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Abstract

Using GA’s capacities for formulating reflections, we solve an interesting

multiple-tangency problem. The solution is obtained in two ways, the

easiest of which transforms the relevant reflections into a single rotation.

The solution is validated via a GeoGebra worksheet.

The two small circles are congruent. What is the ratio b/a?
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1 Statement of the Problem

Fig. 1 Shows the problem statement ([1], [2]).

Figure 1: Problem statement: The two small circles are congruent. What is the

ratio b/a?

2 Ideas that We Will Use

See also Macdonald [3].

1. Two multivectors A and B are equal if and only if all of their respective

parts of equal grade are equal to each other. For example, in the case of

two vectors u and v, if u · v+ u∧ v = α+ βB, where α and β are scalars,

and βB is a bivector, then u · v = α, and u ∧ v = βB.

2. We will use Macdonald’s definitions for the inner and outer product ([3],

p. 101) . In the case of vectors, u · v = ⟨u · v⟩0, and u ∧ v = ⟨u · v⟩2.

3. The reflection of a vector q with respect to vector t can be written as the

product tqt−1, which is equal to [tqt] /∥t∥2.

Thus, the reflection of q with respect to t̂ is t̂qt̂ .
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4. Products of unit vectors as rotation operators. (See Fig. 2.) The product

p̂q̂ of two unit vectors p̂ and q̂ rotates (without dilation) any vector v

that is parallel to the plane that contains p̂ and q̂.

Or more correctly, any vector v

that is parallel to the bivector

p̂ ∧ q̂. Macdonald ([3], p. 98

) presents a set-theoretic defini-

tion as well.

(a) v (p̂q̂) evaluates to the rotation of p by the bivector angle from p̂ to

q̂.

(b) (q̂p̂)v = v (p̂q̂).

(c) Therefore,

(q̂p̂)v (p̂q̂) = [(q̂p̂)v] (p̂q̂)

= [v (p̂q̂)] (p̂q̂) ,

which evaluates to the rotation, twice, of v through the bivector angle

from p̂ to q̂ . Or equivalently, through the double of the bivector

angle from p̂ to q̂.

(d) The product p̂q̂ is by definition p̂ · q̂+ p̂∧ q̂. It can also be written in

the “trigonometric” form cos θ+i sin θ, where θ is the angle of rotation

from p̂ to q̂. (The equivalent exponential form is eiθ.) Equating the

scalar parts of p̂ · q̂+ p̂ ∧ q̂ and cos θ + i sin θ, we have cos θ = p̂ · q̂.
Equating the bivector parts, we have i sin θ = p̂ ∧ q̂, from which

sin θ = −i (p̂ ∧ q̂).

Figure 2: The product v (p̂q̂) evaluates to the rotation of p by the bivector

angle from p̂ to q̂. The product [v (p̂q̂)] (p̂q̂) evaluates to the rotation, twice, of

v through the bivector angle from p̂ to q̂ . Or equivalently, through the double

of the bivector angle from p̂ to q̂.
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3 Analysis of the Problem, and Initial Formula-

tion

Because GA is particularly suited to formulating/manipulating rotations and re-

flection, we analyze and formulate the problem in those terms (Fig. 3). Note, too,

that we use the similarity of triangles to derive the relation (a+ 2r) / (a− 2r) =(√
a2 + 4b2

)
/a, where r is the radius of the two small circles (Fig. 3).

Figure 3: Diagram for exploration, analysis, and initial formulation. We can see

that ray
−−→
BE is the reflection of ray

−−→
BD with respect to ray

−−→
BC2, and that

−−→
BE

is also the reflection of ray
−−→
BA with respect to ray

−−→
BC1. In addition, from the

similarity of triangles △C1OF and △BOA,
C1O
OF

=
BO
OA

, from which
a/2 + r

a/2− r
=√

(a/2)
2
+ b2

a/2
. That relation can be simplified to

a+ 2r

a− 2r
=

√
a2 + 4b2

a
.

4 Solution Strategy

In Fig. 3, we have already identified a relationship between a, b, and r from

similarity of triangles. We will derive a second, independent relationship between

a, b, and r from the reflection relationships shown in Fig. 3. After eliminating r

from that pair of equations, we will find the ratio b/a.
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5 Final Formulation

To implement our solution strategy, we formulate the problem as shown in Fig.

4.

Figure 4: Formulation in GA terms. We define two vectors: w =
a

2
â+ bai, and

z = (a− r) â+ rai. The vector ŝ is the reflection of â with respect to z, and is

also the reflection of âi with respect to w. Thus, ẑâẑ = ŵ (âi) ŵ . Also shown, for

convenience, is the angle ϕ, to which we will refer later.

We define two vectors:

w =
a

2
â+ bai, for which ∥w∥2 =

a2

4
+ b2, and

z = (a− r) â+ rai, for which ∥z∥2 = (a− r)
2
+ r2.

(5.1)

We also have two independent equations in a, b, and r:

a+ 2r

a− 2r
=

√
a2 + 4b2

a
(5.2a)

ẑâẑ = ŵ (âi) ŵ. (5.2b)

6 Solution

6.1 Derivation of a relation between a, b, and r

Starting from Eq. 5.2, we will derive a relation between a, b, and r in two

different ways.
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6.1.1 First Method: Substitution into Eq. (5.2)

We begin by substituting our expressions for w and z (Eqs. 5.1) into Eq. 5.2.

Because the product of any three coplanar vectors evaluates to a vector, each side

of the equation ẑâẑ = ŵ (âi) ŵ is a vector. By substituting our expressions for

for w and z into that equation, we transform each side into a linear combination

of â and âi. Then, we use the fact that â and âi are perpendicular to each other

to derive an equation for r in terms of a and b.

More specifically, we will first obtain an equation for r by equating â terms,

after which we will verify that equation by deriving it by equating âi terms.

First, we transform Eq. (5.2) slightly:

ẑâẑ = ŵ (âi) ŵ

zâz

∥z∥2
=

w (âi)w

∥w∥2
.

Now, making our substitutions for z, w, ∥z∥2, and ∥z∥2,

[(a− r) â+ rai] â [(a− r) â+ rai]

(a− r)
2
+ r2

=

[a
2
â+ bai

]
(âi)

[a
2
â+ bai

]
a2

4
+ b2

After cross-multiplying, expanding, and simplifying, we arrive at[
a (a− 2r)

(a− r)
2
+ r2

]
â+

[
2r (a− r)

(a− r)
2
+ r2

]
â̂i =

[
4ab

a2 + 4b2

]
â+

[
4b2 − a2

a2 + 4b2

]
â̂i. (6.1)

Formally, we take the inner prod-

uct of both sides with â, tak-

ing advantage of the fact that

â ·
(
â̂i
)
= 0.

Now, we equate the â coefficients of the two sides, thereby obtaining[
a (a− 2r)

(a− r)
2
+ r2

]
=

[
4ab

a2 + 4b2

]
.

From this equation, we obtain the following quadratic in r:

8br2 + 2 (a− 2b)
2
r − a (a− 2b)

2
= 0,

An additional argument for the

uniqueness of the solution r =
a

2
− a2

4b
is that as we will now

see, this root is the only one that

makes the âi coefficients equal,

as well as the â coefficients.

whose two roots are r =
a

2
− b, and r =

a

2
− a2

4b
. From Fig. 4, we can see

that r =
a

2
− b is a negative number. Therefore,

r =
a

2
− a2

4b
. (6.2)

To validate that result, we also solve for r by equating the âi coefficients of

both sides of Eq. (6.1)

2r (a− r)

(a− r)
2
+ r2

=
4b2 − a2

a2 + 4ab
.

6



After cross-multiplying, expanding, and simplifying, we arrive at

16b2r2 − 16ab2r + a2
(
4b2 − a2

)
= 0,

which has the roots

r =
a

2
± a2

4b
.

Because the radius r cannot be larger than
a

2
, the root

a

2
+

a2

4b
is impossible.

Therefore, as in Eq. (6.2), r =
a

2
− a2

4b
.

6.1.2 Second Method: Transforming Eq. (5.2) into a Rotation of â

This method uses the “rotation operator” properties of products of unit vectors.

We begin by transforming Eq. 5.2 :

ẑâẑ = ŵ (âi) ŵ

ŵẑâẑŵ = ŵŵ (âi) ŵŵ

[(ŵẑ) â] ẑŵ = âi

[â (ẑŵ)] ẑŵ = âi.

Next, we recognize that âi is the rotation of â by π/2 in the sense of i, and that We can express this reasoning

in exponential form by writing

âei2ϕ = âeiπ/2, from which ϕ =

π/4.

[â (ẑŵ)] ẑŵ is the rotation of â by twice the angle of rotation (call it ϕ) from ẑ

to ŵ in the sense of i. Thus, ϕ = π/4.

Now, we equate the expansion of ẑŵ to the trigonometric form of that

product:

ẑ · ŵ + ẑ · ŵ = cosϕ+ i sinϕ. (6.3)

Because ϕ = π/4, cosϕ = sinϕ. Therefore, making use of the ideas that we

reviewed in Section 2, our derivation is as follows:

cosϕ = sinϕ

ẑ · ŵ = −i {ẑ ∧ ŵ}
z ·w = −i {z ∧w}

⟨zw⟩0 = −i⟨{zw}⟩2

⟨[(a− r) â+ rai]
[a
2
â+ bai

]
⟩0 = −i⟨

{
[(a− r) â+ rai]

[a
2
â+ bai

]}
⟩2

a

2
(a− r) + br = −i

{[
b (a− r)− a

2
r
]
i
}

a

2
(a− r) + br = b (a− r)− a

2
r

∴ r =
a

2
− a2

4b
(6.4)
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Figure 5: A careful examination of this figure confirms that b =
2a

3
, and r =

a

8
.

7 The result: b =
2a

3
, and r =

a

8

Substituting the result r =
a

2
− a2

4b
in Eq. (5.2), we obtain

b =
2

3
a. (7.1)

Thus we also find that r =
a

8
. These results are confirmed by Fig. 5.
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