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Abstract. 

Throughout history, humanity has sought to limit error in order to gain more precise insights and 
optimize its tools, be they physical or conceptual.  

This work explores the intricate relationship between geometry, mathematics, and the propagation 
of uncertainty, with particular attention to methods that either mitigate or avoid the amplification 
of uncertainty in mathematical, geometric, and applied contexts.  

The study begins by examining the foundational concepts underlying uncertainty in mathematical 
models, exploring how various geometric and topological structures can be leveraged to better 
understand and control the flow of uncertainty across different domains. A new number convention, 
the so-called empirical number, is introduced, enabling a more accessible assessment of uncertainty 
propagation. Particular focus is placed on those constructions that actively work to reduce 
uncertainty, offering insights into techniques that prevent the cascading effect of errors, a challenge 
often encountered in both theoretical and applied mathematics. 

Through the use of geometric principles, this work provides novel approaches to managing the 
inherent uncertainties in complex systems, ranging from simple algebraic problems to intricate 
applications. It highlights methods such as error propagation reduction, geometrically optimized 
models, and innovative adaptations to traditional methods that reduce computational or conceptual 
uncertainty. These techniques are of significant theoretical importance and are also crucial in 
practical applications, where precision and reliability are paramount, particularly in applied 
mathematics. 

By addressing both the philosophical and practical dimensions of uncertainty, this work paves the 
way for a refined understanding of the interaction between mathematical theory and real-world 
applications, offering tools to navigate complex, uncertain environments with greater confidence 
and precision. The exploration of these ideas provides new insights into the role of uncertainty in 
mathematical systems, particularly in those constructions that prioritize stability and error 
mitigation over mere approximation. 

The exposition begins with the definition of the empirical number, followed by the wide application 
of the Monte Carlo method to assess the functionality presented. It also recalls the theory of error 
propagation, addresses basic segment operations, and reexamines the Pythagorean theorem, which 
plays a crucial role in limiting error propagation. Further, the work discusses the applications of 
these ideas in calculus, specifically in the propagation of uncertainty through differentiation and 
integration. 
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1. Definition of Empirical Numbers. 
 
Introduction. 
 
In the field of probability and applied sciences, random variables represent a crucial tool for 
modelling uncertainty. A random variable assigns a numerical value to every possible outcome of 
a random event, allowing for a mathematical description of complex phenomena such as 
experimental results, financial market fluctuations, or the lifespan of a product. 
 
Random variables are widely used in statistics, physics, finance, engineering, and many other 
disciplines. They can model discrete events, such as the roll of a die, or continuous events, such as 
measuring a physical quantity subject to fluctuations. In this context, tools like the probability 
distribution function, the probability density function, and the cumulative distribution function are 
essential for describing the distribution of probabilities across the various possible outcomes. 
Mathematical operations on random variables, such as addition, multiplication, and differentiation, 
require advanced techniques such as convolutions, integral transforms, and stochastic calculus. The 
latter, in particular, is used to analyse processes that evolve randomly over time, such as Brownian 
motion in physics or fluctuations in financial markets. However, these techniques can be complex. 
 
Despite their power, the use of random variables presents some practical difficulties. Operations 
like the sum or product of random variables often require complex convolutions, which can be 
difficult to interpret, shifting the focus from the conceptual aspect to the technical one. Additionally, 
in the case of continuous variables, differential calculus requires complex tools like the Ito 
derivative, further complicating the analysis. 
In many real-world applications, such as experimental physics or engineering, one often deals with 
data that has intrinsic uncertainty. However, managing this uncertainty through the formalism of 
random variables can be overly complex, especially when the uncertainty is treated qualitatively 
rather than quantitatively. For example, one might wonder how uncertainty propagates in 
operations such as the sum of two segments without delving into detailed calculations related to 
the specific distribution. 
 
To overcome these limitations, I propose in this document the use of empirical numbers, a new 
approach that integrates uncertainty directly into the structure of the number itself. An empirical 
number consists of two parts: Delos, which represents the exact or nominal value of a quantity, and 
Adelos, which reflects the uncertainty or potential variability associated with it. 
This dual structure allows for a clear representation of both the determined value of a quantity and 
its uncertainty, simplifying many mathematical operations and enhancing intuitive understanding. 
   
Let’s now look at the advantages of using empirical numbers. 
 

Clear Separation of Components: By explicitly separating the nominal value (Delos) from 
the uncertainty (Adelos), empirical numbers offer a transparent framework for managing 
quantities in the real world. This clarity simplifies operations like addition, multiplication, 
and differentiation, directly accounting for uncertainty without the need for complex 
probabilistic methods, allowing us to maintain focus on the entity in its original entirety. 
Adelos is not just an uncertainty to be reduced, but also a potential to be enhanced. 
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Enhanced Ontological Capacity: Beyond their mathematical utility, empirical numbers offer 
a richer ontological perspective. The distinction between Delos and Adelos reflects a more 
nuanced understanding of reality, where measurable quantities are not simple fixed points, 
but entities with intrinsic variability. This duality captures both the tangible and potential 
aspects of a magnitude, making empirical numbers a more complete tool for representing 
the world in a symbolic way. 
 
Simplified Calculations: Integrating uncertainty into the definition of empirical numbers 
allows for simplified operations compared to traditional methods. For example, in the 
addition of two empirical numbers, uncertainty propagation follows predefined rules, 
eliminating the need for convoluted transformations. This approach not only streamlines 
calculations but also makes them more intuitive, especially in fields like experimental 
physics and engineering. 
 
Adaptability to Quantum Computing: With the advent of quantum computing, empirical 
numbers could adapt particularly well to these new computational paradigms. Quantum 
computers, which inherently operate with superpositions and probabilistic states, could 
manage empirical numbers naturally, further simplifying complex calculations and 
improving computational efficiency. 

 
In conclusion, the introduction of empirical numbers, with their clear distinction between Delos 
and Adelos, represents an important step forward in the way we manage and understand uncertain 
quantities. This approach is in no way intended to replace or negate the use of random variables, 
which remain fundamental tools for dealing with probabilities. However, on an ontological level, I 
believe that empirical numbers and their subsequent treatment offer a more complete and powerful 
framework for representing the complexity of the real world. By embracing empirical numbers, we 
can achieve greater precision and understanding in both theoretical and applied contexts, paving 
the way for new advancements in mathematics and science. 
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The empirical number 
 

In the following discussion, we will introduce a new class of numbers, called Empirical Numbers, 
which represent a formal extension of real numbers. We will denote this class with the symbol 𝔼. 
These numbers are introduced to represent entities composed of an exact part and an uncertain part. 
The exact part could, for example, represent the average of an entity, while the uncertain part could 
express its variability. 
 
An empirical number is an ordered pair of real numbers (d, a), where ‘d’ and ‘a’ are real numbers. 
An empirical number can be written in the form 𝒅(𝒂), where 𝒅 represents the nominal value and a 
identifies the uncertainty. 
 
The part d is called Delos (Δήλος), a Greek term meaning "visible" or "clear." The name reflects 
the concept of its mathematical and symbolic properties of exactness, evoking the "realm of 
hyperuranic ideas."  
The part a will be called Adelos (ἀδήλος), a Greek adjective meaning "undefined," "obscure," or 
"uncertain." This term describes something unclear or ill-defined, emphasizing its properties of 
indeterminacy. 
The part a will also be referred to as "potentiality" for reasons that will be clarified later. 
 
An empirical number can be graphically interpreted as a segment whose endpoints are blurred: 

 
An empirical number, when representing a physical variable, has the two quantities a and d 
expressed in the same unit of measurement. 
 
Examples of quantities expressed with empirical numbers are: 

 25(ଷ)°𝐶: the conditioned temperature of a room is 25°C with a variability of ±3°C. 
 180(ଶ)𝑐𝑚: a person's height varies depending on posture by ±2 cm. 
 1.5(଴.ଶ)ℎ𝑜𝑢𝑟𝑠: the duration of a trip, indicating that the average trip time is 1.5 hours 

(equivalent to 1 hour and 30 minutes) with a variability of ±0.2 hours. In other words, the 
trip time may vary between 1.3 hours and 1.7 hours. 

 50(ହ)€: the price of a service, which can range from 45 to 50 euros. 
 
A measurable quantity includes both an expected part, such as the average height of a population, 
and a part indicating the variability around this expected value, such as the range of height variation 
within the group. Variability can be described using different distribution characteristics and 
confidence intervals. In this discussion, we will consider among others a Gaussian distribution 
(normal curve) as a model for variability, without losing generality, as various distributions (e.g., 
uniform or Weibull) behave analogously in the study of variability propagation. As can be easily 
observed, distributions different from the normal, such as the uniform or Weibull distributions, lead 
to different values for the standard deviation but exhibit identical behaviour under the operations 
we will describe, allowing for increased generality in our considerations. 
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A key aspect is that a certain entity, such as a person in a population, has an expected height value 
and an actual measure that rarely coincides exactly with the expected value, but falls within the 
predicted variability range. Therefore, the term Adelos represents the potential of height, expressed 
through a specific measure. 
The empirical number does not express a defined and exact quantity, but represents a quantity 
(Delos) and its corresponding potential for expression within a defined range (Adelos). 
 

Random variables represent how probabilities are distributed in a sample space, while variables 
expressed by empirical numbers are more representative of the uncertainty around an expected 
value; the perspective is quite different. The empirical number is focused on the value, the Delos, 
and the uncertainty of its localization in the sample space, while the random variable provides a 
global view of probability density, especially in the case of continuous random variables. 

In the traditional conception of random variables, uncertainty is treated as an external element to 
the entity being studied. The underlying idea is that of a betting game: uncertainty is seen as a 
contingent factor, like a roulette in which we bet on an outcome, attempting to predict future results 
through probability. While this view is useful in many statistical contexts, it is reductive as it 
reduces the concept of chance to an external dynamic that does not capture the essence of the entity 
itself. 
The traditional probabilistic representation, embodied by random variables, sees chance as a set of 
possible outcomes of a phenomenon, where each outcome is associated with a probability. This 
approach, however, risks flattening the concept of chance into a logic of prediction and betting. It 
reduces the phenomenon to a mere issue of percentages and probabilities, a forecasting game where 
chance is seen as a disturbance that alters an ideal behaviour, rather than as an intrinsic property of 
the world. 

In the view of empirical numbers, chance is not an external entity to the object in question, but 
rather an intrinsic quality of the entity represented by the Delos. The Delos, representing the 
expected value of a magnitude, cannot be separated from its Adelos, the uncertainty that surrounds 
it and represents its variability. This view is much more significant, as it reflects an idea of chance 
as a necessity rather than as a contingency. Uncertainty is not something we add ex post to model 
the random behaviour of a variable, but an intrinsic characteristic of reality. 

From this ontological conception arises a different approach to the propagation of uncertainty. 
While random variables focus on probability distributions and density functions, empirical 
numbers shift the focus to how uncertainty propagates through operations on the variables 
themselves through a construction process. 
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The measure. 
 

The measurement process is the operation through which an empirical number, initially composed 
of an exact part (Delos) and an uncertain part (Adelos), is reduced to a unique and determined value.  
 
During measurement, the Adelos component, representing the uncertainty or potential variability 
of the empirical number, is reduced to zero, leaving only the Delos. In other words, measurement 
eliminates the potential variability associated with the quantity, producing a pure mathematical and 
unique value, which can be treated with traditional mathematical techniques. 
 
For example, a temperature measurement initially expressed as 25(ଶ)°𝐶, meaning with an 
uncertainty of ±2°C, is reduced to 23,983(଴)°𝐶 after measurement, or alternatively to 26,151(଴)°𝐶, 
indicating that the value determined by the measurement no longer has uncertainties associated 
with it. 
 
This does not imply that measurement is intrinsically free of uncertainty, but rather that the act of 
measurement provides a single value that, by its nature, reduces Adelos, the potential uncertainty. 
Empirical symbolism enables effective treatment of quantities, synthesizing within the symbol both 
Delos and Adelos, which together represent the entire range of variability of the variable. This 
variability is articulated in possible values through its potential, expressed by Adelos. 
 
Measurement is an event within a process that determines the manifestation of potentiality in a 
specific, determined value, fundamentally random, within the variability range defined by Adelos. 
The measurement process ensures that, starting from the potentialities expressed by the empirical 
number, a specific value emerges within the range defined by Adelos, with the latter being 
completely reduced. 
 
 

(1)  
𝒅(𝒂)  

𝑴𝒆𝒂𝒔𝒖𝒓𝒆
ሱ⎯⎯⎯⎯⎯ሮ 𝒅(𝟎) 

 
This does not imply that the measurement event is devoid of absolute uncertainty, but rather that 
from this event arises a specific numerical value, one that can be processed using classical tools 
and subsequently moved to the Platonic 'Hyperuranion' 
We can imagine the measurement process as a mechanism that extracts a specific real number from 
the range of variability defined by the Adelos of an empirical number. Measurement thus becomes 
the event that transforms an indeterminate potential into a determined real value. 
 
The collection of different measurement events allows us to obtain distinct values 𝒅(𝟎) which, when 
considered together, can reconstruct the original space of the empirical number 𝒅(𝒂). The reverse 
process, from the manifestation of individual measurements to the reconstruction of the original 
empirical number, is conceptually possible. Through the collection of a series of measurements, we 
can estimate both the Delos (the nominal value) and the Adelos (the uncertainty). 
This process requires statistical techniques such as calculating the mean and standard deviation, or 
the range, to reconstruct an empirical number that accurately represents the measured quantity, 
even accounting for its intrinsic uncertainty. 
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Formalization and Mathematical Construction of the Empirical Number 
 
 

To formalize a probabilistic theory based on empirical numbers, two phases are followed: the first 
concerns the definition of the domain of empirical numbers and the morphisms that operate on it, 
while the second focuses on the transition towards a codomain of traditional numbers through 
probabilistic measures. 
 
Let an empirical number 𝑑௔ be defined as an ordered pair composed of an exact part (Delos) and 
an uncertain part (Adelos): 

𝑑௔ = (𝑥ௗ, 𝑥௔) 𝑤𝑖𝑡ℎ 𝑥ௗ ∈ ℝ, 𝑥ₐ ∈ ℝା  
 Let 𝑥ௗ represent the exact value (deterministic part, Delos). 
 Let 𝑥௔ represent the uncertainty or variability associated (stochastic part, Adelos). 

 
Therefore, the domain 𝐷 of empirical numbers is given by the set:: 

𝐷 = {(𝑥ௗ, 𝑥௔) | 𝑥ௗ ∈ ℝ, 𝑥௔ ≥ 0  
 
Let us define morphisms 𝜙: 𝐷 → 𝐷 that transform empirical numbers into other empirical numbers. 
These morphisms preserve the structure of empirical numbers, meaning they act on both the Delos 
part and the Adelos part.  
 
For example, if we consider an addition operation between two empirical numbers 

𝜙ା(𝑥௔, 𝑦௔) = ቀ𝑥 + 𝑦, ඥ1ଶ + 1ଶቁ = ൫𝑥 + 𝑦, √2൯ 

 
The Delos part follows the usual rules of addition. 
The Adelos part follows the quadratic sum, similar to error propagation, where the total uncertainty 
increases as the square root of the sum of the squares of the individual uncertainties (these 
calculations will be addressed in the next chapters). 
 
Other morphisms can include operations such as multiplication, subtraction, division, and so on, 
with similar rules for the propagation of the Adelos part. 
 
Generalization: for a generic operation 𝑓(𝑥௔, 𝑦௔) between two empirical numbers, the 
transformation is expressed as: 

𝜙௙(𝑥௔, 𝑦௔) = ൫𝑓ௗ(𝑥, 𝑦), 𝑔௔(𝑓ௗ , 𝑥, 𝑦)൯ 
where 𝑔௔(𝑓ௗ , 𝑥, 𝑦) represents a function that describes how the uncertainty propagates as a function 
of the operation 𝑓. These operations will be addressed in the following chapters.𝑓.  
 
Let’s introduce a measurement theory that allows the transition from a domain consisting of 
empirical numbers to a codomain of traditional (measurable in a probabilistic sense) real numbers. 
We define a measurement morphism 𝜇: 𝐷 →  ℝ that "collapses" the empirical number into a real 
value. This morphism can be based on a probability distribution associated with the Adelos part: 
 

µ(𝑑௔) = 𝔼(d + ξ) 𝑤𝑖𝑡ℎ 𝜉 ∼ 𝑃(0, 𝑘𝑎) 
 
Where ξ is a random variable distributed according to a probability distribution 𝑃 with mean 0 and 
standard deviation equal to 𝑘𝑎 , which represents the uncertainty. 
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In this way, the measurement of an empirical number becomes a real value that incorporates both 
the Delos value and the Adelos uncertainty, expressed in the form of a probability distribution. The 
probabilistic theory applied to the Adelos part can follow the rules of classical probability, with 
distributions associated with the variability. 
 
The codomain obtained through the measure morphisms µ will be a set of real numbers ℝ, which 
can be studied according to the rules of probability. Each empirical number is mapped to a real 
number according to its probability distribution, allowing the use of standard techniques in 
probabilistic analysis. 
 
In general, the measure morphism can be defined as: 

   µ ∶ (𝑥ௗ , 𝑥௔) ↦ 𝔼(X) 𝑐𝑜𝑛  𝑋 = 𝑥ௗ +  ξ ,    𝜉 ∼ 𝐷(𝑥௔) 
 
where 𝐷(𝑥௔) represents a distribution related to the uncertainty 𝑥௔, which may vary depending on 
the situation (normal, uniform, etc.).  
 
Once the codomain 𝜇(𝐷) ⊆  ℝ is obtained, we can apply classical probabilistic theory to study the 
distribution of the values µ(𝑑௔). This include: 

 Analysis of the resulting distributions (mean, variance). 
 Operations on distributions. Statistical and probabilistic inference on the initial empirical 

system. 
 

This formalization allows us to study empirical numbers both in terms of their deterministic value 
(Delos) and their uncertainty (Adelos), through morphisms that preserve the empirical structure. 
Moreover, the measurement morphisms enable the transfer of empirical numbers to traditional 
numbers, linking them to a classical probabilistic theory based on measurement rules and 
distributions. 
We now define the inverse measurement morphism, which, starting from a traditional real number, 
returns to the domain of empirical numbers as an estimate. We can introduce a map 𝜇ିଵ that 
reconstructs the empirical number 𝑑௔ from a real number r ∈ ℝ. 
 
The inverse morphism 𝜇ିଵ: ℝ →  𝐷 must take a real value 𝑟 (which can represent an observed 
estimate, an average value, etc.) and return an empirical number (𝑥ௗ , 𝑥௔), i.e., 𝑑௔, where: 
 

 𝑥ௗ is the estimated exact value (Delos). 
 𝑥௔ is the estimate of the associated uncertainty (Adelos). 

 
The inverse morphism can be defined as follows: 

𝜇ିଵ(𝑟) = (𝑟, 𝑥ො௔) 
 
where r ∈ ℝ is the real value, and 𝑥ො௔ represents an estimate of the Adelos uncertainty, derived 
based on various considerations related to the context of the problem (such as the variance of 
measurements, standard error, or an estimated probability distribution). 
To estimate 𝑥ො௔, we can rely on various sources: 

 Observational data: If we have access to a sample of measurements, 𝑥௔ can be estimated by 
calculating the standard deviation of the measurements. In this case, 𝑥ො௔ could be defined as 
the standard deviation σ of the measurements: 
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𝑥ො௔ = 𝜎 = ඩ
1

𝑛
෍(𝑟௜

௡

௜ୀଵ

−𝑟)ଶ 

 
where 𝑟௜ are the observations, and 𝑟 is the mean. 
 
In sampling situations, 𝑥ො௔ could be based on the standard error of the mean, calculated as: 

𝑥ො௔ =
𝜎

√𝑛
 

 
where 𝜎 is the sample standard deviation, and 𝑛 is th sample size. 
 
If empirical data is unavailable, we can assume a probability distribution for the uncertainty, such 
as a normal distribution 𝑁(0, 𝑥ො௔), and estimate 𝑥ො௔ based on an initial hypothesis or a known 
distribution. 
 
The inverse morphism is not necessarily a perfect inversion (i.e., a one-to-one correspondence), as 
empirical numbers include an uncertainty component that cannot always be fully determined from 
a single real value. The map 𝜇ିଵmay return a range or a set of possible empirical numbers, with 
varying levels of Adelos, based on the additional information available. 
In practice, the estimation of uncertainty depends on the data and context, but the general structure 
of the 𝜇ିଵ map follows the same concept: a real value is reconstructed into an empirical number 
consisting of a Delos estimate and an Adelos estimate. 
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2. Monte Carlo Method.I 

Throughout the discussion, frequent reference will be made to Monte Carlo simulations to more 
explicitly illustrate certain characteristics under consideration. 
The Monte Carlo method is a mathematical simulation technique used to solve problems that may 
be theoretically deterministic but are complex or impossible to resolve analytically due to their 
stochastic nature or the large number of variables involved. This method is named after the famous 
Monte Carlo casino, as it relies on probabilistic principles and the use of empirical numbers. 
 
In our simulations, we will consider, for simplicity, normal distributions, also known as Gaussian 
distributions. It is a continuous probability distribution that can be defined as follows: 

(2)  

𝑑(௔) =
1

√2πσଶ
𝑒

ି
(௫ିஜ)మ

ଶ஢మ  

where: 
 μ is the mean of the distribution (Delos of the empirical number), 
 σ is the standard deviation (Adelos of the empirical number), 
 σ2 is the variance. 

 
We now simulate, using the Monte Carlo method, five measurements of the empirical number. 
10(1): 

9.127   10.843  9.562   10.215  10.253 
 
We now evaluate the measurements of an empirical number 10(0.1), which is much less variable: 
9.937   10.086  9.891   10.121  9.965 
 
And now with the empirical number 10(0.01): 
10.005  9.990   10.011  9.998   9.996 
 
Below, the three series are compared: 
 

 
 

As seen from the graph, the three series present measured values around the Delos, but Series 1 
exhibits a much more pronounced Adelos compared to the other two, while Series 3 shows a much 
lower Adelos than the others. 

8
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Let us now show a pair of empirical numbers 10(1),10(1) in the X,Y plane with different 
measurements, and starting from these measurements, the estimation of the pair of empirical 
numbers. 
 

   
1 measure; 10.267(-) 10.698(-)   10 measures; 9.803(0.703) 10.244(0.941) 

 
 

  
100 measures; 9.986(1.043) 9.958(0.972)  1000 measures; 10.013(0.983) 9.993(1.001) 

 
In this context, the Monte Carlo method can be seen as a concrete exemplification of the concept 
of Delos and Adelos. Each Monte Carlo simulation operates as a mechanism that extracts numerical 
values from a set of potentials, represented by all possible data configurations within the defined 
range. In other words, each individual simulation is a measurement event that materializes one of 
the many potentials in the domain of the real. 

In this case, Delos represents the set of possible manifestations of empirical values, while Adelos 
defines the limits within which these manifestations can occur, as in the case of the standard 
deviation in a normal distribution. In the Monte Carlo method, the individual values generated, 
while appearing real and unique, are in fact part of a larger whole, consisting of the entire space of 
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possibilities described by probabilities. Each value emerges from this space, shaped by the play of 
probabilities and confined by the limits imposed by Adelos. 

Furthermore, in Monte Carlo simulations, thousands of values are technically generated through 
the measurement process. The totality of these values expresses the empirical number in an 
extremely synthetic way, providing a statistical representation of the entire range of potentialities. 
The empirical reality, however, often manifests through only a few measurement events, akin to 
individual fragments of a larger picture, which by themselves fail to provide a comprehensive view. 
It is like judging the arrival of spring by observing a single swallow: a single event cannot capture 
the complexity of the whole. 

The empirical number, on the other hand, manages to provide this broader view, aggregating the 
multiple potentialities and allowing us to grasp the overall essence of the phenomenon. Without 
this broader perspective, the overall design of reality would be lost, hidden behind the apparent 
randomness of individual measurement events. Only through the accumulation and synthesis of 
data can we discern the order hidden behind the chaos of individual measurements. 
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3. Propagation of uncertainty and the Gradient Norm 
 

Mathematical operations on empirical numbers follow different rules compared to classical 
algebraic ones due to their nature. While the Delos part adheres to the usual rules of real numbers, 
the Adelos part follows a characteristic mechanism. 
 
The technique developed here for the calculations of Adelos derives from the study of error 
propagation, based on the following concepts.II 
 
Consider a function of two or more variables: 𝑓(𝑥ଵ, 𝑥ଶ, . . , 𝑥௡) where variables  𝑥ଵ, 𝑥ଶ, . . , 𝑥௡ are not 
correlated, and each of them is associated with its own uncertainty. 𝛥𝑥ଵ, 𝛥𝑥ଶ, . . , 𝛥𝑥௡. 
The extended uncertainty 𝛥𝑓 of the function 𝑓 can be calculated from the uncertainties of each 
variable 𝑥௜ by computing the partial derivatives of 𝑓 with respect to them: 
 

(3)  

𝛥𝑓 = 𝛥𝑓(𝑥ଵ, 𝑥ଶ, . . , 𝑥௡, 𝛥𝑥ଵ, 𝛥𝑥ଶ, . . , 𝛥𝑥௡) = ඩ෍ ൬
𝜕𝑓

𝜕𝑥௜
𝛥𝑥௜൰

ଶ௡

௜ୀଵ

 

 
The relation (3) holds in most cases where the function involved is sufficiently regular and is 
adequate for describing the effects of small variations in influencing factors and accidental errors. 
However, in some cases, there may be strong interactions between factors, which could require the 
inclusion of higher-order terms in the Taylor series expansion, including mixed terms. 
In order to simplify the study of the propagation of Adelos in arithmetic operations, we will 
consider the isovariable case where 𝛥𝑥ଵ = 𝛥𝑥ଶ, = ⋯ = 𝛥𝑥௡ = 𝑎  denoting ‘a’ as the generic 
uncertainty treated as the Adelos of the terms of the function, and Af as the extended uncertainty, 
interpreted as the Adelos of the function. In this case, relation (3) becomes: 
 

(4)  

𝐴𝑓 = 𝑎 ·  ඩ෍ ൬
𝜕𝑓

𝜕𝑥௜
൰

ଶ௡

௜ୀଵ

 

 
The function under the square root is nothing other than the Norm of the Gradient of the function 
under consideration: 

(5)  
∥ 𝛻𝑓(𝑥) ∥= ඥ((𝜕𝑓/𝜕𝑥ଵ)ଶ + (𝜕𝑓/𝜕𝑥ଶ)ଶ + ⋯ + (𝜕𝑓/𝜕𝑥ₙ)ଶ) 

 

In which the terms ቀ
ப୤

ப୶౟
ቁ

ଶ

 can be considered as characteristic functions of the sensitivity of the 

propagation of the Adelos 𝑎. 
 
In fact, the arguments will mainly focus on the study of these functions and their influence in 
various computational contexts. 
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For brevity, we will denote these terms as 𝐷௜ and thus relation (4) becomes: 

 
(6)  

𝐴𝑓 = 𝑎 ·  ඩ෍ 𝐷௜

௡

௜ୀଵ

 

 
Relation (6) can be expressed by relation (7) in the non-isovariable case: 

(7)  

𝐴𝑓 =  ඩ෍ 𝐷௜ · 𝑎௜
ଶ

௡

௜ୀଵ

 

 
From the notation introduced for the empirical number, it follows that any physical quantity will 
be expressed using the notation 𝑑(௔) , where a identifies the Adelos of its value 𝑑, representing 
the Delos. 
 
We consider ow the propagation of errors with Covariance = 1 
 
Let 𝑥௔ and 𝑦௔ be two empirical numbers, the covariance between 𝑥௔ and 𝑦௔, denoted as 𝑐𝑜𝑣(𝑥௔, 𝑦௔) 
, measures the linear relationship between the two empirical variables. If 𝑐𝑜𝑣(𝑥௔, 𝑦௔) = 1 the 
adelos ‘a’ are perfectly correlated as the first variable is a copy of the second, like in a measurement 
process: 

𝒙(𝒂)  
𝑴𝒆𝒂𝒔𝒖𝒓𝒆
ሱ⎯⎯⎯⎯⎯ሮ 𝒙(𝟎) = 𝒚(𝟎) 

 
 
Propagation of Errors Formula in additions operations: 
The propagation of uncertainty for two quantities 𝑥௔and 𝑦௔that are combined, for example by 
addition or subtraction, can be expressed as: 

(8)  

𝑎௭ = ට𝑎௫
ଶ + 𝑎௬

ଶ + 2 𝑐𝑜𝑣(𝑥௔, 𝑦௔) 

 
Where 𝑎௭ represents the adelos of the result. If the covariance is 1, the formula becomes: 

(9)  

𝑎௭ = ට𝑎௫
ଶ + 𝑎௬

ଶ + 2 

 
 
Example for a Hypotenuse Calculation: 
Consider two segments 𝑥௔ and 𝑦௔ with covariance = 1. We are interested in calculating the 
hypotenuse ℎ௔௛of a right triangle where 𝑥௔and 𝑦௔represent the two catheti. 
The length of the hypotenuse h is given by: ℎ = ඥ𝑥ଶ + 𝑦ଶ 
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To calculate the uncertainty in h, we apply the propagation of errors for a function of two 
variables, considering their covariance: 

(10)  

𝑎௛ = ඨ(
𝜕ℎ

𝜕𝑥
)ଶ𝑎௫

ଶ +  (
𝜕ℎ

𝜕𝑦
)ଶ𝑎௬

ଶ + 2
𝜕ℎ

𝜕𝑥

𝜕ℎ

𝜕𝑦
𝑐𝑜𝑣(𝑥௔, 𝑦௔) 

 
First, compute the partial derivatives: 

𝜕ℎ

𝜕𝑥
=

𝑥

ඥ𝑥ଶ + 𝑦ଶ
  ,

𝜕ℎ

𝜕𝑦
=

𝑦

ඥ𝑥ଶ + 𝑦ଶ
   

 
Substituting these into the error propagation formula, we get: 

(11)  

𝑎௛ = ඨ(
𝑥

ඥ𝑥ଶ + 𝑦ଶ
)ଶ𝑎௫

ଶ + (
𝑦

ඥ𝑥ଶ + 𝑦ଶ
)ଶ𝑎௬

ଶ + 2
𝑥

ඥ𝑥ଶ + 𝑦ଶ

𝑦

ඥ𝑥ଶ + 𝑦ଶ
= ඨ𝑎ଶ +

2𝑥𝑦

𝑥ଶ + 𝑦ଶ
 

Considering 𝑎 = 𝑎௫ = 𝑎௬ 
This formula takes into account the uncertainties in both 𝑎௫and 𝑎௬ as well as their covariance of 
1. The resulting 𝑎௛ gives the uncertainty in the hypotenuse h. 
 
Previous examples demonstrates that including covariance considerably complicates the 
calculations. In most of our discussions on uncertainty propagation, we will assume the 
independence of empirical variables. By treating the elements of the calculation as independent 
random variables, we can simplify the analysis and focus on the fundamental aspects of uncertainty 
propagation. 
 
We will evaluate the Adelos in some computational operations in the following chapters. 
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4. Mathematical Formalization and Operations 
 

Sum of two segments 

 
This is the case of two aligned segments.  
Let 𝑥1(௔) and 𝑥2(௔) be two segments; suppose we join them in such a way as to obtain the sum 
segment 𝑠௡௔ where the initial Adelos a will become 𝐴𝑓 times the initial one: 
 

(12)  

𝐷ଵ =  ቆ
𝜕(𝑥1 + 𝑥2)

𝜕𝑥1
ቇ

ଶ

= 1 

(13)  

𝐷ଶ =  ቆ
𝜕(𝑥1 + 𝑥2)

𝜕𝑥2
ቇ

ଶ

= 1 

(14)  
𝐴𝑓 =  √2 

And therefore, the sum segment is given by: 
(15)  

𝑥1(௔) + 𝑥2(௔) =  (𝑥1 + 𝑥2)൫√ଶ௔൯ 

where we note that the uncertainty of the sum segment increases relative to the uncertainties of 
the two initial segments by a factor of √2 . 
 
By numerically simulating two segments with values of  10(1) and 5(1), respectively, we obtain 
with 1000 samples: 

9.985(1.025) +ෝ  4.974(1.006) = 14.959(1,433) 

 

Graphically, the sum of two segments can be represented as follows: 
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The sum of empirical numbers, subtractions, multiplications, and divisions.  
 

Generalizing, when the summation operation is repeated over m segments, the overall adelos 
increases according to the square root of m:  
 

(16)  

𝑥1(௔)+ෝ𝑥2(௔)+ෝ  … +ෝ 𝑥𝑚(௔) = ෍ 𝑥𝑚൫√௠௔൯

ଵ

௠

 

 
The operator ” +ෝ  “ indicates a sum between empirical numbers with covariance 0. 
 
By numerically simulating four segments with values of 10(1), 5(1), 4(1), 2(1),  respectively, we obtain, 
with 1000 samples, a doubling of the adelos as expected: 

9.985(1.025) +ෝ4.974(1.006) +ෝ4.033(0.966) +ෝ2.003(0.980) = 20.996(1,941) 
 
We will use the operator “+” to indicate a symbolic  sum (hyperuranic ) even for empirical numbers. 
A symbolic operation refers to an operation that does not manifest in the external world but remains 
confined to thought (the covariance is 1).  
In this case, let us consider that the expression is realized by the measurement for the first segment, 
while the subsequent applications are purely symbolic relative to the measured value: 
 

(17)  
𝒅(𝒂)  

𝑴𝒆𝒂𝒔𝒖𝒓𝒆
ሱ⎯⎯⎯⎯⎯ሮ 𝒅ᇱ

(𝟎)  𝒅ᇱ
(𝟎)  

𝜮
→  𝒎𝒅ᇱ

(𝒎𝒂). 

 
The segment to be added is expressed mentally and therefore does not change, and the sum of m 
identical symbolic segments will be: 

(18)  
𝑥1(௔)+𝑥1(௔)  + ⋯ +  𝑥1(௔) = 𝑚𝑥1(௠௔) 

 
Simulating the sum of four symbolic segments with the characteristic 10(1) using 1000 samples: 

9.985(1.025) +9.985(1.025) +9.985(1.025) +9.985(1.025) = 39.939(4,101) 
 
The results remain the same when considering distributions other than the normal one, such as the 
uniform or Weibull distribution.  
In a sum, the adelos always increases proportionally to the number of sums "m" according to the 
relationship: 

(19)  
 𝑎ෞఀ =  √𝑚 

 
If one wishes to construct a segment of any length starting from a small segment of arbitrary length, 
the adelos grows sub-linearly towards infinity according to √𝑚. 
The linear sum or subtraction of segments is an operation that considerably increases the adelos 
and progressively absorbs the delos, making it indistinguishable. 
Simulating the sum of 1000 segments of length 1(1) each, we obtain the following results from 5 
consecutive simulations: 1044, 1001, 1024, 924, 954. 
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As will be seen in the next section, it is possible to construct segments without progressively 
increasing the adelos increment. 
 
The operation of summing m equal segments is not generally the same as the operation of 
multiplying a segment by a factor of m. 
 

(20)  

෍ 𝑥௜(௔)

௠ෝ

௜ୀଵ

=  𝑚 ·̂ 𝑥൫√௠௔൯  ≠  𝑚 · 𝑥(௔) = 𝑚𝑥(௠௔) 

 
The operation of subtracting m equal segments 𝑥(௔) from a certain quantity 𝑑(௔) = 𝑚𝑥(௔) is not 
generally the same as the operation of dividing a segment by m. 
 

(21)  

𝑑(௔) − ෍ 𝑥(௔)

௠ෝ

௜ୀଵ

=  𝑥൫√௠ାଵ௔൯  ≠  
𝑑(௔)

𝑚
= 𝑥(௔

௠⁄ ) 

Simulating with 𝑑(௔) = 40(1) 10(1) and x1(ୟ), x2(ୟ),x3(ୟ) =10(1) and m=3, we get x(ୟ) =9,987(1,944) 

 
 
It should be noted that this also holds in the case of subtracting two segments, and in particular, 
we observe that if the two segments are equal, x1(ୟ) =  x2(ୟ) the difference:  
 

(22)  
𝑥1(௔)−ෝ 𝑥2(௔) = 0(√ଶୟ) 

Graphically, it is as if after the operation, only the adelos part remains as a residue:

 
 
In general, the difference between two equal empirical numbers does not result in a zero 
outcome. Simulating respectively, x1(ୟ) =10(1) and x2(ୟ) =10(1) with 1000 samples, the result 
obtained is -0.013(1.413). 
 
Another consideration that can be made is that adding and subtracting the same quantity from a 
certain value does not yield the same initial value. Indeed: 

(23)  
𝑥1(௔)+ෝ 𝑥2(௔)−ෝ 𝑥2(௔) = 𝑥1(√ଷ௔) ≠ 𝑥1(௔) 

In the simulation, we obtain the following results for the same values as before: 10.100(1.744). 
 
While performing symbolically with the subtraction operation: 

(24)  
𝑥1(௔)+ෝ 𝑥2(௔) −  𝑥2(௔) = 𝑥1(௔) 

In the simulation, we obtain for the same values as before 9.999(0.992). 
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The non-isovariable case can be calculated with equation (7), therefore: 

(25)  

𝐴𝑓 =  ඩ෍ 𝑎௜
ଶ

௡

௜ୀଵ

 

Simulating the sum of two numbers, 10(2) and 5(1), the sum becomes 15(√ହ) we obtain with 1000 
samples: 

9.969(2.051) +ෝ  4.974(1.006) = 14.948(2,28) 

 

  



 
 

 
 

19 

5. The Pythagorean Theorem and Empirical Numbers 

In this paragraph, we will encounter two significant properties of the Pythagorean Theorem. The 
first challenges the validity of the theorem when empirical numbers are employed. The second, on 
the other hand, unveils an exclusive property that allows for the construction of all natural numbers 
starting from a unitary element, with adelos remaining unchanged throughout the entire 
construction. This fact is particularly noteworthy. 
 
Pythagorean Theorem 

 
The Pythagorean Theorem states that the sum of the areas of the squares constructed on the two 
legs of a right triangle is equal to the area of the square constructed on the hypotenuse. However, 
this relationship does not hold when dealing with quantities expressed using empirical numbers. 
From result (11), we observe that: 
 

𝑆𝑞𝑢𝑎𝑟𝑒 𝑜𝑛 𝑙𝑒𝑔 1(௔) + 𝑆𝑞𝑢𝑎𝑟𝑒 𝑜𝑛 𝑙𝑒𝑔 2(௔) =  𝑆𝑞𝑢𝑎𝑟𝑒 𝑜𝑛 𝐻𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒(√ଶ௔) 
 
The absolute adelos of the area increases by a factor of √2, while the relative adelos stay the 
same. 
 
It is as if the square constructed on the hypotenuse fades with each successive construction by an 
amount equal to √2 
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The √2, an irrational number that cannot be expressed as a finite fraction, embodies the infinity of 
uncertainty. The Pythagoreans, who initially sought to understand the world through their rigorous 
numerical framework, were confronted with a profound crisis when they encountered the 

irrationality of √2. This number challenged their belief in the finiteness and order of mathematical 
constructs, leading them into an existential and philosophical crisis about the nature of the infinite 
and its implications. On this rock, they were struck, finding their project stranded. They were so 
close to reaching the shore and finding stable ground, if only they had fully embraced the irrational 
hypotenuses to squared integers. These constructions will be developed further later in this chapter. 

We can also consider constructing the squares starting from the legs according to the relationship 
𝑙𝑒𝑔1(௔)

ଶ  +  𝑙𝑒𝑔2(௔)
ଶ  

(26)  

𝐷ଵ =  ቆ
𝜕(𝑙𝑒𝑔1ଶ + 𝑙𝑒𝑔2ଶ)

𝑙𝑒𝑔1
ቇ

ଶ

=  4 𝑙𝑒𝑔1ଶ 

 
(27)  

𝐷ଶ =  ቆ
𝜕(𝑙𝑒𝑔1ଶ + 𝑙𝑒𝑔2ଶ)

𝑙𝑒𝑔2
ቇ

ଶ

= 4 𝑙𝑒𝑔2ଶ 

(28)  

𝐴𝑓 = 2 ඥ𝑙𝑒𝑔1ଶ + 𝑙𝑒𝑔2ଶ = 𝑡𝑤𝑖𝑐𝑒 𝑡ℎ𝑒 ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒 
 
In this case, the adelos increases by a factor double that of the hypotenuse. By numerically 
simulating two legs with values of 10(1) and 10(1), and a second with legs of 20(1) and 20(1), we 
obtain with 1000 samples: 

9.989(0.998) , 10.034(1.018)   202.487(28,469) 

19.983(1.045) , 20.080(1.002)   804.615(57,8) 

 
In the case where we consider the construction legs as four empirical numbers, the adelos is 
calculated as the square constructed on the hypotenuse: 
 
 𝑙𝑒𝑔1𝑎(௔)  ×  𝑙𝑒𝑔1𝑏(௔)  +  𝑙𝑒𝑔2𝑎(௔) × 𝑙𝑒𝑔2𝑏(௔)  
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(29)  

𝐴𝑓 =  ඥ𝑙𝑒𝑔1𝑎ଶ × 𝑙𝑒𝑔1𝑏ଶ + 𝑙𝑒𝑔2𝑎ଶ × 𝑙𝑒𝑔2𝑏ଶ 
 

 
The adelos grows less compared to the previous calculation. It is observed that, depending on the 
setup of the calculation, even though the delos is equivalent, this does not hold true for the adelos. 
 
By numerically simulating the 4 legs with values of 10(1), and a second simulation with legs of 
20(1), we obtain with 1000 samples: 
 

10.057(0.937) , 10.024(0.988) , 10.019(0.994)  , 9.910(1.018)    200.048(19,702) 

19.981(0.987) , 20.033(0.993) , 20.030(1.031)  , 20.093(0.984)    802.737(40,385) 

 
 
 
Interesting constructions from the theorem 
 
A key aspect of uncertainty propagation study in this paper is that, under certain conditions, the 
overall uncertainty does not necessarily increase and in some cases, it may even decrease. The 
hypotenuse calculation serves as a crucial example where the interplay between uncertainty 
components, can lead to unexpected results. Analysing this case in detail will provide insights into 
how empirical numbers behave in structured calculations constructions. 

 
We now aim to determine the hypotenuse given the two independent legs, which is also referred to 
as the calculation of the Euclidean norm.  
 
Let 𝑥(௔) and 𝑦(௔) be the legs of a triangle; the value of the hypotenuse 𝑑(ୟ) will be: 

 
(30)  

𝐷ଵ =  ൭
𝜕(ඥ𝑥ଶ + 𝑦ଶ)

𝜕𝑥
൱

ଶ

=
𝑥ଶ

𝑥ଶ + 𝑦ଶ
 

 
(31)  

𝐷ଶ =  ൭
𝜕(ඥ𝑥ଶ + 𝑦ଶ)

𝜕𝑦
൱

ଶ

=
𝑦ଶ

𝑥ଶ + 𝑦ଶ
 

 
𝐴𝑓 =  1 

 
 

Let us denote by 
ୄ
→ the operation of calculating the Euclidean norm, that is, the calculation of the 

hypotenuse length: 
 

(32)  

𝑥(௔), 𝑦(௔)

ୄ
→ ඥ𝑥ଶ + 𝑦ଶ

(ୟ)
 

this result tells us that this operation leaves the adelos unchanged. 
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By numerically simulating two segments with values of 10(1) and 10(1), we obtain with 1000 
samples: 

10.578(0.997) , 10.041(0.987) 
ୄ
→14.968(0,983) 

 

The property of adelos conservation in the construction of the hypotenuse can be extended to the 
calculation of the Euclidean norm in any dimension: 
 

(33)  

𝑨𝒇 =  || 𝛁||𝒙(𝒂)|| ||  =  𝟏 
 
We have just seen that the calculation of the Euclidean norm is an isovariable operation. Starting 
from a unit length segment 𝑥(ୟ) we can construct a segment of any length and unit uncertainty 𝐚 as 
a subsequent construction of hypotenuse segments and their squares starting from segments: 
 

(34)  

𝒙(𝒂)  
𝒏ୄ
ሱሮ 𝒏𝒙(𝒂) ∀ 𝒏𝟐 ∈ ℤ 

 
Geometrically, we can construct a segment corresponding to any Natural number through the 
construction of the Pythagorean spiral of Theodorus of Cyrene, as shown in the following diagram: 
 

 
 
With this method, N2 constructions are required starting from the unit length to obtain the length 
N, which can be as large as desired while keeping the adelos unchanged and equal to its initial 
value. 
 
Now, let us examine a method that requires a smaller number of constructions to obtain a Natural 
number N: 
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2 is obtained as follows:   𝟏(𝒂), 𝟏(𝒂)

ଵୄ
ሱሮ √2

(ୟ)
  √2(௔), √2(௔)

ଶୄ
ሱሮ 𝟐(ୟ) 

3 is obtained as follows:  1(௔), 2(௔)

ଵୄ
ሱሮ √5

(௔)
  √5(௔), 2(௔)

ଶୄ
ሱሮ 𝟑(ୟ) 

 

4 as: √2(௔), 1(௔)

ଵୄ
ሱሮ √3

(ୟ)
  √3(௔), 2(௔)

ଶୄ
ሱሮ √7

(ୟ)
  √7(௔), 3(௔)

ଷୄ
ሱሮ 𝟒(ୟ) 

 

5 (Pythagorean number) as:   3(௔), 4(௔)

ଵୄ
ሱሮ 𝟓(ୟ) 

 

6 as:  √2(௔), 3(௔)

ଵୄ
ሱሮ √11

(ୟ)
  √11(௔), 5(௔)

ଶୄ
ሱሮ 𝟔(ୟ) 

 

7 as:  2(௔), 3(௔)

ଵୄ
ሱሮ √13

(ୟ)
  √13(௔), 6(௔)

ଶୄ
ሱሮ 𝟕(ୟ) 

 

8 as:  √11(௔), 2(௔)

ଵୄ
ሱሮ √15

(ୟ)
 √15(௔), 7(௔)

ଶୄ
ሱሮ 𝟖(ୟ) 

 

9 as:  1(௔), 4(௔)

ଵୄ
ሱሮ √17

(ୟ)
  √17(௔), 8(௔)

ଶୄ
ሱሮ 𝟗(ୟ) 

 

10 as:  √3(௔), 4(௔)

ଵୄ
ሱሮ √19

(ୟ)
  √19(௔), 9(௔)

ଶୄ
ሱሮ 𝟏𝟎(ୟ) 

And so on. 

 

The rule for the construction of all natural numbers N is given as: 

(35)  

𝑁(௔) = (𝑁 − 1)(௔)  ⊥  √2𝑁 − 1(௔) 

 

And where the irrational hypotenuse can be constructed as: 

(36)  

√2𝑁 − 1(௔) =  ඨඌ
2𝑁 − 1

2
ඐ ⊥ ඨ2𝑁 − 1 − ඌ

2𝑁 − 1

2
ඐ (௔) 

Where the symbol ⌊ ⌋ denotes the greatest integer less than or equal to the expression within the 
parentheses. 

It is easy to see that any quantity can be constructed by recursively using a previously constructed 
quantity with an integer or a smaller irrational hypotenuse. 
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The required number of constructions is: 

(37)  

(𝑁 − 1) +     ඌ
2𝑁 − 1

2
ඐ − ቞

√2𝑁 − 1 + 1

2
቟ + 1  +  ඌ

𝑁

2
ඐ − ቞

√𝑁

2
቟   

Where different colours indicate integer terms, odd squares, and even squares, according to the 
following distinction. For N=10, this method requires 21 constructions compared to the 99 required 
by the spiral of Theodorus. 

Integers: 9,8,7,6,5,4,3,2,1 

Odd squares √19, √17, √15, √13, √11, √9, √7, √5, √3 

Even squares √10, √8, √6, √4, √2 

 

We will call this construction "Τριμερὴς Γένεσις" (Trimerḕs Génesis) — Tripartite Genesis. 

The Tripartite Genesis harmoniously integrates integers, odd squares, and even squares, avoiding 
the direct construction of irrational hypotenuses as done, for example, in the Spiral of Theodorus. 
This makes it more compatible with an "orthodox Pythagorean" view of mathematics. 

The tripartite genesis of Natural numbers exhibits gaps, much like prime numbers. However, in the 
latter case, the gaps do not follow a regular pattern as they do for perfect squares. For prime 
numbers, the absence of numbers grows in an unpredictable manner, with spacings increasing 
progressively and irregularly. In contrast, perfect squares create gaps according to a well-defined 
progression, dictated by the quadratic growth of their sequence. 

This analogy suggests that both the tripartite genesis of natural numbers and the distribution of 
prime numbers share a structure with voids, yet with a fundamental difference: while perfect 
squares impose a geometric regularity in their distribution, prime numbers appear in a more chaotic 
manner, albeit following certain global statistical laws, such as the Prime Number Theorem. 

One could thus hypothesize a generalization of the concept of "structured gap" in natural numbers, 
distinguishing between Delian gaps (perfect squares) and Adelian gaps (prime numbers). 

In a geometric construction, we can imagine an iterative process in which, starting from a base 
(e.g., a unit segment 𝑥௔), all natural numbers can be generated through the construction of right-
angled triangles. The hypotenuse can be interpreted as an "operator" that generates natural numbers 
from a simple element. 

The construction of an empirical number is an intrinsically sequential and hierarchical process that 
must pass through all the previous stages, with no possibility of "mental shortcuts." A deep 
understanding of such a number requires awareness of all these intermediate steps. While it is 
possible to name or use an empirical number without mentally retracing the entire conceptual scale, 
its true "mathematical construction" necessarily implies this complete path, reflecting the 
complexity and layering of the very concept of number. 
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Functions equivalent in the Delos but not in the empirical field 
 

The fundamental property of calculating the hypotenuse and its Adelos holds when the operation 
of constructing the square is performed empirically. This property also holds for other constructions 
but is not universally valid in general. 

For example, the same result can be obtained starting from an analogous relation: 

(38)  

𝑑 =
𝑦

𝑠𝑖𝑛 ቀ𝑎𝑟𝑐𝑡𝑔
𝑦
𝑥

ቁ
 

 

(39)  

𝐷ଵ =  

⎝

⎜
⎛

𝜕(
𝑦

𝑠𝑖𝑛 ቀ𝑎𝑟𝑐𝑡𝑔
𝑦
𝑥

ቁ
)

𝜕𝑥

⎠

⎟
⎞

ଶ

=
1

𝑦ଶ

𝑥ଶ + 1
 

 

𝐷ଶ =  

⎝

⎜
⎛

𝜕(
𝑦

𝑠𝑖𝑛 ቀ𝑎𝑟𝑐𝑡𝑔
𝑦
𝑥

ቁ
)

𝜕𝑦

⎠

⎟
⎞

ଶ

=
𝑦ଶ

𝑥ଶ + 𝑦ଶ
 

 

 
𝐴𝑓 =  1 

 
By numerically simulating two segments with values of 10(1) and 10(1), respectively, we obtain, 
using 1000 samples, the same result as equation (24): 

x=10.005(1.005) , y=9.987(1.020)  d=14.174(1,007) 

 

However, it does not hold, for instance, with a different construction: 

(40)  

𝑑 =
௬

௦௜௡(ఈ)
   

It produces the same Delos but does not leave the Adelos unchanged: 
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(41)  

𝐷ଵ =  ቌ
𝜕(

𝑦
𝑠𝑖𝑛(𝛼)

)

𝜕𝛼
ቍ

ଶ

= 𝑦ଶ 𝑐𝑜𝑡𝑔ଶ(𝛼) 𝑐𝑜𝑠𝑒𝑐ଶ(𝛼) 

(42)  

𝐷ଶ =  ቌ
𝜕(

𝑦
𝑠𝑖𝑛(𝛼)

)

𝜕𝑦
ቍ

ଶ

= 𝑐𝑜𝑠𝑒𝑐ଶ(𝛼) 

 
(43)  

𝐴𝑓 =  𝑐𝑜𝑠𝑒𝑐(𝛼)ඥ(𝑦ଶ 𝑐𝑜𝑡𝑔ଶ(𝛼) + 1)  
 

That for α → 0  ;  𝑈 → ∞ 
 

By numerically simulating two segments with values of 0.005(0.001) and 10(0.001), respectively, we 
observe, using 1000 samples, an increase in the Adelos by three orders of magnitude: 

α =0.005(0.001) , y=10(0.001)  d=10.304(2,22) 

 

The conclusion is that, as previously observed for the addition and subtraction of the same quantity, 
certain invariance properties of operations valid in symbolic calculations no longer hold when 
performed with empirical numbers. Even the geometric construction of the operation itself may not 
always be equivalent, as seen in the earlier constructions of the hypotenuse segment. 
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Decreasing the adelos 
 

We now aim to construct the hypotenuse by considering 4 segments: 

(44)  

𝑥1(௔), 𝑥2(௔), 𝑦1(௔)𝑦2(௔)

ୄ
→ ඥ𝑥1 𝑥2 + 𝑦1 𝑦2 

 

 

The Adelos of this function is calculated as: 

𝐴𝑓 =  
1

2
 ඨ

𝑥1ଶ + 𝑥2ଶ + 𝑦1ଶ + 𝑦2ଶ

𝑥1 𝑥2 + 𝑦1 𝑦2
 

Noting that the legs x1, x2 and y1, y2 are two measurements of the same empirical variable, the 
expression simplifies as: 

(45)  

𝐴𝑓 =  
1

2
 ඨ

2𝑥ଶ + 2𝑦ଶ

𝑥ଶ + 𝑦ଶ
=  

√2

2
 

The relationship holds for the normal distribution but can be computed for any other distribution. 

What is particularly interesting is that, unlike the case of constructing squares, in this case, the 
Adelos not only does not depend on the measurements of the legs and remains constant, but it even 
decreases. One might think that the repeated application of this operation could reduce the Adelos 
to an arbitrarily small value, but never to zero. 

To reduce the Adelos to an arbitrarily small value, ε, n constructions must be performed according 
to the following relationship: 

(46)  

𝑛 =
𝑙𝑛(𝜀)

𝑙𝑛(
√2
2

)
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Considering the sequence of constructed legs, one would arrive at the quantity: 

1,√2 , √3, 2, √5, √6, √7 , √8 , 3 … √𝑛  

If, for example, one started with an initial Adelos of 1 mm and aimed to reach an Adelos equivalent 
to the Planck length, approximately 1,616 X 10-32mm it would require n=212 constructions. 

Starting from a leg 10 mm long, one would arrive at a triangle with leg 10(a) mm and 10 ×  √212 ≈

145,6(ఌ) mm 

In terms of the length of the initial unit segment, it must therefore have a length equal to: 

(47)  

𝑢 =
𝐿

√𝑛
 

Where L is the length of the segment one wishes to obtain with an Adelos smaller than ε. 

This implies that the first n constructions will have an Adelos greater than ε. 

To reduce the Adelos of the initial constructions, one could consider starting from the constructed 
hypotenuses and reconstructing the legs. This operation generally increases the Adelos, but for 
specific constructions, it may reduce it. 

Starting from the hypotenuse and working backward to one of the legs, the uncertainty is not 
invariant and depends on the initial values themselves: 

(48)  

𝑥 = ඥ𝑑ଶ − 𝑦ଶ
(ଶඥௗమା௬మ)

 

 

If we perform the inverse construction of (38): 

(49)  

𝑥1(௔), 𝑥2(௔), 𝑑1(௔)𝑑2(௔)

ୄᇱ
→ √𝑑1 𝑑2 − 𝑥1 𝑥2 
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The Adelos of this function is calculated as: 

𝐴𝑓 =  
1

2
 ඨ

𝑑1ଶ + 𝑑2ଶ + 𝑥1ଶ + 𝑥2ଶ

𝑑1 𝑑2 − 𝑥1 𝑥2
 

Noting that the legs x1, x2 and the hypotenuses d1, d2 are similar, the expression simplifies as: 

 

(50)  

𝐴𝑓 =
√2

2
 ඨ

𝑑ଶ + 𝑥ଶ

𝑑ଶ −  𝑥ଶ
 

With appropriate choices of the hypotenuse and the leg, it is possible to obtain an Adelos of the 
calculated leg smaller than 1, leading to a reduction of the Adelos. 

It can be easily calculated that with a ratio of d and x less than √3 , the Adelos is reduced. 

For example, starting with d=2(a) and x=1(a) the second leg is obtained as √3
(ටହ

଺ൗ )௔)
 

Alternatively, starting with d=41(a) and x=9(a) the second leg is obtained as 40
(ට଼଼ଵ

ଵ଺଴଴ൗ ௔)
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Euclidean Space and Riemannian Space 
 

We now ask whether what was found for the right triangle in Euclidean space also holds for a 
spherical surface, and therefore, we will proceed with measuring a geodesic on a spherical 
surface. 

 

 

Consider the Pythagorean theorem for spherical triangles, that is, the cosine of the hypotenuse is 
equal to the product of the cosines of the two legs. 

Let 𝒓 be the radius of the sphere, 𝒂 the horizontal side, and 𝒃 the vertical side. The distance 
between two points is given by the relation: 

(51)  

𝑑 = 𝑟 𝑎𝑟𝑐𝑜𝑠 (𝑐𝑜𝑠
𝑎(௨)

𝑟
  𝑐𝑜𝑠

𝑏(௨)

𝑟
 ) 

(52)  

𝐴𝑓 = ඩ
(𝑠𝑒𝑛ଶ 𝑎

𝑟
 𝑐𝑜𝑠ଶ 𝑏

𝑟
+ 𝑠𝑒𝑛ଶ 𝑏

𝑟
𝑐𝑜𝑠ଶ 𝑎

𝑟
)

1 − 𝑐𝑜𝑠ଶ 𝑎
𝑟

   𝑐𝑜𝑠ଶ 𝑏
𝑟

  
 

 

The uncertainty in the measurement of the geodesic is not constant and varies as a function of the 
distance between the points considered, oscillating between 0 and 1. 

 
In principle, this behaviour allows for the identification of the space in which the measurements 
are made, and through the analysis of the Adelos, it is possible to determine whether we are in a 
Euclidean or non-Euclidean space.  
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6. Application in Calculus 
 

The Derivation 

Let 𝑦 = 𝑓(𝑥) be a function defined on an interval [a,b], and let  
௱௬

௱௫
 be the incremental ratio of the 

function in the vicinity of a point 𝑥଴ that lies within the interval. 

 
 

 
 
From Calculus, we know that if, as the increment 𝛥𝑥 of the variable tends to zero, the limit of the 
incremental ratio of a function in the vicinity of one of its points exists and is finite, then this limit 
is the derivative of the function at that point: 

 

𝑓ᇱ(𝑥0) = lim
௱௫→଴

௱௬

௱௫
 

 

Geometrically, the meaning of the derivative of a function at a given point is that it represents the 
slope of the tangent line to the curve at that point. 

When working with empirical data, the derivative can be approximated using finite differences. 
Suppose we have two measurements of the same variable xa, the approximated derivative can then 
be expressed as: 

 

(53)  

𝑓ᇱ൫𝑥(௔)൯ =  
௙൫௫(ೌ)൯ ෝି  ௙൫௫(ೌ)൯ 

௫(ೌ) ෝି  ௫(ೌ)
=  𝑑(௔ᇱ)  
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The measurements are distinct and not identical, of the same variable. This methodology, based on 
finite differences, allows us to approximate the derivative without resorting to infinitesimal 
calculus, that is: 

 

(54)  

𝑓ᇱ൫𝑥(௔)൯
(௔ᇲ)

=  

𝑓 ቆ
1

𝑥(௔)

ሬሬሬሬሬሬሬ⃗
ቇ  −  𝑓 ቆ

2
𝑥(௔)

ሬሬሬሬሬሬሬ⃗
ቇ

1
𝑥(௔)

ሬሬሬሬሬሬሬ⃗
 −  

2
𝑥(௔)

ሬሬሬሬሬሬሬ⃗
=  𝑑(௔ᇲ) 

 
 

The notation 
1

𝑥଴(ೌ)

ሬሬሬሬሬሬሬሬ⃗
 refers to the first measurement, and 

2
𝑥଴(ೌ)

ሬሬሬሬሬሬሬሬ⃗
 refers to the second measurement, 

where the values of the measurements cannot be identical. Moreover, a’ represents the Adelos of 
the derivative f’. 
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Let’s see in the following table some formulas for the fundamental derivatives: 

Functions Delos of 𝑦′ (d) Adelos of y’ (a') 
Constant Function 

𝑦 = 𝑘 
0 0 

Power Function 
𝑦 = 𝑥௡, 𝑛 ∈ ℝ 

𝑛𝑥௡ିଵ |𝑛(𝑛 − 1)|

√2
 𝑥௡ିଶ 

𝑦 = 𝑘𝑥 𝑘 0 

𝑦 =
1

𝑥
 −

1

𝑥ଶ
 √2𝑥ିଷ 

𝑦 = √𝑥 1

2√𝑥
 

1

4√2
𝑥ି

ଷ
ଶ 

𝑦 = √𝑥
య  1

3𝑥
ଶ
ଷ

 
2

9√2
𝑥ି

ହ
ଷ 

𝑦 =
1

𝑥ଶ
 −

2

𝑥ଷ
  

଺

√ଶ
𝑥ିସ(*) 

𝑦 =
1

𝑥ଷ
 −

3

𝑥ସ
  

ଵଶ

√ଶ
𝑥ିହ(*) 

Absolute value Function 𝑦 =
𝑥 

|𝑥|

𝑥
 

0 

Logarithmic Function 
𝑦 = ln (𝑥) 

1

𝑥
 

ଵ

√ଶ௫మ
(*) 

Exponential Function 
𝑦 = 𝑒௫ 

𝑒௫ ௘ೣ

ଶ√ଶ
(*) 

Trigonometric Function 
𝑦 = sin 𝑥 

cos 𝑥 ୱ୧୬ ௫

√ଶ
(*) 

𝑦 = cos 𝑥 −sin 𝑥 ୡ୭ୱ ௫

√ଶ
(*) 

𝑦 = tan 𝑥 1

cosଶ 𝑥
 

∝𝑥 (**) 

   
   

(*) Empirically found form 

(**) Form not yet determined 
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Integration 
 
Let 𝑦 = 𝑓(𝑥) be a function defined and bounded on a closed interval [𝛼; 𝛽]. Geometrically, the 
definite integral represents the area under the curve of the function and the x-axis between 𝑥 = 𝛼 
and 𝑥 = 𝛽. 

Let {𝑥଴, 𝑥ଵ, … , 𝑥௡} be a partition of the interval [𝑎; 𝑏] such that 𝛼 = 𝑥଴ < 𝑥ଵ < ⋯ < 𝑥௡ = 𝛽, and 
let ∆𝑥௜ = 𝑥௜ −  𝑥௜ିଵ be the widths of the subintervals. Consider a point 𝑥௜(௔)

 within each 

subinterval [𝑥௜ିଵ − 𝑥௜]. To measure the definite integral, we calculate the area as: 

(55)  

න 𝑓൫𝑥(௔)൯

ఉ

ఈ

= ෍ 𝑓 ቀ𝑥௜(ೌ)
ቁ

௡

௜ୀ଴

∆𝑥௜  =  𝑑(௔ᇱ) 

 

Here, the goal is not to study the expression of the Adelos for every algebraic function, but to 
mention that there are functions where the Adelos increases and others where it decreases, as we 
develop the integral calculus.  

The calculation can be carried out by using the Fundamental Theorem of Calculus with the 
employment of empirical variables: 

(56)  

න 𝑓൫𝑥(௔)൯

ఉ

ఈ

= 𝐹(𝛽) − 𝐹(𝛼)  =  𝑑(௔ᇱ) 

where 𝐹ᇱ൫𝑥(௔)൯ = 𝑓(𝑥(௔)). 

In this case, the calculation of the Adelos is directly applied by using equation (7). 
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7. Conclusions. 
 

This work presents an innovative formalization of uncertainty propagation through the introduction 
of empirical numbers, offering a new perspective on the nature of uncertainty in mathematics. The 
most significant aspect lies not in specific numerical results, but in the conceptual framework that 
enables the systematic study of propagation and reduction of the Adelos. 
 
Three key contributions are of particular relevance: 

1. The formalization of empirical numbers provides a rigorous mathematical tool for tracing 
the propagation of uncertainty through various mathematical operations. This allows for 
understanding how the Adelos propagates differently depending on the mathematical 
constructions used, as demonstrated in the emblematic case of the Pythagorean theorem. 

2. The discovery that certain mathematical constructions can maintain or even reduce the 
Adelos, as shown in geometric constructions based on the Pythagorean theorem. This 
property opens new perspectives for designing algorithms and mathematical constructions 
that inherently minimize the propagation of uncertainty. 

3. The extension of this framework to differential and integral calculus, which reveals how 
uncertainty propagates through fundamental operations of mathematics, providing new 
tools for analyzing the robustness of mathematical models. 

 
These results have profound implications, both theoretical and practical: 

 In pure mathematics, they offer a new way of conceiving mathematical constructions, 
where the management of Adelos becomes an explicit design criterion. 

 In applied sciences, they provide tools to design algorithms and computational methods that 
actively control the propagation of uncertainty. 

 In scientific methodology, they enable the quantitative evaluation of the robustness of 
mathematical constructions with respect to initial uncertainty. 

 
This new perspective transforms the study of uncertainty from a problem of post hoc management 
to an intrinsic element of mathematical construction, opening new research directions in number 
theory, geometry, and mathematical analysis. In particular, the possibility of constructing sequences 
that reduce the Adelos suggests the existence of fundamental mathematical structures yet to be 
explored in the context of quantified uncertainty. 
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