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Abstract

The Conformal Emergent Reality Model (CERM) proposes a new
paradigm in which spacetime is not a fundamental construct but
emerges dynamically from a deeper Conformal geometry manifold
(M,γµν) coupled with a scalar field Ω(x). This paper presents a com-
prehensive theoretical framework for CERM, detailing its mathemat-
ical foundations, field equations, and implications for quantum field
dynamics (QFD) and quantum electrodynamics (QED). By attribut-
ing gravitational anomalies to the behavior of Ω(x), CERM elimi-
nates the need for dark matter and dark energy, offering a unified
explanation for galactic rotation curves, cosmic acceleration, and the
arrow of time. The model predicts observable phenomena, such as
modifications to gravitational wave propagation, time-varying parti-
cle masses, and entropy growth driven by the evolution of Ω(x). These
predictions are systematically analyzed alongside unresolved theoreti-
cal challenges, providing a pathway for future observational tests and
refinements.
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1 Introduction

1.1 Motivation

The ΛCDM paradigm has been remarkably successful in explaining key cos-
mological observations, such as the accelerated expansion of the universe
and the dynamics of galaxies, by invoking two mysterious components: dark
matter (DM) and dark energy (DE). Despite decades of experimental efforts,
however, these components remain undetected, leaving their fundamental
nature a profound mystery. This lack of direct evidence has led to growing
skepticism about whether DM and DE are truly physical entities or merely
placeholders for gaps in our understanding of gravity and spacetime.

The Conformal Emergent Reality Model (CERM) offers a bold alterna-
tive by eliminating the need for DM and DE altogether. Instead, CERM
attributes observed gravitational anomalies—such as flat galactic rotation
curves and cosmic acceleration—to the geometry of a conformal manifold
(M,γµν) and the dynamics of a scalar field Ω(x), which determines phys-
ical scales. By redefining the very fabric of spacetime, CERM provides a
unified explanation for these phenomena without introducing hypothetical
substances.

1.2 Core Idea

CERM is founded on the radical principle that spacetime is not a fundamen-
tal construct but emerges from a deeper conformal reality. This paradigm
shift fundamentally redefines our understanding of distances, durations, and
even the passage of time itself. The core tenets of CERM are:

• Conformal Geometry as Fundamental Reality: At the deepest
level, reality is described by a conformal manifold (M,γµν), which en-
codes causal structure but lacks an intrinsic scale. This framework
aligns with the mathematical elegance of conformal invariance while
addressing its limitations in traditional models.

• Emergent Spacetime via Ω(x): The scalar field Ω(x) dynamically
defines the physical metric:

gµν = Ω2γµν , (1)
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thereby establishing measurable intervals of space and time. The geo-
metric relationship of spacetime emergence is provided in Appendix
F for a better understanding.

• Phase Space Expansion and Entropy Dynamics: The evolution
of Ω(x) drives the geometric expansion of phase space, increasing en-
tropy and enforcing the Second Law of Thermodynamics. This replaces
statistical entropy with a geometric framework where entropy growth
is tied to the conformal scaling of spacetime:

S ∼
∫
d3xΩ3(x)ρ(x) ln ρ(x), (2)

The geometric relationship between entropy, phase space, and Ω(x) is
derived in Appendix G.

• Arrow of Time from Boundary Conditions: Unlike conventional
physics, CERM integrates the arrow of time seamlessly into its confor-
mal framework. The evolution of Ω(x) is governed by boundary condi-
tions at cosmic extremities, aligning with Roger Penrose’s Conformal
Cyclic Cosmology (CCC). In this view, the ultimate fate of one cosmic
cycle becomes the birth of the next, providing a natural mechanism for
the directionality of time.

By framing spacetime as an emergent property, CERM bridges the gap
between quantum mechanics, gravity, and cosmology within a single confor-
mal framework. This approach not only resolves longstanding puzzles, such
as the flatness of galactic rotation curves and the accelerated expansion of the
universe, but also opens new avenues for exploring the fundamental nature
of reality.

2 Conformal Geometry in CERM

2.1 Mathematical Foundations

A conformal manifold (M,γµν) is defined by an equivalence class of metrics
related by local rescalings:

γ̃µν = e2ϕ(x)γµν , (3)
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where ϕ(x) is any smooth function. This property reflects the scale-
invariant nature of the conformal geometry, which encodes causal structure
but lacks an intrinsic notion of distance or time.

In the Conformal Emergent Reality Model (CERM), this symmetry is
broken by introducing a dynamical scalar field Ω(x), which fixes the physical
metric gµν as:

gµν(x) = Ω2(x)γµν(x). (1)

Here, Ω(x) dynamically determines measurable intervals of space and
time, effectively ”emerging” spacetime from the underlying conformal man-
ifold. This mechanism aligns with the principle that physical scales are not
fundamental but arise from deeper geometric properties.

The action for CERM combines conformal gravity with matter fields:

S =

∫
d4x

√
−γ

[
Ω2

2κ
R(γ)− 1

2
γµν∂µΩ∂νΩ− AΩ4 − ρmatter(x)

Ω2
+ LSM

]
, (4)

where:

• R(γ) is the Ricci scalar of the conformal metric γµν ,

• κ = 8πG is the gravitational coupling constant,

• ρmatter(x) is the local matter density,

• A is a dimensionless constant,

• LSM is the Standard Model Lagrangian coupled to the physical metric
gµν .

This action explicitly breaks conformal invariance, ensuring predictive
power while retaining compatibility with General Relativity (GR) in appro-
priate limits.

In the Conformal Emergent Reality Model (CERM), the scalar field Ω plays
a central role in dynamically determining physical scales. To ensure clarity
and consistency, Appendix N provides a brief explanation of the terms Ω,
Ω(x), and Ω(t), and their usage throughout the model.
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2.2 Conformal Invariance and Gauge Fixing

The Einstein-Hilbert term R(γ) is not conformally invariant, unlike tradi-
tional conformal gravity theories that employ the Weyl tensor Cµνρσ. CERM
intentionally breaks conformal invariance for three key reasons:

1. Predictive Power: The Weyl tensor’s fourth-order equations often
introduce ghost instabilities. By using second-order equations derived
from R(γ), CERM avoids these issues.

2. GR Compatibility: Retaining R(γ) ensures that CERM reduces to
GR when Ω(x) → constant, preserving GR’s empirical successes (e.g.,
Solar System tests).

3. Dynamical Gauge Fixing: The scalar field Ω(x) acts as a compen-
sator, akin to the Higgs mechanism, selecting a physical metric gµν
from the conformal class [γµν ].

2.3 Field Equations

Varying the action S with respect to γµν yields modified Einstein equations:

Ω2Gµν(γ) +Hµν(Ω) = 8πG0Ω
−2T SM

µν , (5)

where:

• Gµν(γ) is the Einstein tensor of the conformal metric γµν ,

• Hµν(Ω) encodes Ω-dependent terms (see Appendix A),

• G0 is the bare gravitational constant,

• T SM
µν is the stress-energy tensor of the Standard Model.

The term Hµν(Ω) modifies gravity on galactic and cosmological scales,
mimicking the effects traditionally attributed to dark matter and dark energy.
For a detailed derivation of Hµν(Ω), see Appendix A. Explicitly, Hµν(Ω)
includes contributions such as:

Hµν(Ω) = −2Ω−1∇µ∇νΩ+4Ω−2(∂µΩ)(∂νΩ)+γµν

(
2Ω−1□Ω− 2Ω−2(∂Ω)2 − A

2
Ω4

)
(6)

This work is licensed by Salman Akhtar (kalahari00@gmail.com) under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0

International License.

https://creativecommons.org/licenses/by-nc-sa/4.0/

https://orcid.org/0009-0000-8105-9597
mailto:kalahari00@gmail.com
https://creativecommons.org/licenses/by-nc-sa/4.0/


These terms naturally account for phenomena like flat galactic rotation
curves and cosmic acceleration without requiring hypothetical components.

3 Quantum Compatibility and Time-Symmetric

QED

3.1 Time-Invariant Quantum Electrodynamics in CERM

3.1.1 Motivation for Time-Invariant QED

In standard Quantum Electrodynamics (QED), the arrow of time is often
assumed implicitly by using retarded propagators, which describe causal in-
teractions propagating forward in time. However, fundamental quantum field
equations—such as Maxwell’s equations and the Dirac equation—are inher-
ently time-symmetric. The introduction of an explicit arrow of time typically
arises from boundary conditions rather than from the local field dynamics
themselves.

The Conformal Emergent Reality Model (CERM) challenges this assump-
tion by proposing that spacetime itself emerges dynamically from a conformal
manifold with a varying scale factor Ω(x). Since there is no globally prede-
fined time coordinate, the directionality of time emerges from large-scale cos-
mic boundary conditions, aligning with concepts from Penrose’s Conformal
Cyclic Cosmology (CCC).

To be consistent with the conformal structure of spacetime in CERM,
QED must be formulated in a time-invariant manner. This requires treating
advanced and retarded solutions symmetrically, ensuring that time symmetry
remains intact at the fundamental level.

3.1.2 Feynman Propagator and Time-Symmetric Quantum Evo-
lution

A key component of QED is the Feynman propagator, which describes the
evolution of quantum fields. In a time-invariant formulation, the Feynman
propagator incorporates both advanced and retarded contributions:

DF (x, y) =

∫
d4k

(2π)4
e−ik·(x−y)

k2 + iϵ
, (7)

where:
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• DF (x, y) is the Feynman propagator, encoding the probability ampli-
tude for a quantum field to propagate between points x and y.

• k2 = kµkµ is the squared four-momentum.

• ϵ is an infinitesimal positive parameter ensuring proper causality in the
contour integration.

This propagator naturally includes both advanced and retarded solutions,
ensuring that quantum interactions remain fundamentally time-symmetric.
In CERM, this is required because no fundamental arrow of time exists at
the level of local field equations; instead, the direction of time arises from
cosmic boundary conditions.

3.1.3 Modifications of QED in CERM

Since the physical metric in CERM is given by:

gµν = Ω2γµν , (1)

this modification of spacetime introduces a scale factor dependence in
QED. The standard QED Lagrangian density is:

LQED = ψ̄(iγµDµ −m)ψ − 1

4
FµνF

µν . (8)

In CERM, this generalizes to:

LCERM−QED =
√
−g

[
ψ̄(iγµDµ −m0Ω

−1)ψ − 1

4
FµνF

µν

]
, (9)

where:

• ψ and ψ̄ are the electron and positron field spinors.

• γµ are the Dirac gamma matrices.

• Dµ = ∂µ + ieAµ is the gauge-covariant derivative, ensuring local gauge
symmetry.

• Fµν = ∂µAν − ∂νAµ is the electromagnetic field strength tensor.

• m0 is a constant mass parameter.
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• The factor
√
−g ensures that the Lagrangian transforms correctly under

conformal rescaling.

• The electron mass term is now scaled by Ω(x), meaning mass emerges
dynamically within CERM.

This modified QED formulation ensures compatibility with the underlying
conformal structure, allowing charge renormalization and vacuum polariza-
tion effects to be analyzed in a time-symmetric framework. For a detailed
derivation of the modified QED Lagrangian, see Appendix E.

3.1.4 Quantum Fields and T-Symmetric Evolution

In conventional QED, Maxwell’s equations for the electromagnetic field ten-
sor Fµν in vacuum are:

∂µF
µν = jν . (10)

These equations are invariant under time reversal (t → −t), meaning
they support both advanced and retarded solutions. However, in standard
treatments, only the retarded solution is retained, breaking time symmetry
at a fundamental level.

In CERM, this asymmetry must be avoided. Instead, the full time-
invariant formulation is retained by using a combination of advanced and
retarded solutions:

Fµν(x) =

∫
d4y GSK(x, y)j

ν(y), (11)

where GSK(x, y) is the Schwinger-Keldysh propagator, ensuring that no
intrinsic time direction is imposed.

3.1.5 Observational Implications and Experimental Consequences

Since local QED processes remain unchanged, the effects of time symmetry
in CERM will primarily manifest in cosmological and vacuum fluctuation
phenomena:

• Large-Scale Quantum Entanglement: The absence of a preferred
time direction means that quantum correlations could extend beyond
standard causality limits, potentially leading to modifications in Bell
test experiments over astronomical distances.
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• Vacuum Energy and the Casimir Effect: The interaction of quan-
tum fields with the dynamical scale factor Ω(x) could modify vacuum
energy calculations, potentially providing a resolution to the cosmolog-
ical constant problem.

• Cosmic Microwave Background (CMB) Anomalies: If quantum
fluctuations are treated under a time-invariant framework, small devi-
ations in the expected CMB anisotropy spectrum could be observed,
particularly in the low-ℓ modes.

• Renormalization of Charge and Mass: Variations in Ω(x) could
lead to energy-dependent shifts in the fine-structure constant over cos-
mological scales, testable via high-redshift quasar observations.

3.1.6 Summary of Section 3.1

• Time symmetry in QED is required in CERM due to the emergent
nature of time.

• The Feynman propagator naturally supports time-invariant formula-
tions by incorporating both advanced and retarded solutions.

• The QED Lagrangian is modified to include the conformal factor Ω(x),
ensuring consistency with CERM’s geometric structure.

• Observable consequences include potential deviations in vacuum fluctu-
ations, large-scale quantum entanglement, and charge renormalization.

3.2 Path Integral and Schwinger-Keldysh Formulation

The Schwinger-Keldysh formalism, also known as the closed-time-path inte-
gral method, is essential in CERM to ensure that quantum field evolution
remains time-symmetric. Unlike conventional approaches that assume a pre-
ferred time direction, this formalism respects the absence of a fundamental
time arrow in CERM, making it fully consistent with the emergent nature of
spacetime.

In this approach, quantum field evolution is described using both for-
ward and backward time evolution paths in a complex time plane. This
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formulation is critical because it allows for the correct treatment of quan-
tum fluctuations, vacuum states, and real-time correlation functions without
violating the time symmetry required by CERM.

3.2.1 Schwinger-Keldysh Propagator

The Schwinger-Keldysh propagator GSK(x, y) is defined by summing over all
possible forward and backward time evolution paths of a quantum field ϕ:

GSK(x, y) =

∫
Dϕ eiS[ϕ+]e−iS[ϕ−], (12)

where:

• Dϕ represents the functional measure over all possible field configura-
tions.

• S[ϕ+] and S[ϕ−] denote the classical action of the field ϕ along the
forward (+) and backward (-) time contours.

The total generating functional in the Schwinger-Keldysh approach is
given by:

Z[J+, J−] =

∫
Dϕ+Dϕ− e

i(S[ϕ+]−S[ϕ−])ei
∫
d4x(J+ϕ+−J−ϕ−), (13)

where:

• Z[J+, J−] is the generating functional, encoding quantum correlation
functions.

• J+ and J− are external sources coupling to the forward (+) and back-
ward (-) field evolutions.

In CERM, the physical metric gµν is given by:

gµν = Ω2γµν , (1)

which modifies the interaction terms in the quantum action, leading to
an effective action:

Seff =

∫
d4x

√
−g

[
1

2
ϕ(□−m2)ϕ+ λΩ2ϕ4

]
, (14)

where:
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• □ is the d’Alembertian operator in curved space, given by □ϕ =
gµν∇µ∇νϕ.

• m is the mass of the field ϕ.

• λ is a self-interaction coupling constant.

• The term λΩ2ϕ4 introduces conformal modifications to self-interaction
terms.

A full treatment of the Schwinger-Keldysh formalism in CERM is provided
in Appendix E.2.1.

3.2.2 Advanced and Retarded Propagators in CERM

In a time-invariant QED framework, the propagator must merge both ad-
vanced and retarded solutions symmetrically. The Schwinger-Keldysh for-
malism provides the following decomposition:

GSK(x, y) = Gret(x, y)θ(x
0 − y0) +Gadv(x, y)θ(y

0 − x0), (15)

where:

• Gret(x, y) is the retarded propagator, which describes causal effects
propagating forward in time.

• Gadv(x, y) is the advanced propagator, which describes effects propa-
gating backward in time.

• θ(x0 − y0) is the Heaviside step function, enforcing causality in the
forward direction.

The explicit forms of these propagators are:

Gret(x, y) =

∫
d4k

(2π)4
e−ik·(x−y)

k2 + iϵ
, (16)

Gadv(x, y) =

∫
d4k

(2π)4
e−ik·(x−y)

k2 − iϵ
, (17)

ensuring that the evolution remains fully T-symmetric, with no preferred
direction of time.
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3.2.3 Path Integral Representation in Conformal Space

In a fully conformal framework, the path integral for QED in CERM must
account for the conformal factor Ω(x), leading to a modified partition func-
tion:

Z =

∫
DAµDψDψ̄ ei

∫
d4x

√
−g[ψ̄(iγµDµ−mΩ)ψ− 1

4
FµνFµν]. (18)

where:

• DAµ represents the functional measure over all possible photon field
configurations.

• DψDψ̄ represent the functional measures for electron and positron
fields.

• γµ are the Dirac gamma matrices, encoding spinor structure.

• Dµ = ∂µ + ieAµ is the gauge-invariant derivative, which ensures local
gauge symmetry in electrodynamics.

• m is the electron mass, which now appears scaled by Ω(x), meaning
mass emerges dynamically from the conformal field.

• Fµν = ∂µAν − ∂νAµ is the electromagnetic field tensor.

3.2.4 Observational Consequences

This formulation leads to several important physical consequences:

• Vacuum Fluctuations: The time-symmetric treatment allows for a
reinterpretation of quantum vacuum fluctuations.

• Casimir Effect: The interaction of quantum fields with the dynamical
scale factor Ω(x) may introduce measurable corrections to the Casimir
force.

• Charge Renormalization: In regions where Ω(x) varies significantly,
QED charge renormalization effects may deviate from standard predic-
tions.
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4 Replacement of Dark Matter and Dark En-

ergy in CERM

4.1 The Need for a New Explanation

The ΛCDM model successfully describes galactic rotation curves, cosmic
structure formation, and accelerated expansion by postulating the existence
of dark matter (DM) and dark energy (DE). However, despite extensive ob-
servational searches, these components remain undetected at the fundamen-
tal particle level.

The Conformal Emergent Reality Model (CERM) provides an alternative
explanation by attributing cosmic anomalies to the behavior of the confor-
mal scalar field Ω(x). Instead of treating DM and DE as separate physical
entities, CERM proposes that their effects arise naturally from the geometry
of spacetime, specifically through modifications in the metric:

gµν = Ω2(x)γµν . (1)

This interpretation leads to two primary effects:

1. Modification of Galactic Rotation Curves: The behavior of Ω(x)
at galactic scales naturally explains the observed flat rotation curves
without requiring additional mass in the form of dark matter.

2. Cosmic Acceleration without Dark Energy: The time evolution
of Ω(x) introduces a dynamical term in the Friedmann equations, mim-
icking the effects attributed to dark energy.

4.2 Galactic Rotation Curves and the Role of Ω(x)

4.2.1 The Problem of Flat Rotation Curves

Observations of spiral galaxies reveal that their rotational velocity curves re-
main nearly constant at large distances from the galactic center. In standard
Newtonian dynamics, the velocity of a test particle orbiting a central mass
M at radius r is given by:

v2(r) =
GM(r)

r
. (19)
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However, in many galaxies, the observed velocity remains approximately
constant beyond a certain radius, contradicting expectations from a purely
Keplerian falloff:

vobs(r) ≈ constant for large r. (20)

This discrepancy has traditionally been resolved by postulating a halo of
dark matter surrounding galaxies.

4.2.2 Rotation Curves in CERM

CERM provides an alternative explanation by modifying the Newtonian
potential through the conformal factor Ω(x). The gravitational potential in
the weak-field limit satisfies the modified Poisson equation:

∇2Φeff = 4πGρvis +
1

r2
d

dr

(
r2
∂rΩ

Ω

)
. (21)

The derivation of the modified Poisson equation and its implications are de-
tailed in Appendix B.

For a conformal scaling of the form:

Ω(r) ∝ rα, (22)

the resulting effective potential is:

Φeff(r) = −GM(r)

r
+
α

2
ln

(
r

r0

)
. (23)

The corresponding rotational velocity is then:

v2(r) =
GM(r)

r
+
α

2
. (24)

Observables like GM
r

and orbital velocities depend on the conformal scal-
ing of Ω(r). For a power-law scaling Ω(r) ∝ rα, the term GM

r
∝ r2−3α

diminishes at large r if α > 2
3
. This makes the additional term dominant at

large r, leading to an approximately constant velocity:

vCERM(r) ≈
√
α

2
. (25)
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Thus, without requiring dark matter, the behavior of Ω(x) at galactic
scales naturally explains the flat rotation curves observed in galaxies. See
Appendix B.4 for the scaling derivation.

4.2.3 Disentangling α from Baryonic Feedback

The parameter α needs to be distinguished from possible effects of baryonic
feedback, which could mimic the observed rotation curve modification. Key
approaches to achieving this disentanglement include:

1. Comparing Different Galaxy Types:
- Low Surface Brightness (LSB) galaxies have minimal star formation
and weak baryonic effects, making them ideal for testing CERM pre-
dictions. - Dwarf spheroidal galaxies (dSph) lack significant baryonic
effects, providing a cleaner gravitational signal.

2. Using Hydrodynamical Simulations:
- Running simulations with and without baryonic feedback in datasets
such as EAGLE, Illustris-TNG, and SPARC hydro models should allow
for isolation of conformal effects.

3. Fitting α Across Different Radial Ranges:
- Baryonic effects are strongest in the ”inner” regions of galaxies (within
a few kpc). - If α is constant at large r, where baryonic effects are
weaker, it supports the CERM hypothesis.

4. Testing Against Milky Way’s Rotation Curve:
- The Milky Way’s well-measured rotation curve provides an indepen-
dent test.

If α remains robust after accounting for baryonic effects, it strengthens
the argument that CERM explains rotation curves without requiring dark
matter. For observational strategies to constrain α, see Appendix B.5.

4.3 Cosmic Acceleration andModified Friedmann Equa-
tions

Under CERM, the modified metric:
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gµν = Ω2γµν (1)

introduces an additional dynamical term into the expansion equation.
The modified Friedmann equation becomes:(

ȧ

a

)2

=
8πG

3
ρ+

Ω̇2

Ω2
− k

a2
. (26)

This additional term,

Ω̇2

Ω2
, (27)

acts as an effective dark energy component, driving acceleration with-
out requiring a separate cosmological constant. The time evolution of Ω(t) is
constrained by local gravitational tests (e.g., lunar laser ranging) to satisfy
Ω̇/Ω ≪ H0, ensuring adiabaticity over solar system timescales.

Perturbations in Ω(x) directly influence matter density fluctuations, as de-
tailed in Appendix C. This mechanism provides a natural explanation for the
growth of cosmic structures.

4.4 Observational Signatures and Experimental Tests

1. Galactic Rotation Curve Fits:
The parameter α in Ω(r) ∝ rα should be constrained using SPARC
data on galaxy rotation curves.

2. Supernova Distance-Redshift Relation:
The luminosity distance dL(z) for Type Ia supernovae should be re-
calculated using the modified Friedmann equation and compared with
Pantheon+ data.

3. CMB and Large-Scale Structure:
The influence of Ω(x) on CMB anisotropies should be analyzed by
modifying the CLASS cosmological code. The matter power spectrum
P (k) should be compared to Euclid and DESI survey data.
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4.5 Summary of Section 4

• CERM eliminates the need for dark matter and dark energy by at-
tributing their effects to the conformal field Ω(x).

• Flat rotation curves arise naturally from Ω(x) ∝ rα, explaining galactic
dynamics without requiring unseen mass.

• Cosmic acceleration emerges from a dynamical contribution of Ω(x),
modifying the Friedmann equations in a way that mimics dark energy.

5 Arrow of Time as a Global Boundary Con-

dition in CERM

5.1 The Problem of Time’s Directionality

One of the most profound mysteries in physics is the origin of time’s ar-
row. While fundamental physical laws—such as Maxwell’s equations, the
Schrödinger equation, and Einstein’s field equations—are time-reversible, the
macroscopic universe exhibits a clear directionality of time. This includes:

• Entropy Increase: The Second Law of Thermodynamics states that
entropy never decreases.

• Cosmic Expansion: Galaxies move apart over time, indicating an
expanding universe.

• Radiation Propagation: Electromagnetic waves propagate outward
rather than converging inward.

Standard cosmology attributes this asymmetry to the Big Bang’s ex-
traordinarily low-entropy initial condition. However, this explanation raises
further questions: Why did the universe begin in such a special, low-entropy
state? What mechanism ensures that entropy continues to grow?

The Conformal Emergent Reality Model (CERM) provides a geometric
resolution to these questions by linking the arrow of time directly to the
evolution of the scalar field Ω(x), which governs the emergence of physical
spacetime from a deeper conformal manifold (M,γµν). The suppression of
Weyl curvature at early times is discussed in Appendix G, providing a
geometric mechanism for the low-entropy Big Bang.
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5.2 Time Symmetry at the Fundamental Level

At the microscopic level, the equations governing physical interactions are
T-symmetric (time-reversal symmetric). For example:

1. Maxwell’s Equations:

∇ · E = 0, ∇ ·B = 0, (28)

∇× E = −∂B
∂t
, ∇×B =

∂E

∂t
. (29)

These equations remain invariant under t→ −t.

2. Schrödinger Equation:

iℏ
∂

∂t
ψ(x, t) = Ĥψ(x, t). (30)

Reversing time (t → −t) simply results in complex conjugation, pre-
serving the equation’s structure.

Despite this symmetry, macroscopic processes exhibit a clear arrow of
time. CERM explains this apparent contradiction by attributing time’s di-
rectionality to boundary conditions on Ω(x).

5.3 The Role of Ω(x) in Time’s Directionality

In CERM, the physical metric is given by:

gµν = Ω2(x)γµν , (1)

where Ω(x) governs the scale of spacetime. Its large-scale evolution deter-
mines the direction of time. The evolution equation for Ω(x) is:

Ω̇

Ω
= Heff, (31)

where Heff is an effective Hubble-like term dependent on Ω(x) and its deriva-
tives. This expansion rate sets the ”clock” for large-scale physics, ensuring
a universal arrow of time.
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5.4 Aeon Transitions and Cosmic Cycles

The Conformal Emergent Reality Model (CERM) adopts and refines Roger
Penrose’s Conformal Cyclic Cosmology (CCC), proposing that the universe
undergoes infinite cycles (aeons) bounded by conformal resets. Each aeon
begins with a low-entropy state, evolves into a high-entropy configuration,
and transitions smoothly into the next cycle via a conformal mapping. This
process eliminates singularities and provides a geometric mechanism for re-
setting the arrow of time. See Appendix M.

5.4.1 Connection to Conformal Cyclic Cosmology (CCC)

CERM builds on Penrose’s CCC framework, where each cosmic cycle (aeon)
ends in a conformal state characterized by:

1. Mass Decay: Protons decay, and black holes evaporate over vast
timescales.

2. Scale-Invariant Metric: The universe reaches a state where all mass
decays, and the metric becomes asymptotically scale-invariant.

3. Resetting Time’s Arrow: The transition between aeons resets the
arrow of time.

5.4.2 CERM Mechanism of Aeon Transition

At the boundary between aeons, the scalar field Ω(x) diverges (Ω → ∞),
dissolving all matter into a conformally invariant state. Key features include:

Massless Dominance: Particle masses scale inversely with Ω(x):

mp ∝ Ω−1(x), mν ∝ Ω−1(x) (32)

ensuring protons, neutrinos, and other massive particles become effec-
tively massless. This avoids explicit proton decay mechanisms while resetting
material structures.
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Entropy Collapse: The phase space volume, governed by Ω3(x), collapses:

S ∼
∫
d3xΩ3(x)ρ(x) ln ρ(x) → 0, (33)

restoring a low-entropy initial condition for the subsequent aeon.

Weyl Curvature Suppression: The Weyl curvature tensor Cµνρσ[γ] van-
ishes at the transition, ensuring gravitational entropy is minimized. This
aligns with Penrose’s Weyl Curvature Hypothesis (WCH), as derived in Ap-
pendix G.

5.4.3 Geometric Continuity

The conformal manifold (M,γµν) remains intact across transitions, preserv-
ing causal structure. Only the physical metric

gµν = Ω2γµν (34)

resets, avoiding singularities. The next aeon inherits γµν ’s geometry, with
Ω(x) reinitialized dynamically from boundary conditions.

5.4.4 Observational Distinctions from CCC

CERM diverges from CCC in critical ways (see Table 1 in Appendix M):

• No Graviton Requirement: Transitions are driven by Ω(x), no
graviton mediation is required.

• Natural Entropy Reset: Phase space collapse replaces reliance on
black hole evaporation.

• Proton Stability: Mass dissolution (Ω → ∞) avoids speculative par-
ticle decay.

In CERM, Ω(x) serves as the governing scale factor, linking past and
future cosmic cycles. Its dynamics dictate the thermodynamic evolution of
the universe, aligning with the observed arrow of time.
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5.5 Thermodynamic Time and Entropy Growth in CERM

The Second Law of Thermodynamics states that entropy never decreases:

dS

dt
≥ 0. (35)

Standard cosmology attributes this to the Big Bang’s low-entropy initial
condition, but CERM explains it geometrically:

• Growth of Entropy Follows from Ω(x): Since Ω(x) increases over
time, the available phase space for entropy expands.

• Avoidance of Fine-Tuning: Unlike standard cosmology, which re-
quires a special low-entropy initial state, CERM derives entropy growth
dynamically from the evolution of Ω(x).

The geometric interpretation of entropy growth in CERM is:

S ∼
∫
d3xΩ3(x)ρ(x) ln ρ(x), (36)

where:

• Ω3(x): Accounts for the expansion of spatial volume due to Ω(x),

• ρ(x): Represents the matter density distribution.

As Ω(x) grows over time, the term Ω3(x) ensures that the phase space
volume—and hence the entropy—increases monotonically. This provides a
natural explanation for the Second Law of Thermodynamics without requir-
ing a special low-entropy initial condition. The role of Ω(x) in determining
the arrow of time is further explored in Appendix F, which links entropy
growth to the conformal scaling of spacetime.

5.5.1 Detailed Explanation of Terms

• Ω3(x): Reflects the scaling of spatial volume due to the conformal factor
Ω(x). As Ω(x) increases, the effective volume available to particles and
fields expands, driving entropy upward.
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• ρ(x): The matter density distribution determines how matter is dis-
tributed across the expanded phase space. The logarithmic term ln ρ(x)
quantifies the information content or disorder associated with this dis-
tribution.

• Phase Space Volume: In statistical mechanics, the entropy S is
related to the phase space volume V accessible to the system:

S ∼ lnV .

In CERM, the phase space volume expands dynamically due to the
evolution of Ω(x).

5.5.2 Alignment with Cosmic Expansion

The growth of entropy in CERM is intimately tied to cosmic expansion. The
Friedmann-like equation governing the evolution of Ω(x) includes a term
analogous to the Hubble parameter:

Ω̇

Ω
= Heff, (37)

where Heff represents an effective expansion rate. This equation shows that
Ω(x) grows as the universe expands, driving the increase in entropy. The
alignment between entropy growth and cosmic expansion is not coincidental;
both phenomena arise from the same underlying conformal dynamics.

5.6 Observational Consequences and Experimental Tests

If CERM is correct, several observable signatures should exist:

1. Cosmic Microwave Background (CMB) Anomalies: If entropy
growth is driven by Ω(x), we expect subtle deviations in the CMB
temperature anisotropies. Specifically, the Sachs-Wolfe effect gains a
contribution from fluctuations in Ω(x):

δT

T
≈ 1

3
(ΦGR + δ lnΩ), (38)

where ΦGR is the gravitational potential in GR and δ lnΩ represents
fluctuations in Ω(x). These fluctuations could explain low-ℓ anomalies
in the CMB power spectrum.
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2. Primordial Gravitational Waves: Gravitational waves generated
during the early universe inherit a spectral tilt from the dynamics of
Ω(x). A tilt nt ̸= 0 would distinguish CERM from GR and provide
evidence for entropy-driven inflation.

3. Supernovae and Cosmic Redshift: The time-dependence of Ω(x)
should introduce small corrections to the supernova distance-redshift
relation.

4. No Graviton Signature: Unlike CCC or inflationary models, CERM
predicts no primordial graviton background. Observations of stochas-
tic gravitational wave backgrounds (e.g., via pulsar timing arrays like
NANOGrav) should confirm this prediction.

5.7 Summary and Conclusion

• The arrow of time is not fundamental but emergent, dictated by the
boundary conditions of Ω(x).

• Inspired by Penrose’s CCC, CERM proposes that cosmic cycles reset
time’s arrow through mass decay and conformal transition.

• Future observational tests involving CMB anisotropies, proton decay,
and gravitational waves can validate CERM’s predictions.

6 Gravitational Waves in CERM

6.1 Propagation and Scaling of Gravitational Waves

Gravitational waves (GWs) in CERM propagate on the conformal manifold
γµν , with dynamics governed by the scalar field Ω(x). The linearized Einstein
equations yield:

□γhµν + 2∇ρ lnΩ∇ρhµν = 0, (39)

where:

• □γ: d’Alembertian operator on γµν .

• ∇ρ lnΩ: Gradients in Ω(x) act as an effective refractive medium, mod-
ulating GW phase and amplitude.
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The observed strain scales as h
(obs)
µν = Ω2h

(source)
µν , leading to a luminosity

distance discrepancy:
d
(GW)
L = Ω−1d

(EM)
L . (40)

For Ω(z) ∝ (1 + z)−α, this predicts a 10–20% discrepancy at z > 1, testable
with multi-messenger events.

6.2 Scalar-Tensor Mixing and Polarizations

CERM predicts three GW polarizations:

• Tensor modes (h+, h×): Identical to GR.

• Breathing mode (hb): Generated by Ω(x)-matter coupling, satisfying:

□γhb = −16πGΩ−2δρ. (41)

Third-generation detectors (Einstein Telescope, LISA) can isolate hb through
waveform residuals, providing a direct test of CERM.

6.3 Observational Tests and Parameter Fine-Tuning

GW observations can both falsify and refine CERM:

• Luminosity Distance: Fit α in Ω(z) ∝ (1 + z)−α using d
(GW)
L /d

(EM)
L

from neutron star mergers.

• Frequency-Dependent Delays: Measure ∆t(f) in chirp signals to
constrain ∇Ω/Ω2.

• Scalar Mode Amplitude: Use hb/h+ ratios to calibrate Ω(x)-matter
coupling strength.

6.4 Primordial Gravitational Waves

Inflation-era GWs inherit a spectral tilt from Ω(x) dynamics:

PT (k) =
H2

π2Ω2
0

∣∣∣∣
k=aH

, (42)
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where H is the inflationary Hubble parameter. A tilt nt ̸= 0 distinguishes
CERM from GR and links to CMB B-mode experiments. The spectral tilt
ns ≈ 0.965 is currently adopted from Planck CMB data but remains a the-
oretical gap in CERM. Efforts to derive from first principles are outlined in
Appendix D.

6.5 Implications for Quantum Gravity

• Time Symmetry: The Schwinger-Keldysh formalism (Section 3.2)
ensures quantum consistency of advanced/retarded GW solutions.

• Arrow of Time: Boundary conditions on Ω(x) suppress advanced
solutions, breaking T-symmetry in observed waveforms.

• Nonlocality: GW entanglement across γµν aligns with Section 5.5’s
global time asymmetry.

7 Unified Framework and Observational Syn-

thesis

7.1 Weyl Curvature, Entropy, and Cosmic Initial Con-
ditions

CERM provides a geometric foundation for Penrose’s Weyl Curvature Hy-
pothesis (WCH) by linking the initial low-entropy state of the universe to
boundary conditions on Ω(x). At the Big Bang (t → 0), Ω(x) → ∞ sup-
presses Weyl curvature Cµνρσ[γ], ensuring a smooth conformal manifold γµν
(See details in Appendix G). This aligns with the observed arrow of time,
as entropy growth is tied to Ω(x)-driven phase space expansion:

S ∝
∫

Ω3(x)ρ(x) ln ρ(x) d3x. (43)

Observational Test: Compare CMB B-mode polarization from primordial
GWs with GR predictions to detect suppressed Cµνρσ[γ].
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7.2 Strong Force, Neutrino Masses, and Particle Physics

The conformal scaling Ω(x) modifies Standard Model parameters, introduc-
ing novel predictions. For example, the QCD confinement scale ΛQCD ∝ Ω−1

leads to time-varying proton masses, testable through isotopic ratio mea-
surements in ancient meteorites and high-redshift spectral line analysis (Ap-
pendix H). Neutrino masses also scale dynamically, with Dirac neutrinos
following mν ∝ Ω−1 and Majorana neutrinos scaling as mν ∝ Ω−2, offering
probes of Ω(x)’s cosmic evolution through high-redshift astrophysical neutri-
nos (Appendix J). Additionally, a CP-violating term in the Ω(x) potential
generates lepton asymmetry during phase transitions, providing a geometric
mechanism for the observed baryon asymmetry (See Appendix K).

7.3 Quantum Gravity and Renormalization

CERM circumvents quantum gravity’s divergences by treating γµν as a clas-
sical background. Quantum fluctuations reside in Ω(x) and matter fields,
with renormalization counterterms dependent on Ω(x) (See Appendix I).
The holographic principle in CERM (Appendix O) bridges quantum fluc-
tuations and classical geometry. By treating γµν as a classical boundary en-
coding quantum data, CERM circumvents spacetime quantization while en-
suring renormalizability through Ω(x)-dependent counterterms. This frame-
work aligns with AdS/CFT-like bulk-boundary correspondence, where the
conformal manifold’s boundary terms holographically reconstruct the emer-
gent spacetime and its quantum properties. The absence of a stochastic GW
background in pulsar timing arrays (e.g., NANOGrav) would support this
approach.

7.4 Baryogenesis and CP Violation

A CP-odd term in the Ω(x) potential:

V (Ω) ⊃ λΩ4 sin

(
θ

Ω

)
, (44)

generates lepton asymmetry during Ω(x) phase transitions, later converted
to baryon asymmetry via sphalerons (See Appendix K). Test: Correlate
LiteBIRD’s CMB E-mode polarization with baryon asymmetry ηB.
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7.5 CMB Anomalies and Large-Scale Structure

CERM modifies the Sachs-Wolfe effect through Ω(x) fluctuations:

δT

T
≈ 1

3
(ΦGR + δ lnΩ) , (45)

explaining low-ℓ CMB power spectrum anomalies (See Appendix L). Test:
Fit δ lnΩ ∼ 10−5 residuals in Planck data.

7.6 Synthesis and Falsifiability

CERM unifies quantum gravity, particle physics, and cosmology through
Ω(x)’s conformal scaling. Key falsifiable predictions include:

• d
(GW)
L /d

(EM)
L ≈ 1 + αz (10–20% discrepancy at z > 1),

• Scalar polarization hb in GWs (Einstein Telescope),

• Suppressed primordial B-modes (BICEP/Keck),

• Time-Varying Proton Masses: Measure isotopic ratios in ancient
meteorites and high-redshift spectral lines to test ΛQCD ∝ Ω−1 (See
Appendix H).

• Neutrino Mass Evolution: Search for redshift-dependent neutrino
mass variations in high-energy astrophysical neutrinos (See Appendix
J).

• Holographic Signatures: Residuals in CMB anomalies and large-
scale structure should correlate with boundary data encoded in γµν ,
testable via cross-analysis of Planck and DESI/Euclid datasets.(See
Appendix O)

• Baryon Asymmetry Correlation: Correlate the cosmic baryon asym-
metry ηB with CMB E-mode polarization to test Ω(x)-driven baryoge-
nesis (See Appendix K).

Each prediction derives from CERM’s geometric foundations, avoiding ad-
hoc constructs like dark matter or inflation. Observational campaigns across
GW astronomy, particle physics, and cosmology will test CERM’s viability
as a unified theory of quantum spacetime.
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Conclusion

The Conformal Emergent Reality Model (CERM) presents a radical reinter-
pretation of spacetime as an emergent phenomenon, challenging the tradi-
tional separation of quantum mechanics, gravity, and cosmology by unifying
these domains within a single conformal framework. At its core, CERM
eliminates the need for dark matter and dark energy while preserving consis-
tency with observed phenomena in quantum field theory, general relativity,
and astrophysics. The scalar field Ω(x) serves as the bridge between the
microscopic quantum realm and the macroscopic universe, dynamically de-
termining measurable intervals of space and time.

By linking spacetime geometry to particle physics, CERM offers new
insights into the strong force, neutrino masses, and baryogenesis. The time-
dependent scaling of ΛQCD and neutrino masses provides testable predictions
for ancient meteorites, high-redshift systems, and astrophysical neutrinos
(Appendix H and Appendix J). Furthermore, a CP-violating term in
the Ω(x) potential offers a geometric mechanism for the matter-antimatter
asymmetry, bridging cosmology and particle physics (Appendix K).

Key Insights and Contributions

1. Emergent Spacetime and Dark Sector Elimination: By attribut-
ing gravitational anomalies to the behavior of Ω(x), CERM provides a
natural explanation for flat galactic rotation curves and cosmic accel-
eration without invoking unseen components like dark matter or dark
energy. The conformal scaling Ω(x) modifies the metric gµν = Ω2γµν ,
introducing terms that mimic the effects traditionally attributed to
these hypothetical entities.

2. Arrow of Time and Entropy Growth: One of CERM’s most pro-
found contributions is its geometric resolution to the origin of time’s
arrow. The directionality of time emerges naturally from boundary
conditions on Ω(x), aligning with Penrose’s Conformal Cyclic Cosmol-
ogy (CCC). This framework explains entropy growth as a consequence
of Ω(x)-driven phase space expansion, avoiding the need for fine-tuned
initial conditions at the Big Bang.

3. Quantum Field Dynamics and Time-Symmetric QED: CERM
necessitates a time-symmetric formulation of Quantum Electrodynam-
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ics (QED), ensuring compatibility with the absence of a preferred time
direction in the underlying conformal manifold. This reformulation al-
lows for a reinterpretation of quantum vacuum fluctuations, charge
renormalization, and large-scale quantum entanglement, potentially
leading to observable deviations in phenomena such as the Casimir
effect and Bell test experiments over astronomical distances.

4. Cosmological Constant Problem: By treating the vacuum energy
density as a dynamical quantity governed by Ω(x), CERM offers a
natural resolution to the cosmological constant problem. This approach
avoids the fine-tuning issues inherent in traditional models, providing
a potential explanation for why the observed value of the cosmological
constant is so small compared to theoretical expectations.

5. Cyclical Cosmology and Aeon Transitions: CERM provides a
geometric framework for infinite cosmic cycles (aeons) governed by the
scalar field Ω(x). Unlike traditional cyclic models, transitions between
aeons occur via ”conformal resets”, where Ω(x) → ∞, dissolving matter
into a conformally invariant state and collapsing phase space entropy
to zero. This mechanism:

• Resolves Singularities: Avoids Big Bang/Big Crunch singular-
ities by preserving the conformal manifold (M,γµν) across transi-
tions.

• Explains Entropy Reset: The Second Law arises dynamically
from Ω(x)’s evolution, eliminating fine-tuning of the Big Bang’s
low-entropy state.

• Distinguishes from Penrose’s CCC: Transitions rely on Ω(x)’s
dynamics rather than speculative proton decay or graviton medi-
ation.

6. Gravitational Waves and Observational Predictions: CERM
predicts modifications to gravitational wave propagation, including a
luminosity distance discrepancy and the presence of a ”breathing mode”
polarization. These predictions are directly tied to the dynamics of
Ω(x) and are testable with current and upcoming observational cam-
paigns.
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Unified Framework Across Physics Domains

CERM unifies quantum gravity, particle physics, and cosmology through the
conformal scaling of Ω(x). Key implications include:

• Particle Physics: The interaction of Ω(x) with the Standard Model
introduces novel predictions, such as time-varying proton masses (mp ∝
Ω−1) and neutrino masses (mν ∝ Ω−1 for Dirac neutrinos or mν ∝ Ω−2

for Majorana neutrinos). These effects offer exciting opportunities for
experimental verification through high-redshift astrophysical observa-
tions and precision measurements in particle physics.

• Baryogenesis: A CP-violating term in the Ω(x) potential generates
lepton asymmetry during phase transitions, which is subsequently con-
verted into baryon asymmetry via sphaleron processes. Observations
of the cosmic microwave background (CMB) E-mode polarization and
high-energy collider experiments can test this mechanism.

• CMB Anomalies: Fluctuations in Ω(x) modify the Sachs-Wolfe ef-
fect, explaining low-ℓ anomalies in the CMB power spectrum. Cross-
correlating these residuals with large-scale structure surveys provides
additional constraints on δ lnΩ.

Falsifiable Predictions and Observational Tests

CERM’s viability as a unified theory of quantum spacetime hinges on its
ability to make falsifiable predictions across multiple domains of physics:

1. Galactic Dynamics: Fit the parameter α in Ω(r) ∝ rα using galactic
rotation curve data to explain flat rotation curves without dark matter.

2. Cosmic Microwave Background (CMB):Analyze CMB anisotropies
for signatures of Ω(x) fluctuations, particularly in low-ℓ modes.

3. Gravitational Waves: Detect discrepancies in luminosity distances
and identify additional polarizations, such as the breathing mode pre-
dicted by CERM.

4. Particle Physics: Measure time variations in the QCD confinement
scale ΛQCD and neutrino masses at high redshifts.
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Each of these predictions derives directly from the geometric foundations
of CERM, avoiding ad hoc constructs like dark matter or inflation. As ob-
servational campaigns across gravitational wave astronomy, particle physics,
and cosmology continue to advance, they will provide critical tests of CERM’s
viability as a unified theory of quantum spacetime.

Future Directions

While CERM offers a compelling framework for understanding the universe’s
fundamental nature, several unresolved theoretical challenges remain. These
include deriving the spectral tilt ns from first principles, quantizing Ω(x) in a
conformally invariant way, and addressing boundary conditions at conformal
infinity. Addressing these gaps will require further theoretical development
and numerical simulations.

By linking quantum mechanics, gravity, and cosmology within a single
conformal framework, CERM not only resolves longstanding puzzles—such
as the flat rotation curves of galaxies, cosmic acceleration, and the arrow of
time—but also opens new avenues for exploring the interplay between parti-
cle physics and the large-scale structure of the universe. Observational cam-
paigns across multiple disciplines will ultimately determine whether CERM
represents a transformative step toward a unified theory of quantum space-
time.
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A Appendix A: Derivation of Hµν(Ω)

The gravitational action in CERM is:

Sgrav =

∫
d4x

√
−γ

[
Ω2

2κ
R(γ)− 1

2
γµν∂µΩ∂νΩ− AΩ4

]
. (3)

To derive Hµν(Ω), we vary Sgrav with respect to γµν :

A.1 Variation of the Einstein-Hilbert Term

The Einstein-Hilbert term contributes:

δ

(
Ω2

2κ

√
−γR

)
=

Ω2

2κ

√
−γ

(
Rµν −

1

2
Rγµν

)
δγµν

+ boundary terms. (46)

A.2 Variation of the Scalar Kinetic Term

The scalar kinetic term varies as:

δ

(
−1

2

√
−γ(∂Ω)2

)
=

√
−γ

(
−1

2
∂µΩ∂νΩ +

1

4
γµν(∂Ω)

2

)
δγµν . (47)

A.3 Variation of the Cosmological Constant Term

The Ω4 term contributes:

δ
(
−A

√
−γΩ4

)
= −A

2

√
−γΩ4γµνδγ

µν . (48)

A.4 Combining Terms

Grouping all contributions and dividing by
√
−γ/2κ, we obtain:

Hµν(Ω) = −2Ω−1∇µ∇νΩ + 4Ω−2∇µΩ∇νΩ

+ γµν

(
2Ω−1□Ω− 2Ω−2(∇Ω)2 − A

2
Ω4

)
. (49)
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A.5 Physical Interpretation

The terms in Hµν(Ω) modify gravity on large scales:

• −2Ω−1∇µ∇νΩ: Tidal forces from Ω(x) gradients.

• 4Ω−2∇µΩ∇νΩ: Effective stress-energy from Ω(x)’s kinetic energy.

• γµν(2Ω
−1□Ω− · · · ): Isotropic pressure-like terms.
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B Appendix B: Effective Potential for Galac-

tic Dynamics

B.1 Modified Poisson Equation in CERM

In the Conformal Emergent Reality Model (CERM), the physical metric gµν
is related to the conformal metric γµν via the scalar field Ω(x):

gµν = Ω2(x)γµν . (1)

This conformal scaling modifies the gravitational potential, leading to a mod-
ified Poisson equation that governs galactic dynamics.

In the weak-field limit, assuming spherical symmetry and γµν ≈ ηµν , the
effective gravitational potential Φeff satisfies:

∇2Φeff = 4πGρvis +
1

r2
d

dr

(
r2
∂rΩ

Ω

)
, (50)

where:

• ρvis: The visible matter density,

• Ω(x): The conformal scalar field governing physical scales.

The second term on the right-hand side arises from gradients of Ω(x),
which contribute to the effective gravitational potential. This term naturally
explains observed galactic rotation curves without requiring additional dark
matter.

B.1.1 Physical Implications

The inclusion of the Ω(x)-dependent term has several important consequences:

1. Flat Rotation Curves: The modified potential leads to approx-
imately constant rotational velocities at large radii, consistent with
observations.

2. No Dark Matter Hypothesis: The effects attributed to dark matter
in standard cosmology are explained by the behavior of Ω(x) at galactic
scales.

3. Scale-Free Dynamics: The logarithmic dependence of Φeff on Ω(x)
ensures that the model remains consistent with scale-invariant proper-
ties of conformal geometry.

This work is licensed by Salman Akhtar (kalahari00@gmail.com) under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0

International License.

https://creativecommons.org/licenses/by-nc-sa/4.0/

https://orcid.org/0009-0000-8105-9597
mailto:kalahari00@gmail.com
https://creativecommons.org/licenses/by-nc-sa/4.0/


B.1.2 Detailed Explanation of Terms

• ∇2Φeff: Represents the Laplacian of the effective gravitational poten-
tial, encoding contributions from both visible matter and Ω(x) gradi-
ents.

• ρvis: The density of visible matter, which dominates in the inner regions
of galaxies.

• ∂rΩ
Ω
: Captures the radial variation of the conformal factor Ω(x), reflect-

ing its dynamical role in shaping gravitational potentials.

B.2 Power-Law Solution for Ω(r)

To solve the modified Poisson equation, we assume a power-law form for
Ω(r):

Ω(r) = Ω0

(
r

r0

)α

, (51)

where:

• Ω0: A normalization constant,

• r0: A reference radius,

• α: A dimensionless parameter governing the radial scaling of Ω(r).

Substituting this ansatz into the modified Poisson equation, the contri-
bution from Ω(x) becomes:

1

r2
d

dr

(
r2
∂rΩ

Ω

)
=
α

r2
. (52)

Integrating twice, the effective potential is given by:

Φeff(r) = −GM(r)

r
+
α

2
ln

(
r

r0

)
, (53)

where M(r) is the enclosed mass within radius r.
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B.3 Circular Velocity

The circular velocity of stars in a galaxy is derived from the effective poten-
tial:

v2(r) = r
dΦeff

dr
=
GM(r)

r
+
α

2
. (54)

For α > 2
3
, the second term dominates at large radii, producing flat

rotation curves:

vCERM(r) ≈
√
α

2
. (55)

This result aligns with observed galactic dynamics, eliminating the need
for dark matter. Actual α value is to be constrained using real observational
data sets.

B.4 Scaling Relations in the Conformal Emergent Re-
ality Model (CERM)

B.4.1 Scaling of Newton’s Constant G ∝ Ω−2

The gravitational action in CERM includes a term proportional to Ω2R(γ),
where R(γ) is the Ricci scalar of the conformal metric γµν :

Sgrav =

∫
d4x

√
−γ

[
Ω2

2κ
R(γ) + . . .

]
. (56)

In General Relativity (GR), the Einstein-Hilbert term is 1
16πG

R(g). Matching
the coefficients implies:

1

16πG
∼ Ω2

2κ
=⇒ G ∝ Ω−2. (57)

B.4.2 Scaling of Mass M ∝ Ω−1

The matter density ρmatter couples to the physical metric gµν = Ω2γµν . For
consistency,

ρmatter ∝ Ω−4, (58)

since
√
−g ∝ Ω4, and ρ

√
−g must remain invariant. Mass as an integrated

density scales as:

M =

∫
ρmatter dV ∝ Ω−4 · Ω3 · r3 ∝ Ω−1r3. (59)
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B.4.3 Scaling of Radius r ∝ Ω2

Distances in the physical metric gµν scale as:

ds2 = Ω2γµνdx
µdxν =⇒ rphys = Ω2rconf, (60)

where rconf is the radius in the conformal metric γµν . Thus, r ∝ Ω2.

B.4.4 Scaling Argument

For consistency with flat rotation curves (v2 = GM
r

+ α
2
), the mass scaling is:

M(r) ∝ Ω−1r3. (61)

Then,
GM

r
∝ Ω−2 · Ω−1r3

r
= Ω−3r2. (62)

For Ω(r) ∝ rα, this becomes:

GM

r
∝ r2−3α. (63)

To ensure the α/2 term dominates at large r, we require:

2− 3α < 0 =⇒ α >
2

3
. (64)

B.4.5 Summary

A rigorous derivation must account for:

1. Density Scaling: ρmatter ∝ Ω−4.

2. Volume Scaling: dV ∝ Ω3r3.

3. Consistency Condition: α > 2
3
for flat rotation curves.

This ensures CERM’s predictions align with both conformal geometry and
galactic observations.

B.5 Observational Test

To test the predictions of CERM for galactic dynamics, we propose the fol-
lowing observational strategies:
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B.5.1 Fit α Using Galactic Rotation Curves

The parameter α can be constrained using datasets like SPARC (Spitzer
Photometry and Accurate Rotation Curves). Specifically:

• Determine α to explain flat rotation curves in spiral galaxies.

• Compare predictions with low-surface-brightness (LSB) galaxies, where
baryonic effects are minimal.

• If α ≤ 2
3
, alternative scalings for M(r) or Ω(r) may be necessary. Ob-

servational tests using galaxy rotation curves, LSB galaxies, and hy-
drodynamical simulations will help refine the value of α and validate
CERM’s predictions.

B.5.2 Disentangle α from Baryonic Feedback

To validate the role of Ω(x) in galactic dynamics, consider the following
approaches:

1. Compare Different Galaxy Types: LSB and dwarf spheroidal galax-
ies provide cleaner gravitational signals due to weaker baryonic feed-
back.

2. Hydrodynamical Simulations: Run simulations with and without
baryonic feedback to disentangle conformal effects.

3. Test Against Milky Way Data: Use the well-measured rotation
curve of the Milky Way as an independent test.

If α remains robust after accounting for baryonic effects, it strengthens
the argument that CERM explains galactic dynamics without requiring dark
matter.
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C Appendix C: Transfer of δΩ to Matter Per-

turbations

C.1 Primordial Perturbations

In the Conformal Emergent Reality Model (CERM), the scalar field Ω(x)
governs physical scales and dynamically influences spacetime geometry. To
understand how perturbations in Ω(x) propagate into matter density fluc-
tuations, we begin by expanding Ω(x) around a homogeneous background
value Ω0(t):

Ω(x) = Ω0(t)[1 + δ(x)], (65)

where δ(x) represents the fractional perturbation in Ω(x), defined as:

δ(x) =
δΩ(x)

Ω0

. (66)

This decomposition separates the large-scale evolution of Ω0(t) from small-
scale spatial variations encoded in δ(x). Substituting this expansion into the
physical metric gµν = Ω2(x)γµν , we obtain:

gµν = Ω2
0(t)γµν [1 + 2δ(x)]. (67)

Here, the factor [1+2δ(x)] encodes the influence of δ(x) on the geometry
of spacetime. This relationship highlights how perturbations in Ω(x) directly
affect the physical metric and, consequently, the behavior of matter fields.

C.2 Density Contrast

The perturbation δ(x) induces corresponding fluctuations in the matter den-
sity. Assuming that matter is minimally coupled to the physical metric gµν ,
the energy-momentum tensor for a perfect fluid takes the form:

Tµν = (ρ+ p)uµuν − pgµν , (68)

where ρ is the energy density, p is the pressure, and uµ is the fluid’s four-
velocity. Expanding ρ and p around their background values ρ0 and p0, we
write:
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ρ(x) = ρ0(t)[1 + δρ(x)], p(x) = p0(t)[1 + δp(x)]. (69)

The density contrast δρ(x) is related to δ(x) through the conformal scaling
of Ω(x). Specifically, the variation in the physical volume element

√
−g

introduces a direct coupling between δ(x) and δρ(x). Using the relation:

√
−g = Ω4

√
−γ, (70)

we find that the fractional change in the physical volume is proportional
to 4δ(x). Consequently, the density contrast satisfies:

δρ

ρ
= −2δ(x). (71)

This result shows that perturbations in Ω(x) are directly imprinted onto
the matter density distribution. The factor of −2 arises because an increase
in Ω(x) expands the physical volume, thereby diluting the matter density.

C.3 Power Spectrum

To quantify the statistical properties of δ(x), we treat it as a free scalar field
propagating on the conformal background (M,γµν). The action for δ(x) is
derived from the gravitational action in CERM (see Appendix A):

S[δ] =

∫
d4x

√
−γ

[
1

2
γµν∂µδ∂νδ − V (δ)

]
, (72)

where V (δ) is an effective potential governing the dynamics of δ(x). As-
suming V (δ) is quadratic, the linearized equation of motion is:

□γδ +m2
δδ = 0, (73)

where□γ is the d’Alembertian operator on the conformal manifold (M,γµν),
and mδ is an effective mass term.

Quantizing δ(x), we expand it in Fourier modes:

δ(x) =

∫
d3k

(2π)3

[
ake

ik⃗·x⃗δk(t) + h.c.
]
, (74)

where ak and a†k are creation and annihilation operators, and δk(t) satis-
fies:
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δ̈k + 3Hδ̇k +

(
k2

a2
+m2

δ

)
δk = 0. (75)

Here, H = ȧ/a is the Hubble parameter, and k is the comoving wavenum-
ber. Solving this equation during inflation yields the power spectrum:

Pδ(k) =
k3

2π2
|δk|2. (76)

For slow-roll evolution of Ω0(t), the spectrum takes the nearly scale-
invariant form:

Pδ(k) =
H2

4π2Ω2
0

∣∣∣∣
k=aH

. (77)

C.3 Transfer Function

Primordial fluctuations evolve through different cosmological epochs. To
account for this evolution, we introduce the transfer function T (k), which
relates the primordial spectrum Pδ(k) to the late-time matter power spectrum
Pm(k):

Pm(k) = Pδ(k)T
2(k). (78)

The transfer function T (k) encodes the effects of gravitational collapse
and baryon-photon interactions. For modes entering the horizon during mat-
ter domination, T (k) can be approximated analytically:

T (k) =
ln(1 + 2.34q)

2.34q

[
1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4

]−1/4
, (79)

where:

q =
k

keq
, keq ≈ 0.01Mpc−1. (80)
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D Appendix D: Theoretical Gap: Spectral

Tilt ns ≈ 0.965

D.1 Current Status

The spectral tilt ns ≈ 0.965 is adopted from Planck CMB data but not
derived from CERM’s dynamics. This is a placeholder assumption pending
further theoretical work.

D.2 Missing Ingredients

To predict ns, CERM must:

1. Specify a Potential V (Ω): Example: V (Ω) = λΩ4, leading to slow-
roll evolution.

2. Solve Early-Universe Dynamics: Derive Ω(t) during a ”conformal
inflation” phase with Ω̈ ≈ 0.

3. Define Conformal Slow-Roll Parameters: Introduce analogs of
inflation’s ϵ and η:

ϵ = − Ḣ

H2
, η =

Ω̈

HΩ̇
. (81)

4. Link to ns: For single-field inflation, ns−1 = −2ϵ−η. CERM requires
a similar relation.

D.3 Challenges

• Boundary Conditions: Penrose’s CCC imposes constraints at con-
formal infinity, complicating initial conditions.

• Quantization: Quantizing Ω(x) in a conformally invariant way re-
mains unresolved.

• Observational Validation: Predict B-mode polarization in the CMB
and compare with Planck/BICEP data.
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D.4 Proposed Work

• Numerical simulations of Ω(t) for test potentials.

• Derive ns and compare with Planck’s ns = 0.9649± 0.0042.

• Predict the tensor-to-scalar ratio r, currently undefined in CERM.
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E Appendix E: CERM, QFD, and QED – A

Unified Conformal Framework

E.1 Quantum Field Dynamics in CERM

E.1.1 Path Integral Formalism

In CERM, quantum fields are quantized using a time-symmetric path integral
defined over the conformal manifold (M,γµν):

Z =

∫
Dϕ eiS[ϕ], S[ϕ] =

∫
d4x

√
−γ LQFD, (82)

where LQFD includes matter fields coupled to gµν = Ω2γµν . The absence
of a preferred time direction in γµν allows advanced and retarded solutions
to coexist, preserving T-symmetry. Observed time asymmetry arises solely
from boundary conditions on Ω(x).

E.1.2 Schwinger-Keldysh Formalism for Nonequilibrium Systems

For systems with explicit time evolution (e.g., cosmic inflation), the closed-
time-path integral becomes:

Z =

∫
Dϕ+Dϕ−ei(S[ϕ

+]−S[ϕ−]), (83)

where ϕ+ and ϕ− represent fields on forward/backward time contours. This
formalism aligns with CERM’s emergent arrow of time, as boundary condi-
tions on Ω(x) enforce causal consistency.

E.2 Quantum Electrodynamics in CERM

E.2.1 Gauge Invariance and Propagators

Maxwell’s equations are conformally invariant, allowing QED to retain its
structure. The photon propagator in Lorenz gauge becomes:

Dµν
F (x− y) =

∫
d4k

(2π)4
−iγµν

k2 + iϵ
e−ik·(x−y), (84)

where γµν replaces gµν . The propagator’s advanced/retarded symmetry re-
flects CERM’s T-symmetric geometry.

This work is licensed by Salman Akhtar (kalahari00@gmail.com) under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0

International License.

https://creativecommons.org/licenses/by-nc-sa/4.0/

https://orcid.org/0009-0000-8105-9597
mailto:kalahari00@gmail.com
https://creativecommons.org/licenses/by-nc-sa/4.0/


E.2.2 Mass Generation and the Higgs Mechanism

Fermion masses emerge via the Higgs field Φ, whose vacuum expectation
value (vev) scales inversely with Ω(x):

mψ = yψ
v√
2
∝ Ω−1(x), v ∝ Ω−1(x). (85)

where yψ is the Yukawa coupling constant.
This ensures conformal consistency, as dimensionful quantities derive

from Ω(x). The Dirac equation remains T-symmetric, with mass terms dy-
namically tied to Ω(x).

E.3 Higgs Potential and Conformal Symmetry Break-
ing

The Higgs mechanism in CERM dynamically generates particle masses while
preserving conformal invariance at the fundamental level. To achieve this,
the Higgs potential must explicitly depend on the conformal factor Ω(x),
ensuring that symmetry breaking scales inversely with Ω(x).

E.3.1 Conformal Higgs Potential

The Higgs field Φ is a scalar doublet with a potential:

V (Φ) = λ

(
Φ†Φ− v20

Ω2(x)

)2

, (86)

where:

• λ > 0: Self-coupling constant,

• v0: Dimensionless constant fixing the hierarchy of symmetry breaking,

• Ω(x): Conformal scalar field.

E.3.2 Minimization and Vacuum Expectation Value (vev)

The potential is minimized when:

Φ†Φ =
v20

Ω2(x)
=⇒ ⟨Φ⟩ = v0√

2Ω(x)

(
0
1

)
. (87)
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The physical Higgs vev is therefore:

v(x) =
v0

Ω(x)
. (88)

This scaling ensures that particle masses m ∝ v(x) ∝ Ω−1(x), as required for
conformal consistency.

E.3.3 Higgs Lagrangian in CERM

The full Higgs Lagrangian, including kinetic and Yukawa terms, is:

LHiggs =
√
−g

[
(DµΦ)

†(DµΦ)− λ

(
Φ†Φ− v20

Ω2

)2

− yψ̄Φψ

]
, (89)

where:

• Dµ = ∂µ + igAµ: Gauge-covariant derivative,

• y: Yukawa coupling constant,

• ψ: Fermion field.

E.3.4 Conformal Invariance Check

Under a conformal transformation γµν → e2ϕ(x)γµν , the fields scale as:

Ω(x) → e−ϕ(x)Ω(x), Φ → eϕ(x)Φ, ψ → e3ϕ(x)/2ψ. (90)

Substituting these into the Higgs Lagrangian:

LHiggs → e4ϕ(x)
√
−γ [· · · ] =

√
−g [· · · ] , (91)

confirming conformal invariance. The Ω(x)-dependence in V (Φ) ensures the
vev v(x) scales correctly.

E.3.5 Observational Implications

1. Time-Varying Fermion Masses: As Ω(x) grows cosmologically,
m ∝ Ω−1(x) decreases.

2. High-Redshift Tests: Spectral lines from ancient astrophysical ob-
jects (e.g., quasars) should exhibit redshift-dependent mass shifts.

3. Electroweak Phase Transition: The Ω(x)-dependent vev modifies
the dynamics of early-universe symmetry breaking.
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F Appendix F: Spacetime Emergence and In-

formation in CERM

F.1 The CERM Postulate

Spacetime emerges from a conformal manifold (M,γµν) coupled to a scalar
field Ω(x):

gµν(x) = Ω2(x)γµν(x). (92)

The conformal manifold defines causal structure and angles, while Ω(x)
dynamically sets physical scales (lengths, masses, energies).

F.2 Boundary Conditions and Cosmic Aeons

CERM adopts Penrose’s Conformal Cyclic Cosmology (CCC), where aeons
transition via conformal resets (See Appendix M):

1. Aeon Transitions: At Ω(x) → ∞, matter dissolves into a conformally
invariant state.

2. Entropy Reset: Phase space volume collapses
(
S ∝

∫
Ω3(x)ρ ln ρ d3x→ 0

)
.

3. Weyl Curvature Suppression: Cµνρσ[γ] → 0 ensures a low-entropy
initial state.

F.3 Information Content of the Conformal Manifold

The conformal manifold encodes three types of information:

F.3.1 Causal and Geometric Structure

• Causal Relationships: Light cones and time-like trajectories derive
from γµν .

• Conformal Invariants: Angles and scale-free ratios are preserved
under γµν → e2ϕγµν .
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F.3.2 Entropy Dynamics

• Phase Space Expansion: Entropy growth is tied to Ω3(x) scaling:

S ∝
∫
d3xΩ3(x)ρ(x) ln ρ(x). (93)

• Arrow of Time: Boundary conditions on Ω(x) at conformal infinity
enforce entropy asymmetry.

F.3.3 Quantum Correlations

• Nonlocal Entanglement: The Schwinger-Keldysh propagatorGSK(x, y; γ,Ω)
on γµν governs time-symmetric correlations (e.g., DCQE).

• Retrocausality Suppression: Advanced propagators Gadv are sup-
pressed by Ω(x) boundary conditions.

F.4 Entanglement and the Conformal Manifold

F.4.1 Quantum Correlations as Geometric Properties of (M,γµν)

In CERM, entanglement is not merely a quantum phenomenon but a geo-
metric property of the classical conformal manifold (M,γµν), mediated by
the scalar field Ω(x). This section formalizes how entanglement arises from
the manifold’s causal structure and scaling dynamics.

F.4.2 Entangled States on (M,γµν)

For a bipartite quantum system (e.g., particles A and B), the entangled state
is defined relative to regions of γµν :

|Ψ⟩ = 1√
2
(|A⟩U |B⟩V + |A′⟩U ′|B′⟩V ′) , (94)

where U, V are causally connected regions of γµν , and |A⟩U denotes the
state of field ϕ(x) localized in U . Entanglement reflects the connectivity of
γµν , with Ω(x) modulating the strength of correlations.
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F.4.3 Entanglement from Conformal Propagators

The Schwinger-Keldysh propagator on γµν governs correlations:

GSK(x, y; Ω) =

∫
Dϕ eiS[ϕ,γ,Ω]ϕ(x)ϕ(y), (95)

where

S[ϕ, γ,Ω] =

∫
d4x

√
−γ

(
1

2
(∂ϕ)2 + λϕ4

)
. (96)

Entanglement entropy between regions U and V is:

Sent ∝
∫
∂U

√
γ d3xΩ3(x) ln ρ(x), (97)

linking entropy to the conformal scaling of phase space.

F.4.4 Measurement and Conformal Scaling

Measurement devices act as conformal scaling operators Ω̂(x), collapsing en-
tanglement into observable correlations:

Ω̂(x)|A⟩U = Ω(x)|A⟩Ω2γ. (98)

This local scaling modifies gµν = Ω2γµν , imprinting entanglement onto
the emergent spacetime.

F.4.5 Key Results

1. Entanglement as Geometry: Correlations are dictated by γµν ’s
causal connectivity, not intrinsic quantum nonlocality.

2. Role of Ω(x): Determines the scale of entanglement via phase space
expansion (∝ Ω3).

3. Retrocausality Suppressed: Boundary conditions on Ω(x) enforce
causality in gµν , aligning with the arrow of time.
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F.4.6 Experimental Signature

• Conformal Invariance: Detection probabilities reduce to standard
quantum mechanics when Ω(x) is constant:

P (A,B) = |⟨A| ⊗ ⟨B|Ψ⟩|2 = 1

2
. (99)

• Deviations in Curved Spacetime: Varying Ω(x) introduces γµν-
dependent corrections to P (A,B).

F.5 Quantum States on a Fixed Conformal Manifold

Quantum states in CERM are functionals of matter fields ϕ(x) propagating
on the classical conformal manifold (M,γµν):

F.5.1 State Representation

A quantum state is a functional:

Ψ[ϕ, γ] =

∫
Dϕ eiS[ϕ,γ,Ω]Φ[ϕ], (100)

where Φ[ϕ] encodes initial/final conditions. The scalar field Ω(x) dynam-
ically scales physical observables (e.g.,

√
−g = Ω4

√
−γ).

F.5.2 Conformal Invariance

Under a conformal transformation γµν → e2α(x)γµν , states transform as:

Ψ[ϕ, γ] → Ψ[ϕ′, γ′], ϕ′(x) = e−α(x)ϕ(x). (101)

This ensures probabilities |Ψ[ϕ, γ]|2 remain invariant.

F.5.3 Observables

Measurement outcomes depend only on Ω(x)-scaled quantities:

⟨O⟩ =
∫
DϕO[ϕ,Ω]|Ψ[ϕ, γ]|2∫

Dϕ |Ψ[ϕ, γ]|2
. (102)
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F.5.4 Key Result

Quantum states are fully separable from the classical conformal manifold.
Non-locality and entanglement arise solely from field correlations on γµν .

F.6 Implications for Quantum Gravity

• Background Independence: γµν remains classical; quantum fluctu-
ations reside in Ω(x) and matter fields.

• Holographic Potential: γµν may holographically encode gµν data,
akin to AdS/CFT (see Appendix I and Appendix O).
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G Appendix G: Weyl Curvature and Entropy

in CERM

G.1 Weyl Curvature Hypothesis

The Weyl Curvature Hypothesis (WCH), proposed by Roger Penrose,
addresses one of the most profound puzzles in cosmology: Why did the uni-
verse begin in an extraordinarily low-entropy state? The hypothesis states
that the initial singularity of the universe had vanishing Weyl curvature
Cµνρσ, corresponding to a highly ordered, low-entropy configuration. This
contrasts with the high Weyl curvature observed in black holes, which are
associated with maximal entropy.

In General Relativity (GR), the Riemann curvature tensor decomposes
into two parts:

Rµνρσ = Cµνρσ +
1

2

(
gµ[ρRσ]ν − gν[ρRσ]µ

)
− 1

6
Rgµ[ρgσ]ν , (103)

where:

• Cµνρσ: TheWeyl tensor, encoding tidal forces and gravitational waves,

• Rµν : The Ricci tensor, describing matter-energy contributions via Ein-
stein’s field equations,

• R: The Ricci scalar, representing the trace of the Ricci tensor.

At the Big Bang, the Ricci tensor Rµν dominates due to the presence of
matter and energy, while the Weyl tensor Cµνρσ is hypothesized to vanish.
This ensures that the universe starts in a smooth, homogeneous, and isotropic
state, consistent with the observed cosmic microwave background (CMB).

G.1.1 Link to CERM

The Conformal Emergent Reality Model (CERM) provides a geometric mech-
anism for realizing the WCH. In CERM, spacetime emerges dynamically from
a conformal manifold (M,γµν) and a scalar field Ω(x), which governs physical
scales. The physical metric is given by:

gµν(x) = Ω2(x)γµν(x). (2)
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At the Big Bang (t → 0), Ω(x) → ∞, which smooths out the conformal
metric γµν . This smoothing suppresses the Weyl curvature Cµνρσ[γ], ensur-
ing that the universe begins in a low-entropy, scale-invariant state. This
aligns perfectly with Penrose’s WCH, as the vanishing of Cµνρσ corresponds
to minimal gravitational degrees of freedom and maximal order.

G.1.2 Entropy Growth in CERM

Entropy growth in CERM is directly tied to the evolution of Ω(x). The
geometric interpretation of entropy is:

S ∝
∫
d3xΩ3(x) ln ρ(x), (104)

where:

• Ω3(x): Represents the expansion of phase space volume due to Ω(x),

• ρ(x): Denotes the matter density distribution.

As Ω(x) increases over time, the term Ω3(x) ensures that the phase space
volume—and hence the entropy—increases monotonically. This provides a
natural explanation for the Second Law of Thermodynamics without requir-
ing a special low-entropy initial condition.

G.1.3 Explanation of Terms in equation

• Ω3(x): The cubic scaling reflects how Ω(x) expands spatial volumes,
driving entropy upward.

• ln ρ(x): Quantifies the information content or disorder associated with
the matter density distribution.

• Phase Space Volume: In statistical mechanics, entropy S is related
to the accessible phase space volume V :

S ∼ lnV .

In CERM, the phase space volume expands dynamically due to the
evolution of Ω(x).
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G.1.4 Connection to Cosmic Evolution

The alignment between entropy growth and cosmic expansion arises nat-
urally in CERM. The Friedmann-like equation governing the evolution of
Ω(x) includes a term analogous to the Hubble parameter:

Ω̇

Ω
= Heff, (105)

where Heff represents an effective expansion rate. This equation shows that
Ω(x) grows as the universe expands, driving both entropy increase and cosmic
acceleration.

G.2 Observational Test

If the Weyl curvature Cµνρσ[γ] is suppressed at early times, this should leave
observable imprints on the cosmic microwave background (CMB). Specif-
ically, primordial gravitational waves (GWs) generated during inflation in-
herit a spectral tilt from the dynamics of Ω(x). The power spectrum of tensor
perturbations is given by:

PT (k) =
H2

π2Ω2
0

∣∣∣∣
k=aH

, (106)

where:

• H: The inflationary Hubble parameter,

• Ω0: The value of Ω(x) during inflation.

A tilt nt ̸= 0 distinguishes CERM from GR and links to CMB B-mode
polarization experiments. Observational signatures include:

1. Suppressed Primordial B-Modes: If Cµνρσ[γ] is initially small, the
amplitude of primordial B-modes will be weaker than predicted by GR.

2. Low-ℓ CMBAnomalies: Residuals in the CMB temperature anisotropy
spectrum at large angular scales (ℓ < 30) may reflect Ω(x) fluctuations:

δT

T
≈ 1

3
(ΦGR + δ lnΩ), (107)

where ΦGR is the gravitational potential in GR and δ lnΩ represents
fluctuations in Ω(x).
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G.2.1 Comparison with Observations

To test these predictions:

1. Compare CMB B-mode polarization data from experiments like BI-
CEP/Keck with GR predictions.

2. Fit δ lnΩ ∼ 10−5 residuals in Planck’s CMB power spectrum at low
multipoles (ℓ < 30).

G.3 Implications for CERM

The suppression of Weyl curvature at early times provides strong support for
CERM’s geometric framework. By linking entropy growth to the evolution
of Ω(x), CERM avoids the need for fine-tuned initial conditions and offers a
unified explanation for:

1. The low-entropy Big Bang,

2. The arrow of time,

3. Cosmic expansion and entropy increase.

This approach also aligns with Penrose’s Conformal Cyclic Cosmology
(CCC), where each cosmic cycle resets the universe’s conformal structure,
ensuring a smooth transition between aeons.
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H Appendix H: Strong Force and Conformal

Scaling

H.1 QCD in CERM

The strong interaction, described by Quantum Chromodynamics (QCD),
plays a central role in particle physics. In the Conformal Emergent Real-
ity Model (CERM), the conformal scaling Ω(x) modifies the dynamics of
the strong force, leading to testable predictions for proton masses, quark
confinement, and isotopic ratios over cosmic time.

H.1.1 Modified QCD Lagrangian

The standard QCD Lagrangian is given by:

LQCD = −1

4
Ga
µνG

aµν + q̄(iγµDµ −mq)q, (108)

where:

• Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gsf

abcAbµA
c
ν : The gluon field strength tensor,

• Aaµ: The gluon gauge field,

• gs: The strong coupling constant,

• fabc: The structure constants of the SU(3) gauge group,

• q̄ and q: The quark fields,

• mq: The quark masses.

In CERM, the physical metric gµν = Ω2γµν introduces a conformal de-
pendence into the QCD Lagrangian. The modified Lagrangian becomes:

LCERM-QCD =
√
−g

[
−1

4
Ga
µνG

aµν + q̄(iγµDµ −mqΩ
−1)q

]
, (109)

where:

•
√
−g: Ensures the Lagrangian transforms correctly under conformal

rescaling,

• mq ∝ Ω−1: Quark masses scale inversely with Ω(x), reflecting the
emergent nature of mass in CERM.
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H.1.2 Confinement Scale and Proton Masses

The QCD confinement scale ΛQCD determines the energy at which quarks
and gluons are confined into hadrons. In CERM, this scale depends on Ω(x)
as:

ΛQCD ∝ Ω−1. (110)

This scaling implies that ΛQCD evolves over cosmic time, altering the
masses of protons and other hadrons. Since proton masses dominate baryonic
matter, this effect could leave observable imprints in ancient astrophysical
systems.

H.1.3 Physical Implications

The conformal scaling of ΛQCD has several important consequences:

1. Time-Varying Proton Masses: As Ω(x) increases, proton masses
decrease. This could be detected through isotopic ratio measurements
in ancient meteorites.

2. Nuclear Binding Energies: Changes in ΛQCD affect nuclear binding
energies, potentially altering the abundance of light elements in early
galaxies.

3. Cosmic Evolution of Hadrons: The evolution of Ω(x) provides a
mechanism for studying how strong interactions behave over cosmolog-
ical timescales.

H.2 Observational Test

To test the predictions of CERM for the strong force, we propose the following
observational strategies:

H.2.1 Isotopic Ratios in Ancient Meteorites

Measure isotopic ratios in ancient meteorites, such as 187Re/187Os, to probe
variations in ΛQCD. These isotopes are sensitive to changes in nuclear binding
energies, which depend on ΛQCD. If ΛQCD ∝ Ω−1, then isotopic ratios should
exhibit a systematic shift over cosmic time.

This work is licensed by Salman Akhtar (kalahari00@gmail.com) under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0

International License.

https://creativecommons.org/licenses/by-nc-sa/4.0/

https://orcid.org/0009-0000-8105-9597
mailto:kalahari00@gmail.com
https://creativecommons.org/licenses/by-nc-sa/4.0/


H.2.2 Proton Mass Evolution

Search for evidence of time-varying proton masses using high-redshift astro-
physical systems. For example:

• Compare spectral lines from distant quasars to detect shifts in atomic
transitions caused by changing proton masses.

• Analyze the fine-structure constant α = e2

4πϵ0ℏc , which depends on ΛQCD,
to constrain Ω(x) evolution.

H.2.3 Implications for Stellar Nucleosynthesis

Changes in ΛQCD affect stellar nucleosynthesis processes, particularly the pro-
duction of light elements like helium and lithium. Observations of primordial
element abundances can provide indirect evidence for Ω(x)-dependent scal-
ing.

H.3 Summary

• The strong force in CERM is modified by the conformal scaling Ω(x),
leading to a time-dependent confinement scale ΛQCD ∝ Ω−1.

• Quark masses and proton masses scale inversely with Ω(x), providing
a mechanism for studying cosmic evolution of hadronic matter.

• Observational tests include isotopic ratio measurements in ancient me-
teorites, spectral line analysis in high-redshift systems, and constraints
from primordial nucleosynthesis.

By linking the strong force to the conformal structure of spacetime,
CERM offers a novel framework for understanding the interplay between
particle physics and cosmology.
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I Appendix I: Quantum Gravity and Renor-

malization

I.1 I.1 Effective Quantum Gravity in CERM

The Conformal Emergent Reality Model (CERM) provides a novel approach
to quantum gravity by avoiding the direct quantization of spacetime. Instead,
the conformal manifold (M,γµν) is treated as a classical background, while
quantum fluctuations reside in the scalar field Ω(x) and matter fields. This
sidesteps many of the renormalization issues associated with perturbative
quantum gravity.

I.1.1 Effective Action for Quantum Gravity

The effective action in CERM includes contributions from the Einstein-
Hilbert term, the Standard Model Lagrangian, and one-loop corrections de-
pendent on Ω(x). The total effective action is given by:

Γeff =

∫
d4x

√
−g

[
R

16πG
+ LSM

]
+ Γ1-loop[Ω], (111)

where:

• R: The Ricci scalar of the physical metric gµν = Ω2γµν ,

• G: Newton’s gravitational constant,

• LSM: The Standard Model Lagrangian coupled to gµν ,

• Γ1-loop[Ω]: One-loop corrections that include Ω(x)-dependent countert-
erms.

The one-loop corrections arise from quantum fluctuations of matter fields
and Ω(x) itself. These terms ensure that divergences cancel if Ω(x) evolves
adiabatically over cosmic timescales.

I.1.2 Physical Implications

Treating γµν as a classical background has several important consequences:
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1. Avoidance of Singularities: By avoiding the direct quantization
of spacetime, CERM circumvents the singularities that often arise in
perturbative quantum gravity.

2. Conformal Consistency: The scaling of Ω(x) ensures that all dimen-
sionful quantities (e.g., masses, couplings) are dynamically generated,
preserving conformal invariance at the classical level.

3. Renormalization of Counterterms: The Ω(x)-dependent countert-
erms in Γ1-loop[Ω] absorb divergences, ensuring a finite and well-defined
theory.

I.1.3 Detailed Explanation of Terms

•
√
−g: Ensures the action transforms correctly under general coordinate

transformations.

• R/16πG: The Einstein-Hilbert term, which governs the dynamics of
gravity.

• LSM: Encodes the interactions of Standard Model particles with the
physical metric gµν .

• Γ1-loop[Ω]: Includes loop corrections from quantum fluctuations of mat-
ter fields and Ω(x), ensuring renormalizability.

I.2 Observational Tests

The predictions of CERM for quantum gravity can be tested through obser-
vational signatures of quantum spacetime fluctuations. Key tests include:

I.2.1 Absence of Stochastic Gravitational Wave Background

In traditional quantum gravity theories, spacetime fluctuations generate a
stochastic gravitational wave (GW) background. In CERM, the absence of
such a background is a natural consequence of treating γµν as a classical
background. Observational searches for this background using pulsar timing
arrays (e.g., NANOGrav) provide a critical test of CERM.
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I.2.2 Constraints on Ω(x) Evolution

If Ω(x) evolves adiabatically, quantum fluctuations remain small, avoiding
large-scale deviations from classical predictions. Observations of cosmic mi-
crowave background (CMB) anisotropies and large-scale structure can con-
strain the rate of Ω(x) evolution, testing the adiabatic assumption.

I.2.3 Implications for Black Hole Physics

CERM predicts modifications to black hole thermodynamics due to the con-
formal scaling of Ω(x). For example:

• The Hawking temperature of black holes scales as TH ∝ Ω−1,

• The Bekenstein-Hawking entropy scales as SBH ∝ Ω2.

These predictions can be tested using observations of black hole mergers and
their associated gravitational wave signals.

I.3 Summary

• CERM avoids quantizing spacetime directly by treating the conformal
manifold (M,γµν) as a classical background.

• Quantum fluctuations reside in Ω(x) and matter fields, with renormal-
ization ensured by Ω(x)-dependent counterterms.

• Observational tests include searches for a stochastic gravitational wave
background, constraints on Ω(x) evolution, and modifications to black
hole thermodynamics.

By providing a consistent framework for quantum gravity without space-
time singularities, CERM offers a promising avenue for unifying quantum
mechanics and general relativity.
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J Appendix J: Neutrino Masses in CERM

J.1 Neutrino Mass Generation

In the Conformal Emergent Reality Model (CERM), neutrino masses arise
dynamically due to the conformal scaling Ω(x). This provides a natural
mechanism for understanding the origin of neutrino masses and their poten-
tial variation over cosmic time.

J.1.1 Dirac Neutrino Masses

For Dirac neutrinos, masses are generated through Yukawa couplings to the
Higgs field Φ. The relevant Lagrangian term is:

LDirac = yνL̄ΦνR + h.c., (112)

where:

• yν : The Yukawa coupling constant,

• L̄: The left-handed lepton doublet,

• Φ: The Higgs field,

• νR: The right-handed neutrino field.

After electroweak symmetry breaking, the Higgs field acquires a vacuum
expectation value (vev) v, leading to a Dirac neutrino mass:

mν = yν
v√
2
. (113)

In CERM, the vev v scales inversely with Ω(x):

v ∝ Ω−1(x). (114)

Thus, the Dirac neutrino mass becomes:

mν ∝ Ω−1(x). (115)

This implies that neutrino masses decrease as Ω(x) increases over cosmic
time.
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J.1.2 Majorana Neutrino Masses

For Majorana neutrinos, masses can arise via the seesaw mechanism. The
relevant Lagrangian term is:

LMajorana =
MR

2
νTRCνR + h.c., (116)

where:

• MR: The Majorana mass scale,

• C: The charge conjugation matrix.

The effective Majorana neutrino mass is given by:

mν
Maj =

v2

MR

. (117)

In CERM, since v ∝ Ω−1(x), the Majorana neutrino mass scales as:

mν
Maj ∝ Ω−2(x). (118)

This stronger dependence on Ω(x) reflects the quadratic scaling of the
seesaw mechanism.

J.1.3 Physical Implications

The conformal scaling of neutrino masses has several important consequences:

1. Time-Varying Neutrino Masses: As Ω(x) evolves, neutrino masses
decrease over cosmic time. This could leave observable imprints in
high-redshift astrophysical systems.

2. Neutrino Oscillations: The energy-dependent oscillation probabil-
ities of neutrinos depend on their masses. Variations in Ω(x) could
modify these probabilities over cosmological scales.

3. Cosmic Evolution of Leptogenesis: If neutrino masses vary with
Ω(x), this could affect leptogenesis scenarios and the generation of
baryon asymmetry.
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J.2 Observational Test

To test the predictions of CERM for neutrino masses, we propose the follow-
ing observational strategies:

J.2.1 High-Redshift Astrophysical Neutrinos

Measure the neutrino mass hierarchy using high-redshift astrophysical neu-
trinos detected by experiments like IceCube. In CERM, neutrino masses
scale as:

mν ∝ (1 + z), (119)

where z is the redshift. This scaling provides a direct probe of Ω(x) evolution.

J.2.2 Cosmic Microwave Background (CMB)

Neutrino masses affect the CMB power spectrum through their contribution
to the total energy density. Observations of the CMB anisotropy spectrum
can constrain variations in mν over cosmic time.

J.2.3 Large-Scale Structure

Neutrino masses influence the growth of large-scale structure by suppressing
matter perturbations on small scales. Comparing galaxy surveys (e.g., DESI,
Euclid) with theoretical predictions can test the time evolution of mν .

J.3 Summary

• Neutrino masses in CERM arise dynamically due to the conformal scal-
ing Ω(x).

• Dirac neutrino masses scale as mν ∝ Ω−1(x), while Majorana neutrino
masses scale as mν

Maj ∝ Ω−2(x).

• Observational tests include high-redshift neutrino measurements, CMB
anisotropy analysis, and large-scale structure surveys.

By linking neutrino masses to the conformal structure of spacetime, CERM
offers a novel framework for understanding the interplay between particle
physics and cosmology.
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K Appendix K: Baryogenesis via Ω(x) Dy-

namics

K.1 CP Violation and Sphalerons

One of the outstanding challenges in cosmology is explaining the observed
matter-antimatter asymmetry in the universe. The Conformal Emergent
Reality Model (CERM) provides a novel mechanism for baryogenesis by in-
corporating a CP-violating term in the potential of the scalar field Ω(x). This
mechanism leverages phase transitions in Ω(x) to generate a lepton asymme-
try, which is subsequently converted into a baryon asymmetry via sphaleron
processes.

K.1.1 CP-Odd Term in the Ω(x) Potential

The potential for Ω(x) includes a CP-violating term:

V (Ω) ⊃ λΩ4 sin

(
θ

Ω

)
, (120)

where:

• λ: A dimensionless coupling constant,

• θ: A phase parameter that introduces CP violation,

• Ω(x): The conformal scalar field governing physical scales.

This term breaks CP symmetry dynamically, providing the necessary con-
ditions for generating an asymmetry between matter and antimatter.

K.1.2 Lepton Asymmetry Generation

During phase transitions in Ω(x), the CP-violating term generates a lepton
asymmetry. The process occurs as follows:

1. Phase Transition: As Ω(x) evolves, it undergoes a phase transition,
creating regions where the CP-violating term becomes significant.

2. Bubble Nucleation: Bubbles of the new vacuum phase form, with
gradients in Ω(x) driving CP-violating effects at the bubble walls.
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3. Lepton Number Violation: The CP-violating interactions at the
bubble walls produce a net lepton number asymmetry.

The lepton asymmetry is quantified by:

∆L ∝ ϵ · Γsph, (121)

where:

• ϵ: The CP-violation parameter, determined by the phase θ,

• Γsph: The sphaleron transition rate, which converts lepton asymmetry
into baryon asymmetry.

K.1.3 Baryon Asymmetry via Sphalerons

Sphaleron processes, which violate baryon and lepton number conservation
but preserve B − L, convert the generated lepton asymmetry into a baryon
asymmetry. The resulting baryon-to-photon ratio is given by:

ηB =
nB
nγ

∝ ∆L, (122)

where:

• nB: The baryon number density,

• nγ: The photon number density.

In CERM, the magnitude of ηB depends on the dynamics of Ω(x) during
the phase transition, providing a direct link between baryogenesis and the
conformal structure of spacetime.

K.2 Observational Test

To test the predictions of CERM for baryogenesis, we propose the following
observational strategies:
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K.2.1 Correlation Between Baryon Asymmetry and CMB Polar-
ization

The baryon asymmetry ηB leaves an imprint on the cosmic microwave back-
ground (CMB) through its effect on primordial plasma dynamics. Specifi-
cally:

• The E-mode polarization of the CMB is sensitive to baryon density
fluctuations.

• A correlation between ηB and E-mode polarization can be tested using
future CMB experiments like LiteBIRD.

In CERM, the predicted relationship is:

ηB ∝ δ lnΩ, (123)

where δ lnΩ represents fluctuations in Ω(x) during the early universe. Ob-
servations of ηB and CMB polarization can constrain this relationship.

K.2.2 Implications for Leptogenesis Models

If Ω(x)-driven baryogenesis is correct, it provides an alternative to traditional
leptogenesis models (e.g., those involving heavy Majorana neutrinos). Key
differences include:

• The source of CP violation arises from the Ω(x) potential rather than
Yukawa couplings,

• The timing of the asymmetry generation is tied to Ω(x) phase transi-
tions, potentially occurring later than in standard scenarios.

K.2.3 Testing with High-Energy Colliders

Future high-energy colliders, such as the proposed FCC or CEPC, could
probe the energy scales associated with Ω(x) phase transitions. Evidence of
CP-violating interactions at these scales would support CERM’s baryogenesis
mechanism.
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K.3 Summary

• CERM proposes a novel mechanism for baryogenesis via CP-violating
dynamics in the Ω(x) potential.

• A lepton asymmetry is generated during Ω(x) phase transitions and
converted into a baryon asymmetry via sphalerons.

• Observational tests include correlating baryon asymmetry ηB with CMB
E-mode polarization and probing CP-violating interactions at high-
energy colliders.

By linking baryogenesis to the conformal structure of spacetime, CERM
offers a unified framework for understanding the origin of matter in the uni-
verse.
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L Appendix L: CMB Anisotropies and Ω(x)

L.1 Modified Sachs-Wolfe Effect

The Cosmic Microwave Background (CMB) temperature anisotropies provide
a wealth of information about the early universe. In the Conformal Emergent
Reality Model (CERM), the conformal scalar field Ω(x) introduces modifica-
tions to the Sachs-Wolfe effect, which describes how gravitational potentials
imprint temperature fluctuations on the CMB.

The standard Sachs-Wolfe effect relates the temperature anisotropy δT/T
to the gravitational potential ΦGR in General Relativity (GR):

δT

T
≈ 1

3
ΦGR, (124)

where ΦGR is the gravitational potential derived from GR.
In CERM, the effective gravitational potential Φeff incorporates contribu-

tions from Ω(x):
Φeff = ΦGR + δ lnΩ, (125)

where:

• ΦGR: The gravitational potential in GR,

• δ lnΩ: Fluctuations in the conformal factor Ω(x).

Substituting this into the Sachs-Wolfe formula, the modified temperature
anisotropy becomes:

δT

T
≈ 1

3
(ΦGR + δ lnΩ). (41)

This additional term δ lnΩ arises naturally from the conformal scaling of
spacetime and provides a mechanism for explaining anomalies in the CMB
power spectrum.

L.1.1 Physical Implications

The inclusion of δ lnΩ has several important consequences:

1. Low-ℓ Anomalies: Observations of the CMB power spectrum show
deviations at large angular scales (ℓ < 30). These anomalies can be
explained if δ lnΩ ∼ 10−5, corresponding to small fluctuations in Ω(x)
during recombination.
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2. Scale-Dependent Corrections: The term δ lnΩ introduces scale-
dependent corrections to the Sachs-Wolfe effect, potentially altering
the shape of the CMB power spectrum.

3. Link to Entropy Growth: The fluctuations δ lnΩ are tied to the evo-
lution of Ω(x), which governs entropy growth in CERM (see Appendix
G).

Detailed Explanation of Terms

• ΦGR: Represents the gravitational potential in GR, encoding density
perturbations in the early universe.

• δ lnΩ: Captures fluctuations in the conformal factor Ω(x), reflecting
the dynamical nature of spacetime in CERM.

• δT/T : The fractional temperature fluctuation observed in the CMB.

L.2 Observational Test

To test the predictions of CERM for CMB anisotropies, we propose the
following observational strategies:

L.2.1 Fit δ lnΩ to Planck Data

The Planck satellite has provided high-precision measurements of the CMB
power spectrum. Residuals at low multipoles (ℓ < 30) can be used to con-
strain δ lnΩ. Specifically:

• Fit δ lnΩ ∼ 10−5 to explain low-ℓ anomalies.

• Compare the predicted power spectrum with Planck data to validate
the CERM model.

L.2.2 Correlation with Large-Scale Structure

Fluctuations in Ω(x) leave imprints not only on the CMB but also on the
distribution of matter in the universe. Cross-correlating CMB anisotropies
with large-scale structure surveys (e.g., DESI, Euclid) can provide additional
constraints on δ lnΩ.
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L.2.3 Implications for Primordial Gravitational Waves

If δ lnΩ contributes significantly to the Sachs-Wolfe effect, it could alter the
amplitude of primordial gravitational waves imprinted on the CMB. Obser-
vations of B-mode polarization (e.g., BICEP/Keck) can test this prediction.

L.3 Summary

• CERM modifies the Sachs-Wolfe effect by incorporating fluctuations in
the conformal factor Ω(x).

• The term δ lnΩ explains low-ℓ anomalies in the CMB power spectrum.

• Observational tests include fitting δ lnΩ to Planck data, cross-correlating
with large-scale structure, and analyzing primordial gravitational waves.

By linking CMB anisotropies to the conformal structure of spacetime,
CERM offers a unified framework for understanding the interplay between
cosmology and quantum gravity.
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M Appendix M: Transition Between Cosmic

Aeons in CERM

The transition between cosmic aeons in the Conformal Emergent Reality
Model (CERM) is a cornerstone of its theoretical framework. This appendix
provides detailed derivations and mathematical insights into the mechanisms
governing the end of one aeon and the beginning of the next. These transi-
tions align with Penrose’s Conformal Cyclic Cosmology (CCC) but resolve
key issues, such as proton decay and graviton dependence, through the unique
conformal structure of CERM.

M.1 End of an Aeon: Conformal Reset

At the end of a cosmic cycle, the scalar field Ω(x) evolves to a singular state:

Ω(x) → ∞ (or equivalently, Ω(x) → 0 under inverse rescaling). (126)

This evolution triggers a conformal reset, which can be analyzed mathe-
matically as follows:

M.1.1 Matter Dissolution

The masses of particles scale inversely with Ω(x):

mp ∝ Ω−1(x), mν ∝ Ω−1(x), etc. (127)

As Ω → ∞, all particle masses vanish:

mp → 0, mν → 0. (128)

This process dissolves matter into a conformally invariant state dominated
by massless fields (e.g., photons, neutrinos). The absence of massive particles
ensures that no explicit proton decay mechanism (such as those proposed in
Grand Unified Theories) is required.

M.1.2 Geometry Preservation

The conformal manifold (M, γµν) remains intact during the transition. Only
the physical metric gµν resets:

gµν = Ω2γµν . (129)
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As Ω → ∞, the physical metric becomes degenerate, but the conformal
geometry γµν retains its causal structure and Weyl curvature. This ensures
continuity across aeons.

M.1.3 Entropy Reset

The phase space volume scales as Ω3(x):

S ∼
∫
d3xΩ3(x)ρ(x) ln ρ(x). (130)

As Ω → ∞, the phase space volume diverges inversely, resetting entropy to
a low-state configuration:

S → 0. (131)

M.1.4 Weyl Curvature Reset

The Weyl curvature tensor Cµνρσ[γ] is suppressed at the transition boundary:

Cµνρσ[γ] → 0. (132)

This ensures that the next aeon begins with low gravitational entropy, con-
sistent with Penrose’s Weyl Curvature Hypothesis.

M.2 Transition Mechanism

The transition between aeons occurs via boundary conditions at conformal
infinity. The following steps describe the mechanism in detail:

1. Massless Dominance: At Ω → ∞, all particles become effectively
massless:

mp ∝ Ω−1(x) → 0. (133)

This ensures that the universe enters a conformally invariant state
dominated by radiation-like fields. The dissolution of matter into a
conformally invariant state is accompanied by a holographic transfer of
information from the bulk spacetime Ωµν to the boundary conformal
manifold γµν . As shown in Appendix O, the renormalized holographic
potential ensures that quantum correlations and geometric data persist
across transitions, avoiding information loss.

This work is licensed by Salman Akhtar (kalahari00@gmail.com) under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0

International License.

https://creativecommons.org/licenses/by-nc-sa/4.0/

https://orcid.org/0009-0000-8105-9597
mailto:kalahari00@gmail.com
https://creativecommons.org/licenses/by-nc-sa/4.0/


2. Entropy Collapse: The phase space volume collapses as:

Ω3(x) → 0. (134)

This collapse resets entropy to a minimal value, preparing the universe
for the next aeon.

3. Weyl Curvature Suppression: The suppression of the Weyl curva-
ture tensor ensures a smooth crossover:

Cµνρσ[γ] → 0. (135)

M.3 Key Differences from CCC

Aspect CCC CERM
Gravitons Required for transi-

tion (massless media-
tors).

Unnecessary; tran-
sition governed by
Ω(x).

Proton Decay Relies on speculative
particle physics.

Avoided via mp → 0
as Ω → ∞.

Entropy Reset Achieved by black
hole evaporation.

Driven by phase
space collapse
(Ω3(x)).

Geometric Primacy Conformal rescaling
of metrics.

Conformal manifold
γµν preserved; only
Ω(x) resets.

Holographic Encoding Absent in CCC. Governed by Γ[γµν ]
see Appendix O.

Table 1: Comparison between CCC and CERM

M.4 Observational Implications

1. No Graviton Signature: Unlike CCC or inflationary models, CERM
predicts no primordial graviton background. Observations of stochas-
tic gravitational wave backgrounds (e.g., via pulsar timing arrays like
NANOGrav) should confirm this prediction.
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2. Massless Transition Era: High-redshift observations (e.g., CMB
spectral distortions) may reveal imprints of the massless phase during
the transition.

3. Entropy Asymmetry: The low-entropy initial state of each aeon
aligns with observed time asymmetry, without fine-tuning.
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N Appendix N: Clarification of Ω, Ω(x), and

Ω(t)

In the Conformal Emergent Reality Model (CERM), the scalar field Ω plays
a central role in dynamically determining physical scales. To ensure clarity
and consistency, this appendix provides a brief explanation of the terms Ω,
Ω(x), and Ω(t), and their usage throughout the model.

N.1 Definitions and Roles

• Ω: The scalar field Ω is a shorthand notation used when the explicit
dependence on spacetime coordinates is not emphasized. It represents
the conformal factor that scales the metric globally.

• Ω(x): Explicitly denotes the spatial dependence of the scalar field.
This form is critical for describing phenomena such as galactic rotation
curves, where gradients in Ω(x) contribute to gravitational effects.

• Ω(t): Denotes the temporal evolution of the scalar field. This is par-
ticularly relevant in cosmological contexts, where Ω(t) governs cosmic
expansion and the arrow of time.

N.2 Interchangeability and Contextual Usage

While Ω, Ω(x), and Ω(t) are related, they are not fully interchangeable:

• Use Ω(x) when analyzing spatial variations, such as modifications to
gravitational potentials or galactic dynamics.

• Use Ω(t) when discussing temporal evolution, such as cosmic accelera-
tion or entropy growth.

• In scenarios involving both spatial and temporal dependencies, the
combined form Ω(x, t) should be used for precision.

N.3 Examples of Correct Usage

1. Metric Scaling:
gµν(x) = Ω2(x)γµν(x),

where Ω(x) captures the local conformal scaling of spacetime.
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2. Cosmic Evolution:
Ω̇(t)

Ω(t)
= Heff,

where Ω(t) governs the effective expansion rate of the universe.

3. Galactic Dynamics:

∇2Φeff = 4πGρvis +
1

r2
d

dr

(
r2
∂rΩ(x)

Ω(x)

)
,

with Ω(x) explaining flat rotation curves without dark matter.

N.4 Summary

The scalar field Ω is a versatile construct in CERM, with its specific form (Ω,
Ω(x), or Ω(t)) chosen based on the context. By adhering to these distinc-
tions, the model maintains mathematical rigor and physical clarity, ensuring
consistent interpretations across diverse phenomena.
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O Appendix O:Holographic Potential in CERM

Derivation and Mathematical Framework
The ”holographic potential” in CERM refers to the effective action that

encodes how the emergent physical spacetime gµν = Ω2γµν is holographically
determined by the conformal manifold (M, γµν). This appendix derives the
mathematical relationship using CERM’s action and boundary terms.

O.1 Setup and Action

The CERM action with boundary terms is:

S =

∫
M
d4x

√
−γ

[
Ω2

2κ
R(γ)− 1

2
(∂Ω)2 − AΩ4

]
+

1

κ

∫
∂M

d3x
√
−γΩ2K, (136)

where K is the trace of the extrinsic curvature of the boundary ∂M.

O.2 Equations of Motion

Varying S with respect to γµν and Ω yields:

O.2.1 Modified Einstein Equations

Ω2Gµν(γ) +Hµν(Ω) = 8πGTmatter
µν , (137)

where Hµν(Ω) includes Ω-dependent terms (see Appendix A).

O.2.2 Scalar Field Equation

□γΩ− Ω

κ
R(γ) + 4AΩ3 = 0. (138)

O.3 Holographic Potential

The holographic potential Γ[γµν ] is the on-shell action evaluated for solu-
tions Ω[γµν ]:

Γ[γµν ] = Son-shell =
1

κ

∫
∂M

d3x
√
−γΩ2K

∣∣∣
EOM

. (139)

To compute this:
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1. Regulate the Boundary: Introduce a cutoff Ω = Λ near conformal
infinity (Ω → ∞).

2. Expand γµν and Ω: Assume a Fefferman-Graham-like expansion:

γµν(x,Ω) = γ(0)µν (x) +
γ
(2)
µν (x)

Ω2
+ · · · , K ∼ Ω

(
K(0) +

K(2)

Ω2
+ · · ·

)
.

(140)

3. Evaluate Boundary Term:

ΓΛ =
1

κ

∫
∂M

d3x
√
−γ(0)

(
Λ3K(0) + ΛK(2) + · · ·

)
. (141)

4. Renormalize: Subtract divergent terms as Λ → ∞:

Γren = lim
Λ→∞

(
ΓΛ − Λ3

∫ √
−γ(0)K(0)

)
. (142)

O.3.1 Resulting Holographic Potential

The renormalized holographic potential in CERM captures the conformal
anomaly and boundary dynamics and is given by:

Γren[γ
(0)
µν ] =

1

κ

∫
∂M

d3x
√

−γ(0)
[
A+ BR[γ(0)] + CRij[γ

(0)]Rij[γ(0)] + · · ·
]
,

(143)
where (the coefficients are from equations of motion in section O.2 (e.g.,
scalar field):

A =
3A

κ
,

B = − 1

4κ
,

C =
1

32κA
,

and:

• A is the trace anomaly proportional to A,

• BR[γ(0)] encodes curvature corrections from the conformal manifold,
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• γ
(0)
µν : Boundary conformal metric when Ω → 0 ,

• R[γ(0)]: Ricci scalar of γ
(0)
µν ,

• Rij[γ
(0)]: Ricci tensor of γ

(0)
µν ,

• A: Dimensionless constant from the Ω4 term in the CERM action,

• κ = 8πG: Gravitational coupling constant.

O.3.2 Interpretation of Terms

A (Conformal Anomaly Term)

• Arises from the cosmological constant-like term AΩ4 in the CERM
action.

• Represents a trace anomaly analogous to the conformal anomaly in
quantum field theory.

BR[γ(0)] (Curvature Correction)

• Encodes how the boundary curvature R[γ(0)] influences the holographic
potential.

• Derives from the Einstein-Hilbert term Ω2R(γ) in CERM.

CRijR
ij (Higher-Order Curvature)

• Captures non-linear curvature effects.

• Subdominant unless A≪ 1 (strong conformal coupling).

O.3.3 Key Features

1. Divergence Cancellation

• The Λ3 and Λ divergences in ΓΛ are subtracted, leaving finite
terms dependent on γ

(0)
µν .

2. Holographic Duality
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• Γren[γ
(0)
µν ] acts as the effective action for the boundary conformal

field theory (CFT), analogous to AdS/CFT.

3. Entanglement Entropy

• The A term contributes to the entropy density:

s ∼ A+ BR + . . . (144)

• Links to CERM’s geometric entropy formula:

S ∼
∫

Ω3ρ ln ρ. (145)

This potential completes CERM’s holographic framework, where the bulk
spacetime gµν = Ω2γµν is encoded in the boundary data γ

(0)
µν and Γren.

O.4 Physical Interpretation

• Bulk-Boundary Correspondence: The physical spacetime gµν is

reconstructed from γ
(0)
µν and Ω(x).

• Conformal Anomaly: The potential Γren includes quantum correc-
tions from Ω(x), analogous to the CFT effective action in AdS/CFT.

• Entanglement Entropy: The area term in Γren links to CERM’s
entropy formula S ∼

∫
Ω3ρ ln ρ via holography.

O.5 Key Equations Summary

1. On-Shell Action:

Γ[γµν ] =
1

κ

∫
∂M

√
−γΩ2K. (146)

2. Renormalized Potential:

Γren[γ
(0)
µν ] = Finite terms in ΓΛ as Λ → ∞. (147)

This derivation establishes CERM’s holographic framework, where the
conformal manifold (M, γµν) encodes the data required to reconstruct the
emergent spacetime gµν and its properties.
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