The spectra of hydrogen and deuterium interpreted with an alternative
fine structure constant compared to the CODATA recommended value.

Hans Peter Good
Sargans, Switzerland

e-mail: hp.good at catv.rol.ch

May 15, 2025

Abstract

A modified Dirac expression for the electron binding energy in hydrogen-like atoms
is presented, which allows a direct and unambiguous comparison among different
fine structure constants without bound-state QED theory. The least squares
analysis of the parameters, describing the spectra of hydrogen and deuterium, is
grounded on two sets of the most accurately measured energy separations. The
optimal spectroscopic fine structure constant is experimentally found to be equal
to 0.00 72 84(1), disagreeing with the determinations ultimately based on
renormalized QED but being in good agreement with the number constant
2‘%‘2 ~ 0.0072 84 28 . The present work compiles experimental values of the
Lamb shift of S, P, and D states with n=1, 2, and 3 derived from those
measurements. Accurate predictions for hyperfine splitting intervals with n > 1 are
given and compared with experimental values for n = 2.

Keywords: fine structure constant, bound-state QED, Dirac binding energy, hydrogen-like atoms,
Lamb shift, hyperfine splitting.

Introduction

Currently, the fine structure constant a;,q4¢¢ = 0.00 72 97 35 is derived via a Dyson power series
in powers of the fine structure constant a for the anomalous magnetic moment of the electron.
The coefficients of this power series are not measurable and are calculated via many hundred
complicated Feynman multiloop diagrams of quantum electrodynamics (free QED) that only a
handful of theoretical physicists can master. Determinations of the fine structure constant by
other means (quantum Hall effect, ac Josephson effect) also depend on QED and produce identical
results that agree with each other with a precision of better than one part per 108 [1:p.20]. This is
not surprising because various methods must produce the same result irrespective of the
correctness of QED since they are based on the same theory. Unfavorably, extracting the fine
structure constant from QED itself is not possible.! The spectrum of hydrogen, as the main

! Quotation from Kinoshita 1996, p. 25: As I have emphasized, QED (or its generalization, the standard model) is the

fundamental theory which unifies all theories of low energy physics. In particular, all determinations of the fine
structure constant a discussed in this review must lead to an identical result. This is irrespective of the fact that
QED (or the standard model), which depends on external parameters such as e and m that cannot be generated
from within the theory, is not yet close to the ultimate theory.



historical source of the value for the fine structure constant, no longer plays a role in the
calculation of its value 2, and the spectrum is used solely to calculate the auxiliary Rydberg

constant R, of infinitely heavy mass, with the unit of energy (]) defined as R, = %azmecz, acting

by its definition as a universal scaling factor for all transitions and substituting for either the
electron mass me or the fine structure constant a as needed.3

The author [2:p.42] derived the fine structure constant ag.,n, represented by the unit invariant

2
number constant @geom = 2773 ~ 0.00 72843 (e~ ~ 137.28) . This idea does not require a
formula for an observable quantity from which the fine structure constant is evaluated.

Model: an empirical modification to the Dirac equation

In the following, an algebraic scaling formula is presented that allows to decide, using the spectra
of hydrogen (H) and deuterium (D), whether a¢oqqta O @geom describes its spectrum better. In an

arbitrary hydrogen-like atom, the electron binding energy E(n, £, j) in the natural energy (]) unit
{mec?}codata 2010 shall be represented for the S(£ = 0), P(£ = 1), and D(£ = 2) states as
Em4,)) =Ep(mj) -y {14+ A+ 8p0B/n+ 6p16k1C/n+ 8p1032D /1 + 2812 E /1 + Sp26k3F /n} - (1)

6 is the Kronecker delta function, and y is a scaling factor of all levels that creates a fictitious Dirac
particle with mass y{me}codata 2010 moving in the field of a stationary point nucleus, and reducing
the two-body problem to an equivalent one-body problem. This concept is not the correct
treatment of the relativistic two-body quantum problem and is arbitrarily chosen as the starting
point (gross structure, An # 0) needing correction. The dimensionless, relativistic Dirac binding
energy E, (n, j) for a fixed point nucleus Coulomb potential is analytically given by

Ep(nj)=f(nj) -1
where [CODATA 2018, eq. 25; Kramida, eq. 3]
1

|- 5]

§=k—[k? — (Za)?]2

k=j+1/2

Z is the nuclear integer-charge, n is a positive integer called the principal quantum number, £ =
0,1 to n — 1 is the orbital angular momentum, and j = ¢ + 1/2 is the total angular momentum of
the electron, which results from combining the orbital motion of the electron with its intrinsic
angular momentum called spin. The Dirac binding energy fails to consider the nuclear mass and
recoil and provides the same energy levels for each atom. Additionally, effects caused by the
difference in the nuclear charge distribution are not included. In all the expressions, the Planck

2 Quotation from Kramida 2010, p. 608: It is not easy to compare the experimental energy levels and transition

frequencies of H, D, and T with the QED calculations because the latter are in fact adjusted to fit the experimental
transition frequencies by adjusting the fundamental constants entering into the QED equations.

Quotation from Kinoshita 1996, p. 6: In order to determine R [R, note from the author] as accurately as in (7)
[three parts per 1011; note from the author], it is necessary to know the theoretical energy levels of the hydrogen
atom to high precision. This requires determination of these levels including various radiative and recoil
corrections using the full power of QED.



constant {h}codata 2010 is suppressed because it is solely used as a conversion factor to convert
energy (J) to frequency (Hz). Formula (1) is a mathematical extension of the Dirac equation using
the smallest number of model-independent parameters (perturbations) with a 1/n scaling law to
describe experimental facts. The physical interpretation of the perturbations parameterized by
the number set B to F is not part of this article.

Each hydrogenic atom has its own unique parameter set A to F, which must be experimentally
determined. They are corrections to the scaled Dirac energy levels Ep(n,j)y, neglecting the
hyperfine structure (AF #0), and depend on the nucleus and the charge Z. Accounting for
perturbations of levels with values of orbital angular momentum ¢ > 2 is easily possible by
analogy. With formula (1), a nucleus with one electron infinitely far away and no other electrons
nearby has zero binding energy, so all bound state energy levels are negative. The ¥ dependent
terms in formula (1) remove the degeneracy in £ and produce a splitting of levels with the same
value of j but different values of ¢, for example, between 251/2 and 2P1/2, which is convincingly
proven to exist by WE Lamb and RC Retherford who reported a splitting of 1062(5) MHz [3]. For
this reason, the splitting of levels (A€ # 0) was later called the Lamb shift and since then was
theoretically explained by bound state QED, in contrast to ordinary QED for free leptons.*

The energy difference AE between two energy states is given by AE = E(n,, €5, j,) — E(ny, €1, j1)-
The ionization energy of the ground state is I = AE = E(n, — ©,0,1/2) — E(1,0,1/2) or
—E(1,0,1/2), which is the negative of the ground state energy and the largest energy for each atom.
A common, accurate method of estimating absolute ionization energies is based on a fit of the
modified Ritz formula. Using a Ritz series formula does not depend on theoretical calculations of
the binding energy of any level and is an independent test of the validity of the fine structure
constant (see note ‘a’ in Table 4 and Table 5).

According to formula (1), the transition 2S1/2-4S1/2 energy difference is

ED(4,1/2) ED(Z,I/Z)
AE = (Epas2) — Ep@a/2))Y + A(Ep,1/2) — Ep21/2))V + B ( R )y = AE™Meas

and for the classic Lamb shift 2P1/2-2S1/2, which is difficult to measure because of the very short
lifetime (natural line width 100 MHz) of the 2P1/2 state, the energy difference is

Ebayy Epeis

AE = (ED(Z,l/Z) - ED(z,l/z))V + A(ED(Z,l/Z) - ED(2,1/2))Y +B > 5

1
= E(B - C)ED(2,1/2)V = AE™

For each transition, analogous relations can be written to represent, in most cases, an
overdetermined linear system of equations for the parameters 4, B, C, D, E, and F, which has a least
squares solution dependent on y and « if the equations are linearly independent. The least
squares solution best reproduces the input data or the results of the measurements via expression
(1). The energy E(n,?,j) calculated with the solutions of the normal equations via formula (1) is
independent > of the scale factor y and only depends on Za and quantum numbers. This formalism
allows, on the basis of a set of measured energy separations, a direct and unambiguous
comparison among different fine structure constants without theory (bound-state QED), except

4 Relation 15.3 in reference [2:p.184] is an incorrect ansatz because it does not take into account the Lamb shift. All
results related to relation 15.3 must be reconsidered.

1-y+A B c D E
2 p=2,¢c'==,D == ,E =
Y Y Y

5 This is because the scaling relations A’ = ” o F' =§ apply.
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the relativistic Dirac equation, in the analysis. Since formula (1) is based on the Dirac equation, the
model is consistent with relativistic quantum mechanics.

Fine structure constant

In Table C, Kramida [4] tabulated the most accurately measured ¢ fine structure intervals
(differences between the corresponding energy levels) for hydrogen. Table 1 of this article is a
copy of Kramida’s Table C with two additional measurements at the end for the transitions 1S1/2-
3S1/2 and 2S1/2-8D5/2. To derive the fine-structure energy levels listed in Table 1 from the
available experimental data, purely theoretical corrections using @, 44tq Were necessary owing to
the hyperfine splitting (hfs) of one or both fine-structure levels involved in the measured
transition. Thus, most transitions listed in Table 1 cannot be considered purely experimental, and
small systematic errors are most likely to exist in the input data (see Kramida 2010 section 4).

The reported intervals detailed in Table 1 were utilized to adjust the six parameters A_nyd to F hyd
by solving the linear system of equations. The measurements marked “not used” were not used to
determine the best compromise values of A_nyd to F nya, which only approximately satisfy all the
measured intervals. In total, there are six degrees of freedom to fit 29 input values, that is,
transition frequency measurements. The reliability of the observations was not included in the
calculation because of unknown systematic uncertainties previously addressed.

The scaling factor has no influence on the energy values and can be arbitrarily set to one. Table 1
lists, for the 29 measurements considered, the calculated differences Dif f (a) = AE™¢% — AE ()
for @ = acodata 2010 ANd @ = Ageom- The mean absolute deviation (MAD) of the 29 input values
(results of the measurements) is 4.03 MHz for @, 44:4 2010 @0d 0.82 MHz for @ g¢om. For deuterium,

Kramida [4] displayed the most accurately measured fine structure intervals in Table G replicated
in Table 2 of this article. To adjust the parameters A deut to F deur, 19 linear equations in six
unknowns were utilized, resulting in mean absolute deviations of 4.75 MHz for @, ;,:4 2010 @and

0.80 MHz for @geom. Minimizing the function MAD («) yields the optimal fine structure constant
Amin Without knowing the scaling factor, that is, the Rydberg constant R,;,,,, meaning that the

experimental values extracted are disentangled from the measurement of the absolute value of
the Rydberg constant. The values obtained are displayed in Table 3, indicating that for both

isotopes, the spectroscopic fine structure constant @spec = Qppin = 0.00 72 84(1) is very close to
Ageom and strongly disagrees 7 with @, 4,:4 2010- The situation is shown graphically in Figure 1.

Historically, the optimal spectroscopic fine structure constant @ agrees with that found by

Houston [5], who calculated a value of a ~ 0.007285 (a? =~ 5.307 X 107°) from purely
spectroscopic measurements of the Rydberg constants for hydrogen and helium. Houston 1927

6 This is mostly possible due to progress in the so-called Doppler-free two-photon spectroscopy, eliminating

measurement errors due to the first order Doppler effect.

Quotation from Kinoshita 1996, p. 25: If the complete consistency of a is not achieved in spite of further theoretical
and experimental efforts, we may have to conclude that it is not interpretable within the framework of the known
physics. Whether this leads to a breakdown of physics as we now know it, and possibly indicates the emergence
of new physics, we are not able to say at present. One can only maintain that such a breakdown, if it occurs, cannot
be attributed to the failure of QED at short distances. Indeed, not just QED, but also the standard model of the
electroweak and strong interactions, or even the string theory, will be powerless to resolve the issue in such a case.



assumed in his evaluation that the relativity equation of Sommerfeld is applicable. In 1930,
Millikan [6] noted that the experimental situation clearly favored, owing to his oil drop work, a
value of a =~ 0.007284 (a™! =~ 137.29) that Birge[7] confirmed with the value a™!=
137.31(5) in 1932 by the simultaneous evaluation of the electron charge and the Planck constant
from several known functional relationships between these two constants. It would be interesting
to look at the history of the measurements after Millikan to extract why the physics community
settled down to the fine structure constant a = 0.00 72 97 35, and today is aimlessly shifting the
accuracy to ever higher decimal places.8

Figure 1: The mean absolute deviation (MAD) for hydrogen and deuterium as a function of the
fine structure constant a.
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Kramida 2010 derived optimized energy levels from the measured fine structure intervals listed
in Table 1 using a least-squares optimization (LOPT) code. The level optimization procedure
involved several iterations via various interpolation and extrapolation procedures and the fitting
of the Ritz series formulas for the nD5/2 and nS1/2 series. Table 4 is a copy of Kramida’s Table 5
with 148 frequency intervals, which resulted from the semiempirical least-squares level
optimization procedure. The absolute ionization energies tabulated by Kramida 2010 and NIST
are additionally included in Table 4. The mean absolute deviations of the 148 high precision
determinations (Ritz values) from the frequencies calculated via formula (1) are 3.67 MHz for
Acodata 2010 aNd 0.78 MHz for a gy Ritz values do not depend on theoretical calculations of the

binding energy of any level.

For deuterium, the measured fine-structure intervals from Table 2 were used to derive the energy
levels using the LOPT code. Table 5 lists the Ritz values of 116 intervals resulting from the least
squares level optimization procedure of Kramida, which is similar to that employed for hydrogen.
In Table 5, the ionization energies tabulated by Kramida 2010 and NIST are also included. The
mean absolute deviations of the 116 Ritz values from the frequencies calculated via formula (1)
are 2.96 MHz for @ ,4,tq 2010 @and 1.15 MHz for @geom. All mean absolute deviations, which are

mentioned in the text, are summarized in Table 6.

In all the cases, ageom gives significantly smaller mean absolute deviations and describes, without
further assumptions, the fine-structure energy levels of H and D more accurately by applying the

8 Quotation from Kinoshita 1996, p. 25: Michelson’s nightmare of aimlessly pushing back the decimal points might
become a reality some day. What | have tried to show in this review is that the sterility one might expect is not yet
present; on the contrary.......



simple expression (1). In summary, there is convincing spectroscopic experimental evidence that
the fine structure constant @ based on renormalized QED determinations should be discarded.

Table 6: Summary of the mean absolute deviations (MAD).

MAD (MHz)
intervals # ofintervals  Qgeom Acodata 2010
Table 1 H 29 0.82 4.03
Table 4 H 148 0.78 3.67
Table 2 D 19 0.80 4.75
Table 5 D 116 1.15 2.96
Lamb shift

Without knowing the exact scale factor y and the fine structure constant, Lamb shifts cannot be
extracted from the spectra. First, a clear definition is vital to avoid different interpretations of the
term Lamb shift. Using formula (1), the definition for the Lamb shift L(nS1/2) is as follows:

L(nS1/2) =L(n,0,1/2) =Ep(n,1/2) -y -{A+B/n}= Ep(n,1/2) - Vyero - B/1 (2)

which can easily be generalized to other Lamb shifts £L(n, £, j). The choice of y defines the values
of the Lamb shifts, which are to be understood as effects in addition to what can be obtained from
the scaled Dirac equation. In the literature, the reference point is not unique due to different
corrections applied and, in most cases, is even undefined. One possibility for an “experimental”
reference point is to choose the scaling factor such that for y = y,,,, the parameter A is zero,
which implicitly defines ¥,oro by A(Vero) = 0 or explicitly ° by V,ero =1+ A(y =1). The
corrections that affect all states are ascribed to the scaling factor y,,,, and the parameters B to F,
which may be called dimensionless Lamb shift constants, include all the corrections that cannot
be described by ¥,.,,. The scaling factor y,,.,., completely relies on an experimental input, to wit,
Table 1 or Table 2. The adjusted dimensionless parameters B to F and the experimentally
determined absolute Lamb shifts for n = 1, 2, and 3 are detailed for @ = @, 44:4 2010) ¥ = Xgeoms

and y = ¥, (@) in Table 3. Purely experimental data for y,,.,, and the Lamb shift L(n, #,j) are
obtained using @ = a;, which is not listed in Table 3 because of ai, = @geom- In this case, only
{mec?/h}codata 2010 is involved in evaluating the experimental data for the parameters from the input
data.

To clarify the significance of the theoretical corrections to the experimental data mentioned in the
text, only the two gross structure transitions 1S1/2-2S1/2 and 2S51/2-8S1/2 from Table 1
(Kramida 2010, column largest theoretical correction) were fitted to the two data points, from
which exact (MAD(ageom)=0) values for [yzero] and the parameter [B], scaling the Lamb shifts of the
nS1/2 levels in terms of the principal quantum number n, can be extracted. The results are
displayed in brackets in Table 3, which give 2466 061 413.1859 MHz for the 1S1/2-2S1/2
interval and 770 649 350.012 MHz for the 2S1/2-8S1/2 interval. The measured values 10 are
marked with an asterisk (*) in Table 1. The fitted parameter [B] is an accurate experimental value

9 1-YzerotA(y=1)

The explicit expression follows from the scaling relation A’ = 0 = ”

10 The exact measurements are not obtained because the numbers in Table 3 are rounded to 12 decimal places.
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allowing direct comparison for @ = @4, with nS1/2 Lamb shift calculations, which are currently
performed within the framework of bound state QED.

Finite mass

For a nucleus of finite mass M, nuclear motion is accounted for nonrelativistically by replacing the
electron mass me with the reduced mass, which multiplies all energy levels by the reduced mass

-1
correction factor ¥,eq mass = (1 + %) . These factors are tabulated for hydrogen and deuterium

in Table 3 using CODATA 2010 values for the electron—nuclear mass ratios on the basis of high
precision Penning trap mass spectrometry. A comparison of the factors y,eq mass codata 2010 for
both isotopes with the experimental scaling factors ¥,¢ro (@cogqata 2010) reveals that they are nearly
equal (Table 3).

Interestingly, if the experimental scaling factors ¥,¢r (ageom) are divided by the correction factor

_ [ %codata 2010
Yecorr =

2
) ~ 1.003 591 800 (3)

Ageom

the results are 0.999 455 690 for H compared to the CODATA 2010 reduced mass factor of
0.999 455 679, and 0.999 727 643 for D compared to 0.999 727 631, which means that the simple
reduced mass correction factors for both isotopes are derived for agy.,n, very accurately from
essentially experimental spectroscopic data, implying a reduction of the relativistic two body
problem to an equivalent one body equation in terms of a single effective mass. The deviations
relative to the tabulated reduced mass factors y...; ... codata 2010 are 1.0 parts per 108 for H and

1.2 parts per 108 for D.

The close agreement

]/Zero (atom) ~ ]/red mass (atom) X VCOTT (4)

is quite remarkable, since the concept of reduced mass has no theoretical basis in relativistic
quantum mechanics, and the assumption that the nucleus behaves inertly and plays no role other
than its mass is an idea of the classic Bohr model. The factor y,,,» might be interpreted as a
correction of the spectroscopic electron mass {me}codataz010 deduced by CODATA from
experimental data through a least squares adjustment with the fine structure constant @, ;¢4 2010

determined by other independent measurements (nonspectroscopic), assuming for the energy
level the expression [CODATA 2010, equ. 22]

2 2

© N\ — Z"Ro, rel
nz {1 + a(n) f:])} = nz Fnt’j

E(n4,j) =—

where §(n,¢,j) is a dimensionless theoretical correction factor, small compared with one, that
contains the details of the bound-state QED apparatus of each energy level, including the effect of
the finite size of the nucleus as a function of the rms charge radius. Only the Rydberg constant R,
is an adjusted constant in the numerical evaluation carried out by CODATA. The method
mentioned above consists of comparing measured transitions (primarily the 1S-2S frequency in
H and the H-D isotope shift of the 1S-2S frequency) with intervals calculated from a complex
theoretical equation for each energy level scaled with R, which indirectly assigns, using a¢,4a4ta
a fitted value to the absolute electron mass {me}codata that can by no means be directly compared
(i.e., without a theoretical contribution) to the artifact SI standard kilogram.



There should be some skepticism regarding the strong connection between reduced mass factors
calculated through formula (4) and those using mass spectrometry. Could the close agreement be
a consequence of Codata already accounting for the reduced mass factor when computing the
electron mass {me}codata as previously described?

Tritium

Since tritium (T) is radioactive and difficult to handle, there is little information about its spectrum
from which a reliable parameter set can be obtained. The Lamb shift parameters B to F of hydrogen
and deuterium are similar in value, which suggests that the most accurate known Lamb shift
parameters B to F of hydrogen could be used as a first approximation for tritium. The most
accurate measured values of four fine structure transitions arranged by Kramida [4] in Table K
are listed in Table 7 and compared with the values calculated via formula (1), using @ = ageom,

A =0, the parameters B_nyd to F nya of hydrogen (Table 3), and ¥ = Vreq mass (T) X Yeorr-

Table 7: The most accurate measured fine structure transitions of tritium compared with calculated
values via formula (1).

Tritium mee §tructure AEexp (MHZ) Unc. (MHz) ABcic (MHz)  AEexp- cale (MHZ)
transition (mean meas. freq.) (exp.)
2P3/2-3D5/2 456 841 568.8 1.6 456 841 565.6 3.2
2P1/2-3D3/2 456 851 457.2 1.3 456 851 461.5 -4.3
281/2-3P3/2 456 850 405.8 1.4 456 850 405.0 0.8
281/2-3P1/2 456 847 153.8 1.6 456 847 153.7 0.1
Hyperfine splitting

Formula (1) considers the Lamb shift as a perturbation to the scaled Dirac energy levels E,(n, j)y.
In the following, the hyperfine splitting manifested as a small splitting of the fine-structure energy
levels is regarded, analogous to the Lamb shift, as a perturbation to E(n, £, j) of the form

E(n,¢,j,F)=EMm¢,)){1-Q(,j,1,F)-Z-B/n} (5)

The number I is the spin of the nucleus, and F is the total angular momentum for the whole atom
with possible values of j + 1, j+1—1,...,|j — I|. Formula (5) can be deduced from the rephrased
equations 5 and 6 (without off-diagonal terms) given by Kramida 2010 by setting
Z?R,,
7’12

el = —E(n,4,))

[FE+1)—-I10+1)—j(+1)]
G+ D+ DI

=0

2 Hnuct
HUp
The minus sign in relation (5) ensures that the energy of the F level is lifted and that of F-1 is

lowered. From formula (5), the hfs interval between two adjacent levels in a hyperfine multiplet
can be written as

B

a



, _ _ 2F
) = EOu L F) =B8], F 1) = —E(n,2.)) JO+DE+ DI

where Lamb shifts of energy levels are taken into account. Because the relativistic Dirac theory

(AE) Z-B/n (6)

naturally implies that the electron’s magnetic dipole moment is exactly u, = ug, the ratio Z—e in
B

equation (6) given by Kramida 2010 was set to one. For simplicity requirements on the
approximating function, the reduced mass prefactor ¥,.q mass - has been omitted, assuming that a
correction in the form of an overall reduced mass factor is adequate. These assumptions make
relation (6) compatible with the uncorrected expression (22.13) of Bethe and Salpeter [10], and
equation (41) of Grifffiths [11] with ge = 2.

The value of % is not directly accessible experimentally, but it can be traced back to maser
B

experiments by Winkler and coworkers, who determined the bound particle ratio of the magnetic

Unuci(atom)

moments of the nucleus and electron
Ue(atom)

, implying that the bound electron moment in Bohr

t . . . [
magnetons %Om) must also be known. This ratio can be approximated by M =1+a,,
B B

where a. [Codata 2010] is the very accurately measured electron magnetic moment anomaly.11
Replacing the fine structure constant a by a@geom implies that, in addition to 1+ae, the
multiplicative factor y,,, must be taken into account, since the electron mass is given by
YeorriMe }codata- COmbining all this gives

zfunucl 2 Hnuct He 2 Hnuct
= a ac - ——

_——

E 2. Hnuct

a

’ (1 + ae) ~ Ugeom : (1 + ae) *Yeorr (7)

Up Ue Up Ue Ue

Table 8 lists the hyperfine splittings of hydrogen and deuterium, which were calculated via
relation (6) and hypothesis (7). The scaling factor ¢, ([Yzero] for H) and the parameter B ([B] for
H) used to compute E(n, 4, j) correspond to the values listed in Table 3. All four factors ultimately
leading to relation (7) are essentially experimental in nature when ageom, is replaced by agpe..

Table 8: Hyperfine splittings of hydrogen and deuterium calculated via relation (6) and
hypothesis (7).

hfs ex calc
atom tner(atom) - 3 (AE);s;,, (MHz) AEexp /AEcal
——————=10° (meas.)
Z 1 F He(atom) (6) and (7) experiment (correction)
1H 1 1/2 1 1.519270336 [12a] 1420.401 1420.406  [4] 1.000 003
2H 1 1  3/2 0466434539 [12b] 327.149 327.384 [4] 1.000 718

A comparison of the theoretical results with the experimental values reveals a remarkable
agreement (or coincidence?) with a precision of three parts per 10° for hydrogen 12, and reflects
an unclear discrepancy with a substantial correction factor for deuterium. This might be because

1 The metastable pseudo-atom geonium is an individual electron that is permanently confined in an ultrahigh

vacuum Penning trap at 4K. The trap employs a homogeneous magnetic field and a weak electric quadrupole field.

12 The pure QED estimate is 1420.451 99(14) MHz [1:p.5]. Due to “lack of knowledge” about the structure of the
proton, the necessary nuclear correction terms cannot or only vaguely be calculated, and the high measurement
accuracy of the hyperfine splitting of atomic hydrogen is not used today for the determination of natural constants.
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the ratio of the magnetic moment of the deuteron to the magnetic moment of the electron in the
1S state of deuterium has never been published. This magnetic ratio should be reevaluated.

The formulation of y,,,, as defined in formula (3) relies on the premise that the Rydberg constant
R, remains unchanged. By characterizing y,,,, through

_ Yeorr _ Yzero
Yzero = me < Yeorr =

m 8
1+ Yeorr W 1- Yzero We ( )

Yeorr 1S established solely based on high precision experimental inputs. Using [yzero] from Table (3)
along with the recoil parameter {me/Mproton}codata2010 allows to derive y,,, = 1.003 593 774,
leading to a hyperfine splitting of = 1420.404 MHz. The relative difference from the measured
value amounts to one part per 109, indicating a threefold improvement over formula (3).

Scaling law for hfs intervals

Owing to the lack of knowledge on the number of multiplying factors that control hypothesis (7),
the dimensionless parameter B, which is responsible for splitting, is difficult to calculate.
However, the existence of high-precision experimental data on the 1S hfs splitting makes it
possible to derive an empirical, simple scaling law for other hfs intervals, if the dimensionless
parameter B is the same for all levels. For hydrogen, the scaling law from the ground-state
hyperfine splitting is then

E(n,?4,j)) F 31

E(101/2) jG+D@2e+1) 4 n ©)

For the scaling law from the ground-state hyperfine splitting of deuterium, the factor 3/4 in
formula (9) must be replaced by 1/2. In Table 9, theoretical predictions via the scaling relation (9)
are given and compared with experimental results for 2S1/2 states. The alignment between
theory and experimental data is striking for both isotopes, featuring a consistent relative deviation
of 30 ppm that does not vary with the nucleus. Unfortunately, besides the 2P1/2 hfs splitting in
hydrogen of 59.22(14) MHz [Kramida 2010, Table A], no reliable experimental data are available
for other excited states. In Kramida's work, one can find theoretical values derived by different
authors employing QED with a(,44tq » €nabling a comparison with the calculations from
expression (9). The predictions generated through the scaling relation (9) may be employed to
iteratively calculate experimental corrections for the measured quantities (Table 1, Table 2).

(AE)}5(F = 1;F) = (AE)YL; ,(0;1) -

Conclusion

There is no independent approach to determining the fine structure constant from the energy
levels of hydrogen or deuterium. The energy intervals that were measured are utilized to calculate
the mass of the electron, employing a fine structure constant that is not derived from
spectroscopic evaluations. This study proposes a method to experimentally ascertain a
spectroscopic fine structure constant ay,. thatrelies solely on the relativistic Dirac equation, free
from other theoretical frameworks {yred mass(classical physics); acodata(QED); atgeom}. It's remarkable
that the experimental spectroscopic fine structure constant closely matches the number constant

2
27773, though this could be a mere coincidence.
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The lowest term % in the development of a. was first derived by Julian Schwinger. It involves a

single virtual exchange of a photon with the electron and is called one-loop correction or
Schwinger correction. The relative deviation to the measurementis = 0.152 % if only the one-loop

. a . . . a
correction %15 taken into account. Although the Schwinger term —C‘;d“m
T 7T

more than 99.8% of the total correction, only higher terms of the development, which reflect
interaction processes with much less likelihood, significantly reduce the deviation from the
measurement. Remarkably, the deviation from the measured value is approximately five times
smaller (~ 0.028 %) if @g¢0m is used in the one-loop term [2:p.45].

already accounts for

Interestingly, the model accurately reproduces the hyperfine splitting of hydrogen in its ground
state with a precision of one part per million, surpassing the results obtained through pure QED
calculations. Furthermore, a basic scaling law enables the computation of hyperfine splittings
solely from experimental data, achieving a relative deviation of 30 ppm for 2S1/2 states.
Additionally, the determined absolute ionization energies for both isotopes fall within the error
margins of the experimental Ritz series limits.
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Table 1: The best available measurements of fine-structure intervals in hydrogen [4].

interval Measured value (MHz) Unc. (MHz) Diff (MHz)
ageom Xcodata

1S1/2-281/2 * 2466061413.187074  0.000034 -0.1 2.1
2P1/2-281/2 1057.847 009  -1.0 23
2P1/2-2P3/2 10969.13 01  -01 -01
281/2-2P3/2 ¢ 9911.201 0012 08 21
'2P1/2-3D3/2 notused 4566858528 w7
281/2-3P1/2 . 4566815499 03 -15 -51
'281/2-3P3/2 - 456684800.1 03  -15 -5.0
'3P1/2-3D3/2  notused 4566759683 34
281/2-4P1/2 616520017.568 0015  -03 -30
281/2-481/2 616520150.636 001 04 24
281/2-4P3/2 616521388.672 001  -03 -30
281/2-4D5/2 616521843.441 0024 13 -9.6
281/2-6S1/2 730690017.097 0021 02 -01
'281/2-6D5/2 730690518.592 0011 04 23
'281/2-881/2 - T 770649350.012 009 03 15
'281/2-8D3/2 77064950445 008 00 04
'281/2-8D5/2 770649561.584 006 03 05
'281/2-10D5/2 789144886411 0039 02 17
'281/2-12D3/2 799191710473 009 01 24
'281/2-12D5/2 799191727.404 007 02 24
3P1/2-381/2 314818 0048 11 07

3P1/2-3D3/2 not used 32449 3.1

3S1/2-3P3/2 not used 2933.5 1.2
'3s1/2-3D3/2 29299 08  -38  -189
'3$1/2-3D5/2 4013.155 0048 26  -165

3D3/2-3P3/2 55 0.9 2.7 18.3

3D3/2-3D5/2 not used 1083 0.29

3P3/2-3D5/2 not used 1078 1.1

4P1/2-4S1/2 133.2 0.6 0.8 0.7

4P1/2-4P3/2 1370.85 0.22 -0.3 -0.3
4P1/2-4D3/2 13711 1211 -55

451/2-4D3/2 not used 1235 2.1

4S1/2-4P3/2 1237.79 0.29 -1.0 -0.8

451/2-4D5/2 1693 0.4 1.0 -7.0
AD3/2-4F5/2  notused 4568 16

4D3/2-4D5/2 not used 458 2.2

4P3/2-4D5/2 not used 455.7 1.6
4D5/2-4F7/2 notused 22796 041
'5P1/2-551/2 notused 646 s
'5P1/2-5D3/2 notused 704 7
'551/2-5P3/2 notused 622 o
'5P3/2-5D5/2 notused 2322 29
'5D5/2-5F7/2  notused 117 s
1S1/2-381/2 | 8 2922743278.678 0013 02 -15
'251/2-8D5/2 | o] 770649561.5709 002 03 05
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Table 2: The best available measurements of fine-structure intervals in deuterium [4].

interval Measured value (MHz) Unc. (MHz) Diff (MHz)

ageom Xcodata

1S1/2-251/2 2466732407.52171 0.00015 0.1 0.5

2P1/2-281/2 105928 006 “07  -19
as1/22p3/2 T ogtae1 T 0 T gy s
2P1/2-3D3/2 456810113.8 0.19 -6.0 -26.7
281/2-3P1/2 4568058117 03 ~07  -44
281/2-3P3/2 4568090626 03 ~09  -46
2P3/2-351/2  notused 456796251 30
26323052 4seB002259 16 15 234
2P1/2-4D3/2  motused 616690180 40
281/2-4P1j2 61668776999 019 706 735
281/2-481/2 ! 616687903.573 | 00z . 05 . “26
281/2-4P3/2 61668914173 017 “04 733
281/2-4D5/2 61668959672 04 . 16 w95 .
2P3/2-4D5/2  notused 616679760 ! 50
2P1/2-5D3/2 _ motused 690691810 ! 50
2P3/2-5D5/2 notused 61681100 70

2P1/2-6D3/2  notused 730890320 60 7
2P3/2-6D5/2  notused 730879480 80 7
2P1/2-7D3/2  notused 755128600 60 7
2P3/2-7D5/2  motused 755117710 SO
2P1/2-8D3/2  motused 770860360 210
2s1/2-881/2 770859041246 | 007 ... 02 . 11
281/2-8D3/2 770859195702 0.006 00 .01
281/2-8D5/2 770859252850 006 | 04 .0z
2P3/2-8D5/2 ~ motused 770849570 210
2P1/2-9D3/2  motused 781645760 300
2P3/2-9D5/2 _ motused 781634790 300
251/2-10D5/2 789359610.238 0.038 0.2 1.4

281/2-1203/2 799409168.038 009 00 20
281/2-12D5/2 799409184.967 007 01 21
3P1/2-381/2 3153 04 12 09
3P1/2-3P3/2  notused 32507 1
351/23P3/2  motused 29345 5
3D3/2-3P3/2  motused 5 S
4P1/2-4S1/2 notused 133 5

4P1/2-4P3/2 13718 o3 02 03
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Table 3: The adjusted dimensionless parameters A to F and the absolute Lamb shifts for n =1, 2, and 3.

isotope hydrogen deuterium
Experimental input Table 1 Table 2

Number of input values 29 19

Amin ~0.0072839 13 ~0.00 72 833

Qcodata 2010 Ageom QAcodata 2010 Ageom
(% 0.00 72 974) (% 0.00 72 843)

mean abs. dev. (MHz) 4.03 0.82 4.75 0.80
Yzero 0.999 455 610 362 1.003 045 534 235 0.999 727563649 1.003 318 464 318
[Yazero] [1.003 045 534 890]

Vred mass_Codata 2010 0.999 455 679(1) 0.999 727 631(1)

Yzero / Yeorr 0.999 455 690 0.999 727 643
A alllevels (ppm) 0 0 0 0

B (0s1/2) -2.411 846 -2.441 530 -2.419 799 -2.450 077
[B] [-2.442 137]

C @P1/2) 0.167 457 0.134 688 0.161 442 0.128 073
D (@P3/2) E 0.105 245 -0.022 870 0.098 994 -0.030 347
E (nD3/2) 0.148 730 0.022 573 0.217 980 0.049 010
F (nD5/2) (ppm) 0.141 163 -0.021 527 0.189 677 -0.015 156
L(151/2) (MHz) 7930.4 8028.0 7958.7 8058.3
L(251/2) 991.3 1003.5 994.8 1007.3
L(2P1/2) -68.8 -554 -66.4 -52.7
L(2P3/2) i -43.3 9.4 -40.7 12.5
L(351/2) 293.7 297.3 294.8 298.5
L(3P1/2) -20.4 -16.4 -19.7 -15.6
L(3P3/2) -12.8 2.8 -121 3.7
L(3D3/2) 0.0 0.0 0.0 0.0
L(3D5/2) (MHz) 0.0 0.0 0.0 0.0
Notes:

The value a,,;, is the result of minimizing the mean absolute deviation (MAD) based on Table 1 or Table 2 using formula
(1) and the solutions of the linear system of equations. The minima were determined by quadratic regression of 21
values of the discretized function MAD(a;Table 1) or MAD(a;Table 2) with a=[0.0072800, 0.0072900] and
Aa=0.0000005.

The gray-shaded fields present the adjusted dimensionless parameters in formula (1) to compute the binding energy
E(n,¢,j) for ageom. All numbers are rounded to 12 decimal places.

For the classic Lamb shift 2P1/2-2S1/2 of hydrogen the energy difference E(2,1,1/2) — E(2,0,1/2) is 1058.86 MHz
using {mec?/h}codata 2010.

13 The five pure S-state transitions, highlighted in bold in Table 1, yield amin = 0.00 72 850(1) with MAD(amin) = 0.042 MHz.
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Table 4: Frequencies of fine-structure transitions in hydrogen derived from
the level-optimization procedure [Kramida 2010, Table 5].

interval AERit, (MHZz) Unc. (MHz)  AEgi;—AEcac (MHz)
(Ritz values) Qgeom  Acodata
Ionization 2 3288086856.8 0.7 -0.5 5.8
Ionization b 3288086857.128 0.003 -0.1 6.1
1S1/2-2P1/2 2466060355.339 0.009 0.9 4.4
1S1/2-2S1/2 2466061413.18707 0.00003 -0.1 21
1S1/2-2P3/2 2466071324.389 0.012 0.7 4.2
1S1/2-3P1/2 2922742963.15 0.21 -1.6 -2.9
1S1/2-3S1/2 2922743277.97 0.22 -0.5 -2.2
1S1/2-3P3/2 2922746213.24 0.21 -1.7 -2.9
1S1/2-4P1/2 3082581430.756 0.015 -0.4 -0.8
1S1/2-4S1/2 3082581563.823 0.01 0.3 -0.3
1S1/2-4P3/2 3082582801.858 0.01 -0.5 -0.9
1S1/2-5P1/2 3156563616.6 1.1 0.0 0.9
1S1/2-5S1/2 3156563684.8 1.1 0.4 1.3
1S1/2-5P3/2 3156564318.6 1.1 -0.1 0.9
1S1/2-5D5/2 3156564549.7 0.7 -1.0 -4.2
1S1/2-6P1/2 3196751390.79 0.3 -0.2 1.8
1S1/2-6S1/2 3196751430.284 0.021 0.1 2.0
1S1/2-6P3/2 3196751797.05 0.03 -0.2 1.8
1S1/2-7P1/2 3220983314.5 1.2 -0.2 2.7
1S1/2-7S1/2 3220983339.4 1.2 0.0 2.8
1S1/2-7P3/2 3220983570.4 1.2 -0.2 2.7
1S1/2-7D5/2 3220983655.4 0.7 0.3 1.6
1S1/2-8P1/2 3236710746.525 0.018 0.0 35
1S1/2-8S1/2 3236710763.199 0.009 0.1 3.6
1S1/2-8P3/2 3236710917.916 0.019 0.0 35
1S1/2-9P1/2 3247493411.9 1.2 0.2 4.1
1S1/2-951/2 3247493423.6 1.2 0.2 4.2
1S1/2-9P3/2 3247493532.3 1.2 0.2 4.1
1S1/2-9D5/2 3247493572 0.7 0.1 3.3
1S1/2-10P1/2  3255206183.1 1.2 0.3 4.7
1S1/2-10S1/2  3255206191.6 1.2 0.4 4.7
1S1/2-10P3/2  3255206270.8 1.2 0.3 4.6
1S1/2-11P1/2  3260912757.7 1.2 0.3 4.9
1S1/2-11S1/2  3260912764.1 1.2 0.4 5.0
1S1/2-11P3/2  3260912823.6 1.2 0.3 4.9
1S1/2-11D5/2  3260912845.1 0.7 0.0 4.2
1S1/2-12P1/2  3265253073.3 1.2 0.3 5.1
1S1/2-12S1/2  3265253078.2 1.2 0.3 5.1
1S1/2-12P3/2 3265253124 1.2 0.2 5.1
2P1/2-281/2 1057.848 0.09 -1.0 -2.3
2P1/2-2P3/2 10969.05 0.015 -0.2 -0.2
2P1/2-351/2 456682922.63 0.22 -1.4 -6.6
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Table 4: (continued)

interval AERit, (MHZz) Unc. (MHz)  AEgi;—AEcac (MHz)
(Ritz values) Qgeom  Acodata

2P1/2-3D3/2 456685852.6 0.6 -5.0 -25.5
2P1/2-4S1/2 616521208.484 0.013 -0.6 -4.7
2P1/2-4D3/2 616522444.5 0.23 -2.2 -12.7
2P1/2-581/2 690503329.4 1.1 -0.5 -3.2
2P1/2-5D3/2 690503960.5 0.7 -31 -9.0
2P1/2-6S1/2 730691074.945 0.023 -0.8 -2.4
2P1/2-6D3/2 730691441.05 0.04 -1.4 -4.9
2P1/2-7581/2 754922984.1 1.2 -0.9 -1.5
2P1/2-7D3/2 754923214.8 0.7 -11 -3.0
2P1/2-8S1/2 770650407.86 0.012 -0.8 -0.8
2P1/2-8D3/2 770650562.298 0.012 -1.0 -1.9
2P1/2-9S81/2 781433068.3 1.2 -0.6 -0.2
2P1/2-9D3/2 781433176.5 0.7 -1.0 -1.2
2P1/2-10D3/2 789145915 0.05 -1.0 -0.6
2P1/2-11S1/2  794852408.8 1.2 -0.5 0.6
2P1/2-11D3/2  794852467.8 0.7 -1.0 -0.2
2P1/2-12S1/2  799192722.9 1.2 -0.5 0.8
2P1/2-12D3/2  799192768.321 0.013 -1.0 0.1
2581/2-2P3/2 9911.202 0.012 0.8 21
281/2-3P1/2 456681549.96 0.21 -1.4 -5.0
281/2-351/2 456681864.78 0.22 -0.4 -4.3
251/2-3P3/2 456684800.05 0.21 -15 -5.1
251/2-4P1/2 616520017.569 0.015 -0.3 -2.9
251/2-4S51/2 616520150.636 0.01 0.4 -2.4
251/2-4P3/2 616521388.671 0.01 -0.3 -3.0
251/2-4D5/2 616521843.443 0.024 1.3 -9.6
281/2-5P1/2 690502203.4 1.1 0.1 -1.2
281/2-551/2 690502271.6 1.1 0.5 -0.9
2581/2-5P3/2 690502905.4 1.1 0.1 -1.3
281/2-6P1/2 730689977.6 0.03 -0.1 -0.3
251/2-651/2 730690017.097 0.021 0.2 -0.1
251/2-6P3/2 730690383.86 0.04 -0.1 -0.3
251/2-6D5/2 730690518.592 0.011 0.4 -2.3
281/2-7P1/2 754921901.3 1.2 -0.1 0.5
281/2-751/2 754921926.2 1.2 0.1 0.7
2581/2-7P3/2 754922157.2 1.2 0.0 0.6
251/2-8P1/2 770649333.338 0.018 0.1 1.4
251/2-851/2 770649350.012 0.009 0.3 1.5
251/2-8D3/2 770649504.45 0.08 0.0 0.4
251/2-8P3/2 770649504.729 0.019 0.1 1.4
251/2-8D5/2 770649561.584 0.007 0.3 0.5
251/2-9P1/2 781431998.7 1.2 0.3 2.0
251/2-951/2 781432010.4 1.2 0.4 2.0
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Table 4: (continued)

interval AERit, (MHZz) Unc. (MHz)  AEgi;—AEcac (MHz)
(Ritz values) Qgeom  Acodata

251/2-9P3/2 781432119.1 1.2 0.3 2.0
281/2-10P1/2  789144769.9 1.2 0.5 2.5
251/2-10S1/2  789144778.4 1.2 0.5 2.5
251/2-10P3/2  789144857.6 1.2 0.4 2.5
251/2-10D5/2  789144886.41 0.4 0.2 1.7
281/2-11P1/2  794851344.5 1.2 0.4 2.8
281/2-11S1/2  794851350.9 1.2 0.5 2.8
2S1/2-11P3/2  794851410.4 1.2 0.4 2.8
281/2-12P1/2  799191660.1 1.2 0.4 3.0
281/2-1281/2 799191665 1.2 0.4 3.0
281/2-12D3/2  799191710.473 0.01 0.1 2.4
281/2-12P3/2  799191710.9 1.2 0.4 3.0
281/2-12D5/2  799191727.404 0.007 0.2 2.4
2P3/2-351/2 456671953.58 0.22 -11 -6.4
2P3/2-3D3/2 456674883.5 0.6 -4.9 -25.3
2P3/2-3D5/2 456675966.74 0.22 1.4 -22.9
2P3/2-4S1/2 616510239.434 0.016 -0.4 -4.5
2P3/2-4D3/2 616511475.45 0.23 -2.0 -12.5
2P3/2-4D5/2 616511932.24 0.03 0.5 -11.7
2P3/2-5581/2 690492360.4 1.1 -0.3 -2.9
2P3/2-5D3/2 6904929914 0.7 -2.9 -8.9
2P3/2-5D5/2 690493225.3 0.7 -1.7 -8.4
2P3/2-6S1/2 730680105.895 0.024 -0.6 -2.2
2P3/2-6D3/2 730680472 0.04 -1.2 -4.7
2P3/2-6D5/2 730680607.39 0.016 -0.4 -4.4
2P3/2-751/2 754912015 1.2 -0.7 -1.4
2P3/2-7D3/2 754912245.7 0.7 -0.9 -2.8
2P3/2-7D5/2 754912331 0.7 -0.4 -2.6
2P3/2-8S1/2 770639438.81 0.015 -0.5 -0.6
2P3/2-8D3/2 770639593.248 0.015 -0.8 -1.7
2P3/2-8D5/2 770639650.382 0.014 -0.5 -1.5
2P3/2-9S81/2 781422099.2 1.2 -0.4 0.0
2P3/2-9D3/2 781422207.5 0.7 -0.8 -0.9
2P3/2-9D5/2 781422247.6 0.7 -0.6 -0.9
2P3/2-10S1/2  789134867.2 1.2 -0.3 0.5
2P3/2-10D3/2 789134945.95 0.05 -0.8 -0.4
2P3/2-10D5/2 789134975.21 0.04 -0.6 -0.3
2P3/2-11S1/2  794841439.7 1.2 -0.3 0.8
2P3/2-11D3/2  794841498.7 0.7 -0.8 -0.1
2P3/2-11D5/2  794841520.7 0.7 -0.7 0.0
2P3/2-12S1/2  799181753.8 1.2 -0.4 0.9
2P3/2-12D3/2  799181799.271 0.015 -0.7 0.3
2P3/2-12D5/2 799181816.202 0.014 -0.6 0.4

17



Table 4: (continued)

interval AERit, (MHZz) Unc. (MHz)  AEgi;—AEcac (MHz)
(Ritz values) Qgeom  Acodata

3P1/2-3S1/2 314.82 0.05 1.1 0.7
3P1/2-3D3/2 3244.8 0.6 -2.6 -18.2
3P1/2-3P3/2 3250.09 0.03 -0.1 0.0
3S1/2-3D3/2 2929.9 0.6 -3.8 -18.9
3S1/2-3P3/2 2935.27 0.06 -1.2 -0.8
3S1/2-3D5/2 4013.16 0.05 2.6 -16.5
3D3/2-3P3/2 5.3 0.6 2.5 18.1
3D3/2-3D5/2 1083.2 0.6 6.3 2.4
3P3/2-3D5/2 1077.89 0.07 3.7 -15.8
4P1/2-4S1/2 133.067 0.018 0.7 0.6
4P1/2-4P3/2 1371.102 0.018 -0.1 0.0
4P1/2-4D3/2 1369.08 0.23 -0.9 -7.5
4S1/2-4D3/2 1236.02 0.23 -1.6 -8.0
4P3/2-4D5/2 454.77 0.03 1.6 -6.6
5P1/2-5S1/2 68.201 0.019 0.4 0.4
5P1/2-5D3/2 699.2 1.3 -2.2 -5.6
5P1/2-5P3/2 702.019 0.012 0.0 0.0
5S1/2-5P3/2 633.818 0.022 -0.4 -0.4
5D3/2-5D5/2 233.92 0.08 1.3 0.5
5P3/2-5D5/2 231.1 1.3 -0.9 -5.1
8D3/2-8D5/2 57.134 0.01 0.3 0.1
12D3/2-12D5/2 16.931 0.012 0.1 0.1

Notes:

a) Ritz series limit [Kramida 2010, Table D].

b) NIST: Atomic Spectra Database 78 [version 5.11]: [onization Energies Form.
Energy has been determined from bound-state QED ab initio calculations.
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Table 5: Frequencies of fine-structure transitions in deuterium derived

from the level-optimization procedure [Kramida 2010, Table 7].

interval AERit, (MHZz) Unc. (MHz)  AEgi;—AEcac (MHz)
(Ritz values) Ageom Qcodata
Ionization 2 3288981521.1 2.3 -1.1 31
Ionization b 3288981522.062 0.003 -0.09 4.1
1S1/2-2P1/2 2466731348.24 0.06 0.7 2.5
1S1/2-2S1/2 2466732407.52171 0.00015 0.1 0.5
1S1/2-2P3/2 2466742320.1 0.3 0.0 2.0
1S1/2-3P1/2 2923538219.2 0.3 -0.6 -39
1S1/2-3S1/2 2923538534.6 0.5 0.7 -3.0
1S1/2-3P3/2 2923541470.1 0.3 -0.9 -4.1
1S1/2-4P1/2 3083420177.53 0.17 -0.6 -3.0
1S1/2-4S1/2 3083420311.095 0.02 0.5 -2.1
1S1/2-4P3/2 3083421549.28 0.15 -0.4 -2.8
1S1/2-5P1/2 3157422491 7 -3.0 -4.1
1S1/2-5S1/2 3157422559 6 -2.9 -4.0
1S1/2-5P3/2 3157423193 7 -3.3 -4.3
1S1/2-5D5/2 3157423433.2 2.3 5.0 -0.3
1S1/2-6P1/2 3197621201 7 -2.5 -2.5
1S1/2-6S1/2 3197621241 6 -1.8 -1.8
1S1/2-6P3/2 3197621608 7 -1.9 -1.9
1S1/2-6D5/2 3197621746.3 2.3 2.2 -0.2
1S1/2-7P1/2 3221859720 6 -0.7 0.1
1S1/2-7S1/2 3221859745 6 -0.4 0.4
1S1/2-7P3/2 3221859976 6 -0.6 0.2
1S1/2-7D5/2 3221860061.9 2.3 0.8 0.1
1S1/2-8P1/2 3237591432.01 0.3 0.1 1.5
1S1/2-8S1/2 3237591448.768 0.07 0.3 1.7
1S1/2-8P3/2 3237591603.48 0.04 0.1 1.6
1S1/2-9P1/2 3248377032 7 0.9 2.8
1S1/2-951/2 3248377044 6 1.2 3.1
1S1/2-9P3/2 3248377153 7 1.5 3.4
1S1/2-9D5/2 3248377191.5 2.3 0.2 1.4
1S1/2-10P1/2 3256091901 7 0.2 2.5
1S1/2-10S1/2 3256091910 6 0.7 3.0
1S1/2-10P3/2 3256091989 7 0.4 2.7
1S1/2-11P1/2 3261800029 7 0.8 3.4
S1/2-11S81/2 3261800035 6 0.5 3.0
1S1/2-11P3/2 3261800095 7 0.9 3.5
1S1/2-11D5/2 3261800116.1 2.3 0.2 2.4
1S1/2-12P1/2 3266141526 6 1.2 4.0
1S1/2-12S1/2 3266141531 6 1.3 4.1
1S1/2-12P3/2 3266141577 7 1.4 4.2
2P1/2-251/2 1059.28 0.06 -0.7 -1.9

19



Table 5: (continued)

interval AERit, (MHZz) Unc. (MHz)  AEgi;—AEcac (MHz)
(Ritz values) Qgeom  Acodata

2P1/2-2P3/2 10971.9 0.4 -0.7 -0.4
2P1/2-3S1/2 456807186.4 0.5 0.0 -5.4
2P1/2-3D3/2 456810114.2 1.8 -5.6 -26.3
2P1/2-4S1/2 616688962.86 0.07 -0.2 -4.5
2P1/2-4D3/2 616690198.83 0.24 -1.8 -12.5
2P1/2-551/2 690691211 7 -3.3 -6.3
2P1/2-5D3/2 690691850.8 2.3 2.8 -3.4
2P1/2-6D3/2 730890262.7 2.3 0.8 -2.9
2P1/2-751/2 755128397 7 -0.9 -1.9
2P1/2-7D3/2 755128628.2 2.3 -0.6 -2.8
2P1/2-8S1/2 770860100.53 0.6 -0.5 -0.8
2P1/2-8D3/2 770860254.98 0.06 -0.7 -1.8
2P1/2-951/2 781645696 7 0.8 0.9
2P1/2-9D3/2 781645803.1 2.3 -0.8 -1.2
2P1/2-10S1/2 789360562 7 0.3 0.8
2P1/2-10D3/2 789360640.26 0.07 -0.7 -0.6
2P1/2-11S1/2 795068687 7 0.0 0.8
2P1/2-11D3/2 795068745.9 2.3 -0.6 -0.1
2P1/2-12S1/2 799410183 7 0.8 1.9
2P1/2-12D3/2 799410227.32 0.06 -0.7 0.1
281/2-2P3/2 9912.6 0.3 -0.1 1.5
281/2-3P1/2 456805811.7 0.3 -0.7 -4.4
281/2-351/2 456806127.1 0.5 0.7 -3.5
251/2-3P3/2 456809062.6 0.3 -0.9 -4.6
251/2-4P1/2 616687770.01 0.17 -0.6 -3.5
251/2-4S1/2 616687903.573 0.02 0.5 -2.6
251/2-4P3/2 616689141.76 0.16 -0.4 -3.3
2S1/2-4D5/2 616689596.72 0.04 1.6 -9.5
2S1/2-5P1/2 690690083 6 -3.6 -5.1
2S1/2-5P3/2 690690785 7 -3.8 -5.4
281/2-6P1/2 730888794 7 -2.0 -2.5
251/2-6P3/2 730889200 7 -2.4 -2.9
281/2-7P1/2 755127312 7 -1.2 -0.9
281/2-7P3/2 755127568 7 -1.2 -0.8
251/2-8P1/2 770859024.49 0.03 0.0 1.0
251/2-8P3/2 770859195.96 0.04 0.0 1.0
251/2-9P1/2 781644625 7 1.3 2.8
251/2-9P3/2 781644745 7 0.9 2.4
2S1/2-10P1/2 789359494 7 0.7 2.5
2S1/2-10P3/2 789359582 7 0.9 2.7
2S1/2-11P1/2 795067621 6 0.3 2.4
2S1/2-11P3/2 795067687 6 0.3 2.4
2S1/2-12P1/2 799409119 7 1.7 4.0
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Table 5: (continued)

interval AERit, (MHZz) Unc. (MHz)  AEgi;—AEcac (MHz)
(Ritz values) Qgeom  Acodata

2S1/2-12P3/2 799409169 7 0.9 3.2
2P3/2-351/2 456796214.5 0.6 0.7 -5.0
2P3/2-3D3/2 456799142.3 1.8 -4.9 -25.8
2P3/2-4S1/2 616677991 0.3 0.5 -4.1
2P3/2-4D3/2 616679227 0.4 -1.0 -12.0
2P3/2-4D5/2 616679684.1 0.3 1.7 -11.0
2P3/2-551/2 690680239 7 -2.7 -5.9
2P3/2-5D3/2 690680878.9 2.3 3.6 -2.9
2P3/2-5D5/2 690681113 2.3 5.0 -2.4
2P3/2-6S1/2 730878921 7 -1.6 -3.7
2P3/2-6D3/2 730879290.9 2.3 1.6 -2.4
2P3/2-6D5/2 730879426.3 2.3 2.3 -2.1
2P3/2-751/2 755117425 7 -0.3 -1.5
2P3/2-7D3/2 755117656.4 2.3 0.2 -2.2
2P3/2-7D5/2 755117741.7 2.3 0.7 -2.0
2P3/2-8S1/2 770849128.7 0.3 0.3 -0.3
2P3/2-8D3/2 770849283.1 0.3 0.0 -1.4
2P3/2-8D5/2 770849340.3 0.3 0.4 -1.2
2P3/2-951/2 781634724 7 1.4 1.2
2P3/2-9D3/2 781634831.3 2.4 0.0 -0.7
2P3/2-9D5/2 781634871.4 2.3 0.2 -0.6
2P3/2-10S1/2 789349590 7 0.9 1.1
2P3/2-10D3/2 789349668.4 0.3 0.1 -0.1
2P3/2-10D5/2 789349697.7 0.3 0.3 0.0
2P3/2-11S1/2 795057715 7 0.6 1.1
2P3/2-11D3/2 795057774 2.3 0.1 0.3
2P3/2-11D5/2 795057796 2.3 0.2 0.4
2P3/2-12S1/2 799399211 7 1.4 2.2
2P3/2-12D3/2 799399255.5 0.3 0.1 0.6
2P3/2-12D5/2 799399272.4 0.3 0.2 0.6
3P1/2-351/2 315.4 0.4 1.3 1.0
3P1/2-3P3/2 3250.9 0.4 -0.3 -0.2
3D3/2-3D5/2 1083.6 2.4 6.4 2.5
4P1/2-4S1/2 133.57 0.17 1.1 0.9

Notes:

a) Ritz series limit [Kramida 2010, Table H].
b) NIST: Atomic Spectra Database 78 [version 5.11]: [onization Energies Form.
Energy has been determined from bound-state QED ab initio calculations.
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Table 9: Absolute values of the hyperfine splitting frequencies in H and D calculated by scaling
from the hfs of 1S1/2.

hydrogen deuterium
(AE)p s 151/2 (MHz) 1420.405751768(1) a  327.3843525222(17) a
B (ppm) 0.080 997 276 b) 0.024 884 934 b)
(AE)p s 251/2 (MHz) 177.55 15 40.92 32
§ 177.55 69 ) 40.92 45 a)
351/2 5 52.60 77 12.12 54
451/2 : 22.19 38 5.11 54
551/2 § 11.36 32 2.6191
651/2 5 6.57 59 1.5157
751/2 § 41411 0.95 45
851/2 ! 2.77 42 0.63 94
951/2 ! 1.94 84 0.44 91
1051/2 § 1.42 04 0.3274
1151/2 ; 1.06 72 0.24 60
1251/2 (MHz) 0.82 20 0.18 95
2P1/2(F=1) (MHz) 59.18 39
2P3/2(F = 2) : 23.67 33
3P1/2(F = 1) § 17.53 59
3P3/2(F = 2) ; 7.01 43
3D3/2(F = 2) i 4.20 86
3D5/2(F = 3) § 2.70 55
4D5/2(F = 3) 5 1.14 14
4F7/2(F = 4) § 0.60 39
7F5/2(F = 3) ! 0.15 21
8D3/2(F = 2) ! 0.22 19
8D5/2(F = 3) i 0.14 27
8F5/2(F =3) (MHz) 0.10 19
4D5/2(F =7/2) (MHz) 0.20 46
4D5/2(F = 5/2) : 0.14 62
8D5/2(F = 7/2) : 0.02 56
8D5/2(F =5/2) (MHz) 0.01 83

Notes:

Hfs values without a reference are derived using formula (9) and may be compared against the theoretical
values presented by Kramida in 2010 [Hydrogen: Table A and Table 1; deuterium: Table B and Table 2].

a) Experimental value [Kramida 2010, p. 591].
b) Calculated from the 1S hfs using formula (6).
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