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This study presents an extension to the classical theory of electromagnetism to include quan-
tum phenomena and proposed as a ‘bridge’ between Maxwell’s equations and quantum mechanics.
This bridge is facilitated through a mathematical formalism that covers Maxwell equations, Dirac
equation and the Proca equation. One outcome of this study is a new Lagrangian that maintains
the same fermionic field dynamics generated by the Dirac Lagrangian while being more symmet-
ric. Additionally, this work introduces a ‘quantum’ stress-energy tensor that can be integrated into
Einstein’s field equations as source of spacetime curvature, thereby connceting quantum mechanics

and general relativity.

Introduction

In 1928, Paul Dirac introduced his renowned equa-
tion [1], which he proposed as the special relativity gen-
eralization of the Schrodinger equation. Dirac formu-
lated his equation by hypothesizing a matrix-based solu-
tion for the mass shell condition, represented by quan-
tum operators. Dirac’s formalism takes advantage of
the non-commutative property of square matrices. This
study, addresses the same problem using a similar 'guess-
ing’ approach. However, instead of using matrix non-
commutative properties, the formalism adopted in this
work is grounded on a coordinate-independent symme-
try, identified in Maxwell’s equations. This approach is
an attempt to extend classical electrodynamics to incor-
porate quantum effects.

I. ON-SHELL ELECTROMAGNETISM

Consider the following operator matrix eigenvalue
equation:

19, 0 0 4V-\ [/S§ Sy
0 19, 4V jVx St _ .mec[ST
0 jV- =19, 0 So | TR Sy

iV —jVx 0 -19,) \S~ S-

(1)

The operator matrix is populated with first derivative,
coordinate-independent differential operators. The state
vector is composed of Sj and Sy which are scalar fields
and STand S~ which are complex vector fields, where
’4" is the imaginary unit, ‘m’ is the mass of the ’particle’
field, 'c’ is the speed of light and 7 is the reduced Plank
constant.

Applying the same operator matrix to the left-hand
side of eq.1 and correspondingly multiplying the right-
hand side by j%¢ yields a set of scalar and vector Klein-
Gordon equations:
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By selecting solutions of the form S o e=7(“!=kT) for
all state vector components and identifying

w =

k=

>3

it is straightforward to find that the mass-energy shell
condition E? = |p|? + m2c* is simultaneously satisfied
for all rows of eq.2 . This behavior is similar to that of
the Dirac equation.

Now, let’s write eq.1l in its non-matrix form:

V-8 = (f%c - %at> g
ijS‘:—jV-Sg—i—(j%—%@t)SJr

) +_(.mec 1 _ I ®)
jv-8 —<7+28t>50
ijS+=jV~SJ—<’%C+%8t>S‘

Considering 8* = ¢B* — jE* where E* and B*
can be identified as an electric-like and a magnetic-like
fields correspondingly, that have real amplitude coeffi-
cients. eq.3 can be expanded by real/imaginary separa-
tion to:



V-Bt=0
me 1
E =(j——-
\V4 <] 7 CB,g) SO
1

cV x Bt =VS; + (g%c + —8t) E-

1
VxE = (]%c — —8,5) cB™*

(4)
V-B™ =0
V-E' = (/%C + lat) Sy
¢V x B~ =-VS; — (jm—c - lat) E*
h c

< retains its 'j’ factor is to align
with the derivative of the complex exponent e 7 («Wt—Fk7),
The similarity of the top and bottom of eq.4 to Maxwell
equations is evident. Furthermore, if E+ are consider to
be electric fields, then the units of the scalar fields Si~ are
identified to be similar to electrical field by units compar-
ison. It can be demonstrated that all vector and scalar
fields in eq.4 uphold Klein-Gordon equation structure.

The reason the term j ¢

II. POTENTIALS AND GAUGE CONDITIONS

By following the same procedure used to derive the
electric and magnetic potentials from Maxwell’s equa-
tions, one can obtain corresponding potentials:

VXA (5)
Bt —vVx At (6)

— vt < % . _at> cA* (7)
Vo v - (/%C n at> cA” 8)

Where the sign indices over the the scalar potential ¢
where arbitrarily chosen to align with the signs of the
sign of the vector potentials. This will prove useful in
the following sections.

To derive the gauge conditions one can start by sub-
stitute eq.6 and eq.7 in the third row of eq.4 :

cVxVxAT =
= VS + (f%c + %at) [—v¢+ + (;’%C - —at> CA+}

Using the identity VxV x A =V(V - A) — V2A:

vV (V-AT) — VAT =

me 1 mey2 1
= VSS_ -V (]? + Ef)t> ¢+ - l:(—) + 0_26tt:| CA+

reordering the terms:

()" + - ca - <9>

=V [S+ ( L;L‘Jr at)¢+—cV A*}

Since BT o e 7(@t=km) and BT =V x A*, it follows
that AT also has the same exponential dependency Con-
sequently, due to the mass shell condition, the left-hand
side of eq.9 becomes null:

meN2 1 o] .x
{(7) +C—26ﬁ—v}A -0 (10)
Therefore, the right hand side of eq.9 is null. Thus, the
first condition is:

1
VAt - S+ (g%c + —8t> ¢t =0 (11)
c
By applying a similar derivation to the seventh row
eq.4, a second condition can be obtained:

1
VA +85 - ( m—c—-at)cb -0 (12)
h c
By substituting eq.7 and eq.8 in the divergence of the
electric fields in eq.4, it can be shown that also the scalar
potentials ¢* satisfy the mass shell condition:

{(%6)2 + 0_1281526 - VQ} ¢i =0. (13)

From eq.11 and eq.12 one can express the scalar fields
in terms of the derivatives of the potentials.

Sf=cv-At + (jm?ch%at) oF (14)

Sy =-cV-A" + <g%€ - —@) o (15)



A. Gauge conditions
1. ’Strong’ gauge condition

Consider the transformation:

AT 5 AT LV (16)
$F = 67 — (Lo, +55) x (17)

where x = x (r,1).
Applying this transformation on eq.14 and eq.15 :

S =+4cvV- At + <g’%€ + %at> b*

Sif = +cV - (A% + Vy

)+
+ (]77% + - at) [d) (%815 qz]%) X]

mc
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, 1 mce 2]
S(:Jt:SS::IZCVZX:F{_Qatt‘F(T) X
d ot 9 me\ 2
SO_SO:F{CVJF dtt+(h)}x
o _ g o [(PY L B2 mey?]
SO_SOJF{(h) 62h2+(h)_x (18)
T (19)

where eq.18 is based on the assumption that y has of
the form yoe=7(“'=*7) and that F = wh and p = kk. the
transition to eq.19 utilizes the mass shell condition (and
the assumption that x is a massive field). It can be sim-
ilarly demonstrated that the fields E*, B* are also con-
served under the transformation described in eq.16 and
eq.17. Therefore, eq.16 and eq.17 describe a gauge con-
dition. It’s worth noting that, unlike the Lorentz gauge
condition where the gauge field x is required to have sec-
ond derivatives in time and space, here, to maintain the
fields (and the Lagrangian), x is restricted to be a mas-
sive field of the form of xge/(“t=*7")with a mass m which
is identical to the mass term of the transformed fields.

2. ’'Weak’ gauge condition

Consider the standard Lorentz gauge from classical
electromagnetism:

A 5 A* 4V (20)
¢= = ¢F — Loix (21)
Applying this on eq.14 and eq.15 :

S =4cvV- At + (jm—c - %at> ¢t

h
mec 1, 1,
I + _dt) (d)i — —th)
c c

P %a) o -
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h
1 me 1
=4 ) 22
(et e
, 1/ mec 1
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Using the same transformation on eq.7 and eq.8:

+ _ —ng:': F <]% + %@) CA:F
1 .me 1
F=-V <¢]F - Eatx) F (]7 + E&e) (cA* +cVy)

, 1 c 1
+ = —V¢I + Evatx + (]%’ + Eat) 014i F

me 1
j— + =0, 24
:FC<]h+Ct>vX (24)

ot + 1 mec 1
E*=E +;V8tX2Fc ]74-;515 Vx (25)

Writing the equivalent to Gauss law in eq.4 as follows:

V.-Ef = (j@ + %at> SF (26)

and substitute inside the transformed expressions in
eq.23 and eq.25:

1 1
v. [Ei FIVOxFe <j@ + —at> vx] -
c h c

mc 1 1/ me 1
=d5 £ =0 ) [S§ FeVix— = (i F =0 ) dix
h c c h c

1 mc 1
V- .Ei + EVQatX Fc (]7 + E@) VQX =




Hence the field equation of 'motion’ is invariant if the
right term is null, hence:

mc

K_)? + 0123” - vﬂ Bx =0 (27)

h

this reiterates the previous constraint on y to be a mas-
sive scalar field of the form yoe/ %7 with the same
identical mass. Therefore, under the transformation de-
scribed by eq.20 and eq.21, the fields are not conserved
(nor the Lagrangian in Sec.IIIE) but the equations of

19, o o o 0 jo,
0 1o o 0 jo, 0
o o 9 o jo, jo.
0 0 0 20, jo. —jo,
0 jo, jo, jo. -8, 0
joy, 0 jo. —jo, 0 —1g
jo, —jo, 0  jo. 0O 0
jo. jO, —j0r O 0 0

motion remain invariant. This invariance can be demon-
strated for the rest of eq.4 using the same process.

III. BRIDGING QM AND GR
A. Connection to Dirac Equation

Eq.1 in a Cartesian coordinate system is:

Joy  jO: So Sq
—jo. 5o, | | st S
0 jo. || st st
joy 0 SH| _ me| sy (28)

0 0 Sol =7 h | sy

0 0 Sy S
-0, 0 Sy S,
0 —10,) \S; S-

Eq.28 can be manipulated to align it with the form of the Dirac equation. This could provide a more direct
comparison between the suggested equation and the well-established Dirac equation:

To achieve the correct sign of the mass term, eq.28 needs to be multiplied by ’ — 5/ :

-5, 0 0 0 0 —jo,
0 -9 0 0 —jo. 0
0 0 -1, 0 —jo, —jo.
0 0 0 -19, —jo. jo,
T o —jo, —jo, —jo. Lo, o
—jo, 0 —jo. jo, 0 1o
—joy O, 0  —jo, O 0
—jd, —jo, 0. 0 0 0
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0 10 0 000 0
0 0 -1 0 000 0
o |0 0o 0o 10000
T=lo 0o o 0o 100 0
00 0 0 0 100
00 0 0 00 10
00 0 0 000 1
0 0 000 0—j 0
0 0 00000 —j
0 0 00-500 0
s, |0 0 0003 0 0
“Tlo 0o —50 000 0
0 0 04000 0
50 00000 O
0 -5 00000 0

mc

(370, = 5= ) w=0

(29)
li
—jo, —jo.\ /S Sy
jo. —jo, | | s S+
0 jo. | |SF Sy
—j0; 0 ST me | SF|
0 0 SO‘_FSO—_O (30)
0 0 S S
19, 0 S, Sy
0 19 S7 S
0 000 0 —j 00
0 000 —j 0 00
0 000 0 0 0 j
. o o000 0 0 5o
T=10 -500 0 0 00
5 000 0 0 00
0 00— 0 0 00
0 00 0 0 00
000 0 0 00 —j (31)
000 0 0 0 j 0
000 0 0 —0 0
s 000 0 — 000
T=loo0oo0o -5 0 000
00— 0 0 00 0
00 0 0 000
500 0 0 00 O



Therefore, eq.1 can be written as an ’extended’ Dirac
equation:

(370, - 5=) s =0 (32)

where the 4x4 Dirac gamma matrices were replaced by
8x8 gamma matrices and the bi-spinor wavefunction
was replaced by 8 component complex vector, composed
of 2 sets of scalar and vector ’electromagnetic-like’ fields.

One can calculate 7% = j7°v1v2~3 to be:

7 = (2 8) (33)

where
1000
(o0 100
=10 o010
0 001

happens to be the Minkowski metric. Furthermore, it
can be demonstrated that the gamma matrices generate
a Clifford algebra, characterized by the following anti-
commutation relations:

A=At A = 2 (35)

Note that the sign at the right hand side of the anti-
commutation relation is dependent on the metric signa-
ture definition. Here the signature was chosen to be (-
1,1,1,1). Additionally, ¥° anti-commutes with the four
gamma matrices-

{7} =7+ =0 (36)
Using the definitions of left and right chirality projec-

tion operators from quantum mechanics (Dirac formal-
ism), their corresponding definitions can be written as:

_ 1" _ 111
Pr=" _%<—77 I4>

5 1
P = 152 _g<; }74)
where 1 is the 4 x 4 identity matrix. These operators are
singular matrices as expected, and it is interesting to find
how the difference between the left and right operators
is related to the metric signature.

It can be shown that the non-zero eigenvalues are all
equal to 1 and the general eigenvectors of the parity pro-
jection operators have the form (using the notation of
eq.1)

(37)

So So
S S
Y = So | YR = S, (38)

-8 S

Though their translation to EM-like fields and their
symmetries are of interest, this is not covered by this
work and left to the inquisitive reader.

B. Spin

To investigate the spin, one first needs to define the
Hamiltonian and the angular momentum operator within
the Dirac formalism and then examine their commutation
relations.

The structure of the Hamiltonian is given by H =
a;p' + Bmc? [2]. This can be derived from the extended
Dirac equation (eq.32) by multiplying it by 4%, using the
relation 4090 = I:

~ _omc

(j-mo + 379101 + 70205 + j7°05 — 7) S=0

Thus, by using the assumption that S oc e 7(Wt—*7)
for all state vector components and identifying w = %
and k = 2, the Hamiltonian can be expressed as:

H = C’YO'Ylpl 4 07072132 4 C'YO'YBP3 4 */Omc2

Defining o as o' = cy%y* | i = 1,2, 3, the Hamiltonian
can be expressed (using Einstein summation convention)
as:

H = a'p' ++Omc? (39)

to check conservation of angular momentum, the same
QM angular momentum operator definition will be used:

L; = ceijrxjpr

where ¢;;;, is the Levi-Civita symbol. The standard pro-
cedure to assess angular momentum conservation in the
direction "¢’ by checking if L; commutes with the Hamil-
tonian is assumed to be still valid here. Since this calcu-
lation is identical to the QM case (mainly using position
and momentum commutation relation) it will not be ar-
ticulated here and only the result of it is given:

[Li, H] = jeeijrashpy (40)

As expected, since the matrix algebra is identical to the
Dirac equation, there is an additional intrinsic angular
(’spin’) momentum. The spin generators are to be calcu-
lated similarly to the Dirac equation case:

a; == a; = -’y i=1,2,3

such that:



0 700000 0
500 000 0 0
0 00-00 0 0
_ 007 00000
M="C10 000 0-j0 0 (41)
0000 j 0 00
00000 0 0 —j
000000 j O
0 0 5000 00
0 003500 00
500000 0 0
|0 50000 00
@==Cl o g 000 0 —j0 (42)
0 00000 0 j
0 0004 0 00
0 0 000 00
000000 0
0 0—0000 0
0 j 00000 0
. |=j0 0000 0 0
W="C1 G 00000 0 —j (43)
000000 —j 0
000003 0 0
0000 00 0

In an identical way to the Dirac equation case, the com-
mutation relation of the above matrices with the Hamil-
tonian yields:

[, H] = —2jceijronpr (44)

Consequently, upon combining eq.44 with eq.40:

L+ 2, H) =0 (45)
Hence, similarly to the scenario of the Dirac equation, the
internal spin angular momentum at direction ¢ € [1,2, 3]
is characterized as s; = %&i = —%075707i. The eigen-
values and eigenvectors corresponding to the spin in the
‘z’ direction are delineated in Table 1. It is evident that
in contrast to the Dirac equation, this formulation intro-
duces an additional (independent) spin eigenvector for
each spin eigenvalue.

In order to discern the distinction between these two
spin states (which can also be summed together), an ex-
amination and comparison of the resulted field equation
is provided. Consider the first eigenvector in Table 1 and
recalling that SZ-jE = cBZ-jE — JEZi and assuming all field
amplitude coefficients are real, it is evident that-

Ef =Sf (46)

z

No| Ano| =3n| Ih | =3n| In | -Lin| In |-in
Si: —]% % 0 0 0 0 0 0
S| o0 0 \/% \/% 0 0 0 0
Syl o 0 —gjg j\% 0 0 0 0
St % —j% 0 0 0 0 0 0
Sy:| 0 0 0 0 |ids |5 0 0
Sy:| 0 0 0 0 0 0 \/% %
Syl 0 0 0 0 0 0 |-ivs|ids
S;: 0 0 0 0 % j\% 0 0

TABLE I. Eigenvalues and eigenvectors for the spin operator

at 'z’ direction gag

and all remaining fields are consequently set to zero. In-
corporating the relation from eq.46 into eq.4 yields:

(47)

The third row in eq.47 indicates that F (and similarly
Sg) fluctuates over time without any external momen-
tum since the mass is the sole contributor to the energy,
which is negative. Moreover, a simple examination in the
aforementioned set suggests that the spatial derivatives of
EF (and correspondingly S;) are all zero. Consequently,
EF and S exhibit no spatial variations, as could be an-
ticipated due to the uncertainty principle (they are dis-
persed throughout all space).

A comparable examination for the second eigenvector
in Table 1 yields a similar outcome, with the distinction
that in this instance, E} = —Sf. Similarly, the fifth
and sixth eigenvectors yield identical results, albeit with
a positive energy. Consequently, it is possible to identify
that S5 is a scalar field that carries angular momentum
in the '’ direction when combined with a corresponding
EF field component.

The third eigenvector in Table 1 is simplified to the
following relations:

¢Bf =Ef , ¢Bf =-Ef (48)

Setting these relations in eq.4 and removing null and re-



dundant rows the remaining equations is as follows:
V- (-Efit+Efj) =0
V x (—EJ£+E;§) =0
V. (E+:B+E;§/) =0

m: 1 (49)
(JT" - Z@) (E+s + Efg) =0
V x (E::f:—i—E;g}) =0
expanding the nabla operators yields
0Bl —0,Ef =0
0.Ef = 0.EF =0
0. Ef + 8yE; =0 (50)
.mc 1 . "
refining these equations :
Ef = E;ej% (51)
¢Bf =cBfel® (52)
E|lB (53)
cBf = Ef (54)

Therefore, ET and BT are orthogonal to each other
and rotate in the (z,y) plain in a circular polarization
manner with no other spatial variations. Similarly to the
previous cases we find that the mass is the sole contribu-
tor to the (negative) energy. Additionally, the associated
Poyniting vector is pointing at the +2 direction.

Se Sy SFosF o0 0
-SF Sy S; -S; 0 0
-Sf =S Sy S; 0 0
-5 Sy -S; Sy 000
o o0 0 0 Sf S7
0 0 0 0 -5, S&
o 0 0 0 =S5 S
0 0 0 0 =S —5f

Utilizing the expansion S& = ¢BF —
equations:

For the real part:

In contrast to the previous case where the angular mo-
mentum was carried by the scalar field Sp(with no ap-
parent rotation in the equations), here the rotated vector
fields carry the angular momentum of %h.

An intriguing observation is that the eigenvectors of
the spin operator couple fields which are not coupled
by eq.4. Hence, the mathematical description of spin
enforces coupling of two fields from separate sets (next
to be marked by '+’ and '—' signs). A single 'quazi-
Maxwell” equation set is insufficient to describe the spin
phenomenon.

C. Constructing a Lagrangian

While the Dirac equation formalism describes fermions
(matter) and aligns with special relativity, it cannot be
fully integrated in Einstein general theory of relativity
(GR) as the source of the metric curvature. On the other
hand, Maxwell equations formalism can be incorporate
in GR as a source via the electromagnetic stress-energy
tensor, but it does not describe matter.

Given that the equations presented in this work are
somewhat an expansion of Maxwell equations towards
the Dirac equation (or vice versa) it is enticing to con-
struct a quantum-Maxwell-like Lagrangian that will de-
scribe quantum-matter and also be of the form that can
be incorporated in GR (describing quantum-matter as a
curvature source).

The differential eigenvalues equation, eq.28, is the
starting point for the derivation of the Lagrangian. It
is to be written in an ’inverse’ form by interchanging the
roles of the state vector components and the derivatives
such that:

0 0 ~1p, Sy
00 50z Sr
0 0 JOy S
0 0 jo. | _ .mc | St
scoso || Lo | T | st (55)
—-S+ s 70z Sy
S-S JOy Sy
St Sy ) \Jo S

jE;t and separating real and imaginary terms, eq.55 splits to two matrix

S, Ef Ef Ef 0 0 0 0\ /1y Sy
~eBf 0 E. -E; 0 0 0 0 8, B}
“eBf “E; 0 E, 0 0 0 0 a, cB
~eBY E; -E; 0 0 0 0 0 0. | me|eBr (56)
o o0 o 0 S Ef E; E: 9, | T | s
0 0 0 0 -eB; 0 -Ef Ef D, B
0 0 0 0 -eB, Ef 0 -Ef|| 9, By
0 0 0 0 —eB; ~Ef Sf 0 0. B>



For the Imaginary part:

0 eBf eBf eBf 0 0 0 0 _1p, 0

Ef S B -B; 0 0 0 0 a, —EF

Ef -B; Sy By 0 0 0 0 d, —E}

Ef B, -B; S, 0 0 0 0 2. | _ .mec|—-EFf (57)
0 0 0 0 0 ¢By eBy eB; || Lo, [“7n | 0

0 0 0 0 E; S§ —-Bf Bf O -E;

0 0 0 0 E; Bf Sf -Bf 9y —E;

0 0 0 0 E; -Bf Bf 5§ D2 —L7

In the equations above, half of the rows have been em-
ployed to define the potentials and are thus redundant.
These rows can be omitted without any loss of informa-
tion when the fields are replaced with potentials. The
rows of the equations that do provide information are

the first and fifth rows in eq.56 and the second, third,
fourth, sixth, seventh and eighth rows in eq.57. There-
fore, all these lines in eq.56 and eq.57 can be unified to a
single matrix equation as follow-

Sy Ef Ef Ef 0 0 0 0 _1p, Sy
—~Ef -S; —cB; ¢B, 0 0 0 0 o, E*
~Ef B, —S; —cB; 0 0 0 0 dy E;
~E} —eB; B, -S; 0 0 0 0 9. | _ .me|ET (58)
0 0 0 0o S§ E; E; E: 9, | =7h | S5
0 0 0 0 —E; =S ¢Bf —cBf D E;
0 0 0 0 -E, —eBf -Sf B} 9y E,
0 0 0 0 —E. ¢Bf —cBf -8; 9; B

Reorganizing the four bottom rows, such that the components of B align with the signs of the B~ components:

S Ef Ef Ef 0 0
~Ef =Sy —cB; c¢B, 0 0
-E} c¢B; -S, —cB; 0 0
~Ef —cB,; c¢B; -S, 0 0
0 0 0 0 —Si E;
0 0 0 0 -E, SF
0 0 0 0 —E, cBf
0 0 0 0 —E; —cBj

excluding their diagonals, the main diagonal blocks of
the matrix has the form of the electromagnetic tensor[3]:

0 E. E, E.

| -E; 0 —cB, cBy
Fi=1_g, ¢B. 0 —cB,
“E. —¢B, ¢B, 0

Note the intriguing blend of spacetime signatures that
emerge in the derivative vector in eq.59

Consequently, the matrix in eq.59 can similarly be de-
fined as an eztended electromagnetic tensor F}f,, and the
field vector be defined E* such that the fields dynamics

0 0 19, Sy
0 0 O Ey
oo || P
= | e B

E, E; 10, | T | -sT (59)
—cBY B —0y By
S§ —eBf || 9y By,
cBf  Sf —0; B

can be compactly written as:

mc

IJFZF:
? h

F+uv ] Ei , U+,Vt € [071273] (60)

The inversion of the + signs is attributed to the defi-
nition of the signs of the potentials definitions will prove
more useful in subsequent equations. The classical elec-
tromagnetic (EM) tensor can be compactly written by
the 4-potential as F'* = Ap,i — Air (using the notation
Ay = 0;AF = %%f). Eq.59 is slightly more complex due
to the sign inversion over the B¥components and the
mixing of 'positive and negative energy’ potential terms
in the definition of the fields. Utilizing the potential con-

struction of the fields in eq.5, eq.6, eq.7, eq.8, eq.14 and



eq.15, one can express the extended electromagnetic ten-
J

F =
- (A;i + B0 —jmqb‘) —016™ — ATy — JmAT  —02¢™ — Ay, —jmA; —836~ — A3y — jmAZ 0 0 0 0
0167 + Aj o+ jmAy A+ 0007 —jme™ Agq — Al Az — Al 0 0 0 O
B2~ + Ay o +jmAy AT, — A, A7+ 00¢™ — jme- A3, — Az, 0 0 0 0
03¢~ + Az +jmAg Al g —Ag, Ay q— Az, A+ O00d™ — jme~ 0 0 0 O

sor F' while using the natural units ¢ = i = 1 as follow:

0 0 0 0 — (A;. + dod+ +jm¢+) —019T — Al +jmAT —0a¢™ — AL, +jmA] —036" — A, + jmAT
0 0 0 0 gt + ATy —jmAL AL+ 80T + jmet A, —Af, A, — A,
0 0 0 0 D2 + AT 5 — jmAT AT, — AT, Al 4+ 00¢T + jmet Ag, — A,
0 0 0 © D3¢t + Af o — jmAT Afg — A, A} — AT, Al + 006 + jmet
(61)
[
Until this point, the + superscripts and subscripts were Identifying the 4-potentials:
introduced to track the terms origin in the Dirac equation
formulation as positive and negative energy stationary Al = (qb"’,Af,A;,A;') (62)
solutions. Now, the same + indexing can be incorporated — A= A— A-
: 8 P Al = (o7, A7, A7 AT) (63)

to differentiate between the top and bottom blocks of
eq.61 which are decoupled (but coupled under the spin
operator).

Eq.61 can be expressed as Fy = (F_—F>:
Jr

Fr =
- (8>\A>i — ]mAO_) —01AY — AL — jmAl  —9,A0 —9gA2 — jmAZ  —93A0 — §yA3 — jmA3 o o0 0 O
61A0_ + aoAl_ +]mA1_ 8)\A§ —ij(l 61A2_ — 82A1_ alAi — 83A1_ 0 0 0 0
92 AY + 8()A% +ij% 9 Al — 9 A2 8>\Ai - ij(l Oy A3 — 83A% o 0 0 O
83 A0 + 8y A3 + jmA3 93 AL — 9, A3 93A2 — 9, A3 9h A2 — jmAY 0 0 0 0

0 0 0 O — (2AY +mAT)

0 0 0 0 01 AY + 8 AL — jmAL

0 0 0 O DAY + AT — jmAL

0 0 0 0 93AY + 8 A3 — jmAT
and it presents a Dblock level separation be-
tween '+’ and ’'—’ notation. Recalling that the

(=, +,+,+)=, (+,—,—,—)+ signatures are used for
the top and bottom blocks correspondingly, the partial
derivatives in their contra-variant form satisfy:

NAY = —0PAY + 9TAL 4 9242 + 3A3

65
P = 10040 — 1AL - 022 —ppar (09

Additionally, a corresponding extended metric tensor can
be defined as:

N+ = (7}0_ 77(1 ) (66)

where n_and 74 are the two configurations of the metric

—91 A0+ — 8()141+ + ]77’LAl+ —82A2 — 80Ai + ]’rnA%r —83A9r - 80Ai +ij1
Oy A2 —‘,—anAO+
82Af — 31A§
((93A+ — ((91AJr

31A?F — (92A}r
6AA¢ +ij3

2 3
03A7 — 02 A

31Ai — 33A}r
32141 — 33Ai
aAAi + ijg

(64)
[
tensor:
“1000 10 0 0
[ o100 0-10 0
== 0010 ™=lo0o o0 -1 0
0 001 00 0 —1
(67)

Combining the 4 derivative with the mass term in accor-
dance with the mass-shell condition which holds true for
all frames of reference:
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eq.68 and eq.69 illustrate that in order to maintain the
invariance property for the '+’ superscript part, the mass
term should alternate signs between the contra-variant
and variant forms. Therefore, the mass term should be
indexed. Here we’ll use mg and mP, where, m® = —myg
under the (4, —, —,—, )4 metric. Specifically, the mass
term changes sign when multiplies by n%”, together with

V2 — 9y = 2 (%)2

(7)

@)+ 07 = ()

105> — (90)?

the spatial derivatives 9;". Another view of these invari-
ace conditions is considering them as a modification to
the 4-gradient definition for a massive fermionic field. It
is now possible to define the tensor F}j as:

2
(05 .07,05,05) - (=05 .0 05,07) = (55) =0
(9 + 501,005 ) -

.mc

(~05 + 5 07 07,05 ) =0

(agvar’a;,a;).(agv_af,_a;’_0;)+-(EE)Z::O

.mc
(63_ +J?~6f—78;78;—) '

Fr, =

—0Ay — DiA; + jmoAy

—alAE —80A1_ —ijAl_ —62A0_ —30142_ —jmoAQ_ —63145 —8()A3_ —jmoAg_ 00O00O0
81140_ + 60A1_ +jmoA1_ 60Ag + 32141_ — jmoAO_ 31142_ — 62A1_ 61A§ — 33141_ 0000
02 Ay + oAy + jmoAy 02A] — WAy 0oAy + 0 A — jmoAy O02A3 — 03A5 0000
03Ag + oAz + jmoA3 03A] — 1 A5 03A; — B2 Ay OoAy + i A] — jmoAy 0000
0000 —00Ag — 0 AT — jmo Al —01Af — AT + jmoAT —0:AT — 80 AT + jmoA] —93AF — DoAT + jmoAT
0000 NAL + 00AT — jmoAT  00AY + 0 AT + jmoAf AT — AT NAF —a3AT
0000 02 AT + 80 AT — jmoAS o AT —01AF Q0 AY + 0 AT + jmoAf DAY — 03AF
0000 O3AT + 8o AT — jmo AT A — o AT 93AT — 92 AT A + 0 AT + jmo AT
(70)
where the positions of the indices on the matrix terms (up/bottom) are merely for tracking purposes and do not
affect the signs. Similarly,
ny _
P =
—00A% — 97 A" — jmPAY  91AY +90AL — jmOAL  02A0 + 9942 — jmOPAZ 93A0 49943 — jm0A3 0 0 0 O
—9*AY —80AL 4 jmOAL  90A0 4 AT + jmOAY OTAZ — 92AL OTA3 —p3AL 0 0 0 O
—02A% —9°42 4 jmPA2 02AL —9tAZ %A% + AL 4 jmP A% 0243 — 93A2 0 0 0 O
—0340 — 9943 + jmOPA3 93AL — 9t A3 93A%2 — 9243 99A% + A" 4 jmOA° 0 0 0 O
0 0 0 O —VAT — 824} +jm°A% TAT + VAL 1 jmPAL  6ZAT + 89AZ + jmPAT 93AT + 04T + jmUAT
0 0 0 O —0'AY —90AL — jmOAL 8°AQ + o7 AY — jmY AT OTAZ — 02AL 81A§ —93AL
0 0 0 O —02A% — 9043 — jmO0A? 92AL —01A2 OAY +0° Al — jmOAY O2A% — B3 A%
3 0 0 A3 321 143 3 A2 2 A3 0 A0 AL im0 A0
0 0 0 O —03AQ — 09A3 — jmP A% PPAYL — 1A% OPA% — 9243 OAY + 1AL — jmPAY
(71)

04x4

v OFAY — oY A"
P :(

0454

and F'T looks the same

nv

AT — avﬁ) i

n%

(°4° — A" + jmPA°)

O4x4

04x4

(

(P47 — 'A%, — jmPAY)

04x4

. (—5”0A”_ + 00 AW

04x4

—PUAY, + 5%41)

(only with lowered indices). In a more compact formulation:

)

FUY = (0r A% — 0V AR) 5 p” (0° A% — 0" AL £ jm° AY) — jm® (640 Ay — 57 AR) (72)
FF, = (0.47 — 0,AF) 0" (00Af — AT £ jmoAf) — jmo (0" AT — 6" AT) (73)



The transform of FfFW is F;":
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Ft = — (01 AL — 07 AL) + jm0 (0A% — 0% A%) i (OPAG — 0" AL + jmOAT)
= —F2 + 2Diag(F%") (74)
= (2Diag — 1) F£"

The proposed Lagrangian would be:

L= —F5Fw (75)
such that
oc _ o(ERFE)  or 7 (£%)
0(0.AF)  0(0.AF) g (FJFB) 0 (0,AF)
(76)
Examining the 0 (9, A;}) derivative -
o (F%;)
« _ v N7 Ap sA v v v
B oY) (5g55 - oa(sg):pn_%aégég‘ép (88Y — 618

(77)
where i € (1,2,3)
Additionally, it can be shown (by the product rule)
that-

oL O(FLFE)
_a(Fjﬁ) - 6(1}55 N "

Unifying the two last results for eq.76:

o(FRFe) o O(Fd)
0(0.A8) o (F;‘%) 0 (0,A7)

— 228 x [(5@:55 - 5;;5;;) ¥

A A G (79)
= 2[(FLY — F2") ¥ (P2 (30 — o'}
 (FF, P

uvt’F ) 1 v ; v
— = =2 [(F - F")+2D F 80
a(aﬂAﬂ:) |:( + + ) Zag( + )] ( )
where the multiplication by factor 2 in the diago-
nal at the last transition is because (8)d§ — dt'6Y) =
~Tr(n"") = -2.
Using the expression for FZ* from eq.74 -

0 (FiFs") v ‘ v —
B(gfff;) =2 {[F%" — (2Diag — 1) F2’] 4 2Diag(F%")}
= 2{(2 - 2Diag) F1¥ + 2Diag(FL")} = 4F%"

(81)

Proceeding to the second component of the Euler-
Lagrange equation:

aFOé:F@ . v 0 0 sv . asBs0, —
(‘jA# = —jmg (555a — 5/55a) — jmodS Opéu,r])\p
= —jmo [5505 — 830% + 6205603, (82)
o (FfFL") oL IFi
= — X
o (A7) oFT, " 9AF

v

= —2imeF2’ x [5;53 — 890 + 6355507&]

0 (FiFe") o -
- 9 Fov _ o Faﬁé,u,(su(s()
)
forv=0:
o (FRFe)
W = —2jm0F§5555§537]uu
= —2jmoF 60,
o (FRFe°)
and for v =1,2,3:
4 (F/iFuFﬂlFW) . 0 0
—_t - =2 Y — ¥
0 (F”FVF“”) _ .
#Ag = 4jmoFY° (85)

In the final step, the tensor anti-symmetry F;O =
—FY was used.

Verifying that the selected Lagrangian satisfies the
oL oL

Euler-Lagrange equation 0, (a(—) ==

Auw)) — 0A,



—Sy
EY
FOO Et+
Y
. FTO . Er
;Tﬁ =4jmo F%O = —4jmg ng
F0 E;
By
E7
FS5
uy E]it oL
oF (a(A,L u)) — A0S FE" = —4jmo Ef | T oA
By
(86)

the central equation represents the Euler-Lagrange
equation, however, it is not identical to the original equa-
tion that had the derivative 07 . Making the transitions:

oF — oy, mo — m°

Also, it’s important to note that changes in the mass
index only affect the last four lines (the '+’ section):

¥ 0To

0T,  Ozp

78 _ [0 (0 40\ _ O (%5 45

Fx = [a@ (a@A¢ a7 \ w7 )| T
oA, 94
om0 07

05 Dy 1
T 0T, 0Tg

0A

__3 _— _o
pos _ (0AL 0AL\ o (04
- T

— ¢j:]mA0
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W
oL E
v — _AQY M 1
0% <—8 A, )> 405 FE" = —4jnt"my Eli
El
—40L F2 = —4jm° gg (87)
Eli

subtracting the ’ — 4’ factor from both sides of the
equation:

au p,u _ ij

which is equivalent to the original field equation
(eq.59). Hence, the Euler-Lagrange equation is satisfied
with the Lagrangian L = —F F£”. where

—0'AL + jm°AL) —
— oAy

— VALY Tt (8°A%
—jm?® ("0 A%

B = (o

Therefore, using eq.59 and the conjugation relation
between Fj, and F%", the field expression for the La-

grangian is given by:

L=L+L"=—F,F" —F}F" (88)
=2 | |ETP B +|S; P +|E7|? — |BY]? — |57 |?
b por

Thus, the scalar fields S; and Sy contribute the overall
Lagrangian of system in anti-symmetric manner. Specif-
ically, S, makes a positive contribution to £~ , while Sgr
has a negative contribution to £*.

Next, Fi“’ is to be verified to transform as a tensor

within the General Relativity framework [4]:

%

E 4+ ijZi> —jm® (8°A% - 3°7A%)

. 05 50 Oy (o 0Ty o [ OT5 5
jm |:6T045 (a_ﬂA afﬂd afraA
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B D%, - %GA!F B 0%xs i %&45
B 07,0Tg 0x3 0%, 0T30T, T 0%, (91‘,5
dxs Ox 0 —0 — ox or or or
oy Zbs Iy — 4+ A A o | Yrs ss0 2T AY Y 50y 5A5
~ %, 075 Kaxo jm) - } {(%aa (af@ ) 5,0 \am.
833,y 6330 8A7 B %% 3A§F
0T axa 8335 0To 0Tp Oz
5. Oxs OT 0 0 —0 —i Oxs Ox Oz~ Oxs
oy Ybs by v Y. o [ Y £60 Yy IES c0y (468
= 0T 0T Ka—oi"’” 87) ( > A¢)} Jm [a—a 7750 (4%) Ty O (AJF)}
83:7 8:35 aA;’F - 8A§F
8_3(9xa Oxs  Ox,
Oxs Ox 0 0 89: or :
oy Ybs by — 4+aimP (AY Al YLs ’Y 50A’)_07A5
e e (g = ) (A 4| = G 57 (42) o (a3
F = —t — —= — &+ —— |- (AL, AY)| — 5V (ALY — 6% (A
+ 85853_ {(6$5 8587 71— g Jm, ox; ( +’ :F) Jm [ ( :F) ( ZF)]

7P

Oxs 0~ _5
+ Zo /F’Y

T (89)

0T 0T

) (45, 4%)
is Sq fields which are invariant under coordinate trans-
form as they are scalar fields.

Consequently, F;B transforms as a tensor under a co-
ordinate change, indicating that F; g aligns with General

Relativity framework as a second rank tensor.
Another noteworthy point is that the expression

Where the term Fn_ ((%0 + gm0,

oL

DA,
which is equivalent to the 4-current density (or the source
of the fields) is essentially the fields themselves, multi-
plied by positive and negative ‘jm’ factors.

D. Stress-Energy Tensor

An extended stress-energy tensor can be defined as fol-
lows [5]:

where the & sign on the first term and F on the sec-

ond, arise due to the signature difference between the

upper and lower blocks of Fi. Additionally, g5” is the

curved spacetime metric tensor extended to 8x8 tensor

ji24

uro g_

by 9¥ = <O4><4 gy

each matrix block describes the same curvature but in a

different space-time signature.

Writing eq.90 in Minkowsky spacetime:

04><4

uv | where like in the case of 7%,

1nlw T e

4 ApT F (91)

T = £ FMFY, ¥

Using the symmetry of F**, the left term FJ’F“\F%\ can

T = :tF“aqaﬁF"ﬂ T 4(1 FAPF’\” (90)  be calculated by a matrix multiplication:
|
Sy —-Eif —-Ef —-Ef 0 0 0 0 -Sy —-Ef -Ej —-Ef 0 0 0 0o\~
Ef -Sy —cBy ¢By 0 0 0 0 -Ef -8y ¢By —cBy O 0 0 0
Ef ¢B; —S; —cBy 0 0 0 0 —-Ef —cBy -8, By 0 0 0 0
purpr _ | B —eBy By S5 0 0 0 0 ~EY By —cBy -S; O 0 0 0
TR o0 0 0 0 -Sf -E. -E; -E. 0 0 0 o -Sf E; E; E&
0 0 0 0 E; S§ —eBl cBY 0 0 0 0 E; -Si -eBl cBY
0 0 0 0 E, c¢Bf S& —cBE 0 0 0 0 E, c¢Bf =S —cBf
0 0 0 0 E. —cBf cBf SF 0 0 0 0 E. —cBf cBf -SF
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FEFY, =

|E+|? - ‘SO_‘Z ¢B; Ef —cBy EY ¢B; Ef —cB; EY eBy Ef — cBs Ef

cB: Bf —cBy BY |5 ‘2 - | g ‘CBZ_ g ‘CB;‘z —Ef B —cBy cBy —EfEY — ¢BycBs

By Ef — cBI Ef — B} Ef—cB;cBy B> 4 Bz g ‘E;‘Q + ‘SO_‘Z —EJET — cBIcBy
By Ef — cBy Ef _ETEf —¢BIcB; —E}Ef —cBy cBz ‘cB; ’2 T ‘CB;‘z - ‘Ej ’y ‘SO_ ’2

N ‘SJ’Z —|E-? ¢Bf E; —cBYEy ¢BYE; — c¢BiEZ ¢BYE; — cBY Ey

cBYET —cBTEy |Ex g ‘SO*‘Q —|eBt g ‘CB;‘Q E; Ey +cBEcBy E; ES +cBfcBY

¢BYE; —cBYEZ By Ey +cBfcBy ‘E;‘Z - ‘53‘2 ~ |eB? g ‘CB;f Ey BT +cBfcBY
¢BfE; — cByE; E; ES +cBteBY Ey EZ +cBfcBY I3 g ’S(ﬂz - ‘ch‘z - ‘CB;‘Q

Due to page boundaries constrains, the 8x8 block tensor is presented in a condensed format where the upper four
rows correspond to the upper (left) block and the lower 4 rows correspond to the lower (right) block.
The right term in eq.91 can be easily calculated to yield:

s rg ey = (1551 - 5 B4 + 87 92
such that
+ FIOFY, F %n’;“’Fprf =

(B2 +E2%) cB; Ef — CB;EQZ+ ¢By Ef —c¢B; Ef ¢By Ef — By Ef
¢BI B —cBy EY 3 (B2 +E%) - Bz | — |EY —EfEf—cB;cBy —EfET — cB3cBs
¢By EY — cB; EF —EfE}—cBycBy 1(PB2 + %) - [Br g ‘E;‘Q —EfEY — cBscBy
By Ef — By B —EYEf—cB7 By —EYEf —cBy cBZ 1(B2 + B3) - |eBT : 24 ’

1(c*B2 + E?) ¢BYE, — cB;EQ,; ¢BYE, —cBIE, cBy E; —cBF E,
¢BYEy —cBfE; L (c*B% +E2) - ‘CB; - ‘E; —E; By —cBi By —E;E —c¢BteBY
¢BfET — cBYE; —Ey Ey —cBcBy 1(@BY+B2) -~ |eBE g ‘E;‘Q — By E7 — cBfeBy
By E; — cBYEy —E; Ey —cB}eBY —E; Ey —cBjcBY 1(PBL + B2) — |eBt L I3 ’

where the square terms inside the brackets are square of the absolute values.

Therefore, the tensor in eq.91 is similar to the ’classic’

electromagnetic tensor, specifically, the scalar fields S
subtracts and do not appear in the final result.

Eq.91 turns to :

leVi Tiw 04><4
F 7\ Ogxa T

where TH"is the ’standard’ electromagnetic stress-energy

tensor:
2 2 _ _
L(leB-P+1E4P) 87,
T = S, Tr 0y
Sy Oyz ~Oyy
S -0, —0.,

z

1 2 2
S(leBoP+1E-F) 87 S5 st
+ + + +
T = o I
Syr —olf —Uz_y —sz
Sz 0.y TO0zy 05

and ST = EF x¢B¥* corresponds to the Poynting vector.

Additionally,

oF = E*E* + *BF BT — %51,- (1B + ¢ [B7)")

corresponds to the Maxwell stress tensor.

Given that there is only one 4-dimensional spacetime,
T and T need to be consolidated into a single 4-
dimensional stress-energy tensor. There are two options
for this consolidation each yielding different result. The
first option is to add all the squared field terms linearly
such that the phase differences between the fields in T
and Tfr”' are ignored. The second option is to add the



field terms before squaring them in the energy terms or
multiply them in the S;Fand o;; terms. Since the phase
difference between the '+’ and '—’ field sets plays a role
in determine the spin orientation, as described in a previ-

L (IeB_P + |By P +1eBy* + [E_I*)

So+ St
S, +S;f
S, + 5SS

TH =T" 4+ TH =

By following the previous procedure using the defini-
tion from eq.90 for a curved spacetime, it is possible to
incorporate the fermionic field stress-energy tensor into
the Einstein field equation (up to units conversion)-
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ous section, and the spin orientation has no energy con-
tribution for a free particle, the first consolidation option
seems more appropriate. Hence the corresponding 4 di-
mensional stress-energy tensor is-

- + — + +
ST+ SE Sy 4SE ST 4S
g g7t + A — 4t

Oz O’im Uzy Uiy Ozz Uiz
_O'y_z _O-’im O'yy O':Zry —O'y_z —O'grz
0.2 — 022 _azy - Uzy 0., =02

E. Local U(1) Symmetry

Consider the Lagrangian in terms of the fields and in-
vestigate its behavior under local U(1) transformation
[6]. According to eq.92:

LT =FLF" =4 (\S@F]Q - % |E*|* + % BT |?

nv

(94)

Since only the absolute value of the fields exist in the

Lagrangian, it is indifferent to the field’s phases, there-

fore, it holds U(1) symmetry at the fields level. Hence
there is no need for a gauge field.

1 TG Next let’s check the electromagnetic tensor (potential
Ry — §R9uv = ?Tuv (93) level) under local U(1) transformation-
|
P = (o Ay — or Al ) ot (00 A — 0 Al & jmOAG ) — jm® (90 Ay - 6™ A%) (95)

grouping terms :

B = (00— o) A% — (9"

under the transformation (same gauge transformation
presented in eq.28-29):

AR An = AP 4 (9 — jmdt0) x(z) (97)

Starting with the first term of eq.96:

(0" — jm gn0) AL — (8”7 — jm §70) Al =
= (0" — jmoé“o) [A; + (8" — jméo”) z)] —
— (8” — jmodoy) [A“ + ( ij“O) x(x ]

= (0" — jmoé“o) A% — (0 — ij(SO”) AL+
(8“ —jmoé“o) [( jméo”) X(x)] —
= (9" = gm?6%) [(9" — jmd"®) x ()]
= (8“ — jmoé“o) A — (3” — ij(SO”) A’jF (98)

— jm°5%) Ai] F [(00 +jmP®) AS — OZAEF] (96)

where the last transition used to the commutation rela-
tion:

[(0" — jm®6"%) (8" — jmds®)] =0 (99)

Therefore, according to eq.98 the first term of the elec-
tromagnetic tensor in eq.96 is invariant. The second term
of eq.96 is to be investigated next-



(0° + jm®) AL — 9" AL =
= (80 :I:jmo) [AO + (30 — jméoo) X(a:)] —
-9 [AQF + (0" = jmd™) x(z)]

= (8° £ jm?) [A% + (8° — jm) x(z)] —
- [AﬁF + (96((3:)]

= (0" £jm") AL — 9"AL + (100)
+ (30 j:jmo) (60 —jm) x(z) — ' x(x)

using the argument given in eq.69, the term +jm?° is
equal to +jm, hence-

(8° & jm®) A% — o AL, =
= (0" £ jmP) A% — 0" AL +
+ (9% + jm) (8° — jm) x(z) — 9'9"x ()
= (0° £ jm°) AS — 9" AL + (101)
+(9°9° + m?) x(z) — 00" x ()
Therefore, the electromagnetic tensor is invariant under
local U(1) transformation if the last two terms of eq.101

cancel each other. Thus the transformation field x(z)
needs to satisfy:

(0°0° + m? — 9°0%) x(z) = 0
(0 +m* = V?) x(2) =0

which is the mass shell condition. Hence, given that the
transformation field x(z) is a massive field with the same
mass as the fermionic field, the extended electromag-
netic tensor and hence the electromagnetic Lagrangian
are both invariant under the transformation described by
eq.97. Therefore, unlike the case of the Dirac Lagrangian,
no additional gauge field is required to be added to main-
tain the symmetry, as long as the transformation is of the
form of eq.97 and satisfies eq.102. Note that if instead
using eq.97, one would use the classical mass-less Lorentz
gauge condition, equations of motion would be invariant
thought the Lagrangian would not be invariant, as shown
in SubSec.ITA.

It is important to note here that the field equation of
motions can be similarly formulated by Dirac equation
framework as described in Sec.IIl and that the Dirac-
like Lagrangian with the 8 x 8 gamma matrices also de-
scribes the same dynamics, but it needs an additional
(electromagnetic) gauge field in order to maintain local
U(1) symmetry. Thus, symmetry-wise, the Lagrangian
suggested in eq.75 and eq.94 is a better framework to
work with.

(102)

IV. SUPPORTING FORMALISM FOR SPIN 0,
1/2,1

The compatibility of the above formalism to the Dirac
equation was widely discussed in Sec.III and up until now
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we considered it as description of the fermionic field (spin
1/2). Tt was also shown in Sec.I that S fields (and every
vector field component) satisfy the Klein-Gordon equa-
tion (spin 0) just as the components of Dirac’s bispinors.
Next, it will be shown that the Proca equation and
Maxwell equations are both degenerate cases of eq.59 (or

eq.1).

The Proca equation

Degenerate the potentials AT ,¢* and the scalar fields
ST as follow:

Sf =S, =5
b9 = by = o (103)
At=A-=A4A

Summing eq.14 with eq.15 while applying the degener-
acy described by eq.103 and divide the equation by factor
of 2 yields:

So = j 5 do (104)
Subtracting eq.7 and eq.8 while defining yields:
_ mc?

Next, the top and bottom parts of eq.4 are to be
summed while using the first row of eq.103 :

V- (B*+B)=0
V- (BE™+EBY) =2j=-5

cVx(B"+B") = éat (E-+E™) +j%€ (E- —E™)

me?

Vx(E-+E") == (Bt—B7)-0,(Bt*+B")
Defining 2B = BT + B~ and 2E = E~ + E™, the
above equations can be written as:

9V.-B =0 (106)
0. E = 2j$50 (107)
%V % B = 20,B +j5- (BE-—BY)  (108)
C
mC2

Using eq.103 AT = A~ relation in eq.109 cancels the
first term on the right hand side.

Additionally, using eq.105 on eq.108 and using eq.104
on eq.107, the above equations yield the following:



V-B=0 (110)
mc 2

V. E=-— (7) %o (111)
1 mce\ 2

eV x B=-0,5 - (7) cA (112)

VxE=-0,B (113)

Note that combining the potential relations in eq.103
together with the definitions 2B = B'T + B~ and 2F =
E~ + ET results that ¢g and A are the potentials of
E and B fields. Therefore, using the Maxwellian form,
the above four equations can be compressed to the Proca
equation:

2
8, (9"B* — 8 B") + (%C) B (114)

where B is the corresponding four potential:
(L6.4).

An interesting consequences is that by this formalism
it can be shown that the massive Proca Lagrangian is
local U(1) invariant (under eq.97 transformation) by its
‘extended’ structure with Aff components. This may sug-
gest that the Higgs mechanism by spontaneous symmetry
braking is less needed.

B, =

Mazwell equations

To degenerate eq.4 to homogeneous Maxwell equa-
tions, the following degeneracy should be taken:

Sf=5,,m=0 (115)
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Next, the top and bottom parts of eq.4 are to be
summed while using eq.115 and the total field definitions
2B=B"+ B~ and2E = E~ + E*:

V-B=0 (116)

V-E=0 (117)

oV x B = 0,E (118)
C

VxE=-9B (119)

Which are the homogeneous Maxwell equations.

SUMMARY

This study introduce new field equations that extend
Maxwell equations, satisfy the Dirac equation, and de-
scribe the intrinsic spin momentum phenomenon using a
representation of fields instead of a bi-spinor. This repre-
sentation lead to local U(1) invariant Lagrangian with no
need for additional gauge field (or force carriers). It was
also shown that Maxwell equations and Proca equation
are both degenerate versions of the original equation set.
It was mentioned that the Proca mass term under this
new formalism can be shown to be local U(1) symmetric
by defining the transformation to include the mass in ad-
jacent with the time derivative, thus, reducing the need
of the Higgs mechanism. Additionally this study suggests
a stress-energy tensor that encapsulates the dynamics of
the Dirac equation is presented. This tensor can be in-
tegrated into the formalism of Einstein’s field equations,
serving as a bridge between quantum mechanics and gen-
eral relativity.
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