

2σ3
+

1

16x
κ

(
κ2

(
κ2

σ3
+
σ1

κ2

)2

− 1

κ2

(
σ3

κ2
+
σ2κ

2

σ3

)2
)

1

1

κ
x+

σ2κ
4 − σ2

3

2κ4σ3
− 1

16x

1

κ

(
κ2

(
κ2

σ3
+
σ1

κ2

)2

− 1

κ2

(
σ3

κ2
+
σ2κ

2

σ3

)2
)




Then perspector is also on this hyperbola (from preceding proposition). We even have the more
precise result :

k =
xS − xP
xS + xP
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26. Sondat theorems 363

Proposition 26.2.8. Consider a triangle A, B, C, its orthocenter H and two points S, P such
that the six points A, B, C, H, P, S are on the same conic H. Then it exists exactly one triangle
A′B′C ′ that is together S-antisimilar and P perspective with ABC. Moreover A′, B′, C ′, H ′, P, S
are on the same conic H′, both conics are rectangular hyperbolas and share the same asymptotic
directions. Finally, the gudulic point Gu of conic H sees triangle ABC at right angles with trigone
A′B′C ′, and the fourth intersection of conic H′ with circle Γ′ sees triangle A′B′C ′ at right angles
with trigone ABC.

Proof. A conic through A,B,C,D is a rectangular hyperbola. Consider one of its asymptotes
and draw a parallel ∆ to this line through point S. Let A′′, B′′, C ′′, H ′′ be the reflections of
A, B, C, H into ∆. Then we have A’=SA”∩PA, etc. Final result comes from

Proposition 26.2.9. When A,B,C,H, P are fixed, the direction of the perspectrix XY Z is also
fixed.

Proposition 26.2.10. When A,B,C,H, S are fixed and P moves onto the A,B,C,H, S hyperbola,
the envelope of the perspectrix XY Z is the parabola inscribed in triangle ABC whose directrix is
line HS.

26.3 Parallelogy

Definition 26.3.1. Two triangles T1 and T2 are parallelogic when a point M1 exists that sees
triangle T1 with rays parallel to the sidelines of T2. In other words, the lines drawn from the
vertices of T1 and parallel to the corresponding sides of T2 are concurrent at a point M1 (the ray
source).

Proposition 26.3.2. Parallelogy is a symmetric relation between triangles (defining a ray source
M1 that sees T1 and a ray source M2 that sees T2).

Proof. Using computer, symmetry is straightforward : condition of concurrence is the product of
det T2 by a polynomial that is invariant by exchange of the two triangles.

Proposition 26.3.3. When T1, T2 are parallelogic, the formula φ
.
= T2 · T1

−1
(columns are

supposed to be synchronized !) defines a collineation φ such that Lb 7→ Lb together with A1 7→
A2, etc. Then φ (M1) = M2. Moreover, any other triangle is parallelogic with its image by φ (so
that φ itself can be called a parallelogy).

Conversely, a collineation φ is a parallelogy when (1) Lb 7→ Lb and (2) Lb · φ = trace (φ)Lb.

Proof. Direct computation, assuming that T1, T2 are parallelogic.

Exercise 26.3.4. (spoiler). Parallelogy in PC
(
C3
)
. Morley spaces: conditions are φ21 = φ23 = 0

to enforce Lz 7→ Lz and φ11 + φ33 = 0 to have the right trace.

26.4 Orthology

Definition 26.4.1. We say that point P sees triangle A′B′C ′ at right angles to trigone ABC
when P is different from A′, B′, C ′ and verifies PA′ ⊥ BC etc.

Remark 26.4.2. Should point P be at infinity, all sidelines of ABC would have the same direction,
and triangle ABC would be degenerate (flat). Some problems are to be expected...

Lemma 26.4.3. The orthodir of the BC sideline is :δA
.
= a2 : −Sc : −Sb. This is also the

direction of line HA, where H is the orthocenter of the triangle.

Proposition 26.4.4. Consider two non degenerate finite triangles ABC, A′B′C ′and suppose that
it exists a finite point P , different from A′, B′, C ′, that sees triangle A′B′C ′at right angles to trigone
ABC. Then it exist a point U that sees triangle ABC at right angles to trigone A′B′C ′.
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Proof. From hypothesis, A′ belongs to line PδA. Then it exists a real number kA 6= ∞ such that
A′ = kAP + δA. And the same for B′, C ′. Now compute :

A′′
.
= Mb ·

t

(B′ ∧ C ′) = −2S (p+ q + r)



−kB − kC

kB

kC




This comes from P ∧ P = 0, together with Mb · t(δB ∧ δC) = Mb · tLb = 0. Since p+ q + r 6= 0

and kj 6= 0 is assumed, column A′′ really defines a direction. We can therefore simplify and obtain :

A′′B′′C ′′ =



−kB − kC kA kA

kB −kA − kC kB

kC kC −kA − kB




This triangle is perspective to ABC, with perspector U = kA : kB : kC . Therefore point U sees
triangle ABC at right angles to trigone A′B′C ′.

Definition 26.4.5. We say that two triangles are orthologic to each other when it exists a point
M1 that sees triangle T1 with rays orthogonal to the sidelines of trigone T2 and a point M2 that
sees triangle T2 at right angles to the sidelines of trigone T1.

In other words, the lines drawn from the vertices of T1 and orthogonal to the corresponding
sidelines of T2 are concurrent at a point M1 (the ray source) , etc. In this definition, flat triangles
and centers at infinity are allowed.

Remark 26.4.6. This property cannot be reworded in a shorter form (the so-called symmetry),
since P /∈ Lb is required to be sure of the existence of U , but this is not sufficient to be sure of
U /∈ Lb.

Example 26.4.7. Cevian triangles of X(2) and X(7) are orthologic. Orthology centers are X(10)
and X(1).

Proposition 26.4.8. Let ABC be the reference triangle, P a point not on the sidelines, Q its isog-
onal conjugate and PAPBPC , QAQBQC their respective pedal triangles. Then ABC and PAPBPC
are orthologic. The center which looks at PAPBPC is obviously P , while the center which. looks at
A,B,C is Q. Let EF be the line through A and parallel to QBQC , etc. Then ABC is the pedal
triangle of P wrt DEF , and ABC is orthologic with DEF . The center which looks at D,E, F is
K = 2O−P , whose barycentrics wrt DEF are p : q : r. The triangle DEF is called the anti-pedal
triangle of P and we have: DEF '



+qr
(
a2q + Sc p

) (
a2r + Sb p

)
−pr

(
a2q + Sc p

) (
b2r + Sa q

)
−pq

(
a2r + Sb p

) (
c2q + Sa r

)

−qr
(
b2p+ Sc q

) (
a2r + Sb p

)
+pr

(
b2p+ Sc q

) (
b2r + Sa q

)
−pq

(
c2p+ Sb r

) (
b2r + Sa q

)

−qr
(
a2q + Sc p

) (
c2p+ Sb r

)
−pr

(
b2p+ Sc q

) (
c2q + Sa r

)
+pq

(
c2p+ Sb r

) (
c2q + Sa r

)




Proof. Using the mkortho routine, one obtains the coordinates of Q, and QAQBQC . Then one
computes the lines EF, etc and obtain the points D,E, F . Using again the mkortho routine, one
obtains K. See Figure 26.1. The cyan circles are illustrating the cyclopedal property (Section 9.3).

Proposition 26.4.9. When T1, T2 are orthologic, the formula φ
.
= T2 · T1

−1
defines a collineation

φ such that Lb 7→ Lb together with A1 7→ A2, etc. Then φ (M1) = M2. Moreover, any other triangle
is orthologic with its image by φ (so that φ itself can be called an orthology).
Conversely, a collineation φ is an orthology when (1) Lb 7→ Lb and (2) trace

(
φ · OrtO

)
= 0.

Proof. Direct computation, assuming that T1, T2 are orthologic.

Exercise 26.4.10. (spoiler). Orthology in PC
(
C3
)
. Morley spaces:. Conditions are φ21 = φ23 =

0 to enforce Lz 7→ Lz and φ11 = φ33 to have the right trace.
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Figure 26.1: Antipedal triangle

Proposition 26.4.11. Assume that triangle ABC is not degenerate and let the finite points P,U
be described by their barycentrics P = p : q : r and U = u : v : w (here P = U is allowed).
Moreover, assume that U is not on the sidelines of ABC. Then all triangles A′B′C ′ such that
point P sees triangle A′B′C ′ at right angles to trigone ABC and point U sees triangle ABC at
right angles to trigone A′B′C ′ are given by formula :

A′B′C ′ '




pu+ a2k pv − Sck pw − Sbk
qu− Sck qv + b2k qw − Sak
ru− Sbk rv − Sak rw + c2k


 =

(
P · tU

)
+ 2Sk Mb (26.2)

where k describes an homothety centered at P .

Proof. Since u 6= 0, relation A′ ∈ P δA can be written as uP + ϑAδA, and the same holds for the
other points. Now, compute :

det
[
uP + ϑAδA, vP + ϑBδB , Mb

t
(C ∧ U)

]
= 2uvS (p+ q + r) (ϑA − ϑB)

Due to the hypotheses, all the ϑ must have the same value, leading to the formula. Converse is
obvious, when a triangle is as described by the formulas, both orthologies are verified.

Remark 26.4.12. If P were at infinity, PA′, PB′, PC ′ would have the same direction, and also the
sidelines of ABC. In the formula, this would lead to A′, B′, C ′ at infinity. If coordinate u was 0
then UB ‖ UC so that A′B′ ‖ A′C ′. In the formula, this would lead to A′ at infinity.

26.5 Simply orthologic and perspective triangles
Definition 26.5.1. When triangles are orthologic with P 6= U , we say they are simply orthologic.
When P = U, we say they are bilogic.

Notation 26.5.2. In this chapter, when triangles ABC and A′B′C ′ are in perspective, their per-
spector will be noted Ω (and never P , nor U), while the perspectrix will be noted XY Z with
X = BC ∩B′C ′, etc.

Theorem 26.5.3 (First Sondat Theorem). Assume that triangle ABC is finite and non degenerate
; P is at finite distance ; U is different from P and is not on the sidelines. Then it exists exactly
one triangle A′B′C ′ such that (1) P sees A′B′C ′ at right angles to trigone ABC (2) U sees ABC at
right angle to trigone A′B′C ′ (3) A′B′C ′ is perspective to ABC. When A′B′C ′ is chosen that way,
the corresponding perspector Ω is collinear with points P,U and the perspectrix XY Z is orthogonal
to PU .
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Proof. We have assumed that P = p : q : w is different from U = u : v : w. Then ϑ is fixed by the
condition of being perspective and we have :

ϑ = −u (vSb − wSc) qr + v (wSc − uSa) pr + w (uSa − vSb) pq
(vSb − wSc) pSa + (wSc − uSa) qSb + (uSa − vSb) rSc

Ω =
Scw − Sbv
qw − rv :

Scw − Sau
pw − ru :

Sbv − Sau
pv − qu

tripolar (∆) =




(Scw − Sbv) p+
(
Sbu+ a2w

)
q −

(
Scu+ a2v

)
r

Sbq − Scr
(Sau− Scw) q +

(
b2u+ Scv

)
r −

(
Sav + b2w

)
p

Scr − Sap
(Sbv − Sau) r +

(
c2v + Saw

)
p−

(
Sbw + c2u

)
q

Sap− Sbq




First assertion is proved by Ω ' αU − β P where :
(
α

β

)
'
[

(qw − rv) puSa + (ru− pw) vqSb + rw (pv − qu) rwSc

(qw − rv)u2Sa + (ru− pw) v2Sb + (pv − qu)w2Sc

]

Second assertion is proved by checking that

∆ · OrtO · (normalized (P )− normalized (U)) = 0

26.6 Bilogic triangles
Proposition 26.6.1. Bilogic triangles are ever in perspective. When orthology center is U = u :
v : w is finite and not on the sidelines, formula (26.2) becomes

A′B′C ′ '




u2 + a2k uv − Sck uw − Sbk
uv − Sck v2 + b2k vw − Sak
uw − Sbk vw − Sak r2 + c2k


 =

(
U · tU

)
+ 2Sk Mb (26.3)

while the perspector and the tripole of the perspectrix are respectively :

Ω ' (k vw − Sa)
−1

: (kwu− Sb)−1
: (kuv − Sc)−1

tripolar (XY Z) '




(
vwa2 + u (vSb + wSc − uSa)

)
k− 4S2

(
uwb2 + v (wSc + uSa − vSb)

)
k− 4S2

(
uvc2 + w (uSa + vSb − wSc)

)
k− 4S2




Proof. Straightforward computation.

Proposition 26.6.2. When triangle ABC is fixed and the bilogic center U is given, the locus
of the perspector Ω of the bilogic triangles A′B′C ′ is the rectangular hyperbola that goes through
A, B, C, U, H =X(4). The perspector of this circumconic is :

u (vSb − wSc) : v (wSc − uSa) : w (uSa − vSb)

while the envelope of the perspectrix is the inconic whose perspector is :

(vSb − wSc)−1
: (wSc − uSa)

−1
, (uSa − vSb)−1

Proof. Eliminate ϑ from Ω. Then eliminate ϑ from XY Z and take the adjoint matrix.

Proposition 26.6.3. Let ABC, A′B′C ′ be two bilogic triangles, with orthology center U , perspec-
tor Ω and perspectrix (XY Z) where X = BC∩B′C ′, etc. Then lines UΩ and XY Z are orthogonal.
Moreover we have (UX) ⊥ (AA′Ω), etc.
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Figure 26.2: Orthology and perspective.
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Proof. We compute the orthodir δ of line XY Z and find that :

δ =




(
u2 (w + v)Sa − Scuw2 − Sbv2u

)
θ + SbSc (v + w)− a2Sau(

v2 (w + u)Sb − Savu2 − Scvw2
)
θ + ScSa (w + u)− b2Sbv(

w2 (v + u)Sc − Sawu2 − Sbwv2
)
θ + SaSb (u+ v)− c2Scw




It remains to check that normalized (Ω)− normalized (U) is proportional to δ.
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Chapter 27

Linear Families of Inscribed Triangles

This chapter is an extended version of Douillet (2014c) and summarises discussions with pappus,
Poulbot and others at http://www.les-mathematiques.net

Notation 27.0.1. In all parts of this chapter, the relations

f + g + h = u+ v + w = ρ+ σ + τ

will ever be assumed. These rules are related to the asymmetric parametrization described at
Definition 27.2.18.

27.1 General linear families of triangles

Definition 27.1.1. Suppose that a0, b0, c0 and a1, b1, c1 are six points at finite distance, together
with a0 6= a1, b0 6= b1, c0 6= c1.Then we say that

Tt = t T1 + (1− t) T0

defines a (general) linear family of triangles.

Remark 27.1.2. Property a0 /∈ Lb, etc is required to allow the projective definition:

at
.
= t

a1

Lb · a1
+ (1− t) a0

Lb · a0

while property a0 6= a1, etc is required to ensure the existence of La .
= a0 ∧ a1, etc.

Remark 27.1.3. Such a family can also be defined as

Tt '




1−t (v12 + v13)− p12 − p13 tv21 + p21 tv31 + p31

tv12 + p12 1−t (v21 + v23)− p21 − p23 tv32 + p32

tv13 + p13 tv23 + p23 1−t (v31 + v32)− p31 − p32




where triangles Tt are in a normalized form, while
(
Tt − Ts

)
/ (t− s) is a set of three non-zero

constant vectors.

Definition 27.1.4. An equicenter E is a fixed point which has the same barycentrics wrt all the
triangles Tt of the family. The column F = fa : fb : fc of these barycentrics is called the Neuberg
column of the family (and doesn’t depends on the barycentric frame used to compute them).

Definition 27.1.5. An areal center S is a fixed point which verifies:

∀s, t : area (S, at, as) = area (S, bt, bs) = area (S, ct, cs)

For reasons given later, this point is also called the slowness center of the family.
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Construction 27.1.6. The Neuberg’s (1921) construction of E ,S is as follows (see Figure 27.1).
From an auxiliary point O, draw points Oa

.
= O+a1−a0, etc and compute fa = area (O,Ob, Oc) , etc.

Then O is the barycenter of the Oj with coefficients fj, and this implies that Tt · F is ever equal
to faa0 + fbb0 + fcc0.

And now, draw the lines LA .
= a0 ∧ a1, etc, obtain the points A .

= Lb ∧ Lc, etc. and take their
barycenter, i.e. compute S .

= ABC · F .,

Discussion. If O is chosen as 1− y − z : y : z then

fa = det




1− y − z 1− y − z − v211 −y − z − v31

y y + v21 + v23 y − v32

z z − v23 z + v31 + v32




and, therefore:

F =




v21v31 + v21v32 + v23v31

v31v12 + v12v32 + v32v13

v12v23 + v21v13 + v23v13




When fa + fb + fc = 0, the magenta triangle of Figure 27.1 if flat and point E is at infinity. When
fa = fb = fc = 0, we have the special-special case, discussed at Proposition 27.13.3

The trigone (Lj) degenerates when quantity det (La,Lb,Lc) =

(p12v13 − p13v12) fa + (−p21v23 + p23v21) fb + (p31v32 − p32v31) fc + v12v23v31 − v13v21v32

vanishes. Otherwise... everything becomes simpler when seen from ABC, the fixed circimscribed
triangle. See next coming section for a dicussion of what happens when S is at infinity.

27.2 Slowness- and equi-center of a LFIT

27.2.1 Slowness center

Definition 27.2.1. We say that triangle abc is inscribed in triangle ABC when a ∈ BC, etc.
Conversely, we say that ABC is circumcribed to triangle abc.

Definition 27.2.2. LFIT. When the triangles Tt of the former section are all inscribed into a
fixed (non degenerate) triangle ABC, this situation is described as a Linear Family of Inscribed
Triangles. Using the values relative to t = 0 and t = 1, this can be written as:

Tt .
= atbtct

.
= (1− t) a0b0c0 + (t) a1b1c1 (27.1)

Tt = (1− t)




0 1− q0 r0

p0 0 1− r0

1− p0 q0 0


+ (t)




0 1− q1 r1

p1 0 1− r1

1− p1 q1 0




Construction 27.2.3. Geogebra: given at ∈ BC, the temporal parameter t is obtained as

t= real ( (a_t - a_0)/(a_1 - a_0) ) ; real is required
b_t= (t)*b_1+(1-t)*b_0 + 0*I ; not a vector

Definition 27.2.4. As in Figure 27.2, the velocities −→va, etc are defined by −→va .
= a1 − a0 =

[0, p1 − p0, p0 − p1], while the so called "speed vector" is defined by
−→
V

.
= [p1 − p0, q1 − q0., r1 − r0].

Remark 27.2.5. Many things are to be computed from the speed vector, with the following strange
property: everything becomes simpler when introducing the reciprocal of these quantities (remem-
ber that t 7→ a, etc are non constant). This leads to the following:
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Spoiler: ω = (S + E) /2 is the center of the pilar conic C.

Figure 27.1: The Neuberg construction
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Figure 27.2: Variable triangle abc is inscribed into fixed triangle ABC

Definition 27.2.6. The slowness center of a linear family of triangles is:

S .
= f : g : h ' 1

p1 − p0
:

1

q1 − q0
:

1

r1 − r0

leading to the following description (where indices 0 have been omitted) :

abc (t) =




0 1− q − t

g
r +

t

h

p+
t

f
0 1− r − t

h

1− p− t

f
q +

t

g
0




(27.2)

Remark 27.2.7. Considering S as a projective quantity is only recognizing that choosing a time
unit or another is unessential. Caveat: when used together with the later introduced E ' u : v : w,
the projective object is f : g : h : u : v : w, so that neither f : g : h nor u : v : w can be changed
"at will", i.e. independently of the other.

Theorem 27.2.8 (Main result). The slowness center is the areal center of the family. In other
words, the areas swept out from S by the T-vertices are equivalent for any pair t1, t2.

Proof. Suppose that S is at finite distance, compute the area, obtain:

area (S, a (t1) , a (t2)) = (t2 − t1)S ÷ (f + g + h)

and conclude from symmetry. Suppose now that S is at infinity (i.e. h = −f − g), compute the
width of the strip created by the parallel lines ∆1

.
= S ∧ a (t1) and ∆2

.
= S ∧ a (t2), obtain:

∆2 −∆1 = [t1 − t2 : t1 − t2 : t1 − t2]

and here again conclude from symmetry.

27.2.2 Equicenter
Theorem 27.2.9 (Neuberg). If we apply to abc the barycentrics of S wrt ABC, we obtain a fixed
point, the so called equicenter E (except in the special-special case where E degenerates into 0 : 0 : 0,
see Proposition 27.13.3)

Proof. From equation (27.2), it is obvious that E .
= abc · S doesn’t depend on t. And we have:

E ' u : v : w = (1− q) g + r h : (1− r)h+ p f : (1− p) f + q g

This formula complies with the later requirement that: u+ v + w = f + g + h.

Remark 27.2.10. When one of the centers S, E is at infinity, the other is also at infinity.
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27.2.3 Pilar point
Definition 27.2.11. The pilar point Ω ' ρ : σ : τ is defined by the hard equalities:

f + g + h = u+ v + w = ρ+ σ + τ (27.3)
S + E + Ω = (f + g + h) (A+B + C)

27.2.4 Parametrization of a LFIT
Parametrization (27.2) has many interesting properties, among them its genericity and its symme-
try. Nevertheless, there are many situations where this parametrization induces too burdensome
computations. There are several other choices, each of them depending on some assumption about
the areas of the variable triangles.

Proposition 27.2.12. The area of triangle atbtct equals the area of ABC times the quantity:

A =




(f + g + h)

fgh
t2 +

fg (p+ q − 1) + gh (q + r − 1) + hf (r + p− 1)

fgh
t

+pqr + (1− p) (1− q) (1− r)




=
(f + g + h) t2

fgh
− (fu+ 2 fv + gv − hw) t

fgh
+
v (f + g − w)

gh

Proof. First formula is the characteristic property of the determinant. The second one doesn’t
apply when S ' E ∈ Lb: in this case, the area is constant, but has to be evaluated using E = KS,
and the area is −K (K + 1). More details at Section 27.13.

Theorem 27.2.13. When S, E are at finite distance, the area is a second degree quantity and
therefore presents an extremum, characterizing the so-called critical triangle. Taking this event as
the origin of a shifted time T , we obtain: abc (T ) =




0 −T
g

+
gv + 2 gu− hw + fu

2 (u+ v + w) g
+
T

h
+
hw + 2hu+ fu− gv

2 (u+ v + w)h

+
T

f
+
fu+ 2 fv + gv − hw

2 (u+ v + w) f
0 −T

h
+
hw + 2hv − fu+ gv

2 (u+ v + w)h

−T
f

+
fu+ 2 fw − gv + hw

2 (u+ v + w) f
+
T

g
+
gv + 2 gw + hw − fu

2 (u+ v + w) g
0




(27.4)

And then we have:
area (T )

S
=

(f + g + h)

fgh
T 2 − f + h+ h

(u+ v + w)
2

f2u2 + g2v2 + h2w2 − 2 fguv − 2 ghvw − 2hfwu

4 fgh

Proof. Only the apparent denominators were used to obtain this formula. The A formula becomes
indeterminate if one tries to use it when S ∈ Lb.
Remark 27.2.14. This parametrization is hard to use, due to its too huge coefficients. Except when
the critical triangle is already given. See for more details at Proposition 27.10.14

Theorem 27.2.15. When S, E are at infinity but aren’t equal, the area is a first degree quantity.
We can choose the origin of time at A = 0, leading to:

abc =




0 −T
g

+
u (h+ w)

gw − vh
T

h
− u (g + v)

gw − vh
T

f
− (h+ w) v

gw − vh 0 −T
h

+
v (f + u)

gw − vh
−T
f

+
(g + v)w

gw − vh
T

g
− w (f + u)

gw − vh 0




Here, we have gw− hv = hu− fw = fv− gu and the area is T (hv − gw)÷ fgh (caveat: replacing
E 7→ kE changes the family and multiplies the area by k !)

Proof. S ∧ E ' Lb, hence the equality. No hidden denominators are implied.

Remark 27.2.16. CAVEAT. The remaining case, i.e. S ' E ∈ Lb, is really special, worth of a
specific section (see Section 27.13).

—– pldx : Translation of the Kimberling’s Glossary into barycentrics – vA2 —–



374 27.3. Hexagonal graphs

27.2.5 Asymetric parametrization
Remark 27.2.17. As a matter of experiment, the following parametrization is more computation-
friendly as any other one, largely enough to justify a lack of symmetry, and the burden of enforcing
a binding rule.

Definition 27.2.18. The asymmetric parametrization of a LFIT is defined as:

Tt =




0 1− t

g
− w − f

g

t

h
+
h− v
h

t

f
0 1− t

h
+
v − h
h

1− t

f

t

g
+
w − f
g

0




(27.5)

where f : g : h is the slowness center S and u : v : w s the equicenter E . This amounts to enforce
a0 = C together with the rule

f + g + h = u+ v + w = ρ+ σ + τ = 0 (27.6)

Remark 27.2.19. In fact, we have to consider S : E : Ω or f : g : h : u : v : w : ρ : σ : τ as an unique
projective object. When S /∈ Lb, the binding relation suffices to synchronize the three columns
S, E ,Ω. But when S, E ∈ Lb, we already have f+g+h = u+v+w = 0 and this relation is no more
sufficient for the purpose of synchronization. Caveat: when S ∈ Lb, replacing E by kE changes the
family (and changes the area of the inscribed triangles).

27.2.6 Gravity centers
Proposition 27.2.20. The locus of the gravity centers of the moving triangles of a given LFIT is
a straight line, parallel to the tripolar of S.

Proof. The alignment property is obvious from gt = (1− t) g0 + (t) g1, while premultiplying gt by
tripolar S leads obviously to a constant. One can also check directly that

locus (g) = (3) [gh, hf, fg]− (fρ+ σ g + hτ)Lb

27.3 Hexagonal graphs

27.3.1 Constructions
Definition 27.3.1. The hexagonal points αt, βt, γt are defined by αt = bt + ct −A, etc, so that:

abc =




0 1− q r

p 0 1− r
1− p q 0


 =⇒ αβγ =




r − q r 1− q
1− r p− r p

q 1− p q − p


 (27.7)

The locus of αt is obviously a straight line, noted Ga and called "the A hexagonal graph". And
circularly for the other two.

Remark 27.3.2. Since βt is at intersection of lines
(
at,
−−→
AB
)
and

(
ct,
−−→
CB

)
, the locus of βt is nothing

but the graph of the correspondence BC 
 AB : a (t) ←→ c (t), drawn using the directions of
the sidelines.

Construction 27.3.3. When the LFIT is know by triangles T1 and T0, then Gb is defined by β1

and β0. We draw
(
at,
−−→
AB
)
which cuts Gb at βt. And then draw

(
βt,
−−→
BC

)
which cuts AB at ct.

Similarly, bt is constructed. And we can check the figure by closing the hexagon and going back to
at. See Figure 27.3 When T0 and S are known, draw the graphs using Proposition 27.3.5. When
S, E , etc are known, draw the graphs using 27.8.
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Figure 27.3: Hexagonal construction of the inscribed triangle

Proposition 27.3.4. When S, E ,Ω are known then, assuming the synchronization rule (27.6), the
hexagonal graphs, locus of the αt = bt + ct −A, etc, are (by rows)



Ga
Gc
Gc


 =



g + h− u g − u h− u
f − v h+ f − v h− v
f − w g − w f + g − w


 =



−ρ h− ρ g − ρ
h− σ −σ f − σ
g − τ f − τ −τ


 (27.8)

Proof. Direct computation.

Proposition 27.3.5. Directions of the hexagonal graphs are those of the sidelines of the anticevian
triangle of the slowness center S.
Proof. Obvious from the preceding proposition. One can also remark that:

αβγ =



r − q r 1− q
1− r p− r p

q 1− p q − p


+ t



h−1 − g−1 h−1 −g−1

−h−1 f−1 − h−1 f−1

g−1 −f−1 g−1 − f−1




27.3.2 Hexagonal conics
Proposition 27.3.6. Hexagonal conic. A conic Ht goes through the six points aγbαcβ of (27.7).
Moreover the matrix

HHt
.
=
t
Tt · Ht · Tt '




0 p+ q − 1 p+ r − 1

p+ q − 1 0 q + r − 1

p+ r − 1 q + r − 1 0




can be seen as a description of Ht from the abc frame, or as the description, from the ABC frame,
of another conic, HHt , image of Ht by the collineation φt : a, b, c 7→ A,B,C, Lb 7→ Lb. In any
case, the HHt conics form a linear family.

Proof. Computations are obvious, with huge simplifications. Linearity follows from the linearity
of the pt. One can also argue that opposite sides of the hexagon are parallel.

Corollary 27.3.7. The hexagonal conic is a parabola when area (a, b, c) = area (A,B,C)÷ 4, an
ellipse when area (abc) is greater and an hyperbola otherwise.

Proof. Since φt is an affinity, conics Ht and HHt have the same number of points at infinity.

Proposition 27.3.8. The HHt have a fourth fixed point in common, X, whose isotomic is given
by:

isotomX '




(q − r) gh+ (p+ q − 1) fg − (r + p− 1) fh

(r − p)hf + (q + r − 1) gh− (p+ q − 1) gf

(p− q) fg + (r + p− 1)hf − (q + r − 1)hg


 '




gh+ fu− gv − hw
hf − fu+ gv − hw
fg − fu− gv + hw



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Proof. Consequence of the linearity of the family.

Corollary 27.3.9. The hexagonal conic degenerates five times: (1) when atbtct is flat, two oc-
curences, visible or not and (2) when one of the p+ q+ 1 vanishes, three occurences. In the second
case, βtγt = btct ‖ BC while HHt degenerates into AX ∪BC, etc.

Proof. After simplification, one has det Ht = det Tt det HHt .

Fact 27.3.10. (spoiler) At area’s peak, Ht goes through E, while HHt goes through S.

Remark 27.3.11. Both triangles abc and αβγ have the same area, equal to s× S where

s
.
= pqr + (1− p)(1− q)(1− r) = det abc = det αβγ

27.3.3 Some collineations

Executive summary: use some collineation to transform HHt into Ht, and then go back using some
other collineation.

Exercise 27.3.12. Let φa be the collineation defined by A,B,C 7→ a, b, c, Lb 7→ Lb. U
¯
sing ABC

as basis, the matrix of φa is abc and its characteristic polynomial is:

(µ− 1)
(
µ2 + µ+ s

)
= (µ− 1)

(
µ− −1 +W

2

)(
µ− −1−W

2

)

where W is defined by: s =
(
1−W 2

)
/4. With respect to ABC, the coordinates of the fixed point

at finite distance are:

Ka '




qr − q + 1

rp− r + 1

pq − p+ 1


 (27.9)

Exercise 27.3.13. Let φα be the collineation:ABC 7→ αβγ, Lb 7→ Lb. Using again ABC as basis,
the matrix of φα is αβγ , the characteristic polynomial is the same and, wrt ABC, the coordinates
of the fixed point at finite distance are:

Kα '



−qr + rp+ pq − p− q + r + 1

+qr − rp+ pq + p− q − r + 1

+qr + rp− pq − p+ q − r + 1




Exercise 27.3.14. Let ψ be defined by ψ
.
= abc

−1
· αβγ ... and not by αβγ · abc

−1
. The

normalized matrix of ψ is:

ψ =
1

s




(1− r) q (p− 1) (q + r − 1) (q + r − 1) p

(p+ r − 1) q (1− p) r (q − 1) (p+ r − 1)

(r − 1) (p+ q − 1) (p+ q − 1) r (1− q) p




χψ (X) = (µ− 1)

(
µ− 1 +W

1−W

)(
µ− 1−W

1 +W

)
where s =

1

4

(
1−W 2

)

and its fixed points are:

K1 =
−1

W 2




(2 p− 1) (q + r − 1)

(2 q − 1) (r + p− 1)

(2 r − 1) (p+ q − 1)


 ; K2, K3 '




2 q + 2 r − 2

−2 r + 1−W
−2 q + 1 +W


 ,




2 q + 2 r − 2

−2 r + 1 +W

−2 q + 1−W




(27.10)
So what ?
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27.3.4 Graphs, the general case
Definition 27.3.15. A "delta -triple" is what is obtained by choosing three directions

δ
.
=




p −1− q 1

1 q −1− r
−1− p 1 r




and using them to draw the graph of bt 7→ ct, etc, i.e. the locus ∆a of the αt = btδc ∩ ctδb, etc.
Quite obviously, these graphs are straight lines.

Proposition 27.3.16. The directions of these graphs (coded the same way as the original ones)
are:

[p′, q′, r′] =

[
(r + 1) (q + 1)h− g

(r + 1) (g − qh)
,

(r + 1) (p+ 1) f − h
(p+ 1) (h− fr) ,

g (q + 1) (p+ 1)− f
(q + 1) (f − pg)

]

Only the directions of cevian (S) lead to a 1-sized orbit. The 2-sized orbits are characterized by

(uvw + uw + u) gh+ (uvw + uv + v) fh+ (uvw + vw + w) fg = 0

For a given triple [u′, v′, w′] there are at most two triples [u, v, w].

Proof. Computations are straightforward. Nevertheless, the general formula giving the other an-
tecedent is rather huge.

Example. Starting from [0, 0, 0] (hexagonal conics), we obtain the directions of anticev (S), and
conversely. The other antecedent of [0, 0, 0] is given by the directions of SA, SB, SC (Catalan
conics).

Exercise 27.3.17. Study the cevian and anticevian conics.

27.4 Temporal graphs

27.4.1 Pilar point, pilar conic
In the previous section, we have constructed the hexagonal graphs Ga,Gb,Gc by drawing lines bα
through b, parallel to AB together with drawing lines cα through c, parallel to AC. As a result,
triangle αβγ (t) is the crosstri (see 4.6) of triangles abc (t) and triangle dirA, dirB , dirC . This
method can be repeated, using other auxiliary directions than those of the sidelines BC,CA,AB
and obtaining other graphs than the Gj .

Definition 27.4.1. The pilar point Ω ' ρ : σ : τ of a LFIT is defined by the hard equality

Ω + S + E = (f + g + h)




1

1

1


 , i.e. ρ

.
= g + h− u, etc

Therefore ρ + σ + τ = f + g + h, so that f : g : h : u : v : w : ρ : σ : τ is a projective object
involving only one factor of proportionality. When S /∈ Lb, G =X(2) is the ordinary barycenter of
points S, E ,Ω. Moreover, the pilar conic C is defined as the inscribed conic whose perspector is
the isotomic conjugate of Ω, and the center is

ω
.
=

1

2
(S + E) =

1

2




σ + τ

τ + ρ

ρ+ σ


 =

1

2




f + u

g + v

h+ w




Once again the same caveat: S, E ,Ω have to be synchronized by (27.6).

Remark 27.4.2. The name can be tracked back to a joke describing a temporal conic Cst as a major
general (conique divisionnaire), distinguished among all the hexagonal conics (conique brigadière).
In this context, the pilar conic would be something like a lieutenant general in command.
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Exercise 27.4.3. Consider a LFIT. The lines drawn by A and parallel to btct, etc determine a
triangle A′B′C ′.

1. Determine the locus of A′, B′, C ′ ;

2. Compare area (A′B′C ′) and area (atbtct) ;

3. Consider the collineation f : Lb 7→ Lb, ABC 7→ A′B′C ′ and determine a point X such that
f (X) is constant ;

27.4.2 Temporal graphs

Definition 27.4.4. The graphs ∆s
A, etc obtained when using the directions of trigone asbscs as

auxiliary directions, are called the temporal graphs of the LFIT. Obviously, they are straight lines,
while the conics through atβst ctαst btγst are called the temporal conics Cst . This process amounts to
observe the LFIT from the fixed triangle that coincides with abc at time t = s.

Proposition 27.4.5. The temporal graph ∆s
A is the tangent to the pilar conic C issued from as

(other than the obvious BC).

Proof. The auxiliary directions are given by the directions of the sidelines of abc (s), i.e.

Ds '




(g + h) s+ (hw − fh− gv) −f s+ (fv − f h) f s− (f + g − w) f

−g s+ (gv) (f + h) s+ (−fv) g s

−h s+ (fh− hw) −hs+ f h (−f − g) s+ (f + g − w) f




Thus points α(t), β(t), γ(t) are obtained as crosstri of abc (t), given at (27.2), and Ds. Eliminating
t, we obtain the ABC-equation of the A-temporal graph:

∆s
A '

[
+ρ s2 − fρ s ; − (σ + τ) s2 + f (σ + 2 τ) s− f2τ ; − (σ + τ) s2 + fτ s

]

Property as ∈ ∆s
A was obvious... and is easy to check.

For the contact: points α, β, γ are obtained as crosstri of abc (t)
which gives the auxiliary directions. Use locusconi, and obtain a line-conic circumscribed to

trigone ABC, and see that its perspector is tΩ.

Proposition 27.4.6. Consider the temporal graph ∆s
A. When point αst moves along ∆s

A, then
line αstat keeps a constant direction (depending on s, but not on t).

Proof. For any kind of graphs, directions of αst bt and αstct are constant by the very definition. The
αstat property is special even if easily checked.

Exercise 27.4.7. Determine the graphs that share this property with the temporal graphs.

27.4.3 Temporal conics

Theorem 27.4.8. The temporal conic Cst related to atbtct doesn’t depends on the s chosen to
construct the graphs (and now will be noted by Ct). The centers of the Ct belong to line

[(gh− vw) ρ ; (fh− uw)σ ; (fg − uv) τ ]

that goes through ω = S + E. Moreover, the matrix

CH .
=
t
Tt · Ct · Tt '




0 hτ gσ

hτ 0 fρ

gσ fρ 0


 (27.11)

can be seen as a description of Ct from the abc frame, or as the description, from the ABC frame,
of another conic, CH , image of Ct by the collineation φt : a, b, c 7→ A,B,C, Lb 7→ Lb. Using the
second point of view, we have a fixed circumconic, with perspector the point S ∗

b
Ω.
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Proof. Use the first point of view. Compute atbtct
−1
· αstβst γst and then, according to Proposi-

tion 12.7.9, take the wedge of the tripolars of two columns. The result doesn’t contain s. Moreover,
being equal to S ∗

b
Ω, this result doesn’t depends on t either. Now use the formula giving center

from perspector, go back to ABC- barycentrics and conclude.

Theorem 27.4.9. The temporal conic Ct is bi-tangent to the pilar conic C and the chord through
the contact points (that are not necessarily visible) is parallel to line SE.
Proof. A point on C is P (s) ' 1÷ ρ : s2÷ σ : (1 + s)

2÷ τ . Thus, using SS = s1 + s2, PP = s1s2,
an equation of the chord P (s1)P (s2) is

chord ' [(g + h− u) (2PP + SS) , (h+ f − v) (SS + 2) ,− (f + g − w) SS]

Then compute tP ·
t

atbtct
−1
·conicir

(
S ∗
b

Ω

)
· atbtct

−1
·P , and substitute u = f+g+h−v−w.

The result factorizes into det Tt times a perfect square. Use the usual formulas for sum and
product, and conclude by obtaining:

chord(t) = [f + v − w, f − h+ v, f + g − w]− 2tLb

Proposition 27.4.10. When S /∈ Lb, the area of atbtct is extremal exactly when the center of Ct
is ω (and the chord of contacts is SE).

Proof. Substitute t =
fu+ 2 fv + gv − hw + T

2 (f + g + h)
in the previous results.

Definition 27.4.11. When using the directions of SA,SB,SC as auxiliary directions, the results
are called Catalan conics and Catalan graphs (when doing that, we assume that point S is at finite
distance). Directions D and point α are:

D '



−g − h f f

g −h− f g

h h −f − g


 ; α '




f + u

g − u− v +
hw − gv

f
+ t

f + g + h

f

h+ v +
gv − hw

f
− t f + g + h

f




Proposition 27.4.12. The Catalan graphs ∆a, etc are the symmetrics of the sidelines wrt ω, the
midpoint of S, E. In fact, the Catalan graphs are nothing else than the temporal graphs related to
s =∞. When area of abc is extremal, the Catalan conic is centered at ω.

Proof. Make s→∞ in Ds.

27.4.4 Tucker associate LFIT
Definition 27.4.13. Starting fromK =X(6)' a2 : b2 : c2 and t ∈ R, we define A′ = K+t

−−→
KA, etc.

And then define the 6 points: Ab, Ac on BC (intersections with A′B′ and A′C ′), Bc, Ba on CA
(intersections with B′C ′ and B′A′) and Ca, Cb on AB (intersections with C ′A′ and C ′B′). Then

1. The polygon AbAcBcBaCaBb is called the Lemoine’s hexagon.

2. [Ab, Bc, Ca] and [Ac, Ba, Cb] are called the first and the second Brocard LFIT’s.

Proposition 27.4.14. Lemoine’s hexagon is inscribed in the so called Tucker circle. Its center
lies on line OD. Equicentre and Slowness center of both LFIT are the Brocard’s points, and the
common pilar conic is the Lemoine’s inconic.

Proof. We have the following coordinates: LFIT1, LFIT2 =



0 −ta2 + a2 tb2 + a2 + c2

tc2 + a2 + b2 0 −tb2 + b2

−tc2 + c2 ta2 + b2 + c2 0


 ,




0 tc2 + a2 + b2 −ta2 + a2

−tb2 + b2 0 ta2 + b2 + c2

tb2 + a2 + c2 −tc2 + c2 0




So that S1 = a2b2 : b2c2 : c2a2, etc.
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Fact 27.4.15. The flat triangles which belong to the Tucker LFIT’s are the isotropes of the Brocard
points.

Definition 27.4.16. The points ât, b̂t, ĉt where the temporal conic Ct cuts again the sidelines of
ABC form themselves a LFIT, called the Tucker associate of the original one.

Proposition 27.4.17. The slowness center and the equicenter are exchanged when passing from
the original LFIT to its Tucker associate. Therefore both LFITs have the same pilar conic.

Proof. The coordinates of the Tucker associate LFITs are:

Tt =




0 1− t

g
− w − f

g
1 +

t

h
− v

h
t

f
0 − t

h
+
v

h

1− t

f

t

g
+
w − f
g

0




; T̂t =




0
t

v
− t

w
+
f

w

1− t

u
− h− v

u
0 1 +

t

w
− f

w
t

u
+
h− v
u

1− t

v
0




so that Ŝ = E is obvious. This implies Ê = S.

Corollary 27.4.18. When all temporal conics are circles, then S and E are isogonal conjugates.

Proof. Use the parametrization given just above and write that ât, etc belong to circle atbtct. Take
the t leading term (4th degree) of these equations, solve in u, v, w (don’t forget f+g+h = u+v+w)
and obtain

E =
f + g + h

a2gh+ b2hf + c2fg

(
a2gh : b2hf : c2fg

)

proving the necessity. Sufficiency is straightforward.

27.5 HH and temporal point of view

27.5.1 Temporal embedding

Definition 27.5.1. Since we are dealing with moving points Mt, it makes sense to define a
temporal embedding of such points by the following projective map:

G







x (t)

y (t)

z (t)


 , t


 7→




x

y

z

t (x+ y + z)




Proposition 27.5.2. Given a LFIT, the temporal embeddings of the variable vertices belong to a
quadric Q, whose matrix is:

Q '




2 v (f − w) −fh+ 2 fv + hw − vw v τ −f − v + w

−fh+ 2 fv + hw − vw 2 f (v − h) f τ −f − v + h

v τ f τ 0 −τ
−f − v + w −f + h− v −τ 2




Q∗ '




0 τ σ τ f

τ 0 ρ τ v

σ ρ 0 fh− hw + vw

τ f τ v fh− hw + vw 2 fτ v




And, for these instanciations, we have det Q = det Q∗ = (ρστ)
2 (squared coordinates of Ω in

the triangle plane).

Proof. Well known property of hyperbolic paraboloids.
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Signature is +2;-2. Using the completesquare algorithm, one obtains

(tyz)
2

(fh− hw + vw)
2 − (txyz)

2
+

(
1− (tz)

2

(fh− hw + vw)
2

)
K

where txyz, tyz, tz are linear expressions and K a constant.

Remark 27.5.3. Matrix Q∗ is symmetric, while matrix Q is not. One could enforce symmetry
by choosing t = 0 when the area is extremal. But the price to pay would be a huge size for the
coefficients.
Remark 27.5.4. The directions of sidelines of ABC are embedded at

0 : 1 : −1 : f ; −1 : 0 : 1 : g ; 1 : −1 : 0 : h

Proposition 27.5.5. The temporal embeddings of the s-temporal graphs, i.e. the lines

G (∆s
A)

.
=
{
G (αst , t) | t ∈ R

}
, etc

are drawn on the Q quartic. Moreover, G (αst , t)t=s = G (as, s). Therefore G (∆s
A) is nothing but

the other line drawn on Q through G (as, s).

Proof. The first assertion is easily computed. The second is Proposition 27.4.5. And the conclusion
follows.

Proposition 27.5.6. A point x : y : z on the triangle plane has two temporal embeddings on the
quartic Q (counting multiplicity and complex values). The critical points of this double coating of
the plane are the points of the pillar conic (and the points at infinity).

Proof. First assertion is about the degree in t. Second assertion is about the discriminant, which
is (x+ y + z)

2 times the equation of the key conic.

Proposition 27.5.7. The embedding G (C) of the pillar conic lies in the plane :

[w − f − v ; h− f − v ; −τ ; 2]

The horizontal plane [s, s, s,−1] cuts this curve in two points that are the embeddings of the contact
points of the pillar conic with the temporal conic C (s). One of the horizontal lines of the polar plane
is drawn through points G (S, t∗) and G (E , t∗) where t∗ is the parameter related to the extremal
area of triangle atbtct.

Using a parameter k, a point on the pillar conic can be described as: 1÷ρ : k2÷σ : (1 + k)
2÷τ .

It’s only date of embedding is

t = τ
f ρ k2 + σ ρ k + v σ

(f + u) ρ k2 + 2σ ρ k + (g + v) σ

and the conclusion follows. One should remark that the plane equation is the last line of Q .

Definition 27.5.8. A linear motion M (t) on a given line ∆ is said to be an incident motion to
a given LFIT when the temporal parameters at cutting points are the same on the sidelines and
on the transversal.

Proposition 27.5.9. A given line ∆ ' [l,m, n] is the support of an incident motion if and only
if the line is tangent to the pillar conic. And then, the incident motion is embedded along a line
drawn on Q.

Proof. Solving in t the equation [l,m, n] · t[0, p+ t/f, (1− p)− t/f ] = 0 tells us when point ∆∩BC
is reached. Substituting into at and doing the same for the other two sidelines leads to the three
embeddings: 



0 −n −m
−n 0 l

m l 0

−nf (l − n) (f − w) + lg (l −m) v − lh




Asking for the degeneracy of the plane drawn by these three points gives four equations whose gcd
is the tangential equation of C.
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27.5.2 Menelaüs HH (parallelogy)

Caveat: in this subsection, vectors P =
t
[p, q, r, 1] , etc aren’t projective vectors, and P [4]

.
= 1 is a

hard coded quantity.

Definition 27.5.10. The Menelaüs encoding of the inscribed triangle a, b, c is defined by:

T .
= (abc) '




0 1− q r

p 0 1− r
1− p q 0


 7→ P

.
=




p

q

r

1




while the Menelaüs quadric is defined by the symmetric matrix:

H =




0 1 1 −1

1 0 1 −1

1 1 0 −1

−1 −1 −1 2




Proposition 27.5.11. (1) the area of an inscribed triangle is given by: area (T) = S× tP · H ·P ;
(2) two non flat inscribed triangles are parallelogic if and only if tQ · H · P = 0.

Proof. Direct examination.

Proposition 27.5.12. When S /∈ Lb, the triangles T of a LFIT are parallelogic by pairs. This
relation is involutive and is described by the homography:

s =
(fu+ 2 fv + gv − hw) t− 2 fτ v

2 (h+ g + f) t− (fu+ 2 fv + gv − hw)

Proof. Immediate consequence of tPt · H · Ps = 0.

Proposition 27.5.13. Any flat inscribed triangle verifies (p+ q − 1) (p+ r − 1) = p (p− 1) and
determines two LFIT of flat triangles:

1. Defining µ .
=
p+ q − 1

p
=

p− 1

p+ r − 1
leads to

T1 (p) =




0 (1− µ) p
(
µ−1 − 1

)
p+ 1− µ−1

p 0
(
1− µ−1

)
p+ µ−1

1− p (µ− 1) p+ 1 0




Then we have S = µ− 1 : 1 : −µ ; E = −S ; Ω =
−→
0 . All the lines are parallel and directed

by S

2. Defining λ .
=
p+ q − 1

p− 1
=

p

p+ r − 1
leads to

T2 (p) =




0 λ+ (1− λ) p 1 +
(
λ−1 − 1

)
p

p 0
(
1− λ−1

)
p

1− p 1− λ+ (λ− 1) p 0




Then we have S = λ−1 : 1 : −λ ; E =
−→
0 ; Ω = −S. All the lines are tangent to the inscribed

parabola through S –whose focus is isogon (S):

C∗ '




0 −λ 1

−λ 0 λ− 1

1 λ− 1 0




Proof. When E = KS then area (Tt) = −K (K + 1)S. And so we have either K = −1 or K = 0.
The fact that the H contains two lines throught P ∈ H is a general property of a HH.
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27.6 Miquel circles
Proposition 27.6.1. When triangle A′, B′, C ′ is inscribed into trigone ABC (and none of the
A′, B′, C ′ is a vertex), then circles miqA

.
= AB′C ′, miqB

.
= A′BC ′, miqC

.
= A′B′C concur into

some point Mq.

Proof. Let A′ ' pB + (1− p)C, etc. Then miqA '
[
0, c2r,−b2 (q − 1) , 1

]
. And one can see that

the radius of
∧

3

(
miqj

)
vanishes. Obviously, using directed angles is another possibility (Johnson,

1929, p. 131).

Proposition 27.6.2 (Miquel LFIT). Conversely, we can fix Mq ' P and move A′ ∈ BC. This
leads to the LFIT




0 1 +
a2qt

b2p
− powP

b2p
1 +

(1− t) a2r

c2p
− powP

c2p

1− t 0 − (1− t) a2r

c2p
+

powP

c2p

t −a
2qt

b2p
+

powP

b2p
0




where powP (p+ q + r)
.
= a2qr+ b2rp+ c2qp. The Neuberg center E is P itself, while the slowness

center S is isogon (P ).

Proof. Direct computation.

Corollary 27.6.3. In the context of a LFIT, circles (A, bt, ct) , etc are called the Miquel circles of
the family. Their Veronese columns are:

miqA, miqB , miqC '




0

c2 g (h− v + t)

b2 h (u+ v − h− t)
gh







c2 f (v − t)
0

a2 ht

fh







b2 f (w − f + t)

a2 g (f − t)
0

fg




The µt coordinates themselves are not really handy, except from the second degree terms:

µt '




a2gh

b2hf

c2fg


 t2 + O (t)

Proposition 27.6.4. The A−Miquel circles of a LFIT are going through A and another fixed
point OA, etc. And we have OA, OB , OC '



a2gh− b2hu− c2gu
b2 h (u− g − h)

c2 g (u− g − h)







a2h (v − h− f)

−a2hv + b2fh− c2fv
c2 f (−h− f + v)







a2 g (w − f − g)

b2 f (w − f − g)

−a2gw − b2fw + c2fg


 (27.12)

Proof. The existence is obvious from the linear nature of the Veronese’s (and the computation is
straightforward).

Proposition 27.6.5. Circle of similarity. For a given t, the three Miquel circles concur at
a point µt, called the Miquel point of Tt. The locus of this point is the circle Γσ through
OA, OB , OC . Moreover, µ(t=∞) is the isogonal conjugate of S, i.e. µ(t=∞) = S∗ .

= a2gh : b2hf :
c2fg. Therefore, S∗ is the perspector of triangles ABC and OAOBOC .

Proof. Compute µt as above, and then use locusconi to obtain Γσ. Check that we have a circle,
and obtain its Veronese, namely

Γσ '




b2c2 (g + h− u) f

c2a2 (h+ f − v) g

a2b2 (f + g − w)h

a2gh+ b2fh+ c2fg


 =




b2c2 fρ

c2a2 gσ

a2b2 hτ

a2gh+ b2fh+ c2fg




What remains is straightforward. The name "circle of similarity" is explained at Section 27.9.
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Figure 27.4: Miquel circles

Proposition 27.6.6. Miquel of a flat triangle. When Tt = atbtct is flat, then µt belongs to
the circumcircle Γ and conversely

Proof. When Tt is a single line, circles miqA, etc are three of the ordinary Miquel circles of the
quadrilateral ABC, Tt . So that µt belongs also to the fourth one, the circumscribed circle of
ABC.

Proposition 27.6.7. Fixed point. All the lines atMt are going through a fixed point Pa whose
barycentrics are:

Pa, Pb, Pc '




a2gh

b2fh− b2hw + c2gv

b2hw + c2fg − c2gv






a2gh− a2hw + c2fu

b2fh

a2hw + c2fg − c2fu






a2gh− a2gv + b2fu

a2gv + b2fh− b2fu
c2fg




(27.13)
Points E , Oa, Pa are aligned and Oa, Pa belong to the circle of similarity. Moreover S∗PA ‖ BC.
Proof. Equation of line atMt is

[(
b2h+ c2g

)
ft− f

(
b2fh− b2hw + c2gv

)
, a2ghf − a2ght, −a2ght

]

This leads to Pa. One can see directly that Pa = fghS∗ +
(
b2hw − c2gv

)
δBC and that Oa − Pa

(as written here) is ' E .

27.7 Constructions of the inscribed triangles
Construction 27.7.1. Suppose now that S ' f : g : h and E ' u : v : w are given (with
f + g + h = u+ v + w, as ever). We have, inter alia, the following constructions.

1. Miquel. Compute the Oj from S, E . When they are different, chose a point µt on circle
Γσ = (OA, OB , OC). Draw the circles miqA = (µt, A,OA) , etc. Then miqB ,miqC concur on
BC to give point at, etc. Condition OB = OC induces E = S∗ = Oa = Ob = Oc .

2. Alt-Miquel. Compute the Pj from S, E . When they are different, chose a point µt on
circle Γσ = (PA, PB , PC). Draw the lines (µt, PA) , etc. They cut the sidelines BC, etc at
the required points at, etc. Condition PB = PC induces E = S∗ = Oa = Ob = Oc (as for the
Miquel construction.
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3. Catalan. When S, E are at finite distance, the Catalan graphs are obtained from the
sidelines by a symmetry around (S + E) /2.

4. Hexagonal graphs. The A-graph Ga is [−ρ, h− ρ, g − ρ].

27.8 The three similarities theorem
This section has been inspired by Rouché and de Comberousse (1922b, Note III, p. 632-5)

Definition 27.8.1. Let be given three similarities σa, σb, σc, intended to act on three figures Φj
according to

Φa
σc7−→ Φb

σa7−→ Φc
σb7−→ Φa where σc · σb · σa = Id

We can consider the Φj as the images of a main figure Φ by three independent similarities σ1, σ2, σ3.
One can also introduce three other figures Φ′j according to Figure 27.5. In what follows, similarity
ψ will be forgotten most of the time.

Remark 27.8.2. In this section, the centers (fixed points) Oa, Ob, Oc are the main objects, and will
be parametrized by ρ, σ, τ on the unit circle (called the circle of similarity and noted Γσ), while the
ω2 of the angles of the similarities are noted β/γ, γ/α, α/β. Thus, triangle ABC is only defined
up to a rotation. In the same vein, the ubiquitous quantity δ ∈ Γ

δ
.
= − (σ − τ)α+ (τ − ρ)β + (ρ− σ) γ

ρ (σ − τ)β γ + σ (τ − ρ)αγ + τ (ρ− σ)αβ
(27.14)

is defined up a counter-wise rotation, so that only quantities like αδ are well-defined.

Remark 27.8.3. Among the figures, we will take later Φa = BC, Φb = CA, Φc = AB, so
that σa sends CA onto AB and the angle of σa is (AC,AB) = −Â. And one can check that
(id/conj) ((β − α) / (γ − α)) = β/γ.

Ψ′a Ψa

� Ψ′b
σ2 = ψ -

−
1ψ
·σ −

1c · ψ -

Ψ
σ2 = ψ-

σ1
= σ
−1
c
· ψ

-
σ
1 = σ −1c · ψ

-
Ψb

�

σc

	

Ψ′c

−1
ψ ·σ−1b · ψ

6

σ3
= σa

· ψ

-

�

−1
ψ
·σ
−1
a

· ψ

Ψc

σb

6

σ
a

-

σ
3 = σ

a · ψ
-

Figure 27.5: The "three" similarities configuration

Proposition 27.8.4. The matrices of the three similarities are:

σa '




β (ατ − γρ) (ρ− σ)

γ (ασ − βρ) (ρ− τ)
ρ− ρ β (ατ − γρ) (ρ− σ)

γ (ασ − βρ) (ρ− τ)
0

0 1 0

0
1

ρ
− 1

ρ

(ατ − γρ) (ρ− σ)

(ασ − βρ) (ρ− τ)

(ατ − γρ) (ρ− σ)

(ασ − βρ) (ρ− τ)



, etc

so that equalities α/β = ρ/σ, etc are to be excluded. The Neuberg relation:

∀M ∈ Φ : (fσ1 + gσ2 + hσ3) (M) ' E
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defining the equicenter E is satisfied by:




f

g

h


 ' i




(βτ − γσ) (β − γ)

βγ (σ − τ)
(γρ− ατ) (γ − α)

γα (τ − ρ)
(ασ − βρ) (α− β)

αβ (ρ− σ)



∈ R3 ; E '




ρ (σ − τ)α+ σ (τ − ρ)β + τ (ρ− σ) γ

(σ − τ)α+ (τ − ρ)β + (ρ− σ) γ

1
(σ − τ)βγ + (τ − ρ) γα+ (ρ− σ)αβ

ρ (σ − τ)βγ + σ (τ − ρ) γα+ τ (ρ− σ)αβ




Proof. Write σa = simil (Oa, k, µ), σb = simil (Ob,K, λ), µ2 = β/γ, λ2 = γ/α and assume that
Oc is the fixed point of σc. This gives the matrices. For the Neuberg relation, one can check that(
f σ−1

c + g + h σa

)
= E · Lz.

Proposition 27.8.5. Exceptional cases are of two kinds

1. Except 1: ρ : σ : τ ' α : β : γ occurs when E ∈ Lz (and δ is undetermined)

2. Except 2: ρ = σ = τ occurs when centers Oa, Ob, Oc are collinear

Proof. Equation f + g + h = 0 is equivalent to numer (δ) × denom (δ) (see (27.14)). These two
quantities are conjugate of each other, so they vanish together. Solving gives the property: ABC
equal to OaObOc, up to a rotation.

Proposition 27.8.6. The R-C hodograph. Choose a point E in the plane (the handle of the
hodograph) and M,N in figure Φ. The first modular triangle Ej is defined by Ea = E + φ1

−−→
MN ,

Eb = E + φ2
−−→
MN , Ec = E + φ3

−−→
MN . And the second modular triangle Fj is defined by EEa ⊥

FbFc, etc.Then:

1. When E is translated to E′, the whole R-C hodograph is translated by
−−→
EE′.

2. We have f : g : h ' det (E,Eb, Ec) : det (Ea, E,Ec) : det (Ea, Eb, E) while the ω2 of EaEbEc
are στ α : τρ β : ρσ γ. When E ∈ Lb, triangle EaEbEc is flat.

3. Triangle FaFbFc is similar to triangle ABC. Their common ω2 are β γ : γ α : αβ. When
the Oj are collinear, then Fa = Fb = Fc.

4. From E, you see the Fj at ω2 = ρ : σ : τ , i.e. we have: ∠ (EFb, EFc) = ∠ (OaOb, OaOc)

Proof. (1) is obvious ; (2) is easy to compute, and more powerful than only (f + g + h)E =
f Ea + g Eb +hEc ; (3) describes why triangle FaFbFc is useful. Incantation for computing the ω2:
U -> reduce(norztri( U.mWW)[1]);

Proposition 27.8.7. Consider the triples σ1 (M) , σ2 (M) , σ3 (M) where two elements are equal.
We have three cases (in column):

to_next_point fixed adjunct

A σc O′a Ob Oc Pa ηa

B σa Oa O′b Oc Pb ηb

C σb Oa Ob O′c Pc ηc

Pairs OjO′j are aligned with E due to the Neuberg relation. Triangles O′aObOc are similar with
each other and with triangle OaObOc.

O′a =




τ σ (β − γ)

τ β − σ γ −
(σ − τ)β γ

(τ β − σ γ)α
ρ

1
β − γ

τ β − σ γ −
(σ − τ)α

(τ β − σ γ)

1

ρ




Proof. Straightforward computation. R-C are using angles not so clearly defined, remarking that
σc maps [Oc, O

′
a] onto [Oc, Oa], so that triangle [Oc, O

′
a, Oa] is similar to triangle [E,Ea, Eb].
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Figure 27.6: The RC hodograph

Definition 27.8.8. Points O′j are called the adjunct points. The circle γa
.
= (O′a, Ob, Oc) is called

the adjunct circle. It goes through the equicenter E . Its center is called ηa and we have σc (ηa) = ηb
where

γa '




γ − β
(σ + τ) (β − γ)

(γ − β)σ τ

β τ − γ σ


 ; ηa '




(β − γ)σ τ

β τ − γ σ
β − γ


 (27.15)

Corollary 27.8.9. Circle (E , Ob, Oc) is the A-adjunct circle, while its second intersection with
line EOa is O′a, the A-adjunct point.

Proposition 27.8.10. The trigone formed by three corresponding lines Lj is ever perspective with
triangle OaObOc and their perspector Lq (to be celebrated as S∗) belongs to circle Γ.

Proof. Writing La ' [f ; g ; h], we obtain z (Lq) = αδ (h/f), see (27.14).

Proposition 27.8.11. When three corresponding lines La, Lb, Lc are concurrent, their common
point Lq lies on the circle Γ, while each line Lj goes through the second intersection Pj of EOj and
Γ. And we have: z (Pa) =

1

αδ
(see (27.14)) so that triangle PaPbPc is skew similar with ABC.

Proof. Obviously, z (Lq) = αδ (h/f).

Proposition 27.8.12. The triangle formed by three corresponding points Mj is ever perspective
with the fixed triangle PaPbPc, and the perspector µ (Miquel) belongs to circle Γ.

Proof. One obtains: z (Mq) = (α δ z1 − t1)÷ (α δ t1 − ζ1).

Proposition 27.8.13. When three corresponding pointsMj are aligned thenMa belongs to adjunct
circle γa = (O′aObOc) , etc. And conversely. Moreover, the Mj are aligned with E (Neuberg
property).

Proof. Consider det (MaMbMc) and obtain the locus. Then identification is easy from (27.15).
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27.9 Similarities and Cremona transforms
Now, we describe points A,B,C using the Lubin’s parametrization, i.e. A ' α : 1 : 1/α in the
Z : T : Z complex projective plane. We are giving both equations using f, g, h, p, q, r and using
f, g, h, u, v, w (the equicenter).

Proposition 27.9.1. Three similarities theorem. Let Oa, Ob, Oc be three generic points, not
on the sidelines. Define the similarity σA by its center Oa together with CA 7→ AB, etc. Note
µ = σC · σB · σA.

¯
Then

1. µ is an homothety translation that maps CA onto CA.

2. µ is a translation if and only if lines AOA, BOB , COC concur at some point S∗.
3. µ is the identity if and only if, moreover, S∗ belongs to circle OaObOc (the so-called circle of

similarity).

Oa

A

B

C

Ob

Bz

D

Oc

Cz

Ab

Ac

Az
Bc

Ba

Cb

Ca

Figure 27.7: Circle of similarity

Proof. Let Ab, Ac be the orthogonal projections of Oa on AB and AC. We compute σA as the
pointwise collineation Ωx 7→ Ωx, Ωy 7→ Ωy, OA 7→ OA, Ac 7→ Ab. Or as the inverse of the linewise
collineation Lz 7→ Lz, ΩxOa 7→ ΩxOa, ΩyOa 7→ ΩyOa, AC 7→ AB. We get:

σA '




αβ ζ1 − (α+ β) t1 + z1

αγ ζ1 − (α+ γ) t1 + z1

z1 (γ − β) (α ζ1 − t1)

t1 (αγ ζ1 − (α+ γ) t1 + z1)
0

0 1 0

0
ζ1 (γ − β) (α t1 − z1)

t1 (αγ ζ1 − (α+ γ) t1 + z1)β

γ (αβ ζ1 − (α− β) t1 + z1)

(αγ ζ1 − (α+ γ) t1 + z1)β




1. Obvious since µ fixes Ωx,Ωy and δ (AC). The factor of homothety is given by λ, the product of
the three (1, 1) elements or by the product of the three (3, 3) elements of the matrices.
2. LetAz = BC∩AOA. ThenAzB÷AzC = birap (B,C,Az,∞) = birap (δCA, δAB, δBC, δAOa) =

γ (α− β) (αβ ζ1 − (α+ β) t1 + z1)

β (α− γ) (αγ ζ1 − (α+ γ) t1 + z1)

Clearly, −λ is the product of these three quantities. And we conclude by the Ceva theorem.
3. Define S∗ .= AOA ∩ BOB , OC = xS∗ + (1− x)C, obtain µ = 1 as a first degree equation in x
and conclude.
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Proposition 27.9.2. LFIT Similarities. Given a LFIT, the correspondence CA 7−→ AB : b 7→
c induces a similarity σA of the whole plane. Center is OA, the fixed point of the Miquel circles
(27.12), while angle and ratio are, respectively, −A and −cg/bh. In the Morley frame, the matrix
of σA is:

σA =




−g (α− β)

h (α− γ)
αr + (1− r)β +

(α− β) (q γ + (1− q)α) g

h (α− γ)
0

0 1 0

0
r

α
+

1− r
β

+
(α− β) (q α+ (1− q) γ) g

(α− γ)αβ h
− (α− β) γ g

(α− γ)β h




=




−g (α− β)

h (α− γ)
β +

(u (α− γ) + g γ) (α− β)

h (α− γ)
0

0 1 0

0
1

β
+

(u (γ − α) + gα) (α− β)

h (α− γ)αβ
− g (α− β) γ

h (α− γ)β




The equicentric property holds for the whole plane, since:

f 1 + g σC + h σ−1
B = Ez · Lz

Proof. The quicker is to describe σA as the collineation: Ωx 7→ Ωx, Ωy 7→ Ωy, b0 7→ c0, b 7→ c
and apply the general formulas. The obvious result σC σB σA = 1 can be used to check the
obtained matrices. Remember OA ' a2gh− b2hu− c2gu : b2hρ : c2gρ

Proposition 27.9.3. Skew-similarities. The correspondence CA 7−→ AB : b 7→ c induces a skew
similarity σ−A of the whole plane. Center is

Qa '



h (qg − hr) b2 − g (qg − hr − g + h) c2

− (qg − hr + h)hb2

(qg − hr + h) gc2


 (27.16)

while σ−C σ−B σ−A is the involutory affinity that fixes AC and reverts the direction of BH.

Proposition 27.9.4. Miquel homography. Assume that S /∈ Lb and define σ as the homography:
A 7→ OA, B 7→ OB , C 7→ OC . The matrix of σ in the upper spherical map (Z,T) is:

σ =

(
zE σ3 zS + zE − zH
1 −zS

)
; σ−1 =

(
zS σ3 zS + zE − zH

1 −zE

)

where zE =
uα+ vβ + wγ

u+ v + w
, zS =

fα+ gβ + hγ

f + g + h
, zH = σ1

This defines a Cremona transform σ̂ of the whole projective plane, whose indeterminacy points are
the umbilics and S while exceptional lines are Lb and the isotropic lines of S. By σ−1, the center
ω of circle OAOBOC is mapped to 1/ζS (symmetric of S in the circumcircle).

The four fixed points of σ̂ are the foci of the pillar conic and therefore verify:

τ

Z−Tγ
+

σ

Z−Tβ
+

ρ

Z−Tα
= 0

Proof. Direct computation.

Proposition 27.9.5. Homography σ degenerates when S and E are isoconjugates (thus none of
them at infinity). In this case, the Miquel circle is reduced to point E = S∗ = Oa = Ob = Oc .

Proof. Obvious from (18.7) (when assuming S /∈ Lb). Assuming S ∈ Lb, this would require
(uα+ v β + w γ) (f α+ g β + h γ) = 0, i.e. E at origin, instead of E ∈ Lb.
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27.10 Describing a LFIT from its degenerate triangles

27.10.1 General results
Fact 27.10.1. In the general case, a LFIT contains two degenerate triangles Tj defining two lines
∆j ' [pj , qj , rj ]. Using an adapted timeline, we can enforce t = ±1 for these triangles and then:

Tt =
1 + t

2




0
r1

r1 − p1

−q1

p1 − q1−r1

q1 − r1
0

p1

p1 − q1
q1

q1 − r1

−p1

r1 − p1
0




+
1− t

2




0
r0

r0 − p0

−q0

p0 − q0−r0

q0 − r0
0

p0

p0 − q0
q0

q0 − r0

−p0

r0 − p0
0




Using (27.1), we obtain the following synchronized values:

S =




(p0 q1 − q0 p1) (r0 p1 − p0 r1) (q1 − r1) (q0 − r0)

(q0 r1 − r0 q1) (p0 q1 − q0 p1) (r1 − p1) (r0 − p0)

(r0 p1 − p0 r1) (q0 r1 − r0 q1) (p1 − q1) (p0 − q0)




E = Θ2




q0 r1 − r0 q1

r0 p1 − p0 r1

p0 q1 − q0 p1


 ; Ω = Θ1




p0 p1 (q0 r1 − r0 q1)

q0 q1 (r0 p1 − p0 r1)

r0 r1 (p0 q1 − q0 p1)




C∗ '




0 r0 r1 (p0 q1 − p1 q0) q0 q1 (r0 p1 − r1 p0)

r0 r1 (p0 q1 − p1 q0) 0 p0 p1 (q0 r1 − q1 r0)

q0 q1 (r0 p1 − r1 p0) p0 p1 (q0 r1 − q1 r0) 0




where Θ1
.
= (p0 (q1 − r1) + q0 (r1 − p1) + r0 (p1 − q1))

Θ2
.
= (p0 q0 r1 (p1 − q1) + q0 r0 p1 (q1 − r1) + r0 p0 q1 (r1 − p1))

Remark 27.10.2. One has Lb · S = Lb · E = Lb · Ω = Θ1 × Θ2. Then Θ1 vanishes when the lines
are parallel, while Θ2 vanishes when the reciprocal of the lines are parallel.

Exercise 27.10.3. Point ω = (S + E) /2 is the intersection of lines cevadiv (Tj ,Lb). Spoiler: these
lines are the Newton axes of quadrilaterals (ABC, Tj).
Proposition 27.10.4. The temporal conic relative to a flat triangle Tj is the reunion of two
parallels, each of them tangent to the pillar conic C: the line T

j
itself (which goes through E) and

its symmetric wrt ω = (S + E) /2 (which goes through S).
Proof. The only safe proof is a direct computation, which is not difficult. Formula (27.11) cannot
be used since det Tj = 0. While describing what happens when t→ 0 is enlightening... but doesn’t
prove anything.

Theorem 27.10.5. The two flat triangles (visible or not) that belongs to a LFIT are the tangents
from equicenter E to the pillar conic C.

Proof. This is only a paraphrase of the former proposition. Nevertheless, this is a key result.
One can also note that E satisfies (u+ v + w) E = f aj + g bj + h cj so that E ∈ Tj is an obvious
requirement.

Proposition 27.10.6. About temporal conics. Applying (27.11), we have

CH '




0 hτ gσ

hτ 0 fρ

gσ fρ 0


 =




0 (p1 − q1) (p0 − q0) r0 r1 (p1 − r1) (p0 − r0) q0 q1

(p1 − q1) (p0 − q0) r0 r1 0 p0 p1 (q1 − r1) (q0 − r0)

(p1 − r1) (p0 − r0) q0 q1 p0 p1 (q1 − r1) (q0 − r0) 0



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whose points at infinity are

δH0 , δ
H .

=




p0 (q0 − r0)

q0 (r0 − p0)

r0 (p0 − q0)


 ,




p1 (q1 − r1)

q1 (r1 − p1)

r1 (p1 − q1)




Except from the two flat triangles (where, in fact, CHj = 0), these points generate the points at

infinity of the temporal conic Ct itself:

δ0 = Tt · δH1 = dir T0 =




q0 − r0

r0 − p0

p0 − q0


 ; δ1 = Tt · δH0 = dir T1 =




q1 − r1

r1 − p1

p1 − q1




Proof. Line at infinity is invariant by the collineation described by matrix Tt . And thus we can
avoid the direct computation of the points at infinity of the temporal conics. Once again: this
doesn’t apply to the flat triangles.

Proposition 27.10.7. Assume that E (and thus S) remains at finite distance. Then all the
following assertions are equivalent:

1. the LFIT contains only one degenerate triangle (and it happens that line T0 is tangent to C
at E) ;

2. circumscribed Γ and similarity Γσ circles are tangent (the contact occurs at µ0) ;

3. relation f2u2 + g2v2 + h2w2 − 2 fguv − 2 ghvw − 2hfwu = 0 holds ;

4. point E belongs to C (and therefore S ∈ C also) ;

5. point S belongs to the ABC-inconic centered at (A+B + C − E) /2 (and conversely).

Proof. (1-2) is from Proposition 27.6.6; (3) is from the discriminant of det Tt ; (4-5) are straight-
forward.

27.10.2 Miscellany
Exercise 27.10.8. All the previous results were obtained "without circles". But we can identify
the adjunct circle γa as the circle through E , a0, a1, etc, point Oa as the other intersection of γb
and γc, etc, point O′a as the other intersection of line EOa and circle γa. The similarity circle Γσ is
the circle OaObOc, while fixed points Pa, etc are the other intersection of line EOa and circle Γσ.
And now, the moving part of the system: Miquel circles miqA = (A, bt, ct) , etc concur at µt ∈ Γσ,
as well as lines Paat, etc.

27.10.3 Critical triangle
Definition 27.10.9. When S is not at infinity, area (Tt) is second degree in t, and presents an
extremum. The corresponding triangle is called the critical triangle of the LFIT, and noted Tc.

Proposition 27.10.10. Consider T0, T1 the tangents issued from E 6∈ Lb to the pillar conic C (see
Figure 27.8). Let a0, a1, etc be the intersections (visible or not) of these tangents with the sideline
BC. Then critical triangle Tc is given by ac

.
= (a0 + a1) /2, etc.

Proof. In the real domain, a second degree polynomial attains its extremum at the middle of its
roots.

Corollary 27.10.11. Applied to the pedal triangles of the points Pt of a line ∆, the critical triangle
is obtained at the projection P0 of the circumcenter O onto the given line.

Proof. Line OP0 is the axis of symmetry of the figure formed by Γ and ∆.
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392 27.10. Describing a LFIT from its degenerate triangles

From Pa to Ax through ω. And then from Axto ac through E .

Figure 27.8: Constructing the critical triangle

Construction 27.10.12. Construct Tcrit when S, E are known, but not at infinity. It
suffices to construct the middle of a subtangent as described at Construction 18.1.3. Obtain the
contacts Pa, etc of the pillar conic from its perspector which is isotom Ω. Draw also ∆, the conipolar
of E (see Figure 27.8). Cut this line by line ωPa and obtain Ax, etc. Then we have ac = EAx ∩
BC, etc.

Proof. This works even if E is inside C, i.e. when the flat triangles of the family are not visible.
We have the following coordinates:

Pa '




0

(f + u) (uρ− (v + w) τ)− (g + v)u (σ + τ)

(f + u) (uρ− (v + w)σ)− (h+ w)u (σ + τ)




Ax '




u (σ + τ)

u ρ− (v + w) τ

u ρ− (v + w)σ


 ; ac '




0

u ρ− (v + w) τ − v (σ + τ)

u ρ− (v + w)σ − w (σ + τ)




Moreover, a detailed proof has already been given at Construction 18.1.3. Obviously, we re-obtain
(27.4).

Remark 27.10.13. The point Ax is the conipole of the line
(
E ,−−→BC

)
.

Proposition 27.10.14. When the critical triangle is known as

Tcrit =




0 1− q r

p 0 1− r
1− p q 0




then the slowness center is constrained to the circumconic KS whose perspector and center are:

persp '




1− q − r
1− r − p
1− p− q


 ; cent '




(1− q − r) (1− 2 p)

(1− r − p) (1− 2 q)

(1− p− q) (1− 2 r)



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One can parametrize S, E as

S '




K (1 +K) (1− q − r)
(1 +K) (1− r − p)
−K (1− p− q)


 ; E = Tcrit · S

and E is constrained to KS =
tT −1
crit ·KS · T −1

crit. This conic is nothing else than the hexagonal conic
of Tcrit that goes through the am, etc and the αm

.
= bm + cm −A, etc.

Proof. One must ensure that the area is a polynomial whose first degree coefficient is null.
Caveat: the list [p, q, r] is not to be treated up to a projective multiplier.

27.10.4 Orthologic families

Proposition 27.10.15. The lines that support the flat triangles are orthogonal if and only if S and
E are conjugate with respect to the polar circle. In such a case, all temporal conics are rectangular
hyperbolas... except from the degenerate ones

Proof. Use parametrization (27.1) where T0, T1 are the flat triangles. Then we have

tS · cirH · E = L0 · Mb · tL1 ×Θ2 ×
∏

3

(p0q1 − q0p1)

where Θ2 was defined at Remark 27.10.2.

Proposition 27.10.16. When two non flat triangles of a LFIT are orthologic, then all triangles
of the LFIT are orthologic with each other. Moreover, S and E are conjugate wrt the polar circle
(and the flat triangles orthogonal to each other).

Proof. By Proposition 26.4.9, orthology between non degenerate triangles is characterized by
trace

(
Ts · Tt

−1
· OrtO

)
= 0. When using the asymmetric parametrization, this gives:

t− s
f g hS




t

S ·




Sa 0 0

0 Sb 0

0 0 Sc


 · E


 = 0

Proposition 27.10.17. Assume that preceding condition is fulfilled and note P (t, s) the point
which sees triangle Tt at right angle to trigone Ts. The barycentrics of P (t, s) have degrees in t
and s that are, respectively, 1 and 2. The locus t 7→ P (t, s) is one of the two lines tangent to the
pillar conic through the orthocenter of asbscs, while the locus s 7→ P (t, s) is the temporal conic Ct.

Proof. The linear motion t 7→ P (t, s) is incident to the linear motions of atbtct (see Proposi-
tion 27.5.9). And therefore the locus is a line tangent to the pillar conic, while P (s, s) is obviously
the orthocenter of asbscs. On the other hand, P (t, t) ∈ Ct was granted since this conic is a RH.

27.11 Envelopes of the sidelines (parabolas)
Proposition 27.11.1. The envelope of the line btct is a parabola PA. Its point at infinity is
g + h : −g : −h, i.e. the direction of line SA. Its tangential equation is

P∗A =




2 (q − 1) g − 2hr (1− q) g − (1− r)h hr − gq
(1− q) g − (1− r)h 0 (1− r)h+ gq

hr − gq (1− r)h+ gq 0




'




2u h− u g − u
h− u 0 −g − h+ u

g − u −g − h+ u 0




—– pldx : Translation of the Kimberling’s Glossary into barycentrics – vA2 —–
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This parabola is tangent to AB and AC at their intersections with locus (α). When using metric
properties, the focus is the already encountered point OA, while its directrix is

∆A ' [Sa (g + h) ,−Sb g,−Sc h]− uSa Lb where u = E1 = hr − gq + g

Proof. The coefficients of line bc have degree 2 in t. Therefore, the envelope is a conic. Matrix
P∗A is obtained by locusconi. Then Lb · P∗A = −g− h : g : h and we have a parabola. The focus
comes from the Plucker method, and the directrix is the polar line of the focus.

And circularly for the other two parabolas.

Proposition 27.11.2. Tangents from E to the three parabolas are the same.

Proof. The contact points themselves have a terrific expression, involving

W =
√
f2u2 + g2v2 + h2w2 − 2 fguv − 2 ghvw − 2 fhuw

Nevertheless, one can see that the three expressions

(E ·Pj · E) (X ·Pj ·X)− (E ·Pj ·X)
2

giving the pair of tangents issued from E are the same.

27.12 Special shapes of the inscribed triangles

27.12.1 LFIT of equilateral triangles
Proposition 27.12.1. For a given triangle ABC, there are two LFIT of equilateral triangles.
They are described by: a, b, c '

(Sa + 2 Σ )




0

x

1− x


 ,




+4 Σ − (Sb + 2 Σ)x

0

Sa − 2 Σ + (Sb + 2 Σ)x


 ,



Sa − b2 + 2 Σ + (Sc + 2 Σ)x

+b2 − (Sc + 2 Σ)x

0




where Σ stands for Σ = S/
√

3.

Proof. Chose a ' 0 : x : 1− x on BC and consider the rotation ρ (a,+60°), so that:

ρ =



−a2x+ Sc + 2 Σ −a2x+ a2 −a2x

(Sc + 2 Σ )x− b2 (Sc + 2 Σ)x− Sc + 2 Σ (Sc + 2 Σ)x

(Sb − 2 Σ )x+ Sa + 2 Σ (Sb − 2 Σ)x− Sb + 2 Σ (Sb − 2 Σ)x+ 4 Σ




Define c as AB ∩ ρ (CA) and b as ρ−1 (c). Then abc is equilateral direct. It remains to synchronize
the normalization of the three columns.

Proposition 27.12.2. For these two families, the pair (S, E) is either X(13), X(15) or X(14),X(16),
i.e a Fermat center and the corresponding isodynamic center.

Proof. From the values of at, bt, ct, one can read the values of f, g, h. And then apply these masses
to the variable triangle. This leads to:

S ' 1

Sa + 2 Σ
:

1

Sb + 2 Σ
:

1

Sc + 2 Σ

E ' (Sa + 2 Σ) a2 : (Sb + 2 Σ) b2 : (Sc + 2 Σ) c2

Caveat: these two sets of coordinates are to be synchronized in order to enforce f+g+h = u+v+w
(leading to huge expressions !).

Proposition 27.12.3. The pedal triangle of X(15) is equilateral and belongs to the corresponding
family.
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Proof. Since triangles abc are "turning around" point E , the triangle of minimal area is obtained
by orthogonal projection. The center of this triangle is the middle of [S, E ]. Moreover, the locus
of g = (a+ b+ c) /3 is directed by:

Sc − Sb : Sa − Sc : Sb − Sa ' b2 − c2 : c2 − a2 : a2 − b2

One recognizes X(531), the orthopoint of X(30): the locus of g is the perpendicular bisector of
segment [S, E ], and therefore orthogonal to the Euler line.

27.12.2 LFIT of similar triangles
Proposition 27.12.4. The triangles of a linear family are similar to each other if and only if S and
E form an isogonal pair. And then E is the center of similitude. Moreover, OA = OB = OC = E.

Proof. We already know that E is a fixed point of Tt · Ts
−1

. In order to have a similitude, the
other two must be the umbilics of the plane. This leads to:




u

v

w


 =

h+ g + f

a2gh+ b2fh+ c2fg




a2gh

b2fh

c2fg




Proposition 27.12.5. The pedal triangle of E belongs to the LFIT, and provides the extremal area
of the family

4fghS3 (f + g + h)

(a2gh+ b2fh+ c2fg)
2 =

4S3
(
a2vw + b2uw + c2uv

)

a2b2c2 (u+ v + w)
2

Proof. Direct computation.

27.12.3 LFIT of pedal triangles
Proposition 27.12.6. When a LFIT contains the pedal triangles of two different points P0, P1

(not at infinity), then each of the other inscribed triangles can be written as Tt .= (1− t) T0 + t T1

and is the pedal triangle of Pt = (1− t)P0 + t P1.
Spoiler: for such a LFIT, the slowness center S is on the circumcenter, its isogonal S∗ is the

orthopoint of
−−−→
P0P1, while E belongs to the Simson line of 2O − S. This configuration is the core

of the theory of the orthopoles, which is explored in detail at Section 28.8.

Proof of the first part. Consider the LFIT generated by T0, T1 and apply (9.2). Then check that
Pt is the pedal center of Tt. The slownesses are easy to obtain, and S ∈ Γ follows.

Proposition 27.12.7. Any LFIT whose slowness center S is not on the circumcircle contains
exactly one pedal triangle.

Proof. Apply (9.2) to the LFIT. This gives a first degree polynomial in t whose leading coefficient
is a2gh+ b2hf + c2fg.

Construction 27.12.8. Embedded pedal triangle (S 6∈ Γ). Start form a triangle Tt and cut
the perpendicular to AB issued from ct by the perpendicular to AC issued from bt. This gives a
point BCt. The locus ∆a of these points BCt is a straight line. Obtain another point by using
another triangle Ts. When S 6∈ Γ, the three lines ∆a, etc are concurrent, as proven in the previous
proposition. This gives the central point of the embedded pedal triangle.

27.12.4 Cevian triangles in a LFIT
Proposition 27.12.9. A LFIT contains exactly three cevian triangles (up to visibility and multi-
plicity).

Proof. The determinant of lines atA, btB, ctC is a polynomial of degree 3 in t (its leading coefficient
doesn’t vanish).
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Construction 27.12.10. Embedded cevian triangles. Draw the conic CA through B,C,Ga =
B + C −A and the two intersections of the hexagonal graph Ga with lines AB and AC. Draw the
other two. The three conics concur at the three required centers (in the complex plane). Maybe
only one of them is visible.

Proof. Determine point BCt as the intersection of lines btB, ctC . The result is in t2. Thus the
locus of BCt is a conic. Use locusconi to obtain its equation, and check for the five given points.
Existence is given by the previous proposition.

Exercise 27.12.11. Consider the LFIT generated by the cevians of the two points P0 (fixed) and
P2 (mobile). Let P3 be the center of the third cevian triangle of this family. Then, for quite all
P0, the transformation P2 7→ P3 is a Cremona involution. Determine the exceptional locus and the
points of indetermination. Study how these points are blown out.

27.13 Families with constant area

27.13.1 Three non concurrent lines (rewritten)

Proposition 27.13.1. Assume that area (Tt) remains constant when t changes. Then S is at
infinity while E ' S, so that we can use the hard equalities S = [τ − 1 : 1 : −τ ] and E = K S for
some values τ and K. The converse holds and leads to:

Tt =




0 Kτ + τ − t

1
1 +

K

τ
− t

τ
t

τ − 1
0 −K

τ
+
t

τ

1− t

τ − 1
1−Kτ − τ +

t

1
0




; area (Tt) = −K (K + 1)S

Proof. The coefficient of t2 in area (Tt) contains f + g + h, so that S ∈ Lb. And then we have
u+ v + w = f + g + h = 0, together with τv + w = 0 from the coefficient of t.

Corollary 27.13.2. Special case: when S ∈ Lb and K = −1, the LFIT is the set of flat inscribed
triangles whose "sideline" is [1,−τ + 1, 0] + tLb i.e. is directed by S.

Corollary 27.13.3. Special-special case: when S ∈ Lb and K = 0, the LFIT is the set of flat
inscribed triangles whose "sideline" is tangent to the inscribed parabola having S as point at infinity.
In this case, Tt · S = 0 : 0 : 0 and the equicenter E is not defined.

Proof. Apply locusconi to line [t (−τ + 1 + t) , (t− τ) (−τ + 1 + t) , (t− τ) t].

—–***

Let us assume that S = K2 (choosing the sign of W ). One obtains:

K3 'W




g − h
h− f
f − g


− 2 (fg + gh+ hf)

fgh




f

g

h


 t

while the locus P of the K1 becomes a conic since the t−degrees of the barycentrics of that point
are now 2, due to f + g + h = 0. After computing P using the procedure locusconi, one can check
that K2 ∈ P together with Lb ∈ P∗: the conic is a parabola.

Moreover, the envelope of line K1K3 is also a conic, since the t−degree of K1 ∧ K3 is two.
Using again locusconi, we obtain the matrix of the tangential equation:

Q∗ '




(1−W ) f −Wh −Wg

−Wh (1−W ) g −Wf

−Wg −Wf (1−W )h



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Figure 27.9: Two parabola

When searching for the common points of Q and P, one obtains that these curves are bitangent.
A first contact occurs in K2, so that Q is a parabola with the same direction as P. The second
contact is the center of the hexagonal conic relative to

t0 =
(g − h) (f − h) (f − g)

6 (fg + fh+ gh)
W

when using the former given parametrization. This value is the arithmetical mean of the dates of
the degeneracies.

27.13.2 Three concurrent lines

Suppose now that points a, b, c are moving on concurrent lines. We only have to consider this case
as the limit of what happens when K → 0 to the figure obtained by applying an homothety of
center G and ratio K to the previous results (and replacing X by X/K for X = p, q, r,W, t, while
slownesses f, g, h are unchanged).

Then the inscribed triangle and the equicenter become:

abc '




1

3

1

3
− q − t

g

1

3
+ r +

t

h
1

3
+ p+

t

f

1

3

1

3
− r − t

h
1

3
− p− t

f

1

3
+ q +

t

g

1

3



, E '




hr − gq +
1

3
(f + g + h)

fp− hr +
1

3
(f + g + h)

gq − fp+
1

3
(f + g + h)




while the areal center is the limit of:



(2 f − g − h)K + (f + g + h)

(2g − f − h)K + (f + g + h)

(2h− f − g)K + (f + g + h)




and thus is G when S /∈ Lb, but is S when S ∈ Lb.
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The hexagonal conic goes through a, b, c and a′ = b + c − G, etc. When t = 0, its points at
infinity are:

2 q + 2 r : −W − 2 r : W − 2 q

where W 2 = −4 (pq + qr + rp) is the limiting value of the relative area. Therefore:

Proposition 27.13.4. Given three lines that are concurrent at G and an inscribed triangle abc it
exists two families of inscribed triangles that share the same area. Their areal center is one of the
points at infinity of the hexagonal conic defined by a, b, c,G. Point S is real if W 2 ≥ 0. Then, the
family is obtained by constructing strips of equal width (in the S direction).

27.14 Concurrent hexagonal graphs
In this section, we assume that the three hexagonal graphs intersect each other at the same point
K ' p : q : r.

27.14.1 Assuming that S is known
Lemma 27.14.1. In any case, the line through A parallel to Ga cuts BC at P ′ ' 0 : g : −h, etc.
These points P ′, Q′, R′ belong to line [1/f, 1/g 1/h] (the tripolar of S). Moreover, the points
P = B + C − P ′, etc belong to line [f, g, h] (isotomic of the tripolar).

Proof. Quite obvious from 27.8.

Proposition 27.14.2. When the graphs are concurrent and S ' f : g : h is known, then K belongs
to line [f, g, h] (isotomic conjugate of the tripolar of S), while E ' K ∗

b
(2S −G), the barycentric

product of K and the anticomplement of S. As a result, E belongs to the line:

∆S
.'
[

f

g + h− f ,
g

h+ f − g ,
h

f + g − h

]

which is the image of tripolar (S) by recip ◦ homot (S, 1/3).

Proof. Using 27.8, the concurrence gives an equation, and the normalization gives another. This
results into a parametrization of E and K by a coordinate of E (say w). And the results follow.

27.14.2 Assuming that K is known
Proposition 27.14.3. When the graphs are concurrent at a known point K ' p : q : r, then S
belongs to line [p, q, r] while E belongs to line

∆K
.' [qr (q + r) , pr (p+ r) , p (p+ q) q]

which is the image of tripolar (K) by homot (K, 2/3). Moreover, a parametrization of [S, E ] by a
point at infinity is:

[S, E ] '


(p+ q + r)




q r

r p

p q


 ∗

b




1

µ

−1− µ


 ,




p

q

r


 ∗

b




−pq (µ+ 1) + µ pr − qr
−pq (µ+ 1)− µ pr + qr

+pq (µ+ 1) + µ pr + pq + qr







Proof. From previous proposition, f p+ g q + h r = 0. Thus the parametrization 1 : µ : −1− µ of
Lb induces S ' qr : µrp : − (1 + µ) pq. Added to Ga ·K = 0, etc and the normalization rule, this
leads to the remaining results.

27.14.3 Assuming that K is the center of gravity
Fact 27.14.4. When K =X(2), then S ∈ Lb while E = (−2/3)S. Moreover, the areas of all the
inscribed triangles abc, and of all the αβγ, are equal to (2/9)S.

Fact 27.14.5. Then M∞ = S∗ belongs to the circumcircle, while Oa = (2A+M∞) /3, etc. This
provides the circle of similarity. And everything flows from this result.

April 5, 2025 14:49 published under the GNU Free Documentation License



27. Linear Families of Inscribed Triangles 399

27.15 When the graphs are given
In the previous sections, the graphs were the result of the pre-existing mappings a ←→ b ←→
c←→ a. Let us now examine what happens when these graphs are chosen from the beginning.

27.15.1 Catalan graphs
Proposition 27.15.1. When three lines ∆j are parallel to the sidelines, they are the Catalan
graphs of a LFIT if and only if the bisectors of strips (∆a, BC) , etc are concurrent. And then S
can be chosen at will (outside of Lb).
Proof. The necessity comes from the required symmetry wrt ω = (S + E) /2. Since ω is at finite
distance, S, E cannot be chosen at infinity.

Proposition 27.15.2. Define the collineation µ∗ by Lb 7→ Lb, BC 7→ ∆A = [p0q0, q0], CA 7→
∆B = [r1, q1, r1], AB 7→ ∆C = [p2, p2, r2]. Then its matrix (acting over the lines !) is

µ∗ '




p0

q0 − p0

q0

q0 − p0

q0

q0 − p0r1

r1 − q1

q1

r1 − q1

r1

r1 − q1p2

p2 − r2

p2

p2 − r2

r2

p2 − r2




We have χ (X) = (X + 1)
2

(X − λ) Then λ = 1, i.e. µ is a central symmetry, when

2 p0 q1 r2 + q0 r1 p2 − p0 q1 p2 − p0 r1 r2 − q0 q1 r2 = 0

In any case, ω .
= ker (µ− 1) ' q0

p0 − q0
:

r1

q1 − r1
:

p2

r2 − p2
. When ω is the center, we have:

E = µ (S) ' fp0 + gq0 + hq0

p0 − q0
:
fr1 + gq1 + hr1

q1 − r1
:
fp2 + gp2 + hr2

r2 − p2

Proof. Computations are straightforward.

27.15.2 Hexagonal graphs
Lemma 27.15.3. When S, E are know, the hexagonal graphs have the following equations:




Ga

Gb

Gc


 '



g + h− u g − u h− u
f − v h+ f − v h− v
f − w g − w f + g − w


 (27.17)

Proof. From the very definition, we have αt
.
= B +C − at, etc. And then, we use the asymmetric

parametrization.

Lemma 27.15.4. When Gc ' [p3, q3, r3] is given, then both relations hold:

g = f
r3 − p3

r3 − q3
; w = f

r3 − p3 − q3

r3 − q3

Proof. Graph Gc describes at 7→ bt. Start from at ' 0 : t/f, 1−t/f . Compute γt ' Gc∧
(
at ∧
−→
AC
)
.

Then identify C + γt with the at + btfrom the usual parametrization.

Proposition 27.15.5. Let be given three lines ∆j ' [pj , qj , rj ] in general position and define



f

g

h

u

v

w




=




p1 − r1

p1 − r1

p1 − q1

p1 − q1 − r1

p1 − q1

p1 − r1




∗
b




q2 − p2

q2 − p2

q2 − p2

q2 − p2

q2 − p2 − r2

q2 − p2




∗
b




r3 − q3

r3 − p3

r3 − p3

r3 − p3

r3 − p3

r3 − q3 − p3



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Then the three lines are the hexagonal graphs (in that order) of a LFIT if and only if

(p1 − r1) (q2 − p2) (r3 − q3)

(p1 − q1) (q2 − r2) (r3 − p3)
= +1 and f + g + h = u+ v + w

In such a case, f, g, h, u, v, w are the synchronized barycentrics of the centers S, E of this LFIT.

Proof. Caveat: this formula is not symmetric but is nevertheless the right one. The first condition
is required by Lemma 27.15.4 if we want that x = f in the chain f 7→3 g 7→1 h 7→2 x. The second
is the required synchronization. The converse is left as an exercise.

Exercise 27.15.6. Use sagemath. Use the nine coefficients of matrix :



g + h− u g − u h− u
f − v h+ f − v h− v
f − w g − w f + g − w


−




x 0 0

0 y 0

0 0 z


 ·




p1 q1 r1

p2 q2 r2

p3 q3 r3




together with f + g + h − u − v − w and f − 1. Use these 11 polynomials to generate an ideal I
over Q. Eliminate f, g, h, u, v, w, x, y, z. This gives an ideal J . Build the ideal K generated by the
two conditions of the proposition. Divide J by K, and obtain 1 (condition was necessary). Divide
K by J . The result is generated by three polynomials. And now, be more precise about the "in
general position" used in the above proposition.

Proposition 27.15.7. Let us now suppose that S is given. This determines the direction of the
graphs, and therefore requires the existence of three numbers ρ, σ, τ such that :

(G) '



−ρ h− ρ g − ρ
h− σ −σ f − σ
g − τ f − τ −τ


 (27.18)

The condition for these three lines to be the hexagonal graphs of a LFIT is f + g + h = ρ+ σ + τ ,
i.e. the synchronization rule (27.6). And then, the equicenter E and the pillar point Ω are given
by

E =




h+ g − ρ
h+ f − σ
g + f − τ


 ; Ω =




ρ

σ

τ




so that S + E + Ω = (f + g + h) (A+B + C) as required at (27.3).

Proof. The directions of the three hexagonal graphs are those of the anti-cevian triangle of S. Let
T ∗S be the corresponding trigone, i.e. the three sidelines of this triangle. We have:

T ∗S
.
=



−f f f

g −g g

h h −h




∗

'




0 h g

h 0 f

g f 0




The remaining computations are straightforward.

Remark 27.15.8. This can be written as S ∈ D where

D '
[
f − ρ
f

,
g − σ
g

,
h− τ
h

]
(27.19)

but the geometric interpretation of this line is not so clear.

27.15.3 The marvelous formula

Lemma 27.15.9. When the homologue sidelines of two trigones are parallel, then the two triangles
are perspective.
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Proof. The sidelines are perspective from Lb. Another proof. The triangle G∗ , obtained as the
dual of trigone 27.18, is ever perspective with its model, the anticevian triangle of S, and the
perspector is

Q
.
=



−ρ f + gσ + hτ

+ρ f − gσ + hτ

+ρ f + gσ − hτ


 ∗

b




f

g

h




Proposition 27.15.10. Let G be a trigone whose sidelines are respectively parallel to the sidelines
of the S-anticevian triangle and consider the collineation µ defined by Lb 7→ Lb, T ∗S 7→ (G). This is
ever an homothety. And then G describes the graphs of LFIT if and only if steinS · µ∗ ' dualS
where

dualS ' [f, g, h] ; steinS
.
= anticomplem (dualS) ' [g + h, h+ f, f + g]

Proof. Describing µ by its action over the lines, we obtain the matrix :

µ∗ =




1 0 0

0 1 0

0 0 1


− 1

2fgh
Q · Lb

where Q is the perspector defined just above. Therefore, µ is an homothety centered at Q, whose
line-ratio is: 1/k

.
= 1 − (Lb ·Q) /(2fgh)... while µ

.
= Adjoint µ∗ , when acting on columns,

describes the point-homothety homot (Q, k) (see (7.29), which uses k as point-ratio).
Line dualS ' [f, g, h] is the tripolar of the isotomic of this point. Its image by the anticomplem

transform is steinS
.
= [g + h, h+ f, f + g] (using ratio −2 on points, but ratio −1/2 on lines). We

call this line steinS since this is the conipolar of S w.r.t. the Steiner out-ellipse. And then one
can see that steinS · µ∗ = dualS if and only if f + g + h = ρ+ σ + τ is satisfied.

Corollary 27.15.11. Consider µG
.
= µ◦anticomplem. This is another homothety (with point-ratio

−2k), and we have:

µ∗G =




1 0 0

0 1 0

0 0 1


− 1

2fgh
QG ·Lb where QG

.
=




2 fgh+ (g − h) (gσ − hτ)− (h+ g) fρ

2 fgh+ (h− f) (hτ − fρ)− (h+ f) gσ

2 fgh+ (f − g) (fρ− gσ)− (f + g)hτ




And now the requirement is the global invariance of dualS by µG, i.e. QG ∈ dualS . We are back
with the same question: a geometric interpretation would be great.

27.16 Observers (about perspectivities)
Definition 27.16.1. We say that a (fixed) triangle TaTbTc observes the LFIT when the fixed
triangle is in perspective with all of the triangles of the LFIT.

Proposition 27.16.2. An observer O is necessarily parallelogic with the ABC triangle. This
implies the existence of a pointMo (the ray source) that sees ABC with rays parallel to the sidelines
of O.

Proof. The observer must be in perspective with T∞, i.e. with (δBC , δCA, δAB). This asserts the
existence of the other center of parallelogy and, due to the symmetry of the relation, this implies
the existence of Mo.

Our intent is to specify some notations and prove the following theorem:

Theorem 27.16.3. There are three kinds of observers, each family being parametrized by a generic
point M in the triangle plane.

—– pldx : Translation of the Kimberling’s Glossary into barycentrics – vA2 —–



402 27.16. Observers (about perspectivities)

1. The metric observers, are using a generic point as S∗H in order to obtain the PHa , PHb , P
H
c

of Proposition 27.6.7. And then the locus of the perspectors is the conic through the seven
M,PHj , O

H
j (here S∗H is the other parallelogy center, not the ray source).

2. The Poulbot’s observers, are using M as ray source in order to obtain a trigone that is
tangent to each of the parabolas Pj described at Proposition 27.11.1. And then, the locus of
the perspectors is a straight line.

3. The three families of singular observers, using M as ray source in order to obtain a triangle
with one side tangent to one of the parabolas, and the opposite vertex on the related sideline
of ABC.

Conversely, assume that Ta is generic, i.e. Ta is not on BC while ATa is not tangent to Pb or
Pc. Then there are five observers that share Ta as first vertex: one metric and four Poulbot. The
B-vertices of the Poulbot triangles (say Bj ,j=1..4) are the common points of the tangents to PB

from PHa and to PA from PHb , etc. for the vertices Ck. And then the Bj and the Ck are paired
by the fact that BjCj is tangent to PA.

In what follows, we are using the asymmetric parametrization (27.5), discarding the case S =
E ∈ Lb (constant area) and assuming f + g + h − u − v − w = 0. Proceeding that way, the case
S 6= E ; S, E ∈ Lb can be treated like the other cases. Let us recall that Ω = g+h−u : h+ f − v :
f + g − w.

27.16.1 Metric observer

By itself, the theory of the LFIT is a projective one, and doesn’t necessitate to use a metric or
another. Nevertheless, we have encountered interesting properties when using a metric (circle of
similarity). In order to reuse these properties, we are now investigating what happens when the
metric is taken as a parameter.

27.16.1.1 Forcing the orthocenter

Definition 27.16.4. When an euclidian structure is given on the ABC plane, then triangle ABC
receives an orthocenter H ' 1/Sa : 1/Sb : 1/Sc. Reverting the process, i.e. saying that a given
point H ' ρ : σ : τ is the orthocenter of ABC, determines a metric structure on the ABC plane.
This process is called "forcing the orthocenter". The resulting objects will be super-scripted with
a "H", like in XH (except from the isogonal conjugacy, noted S∗H , in order to avoid a tower of
superscripts S∗H).

Proposition 27.16.5. Define OH as the complement of H, and ΓH (the forced circumcircle) as
the circumconic whose perspector is KH .

= H ∗
b
OH . Then

OH '




σ + τ

τ + ρ

ρ+ σ


 , KH '




ρ (σ + τ)

σ (τ + ρ)

τ (ρ+ σ)


 ; ΓH '




0 τ (ρ+ σ) σ (τ + ρ)

τ (ρ+ σ) 0 ρ (σ + τ)

σ (τ + ρ) ρ (σ + τ) 0




Moreover ΓH is the center of the conic, which goes through 2HA−H, etc where HA
.
= AH∩BC, etc.

Proof. Direct application of Theorem 12.7.4.

Definition 27.16.6. The forced isogonal transform is defined as the ABC-isoconjugacy that ex-
changes H and OH . In other words, (x : y : z)

∗
H ' ρ (σ + τ) yz : σ (τ + ρ) zx : τ (ρ+ σ)xy.

27.16.1.2 Forcing the isogonal center

Definition 27.16.7. Forcing the isogonal center of a LFIT is making an arbitrary choice M ' x :
y : z for the point S∗H . This amounts to force the metric to a2 : b2 : c2 ' xf : yg : zh. The values
a, b, c are not intended to be real, only different from 0.
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Proposition 27.16.8. The "fixed points" Pa, etc(see Proposition 27.6.7) are obtained from S∗ by
collineations that doesn’t depend from a choice of metric. Indeed, we have Pa = φa · S∗ where:

φa '




1 0 0

0 1− w

f

v

f

0
w

f
1− v

f




This is an affinity whose charpoly is (X − 1)
2

(X − k) where k =
u− g − h

f
. Proper point associ-

ated to k is the direction δBC , while the proper line is [0,−w, v] i.e. the line AE.

Proof. Obvious from (27.13)

Proposition 27.16.9. For any point M , the triangle φaM,φbM,φcM is an observer of the LFIT.
The locus (on t) of the perspector KH

t is a conic, that goes through M = S∗H , the three PHj and
the three OHj .

Proof. This is only reformulating some already proven properties (see Proposition 27.6.5)

Proposition 27.16.10. The O 7→ ABC para-center of a metric observer is M ' x : y : z itself.
The ABC 7→ O para-center (i.e. the ray center) is

ϕ (M) '



f (uz − wx) (uy − vx)

g (vx− uy) (vz − wy)

h (wy − vz) (wx− uz)




We have ϕ (E) = 0 : 0 : 0. Two M that share the same ϕ (M) are aligned with E, while all the
ϕ (M) belong to the circumconic γ with perspector S ∗

b
E. Moreover ϕ (M) belongs to ΓH , the forced

circumcircle. Therefore ϕ (M) is the forced gudulic center of conic γ.

Proof. Existence is Proposition 27.16.2. Computing the value is easy. The result clearly depends
on M ∧ E , hence the alignment.

27.16.2 Cevenol graphs

Definition 27.16.11. Let α′t be the point where the parallel to BH through bt cuts the parallel to
CH through ct. As time t flows, the point α′t draws a straight line cevHa . We call it the A-Cevenol
graph (related to the forced orthocenter H ' ρ : σ : τ).

Proof. Straight line cevHa is obtained as:
[
u− g − h, (u− g) ρ+ uτ

τ + ρ
,

(u− h) ρ+ uσ

ρ+ σ

]

Proposition 27.16.12. The line cevHa is nothing but the line that joins OHa and QHa , the centers
of the direct and reverse H-similarities that generalizes the correspondence CA 7−→ AB : b 7→ c.

Proof. Obvious from (27.12) and (27.16).

Proposition 27.16.13. The threeH-Cevenol graphs concur at a point Gc that belongs to the H-
conic of similarity.




(σ + τ)
(
(gv + hw − fu− gh) ρ2 + (gv − fu− gh) ρ σ + (hw − fu− gh) ρ τ − fσ τ u

)

(τ + ρ)
(
(hw + fu− gv − hf)σ2 + (hw − gv − hf)σ τ + (fu− gv − hf) ρ σ − gρ τ v

)

(ρ+ σ)
(
(fu+ gv − hw − fg) τ2 + (fu− hw − fg) τ ρ+ (gv − hw − fg) τ σ − hwρσ

)




Proof. Properties of Gc are easily computed.
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27.16.3 Poulbot observers
Definition 27.16.14. The Poulbot observer related to a ray source M ' p : q : r is the only
triangle Pj such that PbPc is together parallel to MA and tangent to PA and circ. for B and C.

Proof. There is one and only one tangent to a parabola that contains a given direction.

Proposition 27.16.15. The "Poulbot observer" observes the LFIT. The equations of this observ-
ing trigone are:

O∗ '




qr (f − v − w) r (u− g) q − gr2 (u− h) rq − hq2

r (v − f) p− r2f rp (g − w − u) (v − h) rp− hp2

q (w − f) p− q2f (w − g) qp− gp2 pq (h− u− v)




while the locus of the perspectors is the straight line:

locK '

t

ghp2 − fuqr + (h− v) gpr + (g − w)hpq

hfq2 − gvpr + (f − w)hpq + (h− u) fqr

fgr2 − hwpq + (g − u) fqr + (f − v) gpr


 (27.20)

Proof. Write that M ∧ A + λLbis tangent to PA. Since Lb itself is a tangent, we obtain a first
degree equation, leading to O∗. Then we take the adjoint and the perspectivity, for all t, is easy
to check.

Proposition 27.16.16. Assume that triangle PaPbPc is a Poulbot observer and use Pa = PHa to
force the metric, determining PHb and PHc . Then lines PbPHb and PcPHc are tangent to PA (or
degenerate !)

Proof. Note p1 : q1 : r1 the coordinates of Pa and δb
.
= tb : −1 − tb : 1 and δc

.
= 1 : tc : −1 − tc

the directions of PaPb and PaPc. Write the conditions hb and hc for lines Paδb and PaδC to be
tangent to the required parabolas. On the other hand, the parallelogy center is tb : tbtc : 1, and
the direction of the third tangent is −1 − tbtc : tbtc : 1. Draw this tangent, say ∆ and obtain the
expressions in p1, q1, r1, tb, tc of Pb, Pc. Obtaining those of PHb , P

H
c is obvious. It only remains to

write the contact condition (length ≈120000) and take the Euclidean remainder modulo h1 and
then modulo h2. This gives 0.

27.16.4 Singular observers
Definition 27.16.17. When the A-vertex of an observer O belongs to the sideline BC, we say
that O is an A-singular observer, etc (observers with two vertices on ABC sidelines are to be
discarded).

Proposition 27.16.18. Let line ∆a be tangent to PA. Note Pb the intersection of ∆a and ϑB
the second tangent to PA from B, etc for Pc. Then PaPbPc is an observer for any Pa ∈ BC.
Conversely, any degenerate observer is obtained that way.

Proof. Substitute p1 = 0 in the perspectivity equation and assume that all the four coefficients of
t are 0. Solving the system leads to triangles with two vertices on the sidelines of ABC and to:

O '




0 u u

q1 gh s h− u
r1 g − u 1/s




where s is a parameter. One can check Pb ∈ ϑB , Pc ∈ ϑC and PbPc tangent to Pa.

27.16.5 Proof of the theorem
The ray center is M ' p : q : r and the LFIT is described using the asymmetric parametrization
(27.5). The parallelogy condition is described by the existence of α, β, γ such that:

Pc − Pb = α(M −A), Pa − Pc = β(M −B), Pb − Pa = γ(M − C)
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Adding member to member, one concludes that (α, β, γ) = k (p, q, r),where k 6= 0. Thus the
observer can be written as:

O '




1− r1 − q1 1− r1 − q1 + rp k 1− r1 − q1 − qp k
q1 q1 + qr k q1 + q (p+ r) k

r1 −r (p+ q) k + r1 r1 − qr k




The perspectivity, for all t, with Tt leads to three equations, whose sizes are:

length fgh vw k pqr q1r1

t0 1155 3 2 1 4 2

t1 1141 2 1 1 4 2

t2 149 1 0 1 4 1

The elimination of q1, r1 leads to a 30837-sized compatibility condition, that splits into a number
of factors:

length fgh vw pqr k

5 3 0 2 0

45 1 1 2 1

45 1 1 2 1

61 1 1 2 1

1101 3 1 4 1

137 2 1 2 0

• factors (f, g, h, p, q) are only mirroring implicit hypotheses.

• the three small factors, being of first degree in k, are giving three values for k and lead to
the following three singular observers:

XaXbXc, YaYbYc, ZaZbZc '


0 −ur uq
uqr

p
+ hq hq hq − uq

−uqr
p
− gr ur − gr −gr







−hp −hp− prv

q
vp− hp

vr 0 −pv
fr − vr fr +

prv

q
fr







−gp (w − g) p −gp− wqp

r
(f − w) q fq fq +

wqp

r
wq −pw 0




• the biggest factor gives another value for k, and lead to the triangle UaUbUc dual of the
trigone XbXc, YcYa, ZaZb. This triangle is nothing but the Poulbot observer directed by
M.

• the last factor describes the condition fu qr + gv rp + hw pq = 0, i.e. M ∈ γ where γ is the
circumconic whose perspector is S ∗

b
E .

Proposition 27.16.19. Assume that M ∈ γ and consider the line ∆M through E whose tripole is
M÷

b
S. Then ∆M is the locus of the perspectors of Tt with the Poulbot observer UaUbUc. Moreover,

this line is the locus of all the S∗v whose associated metric observer OV admits M as ray center.
And we have

S∗v ' (u : v : w) + µ (p (gr − hq) : q (hp− fr) : r (fq − gp))

Ov '




u u u

v v v

w w w


+ µ




p (gr − hq) −p (fr + hq + hr) p (fq + gq + gr)

q (gr + hr + hp) q (hp− fr) −q (fp+ fr + gp)

−r (gq + hq + gp) r (fp+ fq + hp) r (fq − gp)




Proof. Parametrize with p : q : r ' fu : gv/s : −hw/(1+s), and substitute into (27.20) and obtain

∆M ' [vw, suw, −uv (1 + s)]

From Proposition 27.16.10, we know that the all metrics observers whose S∗H belongs to ∆M share
the same ray center M∆. The new fact is that M∆ = M (direct computation).
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27.16.6 Reciprocal
1. Four equations. We start from Pa ' p1 : q1 : r1, Pb ' p2 : q2 : r2, Pc ' p3 : q3 : r3 (not on

the sidelines) and we write that O .
= PaPbPc observes the LFIT family. The corresponding

determinant is a 3 degree polynomial in t. This gives four equations with the following
degrees:

length p1, q1, r1 p2, q2, r2 p3, q3, r3 f, g, h v, w

t0 823 1 1 1 0 2

t1 2075 1 1 1 2 2

t2 1404 1 1 1 1 1

t3 286 1 1 1 0 0

2. The t3 equation is nothing but the condition of parallelogy:

trace (O) =
p1

p1 + q1 + r1
+

q2

p2 + q2 + r2
+

r3

p3 + q3 + r3
= 1

3. Three cubics. Then we solve two of these first degree equations in p3q3r3, and substitute in
the other two. This leads to the following three cubics:

name solving length f, g, h p, q, r p1, q1, r1 p2, q2, r2

K1 t2, t3 6398 2 1 3 3

K2 t2, t3 7865 2 2 3 3

K3 t0, t3 12382 3 3 3 3

4. Excluding. Line AC is asymptote to K1 and K2, but not to K3: one occurrence of δAC must
be excluded. Moreover, point p1 (gq1 + (g − f) r1) : g (q1 + r1)

2
: fp1q1 is on K1 and K2 but

not on K3.

5. It remains 7 common points to the first two cubics. Eliminating q2, the equation in p2, r2

splits into four factors whose degrees are: 1,1,1,4 . This allows to identify:

(a) Point P1 itself is a possibility for P2.

(b) Point at infinity δB of AC belongs to the three cubics.

(c) Point PHb . Indeed, once P1 ' p1 : q1 : r1 is known, it exists exactly one metric such
that P1 = PHa . This leads to:




a2

b2

c2


 '




f (v + w − f) p1

g (v − f) q1 + gv r1

hwq1 + h (w − f) r1




Substituting into Pb, we obtain PHb . This point belongs to all three cubics.

(d) It remains a group of four points that belongs to the three cubics. Since we already
know these points, they are the Poulbot observers associated with the metric observer.

27.17 Orthojoin
orthopole of the tripolar of the isogonal conjugate. It is not clear if this concept is really useful.
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Chapter 28

Quadrilaterals

28.1 Immortal glory of our ancestors

Many things were summarized in Ripert (1901). A generation later, a founding overview was given
by Clawson (1919), with other notations.

Here, the transversal L0 is described as the tripolar of a point P '
b
p : q : r. In other words,

L0 = l4 ' [qr, rp, pq].

Here Ripert Clawson name
LA,L0 a, b, c, d l1, l2, l3, l4 lines
ABC ABC A23A13A12 vertices
A′B′C ′ A′B′C ′ A14, A24, A34 vertices
Oj ,Γj Oj Cj , Cj circumcirc

AA′, BB′, CC ′ AA′ . . . nj = Aj4Akn diagonal lines
was DA D12 = n1 ∩ n2 diagonal vertices

Gn Un X(2) of lilj lk
Na, Nb, Nc mj B1B2B3 mid diagonal points

Gj proj of F on lj
Fj 2Oj − F ∈ Γj

407



408 28.2. Lines only

refs: (#) Clawson’s v. here name here Rip Clawson’s name

1 Proposition 28.4.2 Mq Miquel center F F focal point
2 Exercice 28.4.8
3 Exercice 28.4.9
4 Proposition 28.4.2 ΓM Miquel circle O C circumcentric circle
5a Corollary 28.4.3 Sn slowness Sn = ΓM ∩ Γn \Mq

5b Corollary 28.4.4 S′n S ′n = 2Oj − Sj
6 Exercice 28.4.10 ?
7 ohlala
8 Proposition 28.2.7 δ Newton axis δ m mid-diagonal line
9 gravity center
10 Exercice 28.4.11
11 Proposition 28.4.5 pedal line p pedal line
12 diametrical circles FGj ⊥ lj
13 ohlala
14 ?
15 Proposition 28.2.9 h Steiner axis h o orthocentric line
16 Proposition 28.3.2 νa, νb, νc Newton circles
17 Proposition 28.4.6 Miquel parabola
18 Construction 28.8.8 Ej orthopole Vj

19 Proposition 28.4.7 D diagonal circle D
20 Z ′1Z

′
2Z
′
3 ???

28.2 Lines only

Definition 28.2.1. A transversal is a moving line L0 that cuts the sidelines of a fixed triangle
ABC in three other points. When the four lines L0, LA = BC, LB = CA, LC = CA are assumed
to play the same role, this situation is called a quadrilateral.

Notation 28.2.2. Descriptions are easier when using the symmetry of the situation. Therefore, we
will often use the Clawson (1919) notations, where the 4 lines are L0,L1,L2,L3 and the 6 vertices
are Ajk

.
= Lj ∩ Lk. When using indices ijkn, property {i, j, k, n} = {0, 1, 2, 3} is ever assumed.

When an 3-fold object depends on how indices are paired, as in (ij) (k0), the result will be indexed
by k (the one paired with 0).

Notation 28.2.3. Without any other notice, computations (barycentrics, etc.) are relative to tri-
angle ABC, using L0 ' tripolar (P ) '

b
[qr, rp, pq], and therefore breaking the symmetry. It will be

convenient to introduce the quantities

k3 .
= (p− q) (q − r) (r − p)

Φp
.
= a2qr − (Sb q + Sc r) p, etc

with the following properties:
∑

Φp = 0 ;
∑

qrΦp = 2SL0 · Mb · tL0

Definition 28.2.4. A quadrilateral induces four embedded triangles and we denote Tj the
triangle which is associated with the trigone "all the four lines except from Lj".

Proposition 28.2.5. The diagonals AA′, BB′, CC ′ define a trigone. It’s dual Da, Db, Dc is called
the diagonal triangle. Seen from T0, this triangle is the anticevian of P . Then (A,A′, Db, Dc) = −1
so that each diagonal is harmonically divided by the other two.

Proof. One has A′ ' 0 : q : −r and Db ' −p : q : r. And the result follows.
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Proposition 28.2.6. Let Gd, etc be the barycenter of triangle Td, etc. Then

Gd [1 : 1 : 1] ; Ga
[
−3p2 + 2 p (q + r)− qr : q (p− r) : r (p− q)

]

The barycenter G of these four points is also the barycenter of the three mj or the barycenter of
the six Ajk. And we have:

G '
[
(q − r)

(
3p2 − 2 p (q + r) + qr

)
::
]

Proof. Obvious from the coordinates.

Proposition 28.2.7. Newton axis (lowbrow version). Consider the traces of the transversal L0

on the other three lines, i.e. A′ = L0 ∩ LA, etc. Lines AA′, etc are the so-called diagonals, while
points Na

.
= (A+A′) /2, etc are the so-called mid-diagonal points. These three Nj are aligned on

what is called the Newton axis of the quadrilateral. Its barycentrics are:

δ ' cevadiv (L0,Lb) ' [rq − p (q + r) , pr − q (r + p) , pq − r (p+ q)]

Proof. One has ma ' q − r : +q : −r, etc and the result follows.

Proposition 28.2.8. Reciprocal lines. Let Rj be the reciprocal of line Lj wrt triangle Tj. They
are parallel to each other. Moreover, their equibarycenter is the Newton axis.

Proof. Remember that R0 is the line through B+C −A′, etc. The barycentrics of these lines are:

R0 ' p , q , r

RA ' −p , q − 2p , r − 2p

RB ' p− 2q , −q , r − 2q

RC ' p− 2r , q − 2r , −r
δ ' p− q − r , q − r − p , r − p− q

The first one comes from the very definition. The other three are obtained by the usual conjugacy
methods, and adjusted so that all the Rj ∧ Lb are equal (and not simply proportional), so that
computing R0 +RA +RB +RC makes sense.

Proposition 28.2.9. Steiner axis (lowbrow version). The orthocenters of the four embedded
triangles belong to a same line, called the Steiner axis of the quadrilateral. Its barycentrics are:

h
.
= Steiner_axis ' [(q − r)Sa, (r − p)Sb, (p− q)Sc]

Proof. Direct computation using

H0 '



Sb Sc

Sa Sc

Sa Sb


 ; Ha '



Sbb

2 rp+ Scc
2 pq − 4S2p2 − Sb Sc rq
Sa Φq

Sa Φr




A more stratospherical proof will be given at Section 28.4, using the fact that the polar circle of a
triangle is centered at the orthocenter (see Section 13.7).

28.3 Newton stuff

Remark 28.3.1. The centers of the Newton pencil N belong to the Newton line δ. The centers of
the Steiner pencil N⊥ belong to the Steiner line h. That is the reason why, as a cycle, h belongs
to N while, as a cycle δ belongs to N⊥. As a rule of thumb, ever consider such a line as a line of
centers and never as a radical axis (i.e. as an ordinary member of their pencil). Another method:
stop being dyslexic.
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410 28.4. Steiner stuff

Proposition 28.3.2. The conics which are tangent to the four lines Lj form a linear pencil. Their
orthoptic cycles (see Section 12.25) belong to a linear pencil of cycles, called the Newton pencil
of the quadrilateral. In the PC

(
C4
)
barycentric space of cycles, the matrix of this pencil is

Nb '




0 (p− q)Sc (p− r)Sb −pSb Sc
(q − p)Sc 0 (q − r)Sa −qSa Sc
(r − p)Sb (r − q)Sa 0 −rSa Sb
pSb Sc qSa Sc rSa Sb 0




Proof. Consider one of the other tangents to such a conic, say tripolar (u : v : w). Then we have:

C∗ '




0 pv − qu ru− pw
pv − qu 0 qw − rv
ru− pw qw − rv 0




From (12.17) we have

O '




f Sa

g Sb

hSc

f + g + h


 '




(qw − rv)Sa

(ru− pw)Sb

(pv − qu)Sc

(qw − rv) + (ru− pw) + (pv − qu)




Using tripolar (u′ : v′ : w′) leads to O′. And we can see that Nb
.'
(
O ∧

6
O′
)
doesn’t depend on

the auxiliary tangents.

Definition 28.3.3. Once again, the line of centers of the Newton pencil is the already defined
Newton axis δ (see Proposition 28.4.6 for the parabolic case). On the other hand, the radical
axis h of this pencil (h ∈ N !) is the already defined Steiner axis of the quadrilateral.

Corollary 28.3.4. The diametral circles νa, νb, νc, i.e. the circles having the [AA′] , etc as diam-
eters belong to the Newton pencil.

Proof. The set C∗a of all the lines through A or through A′ is one of the involved tangential conics.
And the diametral circle is obviously it’s orthoptic circle.

Nevertheless, a direct proof is possible, using

νa, νb, νc '




0

+q Sb

−r Sc
q − r







−pSa
0

+r Sc

r − p







+pSa

−q Sb
0

p− q


 (28.1)

Exercise 28.3.5. Determine the 4-tangent conic such that ΩC = G.

Exercise 28.3.6. Determine the locus of the ABC perspector of the conics tangent to the four
lines

28.4 Steiner stuff
Proposition 28.4.1. The four polar circles γj relative to the four embedded triangles belong to
a same pencil, called the Steiner pencil. . This pencil is orthogonal to the Newton pencil, and
contains the Newton line as radical axis. The barycentrics of these cycles are:

γ0 =




Sa

Sb

Sc

1


 ; γA = γ0 −

pSa
(p− q) (p− r) δ, etc ; δ =




p− q − r
q − r − p
r − p− q

0




In the PC
(
C4
)
barycentric space of cycles, the matrix of this pencil is
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N⊥b '




0 r − p− q p− q + r a2 (q − r) +
(
c2 − b2

)
p

∗ 0 p− q − r b2 (r − p) +
(
a2 − c2

)
q

∗ ∗ 0 c2 (p− q) +
(
b2 − a2

)
r

∗ ∗ ∗ 0




Proof. From Section 12.25, each orthoptic circle O ∈ N is orthogonal to the polar circle of any
of the embedded triangles. For γ0, see Section 13.7. For γA, make a change of algebraic basis.
Another method: compute ηA, the NPC of triangle TA and use γA = 2ηA−ΓA. Finally, the simplest
method to obtain N⊥b is the general formula Q

b
· dual

(
Nb

)
· Q

b
, but a direct computation is

also possible.

Proposition 28.4.2. The four circumcenters of the four embedded triangles Tj are on a same
circle that is called their Miquel circle. The four circumcircles have a common point, called their
Miquel point. Wrt any of the four triangles, this point is the isogonal conjugate of δ∞. Moreover,
the Miquel point belongs to the Miquel circle. The ABC-barycentrics of these objects are:

ΓM '




b2c2 (q − r) Φp

c2a2 (r − p) Φq

a2b2 (p− q) Φr

−8S2k3


 ; Mq '




a2

(q − r)
b2

(r − p)
c2

(p− q)




Proof. Using wedge, Veronese and wedge3, one obtains the ABC-barycentrics of the four circum-
circles and the four centers:

Γ0 '




0

0

0

1


 ; ΓA '




0
pc2

p− q
pb2

p− r
1




; ΓB '




qc2

q − p
0
qa2

q − r
1




; ΓC '




rb2

r − p
ra2

r − q
0

1




O0 '



a2Sa

b2Sb

c2Sc


 ; OA '




8p (q − p)S2 − a2Φr − c2Φp

b2Φr

c2Φq


 , etc

And, some wedge, Veronese and wedge3 later, the result is obtained. Other proofs are possible
(Ehrmann, 2004).

Corollary 28.4.3. Point Sn, the other intersection of Γn and ΓM , belongs to the three lines OiAjk
(remember the convention {n, i, j, k} = {0, 1, 2, 3}).

S0 '
a2

Φp
:
b2

Φq
:
c2

Φr

Proof. Compute S0 as the intersection of O1A23 and O2A13. By symmetry, S0 ∈ O3A12. Its
isogonal conjugate wrt ABC is at infinity. Conclude by checking that V er (S0) · ΓM = 0.

Corollary 28.4.4. Define S ′n = 2On − Sn (on Γn). Then S ′nAjk is tangent to Γi at Ajk. As an
example, S ′aA is tangent to Γ0, S ′aB′ is tangent to Γc = (A′B′C) at B′ and S ′aC ′ is tangent to
Γb = (A′BC ′) at C ′.

S ′0 '
a2

p (q − r) :
b2

q (r − p) :
c2

r (p− q) ; S ′a '
−a2

(
p2 + qr

)
+ 2Sb pq + 2Sc pr

q − r : pb2 : −pc2
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Proposition 28.4.5. The Miquel point has the same Simson line with respect to all four embedded
triangles Tj. This line is also called the Wallace line. or the pedal line of the quadrilateral. By
Proposition 10.2.1, the image of this line by the homothety h (Mq, 2) contains the orthocenters Hj

of the triangles Tj and is, therefore, the Steiner axis h of the quadrilateral.

Proof. A line is defined by two points, and three projections are on each Simson line.

Proposition 28.4.6. The parabola tangent to the four Lj has the Miquel point Mq as focus and
the Steiner axis has directrix. The pedal line is a tangent.

Proof. Well known property !

Proposition 28.4.7. Diagonal triangle. The diagonal triangle Tdia is the dual of the diagonal
trigone AA′, BB′, CC ′. This triangle is the anticevian wrt T0 of P = tripolar (L0) and is also the
diagonal triangle of the quadrangle of the four contact points with the inscribed parabola.

Its circumcircle D belongs to the Steiner pencil and one has

D = γ0 −
Sap

2 + Sbq
2 + Scr

2

(q + r − p) (r + p− q) (p+ q − r) δ

Proof. Straightforward computation.

Exercise 28.4.8. Clawson (1919, prop. 2) Consider the 3 circles ϑA
.
= (AA′Mq). Call ϑK;j the

point where ϑK cuts again line Lj . There are 12 of such points. Each of them characterizes a
tangent to one circle Γj at one of its eponymous points. More precisely, when M ∈ Γj , line MϑM,j

is tangent to circle Γj at M . Otherwise, line M ′ϑM ′,j is tangent to circle Γj at M ′.

Exercise 28.4.9. Clawson (1919, prop. 3) Each of the 6 circles through Aij , (Aik +Ain) /2,
(Ajk +Ajn) /2 goes through Mq.

Exercise 28.4.10. Each of the 6 points Qij = med [Aik, Ajk] ∩ med [Ain, Ajn] belongs to ΓM .
Examples: Qbc = med [Aba, Aca] ∩med [Ab0, Ac0] = med [B,C] ∩med [B′, C ′], Q0a = med [BC ′] ∩
med [B′C].

Exercise 28.4.11. The line joining (B +A′) /2 and (B′ +A) /2 cuts the line joining (B +A) /2
and (B′ +A′) /2 on the Newton axis.

28.5 Lubin cookbook for quadrilaterals
Remark 28.5.1. This section collects all the quadrilateral formulas of the Chapter. Some of them
will only be proven later. Here, they are organized according to the status given to the fourth line,
that is, transversal treatment versus symmetric treatment.

Remark 28.5.2. How to describe the transversal L0 '
b

[qr, rp, pq] when using the Lubin-1 formalism?

1. Choice 1. Using the turns κ, ν where L0 cuts Γ. These turns are visible... or not, so that
|κ| = 1 = |ν| is not assumed.

2. Choice 2. Using L0 '
z

[1,m, n], i.e. κν = n, κ + ν = −m. With the rules: conjugate(n) =

1/n ; conjugate(m) = m/n
This was the package quadlat . Not so convincing

3. Using L0 '
z

[η, t, y]. At least, this doesn’t break the informal rules about degrees ! This is
package quadlat2

28.5.1 Separate treatment of the transversal
Fact 28.5.3. Barycentrics v/s Lubin and conversely

1. L0 '
b


p =

1

ηα+ t +
y

α

, q =
1

ηβ + t +
y

β

, r =
1

ηγ + t +
y

γ



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2.





η = qr α (β − γ) + rp β (γ − α) + pq γ (α− β)

t = qr α
(
γ2 − β2

)
+ rp β

(
α2 − γ2

)
+ pq γ

(
β2 − α2

)

y = αβγ (qr (β − γ) + rp (γ − α) + pq (α− β))

Fact 28.5.4. Basic objects

1. A' α : 1 : 1/α, etc, together with A′ ' L0 ∧ La, etc

2. Newton δ '
1

t


2n2 − 2n s2 − 2ms3

−n2s1 + n s1 s2 −
(
m2 − n

)
s3 − s2s3

−2mns3 − 2n s1 s3 + 2 s2
3




3. Steiner h '
1

t


n2 − n s2 −ms3

−n2 s1 −mns2 +ms1 s3 + s2 s3

mns3 + n s1 s3 − s2
3




4. Miquel Mq '
1




s2yη + s3tη − y2

−s3 η2 + (s1η + t) y

1
−s3 η

2 + (s1η + t) y

s2yη + s3tη − y2




; Γq '
1




(
s1yη − s3 η

2 + ty
)

y

0

−s3η
(
s2yη + s3tη − y2

)

y3 + s1s3y η2 − s2
3η

3 − s2 y2η




5. Centers of circumcircles: O0 '




0

1

0


 ; Oa '

1




α y2 − αs2yη − αs3tη

y2 + α2yη − αs1yη + s3αη
2

−yt− s1yη + s3 η
2




6. Orthocenters: H0 '
1




s1 s3

s3

s2


 ; Ha '

1




αs1 y2 + (αs2 − s3) yt + α3s3 η
2

α (y − αγη) (y − αβη)

y2 + (αs2 − s3) tη + α2s2 η
2




7. Mean orthocenter Hm = 1
4

∑
Hj '

1




2s1 y3 − s2 (s1η − t) y2 + s3η
(
s2

1η − s1t− s2η
)

y − s1 s
2
3η

3

2 (y − ηβγ) (y − αγη) (y − αβη)

s2/s3 y3 − 2s2 s3η
3 + s1 (s2y − s3t) η2 +

(
s1 y2 − s2

2/s3 y2 + s2ty
)
η




Fact 28.5.5. In the PC
(
C4
)
space of cycles, the Newton pencil is described by the anti-symmetric

matrix: N = Ejk while the Steiner pencil is described by N⊥
.
= Q

z
· dual

(
N
)
· Q
z

= Sjk .




S12 −E12 −2s3

(
−s3 η

2 + (s1η + t) y
)

S13 +E24

(
s2 η

2 + t2 − yη
)

s3 − s1y (s2η − y)

S14 +E14 s1s3 t2 + y (s1s2 + s3) t + s2
1 y2 − η2s2

3

S23 +E23 (−2s2y − 2s3t) η + 2y2

S24 +E13 (−2s1s3η + 2s2y) t− 2s2s3 η
2 + 2s1 y2

S34 −E34 −s2
2η

2 − t (s1η + t) s2 − s3tη + y2




(28.2)

Proposition 28.5.6. When using the Lubin-1 representation, the orthopole transform is:

∆ = [1, m, n] 7→ E∆ '
1

1

2







s3

n
1
n

s3


+




−m
1

−m
n


+




s1

1
s2

s3


−




0

1

0





 =

1

2
(S ′ + σ∆ (O)) +

−−→
ON

Here S ′ .= s3

n
: 1 :

n

s3
is the isogonal conjugate of the direction of ∆ (and the antipode of S in the

circumcenter) while σ∆ is the symmetry wrt line ∆. Finally, N is X(5), the Euler center.

Proof. Direct computation is easy. One can prefer a change of basis applied to (28.5).
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28.5.2 From the past: another way of doing

Definition 28.5.7. The four cj were defined as:





c3
.
= α2 (γ − β) qr + β2 (α− γ) rp+ γ2 (β − α) pq

c2
.
= α (γ − β) qr + β (α− γ) rp+ γ (β − α) pq

c1
.
= (γ − β) qr + (α− γ) rp+ (β − α) pq

c0
.
= 1

α (γ − β) qr + 1
β (α− γ) rp+ 1

γ (β − α) pq

where qr : rp : pq are the barycentrics of tripolar (L0). See Theorem 3.5.5 for more details.

Fact 28.5.8. Since the ck were used ’"homogeneously", one can also use




c3 ' σ1σ3 η + σ3t

c2 ' σ3η

c1 ' y

c0 ' (σ2/σ3) y + t

Their conjugates are obtained as : ck = c3−k/σ3 while

c2
σ1

σ3
+ c0 = c3

1

σ3
+ c1

σ2

σ3
∈ iR

Lemma 28.5.9. In the Lubin frame, the Newton line δ, the Miquel point Mq and the Clawson-
Schmidt homography Ψ of the quadrilateral are :

Newton '
z

[2 c2, −s2 c1 − c3, 2 s3 c1]

Mq '
z




c2/c1

1

c1/c2


 ; Ψ




Z

T

Z


 '

z




Zc2 −Tc3
Zc1 −Tc2

1

c1Z − c0T
c2Z − c1T




28.5.3 Symmetric treatment of the four lines

Definition 28.5.10. As stated in Musslman (1937), one can revert some paradigms and start
from the Miquel parabola. In the Morley space PC

(
C3
)
, this leads to:

parabola focus (Miquel) Mq ' 0 : 1 : 0; directrix (Steiner) h ' [1,−2, 1]

C '




1 −2 −1

−2 4 −2

−1 −2 1


 ; C∗ '




0 1 2

1 0 1

2 1 0




generic point_on_C M ' − (y − i)
2

2
: 1 : − (y + i)

2

2
' 2

(τ − 1)
2 : 1 :

2τ2

(τ − 1)
2

generic_line_on_C∗ L (τ) ' [τ (τ − 1) , 2τ,−τ + 1]
where y is real –the M ordinate– and τ is a turn –the conjugate of the L (τ) clinant.

Definition 28.5.11. Symetrical objects are defined using

3 items s1 =
∑

3 τj , s2
.
=
∑

3 τjτk, s3
.
= τ1τ2τ3, π3

.
= (1− τ1) (1− τ2) (1− τ3)

Used to describe the objects where L4 is the transversal, and the other three are only
ordinary lines

4 items q1
.
=
∑

4 τj , q2
.
=
∑

6 τjτk, q3
.
=
∑

4 τjτkτm, q4
.
= τ1τ2τ3τ4

π4
.
= (1− τ1) (1− τ2) (1− τ3) (1− τ4)
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conjugates s1 7→ s2/s3, s2 7→=
s1

s3
, s3 =

1

s3
, vdm = −vdm

s2
3

, s4 =
s4

s2
3

π3 7→ −π3 ÷ τ1τ2τ3 ; π4 7→ π4 ÷ τ1τ2τ3τ4
birap When dealing with the four pedal LFIT of quadrilateral, many objects are appearing

in packs of four, most of the time being inscribed in a cycle, so their cross-ratio is real.

Fact 28.5.12. Basic objects (same order as 27.5.4)

1. vertices Ajk ' 2 : (τj − 1) (τk − 1) : 2τjτk (j 6= k is ever assumed)

2. Newton δ '
[
1,

2q4 − q3 + q1 − 2

π4
,−1

]

3. Steiner h ' [1,−2, 1], directrix of the parabola (by definition !)

4. Miquel Mq ' 0 : 1 : 0, focus of the parabola (by definition !)
Miq circle Γq ' −2q4 : 0 : −2 : π4 ; circle center Oq ' 2 : π4 : 2q4

5. Circumcircles and centers Γj , Oj
Γ4 ' 2s3 : 0 : −2 : π3 ; O4 ' 2 : π3 : −2s3 ; birap [Oj ] = birap [τj ]

6. Orthocenters Hj

H4 ' 2 (1− s1) : π3 : 2 (s2 − s3) ; birap [Hj ] = birap
[
τ2
j

]

7. Mean orthocenter Hm = 1
4

∑
Hj '

1




q2 − 2q1 + 2

π4

2q4 − 2q3 + q2




Fact 28.5.13. Newton and Steiner pencils ; other properties (See Musslman, 1937)

1. Newton N '




0 π4 2π4 4− 2q1

−π4 0 π4

∫
2− q1 + q3 − 2q4

−2π4 −π4 0 2q3 − 4q4

2q1 − 4 q1 − q3 + 2q4 − 2 4q4 − 2q3 0




Steiner N⊥ '




0 π4 q1 − q3 + 2q4 − 2 2q3 − 4q4

−π4 0 −π4 2π4

2− q1 + q3 − 2q4 π4 0 2q1 − 4

−2q3 + 4q4 −2π4 4− 2q1 0




2. Polar circles: member of SteinerPen, center Hj

cirpol4 ' 2 (s3 − s2) : −2 (s2s1 − 2s3s1 − 2s2 + 3s3) /π3 : 2 (s1 − 1) : π3

3. NPC npc4 ' π3 (2s3 − s2) : (2s3 − s2) s1 + 2s2 − 3s3 : π3 (s1 − 2) ;π2
3.

4. hj h4 ' 2 (1− s1) : π4 : 2τ4 (s3 − s2) is the orthocenter of O1O2O3. birap [hj ] = birap [τj ].

5. pt52 2− q1 : π4 : 2q4 − q3. "Clawson center", midpoint of [Oj , hj ], and of [Oq,Hervey]

6. Hervey 2 (1− q1) : π4 : 2 (q4 − q3). Perpendicular bisectors of the [OjHj ] are crossing here.
This is also the center of the circle through the hj (ρ2 = 4q4/π

2
4)

7. yptR 2 + q2 − 2q1 : π4 : 2q4 + q2 − 2q3. "Morley center". Perpendiculars from (Oj +Hj) /2
to Lj are crossing there. Isobarycenter of the Hj. On the Steiner line.

8. Slowness centers S4 ' 2 (1 + τ4) : π3 : −2 (1 + τ4) s3 ÷ τ4.
Each of them on Γj while all of them on Γq ; birap [Sj ] = birap

[
τ2
j

]
.

9. Orthopoles ( on the Steiner line) E4 ' τ3
4 + (s1 − 2) τ2

4 + (s2 + 2− 2s1) τ4 − s3 : τ4π4 :
−τ3

4 + (s1 − 2s2 + 2s3) τ2
4 + (s2 − 2s3) τ4 + s3

And we have birap [Ej ] = birap
[
τ2
j

]
× (τ1τ3 + τ2τ4)

2 ÷ (τ1τ4 + τ2τ3)
2.
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416 28.6. Simson lines (using barycentrics)

10. vanRees π4

(
Z2Z − ZZ2

)
+ 4

(
Z − q4 Z

)
T2 + (2q1 − 2q3 + 4q4 − 4)ZZ T

Exercise 28.5.14. Prove the following assertions – source= Musslman (1937)

1. Line Lj is the locus of 2÷ (τ1 − 1) (τ̂ − 1) where τ̂ is a turn.

2. Circle Γ4 is the locus of 2 (1− τ̂)÷ π3 = 2 (1− τ̂) (1− τ4)÷ π4

3. Circle Γq is the locus of 2 (1− τ̂)÷ π4

28.6 Simson lines (using barycentrics)

Proposition 28.6.1. Simson line. The pedal vertices of a point U are collinear if and only if
the point is on the circumcircle or on the line at infinity. When it exists, this line is called the
Simson line of U . When U ∈ Lb, Simson (U) = Lb. When U belongs to the circumcircle of ABC,
the barycentrics of it’s Simson line are:

Ut
.' a2 :

b2

t
:
−c2
1 + t

7→ Simson (U) '
[

1

a2t+ Sc
,
−t

Sc t+ b2
,

1 + t

Sb t− Sa

]
(28.3)

Proof. Collinearity condition is the same as for the Steiner line. Everything else is either the result
of straightforward computations, or obtained from the Steiner line equation (10.2), right multiplied
by h (U, 2) of (7.29).

Proposition 28.6.2. When U is on the circumcircle, the two intersections of Simson (U) and
the nine points circle γ are (i) the midpoint M of [U,X4] (ii) the intersection L of Simson (U)
and Simson (U ′) where U ′ is the Γ-antipode of U .

Proof. By definition, Simson (U) is obtained from Steiner (U) by the point-transformation h (U, 1/2).
Since X4 ∈ Steiner (U), pointM is on Simson (U). Using now h (X4, 1/2), U ∈ Γ becomesM ∈ γ
and (i) is proved. Therefore midpoint M ′ of U ′X4 is the γ-antipode of M , while LM ⊥ LM ′.

Proposition 28.6.3. When ∆ ' [p, q, r] is a Simson line, then we have:

p
(
q2 + r2

)
Sa + q

(
p2 + r2

)
Sb + r

(
p2 + q2

)
Sc − 2Sω pqr = 0 (28.4)

In other words, tripole (∆) belongs to the Simson cubic K010.

Proof. See Section 22.5.3.

28.7 The Steiner deltoid (using Lubin-1)

Proposition 28.7.1. When τ is a turn, its Simson line wrt triangle ABC is

∆ (τ) ' [2 τ2, s3 + τ s2 − τ2s1 − τ3,−2 s3 τ ]

The envelope of all these lines is the so-called Steiner’s deltoid while the contact point of ∆ (τ)

with its envelope is δ (τ) = 1
2 s1 + τ +

s3

2

1

τ2
. This deltoid is a bicircular quartic, whose implicit

equation (using coordinates Z = 1
2 s1 + z, etc) is:

16Z2Z2 − 32

(
1

s3
Z3 + s3Z

3
)
T + 72ZZ T2 − 27T4 = 0

Proof. The contact point comes from δ (τ) = ∆ (τ) ∧ ∂
∂τ∆ (τ).

Proposition 28.7.2. This deltoid is the roulette created by a point on the circumference of a circle
ρ = 1/2 as it rolls without slipping along the inside of the fixed circle ρ = 3/2 centered at X(5),
the Euler’s point. Cups are at ρ = 3/2, innermost points are at ρ = 1/2.
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Proof. Let Θ be the fixed circle and Ex its center, while θ is the moving circle and X its center.
The locus of contact is point Y = (3X − Ex) /2. Let YΘ and Yθthe material points of both circles
that are at place Y at the moment of contact. As ever, speed of YΘ is zero. But, by composition
of movements, speed of Yθ vanishes at the moment of contact, proving the "without slipping"
assertion.

Proposition 28.7.3. Any line ∆ (τ) tangent to the deltoid contains the following points:

δτ
.
=

1

2
s1 + τ +

1

2

s3

τ2
; mτ , nτ

.
=

1

2
s1 ±

√
s3

τ
+

1

2
τ ; hτ

.
=

1

2
s1 +

1

2
τ ; kτ

.
=

1

2
s1 −

1

2

s3

τ2

Points δ, δ,m,n are the four points in common with the curve (δ is the contact point, m,n are the
so called extremities of the tangent). Point hτ , kτare the two points in common with the inscribed
circle. Moreover hτ is both the middle of [mτ , nτ ] and of [δτ , kτ ].

Proof. Obvious computations.

Proposition 28.7.4. Use index j = 9 to save the original triangle as A9B9C9. Consider four
turns τj (j = 0, a, b, c) and the corresponding Simson lines ∆j. Note A · · ·C ′ their six intersections
and use

q1 =
∑

4

τa, q2 =
∑

6

τaτb, q3 =
∑

4

τaτbτc, q4 = τaτbτcτ0

Let Oj , Hj , Ej be the circumcenters, orthocenters and NPC of triangles Tj. One has:

Oj =
1

2
(s1 + q1)− 1

2
τj ; Hj =

1

2
s1 + s3 (q1 − τj) τj ÷ (2q4)

while the perpendicular bisector of [OjHj ] and the perpendicular from Ej = (Oj +Hj) /2 to ∆j

are:

medj '
[
2 τ2

j − 2 τjq1 + 2 q2, −τ2
j s1 + (q1 s1 − s2) τj + s2 q1 − s1 q2, 2 τjs3 − 2 s3 q1

]

perpj ' [4 q4 τj , − (s3 q2 + 2 s1 q4) τj − (q2 + 2 s2) q4, 4 s3 q4]

Proof. Use the cookbook, or write down the six intersections A = 1
2

(
s1 + τb + τc +

s3

τbτc

)
, etc

and compute directly.

Theorem 28.7.5. Morley (1903) The four lines medj concur at E9 = 1
2 s1, i.e. at the center of

the deltoid, while the four lines perpj concur at Hm = 1
2 s1 + s3 q2/ (4q4) = 1

4

∑
Hj, on the Steiner

axis.

Proof. As ever, a theorem is a key result, not necessarily something difficult to prove. Indeed,
computations are easy !

Construction 28.7.6. Construct the deltoid tangent to four given lines. Obtain the Oj and Hj

and then Ex, Hm from the Morley theorem. Let ω be the center of the Miquel circle and ρ its
radius. Consider the points hj

.
= Ex + ω −Oj. For each j, hj belongs to Lj, while the four hj are

on the circle (Ex, ρ). Define the turns τj = (ω −Oj) /ρ = (hj − Ex) /ρ and compute the qk. Then

α 7→ δα
.
= Ex + 2 ρα+ ψ

ρ

α2
where ψ =

1

ρ

−−−−→
ExHm

2 q4

q2

is the parametric equation of the deltoid tangent to the four lines. The contact points are obtained
at α = τj

Proof. One obtains the following values

W =

√
(mn+ n s1 − s3)

(
ms3 + n s2 − n2

)

n2s3

ρ =
i
√
nn s3W

n3 − n2s2 + n s1 s3 − s2
3

; ψ = i
m s3 + n s2 − n2

√
nW
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Remark 28.7.7. Points hj are also the orthocenters of the four triangles OiOkOn, with affixes:

h0 =
(ns1 − s3)

(
ms3 − n2 + ns2

)

(αγ − n) (αβ − n) (β γ − n)
; ha =

n (s1 − α)
(
ms3 − n2 + ns2

)

(αγ − n) (αβ − n) (β γ − n)

Following Proposition 28.7.3, we can also obtain kj as the second intersection of Ljwith the circle,
and then the δj as 2hj − kj .

28.8 Orthopole and pedal LFIT

Remark 28.8.1. In this section, line L0 = ∆ is perceived as a special line, while the sidelines
La = BC, etc are perceived as ordinary lines. In a later section, we will discuss how the four LFIT
behave with respect to each other.

28.8.1 Trigone and transversal

Definition 28.8.2. The orthopole of a line L0 = ∆ 6= Lb, is the Neuberg center of the LFIT
provided by the pedal triangles of its points. Some orthopoles are given in Table 1.1.

Figure 28.1: Point E is the orthopole of line A′B′C ′

Proposition 28.8.3. Given a pedal LFIT, the slowness center S lies on the circumcircle, while
the orthopole E lies on the Simson line of 2O−S. More precisely, synchronized coordinates of the
three centers associated to this LFIT are given by:

S (∆) =
−1

2S
× isogon

(
Mb · t∆

)

E (∆) =
t(

∆ · Mb

)
∗
b

t(
∆ · N

)

Ω (∆) =
t(

∆ · Mb

)
∗
b

t
(∆) (28.5)

f + g + h =
(

∆ · Mb .
t∆
)

the usual norm
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where isogon is understood as isogon (f : g : h) = a2gh : b2hf : c2fg while matrix Mb is defined

by (7.20) and matrix N is defined by :.

N = 1− 2

Lb ·O
O · Lb =

1

4S2




SbSc −a2Sa −a2Sa

−b2Sb ScSa −b2Sb
−c2Sc −c2Sc SaSb


 (28.6)

The corresponding complex coordinates will be given at Subsection 28.10.1.

Proof. We have the normalized coordinates

M t
a '
b

0 :
+q

q − r +
(
a2 qr − Sbpq − Scrp

) θ
a2

:
−r
q − r −

(
a2 qr − Sbpq − Scrp

) θ
a2

A straightforward computation leads to the Neuberg coefficients where f : g : h can be identified
as the isogonal conjugate of orthodir (∆). The E formula follows.

Remark 28.8.4. The normalization of N is comes from N · N = 14 , while the normalization of

Mb comes from (7.22). Therefore, they cannot be changed. Since a precise definition of matrices

Mb , N is required to provide synchronized values for S and E , the common factor 32S3 which
appears when computing the quantities of formula (28.5) cannot be avoided. Afterwards, one can
only proceed to a global simplification, in order to provide better looking formula.

Remark 28.8.5. Quantity f + g + h = u+ v + w = ρ+ σ + τ vanishes for isotropic lines, i.e. lines
trough an umbilic. Aren’t they special lines ?

Exercise 28.8.6. Let α, β, γ be the orthogonal projections of A,B,C onto ∆. Then S and E are,
respectively, the pole and the elop of the homography A 7→ α, etc.

Exercise 28.8.7. Consider the Euler line, using for example P1=X(2) and P2=X(4). Obtain
S = 110, E = Ω = 125, ω = 5972. Intersections with circumcircle: X(1113), X(1114). Check the
three cevians:

pedal 3 4 20
cevian 2 4 69

Construction 28.8.8. Construct the orthopole E of ∆ wrt triangle ABC. Project A,B,C onto ∆
and obtain Qa, Qb, Qc. Draw ∆a by Qa orthogonally to BC, etc. Then the three lines ∆a,∆b,∆c

concur at E. This property was at the origin of the name "orthopole".

Proof. Straightforward computation.

28.8.2 Using the flat pedal triangles

It has been already stated that a LFIT is best characterized by its degenerate triangles. And we
know that a pedal triangle is flat if and only if its center is on the circumcircle. Thus we introduce
points P3, P4 that are the intersections (visible or not) of line ∆ = P0P1 and the circumcircle Γ.

Proposition 28.8.9. Let T3 = (a3b3c3) , T4 = (a4b4c4) be the pedal (flat) triangles of P3, P4. Then
E is the intersection of the Simson lines T3 and T4, while ω = (S + E) /2 is the intersection of the
Newton lines N3 and N4 where N3 goes through the aligned points a3 +A ; b3 +B ; c3 + C, etc.

Proof. General property of the degenerate triangles of an LFIT, see Section 27.10.

Proposition 28.8.10. As already said, point S lies on the circumcircle. Its Simson line is parallel
to ∆. Point S′ = 2O−S is the isogonal conjugate of the direction of ∆. The Simson line of S′ is
perpendicular to ∆ and, moreover, this line goes through E, the orthopole of ∆.

Proof. Everything is obvious, except the last point. And every computation is straightforward.
One can also follow the Steiner movie, given at Corollary 10.2.4.
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Proposition 28.8.11. The equicenter (orthopole) E lies on the reciprocal to the image of ∆ in
the circumcenter O.

Proof. Matrix N takes that image. And then, point pu : qv : rw belongs to line [1/u, 1/v, 1/w]

when p+ q + r = 1. And, here, Mb · t∆ ∈ Lb.

Exercise 28.8.12. Vertex-Miquel circles. In the pedal-LFIT relative to ∆, the circles (A, bt, ct)
are the circles having [A,Mt] as diameter. Therefore the QA, etc points of Proposition 27.6.1
are the projection of the vertices on ∆. The Vertex-Miquel point is simply Mt... whose locus
is nothing than line (QA, QB , QC) = ∆, whose direction is the orthopoint of S∗. This doesn’t
contradict the former assumption S∗ ∈ cycle (QA, QB , QC) since this cycle is Lb ∪ ∆ ! And S∗
remains the perspector of triangles ABC and QAQBQC . See Figure 28.1.

Exercise 28.8.13. The fixed points (as characterized by concurrent corresponding lines) are Pa =
dir (AH) ∈ Lz, etc, and Pa, E , Oa, O′a are aligned as ever.

Proposition 28.8.14. The area of the P -pedal triangle is
S

4

(
1− |OP |

2

R2

)
.

Proof. This is obviously true for P = O. Otherwise, draw the line ∆
.
= OP : It cuts Γ at P3, P4.

Then we parametrize the line ∆ by 2P = (1 + t)P3 + (1− t)P4, so that |t| = |OP | /R. The family
of all the pedal triangles Tt of the P ∈ ∆ forms a LFIT since formula (9.2) is of first degree in
t. As a result, area (Tt) is a t-polynomial of degree 2, while our formula is already true for three
points (pedal triangles T±1are flat).

28.9 Sister Marie Cordia Karl
Proposition 28.9.1. Let L = [u, v, w] and ∆ = [p, q, r] be two lines. The condition for the
orthopole of L belongs to ∆ can be written as

∆ · H ·V (L) = 0 where H '



2 a2 SbSc 2 b2 SbSc 2 c2 SbSc b2S2
b + c2S2

c −Sc
(
a2c2 + S2

b

)
−Sb

(
a2b2 + S2

c

)

2 a2 ScSa 2 b2 ScSa 2 c2 ScSa −Sc
(
b2c2 + S2

a

)
a2S2

a + c2S2
c −Sa

(
a2b2 + S2

c

)

2 a2 SaSb 2 b2 SaSb 2 c2 Sa Sb −Sb
(
b2c2 + S2

a

)
−Sa

(
a2c2 + S2

b

)
a2S2

a + b2S2
b




and V ([u, v, w]) ' t[
u2, v2, w2, 2vw, 2wu, 2uv

]

Proof. Obvious from (28.5).

Definition 28.9.2. Map L 7→ V (L) is the full-Veronese map (whose signature is: row(3) 7→column(6),
we are building conics here, not circles). For a given ∆, equation ∆ · H ·V (L) = 0 is the equation
of a tangential conic. We call it the associated parabola of ∆ and note it: H (∆), while we call H
the Sister Mary Cordia Karl’s matrix, due to Karl, E. (Sister Mary Cordia), 1932.

Proposition 28.9.3. Conic H (∆)is a parabola. Its point at infinity is H∞
.
= Mb · t∆, while its

focus Hω is the isogonal conjugate of H∞. Moreover, its directrix (polar of the focus) is homothetic
to ∆ from X(4) (ratio=2).

Proof. Compute H (∆) · tLb and recognize the orthodir Mb · t∆, proving the contact. Then write
that the isotropic lines of the focus belongs to the conic, and obtain the given result. For the last
point, you find it by computing the directrix, obtaining a linear formula, extracting its matrix and
recognizing homot (H, 2)... but you prove it simpler by H (∆) · t(∆ · h (H, 1/2)) ' Hω, using (7.29)
(and 1/2, we are acting on lines, not on points).

Example 28.9.4. Taking the sidelines and Lb as examples, one obtains:

H (BC) (u, v, w) =
(
−a2u+ Sc v + Sb w

) (
SbSc u− b2Sb v − c2Sc w

)

H (CA) (u, v, w) =
(
−b2v + Sa w + Sc u

) (
ScSa v − c2Sc w − a2Sa u

)

H (AC) (u, v, w) =
(
−c2w + Sb u+ Sa v

) (
SaSb w − a2Sa u− b2Sb v

)

H (Lb) (u, v, w) '
(
u (Sb − 2 iS) + v (Sa + 2 iS)− c2w

) (
u (Sb + 2 iS) + v (Sa − 2 iS)− c2w

)
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the last one being the conic of isotropic lines.

Figure 28.2: Revisiting the Sister Mary Cordia Karl’s correspondence

Proposition 28.9.5. The H (∆) conic is degenerate if and only if ∆ is the Simson line of some
point M (on Γ, the circumcircle). In such a case, the pivots are M and its isogonal conjugate (the
orthodir of ∆, on Lb).
Proof. Compute the determinant and obtain (28.4). Since this equation is invariant by isotomic
conjugacy, this tells us that tripolar (∆) is on K010, so that ∆ is a Simson line. Conversely,
computing the conic from parametrization (28.3) of Simson (Mt), leads to Mt and M∗t ∈ Lb.

Remark 28.9.6. When points are opposite on Γ, Simson lines are orthogonal and also reciprocate
(characteristic property).

Proposition 28.9.7. Three Simson lines (visible or not) are going through any generic point. By
the orthopole of a known line L, we have the Simson line orthogonal to L, given by:

∆1 '
[

q − r
Sb r + Sc q − a2p

,
r − p

Sa r + Sc p− qb2
,

p− q
Sa q + Sb p− c2r

]
; t = −p− r

q − r
and the Simson lines of the points of Γ ∩ L.
Proof. Degree of equation is 3. For an orthopole, the equation splits. The first degree factor leads
to ∆1. The other part is exactly the condition for Mt ∈ L.

Construction 28.9.8. Construct the three Simson lines through a given point P . Let Q = A+B+
C− 2P . Draw the hyperbola HA having [A,Q] as diameter and I0Ia, IbIc as asymptotic directions.
The three hyperbolas HA, HB , HC have four points in common, Q itself and three others Rj, which
are on the circumcircle. Then the Simson lines of the R′j

.
= 2O−Rj are going through P . Moreover

the three Rj are visible when P is inside of the Steiner deltoid, while only one is visible when P is
outside of the deltoid.

Proof. Let P = z : t : ζ be a generic point in the plane, and M a point on the unit circle (turn τ).
Then P belongs to the Simson line of 2O −M when

Θ
.
=
(
2 τ2

)
z +

(
τ3 − τ2s1 − τs2 + s3

)
t+ (2 τs3) ζ = 0

On the other hand, asymptotes δ1, δ2 ofHA are the parallels to the bisectors of (AB,AC) drawn
through (A+Q) /2. Let Qa = 2A+B+C− 2P and δ1 = Qa ∧ (+ω : 0 : 1), δ2 = Qa ∧ (−ω : 0 : 1).
Then

HA '
(
tδ1 · δ2 + tδ2 · δ1

)
−K

(
tLz · Lz

)

where ω2 = α2βγ while K is determined by A ∈ HA. This results into:

HA '




−2 t −2 z + (s1 + α) t 0

−2 z + (s1 + α) t 4α z + 2
(
β γ − α2

)
t− 4 s3 ζ − (s3 + αs2) t+ 2αs3 ζ

0 − (s3 + αs2) t+ 2αs3 ζ 2α s3 t




And we can check that M ∈ HA is either τ = α or Θ = 0. As a result, the three hyperbolas
belong to the same pencil. This can be checked by

∑
(β − γ)HA = 0. The deltoid appears when

one computes the discriminant of Θ.
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Figure 28.3: Construct the 3 Simson lines through a given point

28.10 The four pedal LFIT of a quadrilateral

Proposition 28.10.1. Consider the four LFIT created by the pedal triangles of points on line Lj
wrt the trigone Tj of the other three lines. The four slowness centers Sj are on the common Miquel
circle, while the four Neuberg centers Ej are on the Steiner axis.

Proof. We already know that S0 ∈ Miquel and E0 ∈ Steiner. The obvious symmetry of the
configuration proves the rest. One can also use the fact that S0 is the perspector of ABC and
OaObOc.

Corollary 28.10.2. Point Sj is therefore the second intersection of the Miquel circle (O0, Oa, Ob, Oc)
and the circumscribed circle (Oj) , while Ej is the intersection of the Simson line of 2Oj −Sj with
the line (H0, Ha, Hb, Hc).

Fact 28.10.3. The coordinates of the four slowness/Neuberg centers are

S0 '
1




−s3

n
1
−n
s3


 ; Sa '

1




(
m (s3 + nα) + n

(
α2 + s2

))
α

− (αγ − n) (αβ − n)(
m (s3 + nα) + n

(
α2 + s2

))
1
α




E0 '
1




s3

(
s1yη + s3 η

2 − yt
)

2s3yη

y2 + s2yη − s3tη




Ea '
1




2s1s3 y2 + s3

(
α2 + s2

)
yt + s3s1

(
3α2 − 2αs1 + s2

)
yη − s2

3

(
α2 − 2αs1 + s2

)
η2

2s3 y2 + 2s3α (−s1 + α) yη + 2s2
3αη

2

(
s2 − α2

)
y2 + s2

(
3α2 − 2αs1 + s2

)
yη + s3

(
α2 + s2

)
tη + 2αs2s3 η

2




Proposition 28.10.4. When point M moves along the line L0, the orthopole E0 has a constant
power ρ2 with respect to the pedal circle of M wrt T0 = ABC. The value of ρ2 is ((Gulasekharam,
1941))
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ρ2 =


L0 ·



a2Sa

b2Sb

c2Sc








L0 ·



−a2

Sc

Sb








L0 ·




Sc

−b2
Sa








L0 ·




Sb

Sa

−c2







16S4
(
L0 · Mb · tL0

)2 (28.7)

Moreover ρ2 is (-2) times the algebraic product of dist (O0,L0) and dist (E0,L0).
Rem: first column is X(3), the other 3 are the directions of the altitudes.

Proof. Start from triangle T (t) , then compute its circumcircle and apply the definition of ρ2. It
happens that all the t cancel. Moreover, we have the formulas:

dist (L0, O0) =
√

2S

(
Sa a

2qr + b2Sb rp+ c2Sc pq
)

8S2

√
L0 · Mb · tL0

dist (L0, E0) =
√

2S

∏(
a2 qr − Sc rp− Sb pq

)

8S3

(√
L0 · Mb · tL0

)3

And we can check the homogeneous degrees: in a: (4 + 2 + 2 + 2)− 8 = 2 (since ρ is a length); in
p: 8− 8 (as required since L0 is projectively defined).

Remark 28.10.5. This result can be restated using some trigonometry, leading to (Goormaghtigh,
1926, p. 81)

dist (L0, E0) = 2R0 cos (L0,La) cos (L0,Lb) cos (L0,Lc)
Corollary 28.10.6. Concerning the other LFIT, when pointM moves along line LA, the orthopole
EA has a constant power ρ2

A with respect to the pedal circle of M wrt trigone TA.

ρ2
A =

a2 (pq + rp− qr) Sa + Sb b
2pq + Sc c

2pr − 8S2p2

4aS (p− r) (p− q) × SbSc

(
−a2qr + Sc pr + Sb pq

)

2a3 S (p− r) (p− q)
Proof. Simply using the product of distances. One can also recompute everything, and/or using
an algebraic change of parameters, followed by a collineation.

Proposition 28.10.7 (Lemoyne’s theorem). When pointM moves along Lj, its pedal circumcircle
wrt triangle Tj remains orthogonal to a fixed circle centered at Ej and whose radius is

√
ρ2
j . Let us

call it the j-orthopedal circle, noted Gj. This circle is virtual when Oj , Ej are on the same side
of Lj.
Proof. Immediate from the invariance of ρ2

j . See also Thebault, 1946.

Proposition 28.10.8. The four orthopedal circles belong to the Steiner pencil (generated by the
polar circles).

Proof. When T0, the generic point on L0, comes at C ′, we have C ′Ta ⊥ TaC and C ′Tb ⊥ TbC.
Thus Ta, Tb are on the circle with diameter [TcC] and the circle (TaTbTc) is the circle with diameter
[C ′C]. This occurs also with the other two circles defining the Newton pencil. One can also use
(28.2).

28.10.1 Lubin coordinates
Fact 28.10.9. Specific to the pedal LFIT (ABC,L0)

1. Synchronized barycentrics for (S0, E0)



f

g

h

u

v

w




'
b

2




γ − β
α− γ
β − α


 ∗

b




αβ + n

βγ + n

γα+ n


 ∗

b




γα+ n

αβ + n

βγ + n







γ − β
α− γ
β − α


 ∗

b




βγ + n

γα+ n

αβ + n


 ∗

b




αm− n− α2

β m− n− β2

γ m− n− γ2



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2. Similarities σa '
1




αβ + κ ν

α γ + κ ν

(
α2 + ακ+ αν − κ ν

)
(γ − β)

2 (αγ + κ ν)
0

0 1 0

0

(
α2 − ακ− αν − κ ν

)
(γ − β)

2αβ (αγ + κ ν)

γ (αβ + κ ν)

β (αγ + κ ν)




3. Centers are the projections of ABC on L0. Qa '
1




(
α2 + α (κ+ ν)− κ ν

)
κ ν

2ακ ν

−α2 + α (κ+ ν) + κ ν




4. Power of E0 wrt each of the pedal circles related to some Mt ∈ L0:

ρ2
0 =

−m
(
n3 + n2s2 + n s1 s3 + s2

3

)

4n2s3

=
−m (β γ + n) (γ α+ n) (αβ + n)

4n2s3
R2

28.10.2 The so-called paralogic triangles
Definition 28.10.10. Line ∆jk is defined as the line through Lj ∩ Lk and perpendicular to Lk.
Point Qjk is defined as ∆jm ∩∆jn. For a given j, there are 3 Qjk defining a triangle Wj , called
paralogic in Johnson, 1929, p. 258. Obviously, the 3 ∆jk are the sidelines of the W∗j trigon.

Proposition 28.10.11. We have the following properties:

1. Triangles Tj and Wj are parallelogic. Orthocenter Hj sees Tj along the sidelines of Wj , while
the orthocenter H ′j of Wj sees Wj along the sidelines of Tj . Moreover

(
Hj +H ′j

)
/2 belongs

to Lj (Sondat’s theorem, see Goormaghtigh, 1946a).

2. Triangles Tj and Wj are directly similar, with center Mq and angle +90◦.

3. Triangles Tj and Wj are in perspective from Sj (the slowness center).

4. Circle γj circumscribed to Wj , is centered at Dj = 2Ω − Oj (the circum-antipode of Oj),
goes through Mq and Sj and is orthogonal to Γj .

5. Point Qjk belongs to Γk.

Proof. Due to symmetry, only the case j = 0 is to be proven. Some properties are self evident.
Existence of a similitude comes from the orthogonality of the respective sidelines of Tj and Wj .
Parallelogy is also evident. The other properties are straightforward computations.

28.11 Van Rees cubic
Definition 28.11.1. As defined in (Van Rees, 1829), the Van Rees cubic vRK associated to
points M1N2M3N4 is the locus of the points P such that

(PM1, PM3) + (PN2, PN4) = 0 (28.8)
(PM1, PN4) + (PN2, PM3) = 0

Remark 28.11.2. Spoiler: more than often, such a cubic will be seen from a triangle ABC and
described as 

nkcub,#F '



a

b

c


 , U '



p

q

r


 , X̂ '



q − r
r − p
p− q







where U is the ABC tripole of a line A′B′C ′, while vertices are renamed into M1
.
= A,N2

.
=

A′,M3
.
= B,N4

.
= B′ .

Remark 28.11.3. This cubic also appears as the locus of the focuses of a LLLL pencil of conics.
See Section 12.27.
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28.11.1 Ordered quadrangle (complex coordinates)

Definition 28.11.4. An ordered quadrangle is an (ordered) list of four points Mj . Then use
M5 = M1M4∩M2M3, M6 = M1M3∩M2M4, and note Ψ the correspondence 1↔ 2, 3↔ 4, 5↔ 6.
By definition, the diagonals of the associated quadrilateral are M1M2, M3M4 and M5M6 (while
the four remaining lines form a quadrilateral).

Thus M1M3M5, is a triangle –and a circle– (odd number of odd indices, like 146, 236, 245),
while M2M4M6 is a line (odd number of even ones, like 235, 145, 136).

Proposition 28.11.5. The Miquel point and the direction of the Newton line of the induced
quadrilateral are :

Mq '




t1 t2 z3 z4 − t3 t4 z1 z2

t1 t2 t3 z4 + t1 t2 t4 z3 − t1 t3 t4 z2 − t2 t3 t4 z1

1
t1 t2 ζ3 ζ4 − t3 t4 ζ1 ζ2

t1 t2 t3 ζ4 + t1 t2 t4 ζ3 − t1 t3 t4 ζ2 − t2 t3 t4 ζ1


 '




z3 z4 − z1 z2

z3 + z4 − z1 − z2

1
ζ3 ζ4 − ζ1 ζ2

ζ3 + ζ4 − ζ1 − ζ2


 (28.9)

∆∞ '




t1 t2 t3 z4 + t1 t2 t4 z3 − t1 t3 t4 z2 − t2 t3 t4 z1

0

t1 t2 t3 ζ4 + t1 t2 t4 ζ3 − t1 t3 t4 ζ2 − t2 t3 t4 ζ1


 '




z3 + z4 − z1 − z2

0

ζ3 + ζ4 − ζ1 − ζ2




Proof. ∆∞ is obvious, while computing circles M1M3M5,M1M4M6, etc leads directly to Mq.

Proposition 28.11.6. The isoptic definition (28.8) given by Van Rees (1829) leads to the not
so huge equation (length = 574)

vRK1
.
= ZZ ×

(
(ζ1 + ζ2 − ζ3 − ζ4)Z− (z1 + z2 − z3 − z4)Z

)

+
(

(ζ3 ζ4 − ζ1 ζ2)Z2 + ((z1 + z2) (ζ3 + ζ4)− (z3 + z4) (ζ1 + ζ2))Z Z + (z1 z2 − z3 z4)Z2
)
T (28.10)

+ ((z3 + z4) ζ1 ζ2 − (z1 + z2) ζ3 ζ4)ZT2 + (z3 z4 (ζ1 + ζ2)− z1 z2 (ζ3 + ζ4))ZT2

+ (z1 z2 ζ3 ζ4 − ζ1 ζ2 z3 z4)T3 = 0

One can check that this vanRees cubic goes through the six pointsMj. Points at infinity are both
umbilics and ∆∞. Moreover, point Mq is a singular focus (and belongs to the curve). Additionally,
the cubic goes through the six Uj, where Uj = MjMq ∩ Ψ (Mj) ∆∞ (remember: Ψ (Mj) is the
formal notation of M ′j).

Proof. Direct substitutions are easy... even when a direct examination is equally easy !

Proposition 28.11.7. Let Mjbe four generic points in the plane, and define

s1 =
(z1 + z2) ζ3 ζ4 − (z3 + z4) ζ1 ζ2

ζ3 ζ4 − ζ1 ζ2
s2 =

z1 z2 (ζ3 + ζ4)− z3 z4 (ζ1 + ζ2)

ζ3 + ζ4 − ζ1 − ζ2
(28.11)

s3 =
z1 z2 − z3 z4

(ζ3 + ζ4)− (ζ1 + ζ2)
; s′3 =

(z3 + z4)− (z1 + z2)

ζ1 ζ2 − ζ3 ζ4

Then s3 = s′3 if and only if Mq belongs to the unit circle Γ. And then it exist a triangle α, β, γ
inscribed in Γ such that the three pairs (M2j+1,M2j+2) are isogonal wrt αβγ. Moreover, the Van
Rees cubic vRK (M1 · · ·M4) goes also through the points α, β, γ.

Proof. A simple elimination gives the condition and the values of the sj . This doesn’t imply that all
these three points are visible points. Concerning the last assertion, convert nK (α)nK (β)nK (γ)
using the symmetric functions sj , substitute (28.11) and check the appearance of the cube of the
condition Mq ∈ Γ.
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Figure 28.4: Starting from the four M_j.

28.11.2 Cartesian centered equation

Proposition 28.11.8. In a cartesian frame X : Y : T where Mq ' 0 : 0 : 1 and ∆∞ ' 1 : 0 : 0,
the equation of the cubic can be written as:

vRKc (X,Y,T)
.
=
(
X2 + Y 2

)
(Y −AT) + T2XB + T2Y C = 0

where A,B,C ∈ R and a parametrization is:

x =
B +

√
B2 + 4y (A− y)C − 4y2 (A− y)

2

2 (A− y)

A first proof. Substitute Z : T : Z by Z +
T (z1 z2 − z4 z3 )

−z3 − z4 + z1 + z2
: T : Z +

T (zz1 zz2 − zz3 zz4 )

−zz3 − zz4 + zz1 + zz2
and obtain

Z Z2c210 + Z2
Zc120 + TZZc111 + T2Zc012 + T2Zc102

Substitute Z = κ (X + iY ) , etc and identify. This gives

κ2 = −c120

c210
, A =

−ic111κ

2c120
, B =

i (c210c012 − c102c120)

2c120c210
, C =

c102c120 + c210c012

2c120c210

And then, one can check that A,B,C are real.

Another proof. Substitute the values ofMq,∆∞ into 28.9 and solve for z2, ζ2, z4, ζ4. Substitute the
result, together with Z = X + iY , Z = X − iY into 28.10, and obtain the required vRKc (X,Y,T)
formula with real values for coefficients A,B,C.

Theorem 28.11.9 (Van Rees, 1829). When one of these points is on the cubic, so are the other
three:

M
.
=




X

Y

T


 ; d (M)

.
=




BT2

AT− Y −X
Y

T


 ; f (M) '




X (AT− Y )

Y
AT− Y

T


 ; (df) (M) = (fd) (M)
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Moreover, we have the equivalence:

(df)




x1

y1

1


 =




x2

y2

1


 ∈ nK ⇐⇒





y1 + y2 = A

x1y2 + x2y1 = B

y1y2 − x1x2 = C

(28.12)

Proof. Direct substitution. These formulas were derived by Van Rees (1829) from the fact that
y1 + y2 = A leads to the same radical W . One can check that eliminating x2, y2 in 28.12 leads
precisely to M1 ∈ nK.

Definition 28.11.10. Transformation df is called intrinsic conjugacy. Points M, d (M) are
aligned with ∆∞ while points M, f (M) are aligned with Mq. In other words: start from M ,
towards ∆∞ and cut the curve at d (M). Then start towards Mq and cut the curve at df (M). But
the other road is fine either.

Theorem 28.11.11. Intrinsic conjugates are isogonal conjugates wrt any triangle inscribed in the
vanRees cubic.

Proof. This is the right place to state this theorem, while the proof will come later, at Re-
mark 28.11.15.

Proposition 28.11.12. When P,Q are intrinsic conjugates, then

1. Points P , Q have the same tangential

2. |MqP | × |MqQ| =
√
B2 + C2

3. The bisectors of (MqP,MqQ) have constant slopes wrt the x-axis, namely
(
C ±

√
B2 + C2

)
/B.

Proof. Direct computation is easy from (28.12).

Proposition 28.11.13. When assuming P ∈ vRK, the defining property (28.8) , i.e. the equiva-
lent assertions:

(PM1, PM3) + (PN2, PN4) = 0

(PM1, PN4) + (PN2, PM3) = 0

hold for any pairs of conjugates M1 ←→ N2 and M3 ←→ N4.

Proof. Write down tan (PM1, PM3) + tan (PN2, PN4) using P ' X : Y : T, Mj ' xj : yj and
simplify using the Van Rees method (28.12) i.e. y1 + y2 = A, etc. This gives the required equation
times x1 + x2 − x3 − x4.

Theorem 28.11.14. When three points are on a vanRees cubic, their conjugates are colinear if
and only if the given points are cocyclic with the Miquel point.

Proof. First part. Use Nj ' xj : yj : 1 (j = 2, 4, 6) and cut the curve by the line uX + vY + w.
Then X = − (vY + w) /u while

−
(
u2 + v2

)
Y 3 +

(
Au2 +Av2 − 2vw

)
Y 2 +

(
2Avw +Buv − C u2 − w2

)
Y +Aw2 +Buw = 0

Substitute X in (28.12) and obtain

Ψ (Nj) ' v (A− yj)− w + (Aw +Bu) /yj : , u (A− yj) : u

Write down the cocyclicity condition, substitute the yj symmetric functions obtained from the Y
equation, and obtain 0 as asserted.

Second part. Use Mj ' xj : yj : 1 (j = 1, 3, 5) and cut the curve by the circle uX + vY +(
X2 + Y 2

)
w. Then X = Y (Av + Cw − vY )÷ (u (Y −A)−Bw) while

−
(
u2 + v2

)
Y 3 +

(
2
(
u2 + v2

)
A+ 2w (Bu+ Cv)

)
Y 2 + osotros = 0
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Substitute X in (28.12) and obtain

Ψ (Mj) '



vy3
j + (−2Av − Cw) y2

j +
(
A2v +ACw −Bu

)
yj +ABu+B2w

yj (uA+Bw − uyj) (−yj +A)

yj (uA+Bw − uyj)




Write down the colinearity condition, substitute the yj symmetric functions obtained from the Y
equation, and obtain 0 as asserted.
Remark: don’t be surprised by the appearance of vdM (yj) !

Remark 28.11.15. This finalizes the proof of the theorem about isogonal conjugacy.

28.11.3 Barycentric version

Proposition 28.11.16. Consider the quadrilateral Lj where L0 = A′B′C ′ ' [qr, rp, pq]. Let δ, F
be resulting Newton line and focus, i.e.

δ ' [−p+ q + r, etc] ; F ∗ ' δ∞ ' (q − r) ::

Use M1 = A,M2 = A′, M3 = B,M4 = B′, M5 = C ′,M6 = C (mind the order !) and apply the
construction of the former section. Define

UA
.
= (A ∧ F ) ∧ (A′ ∧ δ∞) , etc ; U ′A

.
= (A′ ∧ F ) ∧ (A ∧ δ∞) , etc.

Then the 12 points A,A′, etc, UA, U
′
A, etc are on the vRK whose barycentric equation wrt ABC is:

vRKb =


nkcub,#F '



a

b

c


 , U '



p

q

r


 , X̂ '



q − r
r − p
p− q







'
∑

px
(
b2z2 + c2y2

)
+ 2

(∑
Sa p

)
xyz

Moreover, points F, δ∞ = F ∗ and both umbilics are also on this curve.

Proof. Direct computation.

Exercise 28.11.17. Prove that A, etc, A′, etc,ΩxΩy, F are con-cubic with any tenth point in the
plane (see Proposition 22.1.4) and are not sufficient to define the vRK. Prove also that, when A
is restricted to the cubic, then A∗ = A′.

Exercise 28.11.18. Consider two pairs M1 = P,M2 = P ∗,M3 = Q,M4 = Q∗ of isogonal conju-
gates wrt triangle ABC. Define M5 = M1M4 ∩M2M3, M6 = M1M3 ∩M2M4. Then

1. Miquel: circles C135, C146, C236, C245 concur at some F ;

2. Newton: midpoints m12 = (M1 +M2) /2, etc are aligned on some δ ;

3. F, δ∞ are isogonal conjugates, and so are M5,M6 ;

4. LetKaKbKc be the re-intersections of the sidelines with the cubic vRK throughA,B,C, F,Mj .
The Kj belong to the ABC tripolar of U , the root of the cubic, while their reciprocals
La = B + C −Ka, etc are aligned on the line h (G,−2) (δ).

Exercise 28.11.19. Let ABC be the reference triangle, Ra the foot of the A-altitude and A′ =
2O − A. Compute the locus of points P such that (PB,PRa) = (PA′, PC) (1) wrt ABC (and
obtain a pK cubic) ; (2) wrt A′BC (and obtain a nK cubic) ; (3) compare the pivot and the root.
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Figure 28.5: van Rees cubic defined by two isogonal pairsSection 12.27

28.12 Exercises
Exercise 28.12.1. Use the Lubin-1 representation, and write the transversal as the t-locus of

ikτ + tτ : 1 :
−ik
τ

+
t

τ

where k is real and τ is a turn. Recompute everything, especially dist (∆, E)... that only depends
on τ (see Goormaghtigh, 1939).

Exercise 28.12.2. Point O0 is the perspector of SA,SB ,SC with ABC.

Exercise 28.12.3. Let P0, Pa, Pb, Pc be the projections ofMq on the sidelines. There is a similarity
Pa 7→ A′, Pb 7→ B′, Pc 7→ C ′. Elaborate further.

Exercise 28.12.4. Let be Q0, Qa, Qb, Qc the reflections of Mq about the sidelines.
The similarity σ defined by Qa 7→ A′, Qb 7→ B′ is centered at Mq, maps the Steiner line onto L0,
sends Qc to C ′, the circle ABC onto the Miquel circle and A 7→ SA, etc.

Exercise 28.12.5. When points U1 and U2 are antipodes on the circumcircle, the orthopole of
Simson (U1) is the intersection of Simson (U2) with Steiner (U1).

Exercise 28.12.6. When a line goes through the circumcenter, its orthopole belongs to the nine
points circle.

Exercise 28.12.7. When a line goes through a fixed point P , its orthopole belongs to the conic
centered at (P +H) /2 and passing through the projections of P on the sidelines.

Proposition 28.12.8. When X moves on a line through the centroid X2, then orthopole of
trilipo (X) moves on a line through the orthocenter X4. For example :

X on line orthopole (trilipo (X)) on line
L(2,1) L(4,9)
L(2,3) L(4,6)
L(2,6) L(4,3)=L(2,3)
L(2,7) L(1,4)

Proof. SupposeX is notX2 and does not lie on a sideline of triangleABC. Then, using barycentrics,
we have :

orthopole(trilipo(X)) ∧X4 =

Sa (y − z) : Sb (z − x) : Sc (x− z) = (Sa : Sb : Sc) ∗
b

(X ∧X2)
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28.13 Diagonal triangle
Notation 28.13.1. In this section, A,B,C is the diagonal triangle of the quadrilateral, with its
a, b, c, Sa, Sb, Sc. The four lines are

L0,La,Lb,Lc '
[
ρ σ τ

]
,
[
−ρ σ τ

]
,
[
ρ −σ τ

]
,
[
ρ σ −τ

]

while the six vertices are noted by:

A′′, B′′, C ′′, A′, B′, C ′ '




0

τ

σ


 ,



τ

0

ρ


 ,



σ

ρ

0


 ,




0

−τ
σ


 ,



−τ
0

ρ


 ,



−σ
ρ

0




so that relation A′, B′, C ′ ∈ L0 remains valid.

Fact 28.13.2. Basic objects

1. Newton '
d

[
ρ2, σ2, τ2

]
, while (A′′ +A′) /2 ' 0 : −τ2 : σ2

2. Newton pencil Bx = b2
(
ρ2 − σ2

)
+ c2

(
τ2 − ρ2

)
; Ex = a2

(
a2ρ2 − σ2b2 − τ2c2

)

3. Steiner pencil Bx = ρ2 ; Ex = 0

4. Steiner line
[
b2
(
ρ2 − σ2

)
+ c2

(
τ2 − ρ2

)
, etc

]

5. Miquel Mq '
d




(
σ2 − τ2

) (
b2
(
ρ2 − σ2

)
+ c2

(
τ2 − ρ2

))
(
τ2 − ρ2

) (
c2
(
σ2 − τ2

)
+ a2

(
ρ2 − σ2

))
(
ρ2 − σ2

) (
a2
(
τ2 − ρ2

)
+ b2

(
σ2 − τ2

))


 ; length(ΓM ) ≈ 4000

6. Centers of circumcircles: length ≈ 1500

7. Orthocenters:
H0 '

d

(
(σ − τ)

(
b2 − c2

)
+ (2 ρ+ σ + τ) a2

) ((
ρ2 + σ τ

)
a2 − (σ + τ)

(
σ b2 + τ c2

))
, etc

8. vanRees cubic:
∑

3 x
(
−ρ2x2 + σ2y2 + τ2z2

)
Sa + xyz

∑
3 ρ

2a2 = 0

28.14 Inscribed (ordered) quadrangle
Definition 28.14.1. An inscribed ordered quadrangle is an (ordered) list of four points A,B,C,D
inscribed in a same circle. By definition, the diagonals of the associated quadrilateral are AB,CD
(and EF ) where E = AD ∩ BC and F = AC ∩ BD. Triangles are T0 = ACE, Ta = ADF ,
Tc = BCF , Te = BDE.

Proposition 28.14.2. Properties of the general quadrangle obviously apply. As a result:

1. M1
.
= (A+B) /2, M3 = (C +D) /2, M5 = (E + F ) /2 are aligned along the Newton axis

δ '
[

1

α
+

1

β
− 1

γ
− 1

δ
,

(α+ β) (γ + δ) (αβ − γ δ)
2αβ γ δ

, −α− β + γ + δ

]

2. Triangles Tj are defining 4 circles Cj which concur at the Miquel point:

Mq '
αβ − γ δ

α+ β − γ − δ : 1 :
αβ − γ δ

α β δ + αβ γ − δ α γ − γ δ β

3. Orthocenters H0 =z
α2δ + αβ δ − γ δ β − γ2β

α δ − β γ are aligned on the Steiner axis:

h '
[

1

γ
+

1

δ
− 1

α
− 1

β
,

(αγ − β δ) (α δ − β γ)

γ αβ δ
, −α− β + γ + δ

]
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4. The four centers of the Cj , the Miquel point Mq and the quadrilateral center O are on the
same Miquel circle

O0 '
z

αγ (δ − β)

α δ − β γ ; CMq '




αβ δ + β γ α− δ α γ − γ δ β
0

−αγ δ β (α+ β − γ − δ)
(α δ − β γ) (αγ − δ β)




5. The vRK cubic, defined by (PA,PC) + (PB,PD) = 0 goes through the 6 vertices, δ∞, Mq,
Ωx, Ωy and can be geogebra-drawn using some of the six Va = AMq ∩Bδ∞. Caveat: Ve, Vf
are nothing but vertices F,E.

6. When restricted to vRK, the Clawson-Schmidt involution Ψ is nothing but the isogonal
conjugacy wrt any of the four imbedded triangles

Proposition 28.14.3. When E,F are at finite distance, Mq ∈ EF characterizes the inscribed
ABCD quadrilaterals.

Proof. Use general formulas where A,A′, B,B′, C, C ′ = E,F,A,B,C,D .

Proposition 28.14.4. The following properties are specific to the inscribed quadrangles:

1. Mq belongs to diagonal EF

2. Let Qj = δ ∩ Lj . Then assuming jk = 0e, ac then
∣∣∣∣
(δ − γ) (α− β) (α+ β − γ − δ)

2 (α δ − β γ) (αγ − δ β)

∣∣∣∣
2

= MeMa ·MeMc = MeQj ·MeQk

28.15 Bicentric quadrilaterals
Definition 28.15.1. A quadrilateral (Josefsson, 2023) is said bicentric when it has an inscribed
circle (I) and a circumscribed circle (O) as well.

Notation 28.15.2. In what follows, (I) is the unit circle (thus I ' 0 : 1 : 0). Sidelines L1 · · · L4 are
the tangents at the contact points E1 · · ·E4, parametrized by α, β, γ, δ. Everything else is indiced

using the Clawson scheme. The vertices are Ajk = Lj∧Lk. For example: A12 =
2αβ

α+ β
: 1 :

2

α+ β
.

Fact 28.15.3. Since cocyclicity of A12, A23, A34, A41 is assumed, we have αγ + βδ = 0. And then

O'




2βγα
(
αβ − αγ + β2 + βγ

)

(α− β) (α+ β) (β + γ) (β − γ)

2β
(
αβ + αγ − β2 + βγ

)


 ; ∆

.
= OI '

t


αβ + αγ − β2 + βγ

0

−αγ
(
αβ − αγ + β2 + βγ

)




The rotation operator is rotq : α 7→ β 7→ γ 7→ −αγ/β.
Fact 28.15.4. Diagonals. The contact diagonals E1E3, E2E4 are orthogonal at

P '



αγ
(
αβ − αγ + β2 + βγ

)

2αβγ

αβ + αγ − β2 + βγ


 ; P ∈ ∆

The main diagonals A12A34, A23A41 are also going through P , while the "third diagonal" is common
to both quadrilaterals and goes through A13 and A24 together with E5 = E1E4 ∩ E2E3 and E6 =
E1E2 ∩ E3E4.

Fact 28.15.5. Miquel circles. Trigone T ∗1 is "all lines except L1". We have: kir1
.
= (A23, A34, A42) '

2β
(
αβ + αγ − β2

)
: −4αβ2γ : 2βγα

(
β2 + βγ − αγ

)
: (α− β) (β + γ)

(
αγ − β2

)

Therefore their common point is Mq '
2αβγ

αβ + αγ − β2 + βγ
: 1 :

2β

αβ − αγ + β2 + βγ
∈ ∆
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Fact 28.15.6. AEF circles. These circles are defined by: cir12 = (E1, A12, E2). Their centers
are O12 ' αβ : α+ β : 1.

As a result, we have T .
= O12O34 ∧O23O41 '



αγ
(
αβ − αγ + β2 + βγ

)

4αβγ

αβ + αγ − β2 + βγ


 ∈ ∆

Fact 28.15.7. PEF Lemoines. L12 is the Lemoine point of triangle PE1E2. We have:

L12 = |PE1|2E2 + |PE2|2E1 + |E1E2|2 P '



−αβ

(
αβ2 − 4αβγ + 3αγ2 − β3 − 4β2γ − 3γ2β

)

8αγ β2

3αβ2 + 4αβγ + αγ2 − 3β3 + 4β2γ − γ2β




These four points are on a same circle centered at ΩL
.
=




3αγ
(
αβ + γβ − αγ + β2

)

8αβγ

3
(
αβ + γβ + αγ − β2

)


 ∈ ∆

Fact 28.15.8. PAB circles. These circles are defined by cir2 = (P,A12, A23). Their centers are:

O2 '



β6 + 2β3 (α+ γ)

(
β2 + αγ

)
+
(
α2 + 4αγ + γ2

)
β4 + 5α2γ2β2

2β5 + 2β2 (α+ γ)
(
β2 + αγ

)
+ 4αβ3γ + 2α2β γ2

5β4 + 2β (α+ γ)
(
β2 + αγ

)
+
(
α2 + 4αγ + γ2

)
β2 + α2γ2




As a result, we have S .
= O1O3∧O2O4 '



αγ
(
αβ + αγ − β2 + βγ

) (
αβ − αγ + β2 + βγ

)2

4αγβ (β − γ) (β + γ) (α+ β) (α− β)(
αβ + αγ − β2 + βγ

)2 (
αβ − αγ + β2 + βγ

)


 ∈ ∆

Fact 28.15.9. PAB incenters. Let I2 be the incenter of triangle A12PA23. Thus I2 is one of
the points Z verifying:

tan (PA12, PZ) + tan (PA23, PZ) = 0

This amongs to the product of two lines, one of them going through E2. Writing Z as kP + E2

and solving
tan (A12P,A12Z) + tan (A12A23, A12Z) = 0

leads to k2 =
(
β4 −

(
α2 − 4αγ + γ2

)
β2 + α2γ2

)
÷ 4αβ2γ. This quantity is invariant by rotq.

Therefore, the Ij are P -homothetic with the Ej and the center of the (Ij) circle is on ∆. The other
value of k leads to the excenters Jk ∈ PEj.
Fact 28.15.10. Shadows. The shadow A′jk of vertex Ajk ∈ Γ is the other intersection between
(O) and line IAjk. Then A′12A

′
34 and A′23A

′
41 are orthogonal diameters of (O). Moreover,

W1
.
= (A12 ∧A′23) ∧ (A′34 ∧A41) ∈ ∆, etc

Fact 28.15.11. Points Gj. They are the intersections of each line Lj
.
= AjkA

′
lm with the next

one. So that:
G2 ' 4αβγ : (α+ β) (β + γ) : 4β, etc

The four lines EjGj are concurrent at

Q
.
=




4βγα
(
αβ − αγ + β2 + βγ

)

α2β2 − α2γ2 + 8αβ2γ − β4 + β2γ2

4β
(
αβ + αγ − β2 + βγ

)


 ∈ ∆

while the Gj are concyclic around V .
= 2O − I ∈ ∆.

Fact 28.15.12. Pencil. Cycles (P ; 0), (I), (O) and (Mq; 0) belong to the same pencil. None of
the other circles.

Fact 28.15.13. vanRees cubic goes through the 6 vertices, and the six V12 = A12Mq ∩ A34δ
∞.

Caveat: V13 = A24, V24 = A13. Moreover the cubic goes through δ∞, Mq, Ωx, Ωy. And I is is the
node of the cubic.
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28.16 Rigby points

Proposition 28.16.1. Given three distinct points Uj on the circumcircle, the following conditions
are equivalent:

1. The three Simson lines are concurrent in a point K.

2. Simson line of Uj is orthogonal with line Uj+1Uj−1

3. Two sidelines of U1U2U3 have the same orthopole K (and therefore the third too).

In such a case, the three points Uj are said to form a "Rigby triangle" , and K is their Rigby
result. When using Lubin-1 representation, the condition is τ1τ2τ3 = αβγ, and
z (K) = 1

2 (α+ β + γ + τ1 + τ2 + τ3).

Proof. All three properties lead to the same condition, and the same value of z (K).

Exercise 28.16.2. Prove thatK is the midpoint of [α+ β + γ ; τ1 + τ2 + τ3] and conclude (Hons-
berger, 1995, p. 136).

Remark 28.16.3. In ETC, the third of a Rigby triangle is called the Simson-Rigby point of the
first two, and noted U3 = SR (U1, U2), while their common result is called the Rigby-Simson
point and noted K = RS (U1, U2) .

Corollary 28.16.4. When using barycentrics, and U1 ' p : q : r, U2 ' u : v : w ∈ Γ, we have:

SR (P,U) = isog ((P ∧ U) ∧ Lb)

=
a2

(q + r)u− (v + w) p
:

b2

(p+ r) v − (u+ w) q
:

c2

(p+ q)w − (u+ v) r
(28.13)

One can also use the Peter Moses (2004/10) expression :

U3 ' qw − rv
rwb2 − qvc2 :

ru− pw
c2up− a2wr

:
pv − uq

a2qv − b2pu

Example 28.16.5. Centers X(2677) to X(2770) are examples of SR and RS points. In the following
table, the first three of a quadruple is a (sorted) triangle U1U2U3 and its Rigby point.

74 98 691 ? 99 1380 1380 ? 102 104 2222 ?

74 99 842 ? 99 2378 2379 ? 103 104 1308 ?

74 110 477 3258 100 101 1308 ? 104 840 1292 ?

74 1113 1114 125 100 104 953 3259 104 1381 1382 11

74 1294 1304 ? 100 105 840 ? 107 110 1304 ?

98 110 842 2682 100 109 2222 ? 110 110 476 1553

98 843 1296 ? 100 110 1290 ? 110 112 935 1554

98 1379 1380 115 100 1381 1381 ? 110 827 1287 ?

99 110 691 ? 100 1382 1382 ? 110 930 1291 ?

99 111 843 ? 101 109 929 1521 110 1113 1113 ?

99 1379 1379 ? 102 103 929 ? 110 1114 1114 ?

Proposition 28.16.6. Third point. For each point U on the circumcircle, it exists exactly one
other point U2 such that SR (U,U3) = U . This point is the isogonal conjugate of the orthopoint of
line U ,X(3), belongs to line UU∗and is given by :

third (U) =
a2

u2 (bw + cv) (bw − cv)
:

b2

v2 (cu+ aw) (cu− aw)
:

c2

w2 (av + bu) (av − bu)

=
a2

(b2 − c2)u+ (v − w) a2
:

b2

(c2 − a2) v + (w − u) b2
:

c2

(a2 − b2)w + (u− v) c2
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Proof. The limit of line U1U2 is orthogonal to line U ,X(3). Everything else follows. Remark:
relation SR (U, third (U)) = U is not granted for a random point U in the triangle plane. But this
relation obviously holds when restricting U to the circumcircle.

Proposition 28.16.7. Simson-Moses point. If points U1, U2 are on the circumcircle then, us-
ing isoconjugacy wrt pole P = X6 (isogonal conjugacy), the intersection of lines U1 (U2)

∗
P and

U2 (U1)
∗
P is point SR (U1, U2). When another isoconjugacy is used, the intersection remains on the

circumcircle. Its barycentrics are :

S∗P (U1, U2) =
−w1v2 + v1w2

qw1w2 − rv1v2
:
−w1u2 + u1w2

pw1w2 − ru1u2
:
−v1u2 + u1v2

pv1v2 − qu1u2

Proof. The barycentrics are straightforward, while parametrization (7.17) leads to the other prop-
erties.

Definition 28.16.8. In ETC, the Simson-Moses point is computed using P = X2 (isotomic
conjugacy) in S∗P (U1, U2), and noted SM (U1, U2). Centers X(2855) to X(2868) are examples of
Simson-Moses points.
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Morley: LyX macros, to be moved
atop

ptv: space; negative space
negative thick space
quad;quad
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Chapter 30

Curves connecting the Morley
centers

30.1 Introduction

30.1.1 The Morley theorem

In it’s simplest version, the Morley theorem can be described as in (Coxeter, 1961, p. 24): given a
triangle ABC, we use a protractor to divide each angle in three equal parts. Then the intersections
of the adjacent angle trisectors form an equilateral triangle (Figure 30.1a).

But a trisector is only defined up to a 120◦ rotation, and a line like Ab (Figure 30.1b) is
yet another trisector... and triangle abc is equilateral again. Such a triangle is perspective with
the reference triangle (i.e. lines Aa, Bb, Cc are concurring to the so-called perspector of first
kind P Figure 30.1b), and is also in perspective with the excentral triangle, defining the so-called
perspector of second kind Q.

In this context, it is interesting to obtain an exhaustive list of all the objects that shares
a given set of properties. Concerning the Morley triangles, one can find many statements in
the literature, that involves one, three (Kimberling, 1998-2024), five (Wikipedia: Gene Ward
Smith, 2004), eighteen (Connes, 1998) and even extending them to 27 –Taylor and Marr (1913)
or, differently, Viricel and Bouteloup (1993).

This variety of opinions was created by Frank Morley himself. The property he discovered
circa 1899 was, in his opinion, a "simple" byproduct of more deeper geometrical results (Tecosky-
Feldman, 1996). So that Morley waited a long period before publishing a separate, formal statement
of his theorem : 1924 in a Japanese journal, 1929 in the US. Nevertheless, the topic became quickly
a broad research topic. In 1978, Oakley and Baker published a list of 150 references on the subject.
As a result of this large activity, quite each author on the topic has coined his own version of the
theorem !

In order not to depart from this well-established tradition, let us state "our own version" of
the Morley theorem.

Theorem 0 (Former results, Morley). Given a reference triangle ABC, it exists exactly 18 trian-
gles T that verify

1. each vertex of T is the intersection of two trisectors of triangle ABC;

2. triangle T is equilateral;

3. triangle T is perspective with ABC and also with the in-excentral triangles.

30.1.2 Aim of this chapter

Our aim is to investigate the Morley configuration in the context of the complex projective geom-
etry, with a special focus towards curves that contains various classes of points. We will collect
and connect some already known results, but also present and prove the following new results :
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A

B

C

(a) T000, the flagship triangle

A

B

C

a
b

c

M

P

(b) T111, another triangle

Figure 30.1: How many are the Morley triangles ?

Theorem 1 (New result). It exists a circular quintic that contains the 18 Morley centers and the
3 Morley directions of axes (see Figure 30.7). This quintic LM contains also the points inventoried
as X(549) and X(3534) in the Kimberling (1998-2024). When the vertices belong to the unit circle,
the equation of LM only depends from the symmetric functions of zA, etc.

Theorem 2 (New result). It exists a circular quintic that contains the 27 secondary perspectors
of the Morley configuration. This quintic LQ contains also the vertices ABC, the inexcenters, the
centroid of IaIbIc and the Bevan points. When zA = α2, etc belong to the unit circle, the equation
of LQ only depends from the symmetric functions of α, β, γ.

Theorem 3 (New result). Suppose that the isocubic pivoting around point U contains an equilateral
triangle centered at U . Then: (1) the triangle is homothetic to the Morley triangles; (2) the locus
of U is an 8th degree algebraic curve LU whose equation depends only from the symmetric functions
of zA, etc. The curve contains 39 identified points, the Morley centers among them.

30.1.3 Organization of this chapter

The starting point of this chapter is Douillet (2010), that was written to explain why Morley
centers must be "skew" in some manner, since they are 18 and not 9. In order to allow a more
systematic use of computing tools, it has been required to develop a precise and formal frame.

In Section 30.2, we describe the theoretical tools we are using: the Lubin parameterizations and
the complex projective geometry. They will be presented in a way that facilitates their utilization
inside a formal computing tool like SAGE. It should be noticed that writing zA = α2, etc is of
standard practice when dealing with the in-excenters. Writing zA = α3, etc was the choice of
Lubin (1955) in his founding paper about the Morley configuration.

Using zA = α6, etc. in order to cover both the 18 Morley centers and the 4 in-excenters appears
to be new.

In Section 30.3, we describe the basic objects of the Morley configuration: trisectors, intersec-
tions and centers. The Taylor and Marr indices are presented. They are a triple k = kakbkc of
integers modulo 3. It will be seen that

∑
k
.
= (ka + kb + kc mod 3) determines three families.∑

k ≡ 0 characterize the nine direct Morley triangles and
∑

k ≡ 2 the nine retrograde ones. The
strange case

∑
k ≡ 1 will be studied either (these triangles are no more equilateral).

In Section 30.4 we will present the perspectors of these triangles with the reference triangle
(first kind, Pk) and the in-excentral triangles (second kind, Qk). Results about the algebraic curve
that contains the Pk are recalled.

In Section 30.5 we prove our Theorem 1 about the circular curve that contains the 18 Morley
centers, and our Theorem 2 about the 27 perspectors Q.

The next Section 30.6 examines two problematics. Firstly, we recall some properties of the
pivotal isocubics, and then investigate the intersections of two Morley cubics (having a Morley
center as pivot). Secondly, we examine the equilateral triangles inscribed in such cubics and prove
our Theorem 3.
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At the end of the chapter, we examine what remains of all these properties when the base
triangle degenerates into an equilateral one.

The chapter ends by a summary section. The bibliography is integrated into the bibliography
of the whole book.

30.2 Some methods
Some of the definitions and properties given here have been stated in detail in previous chapters,
but they are stated again here to facilitate an independent access to this chapter.

30.2.1 The complex projective triangle plane
An efficient way to compute the various geometrical objects we are dealing with is to describe the
points M by a projective column

M '




Z

T

Z


 ∈ PC

(
C3
)

equivalently written inline using the "colon notation" : M ' Z : T : Z. In the simplest situations,
we have either :

• T = 1 and Z = x+iy, Z = x−iy (x, y real). In this case,M is an ordinary point, z .
= Z/T is

the ordinary complex number describing M when the plane is seen from above and ζ .
= Z/T

is the ordinary complex number describing M when the plane is seen from below.

• T = 0 and Z = x+ iy, Z = x− iy (x, y real). In this case, M is at infinity and represents the
direction of a line, while the complex number ω2 = Z/Z belongs to the unit circle. The fact
that ω is only known by its square is a remainder of the fact angles between straight lines
are characterized by their tangent and are measured up to πZ and not up to 2πZ.

30.2.2 Unavoidable constants and base field
Using complex numbers in plane geometry requires a number i to describe how a quarter turn
appears when seen from above the plane. Dividing the angles in three introduces a number φ such
that 1 + φ + φ2 = 0 and therefore introducing ω12 = φ/i is unavoidable. Perceiving ω12 as the
number usually noted exp (2iπ/12) is a facility, but is not required, as soon as we use i = ω3

12,
φ = ω4

12 and ω4
12 − ω2

12 + 1 = 0.
Beside these unavoidable constants, some parameters α, β, γ are required to describe the base

triangle ABC. When explaining the rest of the Morley configuration to a formal computing tool
like SAGE, we define K .

= Q (ω12) (α, β, γ) and use the following definitions:

Definition 30.2.1. A point P is a column z : t : ζ that belongs to K3 and is dealt projectively
(when a common factor is detected, the expression is simplified), while a n-curve C is an ho-
mogenous polynomial of degree n, i.e. C ∈ Kn

[
Z,T,Z

]
. And, as usual P ∈ C means: substitute

Z→ z, etc in C, then simplify and obtain 0.

Definition 30.2.2. A line is defined as a first degree polynomial. The line that goes through
z1 : t1 : ζ1 and z2 : t2 : ζ2 is given by

det

∣∣∣∣∣∣∣

z1 z2 Z

t1 t2 T

ζ1 ζ2 Z

∣∣∣∣∣∣∣
(30.1)

and the row of its coefficients can be computed using the ∧ operator (the so-called wedge of the
columns).

Definition 30.2.3. In the same vein, cocyclicity is described by :

4

det
j=1

([zj zj , zj , zj , 1]) = 0 (30.2)
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30.2.3 Morley method to avoid conjugacy
But the full power of complex geometry is obtained by forgetting any notion of conjugacy. Indeed,
this transformation is not a rational operation, while everything goes better when remaining within
a fractional field.

The Morley solution to this dilemna is to restrain all of the parameters to the real line, where
z = z, or to the unit circle, where z = 1/z. And now, we have to consider Z as another independent
variable, called "big zeta" and having the same status as the variable Z, called "big Z".

This leads to a larger class of points, the former being only "the visible points". Among the
useful "non-visible" objects are the umbilics of the plane, defined as :

Ωx ' 1 : 0 : 0, Ωy ' 0 : 0 : 1

They are also called the circular points at infinity since... they are at infinity (T = 0) and are used
to characterize the circles as the conics that goes through both Ωx and Ωy.

30.2.4 The Lubin parameterization
The method proposed by Lubin in his founding paper (1955) uses rational fractions C (α, β, γ) to
describe geometric objects. To obtain the representation of a barycentric point P '

bar
u : v : w, we

need to transcribe its barycentrics u, v, w that are functions of sidelengths a, b, c and angles A,B,C
into rational functions of the algebraic basis α, β, γ. In the simplest case where these barycentrics
only depends on a2, b2, c2, the choice zA = α, etc is clearly sufficient. For example, this happens
with the gravity center, or the orthocenter.

For more complicated situations, a more powerful choice must be done, leading to the Lubin
parameterizations :

zA = αn, zB = βn, zC = γn

When dealing with the in-excenters, n must be even. The choice n = 2 is of common practice (and
is equivalent with the Poncelet parameterization, using the incircle as unit circle).

When dividing angles in three, n must be a multiple of 3. Indeed, this was the choice of Lubin
in his founding paper (1955). In order to study together the both sort of objects, the choice n = 6
is unavoidable. Since the literature uses mostly n = 2 and n = 3, some confusions can occur when
comparing the provided formulas. Surely, a careful reader could recognize which is which by taking
into account the total degree of homogeneity. But a better practice is to use symbols

L1' , L2' , L3'
and

L6' to emphasize which Lubin representation used in a given projective formula, or L1
= , etc for

exact formulas (e.g. affixes).
In some occasions, it is more efficient to use A, B, C as basis, instead of Ωx, O, Ωy, i.e. to use

the so called barycentric coordinates. This will be specified using the 'bar notation.

30.2.5 Lubin parameterization using sixth degree formulas
As said in Subsection 30.1.3, the founding paper written Lubin in 1955 was taking into account

the Morley centers, but not the inexcenters. In the present context, arcs like
︷︸︸︷
BC on the unit circle

must be divided into six equal parts instead of three, and the Lubin theorem must be modified
accordingly.

Proposition 30.2.4. (Lubin, 1955) Given z0 = α6, z6 = β6, z12 = γ6 on the unit circle, the
numbers α, β, γ are determined up to a power of ψ .

= exp (2iπ/6) = ω2
12, and so are the affixes

zj , 0 ≤ j ≤ 17 (see Figure 30.2). There is no choice for α, β, γ that gives symmetric expressions
for the 18 affixes. On the contrary, α, β, γ can be chosen in order to provide the values written on
Figure 30.2 (where φ = ψ2 = ω4

12).

Proof. Consider indices as given modulo 18 = 6× 3. A ratio like

ρj
.
= (zj zj+6 zj+12)÷ (z0 z6 z12)

varies continuously when vertices A,B,C are displaced along the unit circle without crossing each
other. But, obviously, ρj is a power of ψ and therefore a constant that can be computed in the
equilateral case. This gives ρj = ψj .
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O
z0 = α6

z1
−α5β

z2

α4β2z3

−α3β3

z4

α2β4

z5

−αβ5

z6 = β6

z7
−φ2β5γ

z8
φβ4γ2

z9

−β3γ3 z10

φ2β2γ4

z11

−φβγ5
z12 = γ6

z13

−γ5α

z14

γ4α2

z15

−γ3α3

z16
γ2α4

z17 −γα5

Figure 30.2: The Lubin choices of orientation

(a) Coefficients involved for z2 and z16 are powers of φ = ψ2. Using transformations β → ψβ
and γ → ψγ allows to enforce coefficients +1, +1 (cosmetic choice).

(b) Coefficients involved for z3, z9, z15 are ±1. Transformation β → −β and α → ψα allows
respectively to enforce z9 = −β3γ3 and z3 = −α3β3 (cosmetic choices). Then ρ3 = −1 ensures the
value of z15.

(c( And now all coefficients are fixed: z1, z4, z5 are deduced from z3/z2 while z17, z15, z14 are
deduced from z16/z15 and all the others from the ρj .

As a summary, when A = z0 = α6, B = z6 = β6, C = z12 = γ6 are given, we can chose
α, β, γ in order that mid-arc points z3, z9, z15 have symmetric expressions −α3β3, −β3γ3, −γ3α3.
This will lead to a symmetric expression for the coordinates of the incenter. On the contrary, no
symmetrical expression can be found for the Morley centers.

30.2.6 Symmetric expressions

When possible, we will use the symmetric functions of α, β, γ to obtain shorter and better looking
expressions. The usual notations, s1, s2, s3 will have a meaning that depends of the degree of the
used representation. In other words, we note:

s1
Lk
= α+ β + γ ; s2

Lk
= αβ + βγ + γα ; s3

Lk
= αβγ

On the contrary, the σj will be reserved for the symmetric expressions of the first degree, i.e.
relative to the vertices themselves :

σ1
.
= zA + zB + zC

L6
= α6 + β6 + γ6 ; σ2

L6
= α6β6 + β6γ6 + γ6α6 ; σ3

L6
= s6

3

30.3 The basic objects

30.3.1 The trisectors

When dealing with numerous objects, the choice of the naming convention is crucial. The following
are taken from Taylor and Marr (1913).

Definition 30.3.1. Let u : A → B → C → A be the upwards permutation, and d = u−1

the downwards permutation. Trisectors are named Dx
k where D ∈ {A,B,C}, x ∈ {u, d} and

k ∈ {0, 1, 2} ∈ Z/3Z. Value k = 0 is used for trisectors obtained by joining points of Figure 30.2,
while trisector Du

0 and Dd
0 are, respectively "near u (D)" and "near d (D)". Trisectors Du

k are k-
indexed clockwise, while trisectors Dd

k are k-indexed with the other orientation. When necessary,
index k relative to vertex A will be named ka, etc.
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For example, trisector Bu
0 is the line E6E14, while Bd

0 is the line E6E16 (see Figure 30.2). Let
us compute their equations. We have:

E6
L6'




β6

1

β−6


 '




β12

β6

1


 ; E14

L6'




γ4α2

1

γ−4α−2


 '




γ8α4

γ4α2

1




We have chosen to write the variables Z,T,Z in that order to facilitate the control the homo-
geneous degrees appearing in vector and matrices: a difference of six units should remain constant
between two adjacent places. And we have :

Bu
q ' E6 ∧ E14

L6'
[
φqβ6 − α2γ4 ; −φqβ12 + α4γ8φ2 q ; −α4β6γ8φ2 q + α2β12γ4

]

The Bd
q trisectors are obtained in the same way. After simplifications, we have :

Bu
q

L6'
[

1 ; −α2γ4φ2q − β6 ; α2β6γ4φ2q
]

(30.3)

Bd
q

L6'
[

1 ; −α4γ2φ q − β6 ; α4β6γ2φ q
]

When rotating α, β, γ and indices p, q, r we obtain the other trisectors, with the following
restriction. Indices k described in Definition 30.3.1 are independent of the cosmetic choices of
Figure 30.2. But these choices have created powers of φ in expressions of z8, z10, and the following
correspondence must be used:

ka = p+ 1, kb = q, kc = r

30.3.2 The 27 Morley vertices

By intersecting two trisectors issued from two different vertices of ABC, we obtain (18× 12) /2 =
108 points. Among them, 27 play a special role and provide remarkable patterns when drawn1

altogether (Figure 30.3). This depends on the following lemma:

Proposition 30.3.2. Define the Morley vertices by Ajk
.
= Bu

j ∩Cd
k , etc: i.e. given a vertex, take

an up trisector from the following vertex and a down trisector from the preceding vertex. Then
affixes of all these points are polynomials in α, β, γ, φ:

Aqr
L6
= α2β4φr + α2β2γ2φq+2r + α2γ4φ2q − β4γ2φq+r − β2γ4φ2 q+2 r

Proof. The computation is straightforward from Aqr
.
= Bu

q ∧ Cd
r and (30.3).

30.3.3 The Lubin proof of the Morley theorem

On Figure 30.3, we can see triangles like A22A10A31 that are equilateral but are obtained from
only two beams of trisectors. They are called the lighthouse triangles, and are not what we are
interested with. Taylor and Marr (1913) have also proposed the following:

Definition 30.3.3. Given the triple of indexes k = kakbkc, the corresponding Taylor-Marr triangle
Tk is defined as (Akbkc , Bkcka , Ckakb) = (Aq;r, Br;p+1, Cp+1;q).

The Morley theorem can now be stated as:

Theorem 30.3.4. (Morley) When
∑

k
.
= ka+kb+kc ≡ 0 mod 3, triangle Tk is equilateral direct.

When
∑

k ≡ 2, triangle Tkis equilateral retrograde. When
∑

k ≡ 1, the triangle is not equilateral.
1All our figures are drawn using :

α = −1, β = (15 + 8 i) /17, γ = (63− 16 i) /65, φ =
(
−1 + i

√
3
)
/2
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Figure 30.3: Morley equilateral triangles

Proof. (Lubin) Collecting Aqr + φBr;p+1 + φ2Cp+1;q one obtains:

(
φ2S+2 + φS+1 + 1

)
α2β2γ2φr−p−2

−
(
φS − 1

)(α4β2

φr+2
− α4γ2

φp+r+2
− α2β4

φp+q+1
+
α2γ4

φq
+
β4γ2

φp+1
− β2γ4

φq+r

)

where S =
∑

k = p+q+r+1. The other orientation is treated using Aqr+φ2Br;p+1 +φCp+1;q

Remark 30.3.5. When working on triangles Mk where k = kakbkc one can adopts two different
strategies. Here, we have chosen to use formulas parametrized by the kj . One other strategy would
have been to treat only the indices k = 000 (Morley), k = 100 (strange) and then propagate the
results using the action of some group acting transitively on the corresponding orbit :

even =

→ r

↓ 000 120 102

m 222 012 021

111 201 210

odd =

→ r

↓ 200 110 101

m 122 002 020

011 221 212

strange =

→ f

↓ 100 010 001

m 022 202 220

211 121 112

This other strategy is described in Douillet (2014b).*** chapter ***

Proposition 30.3.6. The Morley center Mk, defined as the center of the corresponding Morley
triangle Tk, is described by :

Mk
L6
=

1

3

∑

3

((
φr − φ−p−q

)
α2β4 −

(
φp+q − φ−r

)
α4β2

)
assuming

∑
k 6≡ 1 (30.4)

The centers of the strange triangles collapse by three and are described by the strange formula :

center (Tk)
L6
=

1

3

(∑

3

φp−q
)
α2β2γ2 = φkb−kcα2β2γ2 assuming

∑
k ≡ 1

Proof. In the general case, writing
(
Aqr + φBr;p+1 + φ2Cp+1;q

)
/3 gives the sum of these two terms.

And it ever happens that one of them vanishes, depending of the value of
∑

k. When p+q+r ≡ 0,
we have p− q ≡ q − r, etc. Therefore, a less strange naming for these points is :

Ga
L6
= α2β2γ2 ; Gb

L6
= φGa ; Gc

L6
= φ2Ga (30.5)
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30.3.4 The barycentric formula

When considering the 18 genuine Morley centers, Taylor and Marr have obtained the following
barycentric formula :

Mk '
bar

sinA

(
cos

A+ 2 kaπ

3
+ 2 cos

B + 2 kbπ

3
cos

C + 2 kcπ

3

)
: etc : etc

When trying to express the involved trigonometric quantities in function of α, β, γ, the inscribed
angle theorem leads to :

exp i
A+ 2ka

3

L6
= −γ

β
φp, etc (30.6)

masking the lack of symmetry by using p ≡ ka − 1, q = kb, r = kc. After some substitutions, we
obtain the "symmetrical looking" formula :

Mk
L6'
bar

(
β3

γ3
− γ3

β3

)((
αφq

γ
+

γ

αφq

)(
βφr

α
+

α

βφr

)
− γφp

β
− β

γφp

)
: etc : etc (30.7)

This formula shows what is left in the background when points like M000, M111, M222 are
described as "the first, second and third Morley centers", and inventoried as X(356), X(3277)
and X(3276) in the Kimberling (1998-2024): an expression like cos (A/3) is not rational in the
coordinates of the vertices (nor in the sidelengths of triangle ABC). Therefore a given choice of
an algebraical branch cannot be preserved when points are dragged-and-dropped by a dynamical
drawing tool, or when a rational parameterization is used.

One can check the equivalence with (30.4) except from the strange case. In the later case, we
obtain three points at infinity verifying :

ω2 (Mk) = α4β4γ4φp−q (30.8)

Definition 30.3.7. In order to restrict the notation Mk to the sole and only 18 Morley centers,
we define δa, δb, δc (where δ stays for direction) as the points at infinity such that :

ω2 (δa)
L6
= +α4β4γ4 ; ω2 (δb)

L6
= φ2ω (δa) ; ω2 (δc)

L6
= φ4ω (δa)

Remark 30.3.8. One can see that isogonGa
L6' −α4β4γ4 : 0 : 1 is the direction of the sideline

B00C00. Therefore, isogon (−Ga) = δa and the δx are the directions of the axes common to the
Morley triangles.

Contrary to the incenter X(1), there is no cosmetic arrangements that can gives a symmetrical
formula for z000. Let us insist once again on this negative result. When dealing with the inexcenters,
we can use the Lemoine transforms that replace α by −α, etc. If we start from a symmetrical
formula, this will generate four distinct points (4, not 8 due to projective properties) and four is
the required number of the inexcenters. Concerning the Morley centers, we can replace α by αφ
or αφ2, etc. Starting from a symmetrical formula, this will generate nine points (9, not 27, due to
projective properties) and this is what happens with the strange objects. In order to generate 18
points, the initial formula must be skew.

30.4 Curves connecting the Taylor-Marr perspectors

In this section, we will see that all the 27 Taylor-Marr triangles behave the same way when
perspectivity is involved. In other worlds, Morley and strange triangles have not to be separated
according to

∑
k when only alignments are taken into account. This comes from the linearity of

the alignments: the powers of φ are linearly independent numbers (over the rationals) and the
1 + φ+ φ2 = 0 property is not involved here.

On the contrary, we will see in Subsection 30.5.2 that the family of the Morley centers behaves
another way and cannot be enlarged by encompassing the centers Gx of the strange triangles. The
enlargement will come from the directions δx.
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30.4.1 The primary perspectors

Any Taylor-Marr triangle Tk is perspective with the reference triangle ABC. The correspond-
ing perspector is noted Pk. Three of them are inventoried in the Kimberling database, where
P000 =X(357), P111 =X(1134) and P222 =X(1136). Their barycentrics are given by :

Pk
L6'
bar

(
γ6 − β6

)

β2γ4φp + β4γ2φ−p
: etc : etc (30.9)

Figure 30.4 shows the numerous alignments with the vertices ABC. For example, on each line
issued from A, there are three Pk: an even (circle), an odd (box) and a strange (cross) one. It can
be seen that all these 27 points belong to a same quintic LP . This is not a new result, this circular
quintic is described by its barycentric equation :

LP :
(
b2r2 − c2q2

)
p3Sa +

(
c2p2 − a2r2

)
Sbq

3 +
(
a2q2 − b2p2

)
r3Sc = 0

as Q003 in (Gibert, 2004-2024), where 95 points have been identified.
From Figure 30.4, we can see that vertices A, B, C are singular points, so that all alignments

described above contains in fact five points of the quintic. The complex equation of LP is given
Figure 30.4, where = (E) = (E − conj (E)) /2 is the "imaginary part" operator, producing an
object F such that F/ conj (F ) = −1.

LP
L1' =




1

σ3
Z4Z +

σ2

3σ3
Z3Z2 − σ2

3σ2
3

Z4T− 2σ1

σ3
Z3ZT

+
2σ1σ2 − 3σ3

3S2
3

Z3T2 +
σ2

1

σ3
Z2ZT2 +

7σ3σ1 − σ2
1σ2 − 2σ2

2

3σ2
3

Z2T3

+
2σ1σ

2
2 + σ2σ3 − 5σ2

1σ3

3σ2
3

ZT4 +
σ3

1

3σ3
T5




    even
    odd
    strange

B

detail

C

Figure 30.4: Family of X(357) : the 27 Pk belong to a same quintic

30.4.2 The adjunct primary perspectors

Due to obvious angle properties, the 108 Morley vertices are isogonal conjugates by pairs. For
each Taylor-Marr triangle Tk, it exist an adjunct triangle T ∗k , isogonal conjugate of Tk, whose
vertices are "du" intersections. This triangle T ∗k is, in turn, perspective with ABC, and the
perspector is nothing but the conjugate P ∗k of the initial perspector P ∗k (this is a general property
of perspectivities wrt the reference triangle). For example P ∗000 =X(358) is the perspector of T ∗000

with ABC. In the same vein, we have P ∗111 =X(1135) and P ∗222 =X(1137).
Since BC2 =

(
β6 − γ6

) (
β−6 − γ−6

)
, we have obviously the barycentrics :
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P ∗k
L6'
bar

(
γ6 − β6

β4γ4

)(
γ2φp + β

2

φ−p
)

: etc : etc (30.10)

As it can be seen by computing the corresponding determinant, the pointsMk, Pk and P ∗k with
the same index are aligned (the centroid of the adjunct triangle is not on that line).

The 27 P ∗k are aligned by triples with each vertex A,B,C. Moreover, they all belong to the
isogonal conjugate of LP , the quartic LP ∗ whose barycentric equation is :

LP ∗ :
(
b2r2 − c2q2

)
Saa

4qr −
(
a2r2 − c2p2

)
Sbb

4pr +
(
a2q2 − b2p2

)
Scc

4pq = 0

This quartic is described as Q002 in (Gibert, 2004-2024). Its complex equation is :

=




σ1

2σ3
Z3Z − σ2

6
ZZ3 − 1

σ3
Z3T− σ2

σ3
Z2ZT

+
σ1

σ3
Z2T2 +

σ2 − σ2
1

3σ3
ZT3


 = 0

while its rectangular asymptotes are crossing at 3
(
σ2

2 − σ1σ3

)
÷ 2σ1σ2=X(3292).

Let us recall that the degree of the isogonal conjugate of a curve is twice the degree of the
original curve. In the case of an isogonal cubic (like the pKMk that are presented later), the three
sidelines appear in factor and the degree reduces to 6−3 = 3 (curve pKMk is invariant). Concerning
LP , the vertices count twice: when taking the isogonal conjugate of this curve, the sidelines appear
twice in factor, and the degree reduces to 2× 5− 2× 3 = 4. This is the reason why the curve LP ∗
is a quartic and not a curve of higher degree.

30.4.3 The secondary perspectors and their adjuncts
Any Morley triangle Tk is also perspective with the excenter triangle IaIbIc. The corresponding
perspector is noted Qk. Point Q000 is inventoried in the Kimberling database as X(1507). For the
general case, we have the following barycentrics :

Qk
L6'
bar

(
γ3

β3
− β3

γ3

)(
1 +

φpγ

β
+

β

φpγ
− φqα

γ
− γ

φqα
− φrβ

α
− α

φrβ

)
: etc : etc (30.11)

Figure 30.5 shows the numerous alignments with the excenters IaIbIc. For example, on each
line issued from Ia, there are three Qk: an even (circle), an odd (box) and a strange one (cross).
It can be seen that all these 27 points belong to a same circular quintic LQ. This is a new result,
and will be expanded in Subsection 30.5.4. On this quintic, points Ia, Ib, Ic are singular points,
so that all alignments of the former paragraph contains in fact five points of the quintic.

30.4.4 The adjunct secondary perspectors
It happens that any adjunct Morley triangle T ∗k is also perspective with the excenter triangle IaIbIc.
The corresponding perspector is noted Rk. Point R000 is inventoried as X(1508) in Kimberling
database. For the general case, we have the following barycentrics :

Rk
L6'
bar

(
γ3

β3
− β3

γ3

)(
1 +

βγ

φpγ2 + β2φ−p
− γα

φqα2 + γ2φ−q
− αβ

φrβ2 + α2φ−r

)
: etc : etc

These points are aligned by triples (even, odd, fake) with the excenters. Moreover, I0, Pk, Rk

are aligned for each k. Nevertheless, there is no quintic that contains all the 27 Rk, while the
circular quintic that contains the 18 Morley perspectors contains no other named centers.

30.5 Two new orbital curves

30.5.1 How to discover a curve that contains a set of points
Definition 30.5.1. A N -sized set of points is said to be "co-n-curve" if it exists an algebraic n-th
degree curve that contains the set, and verifies (n+ 1) (n+ 2) < 2N .
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LQ
L2' Q1 +Q2 where :

Q1
L2
= =




3

s2
3

Z4Z − s1

s3
3

Z4T− 12

s2
3

Z3T2 − 4 s1s3 + 6σ2

s2
3

Z2ZT2

+
12σ1s3 + 2σ2s1 + 4 s2s3

s3
3

Z2T3 − (3σ1 + 4 s2)σ1

s2
3

ZT4 +
σ2

1s2

s2
3

T5




Q2
L2
=

(
−s1

s3
Z + s2Z

)(
ZZ − s1

s3
ZT− s2ZT +

(
s1s2

s3
− 4

)
T2

)2

Ia

Ib

Ic

    even

    odd

    strange

Figure 30.5: Family of X(1507) : the 27 Qk belong to a same quintic

Figure 30.6: A 10th degree that doesn’t go through the 72 R perspectors

Without the condition related to the degree, such property would be trivial. On the contrary,
discovering (and then proving) that a given set is co-n-curve is rather difficult when the set is large.
Numerical investigations can be carried in order to suggest the existence of such a curve (or to
prove the lack of existence). Given an set K and a degree n, we choose a proper subset K ′ such
(n+ 1) (n+ 2) /2 < |K ′| and we minimize

χ2 .
=

1

|K ′|
∑

m∈K′
f2 (xm, ym) where f (x, y) =

∑

j+k≤n
cjkx

jyk

The quantity χ2 is a quadratic function of the cjk, and the minimization has to be conducted
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under a condition of normalization. Condition
∑
c2jk = 1 would be the best theoretical one, but

we better guess and check for a non vanishing coefficient, and force it to 1.
These computations are repeated with increasing numerical precision, say ε = 1/2digits. When

χ2 decreases with ε, and remains of the same relative order, this is a good omen. It remains to
check if f2 (m) ≈ χ2 when m is chosen in K \K ′.

When, for any single numerical attempt, χ2 remains quite equal to a non-zero constant as
ε → 0, this prove that the requested algebraic curve does not exists. For example, the 18-sized
set {Rk,

∑
k 6≡ 1} is not co-4-curve, while sets K ∪ ABC or K ∪ IaIbIc are not co-5-curve. . In

Figure 30.6, we give the result of an attempt to include PG72 (R0) in a tenth degree curve. When
using the already given values, we obtain a curve that looks nice, but χ2 remains around 6E − 8
even if when we increase the precision and use ε = 1E − 200.

30.5.2 The quintic of the Morley centers
As stated in our Theorem 1, the 18 Morley centers belongs to a circular quintic LM . Its equation
can be obtained "in brute force" by solving a formal system of 20 equations in 20 unknowns whose
coefficients are polynomials in α, β, γ (with degrees up to 15).

LM
L1' =




1

σ3
Z4Z +

σ2

2σ2
3

Z4T− σ1σ2 + 27σ3

9σ2
3

Z3T2 +
σ2

σ3
Z2ZT2

+
3σ3σ1 − 5σ2

6σ2
3

Z2T3 +
8σ3σ

2
1 − 9σ2σ3 + σ1σ

2
2

6σ2
3

ZT4 − 2σ3
1

9σ3
T5




000

120

102

222

012

021

111

201

210

200

110

101

122

002

020

011

221

212

O

Figure 30.7: The Quintic of the Morley’s centers

The computation is not so easy to conduct since intermediate expressions are really huge,
but the result is quite simple when expressed in terms of the zA, etc themselves. One obtains
Figure 30.7. The five points at infinity are the umbilics together with the directions of the Morley
axes. The circular asymptotes concur at z = −σ1/2 =X(550) while the ordinary ones concur at z =
+σ1/6=X(549). The later is on the curve, the former is not. Moreover point z = −2σ1/3=X(3534)
also belongs to LM .

The barycentric equation of this quintic is antisymmetric (when a, b, c and x, y, z are rotated
in the same manner). One obtains Figure 30.8 (top).

30.5.3 A lemma about the Bevan centers
The circle through the excenters is called the Bevan circle. Using determinant (30.2), its equation
is easy to compute, leading to :

Bcircle
L2' ZZ − s1

s3
ZT− s2ZT +

(
s1s2

s3
− 4

)
T2 = 0
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LM '
∑
3

b2 − c2

a2

 56S2Sa x
5 − Sa (8SbSc + 62Sa (Sb + Sc)) x

3yz

+a2 (21SbSc + 102Sa (Sb + Sc))xy
2z2



+S
6

1

a2

 34S2
aS

2
b + 6S2

aSb Sc − 28S2
aS

2
c + 48Sa S

3
b + 103Sa S

2
bSc

+47Sa Sb S
2
c + 75S3

bSc + 75S2
bS

2
c

x3y2

+S
6

(
25S2

aS
2
c − 4S2

aS
2
b + 21S2

aSb Sc + 5Sa S
2
bSc + 61Sa Sb S

2
c + 36S2

bS
2
c

) x4y

a2

where S6 denotes a sum of six terms taking the signatures into account, and∑
3 denotes an ordinary cyclic sum of three terms. Moreover, S is the area of

ABC and Sa =
(
b2 + c2 − a2

)
/2, etc. are the Conway symbols.

LQ ' − (a+ b+ c)xyz
∑
3

ab (a− b) (a+ b− c)
(
2 abz2 − 3 c2xy

)
+S

6
b2c3 (a+ b− c) (a− b+ c)x4y

+S
6

bc3
(
2 a3 + a2b− a2c− 2 ab2 + 4 abc− 2 ac2 − b3 − b2c+ bc2 + c3

)
x3y2

Figure 30.8: Barycentric equations of LM and LQ

This can be rewritten as (Z− s2) conj (Z− s2) = 4. Therefore, the center of this circle, known as
X(40) in Kimberling, is the reflection of I0 in O while the radius of the circle is twice those of the
circumcircle.

The line I0O is called the Bevan axis. It is a diameter of the Bevan circle and its equation is
s1Z − s2s3Z = 0. The Bevan points are the intersection of the axis and the circle and listed as
X(2448), X(2449). We obtain :

z (B±)
L2
= s2 ± 2

s3

s1

√
s1 s2

s3
= s2 ± 2

s3

s1
÷
∣∣∣∣
s3

s1

∣∣∣∣

where the radicand is s1 s1 ≥ 0. Written using the first expression, both points cannot be distin-
guished in the Lubin(2) representation. When using the second one, we are describing the Bevan
points as the center plus or minus the oriented radius, at the cost of leaving the algebraical domain.

30.5.4 The quintic of the secondary perspectors
A numerical study shows that all the 27 secondary perspectors Qk belongs to a same quintic LQ
(see Figure 30.5). This time, it would be foolish to proceed in brute force. The Maple length of
z (Q000) is 1583, while the Maple length of z (M000) was only 197. Moreover, since the incenter
don’t play the same role as the excenters, the equation of LQ cannot be expressed as a Lubin(3)
expression, and computations have to be done using Lubin(6).

But there is another way of attack. We can obtain a numerical equation of LQ using a, b, c =
6, 9, 13 (the standard Kimberling triangle) and then use the Kimberling inventory to detect which
simpler triangle centers belong to LQ. We obtain X(1)=incenter, X(164), X(165), X(2448),
X(2449). X(165) is the centroid of IaIbIc and its affix is −z(1)/3 = s2/3, while X(2448) and
X(2449) are the Bevan points described in the former section. Point X(164), which is the incenter
of IaIbIc must be discarded since its affix does not belongs to Lubin(6).
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Let us resume what can be guessed, and count the resulting equations. We have A,B,C ∈ LQ
(3), I0 ∈ LQ (1), each excenter is singular (3×3), LQ is circular (2), X(165) is the singular focus
and belongs to the curve (2+1), the Bevan pair X(2444), X(2445) belongs to LQ (but counts only
for 1) : this amounts to 19, exactly one minus the number of independent equations required to
determine a quintic.

Therefore we can conduct the computations using zA = α2 (i.e. the 2nd degree Lubin param-
eterization), leaving one coefficient undetermined. After what, it remains to change to 6th Lubin
and fix the remaining coefficient so that Q100 belongs to the curve. It remains to check, by an
explicite computation, that Q000 belongs also to the curve. But one can check also that curve LQ
remains rational over 2nd degree Lubin, and can be rewritten as such. By algebraic symmetry,
this prove the result for the 7+17 remaining perspectors, so that 47 points of the curve have been
identified.

In the equation given Figure 30.5, quintic Q1 is circular, and admits X(165), z L2
= s2/3, as

singular focus. The real points at infinity are the directions of the Morley axes, and the corre-
sponding asymptotes concur at z L2

= −s2/9, not on the curve (and not in ETC). All the inexcenters
are singular points for this curve. On the other hand, quintic Q2 is the product of the Bevan line
and the Bevan circle (counted twice).

The barycentric equation of this quintic is antisymmetric (when a, b, c and x, y, z are rotated
in the same manner). This leads to the new result given Figure 30.8.

30.6 Two properties concerning the Morley cubics

30.6.1 Description of a pivotal cubic

Let us consider a fixed point U ' z : t : ζ. The set of all the points P ' Z : T : Z that are aligned
with U and their isogonal conjugate isogonP is a cubic (called the iso-cubic related to the pivot U
and noted pKU ). Its equation is easy to obtain from the corresponding determinant, leading to :

pKU
(
Z : T : Z

) L1' =
(
ζZ2Z − z

σ3
Z2T +

(
σ1

σ3
z − 2ζ

)
ZT2 + σ1ζ T

3

)

+ t=
(

1

σ3
Z3 − σ1

σ3
Z2T +

σ2

σ3
ZT2

)
(30.12)

When obtained along this curve, the point isogonA is together on BC and on AU , so that
BC∩AU, etc (the so-called vertices of the U-Cevian triangle) belong to pKU . From isogon I0 = I0,
points U, I0, isogon I0 are aligned, and the four inexcenters belong to the cubic. When making
T = 0, one sees that the three points at infinity zj : 0 : ζj (j=1,2,3) must verify: σ2

3ζ1ζ2ζ3 = z1z2z3.
Conversely, three such points can be used to characterize a pK.

When U is the circumcenter (0 : 1 : 0), only the second term of (30.12) remains. One obtains
the pKO cubic, inventoried as K003 in Gibert (2004-2024). This cubic has three asymptotes in the
directions δ of the Morley axes since the ω2

j : 0 : 1 where ω2
j
L6
= φjα4β4γ4 are clearly the roots of

the leading part. When U is at infinity, the two others are the umbilics and pK is circular (the
McKay cubics).

General properties of such cubics are well known. For example, pKU cuts the circumcenter,
apart from A, B, C in three points Γn (n=1,2,3) such that the U is the orthocenter of triangle
(Γ1, Γ2, Γ3) and lines UΓn are parallel to the asymptotes Gibert (2007). Beside that, when U 6= V ,
the remaining common points of pKU and pKV are isogonal conjugates and belong to the line UV .

Let us now consider the Morley cubics pKMk , obtained by taking the corresponding Morley
center Mkas pivot. Many points are known to be long to these cubics. For example:

Proposition 30.6.1. Each cubic pKMk is circumscribed to the corresponding Morley triangle Tk.

Proof. One can conduct the 18× 3 computations... or check that A00 ∈ pKM000 and propagate this
property to the other objects (more details in Douillet, 2014b).
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A

B

C

i0

ia

ib
M

p

p*q

r

a

b

c

m*

q*

r*

a*
b*

c*

201

Figure 30.9: The Morley isocubic KM201 (j = 03), viewed as an ordinary isocubic

30.6.2 Intersections between Morley cubics

It can be seen that operator s : α → β; β → φ2γ; γ → α (the so called "strange" operator) fixes
the points M000 and I0, and rotates the triples (A,B,C) and (Ia, Ib, Ic). Therefore, the cubic
pKM000 is globally invariant by s.

Let us now consider the intersectionsWkκ between two Morley cubics. From the degree of both
curves, nine points are required. Points A,B,C, I0IaIbIc are obvious, and it remains two other
points. They are isogonal conjugates, and therefore belong to the line MkMκ.

k # point discriminant

222,111 18 P ∗000, P
∗
111 square

120,102 18 ∆

012,210 18 ∆ · s
201,021 18 ∆ · s2

200,020,002 9× 3 A00, B00, C00 square

011 9 δ

101 9 δ · s
110 9 δ · s2

122,212,221 9× 3 S̃, S̃ s, S̃ s2 square

Table 30.1: Intersection of the k cubic with the κ = 000 cubic

The equation (E) for the two points W is obtained by intersecting pKMk by the line MkMκ

and discarding the factor relative to W = Mk. Part of the time, it happens that this equation
splits totally (and the discriminant of (E) is a perfect square). Otherwise, Table 30.1 show that
the discriminant takes only two essentially different values, according to the parity.

Here again, the strange operator appears as the operator that allows to jump from an orbit to
some others (but not to all of them). Each of the discriminants δ and ∆ can be written as the
product of the four Lemoine replicas of a polynomial. For example :

δ12 =

j=3∏

j=0

Lj
(
αβγ +

(
α2γ − 2αβ2 − βγ2

)
φ+

(
β2γ − 2αγ2 − α2β

)
φ2
)

The existence of exact solutions is correlated with the fact that triangles Tk and ϕ (Tk) are
homothetic for each ϕ ∈ PG18, and therefore are in perspective. Their common perspector Skκ
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can ever been obtained without radicals, and belongs necessarily to line MkMκ. When this point
belongs to one of the cubics, so does also isogonSkκ and line MkMκ cannot have any other
intersections with pKMk .

A

B
C

i0

ia

ic

p

p*

q

r

a

b

c

m* q*

r*

a*

b*

c*

201
120
012

Figure 30.10: Three cubics from the same m-orbit

The first case is the most striking. We consider a m orbit. It contains a Morley center Mj , and
its relatives: Mj+ defined as m (Mj) and Mj− defined as m2 (Mj). For example, using j = 0, the
orbit is M000=X(356), M000+ = M222=X(3277) and M000− = M111=X(3276). The orbit M201,
M201+ = M120 and M012 was used to draw Figure 30.10. The first specificity of such a orbit comes
from Mj +Mj+ +Mj− = 0 : the centroid of the three centers is the circumcenter. Therefore, the
sum of the equations of the three Morley cubics is the McCay cubic pKO (dotted line).

The common points of two cubics of the m-orbit are two Morley perspectors. More precisely,
pKM201 ∩ pKM120 contains P201 which is the perspector of triangle T201 wrt ABC and P ∗201 which is
the perspector of T ∗201 wrt ABC but also the perspector of T201 with T120.

30.6.3 Inscribed pivotal equilateral triangles
Let us now prouve our Theorem 3 (stated on page 438) and show that the equation of the locus
LU is as given in Figure 30.11.

Proof. Consider the line ∆τ = {zU + µτ, µ ∈ R} issued from point U and directed by the unimod-
ular complex τ (know up to a ±1 factor). This line cuts the isocubic pKU pivoting around U in
three points. One of them is U itself, and the other two are the root of a second degree equation
in µ: call it E (τ).

If U is the center of an inscribed equilateral triangle admitting ∆τ as one of its axes, the
equations E (τ) , E (τφ) , E

(
τφ2

)
share a common root µ. But, from (30.12), we have :

E (τ) + E (τφ) + E
(
τφ2

)
= 3

(
τ6 − σ2

3

)
µ2 T3 (30.13)

Obtaining a condition on τ6 is natural: a direction is only known by its τ2, and the condition
must be symmetric on τ, φτ, φ2 τ . This gives τ2 = 3

√
s12

3
L6
= φks4

3, i.e. the Morley directions of
axes, proving the first part. The equation of the locus LU is obtained by eliminating µ between
E (τφ) , E

(
τφ2

)
. Due to (30.13), E(τ) is automatically fulfilled. The last part comes Proposi-

tion 30.6.1.

To characterize a 8th degree curve, 8 × 9/2 − 1 = 35 points are required. We can identify 39
points on LU , i.e. 4 more than this minimal number. We have:

18 the Morley centers Mk (where T is the associated Morley triangle Tk.

3 the vertices ABC. When the pivot is A, the cubic is the union of sideline BC and bisectors
IbIc, I0Ia. The common root for µ is 0 and the triangle is reduced to the pivot.
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LU = < (Φ) where

Φ1
L1' 1

σ2
3

Z7Z − Z4Z4
+ 3

(
− 1

σ2
3

Z6 − σ2

σ2
3

Z5Z +
σ1

σ3
Z4Z2

+ Z3Z3
)
T2

+

(
2σ1

σ2
3

Z5 − 2σ2

σ3
Z3Z2

)
T3 + 3

(
2σ2

σ2
3

Z4 +
σ2

2 − 2σ1σ3

σ2
3

Z3Z − σ1σ2

σ3
Z2Z2
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3
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)
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Figure 30.11: A random point on LU , its pivotal isocubic and the associated triangle

8 the inexcenters I0IaIbIc. Each of them counts twice being a cusp (the cuspidal tangent goes
through the circumcenter). When the pivot is Ij , the cubic is the union of the three bisectors
that concur in Ij . Here again, µ = 0 is the common root.

2 the umbilics. The circular asymptotes concur at O.

6 the Morley directions. Each counts twice (cusps again)

2 the circumcenter counts twice. One tangent is the Euler line, the other goes through σ1σ3 +
σ2

2 : 0 : σ2
1 + σ2. One of the triangle is on the circumcircle, the other is made of the Morley

directions.

The curve has an equation that depends only from the full symmetric functions (the σj). This
comes from the fact that all the 4 in-excenters are symmetrically involved and the 18 Morley
centers are also symmetrically involved, so that none of them need to be distinguished from the
rest of its class.

When we examine the common points between this curve and the quintic of the Morley centers,
we obtain 8 × 5 = 40 points. The resultant in Z of the corresponding polynomials splits in four
parts. A 18th degree polynomial, describing the Morley centers. A factor T7 describes the 8 points
at infinity (only one T for both umbilics). And there are two other irreducible polynomials, whose
respective degrees are 3 and 11.

But this results only into one and five visible common points on Figure 30.11. Let us describe
what happens to the 3rd degree factor Z3σ2 − 3Zσ1σ3 + 2σ2

1σ3. It gives three solutions z0, z1, z2.
But, in our example, the points that belong to both curves are z0 : 1 : z0, z1 : 1 : z2, z2 : 1 : z1:
the first point is visible, the other two aren’t. After extraction of the suitable squared factors, the
discriminant of the 3rd polynomial can be written as :

∆ = 1− σ1σ2

σ3
= 1− |σ1|2 ∈ R
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454 30.7. Some concluding remarks

Therefore, we will have different behaviors for acute and obtuse triangles (σ1 is the affix of the
orthocenter, so that ∆ > 0 forces the orthocenter to be inside the circumcircle).

30.7 Some concluding remarks

30.7.1 Degeneracies in the equilateral triangle
Degenerate cases are often useful to fully understand the general case. It is interesting to see
what happens when triangle ABC is near to become equilateral α = −1, β = exp (2iπ/18),γ =
exp (−2iπ/18). All the points that are "triangle centers" as defined in Kimberling (1998) are
collapsing to the origin, and so are doing I0 and the Morley centers M000, M222, M111. But the
other centers continue to live a separate life, the excenters Ia = −2A, etc among them.

A

B

C

Ib

Ic

A

B

C

Ib

Ic

Figure 30.12: A quasi-equilateral triangle

In Figure 30.12, points are quite at the exact place they will occupy when ABC will be exactly
equilateral. Points M120, M012, M201 form an equilateral triangle and M102, M021, M210 also,
while the odd Mk belongs by triple to the bisectors of ABC.

Concerning the curves (left the quintic LM , right the octic LU ), we have a greater sensibility
near the special points while the curves are degenerating into the bisectors union a circle:

LM 7→
(
Z3 −Z3

) (
ZZ − 3T2

)
LP 7→

(
Z3 −Z3

) (
ZZ −T2

)

LU 7→
(
Z3 −Z3

)2 (
ZZ − 3T2

)
LP ∗ 7→

(
Z3 −Z3

)
T

LQ 7→
(
Z3 −Z3

) (
ZZ − 4T2

)

30.7.2 Summarizing our results
The present chapter is about the Morley configuration, that occurs when drawing the trisectors of
the angles of a triangle. In this configuration, a family of 18 triangles can be identified that are
together equilateral and perspective with the original triangle.

This configuration has been studied using the formalism of the complex projective geometry,
combined with the parameterization that was originally developed by Lubin (1955). Numerical
investigations have been conducted to detect if an algebraic curve exists that contains various
classes of points. This property was already known and proven concerning the perspectors Pk of
the Morley triangles with the base triangle.

We have discover that the 18 Morley centers themselves, as well as the 3 Morley directions
belong to a same circular quintic LM . This result is a new one. Using a formal computing tool,
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30. Curves connecting the Morley centers 455

we have explicited the complex projective equation of this curve (i.e. relative to Ωx, O,Ωy: the
umbilics and the circumcircle). When converting this equation into a barycentric one (i.e. relative
to the vertices A,B,C), one obtains an expression whose complexity is the probable explanation
of the novelty of our Theorem 1. A comparable result has been obtained concerning the secondary
perspectors (Theorem 2).

Thereafter, we have classified the intersections of two Morley isocubics and described the sit-
uations where these intersections can or cannot be rationally generated from α, β, γ. We have
also determined the condition for an isogonal cubic to contain an inscribed equilateral triangle
having prescribed directions. We have proven that the solutions are discrete except when Morley
directions are chosen. In this later case, the locus of the pivots is an algebraic 8th-degree curve
containing the Morley centers (Theorem 3).

As ever, combining numerical investigations with formal computing tools has proven to be
efficient.
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Chapter 31

Groups acting over the Morley
configuration

31.1 Introduction

31.1.1 Aim of this chapter

Our aim now is to investigate the Morley configuration in the context of the group theory, with a
special focus on how properties relative to the flagship triangle (pictured in Figure 30.1a) can be
propagated to the other replicas under the action of a well suited group. Moreover, broader classes
of objects have been introduced by relaxing some of the required properties. For example, the
strange triangles, introduced by Taylor and Marr (1913), and the lighthouse triangles introduced
by Viricel and Bouteloup (1993).

We will prove following results:

Theorem 1 (New result). The Morley objects involving also the in-excenters are connected by
the projective group identified as G [ 72, 43 ] 1(thereafter named PG72), while its projective subgroup
G [ 18, 4 ] (thereafter named PG18) is sufficient when the inexcenters are not involved. On the
contrary, the strange objects are connected by the projective group G [ 9, 2 ] (thereafter named PG•9,
where the bullet stays as a remainder of strangeness).

Theorem 2 (New result). Under the action of a group that is 1-transitive, the orbit of a pair
{κ1, κ2} contains at least a pair {0, 0 · ϕ} and depends only on ϕ. Under the action of PG18,
the orbits of Morley pairs are 18-sized when ϕ is even (1,m, r,mr,mr2) or 9-sized when ϕ is odd
(control: 5× 18 + 9× 9=171).

Under the action of G54, most of these orbits collapse by three, and we have O1, Om: 18-sized,
Or: 54-sized while Ot, Otm, Otm2 are 27-sized (control: 18×2 + 54 + 27×3 = 171). Therefore any
property that involves Morley centers by pairs, has essentially to be proven on five special cases.

31.1.2 Morley centers as an intricate family

In order to show why the Morley centers must be considered as a family connected by the action
of some group, we will consider what happens to the flagship of the family (the center of the small
triangle in Figure 30.1a) when A,B,C are moving freely along a fixed circumcircle. Its barycentric
coordinates are obtained by using k = 000 (i.e. ka = 0, etc) in the Taylor and Marr formula :

Mk = sinA

(
cos

A+ 2 kaπ

3
+ 2 cos

B + 2 kbπ

3
cos

C + 2 kcπ

3

)
: etc : etc (31.1)

Written that way, the point M000 looks like a well defined object. It is described as X(356)
in the Kimberling database of triangle centers. When written using the Lubin parameterization
(α, β, γ are on the unit circle, more details will be given in Subsection 31.2.1), one obtains :

1The first number is the cardinal, followed by an index in the SAGE (2005-2014) database.
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-2 -1 0 1

-2

-1

0

1

2

Figure 31.1: Locus of the Morley center M000 when A remains fixed (here, zA = 1)

z000
L3
=

(
1− φ2

3

)(
α2β + αγ2 − βγ2

)
+

(
1− φ

3

)(
α2γ + αβ2 − β2γ

)

where φ = exp (2iπ/3). This formula is rather not symmetrical. If we fix α, β and move γ all
along the unit circle, the point z describes a closed curve. If α = −1 is fixed and β takes 60 values
regularly disposed along the circle, we obtain the pink lines of Figure 31.1.

It can be shown that the boundary curve (in dark gray) is a ten fold circular curve of degree
20. But all the grayed area is globally connected and the same picture is obtained if one uses
another value of k = kakbkc (see Subsection 31.4.6 for the condition

∑
k 6≡ 1!). This shows that

the Morley centers form an intricate family, that is interconnected by the transitive action of some
group.

31.1.3 Organization of this chapter

This chapter is a continuation of Douillet (2010, in English) and Douillet (2014d, in French). In
Section 31.2, we describe how to teach the Morley configuration to a computer. In this context, the
key question is using objects that have an unique normal form, since incantations like "the computer
will easily see that..." would be useless. In Section 31.3, we make some numerical explorations.
Among the 108 × 107 × 106 ÷ 6 triangles that can be formed from the 108 intersections, one can
find 54 equilateral triangles. Among them, there are the 18 Morley triangles, while the remaining
ones can be described as lighthouse triangles. One can also see that each intersection belongs to
nine perspective triangles.

In Section 31.4, we are back to formal results and we prove our Theorem 1 concerning the
groups acting over the Morley configuration. In Section 31.5 we use these results to explain why
the regular Morley objects are shadowed by strange objects that have only reduced properties. We
will show that, in fact, these objects are "not sufficiently skew".

Finally, Section 31.6 shows the efficiency of this group theoretical approach on two examples.
The first is the family of Martini circles. The second is based on the fact that two equilateral
triangles having the same directions and the same orientation are perspective. The classification of
these equilateral perspectors is facilitated by our Theorem 2 that classifies the orbits of the pairs
of centers.

The chapter ends by a summary section. The bibliography is integrated into the bibliography
of the whole book.
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O
z0 = α6

z1
−α5β

z2

α4β2z3

−α3β3

z4

α2β4

z5

−αβ5

z6 = β6

z7
−φ2β5γ

z8
φβ4γ2

z9

−β3γ3 z10

φ2β2γ4

z11

−φβγ5
z12 = γ6

z13

−γ5α

z14

γ4α2

z15

−γ3α3

z16
γ2α4

z17 −γα5

Figure 31.2: The Lubin choices of orientation

31.2 Morley configuration for computers

31.2.1 The Lubin parameterization
In this context, conjugacy is the operation that transforms what is seen from above the plane by
what is seen from below. This implies conj

(
Z : T : Z

)
= Z : T : Z. Applied to the ordinary

points, this generates two important subclasses:
• visible finite points, that can be written z : 1 : z where z is the C conjugate of z.
• visible infinite points, that can be written ω2 : 0 : 1 where ω ∈ C is unimodular.

But, in the general case, variable Z is an independent variable, with the same status as Z
and T. This allows to use points like the circular points at infinity (the so called-umbilics), i.e.
Ωx ' 1 : 0 : 0, Ωy ' 0 : 0 : 1. These points are crucial to characterize the circles among the
projective conics.

But the non-algebraic nature of the complex conjugacy impose to avoid this transformation as
much as possible. This exigence can be fulfilled by identifying the circumcircle of ABC with the
unit circle. This leads to define conjugacy as the action of the substitutions:

Z↔ Z, ω12 → 1/ω12, α→ 1/α, β → 1/β, γ → 1/γ

It only remains to explain how to algebraically divide angles into six equal parts (dividing in
three is required for Morley theorem and dividing in two is required for the in-excenters). This
can be done by using α6 as the complex affix of vertex A, etc. This leads to Figure 31.2.

More details are given in Lubin (1955) for the choice zA = α3, etc and in Douillet (2014a) for
the choice zA = α6, etc. In any cases, we must have some −1 and φ due to the obvious relations
z0z6z12 = −z3z9z15 = φ2z2z8z14.

31.2.2 Symmetric expressions
From the preceding choices, it results that:

Proposition 31.2.1. The coordinates of the points generated from Figure 31.2 are homogeneous
rational fractions in α, β, γ and their degrees are in progression: dg (z) = 6 + dg (t) ; dg (t) =
6 + dg (ζ). Curves, that are homogeneous polynomials in Z,T,Z, are also globally homogeneous
fractions when pondering variables as Z = 6, T = 0, Z = −6, α = 1, etc.

In some situations, these expressions can be rewritten using the symmetric functions of α, β, γ.
We define the sj by :

s1
L6
= α+ β + γ, s2

L6
= αβ + βγ + γα, s3

L6
= αβγ
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where L6
= is a reminder of the dependence2 from the choice zA = α6, etc. On the contrary, the σj

are the symmetrical functions of the vertices themselves :

σ1
.
= zA + zB + zC , σ2

.
= zAzB + zBzC + zCzA, σ3

.
= zAzBzC

L6
= s6

3

When trying to explain this concept to a SAGE computer, and also the concept of an "aux-
iliary point", we have to introduce K̂ .

= Q (ω12) (α, β, γ, s1, s2, s3), then K̂
[
Z,T,Z, z, t, ζ

]
and

thereafter trans-type everything. The usual algorithm can now be used onto the coefficients of the
polynomials.

31.2.3 Isogonal duality

We need to introduce the involution known as the "isogonal transformation" of the plane, thereafter
named isog and shortened as P → P ∗. Connoisseurs are knowing that only the associated Cremona
map is effectively involutive (Déserti, 2009b). A simplified presentation is as follows:

Proposition 31.2.2. Given a triangle ABC and a finite, visible point P not on a sideline, we
define line Aa by the equal inclination property (AB,AP ) = (Aa,AC) , etc. Then lines Aa, Bb, Cc
are concurring in a finite, visible point not on a sideline. This point is called P ∗, the isogonal image
of P . We have :

isog




Z

T

Z


 L1'




σ2
3Z

2 − σ3ZT− σ3σ2ZT + σ3σ1T
2

−σ3ZZ + σ3T
2

Z2 − σ1ZT− σ3ZT + σ2T
2


 (31.2)

Extending this formula can be used to define P ∗ "quite" everywhere.

Computing isog
(
isog

(
t[
Z,T,Z

]))
gives (algebraically)

t[
Z,T,Z

]
times the common factor :

−∏3 α
12 · (β6γ6Z − β6T − γ6T + Z), which is the product of the three sidelines. Thus isog

exchanges (in the Cremona sense) line BC with vertex A, etc while outside of the three sidelines,
we have as a pointwise involution.

The four in-excenters are clearly the fixed points of this Cremona transform. The circumcircle
is exchanged with the line at infinity (and, therefore, the umbilical points are swapped). This is
confirmed by remarking that :(u : v : w)∗ '

(
a2/u : b2/v : c2/w

)
where a, b, c are the length of the

side lines.
The appearance of this transform is unavoidable since, for example, the trisectors issued from

A are equally inclined by pairs with AB and BC. Therefore the isogonal image of any intersection
of trisectors is another intersection.

31.3 Numerical explorations

31.3.1 Taylor-Marr naming conventions

When dealing with numerous objects, the choice of the naming convention is crucial. The following
three were chosen by Taylor and Marr in their 1913 article. The first convention applies to all the
18 trisectors, the second to 27 vertices among all the (18× 12) /2 = 108 vertices generated and the
third to 27 triangles among the (27× 26× 25) /6 = 2925 triangles generated by this reduced set
of vertices. Obviously, these objects will appear to be the most interesting ones.

Definition 31.3.1. For D ∈ {A,B,C}, x ∈ {u, d} and k ∈ Z/3Z, the trisector Dx
k is defined as

follows. (1) the trisector is issued from D. (2) u is the upwards permutation A → B → C → A,
while d = u−1 is the downwards one. (3) Value k = 0 is used for trisectors obtained by joining
points of Figure 31.2. Trisectors Du

0 and Dd
0 are, respectively "near u (D)" and "near d (D)" (4)

Then Du
0 is rotated by φ2k to give Du

k while Dd
0 is rotated by φk to give Dd

k , leading to opposite
orientations for the two beams.

2The usual incenter formula z (I0)
L2
= −s2 becomes z (I0)

L6
= −α3β3 − β3γ3 − γ3α3
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Definition 31.3.2. For D ∈ {A,B,C} and j, k ∈ Z/3Z, the Morley vertex Djk is the intersection
of the trisectors u (D)

u
j and d (D)

d
k . By Proposition 31.2.2, the isogonal conjugate Djk

∗ of the
Morley vertex Djk is the intersection of trisectors u (D)

d
j and d (D)

u
k .

Definition 31.3.3. For k = kakbkc, where ka, kb, kc ∈ Z/3Z, the Taylor-Marr triangle Tk is the
triangle whose vertices are Akbkc , Bkckb , Ckakb .

31.3.2 Two examples
The coefficients of a given trisector are easy to compute when using (30.1). For example, using
E6 ∧ E14 and E12 ∧ E4 respectively, one obtains :

Bu
0

L6'
[

1 ; −α2γ4 − β6 ; α2β6γ4
]

Cd
0

L6'
[

1 ; −α2β4 − γ6 ; α2β4γ6
]

(31.3)

And now, we can compute the intersections of two of these trisectors. For example, A00
.
=

Bu
0 ∩ Cd

0 is :

A00
L6' Bu

0 ∧ Cd
0

L6'




(
α2β4 + γ6

)
α2β6γ4 −

(
α2γ4 + β6

)
α2β4γ6

α2β6γ4 − α2β4γ6

α2γ4 − α2β4 + β6 − γ6




z (A00)
L6
= α2β4 + α2γ4 − β4γ2 − β2γ4 + α2β2γ2 (31.4)

It should be noticed that not all of the 108 affixes are polynomial and that, most of the time,
powers of φ are not canceling.

31.3.3 Hunting the equilateral triangles
When plotting altogether the 108 intersections, as in Figure 31.3a, the result does not seem re-
markable. On the contrary, plotting only the 27 Morley vertices leads to Figure 31.3b.
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(a) The 108 cuts
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2
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B10

B11

C12

C11

C10
A11

A10

A12

C22

C20

C21B01

B02

C00

C01
C02

A20

A21

A22

A02

A01

B22

B21

B20

A00 B00

(b) The 27 Morley vertices

Figure 31.3: Morley equilateral triangles

In order to detect the equilateral triangles z1z2z3 that are hidden in Figure 31.3a, it would be
tedious to apply the criterion

(
z1 + φz2 + φ2z3

) (
z1 + φ2z2 + φz3

)
= 0 using the 108 quantities like

(31.4)! We better start by screening what happens when numerical values are assigned to α, β, γ.
This requires only to compute the squared length of the 107× 108/2 = 5778 segments joining the
108 vertices and to sort the list obtained. This gives small sub-lists of isometric segments, that can
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be searched for segments that actually form triangles. The hunt gives two kinds of possibilities:
• 36 triangles like (Au

0B
u
0 , A

u
1B

u
2 , A

u
2B

u
1 ), each of them involving only two families of trisectors.

Due to Proposition 31.3.4, we call them the lighthouse triangles.
• 18 triangles among the 27 Taylor-Marr triangles Tk. These are the Morley triangles.

31.3.4 The lighthouse triangles
The lighthouse triangles were called "étoiles" (stars) when described for the first time by Viricel
and Bouteloup (1993). Since they involve only lines issued from two fixed points, the result doesn’t
really involve any triangle and its general form is:

Proposition 31.3.4 (Lighthouse theorem (Guy, 2007)). Let n be an integer, n ≥ 3, and define a
n-lighthouse as n lines E0, E1, · · · , En−1 issued at +180°/n from each other from a given point E.
Let F0, F1, · · · , Fn−1 be another lighthouse. Define points P (j, k) = Ej ∩ Fk and consider indices
modulo n. Then, starting from any P (x, y), the n-gone [P (x+ k, y + k), k = 1 · · ·n] is regular
and its circumcircle contains E and F (See Figure 31.4).

F

E

E0E1

E2

E3

F0
F1

F2

F3

P00

P11

P22

P33

P10

P21

P32

P03

Figure 31.4: The twin lighthouses theorem

When E,F are the two vertices B,C, we have two choices of lighthouses per vertex (up and
down), leading to four sets of three triangles. The sidelines of the corresponding families of triangles
have the following directions :

ω2 (du) = −φkα8β2γ2 ω2 (dd) = −φkα6β4γ2 ω2 (uu) = −φkα6β2γ4

ω2 (ud)
L6
= −φkα4β4γ4 (31.5)

The nine lighthouse triangles that belong to the ud families can be seen on Figure 31.3b.
Triangle (A22, A10, A01) is one of them. Here indices j, k are running contrariwise, since the beams
have been oriented in that manner.

31.3.5 Hunting the perspective triangles
Another possibility for detecting triangles that share some properties with the Morley triangles
is to require some perspectivities. Numeric exploration proves (at least for the triangle ABC we
have chosen !) that if P is one of the 108 intersections, there are 9 among all the ordered triples
of intersections XY Z such that (1) P is among X,Y, Z; (2) XY Z is perspective with ABC and
with IaIbIc. For example, when P = A21 = Bu

2C
d
1 , we have the triangles:

Bu
2C

d
1 , B

u
2C

u
1 , B

d
2C

d
1 ; Bu

2C
d
1 , C

u
1 A

u
0 , A

d
0B

d
2 ; ∗Bu

2C
d
1 , C

u
1 A

d
1 , A

u
1B

d
2

Bu
2C

u
1 , B

u
2C

d
1 , B

d
2C

u
1 ; ∗Bu

2C
d
1 , C

u
1 A

d
0 , A

u
0B

d
2 ; Bu

2C
d
1 , C

u
1 A

u
1 , A

d
1B

d
2

Bd
2C

d
1 , B

d
2C

u
1 , B

u
2C

d
1 ; Bu

2C
d
1 , C

u
1 A

u
2 , A

d
2B

d
2 ; ∗Bu

2C
d
1 , C

u
1 A

d
2 , A

u
2B

d
2
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Among them, 3 uses trisectors issued from only two ABC vertices. For the other six, P occupies
the place of the ABC vertex it doesn’t involves. When we restrain ourselves to only the 27 Morley
vertices, it remains 3 possibilities par vertex, and they are the Taylor-Marr triangles allowed by
the indices of P . In our example, P = A21 and the triangles are the ones tagged by a ∗ in the
above list, namely T021, T121, T221.

31.4 Groups acting over the Morley configuration

31.4.1 Motivation: the Lubin proof

Proving that the flagship triangle T000 is equilateral and oriented like ABC is easy when all the
preparing work is already done. One computes also z (B00) and z (C00) and obtains (Lubin, 1955) :

z (A00)
L6
= α2β2γ2 −β4

(
γ2 − α2

)
−γ4

(
β2 − α2

)

z (B00)
L6
= α2β2γ2φ +γ4

(
β2 − α2

)
φ2 −α4

(
φγ2 − β2

)

z (C00)
L6
= α2β2γ2φ2 +β4

(
γ2 − α2

)
φ +α4

(
φγ2 − β2

)
φ2

(31.6)

showing that z (A00) + φz (B00) + φ2z (C00) = 0 and proving the property. It remains to see how
to propagate this property to the other triangles. Let us detail this problematic, that occurs for
any object that belongs to the Morley configuration.

31.4.2 The general abstract group PG216

When dealing with the Morley configuration, one uses repetitively permutations of α, β, γ and
transformations like α 7→ φα. In many articles, e.g. in Taylor and Marr (1913), this aspect of the
problem is hidden or limited to an heuristic role. Let us adopt the opposite behavior and bring
this problematic to the foreground.

Since zA = α6 only defines α up to a power of (−φ) it is natural to introduce the operator
(α, β, γ) 7→ (−φα, β, γ). Mixed with the symmetric group S3 acting on the parameters α, β, γ, this
generates a 1296-sized group, whose center is 6-sized. Since all the objects of interest are projective,
multiplying all of the α, β, γ by the same numeric quantity doesn’t change anything and we better
consider the associated projective group. Let us call it PG216 from its order 1296/6 = 216.

commutative & normal
normal subgroup of PG216
normal subgroup of parent

but not of PG216

< 1 >

#1

< m >

#3

< L,La >

#4

< m,F >

#9

kerR3

<m,L,La>

#12

kerS3

<m,L,La,F >

#36

<r,m,L>

PG+
36 ker det2

PG72

<m,r,L,t>

ker sgn

PG+
108

<m,r,L,F>
〈
m,r,t,
L,F

〉

PG216

<rF x,m,L>

<rmx, L>

x = 1, 2

x = 0, 1, 2

o:12

Figure 31.5: The normal subgroups of PG216

The first thing to do is obtaining the graph of the normal subgroups (see Figure 31.5) and the
table of the independent characters (Table 31.1). To obtain both figures, we can represent the
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464 31.4. Groups acting over the Morley configuration

bigger group by matrices acting onto rows, and generate them from :

g1 =




0 0 1

1 0 0

0 1 0


 , g2 =




1 0 0

0 0 1

0 1 0


 , g3 =



−φ 0 0

0 1 0

0 0 1




(
α β γ

)
g1 =

(
β γ α

)
,
(
α β γ

)
g2 =

(
α γ β

)
,
(
α β γ

)
g3 =

(
−φα β γ

)

With this convention, we have (X.gj) .gk = X. (gjgk): in a product, the first written (on the left)
represents the first acting.

When using SAGE, a brute force method is as follows. Write down the generating matrices.
Generate the group and transcribe it as a permutation group. Divide by the center and obtain
PG216. Obtain the character table C (spell it fraktur-C) . Use

t
C · C to discover the number of

conjugacy classes and their sizes. Ask for the normal subgroups and their orders. This gives :

name PG216 PG+
108 PG72 PG+

36 N∆ N12 N9 N4 N3 N1

# 216·92 108·22 72·43 36·11 36·14 12·5 9·2 4·2 3·1 1·1
gens tmrLF mrLF trmL rmL mLLaF mLLa mF LLa m 1

# quo 1·1 2·1 3·1 6·2 6·1 18·3 24·12 54·5 72·42 216·92
ident Z/2 Z/3 σ S3 −− S4 rtF −− PG216

In this table, the first line gives the name used in this article. The biggest groups have specific
names while the commutative ones are named Nn. At the boundary, N∆ is commutative, and
36-sized (∆ stands for diagonal). Then comes the index order/item in the SAGE database. The
next line gives the generators involved. The 4th line gives the index order/item of the quotient
group PG216/N. As it should be we have relations like 36 × 6 = 216 for the orders of subgroup
and quotient. What remains now is to interpret all this information.

One generator is required for N3, the smallest normal subgroup, say m (order 3). And a
second generator for N9, say F (order 3). Subgroup N4 is the Klein group and requires two
generators, say L, La (order 2). Altogether, m,F,L, La generates the maximal commutative
subgroup N∆ (size 36). As a set, N∆ encompasses all the small classes C (1) , C (m) #1 + 2,
C (F ) , C

(
F 2
)
, C (y) , C (y Fm) , C

(
y F 2m2

)
#3 × 5 and C (ym) , C (y F ) , C

(
y F 2

)
#6 × 3. From

commutativity, orders are obvious.
To generate subgroup PG+

108, another generator is required, say r (order 3). As a set, PG+
108

contains N∆ together with three 24-sized classes that are: C (r), C (rF ), C
(
rF 2

)
. All the orders

are 3. To generate the whole PG216, a last generator is required, say t (order 2). As a set, PG216

has to be completed by six other classes: C (t) , C (tF ) , C
(
tF 2

)
, C (tL) , C (tLF ) , C

(
tLF 2

)
. All

are 18-sized, while orders are respectively 2, 6, 6, 4, 12, 12.
From the nature of the problem, an efficient choice of generators is as follows :

r =




0 1 0

0 0 1

1 0 0


, t =




1 0 0

0 0 1

0 1 0


, m =




1 0 0

0 φ2 0

0 0 φ


, F =




1 0 0

0 1 0

0 0 φ2




L =




1 0 0

0 −1 0

0 0 1


, La =




1 0 0

0 −1 0

0 0 −1


, Lc =



−1 0 0

0 −1 0

0 0 1




(31.7)

where the names r, t,m, F, L have been chosen as rotate, transpose, Morley, fake and Lemoine.
In fact L is the B-Lemoine transform β → −β and La = r−1 · L · r is the A-Lemoine transform
α→ −α. The first six will be used as generators of the projective group, and they are normalized
to have a 1 in the first line. The last two will be used as generators of irreducible representations:
they will be used "as is" and must have the right trace (here −1).

Elements La, Lc are not required to generate PG216 itself, but one of them must be used to
generate a subgroup that do not contain r. In fact, SAGE also considers six generators and not
only five. This can be related with the following "unique factorization property": each element x
of PG216 can be written exactly in this order as :

x = tτ · rρ ·mµ · Fψ · Lλ · Lηa (31.8)
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31. Groups acting over the Morley configuration 465

where the exponents range over the multiplicative order of the generator. For example, η ∈ Z/2Z
while ψ ∈ Z/3Z.

31.4.3 Three scalar class-invariants

Let us now consider the characters of PG216. The quotient of this group by PG+
36 = 〈r,m,L〉 is

cyclic. This generates six linear characters χj , j = 0, 1, · · · , 5, that can be written:

χj = (−1)
j×τ(x) × (φ)

j×ψ(x)

where τ (x) , ψ (x) are the exponents appearing in (31.8). Character χ3 can be obtained directly
from the matrix of x by reducing to 1 each non zero element and taking the determinant (projective
quantity). Let us call it the parity of x, notation sgnx. Character χ2 can be obtained directly
from the matrix of x as is squared determinant (projective quantity), noted det2 x.

Finally, let us consider the odd matrices. They have exactly one diagonal non-zero element,
that can be used to normalize the matrix. Proceeding that way, the determinant is now well defined
and ranges over all the sixth roots of the unity. Quantity det2 x is the already described character
χ2, but det3 x defines another characteristic of an odd class. Let us call it the twist. It can be seen
that a non twisted element is such that the two transposed variables have encountered the same
parity of Lemoine sign changes, while these parities are different for twisted transforms.

31.4.4 Character table of PG216

These results allows us to organize the character table of PG216. Obtained using the methods
described in Tinkham (1964) or using SAGE as a black box, the character table C is a 19 × 19

matrix. Let us recall that ∆
.
= 216

(
C · C

)−1
is a diagonal matrix whose elements are the sizes of

the corresponding classes, while C ·∆ · C is the scalar matrix 216 (the order of the group).
In Table 31.1, a class of conjugacy is described by a column (header: order o and cardinal #)

and a character by a row (header: name). We have collected columns (except from the first) and
rows (except from the last) into blocks of three.

o 1 3 2, 6, 6 6 3 2, 6, 6 4, 12, 12
# 1 2+3+3 3 × 3 6 × 3 24 × 3 18 × 3 18 × 3

R1j

1
1
1

Φ Φ Φ Φ + Φ + Φ

sR1j

1
1
1

Φ Φ Φ Φ − Φ − Φ

R2j

2
2
2

2 Φ 2 Φ 2 Φ − Φ 0 0

R3j

3
3
3

3 Φ − Φ − Φ 0 Φ − Φ

sR3j

3
3
3

3 Φ − Φ − Φ 0 − Φ Φ

R6j

6
6
6

−3 0 0
−3 0 0
−3 0 0

−2 Ψ Ψ 0 0 0

R′
6 6 −3 0 0 6 0 0 −3 0 0 0 0 0 0 0 0 0 0 0

where Φ =

 1 1 1
1 φ φ2

1 φ2 φ

, 0 =

 0 0 0
0 0 0
0 0 0

, Ψ =

 1 −2 −2
1 −2φ −2φ2

1 −2φ2 −2φ


Table 31.1: Character table of PG216

Bloc R1;j contains the even linear characters, i.e. describes PG216/PG72. These characters are
duplicated by the parity s to generate the odd linear characters sR1.
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466 31.4. Groups acting over the Morley configuration

CharacterR2;1 correspond to the irreducible non scalar representation of the group PG216/N∆ =
S3 (A, B, C) and is replicated by det2 (and not by sgn since R2;1 vanishes on the odd elements).
The three characters R2;j can be obtained directly by considering the quotient PG216/N12.

CharacterR3;1 is generated by the quotient PG216/N9. We have PG216/N9 = S4 (I0, Ia, Ib, Ic) '
〈r, t, L〉 and a representation is obtained by the morphism : t 7→ t, r 7→ r, L 7→ Lc together with
g 7→ 1, F 7→ 1 . This character is replicated six times by the six linear characters.

The last four representations involve 6× 6 matrices. Let us define :

m6 =

(
φ13 0

0 φ213

)
, F6 =

(
φm2 0

0 m2

)
, L6 =

(
Lc 0

0 La

)
, r6 =

(
r 0

0 r2

)
, t6 =

(
0 13

13 0

)

The first four matrices are obtained by replicating matrices from R3;1 and the last one is chosen to
mix these two copies into an irreducible representation. Using exactly these five matrices leads to
representation R6;1. The other two replicates are obtained by using φF6 or φ2F6 instead of F6. The
last representation is generated by the quotient PG216/N4. It happens that PG216/N4 ' 〈r, t, F 〉.
Therefore R′6 is obtained by replacing L6 by the unit matrix. Since character R′6 vanishes outside
〈m, r, t〉, there is no replications all.

31.4.5 Subgroups PG72, PG18, PG•9
Lets now examine what happen to objects that are fixed by some of the former transforms. The
groups of interest are the Morley group PG18 obtained from 〈t, r,m〉, its extension the Lemoine
group PG72 obtained from 〈t, r,m,L〉 and the strange group PG•9 obtained from 〈m, s〉 where
s
.
= Fr is the strange operator (relation rF ' m2Fr shows that the other choice would have

been equivalent). The SAGE index of these groups are G [ 18, 4 ], G [ 72, 43 ] and G [ 9, 2 ]. We will
see later that PG18 connects the Morley centers, PG72 connects the secondary Morley perspectors
and PG•9 connects the strange objects.

o 1 3 2 6 3 3 3 2 4
# 1 2 3 6 8 8 8 18 18 representation
x 1 m L mL r rm rm2 t t L m L r t

id 1 1 1 1 1 1 1 1 1 1 1 1 1
sgn 1 1 1 1 1 1 1 −1 −1 1 1 1 1

R2 2 2 2 2 −1 −1 −1 0 0 i2 i2 r2 t2
S1 2 −1 2 −1 2 −1 −1 0 0 r2 i2 i2 t2
S2 2 −1 2 −1 −1 2 −1 0 0 r2 i2 r2 t2
S3 2 −1 2 −1 −1 −1 2 0 0 r2 i2 r22 t2

R3 3 3 −1 −1 0 0 0 +1 −1 i3 Lc r +t
sR3 3 3 −1 −1 0 0 0 −1 +1 i3 Lc r −t
R6 6 −3 −2 1 0 0 0 0 0 m6 L6 r6 t6

where i2 =

(
1 0
0 1

)
, r2 =

(
φ 0
0 φ2

)
, t2 =

(
0 1
1 0

)
, and the others as above

Table 31.2: Character table of PG72

The Lemoine group is what is obtained by mapping F 7→ 1. This implies det2 7→ 1 so that
classes and characters are (roughly) collapsing by triples. This leads to the 9 × 9 character table
given in Table 31.2

Concerning the characters, the former block R1 lead to the identity, the former block sR1 to the
signature while each of the former blocks R2, R3, sR3, R6 leads to the single character with the
same name. On the contrary, representationsR′6 splits into the three 2×2 representations S1, S2, S3.
One can see that representation R6 is faithful: PG72 = 〈m6, L6, r6, t6〉, due to (m6r6) (r6m6)

−1
= 1,

to compare with (mr) (rm)
−1

= φ that generates a 3-sized center in 〈m, L, r, t〉 requiring a
projective quotient.

Concerning the conjugacy classes, all the classes of PG216 that were generated using F have
disappeared. The former even classes C (1) , C (m), C (L), C (mL) and odd classes C (t) , C (tL)
remain unchanged. On the contrary, the former class C (r) doesn’t remains connected and splits
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31. Groups acting over the Morley configuration 467

into C (r) , C (rm) , C
(
rm2

)
. We will see later that PG72 is the group connecting the secondary

perspectors.

o 1 3 3 3 3 2
# 1 2 2 2 2 9
x 1 m r rm rm2 t
id 1 1 1 1 1 +1
sgn 1 1 1 1 1 −1
R2 2 2 −1 −1 −1 0
S1 2 −1 2 −1 −1 0
S2 2 −1 −1 2 −1 0
S3 2 −1 −1 −1 2 0

Table 31.3: Character table of PG18

When the Lemoine transforms are discarded either, it remains the projective group PG18 =
〈r, t,m〉. Its character table is the 6×6 matrix given in Table 31.3. Here again, we have a reduction
of both the classes and the characters. Classes C (1) , C (m) are kept, while C (L) , C (mL) are now
perceived as replicas of 1+m and disappear. Classes C (r) , C (rm) , C

(
rm2

)
are kept, but reduced

in size. Finally, C (t L) disappear while C (t) is reduced by half. This results into the disappearance
of characters R3, sR3, R6. It should be noticed that all 2× 2 irreducible representations use only
the six matrices used for the 2× 2 representation of S3.

When all transforms are discarded except from the m Morley and the s strange operators, it
remains the strange group PG•9 = 〈m,Fr〉, which is a 9-sized commutative product group.

31.4.6 Action of the generators on the indices
In the previous sections many transforms have been introduced. In order to see how they connect
(or separate) the various Morley objects into classes, we will examine how they act on the three
digits indexes. This will complete the remarks made by Taylor and Marr (1913) or by Gambier
(1954).

Theorem 31.4.1. The image of any Taylor-Marr triangle Tk by an element of PG216 is a Taylor-
Marr triangle. Indices are transformed according to:

ka kb kc ka kb kc

L ka kb kc t 2− ka −kc −kb
m ka + 2 kb + 2 kc + 2 F ka + 2 kb + 1 kc

r kc + 1 ka + 2 kb s kc ka kb

(31.9)

Proof.Computations are easier when using p
.
= ka − 1, q = kb, r = kc. Using these indices is

underlined by using adding a ′ to the names of the objects. The action of r : α→ β, β → γ, γ → α
on a Taylor-Marr triangle is described on the following table.

points trisect Lubin Lubin trisect points

A′qr
B′ u q β6 α2γ4φ(2 q) γ6 α4β2φ(2 q) C ′ u q

B′zx
C ′ d r γ6 φrα2β4 α6 φrβ2γ4 A′ d r

B′rp
C ′ u r γ6 α4β2φ(2 r) α6 β4γ2φ(2 r) A′ u r

C ′xy
A′ d p α6 φpβ2γ4 β6 φpα4γ2 B′ d p

C ′pq
A′ u p α6 β4γ2φ(2 p) β6 α2γ4φ(2 p) B′ u p

A′yz
B′ d q β6 φqα4γ2 γ6 φqα2β4 C ′ d q

Each vertex of Tk (col. 1) is the intersection of two trisectors, that are named (col. 2) and then
described (col. 3) as passing by two points obtained from 31.2. Then transformation is applied
(col. 4) and the result is processed back (col. 5 and 6). One obtains x = q, y = r, z = p, leading
to (31.9).
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468 31.5. Orbits

Therefore strange remains ever strange, while even and odd (
∑

k ≡ 1) are only permuted by
odd (sgn = −1) elements of PG216.

even =

→ r

↓ 000 120 102

m 222 012 021

111 201 210

, odd =

→ r

↓ 200 110 101

m 122 002 020

011 221 212

, strange =

→ Fr

↓ 100 010 001

m 022 202 220

211 121 112

(31.10)

When canceling all details, "r rotates the vertices, m rotates the trisectors while t swaps the
orientation and therefore the up and the down trisectors".

Moreover it is obvious from (31.2) that each element of PG216 commutes with the isogonal
conjugacy.

31.4.7 The Cones proof about the strange triangles
In an illuminating paper, Connes (1998) has considered the rotations ga with center A and angle
2 (A+ kaπ) /3, etc. Their associated turns are respectively: ω = φpβ/γ, ω = φqγ/α, ω = φrα.
Products gcgb, gbga, gagc are proper rotations and their centers are the intersections of the corre-
sponding trisectors. The product g3

cg
3
bg

3
a is the identity since g3

a is the product of the reflections
with respect to AB and AC, etc. Then Connes has proven that :

Theorem 31.4.2. Let gc, gb, gabe affine transforms such that gcgb, gbga, gagc, gcgbga are not trans-
lations and then let δ = ω (gcgbga). Then we have equivalence between (1) g3

cg
3
bg

3
a = 1 and (2)

δ3 = 1 and U +V δ+W δ2 = 0 where U, V,W are, respectively, the fixed points of gcgb, gbga, gagc.

In our problem, ω (gc, gb, ga) = φp+q+r, so Tk is equilateral if and only if ka + kb + kc 6≡ 1
mod 3. This explains why strange triangles are nor equilateral.

31.5 Orbits

31.5.1 Orbit of a vertex
Theorem 31.4.1 has shown that Morley centers Mk form a single orbit under the action of PG18.
Consider now the orbit of a Morley vertex. It exists a transposition that fixes this point. Therefore,
its orbit under group PG18 is 9-sized. For example, the orbit PG18 (A00), described in the 〈r,m〉
order, contains :

A00, B01, C10 ; A22, B20, C02 ; A11, B12, C21

These are the vertices of the first column of the strange family of triangles, see (31.10) and
Figure 31.6.

One can check that these three triangles share the same centroid Ga
L6
= α2β2γ2, a point on

the unit circle. Noting Ga∗ the isogonal conjugate of this point, one can check that ω2 (Ga
∗) =

−α4β4γ4 and that Ga∗ is the direction of the line B00C00. Therefore, the direction of the axes of
the Morley triangles are given by : δa

.
= (−Ga)∗, etc.

From (31.9), we can see that the strange operator s .
= Fr rotates the vertices of the flagship

triangle T000 according to: A00 → B00 → C00 → A00. For the other Morley triangles, s has to
be transformed by PG18-conjugacy, leading to r{1,2}F {0,1,2}. As barycenter of an orbit, GA is
invariant by PG18 and so are the three δ, while they are rotated by s.

Since the circumcenter (origin) is the barycenter of the three GA, it is also the barycenter of
the nine Meven and the barycenter of the nine Modd.

31.5.2 Orbits of the Morley and the Taylor-Marr centers
When using barycentric coordinates, U 'bar u : v : w has to be interpreted as U = (uA+ vB + wC) /(u+
v + w. Taylor and Marr have proven that :

Mk '
bar

sinA

(
cos

A+ 2 kaπ

3
+ 2 cos

B + 2 kbπ

3
cos

C + 2 kcπ

3

)
: etc : etc (31.11)
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A

B

C

Ga

A00

B01

C10

A22

A11

Figure 31.6: The vertex A00 and its 9-sized orbit

But this should not give the impression of a 27-sized family. When replacing sin and cos using
exp i (A+ 2 ka) /3

L6
= −φp γ/β, etc from Figure 31.2 and the inscribed angle theorem, one re-obtains

the Connes (1998) dichotomy. The Morley case is:

Mk
L6
=

1

3

∑

3

((
φr − φ−p−q

)
α2β4 −

(
φp+q − φ−r

)
α4β2

)
when p+ q + r 6≡ 0

(remember: q = kb, but , p = ka − 1), while the M100 obtained from (31.11) is not the center GA
of the strange triangle T100, but the point at infinity δa, i.e. the direction of the perpendicular
bisector of segment [B00C00]. This strange behavior is due to cancellation of φ-powers according
to 1+φ+φ2 = 0. The barycentric formula looks symmetric, but an effective symmetry would only
allow a 9-sized PG18-orbit for M000, not to a 18-sized one.

Let us consider the polynomial Φ (Z) enumerating the Morley affixes. We have :

Φ (Z)
.
=

∏

g∈PG18

(Z− g (z000))

This polynomial is obviously invariant under the action of PG18 and therefore can be expressed
using only the symmetrical functions σj . One obtains :

Φ (Z) = Z18 − 6Z16σ2 + 12Z15σ3 + 15Z14σ2
2 − 60Z13σ2σ3 + (rather large expression)

This expression cannot be factored in Q [zA, zB , zC ] and therefore

31.5.3 Orbits of the primary perspectors
As already said, each of the 27 triangles Tk are perspective with ABC: lines AAk, BBk, CCk are
concurring at a same point, the perspector Pk. A "good looking formula" is Kimberling, 1998-
2024 : Pk'bar sinA ÷ cos ((A+ 2 kaπ) /3) : etc : etc. But the Cones dichotomy is ever present.
Using again Figure 31.2, one obtains P100

L6
= S3 − S1S2 + S2

1S3/S2 where S1 = α2 + β2 + γ2, etc,
result that can be propagated to all the Pstrange via the strange group PG•9. On the contrary, P000

has a rather tedious affix (SAGE-length 761), and its PG18-orbit is 18-sized.
The barycentric formula explains nevertheless why all the 27 Pk share the same alignment

properties. For example, on each line issued from A, there are three Pk: an even one (circle), an
odd one (box) and a strange one (cross). Moreover, all the 27 Pk are on a same circular quintic
(the curve on Figure 31.7a). Due to the invariance under PG18 , the equation of this curve can
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470 31.5. Orbits

(a) Family of X(357) is inscribed in a quintic (b) Family of X(1507) is inscribed in a quintic

Figure 31.7: Perspectors of first and second kind

be written using only the full symmetric functions σj . See Gibert (2004-2024, reference Q003) or
Douillet (2014a) for more details.

In Subsection 31.2.3, we have already introduced the adjunct triangles T ∗k obtained by consid-
ering down-up intersections, instead of the up-down ones. These triangles are not equilateral,
but are nevertheless perspective with ABC with respect to (Pk)∗ (general property of the isogonal
duality). Points P ∗000, P ∗111 and P ∗222 are X(358), X(1135) and X(1137) in the Kimberling database.
Obviously, P ∗j 'bar = sinA × cos ((A+ 2 kaπ) /3) : etc : etc

By isogonal conjugacy, curve Q003 transforms into an algebraic curve of degree 10. But A is
a double point of Q003, so that (BC)

2 is a factor of Q003∗ and it remains an algebraic curve of
degree 4, which contains all the 27 P ∗k . See Gibert (2004-2024, reference Q002) or Douillet (2014a)
for more details. Here again, the coefficients only depends of the σj .

As it can be seen, by computing the corresponding determinant or otherwise, the points Mk,
Pk and P ∗k that belong to the same index are aligned.

31.5.4 Orbits of the secondary perspectors

The parameterization zA = α6, etc was tailored in order to access individually each of the in-
excenters. The group PG18 leaves invariant the incenter I0, and induces S3 on the excenters
IaIbIc. The full S4 group is obtained by introducing the Lemoine transforms, leading to the group
PG72. Called "transformation continue" by Lemoine (1900), the B-Lemoine transform moves these
in-excenters according to I0 ←→ Ib, Ia ←→ Ic while its action on the barycentrics is a : b : c 7→
−a : b : c and its action on α, β, γ has already been described using the L matrix given in (31.7).

It happens that triangles Tk are perspective with IaIbIc: lines IaAk, IbBk, IcCk are concurring
at a same point, the secondary perspector Qk. A direct computation gives Q100

L6
= −s1s2s3 + s3

2 +
s2

3 − 2 s2
2s3/s1 for the strange perspector, while the affix of Q000 is skew enough ((length 1042) to

generate a 18-size orbit.
In fact, triangles Tk are not only perspective with IaIbIc, as carried by respectively by groups

PG•9 and PG18. They are also perspective with triangles I0IcIb, etc as carried by groups PG72 and
PG+

36.
These 27 Qk are involved in alignments with IaIbIc as shown in Figure 31.7b. For example, on

each line issued from Ia, there are three Qk: an even one (circle), an odd one (box) and a strange
one (cross). Moreover, all the 27 Qk are on a same circular quintic (the curve on Figure 31.7a).
This is a new result, more details in Douillet (2014a). Due to the alignments, the 3 excenters
are singular points while the incenter is ordinary: the curve is not invariant under the Lemoine
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transforms and its equation must be written in Lubin(2), using the symmetrical functions Sj where
S1

L6
= α3 + β3 + γ3, etc instead of the σ1

L6
= α6 + β6 + γ6, etc.

The equation of a 5-curve Q involves 21 coefficients and can be written as a 21×21 determinant.
But the expression of Q000 is large (8 times larger thanM000) while the simplification zA = α3, etc
can no more be used. But numerical investigations allow to identify some points on Q: the
vertices A,B,C (3), I0 (1), the excenters (being singular, they count as 3×3, the umbilics (2),
(Ia + Ib + Ic) /3 who is the singular focus and belongs to the curve (2+1), while the Bevan pair
counts 1 (X(2444) are indiscernible X(2445) belongs to Q (1) : this amounts to 19.

Therefore we can conduct the computations using Lubin(2), leaving only one coefficient unde-
termined. Thereafter, one can go back to Lubin(6) and use the simpler Q100 to determine the only
possible equation. The proof comes from testing that (1) Q000 ∈ Q and (2) the equation can be
send back to Lubin(2). Then PG72 extends the property to all the 27 Qk.

The adjunct triangles T ∗k are themselves perspective with IaIbIc, defining a family of perspectors
Rk (they are not the the conjugates of the Qk). These points are aligned by triples (even, odd,
strange) with the excenters. Moreover, I0, Pk, Rk are aligned for each k. But, contrary to the other
families, there is no quintic that contains all the 27 Rk, while the circular quintic that contains
the 18 "true" perspectors contains no Kimberling centers. Even the 1, 0, 0 affix is not so simple,
since one has :
R100

L6
=
(
s3

1s2s3 − s2
1s

3
2 − s2

1s
2
3 + s1s

2
2s3 + s4

2 − s2s
2
3

)
÷
(
s2

1 − s2

)

31.6 Some applications

31.6.1 Martiny circles

Let us choose a Morley vertex, say V = A00. It belongs to exactly an even and an odd Morley tri-
angle (here T000 and T200). The four other vertices of these two triangles are cocyclic together with
the ABC vertex used to name V (here A, B00, B02, C00, C20). According to Gambier (1954), this
unpublished result was obtained by H. Martiny (1882-1963). This can be checked directly, and the
center of the circle is easy to find. Let us call it DA00. Its images under 〈m〉 are DA00, DA22, DA11

and we have :

mk (DA22)
L6
= −α2β2γ2

1 +

(
β

γ
φk +

γ

β
φ−k

)
βγ α4

Over the 〈m〉 orbit, the parentheses sum to 0 and the centroid of these points is antipodal with
the already obtained point GA

L6
= α2β2γ2. Moreover, these parentheses are real, and this also

applies to the obvious :

A
L6
= −α2β2γ2

1 +

(
α2

βγ
+
βγ

α2

)
βγ α4

Therefore A, DA00, DA22, DA11 are aligned and the three circles are tangent in A. Triplicating
this result by the operator F , we can generate the nine A-Martiny circles: they all go through
A and the angles they form with each other are multiples of 60° (since the −φkα2β2γ2 are at
120° from each other).

31.6.2 Equilateral perspectors

Specific properties appear when several Morley centers are involved at the same time. In order
to illustrate the problematic, we will study two problems of this kind: the perspectivity of two
Morley triangles, and the intersection of two Morley cubics. The set of all the pairs {k, κ} where
k 6= κ contains (18×17)/2 = 153 elements. Let us say that a pair is even or odd according to sgn g
where κ = g · k and g ∈ PG18. Then, under the action of PG18, the even pairs form four 18-sized
orbits, while the odd pairs form nine 9-sized ones (as it should be, we have 18× 4 + 9× 9 = 153).

Let us see why. Since PG18 is faithful over the Mk, g ({x, y}) = {x, y} implies either xg =
x, yg = y (and then g = 1) or xg = y, yg = x (and then xg2 = x, so that g is odd). Conversely,
the order of any g ∈ PG18 is 2.
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C00
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C02

C20

C10

C11

A00
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A02

A20
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B00

B02

B20

B21

B10

B11

B12

Figure 31.8: The nine A-Martiny circles and their centers

The action of 〈s, m〉over the 27 Taylor-Marr indices is summarized by the following table :

T000 even odd strange

→ m → ? → m → m

id A00 000 222 111 120 102 200 122 011 100 022 211

s B00 000 222 111 012 210 020 212 101 010 202 121

s2 C00 000 222 111 201 021 002 221 110 001 220 112

We will now consider the perspectivity between two Morley triangles, written as T000 · gk and
T000 · gk′ : vertices are ordered according to the order transmitted by PG18 from the ordering
A00, B00, C00. Oriented that way, these triangles are homothetic and therefore in perspective.
Their perspector Skκ is obviously on the line MkMκ joining the centers. These perspectors can
therefore be characterized by the real numbers µk such that :

Sk;000 = µM000 + (1− µ)Mk

After some computations, one obtains the following table :

Tk, the other triangle PG18 perspector

m,m2 222,111 18 P ∗000, P
∗
111

r, r2 120,102 18 S, S r2

mr, m2r2 012,210 18 S s, S sr2

m2r, mr2 201,021 18 S s2, S s2r2

tm3, tm1r2, tm1r 200,020,002 9× 3 A00, B00, C00

tm1, tm2r2, tm2r 122,212,221 9× 3 Ŝ, Ŝ s, Ŝ s2

tm2, tm3r2, tm3r 011,101,110 9× 3 S̃, S̃ s, S̃ s2

Here again, except from the first one, the orbits are grouped into triples under the action of the
strange operator s, so that we have essentially 3 new points to introduce :

µ
L6
=

(φ+ 2)
(
α2β2 − γ4

)

(β2 − γ2) (γ2φ2 − α2)
µ̃
L6
=
α2γ2φ2 + α2β2φ+ 2α4 + 2β2γ2

α2β2φ2 + α2γ2φ− α4 − β2γ2

µ̂
L6
=

(
α4β2 − 2α2γ4 + β4γ2

)
φ2 −

(
α4γ2 − 2α2β4 + β2γ4

)
φ

α2γ4φ2 − α2β4φ+ (2φ+ 1)α2β2γ2 + α4β2 − α4γ2 + β4γ2 − β2γ4
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31.7 Summary of this chapter
When drawing the configuration formed by the bisectors of a triangle, one obtains the four points
known as the in-excenters. One can see that their affixes are the roots of the polynomial :

Φinex (Z) = Z4 − 2Z2σ2 + 8Zσ3 − 4σ1σ3 + σ2
2

where the σjare the symmetric functions in zA, etc. Since this polynomial doesn’t factor naturally,
the four in-excenters form an indiscernible family, that must be considered as a whole. These four
points are connected by the Lemoine transforms, that were called "transformations continues" in
the original paper (Lemoine, 1900).

The present article is about the Morley configuration, that occurs when drawing the trisectors
of the angles of a triangle. In this configuration, a family of 18 triangles can be identified that
are together equilateral and in perspective with the original triangle. Their centers are called the
Morley centers and form a 18-sized algebraically indiscernible family .

We have investigated the operators acting over the Morley configuration. The usual approach is
to only consider these operators as simple heuristics. On the contrary, we have put these operators
in the foreground, and shown how they can be naturally introduced from the parameterization
given by Lubin (1955)

We have elicited the structure of the groups formed by the various subsets of these operators.
The reference group is PG216, inventoried as G [ 216, 92 ] in the SAGE database. The group PG18

(inventoried as G [ 18, 4 ]) is the one that connects the Morley centers in a single orbit. When
enlarged with the Lemoine transforms, we obtain the group PG72 (inventoried as G [ 72, 43 ]) that
connects the perspectors between the Morley triangles and the in-excentral triangles.

We have also examined the various attempts made to enlarge the Morley family, using equilat-
eral triangles that are not in perspective or perspective triangles that are not equilateral. In both
cases, the new objects are not connected by the Morley group, but by a smaller group that explains
why these attempts are behaving strangely. In fact, they appear as too symmetric to fulfill their
requirements.
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Chapter 32

Using Kimberling’s database into
Maple

In this chapter, we give the specifications of our implementation of the Kimberling ETC. At the
present moment, this implementation is restricted to a private use. The intent was to participate to
a distributed maintenance of the database, together with providing "random search keys", specific
to each local copy, in order to allow a distributed method of proof.

The pillar of everything is the tandem ~/etc/bar_igcta.csv and sk that is

1.written once for ever using mysql/phpMyAdmin, and cured until it becomes Maple-compliant

2.read and parsed by Maple at the beginning of each session.

32.1 Sparse version (2019 and after)
The old procedure relire has been split. The new procedure relire deals with the formal val-
ues, stored in the file ~ipse/public_html/etc/bar_igtca.csv. On the other hand, procedure
reliresk reads the maple archive stored as cat(encyfile[1 .. -9], "relire_sk/pas_toujours/relire_sk.m").

32.1.1 How-to update
1.copy ~ipse/docs/Cherche/Geometry/ETC_2018 towards .../ETC_2023. Suppress every-
thing, except from download.sh and the various links (the *.gif are used by the etc files,
the other are probably useless).

2.update the number of pages to load, update http:// into https:// and run the batch
download.sh.

3.Run the builders for the search keys. They are in relire_sk.mw. See Alg. 6.4, Alg. 6.7

new_build_sk(non destructive). Uses Geometry/ETC_2023

newbuild_enc_sort(non destructive).
Uses ~ipse/public_html/etc/sk_plex.csv Each item is 1=jj ; 2,3,4= sk[jj]
; 5=xk[jj]

exec save (in relire_sk.m)
fac47, smax, siz_enc, list_collisions
enc_sort, fk, sk

4.Then the formal values of the coordinates can be loaded.

32.1.2 Duplicates
From now on (2023), it will be assumed that reliresk contains the authoritative values, while
their counterparts in relire are no more maintained. Shouldn’t be loaded.

gerdat list of lines going through the point. Skip it!
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hc hc[j]=sk[j][1]*_facency. Skip it !

enc_sort saved in relire_sk.m. Removed from relire.

gg,tt,cc,ac isogon, isotom, complem, anticomplem. No more used

32.1.3 la table barita
j ff sk xyz

6800 0 −1.498509 −2.971024 5.469533 −1.498509 −2.971024 5.469533

6801 0 0.3093201 0.7440262 −0.05334631 0.3093201 0.7440262 −0.05334631

6802 0 −0.6812215 0.09831283 1.582909 −0.6812215 0.09831283 1.582909

6803 0 0.4724080 0.5413951 −0.01380309 0.0 0.0 0.0

6804 0 0.2233194 0.1687478 0.6079328 0.0 0.0 0.0

6805 0 0.2628773 0.2279281 0.5091946 0.0 0.0 0.0

6806 0 0.4146746 0.4550234 0.1303019 0.0 0.0 0.0

6807 0 −0.3066239 −0.6240702 1.930694 0.0 0.0 0.0

6808 0 −2.636019 −4.108946 7.744965 0.0 0.0 0.0

6809 0 1.581039 2.199954 −2.780993 0.0 0.0 0.0

6810 na −0.03692055 −0.2205824 1.257503 6810 0 0

6811 na −0.1950282 −0.4571182 1.652146 6811 0 0

6812 na −0.3790703 −0.7324531 2.111523 6812 0 0

6813 na −148.1508 −221.8054 370.9562 6813 0 0

6814 na −1.684099 −2.684833 5.368932 6814 0 0

32.1.4 Description
When searching for points satisfying some property, we want to use a procedure like

localize:= proc(expr, px := vx) global myfun; local lediv;
myfun := unapply(evalf(subs(iciK, expr)), op(convert(px, list)))@OP;
lediv:= evalf(sqrt(add(myfun(sk[j])^2, j=1..10)/10));
seq(‘if‘(abs(myfun(sk[j]))/lediv < 1/1000000000000, j, NULL), j = 1 .. smax);
end proc; where the index ranges through the smax = 15639 points. Thus we need a full

list of numerical barycentrics (named sk in our code), even where we don’t have created the
corresponding formal values. This is done using two tables.

fk in {0, 1, 2}. Generalizes the flag ff , by introducing fk=2 when the barycentrics of
X(n) have complex values when using a = 6, b = 9, c = 13.

sk generalizes xyz , i.e. contains the numerical values of the barycentrics of X(n) for n ≤
15639. For the sake of efficiency, this table is mostly stored in $ipse/public_html/etc/t6913.csv
(the real values), while the complex values are stored in $ipse/public_html/etc/sk_plex.csv
(and also corrections, when required).

32.1.5 Rationales
This paradigm shift has been allowed by the fact that, nowadays, the Kimberling (1998-2024)
database provides the searchkeys for the three systems (6, 9, 13), (9, 13, 6) and (13, 6, 9), and not
only for the (6, 9, 13). They are buried in the
http://faculty.evansville.edu/ck6/encyclopedia/Search_6_9_13.html, etc. tables. Put
together, these three numbers are, quite all of the time, the normalized trilinear coordinates of the
given point, and we can use

[x, y, z] = [6tA, 9tB , 13tC ]

To be more specific, the table fk is filled according to the following criteria (where =ε is defined
by "less different than 1E − 16"), we have three kinds of points

fk=0 where x + y + z =ε 8
√

35: ordinary points at finite distance, then normalized so that
x+ y + z = 1
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fk=1 where x+ y + z =ε 0: points at infinity, then normalized so that 1/x+ 1/y + 1/z = 1.

fk=2 for the other cases (complex points... or errors) 5000, 5001, 5002, 5003, 5374, 8072,
8073, 11065, 11066, 14091

We can check that (for n ≤ jmax = 6802) all the corresponding normalized values (see Section 6.3)
are equal with the tabulated xyz except from the complex points (expected behavior).

Remark 32.1.1. This gives a better method to exclude the points that are perceived as having a
"bad behavior":

1.Eight points non algebraic points, tagged by fdat[n]="special", namely X(n) where n=
368, 369, 370, 1144, 3232, 5373, 5394, 5626.

2.Eight points with "too long" barycentric formulas (> 735), tagged by fdat[n]="len=...",
namely X(n) where X(n)= 5676, 5677, 5678, 5679, 5680, 5681, 5682, 5973.

32.1.6 Usage: the new ency procedure
1.We start from [-288, 1701, -2197] or from [3538, 5293, -8831]. The normalize algorithm

Alg. 6.2 uses the value of
|x+ y + z|
|x|+ |y|+ |z|

to decide if x+y+z 6≈ 0 (i.e. M 6∈ Lb) or x+y+z ≈ 0 (i.e. M ∈ Lb). And then the column is
standardized according its type. In the first case, we divide x by −288+1701−2197 = −784.
In the second case, we multiply x by the sum of inverses (1/3538 + 1/5293− 1/8831) ≈
0.00036. This gives the searchkeys 0.3673469 and 1.2677958.

2.The key is compared with the existing ones. The answer is either fail (and provide an interval
for the keys) or a line from enc_sort. First element is a true key, second element is a sequence
of integers, i.e. a single integer (best case) or a sequence of several integers

3.In the second case, a subsequent test is made using the three coordinates. More details at
Alg. 6.8.

32.2 Older versions (2017 and before)
this section has been cancelled (was 31.2)

32.3 Synchronizing formal barycentrics and the search keys
this section has been cancelled (was 31.3)

32.4 Requirements (all versions)
this section has been cancelled (was 31.4)

32.5 Building the database
this section has been cancelled (was 31.5)

–
–
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