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Abstract 

A modified Dirac expression for the electron binding energy in hydrogen-like atoms 
is presented, which allows a direct and unambiguous comparison among different 
fine structure constants without bound-state QED theory. The least squares 
analysis of the parameters, describing the spectra of hydrogen and deuterium, is 
grounded on two sets of the most accurately measured energy separations. The 
optimal spectroscopic fine structure constant is experimentally found to be equal 
to 0.00 72 84(1), disagreeing with the determinations ultimately based on 
renormalized QED but being in good agreement with the number constant 

 2ି଺𝜋ି
మ

య ≈ 0.00 72 84 28 . The present work compiles experimental values of the 
Lamb shift of S, P, and D states with n = 1, 2, and 3 derived from those 
measurements. Accurate predictions for hyperfine splitting intervals with n > 1 are 
given and compared with experimental values for n = 2. 

Keywords: fine structure constant, bound-state QED, Dirac binding energy, hydrogen-like atoms, 
Lamb shift, hyperfine splitting. 

Introduction 

Currently, the fine structure constant 𝛼஼௢ௗ௔௧௔ ≈ 0.00 72 97 35 is derived via a Dyson power series 
in powers of the fine structure constant 𝛼 for the anomalous magnetic moment of the electron. 
The coefficients of this power series are not measurable and are calculated via many hundred 
complicated Feynman multiloop diagrams of quantum electrodynamics (free QED) that only a 
handful of theoretical physicists can master. Determinations of the fine structure constant by 
other means (quantum Hall effect, ac Josephson effect) also depend on QED and produce identical 
results that agree with each other with a precision of better than one part per 108 [1:p.20]. This is 
not surprising because various methods must produce the same result irrespective of the 
correctness of QED since they are based on the same theory. Unfavorably, extracting the fine 
structure constant from QED itself is not possible. 1  The spectrum of hydrogen, as the main 

_________ 
1  Quotation from Kinoshita 1996, p. 25: As I have emphasized, QED (or its generalization, the standard model) is the 

fundamental theory which unifies all theories of low energy physics. In particular, all determinations of the fine 
structure constant α discussed in this review must lead to an identical result. This is irrespective of the fact that 
QED (or the standard model), which depends on external parameters such as e and m that cannot be generated 
from within the theory, is not yet close to the ultimate theory. 
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historical source of the value for the fine structure constant, no longer plays a role in the 
calculation of its value 2 , and the spectrum is used solely to calculate the auxiliary Rydberg 
constant  𝑅ஶ of infinitely heavy mass, with the unit of energy (J) defined as 𝑅ஶ ≡

ଵ

ଶ
𝛼ଶ𝑚௘𝑐ଶ, acting 

by its definition as a universal scaling factor for all transitions and substituting for either the 
electron mass me or the fine structure constant 𝛼 as needed.3 

The author [2:p.42] derived the fine structure constant 𝛼௚௘௢௠ represented by the unit invariant 

number constant 𝛼௚௘௢௠ ≡  2ି଺𝜋ି
మ

య ≈ 0.00 72 843 (𝛼ିଵ ≈ 137.28) . This idea does not require a 
formula for an observable quantity from which the fine structure constant is evaluated. 

Model: an empirical modification to the Dirac equation 

In the following, an algebraic scaling formula is presented that allows to decide, using the spectra 
of hydrogen (H) and deuterium (D), whether 𝛼஼௢ௗ௔௧௔ or 𝛼௚௘௢௠ describes its spectrum better. In an 
arbitrary hydrogen-like atom, the electron binding energy 𝐸(𝑛, ℓ, 𝑗) in the natural energy (J) unit 
{mec2}Codata 2010 shall be represented for the 𝑆(ℓ = 0), 𝑃(ℓ = 1), and 𝐷(ℓ = 2) states as 

𝐸(𝑛, ℓ, 𝑗) = 𝐸஽(𝑛, 𝑗) ⋅ 𝛾 ⋅ {1 + 𝐴 + 𝛿ℓ଴𝐵 𝑛⁄ + 𝛿ℓଵ𝛿௞ଵ𝐶 𝑛⁄ + 𝛿ℓଵ𝛿௞ଶ𝐷 𝑛⁄ + 𝛿ℓଶ𝛿௞ଶ𝐸 𝑛⁄ + 𝛿ℓଶ𝛿௞ଷ𝐹 𝑛⁄ } (1) 

δ is the Kronecker delta function, and 𝛾 is a scaling factor of all levels that creates a fictitious Dirac 
particle with mass γ{me}Codata 2010 moving in the field of a stationary point nucleus, and reducing 
the two-body problem to an equivalent one-body problem. This concept is not the correct 
treatment of the relativistic two-body quantum problem and is arbitrarily chosen as the starting 
point (gross structure, Δn ≠ 0) needing correction. The dimensionless, relativistic Dirac binding 
energy 𝐸஽(𝑛, 𝑗) for a fixed point nucleus Coulomb potential is analytically given by 

𝐸஽(𝑛, 𝑗) = 𝑓(𝑛, 𝑗) − 1  

where [CODATA 2018, eq. 25; Kramida, eq. 3] 

𝑓(𝑛, 𝑗) = ቈ1 + ൬
𝑍𝛼

𝑛 − 𝛿
൰

ଶ

቉

ି
ଵ
ଶ

  

𝛿 = 𝑘 − [𝑘ଶ − (𝑍𝛼)ଶ]
ଵ
ଶ   

𝑘 = 𝑗 + 1/2  

Z is the nuclear integer-charge, n is a positive integer called the principal quantum number, ℓ =

0,1 𝑡𝑜 𝑛 − 1 is the orbital angular momentum, and 𝑗 = ℓ ± 1/2 is the total angular momentum of 
the electron, which results from combining the orbital motion of the electron with its intrinsic 
angular momentum called spin. The Dirac binding energy fails to consider the nuclear mass and 
recoil and provides the same energy levels for each atom. Additionally, effects caused by the 
difference in the nuclear charge distribution are not included. In all the expressions, the Planck 

_________ 
2  Quotation from Kramida 2010, p. 608: It is not easy to compare the experimental energy levels and transition 

frequencies of H, D, and T with the QED calculations because the latter are in fact adjusted to fit the experimental 
transition frequencies by adjusting the fundamental constants entering into the QED equations. 

3  Quotation from Kinoshita 1996, p. 6: In order to determine R [𝑅ஶ, note from the author] as accurately as in (7) 
[three parts per 1011; note from the author], it is necessary to know the theoretical energy levels of the hydrogen 
atom to high precision. This requires determination of these levels including various radiative and recoil 
corrections using the full power of QED. 
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constant {h}Codata 2010 is suppressed because it is solely used as a conversion factor to convert 
energy (J) to frequency (Hz). Formula (1) is a mathematical extension of the Dirac equation using 
the smallest number of model-independent parameters (perturbations) with a 1/n scaling law to 
describe experimental facts. The physical interpretation of the perturbations parameterized by 
the number set B to F is not part of this article. 

Each hydrogenic atom has its own unique parameter set A to F, which must be experimentally 
determined. They are corrections to the scaled Dirac energy levels 𝐸஽(𝑛, 𝑗)𝛾 , neglecting the 
hyperfine structure (ΔF ≠ 0), and depend on the nucleus and the charge Z. Accounting for 
perturbations of levels with values of orbital angular momentum ℓ > 2  is easily possible by 
analogy. With formula (1), a nucleus with one electron infinitely far away and no other electrons 
nearby has zero binding energy, so all bound state energy levels are negative. The ℓ dependent 
terms in formula (1) remove the degeneracy in ℓ and produce a splitting of levels with the same 
value of j but different values of ℓ, for example, between 2S1/2 and 2P1/2, which is convincingly 
proven to exist by WE Lamb and RC Retherford who reported a splitting of 1062(5) MHz [3]. For 
this reason, the splitting of levels (Δℓ ≠ 0) was later called the Lamb shift and since then was 
theoretically explained by bound state QED, in contrast to ordinary QED for free leptons.4 

The energy difference ΔE between two energy states is given by 𝛥𝐸 ≡ 𝐸(𝑛ଶ, ℓଶ, 𝑗ଶ) − 𝐸(𝑛ଵ, ℓଵ, 𝑗ଵ). 
The ionization energy of the ground state is 𝐼 ≡ 𝛥𝐸 = 𝐸(𝑛ଶ → ∞, 0,1/2) − 𝐸(1,0,1/2)  or 
−𝐸(1,0,1/2), which is the negative of the ground state energy and the largest energy for each atom. 
A common, accurate method of estimating absolute ionization energies is based on a fit of the 
modified Ritz formula. Using a Ritz series formula does not depend on theoretical calculations of 
the binding energy of any level and is an independent test of the validity of the fine structure 
constant (see note ‘a’ in Table 4 and Table 5). 

According to formula (1), the transition 2S1/2–4S1/2 energy difference is 

𝛥𝐸 = ൫𝐸஽(ସ,ଵ/ଶ) − 𝐸஽(ଶ,ଵ/ଶ)൯𝛾 + 𝐴൫𝐸஽(ସ,ଵ/ଶ) − 𝐸஽(ଶ,ଵ/ଶ)൯𝛾 + 𝐵 ൬
𝐸஽(ସ,ଵ/ଶ)

4
−

𝐸஽(ଶ,ଵ/ଶ)

2
൰ 𝛾 = 𝛥𝐸௠௘௔௦  

and for the classic Lamb shift 2P1/2–2S1/2, which is difficult to measure because of the very short 
lifetime (natural line width 100 MHz) of the 2P1/2 state, the energy difference is 

𝛥𝐸 = ൫𝐸஽(ଶ,ଵ/ଶ) − 𝐸஽(ଶ,ଵ/ଶ)൯𝛾 + 𝐴൫𝐸஽(ଶ,ଵ/ଶ) − 𝐸஽(ଶ,ଵ/ଶ)൯𝛾 + 𝐵
𝐸஽(ଶ,ଵ/ଶ)

2
𝛾 − 𝐶

𝐸஽(ଶ,ଵ/ଶ)

2
𝛾 

       =
1

2
(𝐵 − 𝐶)𝐸஽(ଶ,ଵ/ଶ)𝛾 = 𝛥𝐸௠௘௔௦ 

 

For each transition, analogous relations can be written to represent, in most cases, an 
overdetermined linear system of equations for the parameters A, B, C, D, E, and F, which has a least 
squares solution dependent on 𝛾  and 𝛼  if the equations are linearly independent. The least 
squares solution best reproduces the input data or the results of the measurements via expression 
(1). The energy 𝐸(𝑛, ℓ, 𝑗) calculated with the solutions of the normal equations via formula (1) is 
independent 5 of the scale factor 𝛾 and only depends on 𝑍𝛼 and quantum numbers. This formalism 
allows, on the basis of a set of measured energy separations, a direct and unambiguous 
comparison among different fine structure constants without theory (bound-state QED), except 

_________ 
4  Relation 15.3 in reference [2:p.184] is an incorrect ansatz because it does not take into account the Lamb shift. All 

results related to relation 15.3 must be reconsidered. 
5  This is because the scaling relations  𝐴ᇱ =

ଵିఊା஺

ఊ
  ,  𝐵ᇱ =

஻

ఊ
  , 𝐶ᇱ =

஼

ఊ
  , 𝐷ᇱ =

஽

ఊ
  , 𝐸ᇱ =

ா

ఊ
  , 𝐹ᇱ =

ி

ఊ
   apply. 



4 

the relativistic Dirac equation, in the analysis. Since formula (1) is based on the Dirac equation, the 
model is consistent with relativistic quantum mechanics. 

Fine structure constant 

In Table C, Kramida [4] tabulated the most accurately measured 6  fine structure intervals 
(differences between the corresponding energy levels) for hydrogen. Table 1 of this article is a 
copy of Kramida’s Table C with two additional measurements at the end for the transitions 1S1/2–
3S1/2 and 2S1/2–8D5/2. To derive the fine-structure energy levels listed in Table 1 from the 
available experimental data, purely theoretical corrections using 𝛼஼௢ௗ௔௧௔ were necessary owing to 
the hyperfine splitting (hfs) of one or both fine-structure levels involved in the measured 
transition. Thus, most transitions listed in Table 1 cannot be considered purely experimental, and 
small systematic errors are most likely to exist in the input data (see Kramida 2010 section 4). 

The reported intervals detailed in Table 1 were utilized to adjust the six parameters A_hyd to F_hyd 
by solving the linear system of equations. The measurements marked “not used” were not used to 
determine the best compromise values of A_hyd to F_hyd, which only approximately satisfy all the 
measured intervals. In total, there are six degrees of freedom to fit 29 input values, that is, 
transition frequency measurements. The reliability of the observations was not included in the 
calculation because of unknown systematic uncertainties previously addressed. 

The scaling factor has no influence on the energy values and can be arbitrarily set to one. Table 1 
lists, for the 29 measurements considered, the calculated differences 𝐷𝑖𝑓𝑓(𝛼) ≡ 𝛥𝐸௠௘௔௦ − 𝛥𝐸(𝛼) 
for 𝛼 = 𝛼஼௢ௗ௔௧௔ ଶ଴ଵ଴  and 𝛼 = 𝛼௚௘௢௠ . The mean absolute deviation (MAD) of the 29 input values 
(results of the measurements) is 4.03 MHz for 𝛼஼௢ௗ௔௧௔ ଶ଴ଵ଴ and 0.82 MHz for 𝛼௚௘௢௠. For deuterium, 

Kramida [4] displayed the most accurately measured fine structure intervals in Table G replicated 
in Table 2 of this article. To adjust the parameters A_deut to F_deut, 19 linear equations in six 
unknowns were utilized, resulting in mean absolute deviations of 4.75 MHz for 𝛼஼௢ௗ௔௧௔ ଶ଴ଵ଴ and 

0.80 MHz for 𝛼௚௘௢௠. Minimizing the function 𝑀𝐴𝐷(𝛼) yields the optimal fine structure constant 
𝛼௠௜௡ without knowing the scaling factor, that is, the Rydberg constant  𝑅௔௧௢௠, meaning that the 
experimental values extracted are disentangled from the measurement of the absolute value of 
the Rydberg constant. The values obtained are displayed in Table 3, indicating that for both 
isotopes, the spectroscopic fine structure constant 𝛼௦௣௘௖ ≡ 𝛼௠௜௡ = 0.00 72 84(1) is very close to 
𝛼௚௘௢௠ and strongly disagrees 7 with 𝛼஼௢ௗ௔௧௔ ଶ଴ଵ଴. The situation is shown graphically in Figure 1. 

Historically, the optimal spectroscopic fine structure constant 𝛼௦௣௘௖  agrees with that found by 

Houston [5], who calculated a value of 𝛼 ≈ 0.00 72 85 (𝛼ଶ ≈ 5.307 × 10ିହ)  from purely 
spectroscopic measurements of the Rydberg constants for hydrogen and helium. Houston 1927 

_________ 
6  This is mostly possible due to progress in the so-called Doppler-free two-photon spectroscopy, eliminating 

measurement errors due to the first order Doppler effect. 
7  Quotation from Kinoshita 1996, p. 25: If the complete consistency of α is not achieved in spite of further theoretical 

and experimental efforts, we may have to conclude that it is not interpretable within the framework of the known 
physics. Whether this leads to a breakdown of physics as we now know it, and possibly indicates the emergence 
of new physics, we are not able to say at present. One can only maintain that such a breakdown, if it occurs, cannot 
be attributed to the failure of QED at short distances. Indeed, not just QED, but also the standard model of the 
electroweak and strong interactions, or even the string theory, will be powerless to resolve the issue in such a case. 
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assumed in his evaluation that the relativity equation of Sommerfeld is applicable. In 1930, 
Millikan [6] noted that the experimental situation clearly favored, owing to his oil drop work, a 
value of 𝛼 ≈ 0.00 72 84 (𝛼ିଵ ≈ 137.29)  that Birge [7] confirmed with the value  𝛼ିଵ =

137.31(5) in 1932 by the simultaneous evaluation of the electron charge and the Planck constant 
from several known functional relationships between these two constants. It would be interesting 
to look at the history of the measurements after Millikan to extract why the physics community 
settled down to the fine structure constant 𝛼 ≈ 0.00 72 97 35, and today is aimlessly shifting the 
accuracy to ever higher decimal places.8 

Figure 1: The mean absolute deviation (MAD) for hydrogen and deuterium as a function of the 
fine structure constant α. 

Kramida 2010 derived optimized energy levels from the measured fine structure intervals listed 
in Table 1 using a least-squares optimization (LOPT) code. The level optimization procedure 
involved several iterations via various interpolation and extrapolation procedures and the fitting 
of the Ritz series formulas for the nD5/2 and nS1/2 series. Table 4 is a copy of Kramida’s Table 5 
with 148 frequency intervals, which resulted from the semiempirical least-squares level 
optimization procedure. The absolute ionization energies tabulated by Kramida 2010 and NIST 
are additionally included in Table 4. The mean absolute deviations of the 148 high precision 
determinations (Ritz values) from the frequencies calculated via formula (1) are 3.67 MHz for 
𝛼஼௢ௗ௔௧௔ ଶ଴ଵ଴ and 0.78 MHz for 𝛼௚௘௢௠. Ritz values do not depend on theoretical calculations of the 

binding energy of any level. 

For deuterium, the measured fine-structure intervals from Table 2 were used to derive the energy 
levels using the LOPT code. Table 5 lists the Ritz values of 116 intervals resulting from the least 
squares level optimization procedure of Kramida, which is similar to that employed for hydrogen. 
In Table 5, the ionization energies tabulated by Kramida 2010 and NIST are also included. The 
mean absolute deviations of the 116 Ritz values from the frequencies calculated via formula (1) 
are 2.96 MHz for 𝛼஼௢ௗ௔௧௔ ଶ଴ଵ଴  and 1.15 MHz for 𝛼௚௘௢௠ . All mean absolute deviations, which are 

mentioned in the text, are summarized in Table 6. 

In all the cases, 𝛼௚௘௢௠ gives significantly smaller mean absolute deviations and describes, without 
further assumptions, the fine-structure energy levels of H and D more accurately by applying the 

_________ 
8  Quotation from Kinoshita 1996, p. 25: Michelson’s nightmare of aimlessly pushing back the decimal points might 

become a reality some day. What I have tried to show in this review is that the sterility one might expect is not yet 
present; on the contrary……. 
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simple expression (1). In summary, there is convincing spectroscopic experimental evidence that 
the fine structure constant 𝛼 based on renormalized QED determinations should be discarded. 

Table 6: Summary of the mean absolute deviations (MAD). 

   MAD (MHz) 
intervals  # of intervals 𝛼௚௘௢௠ 𝛼஼௢ௗ௔௧௔ ଶ଴ଵ଴ 

Table 1 H 29 0.82 4.03 
Table 4 H 148 0.78 3.67 
Table 2 D 19 0.80 4.75 
Table 5 D 116 1.15 2.96 

Lamb shift 

Without knowing the exact scale factor γ and the fine structure constant, Lamb shifts cannot be 
extracted from the spectra. First, a clear definition is vital to avoid different interpretations of the 
term Lamb shift. Using formula (1), the definition for the Lamb shift ℒ(𝑛𝑆1/2) is as follows: 

ℒ(𝑛𝑆1/2)  ≡ ℒ(𝑛, 0, 1/2) ≡ 𝐸஽(𝑛, 1/2) ⋅ 𝛾 ⋅ {𝐴 + 𝐵 𝑛⁄ } =  𝐸஽(𝑛, 1/2) ⋅ 𝛾௭௘௥௢ ⋅ 𝐵 𝑛⁄  (2) 

which can easily be generalized to other Lamb shifts ℒ(𝑛, ℓ, 𝑗). The choice of γ defines the values 
of the Lamb shifts, which are to be understood as effects in addition to what can be obtained from 
the scaled Dirac equation. In the literature, the reference point is not unique due to different 
corrections applied and, in most cases, is even undefined. One possibility for an “experimental” 
reference point is to choose the scaling factor such that for 𝛾 = 𝛾௭௘௥௢  the parameter A is zero, 
which implicitly defines 𝛾௭௘௥௢  by 𝐴(𝛾௭௘௥௢) = 0  or explicitly 9  by 𝛾௭௘௥௢ ≡ 1 + 𝐴(𝛾 = 1) . The 
corrections that affect all states are ascribed to the scaling factor 𝛾௭௘௥௢ and the parameters B to F, 
which may be called dimensionless Lamb shift constants, include all the corrections that cannot 
be described by 𝛾௭௘௥௢. The scaling factor 𝛾௭௘௥௢ completely relies on an experimental input, to wit, 
Table 1 or Table 2. The adjusted dimensionless parameters B to F and the experimentally 
determined absolute Lamb shifts for n = 1, 2, and 3 are detailed for 𝛼 = 𝛼஼௢ௗ௔௧௔ ଶ଴ଵ଴, 𝛼 = 𝛼௚௘௢௠, 

and 𝛾 = 𝛾௭௘௥௢(𝛼) in Table 3. Purely experimental data for 𝛾௭௘௥௢  and the Lamb shift ℒ(𝑛, ℓ, 𝑗) are 
obtained using 𝛼 = 𝛼௠௜௡, which is not listed in Table 3 because of 𝛼௠௜௡ ≈ 𝛼௚௘௢௠. In this case, only 
{mec2/h}Codata 2010 is involved in evaluating the experimental data for the parameters from the input 
data. 

To clarify the significance of the theoretical corrections to the experimental data mentioned in the 
text, only the two gross structure transitions 1S1/2–2S1/2 and 2S1/2–8S1/2 from Table 1 
(Kramida 2010, column largest theoretical correction) were fitted to the two data points, from 
which exact (MAD(αgeom)=0) values for [γzero] and the parameter [B], scaling the Lamb shifts of the 
nS1/2 levels in terms of the principal quantum number n, can be extracted. The results are 
displayed in brackets in Table 3, which give 2 466 061 413.1859 MHz for the 1S1/2–2S1/2 
interval and 770 649 350.012 MHz for the 2S1/2–8S1/2 interval. The measured values 10  are 
marked with an asterisk (*) in Table 1. The fitted parameter [B] is an accurate experimental value 

_________ 

9  The explicit expression follows from the scaling relation 𝐴ᇱ = 0 =
ଵିఊ೥೐ೝ೚ା஺(ఊୀଵ)

ఊ೥೐ೝ೚
 . 

10  The exact measurements are not obtained because the numbers in Table 3 are rounded to 12 decimal places. 
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allowing direct comparison for 𝛼 = 𝛼௚௘௢௠ with nS1/2 Lamb shift calculations, which are currently 
performed within the framework of bound state QED. 

Finite mass 

For a nucleus of finite mass M, nuclear motion is accounted for nonrelativistically by replacing the 
electron mass me with the reduced mass, which multiplies all energy levels by the reduced mass 

correction factor 𝛾௥௘ௗ ௠௔௦௦ ≡ ቀ1 +
௠೐

ெ
ቁ

ିଵ

. These factors are tabulated for hydrogen and deuterium 

in Table 3 using CODATA 2010 values for the electron‒nuclear mass ratios on the basis of high 
precision Penning trap mass spectrometry. A comparison of the factors 𝛾௥௘ௗ ௠௔௦௦ ஼௢ௗ௔௧௔ ଶ଴ଵ଴  for 
both isotopes with the experimental scaling factors 𝛾௭௘௥௢(𝛼஼௢ௗ௔௧௔ ଶ଴ଵ଴) reveals that they are nearly 
equal (Table 3). 

Interestingly, if the experimental scaling factors 𝛾௭௘௥௢൫𝛼௚௘௢௠൯ are divided by the correction factor 

𝛾௖௢௥௥ ≡ ቆ
𝛼஼௢ௗ௔௧௔ ଶ଴ଵ଴

𝛼௚௘௢௠
ቇ

ଶ

≈ 1.003 591 800 (3) 

the results are 0.999 455 690 for H compared to the CODATA 2010 reduced mass factor of 
0.999 455 679, and 0.999 727 643 for D compared to 0.999 727 631, which means that the simple 
reduced mass correction factors for both isotopes are derived for  𝛼௚௘௢௠  very accurately from 
essentially experimental spectroscopic data, implying a reduction of the relativistic two body 
problem to an equivalent one body equation in terms of a single effective mass. The deviations 
relative to the tabulated reduced mass factors 𝛾௥௘ௗ ௠௔௦௦ ஼௢ௗ௔௧௔ ଶ଴ଵ଴ are 1.0 parts per 108 for H and 

1.2 parts per 108 for D. 

The close agreement 

𝛾௭௘௥௢(𝑎𝑡𝑜𝑚)  ≈  𝛾௥௘ௗ ௠௔௦௦ (𝑎𝑡𝑜𝑚) × 𝛾௖௢௥௥ (4) 

is quite remarkable, since the concept of reduced mass has no theoretical basis in relativistic 
quantum mechanics, and the assumption that the nucleus behaves inertly and plays no role other 
than its mass is an idea of the classic Bohr model. The factor 𝛾௖௢௥௥  might be interpreted as a 
correction of the spectroscopic electron mass {me}Codata 2010 deduced by CODATA from 
experimental data through a least squares adjustment with the fine structure constant 𝛼஼௢ௗ௔௧௔ ଶ଴ଵ଴ 

determined by other independent measurements (nonspectroscopic), assuming for the energy 
level the expression [CODATA 2010, equ. 22] 

𝐸(𝑛, ℓ, 𝑗) = −
 𝑍ଶ𝑅ஶ

𝑛ଶ
{1 + 𝛿(𝑛, ℓ, 𝑗)} ≡ −

 𝑍ଶ𝑅ஶ

𝑛ଶ
𝐹௡ℓ௝

௥௘௟  

where 𝛿(𝑛, ℓ, 𝑗) is a dimensionless theoretical correction factor, small compared with one, that 
contains the details of the bound-state QED apparatus of each energy level, including the effect of 
the finite size of the nucleus as a function of the rms charge radius. Only the Rydberg constant  𝑅ஶ 
is an adjusted constant in the numerical evaluation carried out by CODATA. The method 
mentioned above consists of comparing measured transitions (primarily the 1S–2S frequency in 
H and the H–D isotope shift of the 1S–2S frequency) with intervals calculated from a complex 
theoretical equation for each energy level scaled with  𝑅ஶ, which indirectly assigns, using 𝛼஼௢ௗ௔௧௔, 
a fitted value to the absolute electron mass {me}Codata that can by no means be directly compared 
(i.e., without a theoretical contribution) to the artifact SI standard kilogram. 
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There should be some skepticism regarding the strong connection between reduced mass factors 
calculated through formula (4) and those using mass spectrometry. Could the close agreement be 
a consequence of Codata already accounting for the reduced mass factor when computing the 
electron mass {me}Codata as previously described? 

Tritium 

Since tritium (T) is radioactive and difficult to handle, there is little information about its spectrum 
from which a reliable parameter set can be obtained. The Lamb shift parameters B to F of hydrogen 
and deuterium are similar in value, which suggests that the most accurate known Lamb shift 
parameters B to F of hydrogen could be used as a first approximation for tritium. The most 
accurate measured values of four fine structure transitions arranged by Kramida [4] in Table K 
are listed in Table 7 and compared with the values calculated via formula (1), using 𝛼 = 𝛼௚௘௢௠, 

A = 0, the parameters B_hyd to F_hyd of hydrogen (Table 3), and 𝛾 = 𝛾௥௘ௗ ௠௔௦௦ (𝑇) × 𝛾௖௢௥௥. 

Table 7: The most accurate measured fine structure transitions of tritium compared with calculated 
values via formula (1). 

Tritium Fine structure 
transition 

ΔEexp (MHz) 
(mean meas. freq.) 

Unc. (MHz) 
(exp.) 

ΔEcalc (MHz) ΔEexp – calc (MHz) 

2P3/2–3D5/2 456 841 568.8 1.6 456 841 565.6 3.2 
2P1/2–3D3/2 456 851 457.2 1.3 456 851 461.5 −4.3 
2S1/2–3P3/2 456 850 405.8 1.4 456 850 405.0 0.8 
2S1/2–3P1/2 456 847 153.8 1.6 456 847 153.7 0.1 

Hyperfine splitting 

Formula (1) considers the Lamb shift as a perturbation to the scaled Dirac energy levels 𝐸஽(𝑛, 𝑗)𝛾. 
In the following, the hyperfine splitting manifested as a small splitting of the fine-structure energy 
levels is regarded, analogous to the Lamb shift, as a perturbation to 𝐸(𝑛, ℓ, 𝑗) of the form 

𝐸(𝑛, ℓ, 𝑗, 𝐹) = 𝐸(𝑛, ℓ, 𝑗)൛1 − 𝑄(ℓ, 𝑗, 𝐼, 𝐹) ⋅ 𝑍 ⋅ 𝐵෩ 𝑛⁄ ൟ (5) 

The number I is the spin of the nucleus, and 𝐹 is the total angular momentum for the whole atom 
with possible values of 𝑗 + 𝐼, 𝑗 + 𝐼 − 1, … , |𝑗 − 𝐼|. Formula (5) can be deduced from the rephrased 
equations 5 and 6 (without off-diagonal terms) given by Kramida 2010 by setting 

 𝑍ଶ𝑅ஶ

𝑛ଶ
𝐹௡ℓ௝

௥௘௟ ≡ −𝐸(𝑛, ℓ, 𝑗) 
 

[𝐹(𝐹 + 1) − 𝐼(𝐼 + 1) − 𝑗(𝑗 + 1)]

𝑗(𝑗 + 1)(2ℓ + 1)𝐼
≡ 𝑄  

𝛼ଶ
𝜇௡௨௖௟

𝜇஻
≡ 𝐵෨   

The minus sign in relation (5) ensures that the energy of the F level is lifted and that of F-1 is 
lowered. From formula (5), the hfs interval between two adjacent levels in a hyperfine multiplet 
can be written as 
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(Δ𝐸)௡ℓ௝
௛௙௦

= 𝐸(𝑛, ℓ, 𝑗, 𝐹) − 𝐸(𝑛, ℓ, 𝑗, 𝐹 − 1) = −𝐸(𝑛, ℓ, 𝑗) ⋅
2𝐹

𝑗(𝑗 + 1)(2ℓ + 1)𝐼
⋅ 𝑍 ⋅ 𝐵෨ 𝑛⁄  (6) 

where Lamb shifts of energy levels are taken into account. Because the relativistic Dirac theory 
naturally implies that the electron’s magnetic dipole moment is exactly 𝜇௘ = 𝜇஻ , the ratio 

ఓ೐

ఓಳ
 in 

equation (6) given by Kramida 2010 was set to one. For simplicity requirements on the 
approximating function, the reduced mass prefactor 𝛾௥௘ௗ ௠௔௦௦ 

ଷ has been omitted, assuming that a 
correction in the form of an overall reduced mass factor is adequate. These assumptions make 
relation (6) compatible with the uncorrected expression (22.13) of Bethe and Salpeter [10], and 
equation (41) of Grifffiths [11] with ge = 2. 

The value of  
ఓ೙ೠ೎೗

ఓಳ
 is not directly accessible experimentally, but it can be traced back to maser 

experiments by Winkler and coworkers, who determined the bound particle ratio of the magnetic 

moments of the nucleus and electron 
ఓ೙ೠ೎೗(௔௧௢௠)

ఓ೐(௔௧௢௠)
, implying that the bound electron moment in Bohr 

magnetons 
ఓ೐(௔௧௢௠)

ఓಳ
 must also be known. This ratio can be approximated by 

ఓ೐(௚௘௢௡௜௨௠)

ఓಳ
≡ 1 + 𝑎௘, 

where ae [Codata 2010] is the very accurately measured electron magnetic moment anomaly.11 
Replacing the fine structure constant 𝛼  by 𝛼௚௘௢௠  implies that, in addition to 1+ae, the 
multiplicative factor 𝛾௖௢௥௥  must be taken into account, since the electron mass is given by 
𝛾௖௢௥௥{𝑚௘}஼௢ௗ௔௧௔. Combining all this gives 

𝐵෨ ≡ 𝛼ଶ
𝜇௡௨௖௟

𝜇஻
= 𝛼ଶ ⋅

𝜇௡௨௖௟

𝜇௘
⋅

𝜇௘

𝜇஻
≈ 𝛼ଶ ⋅

𝜇௡௨௖௟

𝜇௘
⋅ (1 + 𝑎௘) ≈ 𝛼௚௘௢௠

ଶ ⋅
𝜇௡௨௖௟

𝜇௘
⋅ (1 + 𝑎௘) ∙ 𝛾௖௢௥௥ (7) 

Table 8 lists the hyperfine splittings of hydrogen and deuterium, which were calculated via 
relation (6) and hypothesis (7). The scaling factor 𝛾௭௘௥௢ ([γzero] for H) and the parameter B ([B] for 
H) used to compute 𝐸(𝑛, ℓ, 𝑗) correspond to the values listed in Table 3. All four factors ultimately 
leading to relation (7) are essentially experimental in nature when 𝛼௚௘௢௠ is replaced by 𝛼௦௣௘௖. 

Table 8: Hyperfine splittings of hydrogen and deuterium calculated via relation (6) and 
hypothesis (7). 

atom 
ఓ೙ೠ೎೗(௔௧௢௠)

ఓ೐(௔௧௢௠)
10ଷ (meas.) 

(Δ𝐸)ଵௌଵ/ଶ
௛௙௦  (MHz) ΔEexp/ΔEcalc 

 Z I F (6) and (7) experiment (correction) 

1H 1 1/2 1 1.519 270 336 [12a]  1420.401  1420.406 [4] 1.000 003 
2H 1 1 3/2 0.466 434 539 [12b]     327.149     327.384 [4] 1.000 718 

A comparison of the theoretical results with the experimental values reveals a remarkable 
agreement (or coincidence?) with a precision of three parts per 106 for hydrogen 12, and reflects 
an unclear discrepancy with a substantial correction factor for deuterium. This might be because 

_________ 
11  The metastable pseudo-atom geonium is an individual electron that is permanently confined in an ultrahigh 

vacuum Penning trap at 4K. The trap employs a homogeneous magnetic field and a weak electric quadrupole field. 
12  The pure QED estimate is 1420.451 99(14) MHz [1:p.5]. Due to “lack of knowledge” about the structure of the 

proton, the necessary nuclear correction terms cannot or only vaguely be calculated, and the high measurement 
accuracy of the hyperfine splitting of atomic hydrogen is not used today for the determination of natural constants. 
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the ratio of the magnetic moment of the deuteron to the magnetic moment of the electron in the 
1S state of deuterium has never been published. This magnetic ratio should be reevaluated. 

The formulation of 𝛾௖௢௥௥ as defined in formula (3) relies on the premise that the Rydberg constant 
 𝑅ஶ remains unchanged. By characterizing 𝛾௖௢௥௥ through 

𝛾௭௘௥௢ ≡
𝛾௖௢௥௥

1 + 𝛾௖௢௥௥
𝑚௘

𝑀

    ⟺     𝛾௖௢௥௥ =
𝛾௭௘௥௢

1 − 𝛾௭௘௥௢
𝑚௘

𝑀

 (8) 

𝛾௖௢௥௥ is established solely based on high precision experimental inputs. Using [γzero] from Table (3) 
along with the recoil parameter {me/Mproton}Codata 2010 allows to derive 𝛾௖௢௥௥ ≈ 1.003 593 774 , 
leading to a hyperfine splitting of ≈ 1420.404 MHz. The relative difference from the measured 
value amounts to one part per 106, indicating a threefold improvement over formula (3). 

Scaling law for hfs intervals 

Owing to the lack of knowledge on the number of multiplying factors that control hypothesis (7), 
the dimensionless parameter 𝐵෨ , which is responsible for splitting, is difficult to calculate. 
However, the existence of high-precision experimental data on the 1S hfs splitting makes it 
possible to derive an empirical, simple scaling law for other hfs intervals, if the dimensionless 
parameter 𝐵෨  is the same for all levels. For hydrogen, the scaling law from the ground-state 
hyperfine splitting is then 

(Δ𝐸)௡ℓ௝
௛௙௦(𝐹 − 1; 𝐹)  = (Δ𝐸)ଵௌଵ/ଶ

௛௙௦ (0; 1) ⋅
𝐸(𝑛, ℓ, 𝑗)

𝐸(1,0,1/2)
⋅

𝐹

𝑗(𝑗 + 1)(2ℓ + 1)
∙

3

4
⋅

1

𝑛
 (9) 

For the scaling law from the ground-state hyperfine splitting of deuterium, the factor 3/4 in 
formula (9) must be replaced by 1/2. In Table 9, theoretical predictions via the scaling relation (9) 
are given and compared with experimental results for 2S1/2 states. The alignment between 
theory and experimental data is striking for both isotopes, featuring a consistent relative deviation 
of 30 ppm that does not vary with the nucleus. Unfortunately, besides the 2P1/2 hfs splitting in 
hydrogen of 59.22(14) MHz [Kramida 2010, Table A], no reliable experimental data are available 
for other excited states. In Kramida's work, one can find theoretical values derived by different 
authors employing QED with 𝛼஼௢ௗ௔௧௔ , enabling a comparison with the calculations from 
expression (9). The predictions generated through the scaling relation (9) may be employed to 
iteratively calculate experimental corrections for the measured quantities (Table 1, Table 2). 

Conclusion 

There is no independent approach to determining the fine structure constant from the energy 
levels of hydrogen or deuterium. The energy intervals that were measured are utilized to calculate 
the mass of the electron, employing a fine structure constant that is not derived from 
spectroscopic evaluations. This study proposes a method to experimentally ascertain a 
spectroscopic fine structure constant 𝛼௦௣௘௖ that relies solely on the relativistic Dirac equation, free 
from other theoretical frameworks {γred mass(classical physics); αCodata(QED); αgeom}. It‘s remarkable 
that the experimental spectroscopic fine structure constant closely matches the number constant 

2ି଺𝜋ି
మ

య, though this could be a mere coincidence. 
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The lowest term 
ఈ

ଶగ
 in the development of ae was first derived by Julian Schwinger. It involves a 

single virtual exchange of a photon with the electron and is called one-loop correction or 
Schwinger correction. The relative deviation to the measurement is ≈ 0.152 % if only the one-loop 
correction 

ఈ಴೚೏ೌ೟ೌ

ଶగ
is taken into account. Although the Schwinger term  

ఈ಴೚೏ೌ೟ೌ

ଶగ
 already accounts for 

more than 99.8% of the total correction, only higher terms of the development, which reflect 
interaction processes with much less likelihood, significantly reduce the deviation from the 
measurement. Remarkably, the deviation from the measured value is approximately five times 
smaller (≈ 0.028 %) if 𝛼௚௘௢௠ is used in the one-loop term [2:p.45]. 

Interestingly, the model accurately reproduces the hyperfine splitting of hydrogen in its ground 
state with a precision of one part per million, surpassing the results obtained through pure QED 
calculations. Furthermore, a basic scaling law enables the computation of hyperfine splittings 
solely from experimental data, achieving a relative deviation of 30 ppm for 2S1/2 states. 
Additionally, the determined absolute ionization energies for both isotopes fall within the error 
margins of the experimental Ritz series limits. 
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Table 1: The best available measurements of fine-structure intervals in hydrogen [4]. 

interval  Measured value (MHz) Unc. (MHz) Diff (MHz) 

    𝛼௚௘௢௠ 𝛼஼௢ௗ௔௧௔ 

1S1/2–2S1/2 * 2466061413.187074 0.000034 −0.1 2.1 
2P1/2–2S1/2  1057.847 0.09 −1.0 −2.3 
2P1/2–2P3/2  10969.13 0.1 −0.1 −0.1 
2S1/2–2P3/2  9911.201 0.012 0.8 2.1 
2P1/2–3D3/2 not used 456685852.8 1.7   
2S1/2–3P1/2  456681549.9 0.3 −1.5 −5.1 
2S1/2–3P3/2  456684800.1 0.3 −1.5 −5.0 
3P1/2–3D3/2 not used 456675968.3 3.4   
2S1/2–4P1/2  616520017.568 0.015 −0.3 −3.0 
2S1/2–4S1/2  616520150.636 0.01 0.4 −2.4 
2S1/2–4P3/2  616521388.672 0.01 −0.3 −3.0 
2S1/2–4D5/2  616521843.441 0.024 1.3 −9.6 
2S1/2–6S1/2  730690017.097 0.021 0.2 −0.1 
2S1/2–6D5/2  730690518.592 0.011 0.4 −2.3 
2S1/2–8S1/2 * 770649350.012 0.09 0.3 1.5 
2S1/2–8D3/2  770649504.45 0.08 0.0 0.4 
2S1/2–8D5/2  770649561.584 0.06 0.3 0.5 
2S1/2–10D5/2  789144886.411 0.039 0.2 1.7 
2S1/2–12D3/2  799191710.473 0.09 0.1 2.4 
2S1/2–12D5/2  799191727.404 0.07 0.2 2.4 
3P1/2–3S1/2  314.818 0.048 1.1 0.7 

3P1/2–3D3/2 not used 3244.9 3.1   

3S1/2–3P3/2 not used 2933.5 1.2   

3S1/2–3D3/2  2929.9 0.8 −3.8 −18.9 
3S1/2–3D5/2  4013.155 0.048 2.6 −16.5 

3D3/2–3P3/2  5.5 0.9 2.7 18.3 

3D3/2–3D5/2 not used 1083 0.29   

3P3/2–3D5/2 not used 1078 1.1   

4P1/2–4S1/2  133.2 0.6 0.8 0.7 

4P1/2–4P3/2  1370.85 0.22 −0.3 −0.3 

4P1/2–4D3/2  1371.1 1.2 1.1 −5.5 

4S1/2–4D3/2 not used 1235 2.1   

4S1/2–4P3/2  1237.79 0.29 −1.0 −0.8 

4S1/2–4D5/2  1693 0.4 1.0 −7.0 

4D3/2–4F5/2 not used 456.8 1.6   

4D3/2–4D5/2 not used 458 2.2   

4P3/2–4D5/2 not used 455.7 1.6   

4D5/2–4F7/2 not used 227.96 0.41   
5P1/2–5S1/2 not used 64.6 5   
5P1/2–5D3/2 not used 704 7   
5S1/2–5P3/2 not used 622 10   
5P3/2–5D5/2 not used 232.2 2.9   
5D5/2–5F7/2 not used 117 1.5   
1S1/2–3S1/2 [8] 2922743278.678 0.013 0.2 −1.5 
2S1/2–8D5/2 [9] 770649561.5709 0.02 0.3 0.5 
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Table 2: The best available measurements of fine-structure intervals in deuterium [4]. 

interval  Measured value (MHz) Unc. (MHz) Diff (MHz) 

    𝛼௚௘௢௠ 𝛼஼௢ௗ௔௧௔ 

1S1/2–2S1/2   2466732407.52171 0.00015 0.1 0.5 
2P1/2–2S1/2   1059.28 0.06 −0.7 −1.9 
2S1/2–2P3/2   9912.61 0.3 −0.1 1.5 
2P1/2–3D3/2   456810113.8 0.19 −6.0 −26.7 
2S1/2–3P1/2   456805811.7 0.3 −0.7 −4.4 
2S1/2–3P3/2   456809062.6 0.3 −0.9 −4.6 
2P3/2–3S1/2  not used 456796251 30   
2P3/2–3D5/2   456800225.9 1.6 1.5 −23.4 
2P1/2–4D3/2  not used 616690180 40   
2S1/2–4P1/2   616687769.99 0.19 −0.6 −3.5 
2S1/2–4S1/2   616687903.573 0.02 0.5 −2.6 
2S1/2–4P3/2   616689141.73 0.17 −0.4 −3.3 
2S1/2–4D5/2   616689596.72 0.4 1.6 −9.5 
2P3/2–4D5/2  not used 616679760 50   
2P1/2–5D3/2  not used 690691810 50   
2P3/2–5D5/2  not used 61681100 70   
2P1/2–6D3/2  not used 730890320 60   
2P3/2–6D5/2  not used 730879480 80   
2P1/2–7D3/2  not used 755128600 60   
2P3/2–7D5/2  not used 755117710 50   
2P1/2–8D3/2  not used 770860360 210   
2S1/2–8S1/2   770859041.246 0.07 0.2 1.1 
2S1/2–8D3/2   770859195.702 0.006 0.0 0.1 
2S1/2–8D5/2   770859252.850 0.06 0.4 0.2 
2P3/2–8D5/2  not used 770849570 210   
2P1/2–9D3/2  not used 781645760 300   
2P3/2–9D5/2  not used 781634790 300   
2S1/2–10D5/2   789359610.238 0.038 0.2 1.4 
2S1/2–12D3/2   799409168.038 0.09 0.0 2.0 
2S1/2–12D5/2   799409184.967 0.07 0.1 2.1 
3P1/2–3S1/2   315.3 0.4 1.2 0.9 
3P1/2–3P3/2  not used 3250.7 1   
3S1/2–3P3/2  not used 2934.5 5   
3D3/2–3P3/2  not used 5 5   
4P1/2–4S1/2  not used 133 5   
4P1/2–4P3/2   1371.8 0.3 0.2 0.3 
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Table 3: The adjusted dimensionless parameters A to F and the absolute Lamb shifts for n = 1, 2, and 3. 

isotope hydrogen deuterium 
Experimental input Table 1 Table 2 
Number of input values 29 19 
𝛼௠௜௡ ≈ 0.00 72 839   13 ≈ 0.00 72 833 

  𝛼஼௢ௗ௔௧௔ ଶ଴ଵ଴ 𝛼௚௘௢௠ 𝛼஼௢ௗ௔௧௔ ଶ଴ଵ଴ 𝛼௚௘௢௠ 

  (≈ 0.00 72 974) (≈ 0.00 72 843)   

      
mean abs. dev. (MHz) 4.03 0.82 4.75 0.80 
      
      
γzero  0.999 455 610 362 1.003 045 534 235 0.999 727 563 649 1.003 318 464 318 

[γzero]   [1.003 045 534 890]   

γred mass_Codata 2010  0.999 455 679(1)  0.999 727 631(1)  

γzero / γcorr   0.999 455 690  0.999 727 643 

      

      
A   all levels (ppm) 0 0 0 0 
B    (nS1/2)   −2.411 846 −2.441 530 −2.419 799 −2.450 077 
[B]    [−2.442 137]   
C    (nP1/2)     0.167 457   0.134 688   0.161 442   0.128 073 
D    (nP3/2)     0.105 245 −0.022 870   0.098 994 −0.030 347 
E    (nD3/2)     0.148 730   0.022 573   0.217 980   0.049 010 
F    (nD5/2) (ppm)   0.141 163 −0.021 527   0.189 677 −0.015 156 
      
      
ℒ(1𝑆1/2) (MHz) 7930.4 8028.0 7958.7 8058.3 
ℒ(2𝑆1/2)   991.3 1003.5 994.8 1007.3 
ℒ(2𝑃1/2)   −68.8 −55.4 −66.4 −52.7 
ℒ(2𝑃3/2)   −43.3 9.4 −40.7 12.5 
ℒ(3𝑆1/2)   293.7 297.3 294.8 298.5 
ℒ(3𝑃1/2)   −20.4 −16.4 −19.7 −15.6 
ℒ(3𝑃3/2)   −12.8 2.8 −12.1 3.7 
ℒ(3𝐷3/2)   0.0 0.0 0.0 0.0 
ℒ(3𝐷5/2) (MHz) 0.0 0.0 0.0 0.0 

Notes: 

The value 𝛼௠௜௡ is the result of minimizing the mean absolute deviation (MAD) based on Table 1 or Table 2 using formula 
(1) and the solutions of the linear system of equations. The minima were determined by quadratic regression of 21 
values of the discretized function MAD(α;Table 1) or MAD(α;Table 2) with α = [0.0072800, 0.0072900] and 
Δα = 0.0000005. 

The gray-shaded fields present the adjusted dimensionless parameters in formula (1) to compute the binding energy 
𝐸(𝑛, ℓ, 𝑗) for 𝛼௚௘௢௠ . All numbers are rounded to 12 decimal places. 

For the classic Lamb shift 2P1/2–2S1/2 of hydrogen the energy difference 𝐸(2,1,1/2) − 𝐸(2,0,1/2) is 1058.86 MHz 
using {mec2/h}Codata 2010. 

_________ 
13  The five pure S-state transitions, highlighted in bold in Table 1, yield αmin = 0.00 72 850(1) with MAD(αmin) ≈ 0.042 MHz. 
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Table 4: Frequencies of fine-structure transitions in hydrogen derived from 
the level-optimization procedure [Kramida 2010, Table 5]. 

interval ΔERitz (MHz) Unc. (MHz)  ΔERitz−ΔEcalc (MHz) 

 (Ritz values)  𝛼௚௘௢௠ 𝛼஼௢ௗ௔௧௔ 

     
Ionization  a) 3288086856.8 0.7 −0.5 5.8 
Ionization   b) 3288086857.128 0.003 −0.1 6.1 
     
1S1/2–2P1/2 2466060355.339 0.009 0.9 4.4 
1S1/2–2S1/2 2466061413.18707 0.00003 −0.1 2.1 
1S1/2–2P3/2 2466071324.389 0.012 0.7 4.2 
1S1/2–3P1/2 2922742963.15 0.21 −1.6 −2.9 
1S1/2–3S1/2 2922743277.97 0.22 −0.5 −2.2 
1S1/2–3P3/2 2922746213.24 0.21 −1.7 −2.9 
1S1/2–4P1/2 3082581430.756 0.015 −0.4 −0.8 
1S1/2–4S1/2 3082581563.823 0.01 0.3 −0.3 
1S1/2–4P3/2 3082582801.858 0.01 −0.5 −0.9 
1S1/2–5P1/2 3156563616.6 1.1 0.0 0.9 
1S1/2–5S1/2 3156563684.8 1.1 0.4 1.3 
1S1/2–5P3/2 3156564318.6 1.1 −0.1 0.9 
1S1/2–5D5/2 3156564549.7 0.7 −1.0 −4.2 
1S1/2–6P1/2 3196751390.79 0.3 −0.2 1.8 
1S1/2–6S1/2 3196751430.284 0.021 0.1 2.0 
1S1/2–6P3/2 3196751797.05 0.03 −0.2 1.8 
1S1/2–7P1/2 3220983314.5 1.2 −0.2 2.7 
1S1/2–7S1/2 3220983339.4 1.2 0.0 2.8 
1S1/2–7P3/2 3220983570.4 1.2 −0.2 2.7 
1S1/2–7D5/2 3220983655.4 0.7 0.3 1.6 
1S1/2–8P1/2 3236710746.525 0.018 0.0 3.5 
1S1/2–8S1/2 3236710763.199 0.009 0.1 3.6 
1S1/2–8P3/2 3236710917.916 0.019 0.0 3.5 
1S1/2–9P1/2 3247493411.9 1.2 0.2 4.1 
1S1/2–9S1/2 3247493423.6 1.2 0.2 4.2 
1S1/2–9P3/2 3247493532.3 1.2 0.2 4.1 
1S1/2–9D5/2 3247493572 0.7 0.1 3.3 
1S1/2–10P1/2 3255206183.1 1.2 0.3 4.7 
1S1/2–10S1/2 3255206191.6 1.2 0.4 4.7 
1S1/2–10P3/2 3255206270.8 1.2 0.3 4.6 
1S1/2–11P1/2 3260912757.7 1.2 0.3 4.9 
1S1/2–11S1/2 3260912764.1 1.2 0.4 5.0 
1S1/2–11P3/2 3260912823.6 1.2 0.3 4.9 
1S1/2–11D5/2 3260912845.1 0.7 0.0 4.2 
1S1/2–12P1/2 3265253073.3 1.2 0.3 5.1 
1S1/2–12S1/2 3265253078.2 1.2 0.3 5.1 
1S1/2–12P3/2 3265253124 1.2 0.2 5.1 
2P1/2–2S1/2 1057.848 0.09 −1.0 −2.3 
2P1/2–2P3/2 10969.05 0.015 −0.2 −0.2 
2P1/2–3S1/2 456682922.63 0.22 −1.4 −6.6 
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Table 4: (continued) 

interval ΔERitz (MHz) Unc. (MHz)  ΔERitz−ΔEcalc (MHz) 

 (Ritz values)  𝛼௚௘௢௠ 𝛼஼௢ௗ௔௧௔ 

     
2P1/2–3D3/2 456685852.6 0.6 −5.0 −25.5 
2P1/2–4S1/2 616521208.484 0.013 −0.6 −4.7 
2P1/2–4D3/2 616522444.5 0.23 −2.2 −12.7 
2P1/2–5S1/2 690503329.4 1.1 −0.5 −3.2 
2P1/2–5D3/2 690503960.5 0.7 −3.1 −9.0 
2P1/2–6S1/2 730691074.945 0.023 −0.8 −2.4 
2P1/2–6D3/2 730691441.05 0.04 −1.4 −4.9 
2P1/2–7S1/2 754922984.1 1.2 −0.9 −1.5 
2P1/2–7D3/2 754923214.8 0.7 −1.1 −3.0 
2P1/2–8S1/2 770650407.86 0.012 −0.8 −0.8 
2P1/2–8D3/2 770650562.298 0.012 −1.0 −1.9 
2P1/2–9S1/2 781433068.3 1.2 −0.6 −0.2 
2P1/2–9D3/2 781433176.5 0.7 −1.0 −1.2 
2P1/2–10D3/2 789145915 0.05 −1.0 −0.6 
2P1/2–11S1/2 794852408.8 1.2 −0.5 0.6 
2P1/2–11D3/2 794852467.8 0.7 −1.0 −0.2 
2P1/2–12S1/2 799192722.9 1.2 −0.5 0.8 
2P1/2–12D3/2 799192768.321 0.013 −1.0 0.1 
2S1/2–2P3/2 9911.202 0.012 0.8 2.1 
2S1/2–3P1/2 456681549.96 0.21 −1.4 −5.0 
2S1/2–3S1/2 456681864.78 0.22 −0.4 −4.3 
2S1/2–3P3/2 456684800.05 0.21 −1.5 −5.1 
2S1/2–4P1/2 616520017.569 0.015 −0.3 −2.9 
2S1/2–4S1/2 616520150.636 0.01 0.4 −2.4 
2S1/2–4P3/2 616521388.671 0.01 −0.3 −3.0 
2S1/2–4D5/2 616521843.443 0.024 1.3 −9.6 
2S1/2–5P1/2 690502203.4 1.1 0.1 −1.2 
2S1/2–5S1/2 690502271.6 1.1 0.5 −0.9 
2S1/2–5P3/2 690502905.4 1.1 0.1 −1.3 
2S1/2–6P1/2 730689977.6 0.03 −0.1 −0.3 
2S1/2–6S1/2 730690017.097 0.021 0.2 −0.1 
2S1/2–6P3/2 730690383.86 0.04 −0.1 −0.3 
2S1/2–6D5/2 730690518.592 0.011 0.4 −2.3 
2S1/2–7P1/2 754921901.3 1.2 −0.1 0.5 
2S1/2–7S1/2 754921926.2 1.2 0.1 0.7 
2S1/2–7P3/2 754922157.2 1.2 0.0 0.6 
2S1/2–8P1/2 770649333.338 0.018 0.1 1.4 
2S1/2–8S1/2 770649350.012 0.009 0.3 1.5 
2S1/2–8D3/2 770649504.45 0.08 0.0 0.4 
2S1/2–8P3/2 770649504.729 0.019 0.1 1.4 
2S1/2–8D5/2 770649561.584 0.007 0.3 0.5 
2S1/2–9P1/2 781431998.7 1.2 0.3 2.0 
2S1/2–9S1/2 781432010.4 1.2 0.4 2.0 
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Table 4: (continued) 

interval ΔERitz (MHz) Unc. (MHz)  ΔERitz−ΔEcalc (MHz) 

 (Ritz values)  𝛼௚௘௢௠ 𝛼஼௢ௗ௔௧௔ 

     
2S1/2–9P3/2 781432119.1 1.2 0.3 2.0 
2S1/2–10P1/2 789144769.9 1.2 0.5 2.5 
2S1/2–10S1/2 789144778.4 1.2 0.5 2.5 
2S1/2–10P3/2 789144857.6 1.2 0.4 2.5 
2S1/2–10D5/2 789144886.41 0.4 0.2 1.7 
2S1/2–11P1/2 794851344.5 1.2 0.4 2.8 
2S1/2–11S1/2 794851350.9 1.2 0.5 2.8 
2S1/2–11P3/2 794851410.4 1.2 0.4 2.8 
2S1/2–12P1/2 799191660.1 1.2 0.4 3.0 
2S1/2–12S1/2 799191665 1.2 0.4 3.0 
2S1/2–12D3/2 799191710.473 0.01 0.1 2.4 
2S1/2–12P3/2 799191710.9 1.2 0.4 3.0 
2S1/2–12D5/2 799191727.404 0.007 0.2 2.4 
2P3/2–3S1/2 456671953.58 0.22 −1.1 −6.4 
2P3/2–3D3/2 456674883.5 0.6 −4.9 −25.3 
2P3/2–3D5/2 456675966.74 0.22 1.4 −22.9 
2P3/2–4S1/2 616510239.434 0.016 −0.4 −4.5 
2P3/2–4D3/2 616511475.45 0.23 −2.0 −12.5 
2P3/2–4D5/2 616511932.24 0.03 0.5 −11.7 
2P3/2–5S1/2 690492360.4 1.1 −0.3 −2.9 
2P3/2–5D3/2 690492991.4 0.7 −2.9 −8.9 
2P3/2–5D5/2 690493225.3 0.7 −1.7 −8.4 
2P3/2–6S1/2 730680105.895 0.024 −0.6 −2.2 
2P3/2–6D3/2 730680472 0.04 −1.2 −4.7 
2P3/2–6D5/2 730680607.39 0.016 −0.4 −4.4 
2P3/2–7S1/2 754912015 1.2 −0.7 −1.4 
2P3/2–7D3/2 754912245.7 0.7 −0.9 −2.8 
2P3/2–7D5/2 754912331 0.7 −0.4 −2.6 
2P3/2–8S1/2 770639438.81 0.015 −0.5 −0.6 
2P3/2–8D3/2 770639593.248 0.015 −0.8 −1.7 
2P3/2–8D5/2 770639650.382 0.014 −0.5 −1.5 
2P3/2–9S1/2 781422099.2 1.2 −0.4 0.0 
2P3/2–9D3/2 781422207.5 0.7 −0.8 −0.9 
2P3/2–9D5/2 781422247.6 0.7 −0.6 −0.9 
2P3/2–10S1/2 789134867.2 1.2 −0.3 0.5 
2P3/2–10D3/2 789134945.95 0.05 −0.8 −0.4 
2P3/2–10D5/2 789134975.21 0.04 −0.6 −0.3 
2P3/2–11S1/2 794841439.7 1.2 −0.3 0.8 
2P3/2–11D3/2 794841498.7 0.7 −0.8 −0.1 
2P3/2–11D5/2 794841520.7 0.7 −0.7 0.0 
2P3/2–12S1/2 799181753.8 1.2 −0.4 0.9 
2P3/2–12D3/2 799181799.271 0.015 −0.7 0.3 
2P3/2–12D5/2 799181816.202 0.014 −0.6 0.4 
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Table 4: (continued) 

interval ΔERitz (MHz) Unc. (MHz)  ΔERitz−ΔEcalc (MHz) 

 (Ritz values)  𝛼௚௘௢௠ 𝛼஼௢ௗ௔௧௔ 

     
3P1/2–3S1/2 314.82 0.05 1.1 0.7 
3P1/2–3D3/2 3244.8 0.6 −2.6 −18.2 
3P1/2–3P3/2 3250.09 0.03 −0.1 0.0 
3S1/2–3D3/2 2929.9 0.6 −3.8 −18.9 
3S1/2–3P3/2 2935.27 0.06 −1.2 −0.8 
3S1/2–3D5/2 4013.16 0.05 2.6 −16.5 
3D3/2–3P3/2 5.3 0.6 2.5 18.1 
3D3/2–3D5/2 1083.2 0.6 6.3 2.4 
3P3/2–3D5/2 1077.89 0.07 3.7 −15.8 
4P1/2–4S1/2 133.067 0.018 0.7 0.6 
4P1/2–4P3/2 1371.102 0.018 −0.1 0.0 
4P1/2–4D3/2 1369.08 0.23 −0.9 −7.5 
4S1/2–4D3/2 1236.02 0.23 −1.6 −8.0 
4P3/2–4D5/2 454.77 0.03 1.6 −6.6 
5P1/2–5S1/2 68.201 0.019 0.4 0.4 
5P1/2–5D3/2 699.2 1.3 −2.2 −5.6 
5P1/2–5P3/2 702.019 0.012 0.0 0.0 
5S1/2–5P3/2 633.818 0.022 −0.4 −0.4 
5D3/2–5D5/2 233.92 0.08 1.3 0.5 
5P3/2–5D5/2 231.1 1.3 −0.9 −5.1 
8D3/2–8D5/2 57.134 0.01 0.3 0.1 
12D3/2–12D5/2 16.931 0.012 0.1 0.1 

Notes: 

a) Ritz series limit [Kramida 2010, Table D]. 
b) NIST: Atomic Spectra Database 78 [version 5.11]: Ionization Energies Form. 

Energy has been determined from bound-state QED ab initio calculations. 
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Table 5: Frequencies of fine-structure transitions in deuterium derived 
from the level-optimization procedure [Kramida 2010, Table 7]. 

interval ΔERitz (MHz) Unc. (MHz)  ΔERitz−ΔEcalc (MHz) 

 (Ritz values)  𝛼௚௘௢௠ 𝛼஼௢ௗ௔௧௔ 

     
Ionization  a) 3288981521.1 2.3 −1.1 3.1 
Ionization   b) 3288981522.062 0.003 −0.09 4.1 
     
1S1/2–2P1/2 2466731348.24 0.06 0.7 2.5 
1S1/2–2S1/2 2466732407.52171 0.00015 0.1 0.5 
1S1/2–2P3/2 2466742320.1 0.3 0.0 2.0 
1S1/2–3P1/2 2923538219.2 0.3 −0.6 −3.9 
1S1/2–3S1/2 2923538534.6 0.5 0.7 −3.0 
1S1/2–3P3/2 2923541470.1 0.3 −0.9 −4.1 
1S1/2–4P1/2 3083420177.53 0.17 −0.6 −3.0 
1S1/2–4S1/2 3083420311.095 0.02 0.5 −2.1 
1S1/2–4P3/2 3083421549.28 0.15 −0.4 −2.8 
1S1/2–5P1/2 3157422491 7 −3.0 −4.1 
1S1/2–5S1/2 3157422559 6 −2.9 −4.0 
1S1/2–5P3/2 3157423193 7 −3.3 −4.3 
1S1/2–5D5/2 3157423433.2 2.3 5.0 −0.3 
1S1/2–6P1/2 3197621201 7 −2.5 −2.5 
1S1/2–6S1/2 3197621241 6 −1.8 −1.8 
1S1/2–6P3/2 3197621608 7 −1.9 −1.9 
1S1/2–6D5/2 3197621746.3 2.3 2.2 −0.2 
1S1/2–7P1/2 3221859720 6 −0.7 0.1 
1S1/2–7S1/2 3221859745 6 −0.4 0.4 
1S1/2–7P3/2 3221859976 6 −0.6 0.2 
1S1/2–7D5/2 3221860061.9 2.3 0.8 0.1 
1S1/2–8P1/2 3237591432.01 0.3 0.1 1.5 
1S1/2–8S1/2 3237591448.768 0.07 0.3 1.7 
1S1/2–8P3/2 3237591603.48 0.04 0.1 1.6 
1S1/2–9P1/2 3248377032 7 0.9 2.8 
1S1/2–9S1/2 3248377044 6 1.2 3.1 
1S1/2–9P3/2 3248377153 7 1.5 3.4 
1S1/2–9D5/2 3248377191.5 2.3 0.2 1.4 
1S1/2–10P1/2 3256091901 7 0.2 2.5 
1S1/2–10S1/2 3256091910 6 0.7 3.0 
1S1/2–10P3/2 3256091989 7 0.4 2.7 
1S1/2–11P1/2 3261800029 7 0.8 3.4 
S1/2–11S1/2 3261800035 6 0.5 3.0 
1S1/2–11P3/2 3261800095 7 0.9 3.5 
1S1/2–11D5/2 3261800116.1 2.3 0.2 2.4 
1S1/2–12P1/2 3266141526 6 1.2 4.0 
1S1/2–12S1/2 3266141531 6 1.3 4.1 
1S1/2–12P3/2 3266141577 7 1.4 4.2 
2P1/2–2S1/2 1059.28 0.06 −0.7 −1.9 

 



20 

Table 5: (continued) 

interval ΔERitz (MHz) Unc. (MHz)  ΔERitz−ΔEcalc (MHz) 

 (Ritz values)  𝛼௚௘௢௠ 𝛼஼௢ௗ௔௧௔ 

     
2P1/2–2P3/2 10971.9 0.4 −0.7 −0.4 
2P1/2–3S1/2 456807186.4 0.5 0.0 −5.4 
2P1/2–3D3/2 456810114.2 1.8 −5.6 −26.3 
2P1/2–4S1/2 616688962.86 0.07 −0.2 −4.5 
2P1/2–4D3/2 616690198.83 0.24 −1.8 −12.5 
2P1/2–5S1/2 690691211 7 −3.3 −6.3 
2P1/2–5D3/2 690691850.8 2.3 2.8 −3.4 
2P1/2–6D3/2 730890262.7 2.3 0.8 −2.9 
2P1/2–7S1/2 755128397 7 −0.9 −1.9 
2P1/2–7D3/2 755128628.2 2.3 −0.6 −2.8 
2P1/2–8S1/2 770860100.53 0.6 −0.5 −0.8 
2P1/2–8D3/2 770860254.98 0.06 −0.7 −1.8 
2P1/2–9S1/2 781645696 7 0.8 0.9 
2P1/2–9D3/2 781645803.1 2.3 −0.8 −1.2 
2P1/2–10S1/2 789360562 7 0.3 0.8 
2P1/2–10D3/2 789360640.26 0.07 −0.7 −0.6 
2P1/2–11S1/2 795068687 7 0.0 0.8 
2P1/2–11D3/2 795068745.9 2.3 −0.6 −0.1 
2P1/2–12S1/2 799410183 7 0.8 1.9 
2P1/2–12D3/2 799410227.32 0.06 −0.7 0.1 
2S1/2–2P3/2 9912.6 0.3 −0.1 1.5 
2S1/2–3P1/2 456805811.7 0.3 −0.7 −4.4 
2S1/2–3S1/2 456806127.1 0.5 0.7 −3.5 
2S1/2–3P3/2 456809062.6 0.3 −0.9 −4.6 
2S1/2–4P1/2 616687770.01 0.17 −0.6 −3.5 
2S1/2–4S1/2 616687903.573 0.02 0.5 −2.6 
2S1/2–4P3/2 616689141.76 0.16 −0.4 −3.3 
2S1/2–4D5/2 616689596.72 0.04 1.6 −9.5 
2S1/2–5P1/2 690690083 6 −3.6 −5.1 
2S1/2–5P3/2 690690785 7 −3.8 −5.4 
2S1/2–6P1/2 730888794 7 −2.0 −2.5 
2S1/2–6P3/2 730889200 7 −2.4 −2.9 
2S1/2–7P1/2 755127312 7 −1.2 −0.9 
2S1/2–7P3/2 755127568 7 −1.2 −0.8 
2S1/2–8P1/2 770859024.49 0.03 0.0 1.0 
2S1/2–8P3/2 770859195.96 0.04 0.0 1.0 
2S1/2–9P1/2 781644625 7 1.3 2.8 
2S1/2–9P3/2 781644745 7 0.9 2.4 
2S1/2–10P1/2 789359494 7 0.7 2.5 
2S1/2–10P3/2 789359582 7 0.9 2.7 
2S1/2–11P1/2 795067621 6 0.3 2.4 
2S1/2–11P3/2 795067687 6 0.3 2.4 
2S1/2–12P1/2 799409119 7 1.7 4.0 
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Table 5: (continued) 

interval ΔERitz (MHz) Unc. (MHz)  ΔERitz−ΔEcalc (MHz) 

 (Ritz values)  𝛼௚௘௢௠ 𝛼஼௢ௗ௔௧௔ 

     
2S1/2–12P3/2 799409169 7 0.9 3.2 
2P3/2–3S1/2 456796214.5 0.6 0.7 −5.0 
2P3/2–3D3/2 456799142.3 1.8 −4.9 −25.8 
2P3/2–4S1/2 616677991 0.3 0.5 −4.1 
2P3/2–4D3/2 616679227 0.4 −1.0 −12.0 
2P3/2–4D5/2 616679684.1 0.3 1.7 −11.0 
2P3/2–5S1/2 690680239 7 −2.7 −5.9 
2P3/2–5D3/2 690680878.9 2.3 3.6 −2.9 
2P3/2–5D5/2 690681113 2.3 5.0 −2.4 
2P3/2–6S1/2 730878921 7 −1.6 −3.7 
2P3/2–6D3/2 730879290.9 2.3 1.6 −2.4 
2P3/2–6D5/2 730879426.3 2.3 2.3 −2.1 
2P3/2–7S1/2 755117425 7 −0.3 −1.5 
2P3/2–7D3/2 755117656.4 2.3 0.2 −2.2 
2P3/2–7D5/2 755117741.7 2.3 0.7 −2.0 
2P3/2–8S1/2 770849128.7 0.3 0.3 −0.3 
2P3/2–8D3/2 770849283.1 0.3 0.0 −1.4 
2P3/2–8D5/2 770849340.3 0.3 0.4 −1.2 
2P3/2–9S1/2 781634724 7 1.4 1.2 
2P3/2–9D3/2 781634831.3 2.4 0.0 −0.7 
2P3/2–9D5/2 781634871.4 2.3 0.2 −0.6 
2P3/2–10S1/2 789349590 7 0.9 1.1 
2P3/2–10D3/2 789349668.4 0.3 0.1 −0.1 
2P3/2–10D5/2 789349697.7 0.3 0.3 0.0 
2P3/2–11S1/2 795057715 7 0.6 1.1 
2P3/2–11D3/2 795057774 2.3 0.1 0.3 
2P3/2–11D5/2 795057796 2.3 0.2 0.4 
2P3/2–12S1/2 799399211 7 1.4 2.2 
2P3/2–12D3/2 799399255.5 0.3 0.1 0.6 
2P3/2–12D5/2 799399272.4 0.3 0.2 0.6 
3P1/2–3S1/2 315.4 0.4 1.3 1.0 
3P1/2–3P3/2 3250.9 0.4 −0.3 −0.2 
3D3/2–3D5/2 1083.6 2.4 6.4 2.5 
4P1/2–4S1/2 133.57 0.17 1.1 0.9 

Notes: 

a) Ritz series limit [Kramida 2010, Table H]. 
b) NIST: Atomic Spectra Database 78 [version 5.11]: Ionization Energies Form. 

Energy has been determined from bound-state QED ab initio calculations. 
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Table 9: Absolute values of the hyperfine splitting frequencies in H and D calculated by scaling 
from the hfs of 1S1/2. 

 hydrogen deuterium 

(∆𝐸)௛௙௦ 1𝑆1/2 (MHz) 1420.405 751 768(1) a) 327.384 352 5222(17) a) 

𝐵෨  (ppm) 0.080 997 276 b) 0.024 884 934 b) 
      
(∆𝐸)௛௙௦ 2𝑆1/2 (MHz) 177.55 15  40.92 32  
    177.55 69 a) 40.92 45 a) 

 3𝑆1/2     52.60 77  12.12 54  
 4𝑆1/2     22.19 38    5.11 54  
 5𝑆1/2     11.36 32    2.61 91  
 6𝑆1/2       6.57 59    1.51 57  
 7𝑆1/2       4.14 11    0.95 45  
 8𝑆1/2       2.77 42    0.63 94  
 9𝑆1/2       1.94 84    0.44 91  
 10𝑆1/2       1.42 04    0.32 74  
 11𝑆1/2       1.06 72    0.24 60  
 12𝑆1/2 (MHz)     0.82 20    0.18 95  
       
 2𝑃1/2(𝐹 = 1) (MHz)   59.18 39    
 2𝑃3/2(𝐹 = 2)     23.67 33    
 3𝑃1/2(𝐹 = 1)     17.53 59    
 3𝑃3/2(𝐹 = 2)       7.01 43    
 3𝐷3/2(𝐹 = 2)       4.20 86    
 3𝐷5/2(𝐹 = 3)       2.70 55    
 4𝐷5/2(𝐹 = 3)       1.14 14    
 4𝐹7/2(𝐹 = 4)       0.60 39    
 7𝐹5/2(𝐹 = 3)       0.15 21    
 8𝐷3/2(𝐹 = 2)       0.22 19    
 8𝐷5/2(𝐹 = 3)       0.14 27    
 8𝐹5/2(𝐹 = 3) (MHz)     0.10 19    
       
 4𝐷5/2(𝐹 = 7/2) (MHz)       0.20 46  
 4𝐷5/2(𝐹 = 5/2)         0.14 62  
 8𝐷5/2(𝐹 = 7/2)         0.02 56  
 8𝐷5/2(𝐹 = 5/2) (MHz)       0.01 83  

Notes: 

Hfs values without a reference are derived using formula (9) and may be compared against the theoretical 
values presented by Kramida in 2010 [Hydrogen: Table A and Table 1; deuterium: Table B and Table 2]. 

a) Experimental value [Kramida 2010, p. 591]. 
b) Calculated from the 1S hfs using formula (6). 

 


