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Abstract 

The ionization potential depression (IPD) is crucial for understanding the 

ionization processes of atoms and ions in plasmas. Many efforts have been devoted 

to exploring the temperature and the density dependence of IPD, leading to the 

development of models such as the Ecker-Kröll (EK) and Stewart-Pyatt (SP) models. 

However, these models fail to explain the plasma spectroscopy observed during laser 

nitriding process. To address the problem, the present study introduces a novel IPD 

model and the concept of mechanical-electric coupling (MEC) for the plasma. The 

MEC is important as it can influence a multitude of physical properties, including 

the diffusion of ionized electrons, Debye screening and the ionized electron pressure. 

The IPD model proposed herein is constructed based on spherical wave functions 

for the ionized electrons. It has been shown that this IPD model aligns well with 

both experimental spectroscopic data and the experimental IPD values for ions 

across various charge states. The integration of MEC with the IPD model may 

culminate in the formulation of an equation of state that is in concordance with 

experimental observations of the plasma behaviors. Overall, the MEC and IPD 

model proposed in this study could be instrumental for comprehending the 

ionization processes and the diverse properties of plasmas. 
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1. Introduction 

The ionization of atoms and the consequent formation of plasma is an important 

topic in diverse scientific areas, including astrophysics, magnetic confinement 

fusion, laser inertial confinement fusion and the laser nitriding of the active metals. 

The ionization of atoms and ions at elevated temperatures is typically characterized 

by the well-known Saha equation [1, 2, 3]. Within the equation, the ionization 

potential depression (IPD) is considered as a crucial factor and is widely believed 

to be significantly influenced by the Debye screening inherent to the plasma [2, 4, 

5, 6, 7, 8, 9, 10]. As a result, several important models, such as the Ecker-Kröll (EK) 

model [20 6] and the Stewart-Pyatt (SP) model [21 7], along with various theoretical 

approaches [8, 9, 11], have been formulated. These models have been extensively 

applied to elucidate the ionization process [12, 13, 14, 15]. And they predict a small 

IPD value so that nitrogen (N) atoms are seldom ionized during the laser nitriding 

process. However, the prediction starkly contrasts with the experimental findings 

which demonstrate that nitrogen (N) atoms are completely ionized to form N+ ions 

within the plasma, as detailed in subsequent sections. 

Furthermore, in-situ laser-induced breakdown spectroscopy (LIBS) from both 

previous [16] and current studies indicates that the central wavelengths of the 

spectral peaks emitted by ions and atoms remain largely invariant as the plasma 

evolves. These experimental observations can imply that the energy levels of the 

bound electrons in the outer shells of ions and atoms do not fluctuate with plasma 

evolution. In addition, the characteristic X-ray fluorescence [12, 13, 15] and 



ultraviolet spectra of the plasma [17, 18] show that the central wavelengths of 

spectral peaks emitted by the relevant ions also remain unchanged with plasma 

evolution. These experimental findings collectively suggest that the energy levels 

of bound electrons in the inner shells of ions and atoms are not altered by the 

dynamic electromagnetic environment of the plasma. Collectively, the experimental 

outcomes definitively indicate that the all the energy levels of bound electrons for 

the specific ions and atoms remain unaltered, notwithstanding the intricate evolution 

of the plasma. However, these results are at odds with the conventional plasma 

theory, which often incorporates the Debye screening effect and thereby typically 

predicts a noticeable shift in bound electron energy levels [9, 10, 19] as the density 

and temperature of the plasma varies over the time. 

To reconcile the discrepancies between the experimental observations and the 

conventional plasma theory, an IPD model and a concept of mechanical-electric 

coupling (MEC) for the plasma were proposed in this study. And they were 

employed to investigate both the ionization of bound electrons and the diverse 

physical properties of the plasma. 

2. Experimental methods 

The experimental setup was detailed in the related work [16]. The metal targets were 

high-purity niobium (Nb content>99.95%, purchased from Xinwang scientific research 

metal material). The targets were put in a pressure container. The pressure container 

was first evacuated to a residual air pressure 2×10-3 Pa and then filled with high-purity 



nitrogen gas (N2 content> 99.999%, phased from Sichuan Runtai Special Gas Co. Ltd.). 

The nitrogen gas pressure in the container was controlled to be 1 atm. 

The in situ laser-induced breakdown spectroscopy (LIBS) experiments were carried 

out and its detailed introduction was given by the previous work [17, 20]. The data 

collection duration was 20 ns. By altering the delay time of the LIBS system, the delay 

time dependence of LIBS for the plasma can be obtained. In the experiments, the laser 

energy density illuminated at niobium surface was designed to be 10.4 J/cm2 and 20 

J/cm2, respectively. 

3. Results and discussion 

 

Figure 1 Delay time dependence of the in situ laser-induced breakdown spectroscopy 

(LIBS) created by the laser irradiation on the niobium in nitrogen gas with the 

illumination energy density 20 J/cm2.  



 

Figure 2 Delay time dependence of the in situ laser-induced breakdown spectroscopy 

(LIBS) created by the laser irradiation on the niobium in nitrogen gas with the 

illumination energy density 10.4 J/cm2.  

 

Figure 3 Delay time dependence of the integral intensity for the spectral peaks of N+ 

ions and N atoms within the plasma generated by laser irradiation at the niobium surface. 

The laser irradiation energy density 20 J/cm2 for the left figure and 10.4 J/cm2 for the 

right figure. 

Figure 1 shows that the spectral peaks of the N+ ions and N atoms in the plasma are 

characteristic and their half-width decreases as the delay time increases. The half width 



may be dominated by the local electric field and the related Stark broadening effect 

which is commonly present in the plasma [21]. When the laser irradiation energy 

density dropped to 10.4 J/cm2, the spectral peaks of the plasma were shown in Figure 

2. It indicates that the spectral peaks versus the delay time exhibits the similar behaviors 

to those shown in Figure 1. In both Figure 1 and Figure 2, it is noted that the central 

wavelength of all the spectral peaks of the N+ ions and N atoms does not alter with the 

delay time, despite the dramatic variations in the density and temperature of the plasma 

as the plasma evolves.  

  The delay time dependence of the integral intensity for the typical spectral peaks of 

the N+ ions and N atoms were shown in Figure 3. It demonstrates that the plasma may 

undergo several stages labeled by the dashed lines in the figure. In stage I, the plasma 

may remain in the high temperature and high density state, making the plasma opaque 

for the measured spectral peaks. As a result, there is no observably spectral peaks. As 

the plasma expands in stage II, the density and temperature may gradually decline and 

the plasma may progressively become transparent, leading to an enhanced intensity of 

the spectral peaks. Interestingly, the spectral peaks of the N+ ions can be observed, but 

no spectral peaks of the N atoms can be observed in stage II, indicating that the N 

element exists as N+ ions rather than the N atoms in the stage. As the plasma evolves 

further and enters stage III, the intensity of the spectral peaks of the N+ ions gradually 

decreases but that of the N atoms gradually increases with the delay time. The 

phenomena may be caused by the inherent physical process that a large number of N+ 

ions and ionized electrons recombine to form the N atoms [20].  



Besides the LIBS, other physical properties such as the temperature and the density 

of the plasma should be assessed. The temperature and the density are important 

physical properties of the plasma and they gradually decrease as the plasma expands 

with the time. Based on the simulation work [22, 23], when the laser illuminates on the 

metals with the irradiation energy density 10.4 J/cm2, the typical temperature and 

density of the plasma may approximate 1 eV and 1027 /m3, respectively.  

According to the experimental results, two problems emerge for the conventional 

plasma theory. First, the LIBS of the plasma indicates that the N atoms, with an 

ionization energy 14.5 eV, can be totally ionized to the N+ ions in the plasma during 

stage II. However, using the Saha equation and the IPD models, e.g., SP model and EK 

model which were widely used to calculate IPD and the ionization degree [6, 7, 13, 14, 

15], no more than two percent of the N atoms can be ionized to the N+ ions. In other 

words, the total ionization of N atoms cannot be explained by the conventional theory. 

Second, the experimental spectra in this work and previous research [12, 13, 15, 17, 18] 

demonstrated that the central wavelength of the spectral peaks do not vary in different 

states of the plasma. It means that the energy levels of the bound electrons do not alter 

with plasma evolution. However, the conventional plasma theory, considering the 

screening effect and the scattering between the bound electrons and ionized electrons, 

would definitely yield a shifted energy level for the bound electrons [2, 4, 5, 9, 10, 19]. 

The fixed central wavelength of the spectral peaks in different states of the plasma 

cannot be understood by the conventional plasma theory.  

To address these problems, the conventional plasma theory should be further 



developed. Considering the ionized electrons in the equilibrium state, any plasma 

inhomogeneity can induce a macro-electric field which may obey Yuheng Zhang 

equation [24, 25],  

                       ( ) ( )FE r eE r 
 

                      (1) 

where EF(r) is the position-dependent electron chemical potential (ECP), e is the 

electron charge, and E (r) is the macro-electric field within the plasma. If the plasma 

exhibits non-uniformity in density, the spatial gradient of the electron density will 

engender a diffusion current density according to the Fick’s law. Concurrently, upon 

attainment of the electron equilibrium state, an electric field will be induced, as 

described by equation (1), which in turn can result in a drift current density. Hence, the 

total current density is the summation of both the diffusion current density and the drift 

current density [26, 27],  

                   ( ) ( )t e e ej E r eD n r  
  

                 (2) 

where jt represents the total electron current density, ne(r) denotes the macroscopically 

average density of the ionized electron over a spatial scale much larger than the atomic 

scale, De signifies the diffusion coefficient of the ionized electrons, σe=eneμe is the 

electrical conductivity where it is assumed that the ionized electrons may dominate the 

electrical conductivity owing to their much smaller masses than ions, μe is the mobility 

of the ionized electrons, and E(r) refers to the macro-electric field within the plasma.  

3.1 Theoretical treatment for electrons in plane wave functions 

3.1.1 Mechanical-electric coupling 

Analogous to the case of the metals [24, 25, 28, 29], the mechanical-electric coupling 



(MEC) of the plasma can be articulated by 

                     ln
F

m e

dE
C

d V r                         (3) 

where V(r) is the position-dependent volume of the plasma, and it fulfills the 

relationship ne(r)V (r)=Ne, with Ne representing the total number of ionized electrons in 

the plasma. Using the MEC concept, the diffusion relation for the ionized electrons in 

the plasma can be derived by setting the total electron current density to zero in equation 

(2) 
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Based on the Drude model for the ionized electrons in a plasma [1], the mobility of the 

electron, denoted as ue, is characterized by the relationship ue=eτe/me, where τe is the 

relaxation time. So the diffusion coefficient of the ionized electrons can be ascertained 

in terms of the above equation  

                    e m e
e

e

C
D

m

                         (5) 

As is seen, the diffusion coefficient appears to be proportional to the product of the 

relaxation time and the MEC. It is different from the conventional result of the diffusion 

coefficient De= vl/3 [1] where v, l=vτe represent the mean velocity and mean free path 

of the ionized electron, respectively. 

  Upon attainment of electrical equilibrium state for the plasma, the net electron 

current will approach zero, as delineated by the subsequent relationship,  

     0 e e e een r u E r eD n r  
  

 

Using equation (4) in conjunction with the definition of the electrostatic potential φ, 



where ܧሺݎԦሻ ൌ െ߮׏ሺݎԦሻ, the distribution of the ionized electron ne(r) can be derived as 

follows 

                         
0

m ee r C
e en r n e                      (6) 

where n0e(r) denotes the initial density of the ionized electrons. In contrast to the 

conventional result presented in various textbooks [30, 31], the difference may stem 

from the fact that the term ‒Cm‒e supersedes the statistically thermal energy kBT. And it 

is the same difference that appears between the classical Einstein diffusion relation and 

the diffusion relation depicted in equation (4).  

3.1.2 Debye length 

In order to examine the Debye length of the plasma utilizing the MEC, Maxwell 

equations and Yuheng Zhang equation can be employed. And the following relationship 

can be derived  

                     
2

2

0

( ) ( ) ( )F e

e
E r n r Z r


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  
                 (7) 

where Z denotes the valence of an ion, ε0 signifies the vacuum permittivity. Performing 

a Taylor expansion of the ECP with respect to the ionized electron density yields  

   
2 2

22
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   

The spatial gradient of the ionized electron density ݊׏௘ሺݎԦሻ in a large spatial scale may 

be a slowly varying function. Hence, the nonlinear term can be ignored, leading to a 

liner equation  

                 
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As is shown, the Debye screening wave vector may be given by  
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                         (9) 

It is the identical formula shown in the textbook [32], indicating the validity of the 

derivation here. It is crucial to highlight that the ECP used in equation (8) encompasses 

both the kinetic energy and the potential energy of the ionized electrons. And it is 

distinct from the Fermi energy which only contains the kinetic energy of the free 

electrons, as shown in the textbooks [33, 34]. Using the definition of MEC in equation 

(3) and the relationship ݀ܧி ݀݊௘⁄ ൌ െܥ௠ି௘ ݊௘⁄ , the Debye screening wave vector 

may be modified in the following form  

                          

2
2

0

e
D

m e
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


                        (10) 

Correspondingly, the Debye length can be given by 

                          
2 0

2
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D
e

C

e n

 
                         (11) 

where λD represents the Debye length. It indicates that the screening length sensitively 

depends on the MEC of the plasma, and a small magnitude of the negative MEC may 

result in a reduced Debye length.  

  The preceding theoretical discussion has introduced the MEC for the plasma and 

underscored its important role for various properties of the ionized electrons within the 

framework of the plane-wave functions.  

3.2 Theoretical treatment for electrons in spherical wave functions 

3.2.1 Ionization of the atoms and ions 

As previously discussed, various experimental results suggests that the energy levels 

of the bound electrons within the atoms and ions may not be affected by the plasma 



environment. It implies that the atomic Coulomb potential for the bound electrons is 

likely impervious to the Debye screening effect and the plasma environment. In another 

respect, the ionized electrons may generally undergo a nonzero potential, denoted as ϕ0. 

The potential may be important for understanding the plasma and can be regarded as a 

mean-field outcome of the complex interactions, such as the attraction from the ion 

cores and the repulsion from other ionized electrons. For the sake of simplicity, the 

potential ϕ0 can be treated as a constant. As a result, the total potential governing the 

ionization of a bound electron is illustrated in Figure 4. In the potential model, the action 

radius of the atomic Coulomb potential can be defined as the cutoff radius r0.  

 

Figure 4 Radius dependence of the potential energy for the electron ionization. The 

atomic Coulomb potential, denoted as V(r), is operative within the cutoff radius r0 and 

the constant potential energy, signified as eϕ0, works outside the radius r0. (a) the 

ionization energy levels ε1…εm of the bound electron in the excited states exist below 

the constant potential energy eϕ0; (b) no ionization energy levels of the bound electron 

in the excited states exists below potential energy eϕ0; (c) the constant potential energy 

eϕ0 equals to the ionization energy level Ei of the bound electron in the ground state.  

The mathematical form of the potential energy can be written as  

(a) (b) (c) 



                         0

0 0

( )

 ep

V r r r
V r

e , r r


  


,

                     (12) 

where Vep(r) represents the electron potential energy, V(r) denotes the atomic Coulomb 

potential and it depends on the configuration of residual bound electrons rather than the 

ambient plasma environment, r0 stands for the cutoff radius of the atomic Coulomb 

potential, eϕ0 signifies the constant potential energy for the ionized electron and it is 

contingent upon the plasma environment. The state of the ionized electron can be 

described by the Schrödinger equation in the spherical coordinates,  
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where ħ denotes the reduced Plank constant, ψf(r, θ, φ) stands for the wave function of 

the ionized electron in the spherical coordinates, Ei signifies the ionization energy level 

of the bound electron in ground state and ‒ Ei is the related ionization energy. It should 

be noted that the ionization energy level Ei results from the strong correlation effect of 

the bound electrons in the ion, and it typically resides significantly higher than the 

associated bound energy level.  

Using the method of separation of variables, the electron wave function can be 

expressed as ψf(r, θ, φ)=AR(r)Y(θ, φ) where R(r) is the radial function and Y(θ, φ) is the 

spherical harmonics, A is the non-zero normalization coefficient. Consequently, the 

Schrödinger equation is transformed into the subsequent pair of equations 

     
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2 2

1 1
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where l represents an integer and it is l=0, 1, 2… 



In the scenario where Ei>eϕ0, the partial differential equation can be formulated as  

       
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2
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12
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R r R r l l
k R r
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where the parameter k is defined as ݇ ൌ ඥ2݉௘ ሺܧ௜ െ ݁߶଴ሻ ԰ଶ⁄ . Its mathematical 

solution is the spherical Hankel function which describes the radial wave function for 

the ionized electron propagating away from the atom 
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where the term in the form (‒i)l+1eikr/kr is always present, thereby allowing the 

subsequent integral to approach an infinite value 
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It results in an infinite ratio between the probability of the electron in the ionized state 

and that in the bound sate. It means that the bound electron with the ionization energy 

level higher than the potential energy, i.e., Ei>eϕ0, will undergo the complete ionization.  

In another scenario where Ei<eϕ0, the partial differential equation of the radial 

function can be written as   
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where the related parameter is ݇ ൌ ඥ2݉௘ ሺ݁߶଴ െ ௜ሻܧ ԰ଶ⁄ . The corresponding solution 

may also be the spherical Hankel function 
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                (14) 

The solution is an attenuation function, indicating that the electron may remain bound 

even though the wave function has been extended in space.  



Combining the aforementioned two scenarios, when the electron potential energy eϕ0 

will be continuously reduced to the ionization energy level of the bound electron in 

ground state, i.e., eϕ0=Ei, the electron will transform from the bound state to the fully 

ionized state. In other words, an insulator-metal phase transition happens when the 

electron potential energy eϕ0 crosses the ionization energy level Ei. Therefore, the 

insulator-metal phase transition can be characterized by the closure of the ionization 

gap. Furthermore, when the electron potential energy eϕ0 decreases to the value lower 

than the ionization energy level of the last bound electron during the continuous 

ionization, the plasma will be considered to be fully ionized.  

3.2.2 Distribution function of the ionized electrons 

Assuming that the ionized electrons in the plasma are in the s state (l=0), the related 

wave functions are spherically symmetric. So the ionized electron density around a 

positive ion core can be given by  
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In the k-space the ionized electrons are believed to satisfy the famous Maxwell 

distribution. Therefore, the distribution function for the ionized electrons may be 

expressed as  
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where k is the wave vector, kB is the Boltzmann constant, T is the temperature of the 

plasma, and A denotes a pre-factor. By invoking the electron number conservation, the 

pre-factor A can be determined, and the distribution can be specified as   
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where Z represents valence of the ion in Wigner-Seitz cell, h signifies the Plank constant, 

re denotes the radius of the Wigner-Seitz cell, and the spin degeneracy factor of 2 has 

been incorporated. The distribution function in the k-space may be usually utilized and 

it can be derived by integrating over the spatial coordinates 
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                  (16) 

In another respect, the ionized electron density in a Wigner-Seitz cell can also be 

derived 
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                      (17) 

3.2.3 Electron heat capacity  

Based on the distribution function for the ionized electrons, the average energy of an 

ionized electron within the plasma is given by 

                      0 +
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The related heat capacity at constant volume reads 

                      01
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where the first term on the right hand originates from the kinetic energy and it is one 

third of the conventional value 3kB/2. The second term is derived from the potential 

energy of the ionized electron. 

3.2.4 The electron chemical potential  

Considering a single-component plasma, the ionization process can be described by 



the following transition 

1i iA A e    

where Ai‒1 represents the ion in ionization state i‒1 (possessing i‒1 ionized electrons), 

while Ai denotes the ion in ionization state i (with i ionized electrons), e denotes the 

ionized electron. Due to the conservation of the electrons during the ionization process, 

the following relationship may hold true 
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where Ei denotes the ionization energy level of the bound electron in the ground state 

and it is negative here, εl (l≥1) stands for the ionization energy levels of the bound 

electron in the excited states and they are also negative, εk signifies the positive kinetic 

energy of the ionized electron and it is εk =ħ2k2/2me, EF is the ECP, NA is the total number 

of atoms and ions within the plasma, T represents the uniform temperature of the plasma, 

ϕ0 is constant potential of the ionized electron in the free space and it generally depends 

on the electron density and the temperature.  

The line density of the ionized electron in the Wigner-Seitz cell may be  
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where fle signifies the average line density of the ionized electrons in a Wigner-Seitz 

cell. In the case that the physical parameters fulfill the condition 4ሺݎ௘ െ

௘݇஻ܶ݉ߨ଴ሻሺ2ݎ ݄ଶ⁄ ሻଵ ଶ⁄ ≫ 1, the ECP in the above equation can be obtained in terms of 

simple calculations  



              
 1 2

0

24
ln e B

F B
le

m k T
E e k T

f h




 
   

  
             (20) 

In the case that Z=1, the ECP can be expressed as  
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It may indicate that the excitation states of the bound electrons would lead to the 

reduction of the ECP which may reduce the ionization degree of the bound electrons. If 

there is no excitation state between ionization energy level Ei and the potential energy 

eϕ0, the ECP can be simplified to be   

              1 2

0
0

2
ln 4

2 2
e Bi B

F e

m k Te E k T
E r r

h

  
   

  
        (21) 

Consequently, the MEC can be expressed as 
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In the case that Z≥2, i.e., two or more electrons will be ionized for every atom, the 

ECP can be approximated by  
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In the absence of the excitation states, the ECP may be simplified to  
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Thus, the MEC can be formulated as 
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To be summarized, the general MEC can be articulated as 
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Using the line density of the ionized electrons in a Wigner-Seitz cell, the conventional 

Saha equation may be modified to be  
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where ni and ni‒1 represent the number densities of the ions in the ionization state i and 

i‒1, respectively. If there is not any excitation state, the above modified Saha equation 

may be simplified to 
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It reveals that the conventional Saha equation overlooked several critical aspects. First, 

the derivations of Saha equation did not consider the quantum many-body correlation 

effect for the electron ionization, so the related quantum degeneracies might be 1 stead 

of gi and gi+1. Second, the Saha equation traditionally attributed the reduction of the 

energy gap to the decrease of the ionization energy ‒Ei, which contradicts with the time-

dependent spectroscopy of the ions and atoms in the plasma. Based on the experimental 

spectroscopy, the energy levels of the bound electrons may not be affected, and the 

energy gap εg may be solely influenced by the variation of the potential energy eϕ0 for 

the ionized electrons. Third, the Saha equation only considered the ionization of the 

bound electron at ground state, disregarding the impact of the excitation states on the 



ionization. Fourth, the Saha equation treated the ionized electrons as plane waves and 

used the average spatial density of the ionized electrons, thereby neglecting the possible 

position-dependent spatial density of the ionized electrons.  

3.2.5 Potential energy of the ionized electrons 

To determine the potential energy of the ionized electrons, the method of the Wigner-

Seitz cell can be employed, a technique widely used in the study of the plasma and the 

crystalline materials [32, 34]. Under the assumption that the ionized electrons are in the 

s state, i.e., l=0, the related wave-functions are spherically symmetric. As a result, the 

total Coulomb attraction energy for the ionized electrons within a Wigner-Seitz cell 

may be given by  
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By performing the straightforward calculations, the analytical result can be derived as    
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where Ry represents the Rydberg, defined as ܴݕ ൌ ݁ଶ ଴ܽ஻ߝߨ8 ൌ 13.6	ܸ݁⁄ , aB signifies 

the Bohr radius, and the dimensionless parameters are ru=re/aB, rd=r0/aB. 

The direct Coulomb repulsion energy between the ionized electrons within the same 

Wigner-Seitz cell can be expressed as  

   
0 0

2
1 2

1 2
0 1 2

1

2 4

e er r
e e

C

r r

e f r f r
dr dr

r r





 
 

   

In terms of calculations, it may be depicted as  
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where the cutoff radius r0 is very important and it may be considered as the effective 

Bohr radius which can be delineated using the ionization energy [2],  
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Therefore, the reduced cutoff radius rd is  
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And another reduced radius ru can be given according to the average volume of the ions,  

                             
1 3

34

3u B Ar a n
 

  
 

                     (30) 

Besides the attraction energy and the Coulomb repulsion energy, the exchange energy 

among the ionized electrons within the same Wigner-Seitz cell must also be taken into 

account. The ionized electrons may not exhibit the local magnetic moment at the ion 

site. Hence, the ionized electrons may present the singlet state. Following the 

computational procedures outlined in the textbook [32], the exchange energy for the 

spin singlet state can be given by  
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Through the mathematical derivations, the exchange energy can be obtained  
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where t , t' are the dimensionless parameters defined as ݐ ൌ ሺ݉௘݇஻ܶܽ஻
ଶ ԰ଶ⁄ ሻଵ ଶ⁄ ሺݎ௨ െ

ௗሻݎ  and ݐ′ ൌ ሺ݉௘݇஻ܶܽ஻
ଶ ԰ଶ⁄ ሻଵ ଶ⁄ ሺݎ െ ௗሻݎ , respectively, Erf(t) signifies the error 

function given by ݂ݎܧሺݐሻ ൌ ଶ
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Moreover, the interaction between the adjacent ions should be taken into account 



when considering the potential energy of the ionized electrons. The Coulomb attraction 

energy between the ionized electrons and the nearest-neighboring ion core can be 

determined using the ionized electron distribution function and it is given be 
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where ሬܴԦ	 represents the position vector of the nearest-neighboring ion with the 

magnitude 2re. Substitution of equation (17) into the above equation will yield 
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where 2re denotes the distance between the two nearest-neighboring ions, the parameter 

αZe represents the ionization degree for the ion with Z ionized electrons, and Z‒1+αZe 

signifies the average ionized electron per atom. The average Coulomb repulsion energy 

between the ionized electrons in the ion and those in the nearest-neighboring ion may 

be  
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where the pre-factor 1/2 is due to the fact that the ionized electrons within the two ions 

share the Coulomb repulsion energy. Insertion of equation (17) will give the result  
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For an ion with the coordination number z1, the energy contributed by the neighboring 

ions may read   
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As a result, the average potential energy for an ionized electron can be articulated by   
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Substitution of the related energies into the above equation will yield 
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It is the IPD model for the single-component plasma in the work. To examine the 

applicability of the model, a comparison between the model and the experimental 

results is necessary. Using the model along with the experimental data of the aluminum 

plasma [12], the calculated IPD values for the aluminum ions and the experimental 

counterpart were shown in Figure 5. As is shown, the IPD values given by the model 

may agree with the experimental values better than those obtained from the EK model 

and SP model.  

 

Figure 5. Charge state dependence of the experimental ionization potential depression 

(IPD) values [12] and those obtained by SP model, EK model and our model for the 

aluminum ions in the plasma with the solid density 2.7 g/cm3. 

On another hand, it is necessary to further investigate whether the model can account 

for the total ionization of N atoms during the laser nitriding process. As previously 



stated, the experimental spectroscopy demonstrated that all the N atoms can be ionized 

to be the N+ ions during stage II of the laser-nitriding process. It can be implied that the 

Nb atoms can be ionized to be the Nb2+ ions whose second ionization energy (14.3 eV) 

is comparable to the first ionization energy (14.5 eV) of the N atoms. Given the situation 

where the a N+ ion is surrounded by both the Nb2+ and N+ ions within the plasma, the 

potential energy for the ionized electron in the N+ ion may be modified to be 
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where rd1 signifies the reduced cutoff radius for the N+ ion, z1 and z'1 represent the 

number of the nearest-neighboring Nb2+ ions and N+ ions around a N+ ion, ru1 and ru2 

correspond to the reduced radius of the N+ ions and the Nb2+ ions, respectively. They 

must satisfy the following relation for the dual-component plasma 
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where nA1 and nA2 represent the number density of the N+ ions and the Nb2+ ions within 

the plasma, respectively. For the uniform plasma, the ionized electrons in the different 

ions may undergo the same potential energy. Therefore, the potential energy for the 

ionized electron in the Nb2+ ion can be expressed in an analogous manner 
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where rd2 denotes the reduced cutoff radius for the Nb2+ ion, z1 and z'1 are the numbers 

of the nearest-neighboring N+ ions and Nb2+ ions around a Nb2+ ion, respectively, and 

they depend on the structure of the plasma. Although the exact structure of the dual- 

component plasma remains unknown, an assumption can be made that the Nb2+, N+ 



ions construct a simple cubic lattice, with alternating occupancy of the lattice sites. 

Under the assumption, the important numbers are z1=6, z'1=12. Other important 

parameters such as the temperature and the density of the plasma can be estimated by 

the relevant simulation. According to the simulation work [22, 23, 35], the typical 

temperature and density of the plasma created by laser illumination on metals with the 

irradiation energy density 10.4 J/cm2 may be approximated as 1 eV and 1027 /m3, 

respectively. By substituting the experimental parameters into the conventional EK 

model and SP model, the density-dependent IPD values were obtained and were 

displayed in Figure 6. As indicated, the IPD for the N atoms at the experimental density 

may be less than 5 eV. Such a small IPD suggests that only a minor fraction of N atoms 

will be ionized, which is inconsistent with the experimental spectroscopy in the work. 

On the contrary, the potential energy of the ionized electron in the N+ ion is found to 

reach a value of ‒17 eV based on equations (35) (36) and (37). In other words, the 

related IPD is 17 eV which exceeds the first ionization energy and can lead to the 

complete ionization of the N atoms, as agrees with the experimental spectroscopy 

shown in Figure 1, 2 and 3.  

 



Figure 6. Reduced radius ru (defined in the paper) dependence of ionization potential 

depression (IPD) for the N atoms in the plasma during the laser nitriding process. The 

temperature of the plasma was assumed to be 1 eV. 

3.2.6 Equation of state  

To study the related pressure of the ionized electrons in the plasma, the canonical 

partition function can be utilized [36] and it is given by 
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where the factor 2 takes the spin degeneracy into account, the parameter β is defined as  

β=1/kBT. Performing the integration of the partition function will yield  
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As a result, the electron pressure can read 
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Insertion of the expression for the MEC may give birth to the general formula 
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As demonstrated, the electron pressure is sensitively dependent on the ionization degree, 

the MEC and the total density of the ions and the atoms within the plasma. The sign of 

MEC may dictate the sign of the electron pressure. If the MEC is positive, the ionized 

electrons will display a negative pressure. Conversely, if the MEC is negative, the 

ionized electrons will exhibit a positive pressure. 

The canonical partition function for the ions and atoms within the plasma can be 



expressed in the similar manner 
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where ZA denotes the canonical partition function for the ions and atoms within the 

plasma, the second term in the exponential function represents the average Coulomb 

repulsion between the ion core and the nearest-neighboring ion cores. The integration 

can be carried out to obtain the result 
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Consequently, the pressure can be formulated as  
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The total pressure of the plasma may be the summation of the electron pressure and the 

ion pressure 
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where ptot is the total pressure of the plasma. Substituting the relevant expressions for 

the pressures yields 
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It indicates that the total pressure of the partially ionized plasma may depend on the 

temperature, the MEC, the ionization degree and the total density of the neutral atoms 

and the positive ions. Insertion of the expression for the potential energy of ionized 

electrons will give rise to the following result 

   
 

   2

1 2 1
1 ln 2

3 23

u

d

r
Ze A Ze uu u d u u d

tot A B
u d u d d uru d

Z n Z Z r Ry Erf tr r r r r r
p n k T dr Erf t

r r r r r t r t rr r

          
            

 (40)  



where the contribution of the Coulomb repulsion energy between the ion core and the 

nearest-neighboring ion cores may be cancelled by the related energy between the 

ionized electrons and the nearest-neighboring ions. As a result, the total pressure does 

not explicitly contain the contribution from the neighboring ions. But the total pressure 

does implicitly contain a contribution from the nearest-neighboring ions, which can 

influence the ionization degree and the number of ionized electrons.  

 

Figure 7 Reduced radius ru (defined in the paper) dependence of the pressure for the 

plasma. Black squared represent the results calculated by our model, the blue triangles 

and the inverted cyan triangles denote the results based on SP model and EK models, 

respectively. The charge state Z=1 for left diagram for and Z=2 for right diagram. The 

insets present the related diagram in linear scale.    

To evaluate the validity of the equation of state presented in equation (40), it is 

essential to compare it with other models and the related experimental data. The models 

like the EK and SP models often concentrate on the IPD, but they frequently overlook 

whether the proposed model can provide a rational equation of state for the plasma [6, 

7, 8]. Using the EK model and SP model models, it may be predicted that the plasma 

sometimes exhibits the negative pressure shown in Figure 7. The prediction may be 



unreasonable and at odds with the positive pressure observed by the experiments [37]. 

To be contrast, our model can give the positive pressure for the equation of state, as 

presented in Figure 7. The more careful comparison with experimental data was shown 

in Figure 8. According to the experimental conditions [37], the IPD for the Ni plasma 

can be estimated in terms of our model and may surpass the second ionization energy 

(18.2 eV) of the Ni atoms, thereby enabling the plasma exist in the charge state Z=2 

under the experimental conditions. Thereafter, the pressure of the plasma can be 

obtained by means of the equation (40), as shown in Figure 8. It indicated that the 

plasma pressure calculated by our model is much smaller than that obtained by the ideal 

gas model and may agree with the experimental observations.    

 

Figure 8. Temperature dependence of the pressure for the single-component (nickel Ni) 

plasma with the density 0.1 g/cm3. Orange diamonds, black squared give equation of 

state for the plasma with charge state Z=2 based on the ideal gas model and our model, 

respectively. The magenta circled with erro bars denote the experimental observations 

[37]. 

4. Conclusion  



In summary, the MEC and the IPD for the plasma were investigated from both the 

experimental and theoretical aspects in the work. The concept of MEC was proposed 

for the plasma in the work. It was revealed that the MEC may be of paramouont 

importance and may dominate various physical properties of the plasma such as the 

diffusion relation of ionized electrons, the Debye screening and the ionzied electron 

pressure. Furthermore, a model for the IPD was proposed based on the sperically 

symmetric wave functions for the ionzied electrons within the plasma. The model was 

found to agree with both the experimental spectroscopy and the experimental IPD for 

the ions with different charge states. Combination of the MEC and the IPD model may 

give rise to the equation of state for the plasma, which may be in accord with the 

experimental observations. Above all, the proposed MEC and IPD model may be vital 

for people understanding the ionization process and multi-physical properties of the 

plasma. 
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