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Abstract Due to David Hilbert’s 1918 promotional efforts, J. Droste’s May 27, 1916 metric solution of the Einstein
equation for a static point mass fixed to the origin is universally featured by gravity textbooks, but is seriously
misrepresented by those textbooks as the work of Karl Schwarzschild: Droste’s metric solution has a well-known
singular “event horizon” at the Schwarzschild radius, but Schwarzschild’s January 13, 1916 metric solution is singular
only at the origin. Here we present a simple family of transformations of Droste’s singular “event horizon” to any
radius value whatsoever. The blatant absurdity of, say, the earth’s gravitational field having a singular “event
horizon” at some arbitrary height above the earth’s surface establishes beyond all doubt that gravitational general
coordinate transformation covariance is, exactly like electromagnetic gauge transformation covariance, merely a
dynamic symmetry which is unavoidably broken by the unique physical metric solution.

1. Transformation of the Droste metric’s singular “event horizon” to an arbitrary radius value

On May 27, 1916, J. Droste published the following metric solution for a static point mass M fixed to
R = 0 [1],

(c dτ)2 = (1− rs/R)(c dt)2 − (1/(1− rs/R))(dR)2 −R2
(
(dθ)2 + (sin θ dφ)2

)
, (1.1a)

where rs
def
= 2GM/c2 is called the Schwarzschild radius. The famous mathematician David Hilbert strongly

promoted the Eq. (1.1a) metric in 1918 because of its algebraic simplicity, so gravity textbooks universally
feature Droste’s Eq. (1.1a) metric, but they seriously misrepresent it as the work of Karl Schwarzschild [2].

In Droste’s Eq. (1.1a) metric, g00(R) = (1 − rs/R), which vanishes at R = rs, so clocks at the
Schwarzschild radius rs are apparently stopped, the Droste metric’s well-known “event horizon” phenomenon.
Furthermore, in Droste’s metric, gRR(R) = (1/(1 − rs/R)), which has a singularity at R = rs, that same
Schwarzschild radius. Most extended objects such as the earth, sun and familiar stars can’t have such a
singular “event horizon” since they lack an external Schwarzschild radius, but we shall now exhibit a radius
transformation R(r) which sends the Droste metric’s singular “event horizon” at the Schwarzschild radius
rs to an arbitrary radius ra ≥ 0. A key property of this transformation R(r) is that R = rs corresponds
to r = ra, so R(r = ra) = rs. The Eq. (1.1a) Droste metric has determinant −1, a property which the
transformation R(r) preserves. Inserting R(r) into Droste’s Eq. (1.1a) metric produces,

(c dτ)2 = (1− rs/R(r))(c dt)2 − (1/(1− rs/R(r)))(dR(r))2 − (R(r))2
(
(dθ)2 + (sin θ dφ)2

)
, (1.1b)

which is equivalent to,

(c dτ)2 = (1− rs/R(r))(c dt)2− (1/(1− rs/R(r)))(dR(r)/dr)2(dr)2− (R(r)/r)2r2
(
(dθ)2 + (sin θ dφ)2

)
. (1.1c)

The determinant of the transformed metric is −1 ⇐⇒ (dR(r)/dr)2(R(r)/r)4 = 1 ⇐⇒ R2dR = ±r2dr. On
selecting ± = +, we obtain (R(r))3 = r3 + (r0)3, where r0 is an arbitrary constant, so R(r) = (r3 + (r0)3)

1
3 .

Since R(r = ra) = rs, (r3a + (r0)3)
1
3 = rs =⇒ (r0)3 = r3s − r3a =⇒ R(r) = (r3 − r3a + r3s)

1
3 =⇒ dR(r)/dr =

r2(r3−r3a+r3s)
− 2

3 = (r/(r3−r3a+r3s)
1
3 )2. Putting these results for R(r) and dR(r)/dr into Eq. (1.1c) yields,

(c dτ)2 =
(
1− rs

/
(r3 − r3a + r3s)

1
3

)
(c dt)2−(

1
/(

1− rs
/

(r3 − r3a + r3s)
1
3

))
(r/(r3 − r3a + r3s)

1
3 )4(dr)2 − ((r3 − r3a + r3s)

1
3 /r)2r2

(
(dθ)2 + (sin θ dφ)2

)
. (1.1d)

In the Eq. (1.1d) transformed metric, the Eq. (1.1a) Droste metric’s singular “event horizon” at R = rs has
moved to r = ra, where ra ≥ 0 is completely arbitrary, entirely unlike rs = 2GM/c2.

When ra > rs, the Eq. (1.1d) transformed metric has another singularity at r = (r3a − r3s)
1
3 . The

Eq. (1.1d) transformed metric also always has a singularity at r = 0. When ra = rs, the Eq. (1.1d)
transformed metric of course is merely the Eq. (1.1a) Droste metric itself. When ra = 0, the Eq. (1.1d)
transformed metric is singular only at r = 0; in fact when ra = 0 the Eq. (1.1d) transformed metric is
precisely the metric solution published by Karl Schwarzschild in his January 13, 1916 paper—a 1999 English
translation of Schwarzschild’s paper is available as arXiv:physics/9905030v1 [physics.hist-ph] 12 May 1999 [3].
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Eq. (1.1d) is an ra-parameterized infinite family of metric solutions of the Einstein equation for a static
point mass M fixed to r = 0. In conjunction with the Birkhoff theorem, Eq. (1.1d) absurdly suggests that the
earth can have a singular “event horizon” at any height whatsoever above its surface! But since the physical
metric solution for a static point mass M fixed to r = 0 is unavoidably unique, gravitational general coordi-
nate transformation covariance necessarily is merely a dynamic symmetry [4] which is unavoidably broken by
the unique physical metric solution.

To zero in on what it is that selects the unique physical metric solution for a static point mass M fixed
to r = 0, we temporarily detour to the Newtonian-gravity potential solution Φ(r) for a static point mass M
fixed to r = 0. This Newtonian-gravity potential solution Φ(r) satisfies the equation,

∇2
xΦ(|x|) = 4πGMδ(3)(x), (1.2a)

which is the Newtonian-gravity analog of the Einstein equation for a static point mass M fixed to r = 0.
When |x| > 0, Eq. (1.2a) is simply,

∇2
xΦ(|x|) = 0, (1.2b)

which implies that when r > 0, Φ(r) is twice differentiable, so when r > 0, Φ(r) is singularity-free. This
inference is fully borne out by the well-known exact solution of Eq. (1.2a),

Φ(r) = −GM/r. (1.2c)

With regard now to the Einstein equation for a static point mass M fixed to r = 0, it is obvious that
when r > 0, the Einstein tensor, the curvature scalar and the Ricci curvature tensor all vanish. Therefore
when r > 0, the components of the metric tensor must all be twice differentiable and thus singularity-free.
Karl Schwarzschild’s January 13, 1916 metric solution for a static point mass M fixed to r = 0 is the unique
metric solution which both has determinant −1 and is singularity-free when r > 0. As we have already
mentioned, Karl Schwarzschild’s January 13, 1916 metric solution for a static point mass M fixed to r = 0
is the ra = 0 member of the Eq. (1.1d) family of such metric solutions with determinant −1, namely,

(c dτ)2 =
(
1− rs

/
(r3 + r3s)

1
3

)
(c dt)2−(

1
/(

1− rs
/

(r3 + r3s)
1
3

))
(r/(r3 + r3s)

1
3 )4(dr)2 − ((r3 + r3s)

1
3 /r)2r2

(
(dθ)2 + (sin θ dφ)2

)
, (1.3a)

which is considerably more compactly written in its Eq. (1.1b) form,

(c dτ)2 = (1− rs/R(r))(c dt)2 − (1/(1− rs/R(r)))(dR(r))2 − (R(r))2
(
(dθ)2 + (sin θ dφ)2

)
, (1.3b)

where R(r) = (r3 + r3s)
1
3 . The problem with making coordinate transformations of Schwarzschild’s solution,

such as those in the Eq. (1.1d) solution family, is that they displace the metric’s singular point at r = 0.
We have stated that gravitational general coordinate transformation covariance is merely a dynamic

symmetry which is unavoidably broken by the unique physical metric solution. It is therefore useful to review
how electromagnetic gauge transformation covariance dynamic symmetry is dealt with.

2. Dealing with electromagnetic gauge transformation covariance dynamic symmetry

In four-vector potential electromagnetic theory, the analog of the Einstein equation is,

∂ν∂
νAµ − ∂µ(∂σA

σ) = 4πjµ/c. (2.1a)

where the current density jµ satisfies the equation of continuity ∂µj
µ = 0. As it is written, Eq. (2.1a)

isn’t self-consistent unless ∂µj
µ = 0 because ∂µ(∂ν∂

νAµ − ∂µ(∂σA
σ)) = ∂ν∂

ν(∂µA
µ) − ∂µ∂µ(∂σA

σ) = 0.
Furthermore, if Aµ is a solution of Eq. (2.1a), so is Aµ + ∂µχ, where χ is an arbitrary scalar function,
because (∂ν∂

ν∂µχ− ∂µ(∂σ∂
σχ)) = ∂µ(∂ν∂

νχ− ∂σ∂σχ) = 0, so Eq. (2.1a) suffers solution nonuniqueness.
Among the solutions of Eq. (2.1a) are ones which aren’t Lorentz covariant. For example, the Coulomb

gauge condition ∇ · A′ = 0 can always be satisfied by introducing the appropriete scalar gauge function
χ, namely A′ = A + ∇χ, where ∇2χ = −∇ ·A. However, since the Coulomb gauge condition ∇ ·A′ = 0
doesn’t accord with Lorentz covariance, the solutions of Eq. (2.1a) which are consistent with the Coulomb
gauge condition can’t be expected to be Lorentz covariant.

So in order to ensure a solution of Eq. (2.1a) which is Lorentz covariant, we must impose a Lorentz-
covariant gauge condition on that solution. The simplest possible Lorentz-covariant gauge condition obviously
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is ∂µA
′µ = 0, which can always be satisfied by introducing the appropriate scalar gauge function χ, namely

A′
µ

= Aµ+∂µχ, where ∂µ∂
µχ = −∂µAµ. Imposing this Lorentz condition, ∂σA

σ = 0, on Eq. (2.1a) produces
the following two equations,

∂σA
σ = 0, (2.1b)

and,

∂ν∂
νAµ = 4πjµ/c. (2.1c)

Eq, (2.1c) doesn’t have a mathematically unique solution because the differential operator ∂ν∂
ν doesn’t have a

mathematically unique inverse, but only the “retarded” inverse (∂ν∂
ν)−1R of the operator ∂ν∂

ν makes causal
physical sense. Thus the unique physically sensible causal solution of Eq. (2.1c) is the “retarded” one [5],

Aµ = (4π/c)(∂ν∂
ν)−1R jµ, (2.1d)

which in addition satisfies Eq. (2.1b) because ∂µj
µ = 0.

Thus solution nonuniqueness due to electromagnetic gauge transformation covariance dynamic symmetry
is resolved by imposing absolutely basic physical requirements on the solution in the simplest feasible way.
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