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Abstract. This paper is a trial to prove Goldbach conjecture according
to the following process.

1. We find that {the total number of ways to divide an even number n into 2

prime numbers} : l(n) diverges to ∞ with n → ∞.
2. We find that 1 ≤ l(n) holds true in 4 ∗ 1018 < n from the probability of

l(n) = 0.

3. Goldbach conjecture is already confirmed to be true up to n = 4 ∗ 1018.
4. Goldbach conjecture is true from the above item 2 and 3.

1. Introduction

1.1 When an even number n is divided into 2 odd numbers x and y, we can express

the situation as pair (x, y) like the following (1).

n = x+ y = (x, y) (n = 6, 8, 10, 12, · · · · · · x, y : odd number) (1)

n has n/2 pairs like the following (2).

(1, n− 1), (3, n− 3), (5, n− 5), · · · · · · , (n− 5, 5), (n− 3, 3), (n− 1, 1) (2)

We define as follows.

Prime pair : the pair where both x and y in (x, y) are prime numbers

Composite pair : the pair other than the above prime pair

l(n) : the total number of the prime pairs which exist in n/2 pairs shown

by the above (2). (p, q) is regarded as the different pair from (q, p).

(p, q : prime number) Then when n/2 is a composite number l(n) is

an even number and when n/2 is a prime number l(n) is an odd

number.

1.2 Goldbach conjecture can be expressed as the following (3) i.e. any even number

n(≥ 6) can be divided into 2 prime numbers.

1 ≤ l(n) (n = 6, 8, 10, 12, · · · · · · ) (3)

Since Goldbach conjecture is already confirmed to be true up to n = 4 ∗ 1018, we
can try to prove Goldbach conjecture in the following condition.

4 ∗ 1018 < n (4)
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2. Investigation of l(n)

2.1 When an even number n is divided into 2 odd numbers x and y, we can find the pair

of π(n), l(n),mxx,mx,my and mxy in n/2 pairs of (x, y) as shown in the following

(Figure 1).

x y

 : prime number  : composite number

l(n)

my=π(n)-l(n)

mx=π(n)-l(n)

mxy

π(n)

mxx=n/2-π(n)

n/2

Figure 1：Various pairs in n/2 pairs of (x, y)

We define as follows.

π(n) : π(n) shows the total number of prime numbers which exist between

1 and n. But we use π(n) in the above (Figure 1) for the total number

of prime numbers which exist in n/2 odd numbers of (1, 3, 5, · · · · · · ,
n− 5, n− 3, n− 1). Strictly speaking, this value must be π(n− 1)− 1.

But we can say π(n− 1)− 1 = π(n)− 1 ≓ π(n)

because n is an even number and a large number as shown in (4).

mxx : the total number of pairs where x is a composite number. 1 is

regarded as a composite number.

mx : the total number of pairs where x and y are composite number and

prime number respectively

2.2 We have the following (5) from Prime number theorem.

π(n)

n
∼ n/ log n

n
=

1

log n
(n → ∞) (5)

We have lim
n→∞

π(n)

n
= 0 from the above (5). Then we have the following (6) from

(Figure 1) and lim
n→∞

π(n)

n
= 0

mxx = n/2− π(n) = (n/2){1− 2π(n)/n} ∼ n/2 (n → ∞) (6)
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When mxx approaches n/2 with n → ∞ as shown in the above (6), mx approaches

π(n) with n → ∞ due to the following reasons.

2.2.1 mx shows the total number of prime numbers which exist in y of mxx as shown

in (Figure 1).

2.2.2 y of mxx approaches n/2 odd numbers of (1, 3, 5, · · · · · · , n− 5, n− 3, n− 1)

with n → ∞ as shown in the above (6).

2.2.3 (1, 3, 5, · · · · · · , n− 5, n− 3, n− 1) has π(n) prime numbers.

Then we can have the following (7) from (Figure 1).

mx = π(n)− l(n) = π(n){1− l(n)/π(n)} ∼ π(n) (n → ∞) (7)

We have lim
n→∞

l(n)

π(n)
= 0 from the above (7). We have the following (8) from the

above (6) and (7).

π(n)− l(n)

n/2− π(n)
∼ π(n)

n/2
(n → ∞) (8)

We have the following (9) from the above (8) and Prime number theorem.

l(n) ∼ {π(n)}2

n/2
∼ {n/ log n}2

n/2
=

2n

(log n)2
(n → ∞) (9)

We can find that l(n) has the following properties from the above (9).

2.2.4 l(n) repeats increases and decreases with increase of n as shown in the follow-

ing (Graph 1). But overall l(n) is an increasing function regarding n because
2n

(log n)2
is an increasing function regarding n.

2.2.5 l(n) diverges to ∞ with n → ∞ because
2n

(log n)2
diverges to ∞ with n → ∞.

2.3
2n

(log n)2 seems to approximate l(n) sufficiently well as shown in the following

(Graph 1).
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Graph 1：l(n)(blue line)[1] and
2n

(log n)2 (red line) from n = 6 to n = 2, 000

3. Investigation of zero point of l(n)

3.1 Since both x and (n − x) in pair (x, y) = (x, n − x) are always an odd number,

we must consider the probability that x or (n− x) is a prime number in the world

where only odd numbers exist.

Prime number theorem shows that {the probability that randomly selected integer

m is a prime number} approaches to 1/ logm with m → ∞. Then we can have

{the probability that randomly selected odd number N is a prime number} : P (N)

like the following (10) because an even mumber cannot be a prime number.

P (N) ∼ 2

logN
(N → ∞ N : odd number) (10)

3.2 Since the probability that (x, n−x) or (n−x, x) is a prime pair is P (x)∗P (n−x), the

probability that (x, n−x) or (n−x, x) is a composite pair is {1− P (x) ∗ P (n− x)}.
Therefore the probability that all of n/2 pairs are a composite pair i.e. {the prob-

ability of l(n) = 0} : A(n) can be expressed like the following (11).

Since (1, n− 1) and (n− 1, 1) are always a composite pair, we don’t include these

pairs in (11). Then x does not include 1 in the following (11-1) and (11-2). (11)

has (n/2− 2) terms of {1− P (x) ∗ P (n− x)} altogether.

A(n) = {1− P (3) ∗ P (n− 3)}2{1− P (5) ∗ P (n− 5)}2{1− P (7) ∗ P (n− 7)}2 . . . . . .
{1− P (x) ∗ P (n− x)}2 . . . . . . {1− P (n/2− 4) ∗ P (n/2 + 4)}2

{1− P (n/2− 2) ∗ P (n/2 + 2)}2{1− P (n/2)2} (n/2 : odd number)

= {1− P (3) ∗ P (n− 3)}2{1− P (5) ∗ P (n− 5)}2{1− P (7) ∗ P (n− 7)}2 . . . . . .
{1− P (x) ∗ P (n− x)}2 . . . . . . {1− P (n/2− 5) ∗ P (n/2 + 5)}2

{1− P (n/2− 3) ∗ P (n/2 + 3)}2{1− P (n/2− 1) ∗ P (n/2 + 1)}2
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(n/2 : even number) (11)

(x = 3, 5, 7, 9, . . . . . . , n/2− 4, n/2− 2, n/2 n/2 : odd number) (11-1)

(x = 3, 5, 7, 9, . . . . . . , n/2− 5, n/2− 3, n/2− 1 n/2 : even number) (11-2)

3.3 We have the following (12) from the above (11-1) and (11-2).

3 ≤ x ≤ n/2 ≤ n− x < n+ 1 ≪ 1018 ∗ n+ 1 (12)

Since P (N) decreases with increase of N as shown in [Appendix 1 : Investigation

of P (N)], if n is large enough, we have the following (13) from (10) and (12).

1 ≥ P (x) ≥ P (n− x) ≥ P (n+ 1) ≓ 2

log n

> P (1018 ∗ n+ 1) ≓ 2

log(1018 ∗ n)
=

2

log n+ 41.4
(13)

We have the following (14) from (13).

0 < 1− P (x) ∗ P (n− x) < 1− {P (1018 ∗ n+ 1)}2 (14)

We have the following (15) from (11), (13) and (14).

0 < A(n) < B(n) = [1− {P (1018 ∗ n+ 1)}2]n/2−2

∼ {1− 4

(log n+ 41.4)2
}n/2

= [{1− 1

{(log n+ 41.4)/2}2
}{(log n+41.4)/2}2

](n/2)/{(log n+41.4)/2}2

∼ (
1

e
)(n/2)/{(log n+41.4)/2}2

=
1

e(n/2)/{(log n+41.4)/2}2 (n → ∞) (15)

We have the following (16) from the above (15).

lim
n→∞

A(n) = 0 (16)

If n is large enough, i.e. if 4 ∗ 1018 ≤ n is satisfied, B(n) can be approximated to
1

e(n/2)/{(log n+41.4)/2}2 from the above (15) and
1

e(n/2)/{(log n+41.4)/2}2 decreases

with increase of n in 4 ∗ 1018 ≤ n. Therefore we have the following (17).

0 < A(n) < B(n) < B(4 ∗ 1018) (4 ∗ 1018 < n) (17)

3.4 Since we can calculate {the probability that N is a composite number} : Q(N) as

shown in item 1.1 and 1.2 of [Appendix 1], we can have P (N) = 1 − Q(N) from

Q(N). Then we can calculate A(n) from P (N) and (11) as shown in the following

(Graph 2).
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Graph 2 : A(n) from n = 6 to n = 60

A(n) has the following properties.

3.4.1 A(n) = 0 holds true in 6 ≤ n ≤ 14 as shown in item 1.5 of [Appendix 1].

A(16) has the value of 0.0013 and A(n) almost decreases with increase of n in

16 ≤ n ≤ 60 as shown in the above (Graph 2).

3.4.2 The above (17) holds true.

3.4.3 A(n) converges to zero with n → ∞.

3.5 When l(n0) = 0 holds true we define n0 as {zero point of l(n)}.
Possible zero point distribution of l(n) is limited to 4 cases which are classified

according to location of zero point as shown in the following (Table 1).

n≦4*1018 4*1018<n

Case 1 ● ● item 3.5.2 NO

Case 2 ● X item 3.5.2 NO

Case 3 X ● item 3.5.1 NO

Case 4 X X nothing YES

● : zero points exist. X : no zero points exist.

Location of zero point Contradiction
with

Can this case exist

as real l(n)  ?

Table 1 : 4 cases of zero point distribution of l(n)

Distribution of zero point of l(n) is affected by the following facts.

3.5.1 A(n) has the properties shown in item 3.4.

3.5.2 Goldbach conjecture is already confirmed to be true up to n = 4∗1018 as shown
in item 1.2. Therefore any zero points of l(n) do not exist in n ≤ 4 ∗ 1018.
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Case 1 and Case 2 cannot exist because they contradict item 3.5.2.

Case 3 cannot exist because it contradicts item 3.5.1 as shown in the following item

3.6.

3.6 From (17) we have the following (18) which shows that A(n) is extremely small in

4 ∗ 1018 < n. B(n) is defined in (15).

A(n) < B(4 ∗ 1018) ≓ 1

e(2∗1018)/[{log(4∗1018)+41.4}/2]2 =
1

e(2∗1018)/1774
= e−1.1∗1015

= (e1.1)−1015 = (100.47)−1015 = 10−4.7∗1014 (4 ∗ 1018 < n) (18)

We can have A(16) = 0.0013 as shown in item 3.4.1.

Since Case 3 has zero points only in 4∗1018 < n, Case 3 contradicts A(n) as follows.

3.6.1 The larger A(n) is, the more likely a zero point will appear. Then the situation

where a zero point can exist in A(n) < 10−4.7∗1014 as (18) shows contradicts

the situation where a zero point cannot exist in A(16) = 0.0013. In other

words, Case 3 shows the situation that is completely opposite to the situation

expected from A(n) as shown in the following item 3.6.2 and 3.6.3.

3.6.2 0.0013 is extremely larger than 10−4.7∗1014 and zero points already exist in

A(n) < 10−4.7∗1014 . Therefore a new zero point must exist near n = 16. But

Case 3 does not have any zero point in n ≤ 4 ∗ 1018.
3.6.3 10−4.7∗1014 is extremely smaller than 0.0013 and zero points do not exist near

n = 16. Therefore zero points must not exist in 4 ∗ 1018 < n. But Case 3 has

zero points in 4 ∗ 1018 < n.

The following (Figure 2) shows the contradiction between Case 3 and A(n).

4*1018
n

16
1E-4.7*1014

B(n)

in Case 3 and Case 4 ● in Case 3

0

0.0013

60

3.8E-06

B(n)

A(n)

A(n)

in Case 4

Figure 2 : the contradiction between Case 3 and A(n)

3.7 If no zero points exist in 4 ∗ 1018 < n, the contradiction shown in item 3.6.1 does

not occur as shown in the above (Figure 2). In other words Case 4 is consistent

with A(n). Among 4 cases of zero point distribution of l(n) shown in (Table 1),
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only Case 4 meets both item 3.5.1 and 3.5.2. Therefore Case 4 shows the real l(n).

We have the following (19) from Case 4 because Case 4 does not have any zero

point in 4 ∗ 1018 < n.

1 ≤ l(n) (4 ∗ 1018 < n) (19)

4. Conclusion

Goldbach conjecture is true from the following item 4.1 and 4.2.

4.1 Goldbach conjecture is already confirmed to be true up to n = 4 ∗ 1018.

4.2 Goldbach conjecture is true in 4 ∗ 1018 < n from the above (19).

Appendix 1. : Investigation of P (N)

We can find that P (N) decreases with increase of N in this appendix.

1.1 When odd number N is a composite number, N is divisible by any of {π(⌊
√
N⌋)−1}

prime numbers of {p2 = 3, p3 = 5, p4 = 7, · · · · · · , pk, · · · · · · , pπ(⌊√N⌋)−1, pπ(⌊
√
N⌋)}.

The above {π(⌊
√
N⌋)−1} prime numbers satisfy 3 ≤ p ≤

√
N . (p : prime number)

Then {the probability that N is a composite number} i.e. {the probability that

N is divisible by any of the above {π(⌊
√
N⌋)− 1} prime numbers} : Q(N) can be

expressed like the following (20). Because (Q2, Q3, Q4, Q5, · · · · · · , Qk, · · · · · · ,
Qπ(⌊

√
N⌋)−1, Qπ(⌊

√
N⌋)) in (20) are the probabilities of mutually exclusive events.

Q(N) = Q2 +Q3 +Q4 +Q5 + · · · · · ·+Qk + · · · · · ·+Qπ(⌊
√
N⌋)−1 +Qπ(⌊

√
N⌋)

(2 ≤ k ≤ π(⌊
√
N⌋)) (20)

Q2 : the probability that N is divisible by p2 = 3

Q3 : the probability that N is divisible by p3 = 5 but not by p2 = 3

Q4 : the probability that N is divisible by p4 = 7 but not by p3 = 5 or

p2 = 3

Q5 : the probability that N is divisible by p5 = 11 but not by p4 = 7,

p3 = 5 or p2 = 3

Qk : the probability that N is divisible by pk but not by any of (pk−1, pk−2,

· · · · · · , p4 = 7, p3 = 5, p2 = 3)

1.2 We have the values of Q2, Q3, Q4, Q5 and Q6 as follows.

1.2.1 We have Q2 = 1/3 = 0.333

because the probability that randomly selected odd number N is divisible by

p2 = 3 is 1/3.
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1.2.2 We have Q3 = 1/5− 1/(5 ∗ 3) = 0.133

because the probability that randomly selected odd number N is divisible by

p3 = 5 is 1/5 and the probability that randomly selected odd number N is

divisible by both p3 = 5 and p2 = 3 is 1/(5 ∗ 3).
1.2.3 Similarly we have

Q4 = 1/7− {1/(7 ∗ 5) + 1/(7 ∗ 3)− 1/(7 ∗ 5 ∗ 3)} = 0.0762.

Here 1/(7∗5∗3) is necessary because both {the probability that N is divisible

by both p4 = 7 and p3 = 5} and {the probability that N is divisible by both

p4 = 7 and p2 = 3} contain {the probability that N is divisible by all of

p4 = 7, p3 = 5 and p2 = 3}.
1.2.4 In the same way as Q4 we have

Q5 = 1/11− {1/(11 ∗ 7) + 1/(11 ∗ 5) + 1/(11 ∗ 3)
−1/(11∗7∗5)−1/(11∗7∗3)−1/(11∗5∗3)+2/(11∗7∗5∗3)} = 0.0410

Q6 = 1/13− {1/(13 ∗ 11) + 1/(13 ∗ 7) + 1/(13 ∗ 5) + 1/(13 ∗ 3)
− 1/(13 ∗ 11 ∗ 7)− 1/(13 ∗ 11 ∗ 5)− 1/(13 ∗ 11 ∗ 3)− 1/(13 ∗ 7 ∗ 5)
− 1/(13 ∗ 7 ∗ 3)− 1/(13 ∗ 5 ∗ 3)
+1/(13∗11∗7∗5)+1/(13∗11∗7∗3)+1/(13∗11∗5∗3)+2/(13∗7∗5∗3)
− 4/(13 ∗ 11 ∗ 7 ∗ 5 ∗ 3)} = 0.0322

1.3 We can find the properties of Qk as follows.

1.3.1 We define as follows.

1.3.1.1 Nk : odd composite number which are divisible by prime number pk

1.3.1.2 Nk+ : Nk that is divisible by any of (pk−1, pk−2, · · · · · · , p4 = 7, p3 = 5,

p2 = 3)

1.3.1.3 Nk− : Nk that is not divisible by any of (pk−1, pk−2, · · · · · · , p4 = 7, p3 =

5, p2 = 3)

The following Sk is the set of Nk and Nk is arranged in ascending order.

Sk ={pk ∗ 3, pk ∗ 5, pk ∗ 7, pk ∗ 9, · · · · · · , pk ∗ (pk − 2), p2k, pk ∗ (pk + 2), · · · · · · }
(21)

The element of Nk+ which is divisible by p2 = 3, (pk ∗ 3, pk ∗ 9, pk ∗ 15, pk ∗
21, · · · · · · ) appears every 3 elements in the above Sk. Similarly the element of

Nk+ which is divisible by prime number (pk−1, pk−2, · · · · · · , p4 = 7, p3 = 5)

appears every (pk−1, pk−2, · · · · · · , p4 = 7, p3 = 5) elements respectively in

Sk. Then the distribution of element of Nk+ repeats the same pattern every

ak(= pk−1 ∗ pk−2 ∗ · · · · · · ∗ 7 ∗ 5 ∗ 3) elements in Sk.

1.3.2 The distribution of element of Nk− also repeats the same pattern every ak
elements in Sk because Nk consists only of Nk+ and Nk−.

The following (Graph 3) shows {the total number of distinct prime factors

p(≤ p5 = 11) of N5} : ω(N5) from N = 11 ∗ 3 = 33 to N = 11 ∗ 775 = 8, 525.
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Graph 3 : ω(N5) from N = 33 to N = 8, 525

The value of ω(N5) shows the properties of N5 as follows.

ω(N5) = 4 : N5 is divisible by all of 3, 5, 7 and 11.

ω(N5) = 3 : N5 is divisible by 11 and (2 prime numbers out of 3, 5, and 7).

ω(N5) = 2 : N5 is divisible by 11 and (one prime number out of 3, 5, and 7).

ω(N5) = 2, 3, or 4 : N5 is divisible by any of 3, 5 and 7. Then N5 is N5+.

ω(N5) = 1 : N5 is divisible by only 11. Then N5 is N5−.

From (Graph 3) we can find that the distributions of both N5+ and N5− repeat

the same pattern every a5 elements (= 2∗p5 ∗a5 = 2∗11∗7∗5∗3 = 2, 310) in

S5. Because the distance between adjacent elements of S5 is 2 ∗ p5 as shown

in (21).

1.3.3 Qk is the probability that N is Nk−. Since the distance between adjacent

elements of Sk is 2 ∗ pk, we can calculate Qk in 3 ∗ pk ≤ N by the following

(22). No matter where we calculate Qk in 3 ∗ pk ≤ N , we can always have a

same value. Because the distribution of Nk− repeats the same pattern every

2 ∗ pk ∗ ak in 3 ∗ pk ≤ N as shown in item 1.3.2. Therefore the value of Qk is

a constant which depends on k but not on N .

Qk =
the total number of Nk− in N0 ≤ N ≤ (N0 + 2 ∗ pk ∗ ak)

the total number of odd number in N0 ≤ N ≤ (N0 + 2 ∗ pk ∗ ak)

=
the total number of Nk− in N0 ≤ N ≤ (N0 + 2 ∗ pk ∗ ak)

pk ∗ ak
(22)

(N0 : any N which satisfies 3 ∗ pk ≤ N)

(pk ∗ ak = pk ∗ pk−1 ∗ pk−2 ∗ · · · · · · ∗ 7 ∗ 5 ∗ 3)
1.3.4 The above Nk− has the following properties.

1.3.4.1 All prime factors of Nk− satisfy pk ≤ p from item 1.3.1.3.

1.3.4.2 Nk− has at least 2 prime factors from item 1.3.1.1.
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1.3.4.3 Nk− has at least one prime factor pk from item 1.3.1.1.

1.3.4.4 Nk− does not exist in N < p2k. There exist an infinite number of Nk− in

p2k ≤ N from item 1.3.4.1—1.3.4.3.

We can have the following (23) from item 1.2, 1.3.3 and 1.3.4.4.

Qk =0 (N < p2k)

Qk =1/pk − Ck > 0 (p2k ≤ N) (23)

Ck : the correction value for the fact that N is not divisible by any of

(pk−1, pk−2, · · · · · · , p4 = 7, p3 = 5, p2 = 3)

(0 ≤ Ck < 1/pk 0 = Ck only at k = 2)

We have the following (24) from (23).

0 < Qk ≤ 1/pk (p2k ≤ N Qk = 1/pk only at k = 2) (24)

1.4 Q(N) increases with increase of N due to the following reasons.

1.4.1 π(⌊
√
N⌋) increases with increase of N .

1.4.2 Since Q(N) has {π(⌊
√
N⌋) − 1} terms as shown in (20), the total number of

term of Q(N) increases with increase of N .

1.4.3 Qk has positive value as shown in (24).

1.4.4 Since the value of Qk is a constant which depends on k but not on N as shown

in item 1.3.3, even if the total number of term of Q(N) increases by 1 after

increase of N , the value of each Qk which already existed before increase of

N does not change.

1.4.5 When N increases from N = N1 − 2 to N = N1, if a prime number does

not exist in the range of
√
N1 − 2 < r ≤

√
N1 (r : real number), Q(N)

does not change. But if a prime number pπ(⌊
√
N1⌋) exists in the range of√

N1 − 2 < r ≤
√
N1, Q(N) increases by Qπ(⌊

√
N1⌋)(> 0).

Since Q(N) increases with increase of N , P (N) = 1−Q(N) decreases with increase

of N .

We have the following (25) from (10) and we have the following (26) from (25).

lim
N→∞

{1−Q(N)} = lim
N→∞

P (N) = 0 (25)

lim
N→∞

Q(N) = 1 (26)

1.5 In order for Q(N) to exist, 2 ≤ π(⌊
√
N⌋) must hold true from item 1.4.2. Then

Q(N) is defined in 9 ≤ N . Since π(⌊
√
N⌋) ≤ 1 holds true in 3 ≤ N ≤ 7, we should

think that Q(N) = 0 i.e. P (N) = 1 holds true in 3 ≤ N ≤ 7. Because the real

probability that N is a prime number in 3 ≤ N ≤ 7 is 100%. Therefore A(n) = 0

holds true in 6 ≤ n ≤ 14 from (11).

The following (Graph 4) shows P (N) calculated from Q(N) and p(N) : the real
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probability calculated from the following (27).

p(N) =
the total number of prime number in p2j ≤ N < p2j+1

the total number of odd number in p2j ≤ N < p2j+1

(j = 1, 2, 3, · · · · · · p1 =
√
3, p2 = 3, p3 = 5, p4 = 7, p5 = 11 · · · · · · ) (27)
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Graph 4 : P (N)(blue line) and p(N)(red line) from N = 3 to N = 287
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