A very simple proof of the Bloch's Theorem Marcello Colozzo

Abstract

We prove the famous Bloch's Theorem using the symmetry for discrete translations in Dirac notation.

1 Unitary transformations. The Translations group

Let S_{q} be a quantum system consisting of a nonrelativistic particle of mass m. In the presence of a conservative force field of potential energy $V(x)$, the Hamiltonian operator of the system is

$$
\begin{equation*}
\hat{H}=\frac{\hat{\mathbf{p}}^{2}}{2 m}+V(\hat{\mathbf{x}}) \tag{1}
\end{equation*}
$$

where $\hat{\mathbf{x}}=(\hat{x}, \hat{y}, \hat{z})$ and $\hat{\mathbf{p}}=\left(\hat{p}_{x}, \hat{p}_{y}, \hat{p}_{z}\right)$ are the hermitian operators representing the observable position \mathbf{x} and the observable momentum \mathbf{p} respectively. In Dirac notation [1]-[2], the eigenvalue equation for $\hat{\mathbf{x}}$ is written:

$$
\begin{equation*}
\hat{\mathrm{x}}|\mathrm{x}\rangle=\mathrm{x}|\mathrm{x}\rangle \tag{2}
\end{equation*}
$$

The eigenket system $\{|\mathbf{x}\rangle\}$ is a complete orthonormal system in the Hilbert space \mathcal{H} associated with the system:

$$
\begin{equation*}
\left\langle\mathbf{x} \mid \mathbf{x}^{\prime}\right\rangle=\delta^{(3)}\left(\mathbf{x}-\mathbf{x}^{\prime}\right), \quad \int_{\mathbb{R}^{3}} d^{3} x|\mathbf{x}\rangle\langle\mathbf{x}|=\hat{1} \tag{3}
\end{equation*}
$$

where $\delta^{(3)}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)=\delta\left(x-x^{\prime}\right) \delta\left(y-y^{\prime}\right) \delta\left(z-z^{\prime}\right)$ us theDirac 3-delta function, while $\hat{1}$ is the identity operator in \mathcal{H}.

Assuming $\{|\mathbf{x}\rangle\}$ as the orthonormal basis of \mathcal{H}, we have that the representation of the impulse operator in this basis is [2]

$$
\begin{equation*}
\langle\mathbf{x}| \hat{\mathbf{p}}|\psi\rangle=-i \hbar \nabla \psi(\mathbf{x}), \quad \forall|\psi\rangle \in \mathcal{H} \tag{4}
\end{equation*}
$$

where $\psi(\mathbf{x})=\langle\mathbf{x} \mid \psi\rangle$ i.e. the representation in the base of the ket coordinates $|\psi\rangle$. If $|\psi\rangle$ is the state ket of the particle at a given instant, $\psi(\mathbf{x})$ is the wave function at that instant.

Definition 1 The translation operator according to an arbitrary direction 1, is defined by:

$$
\begin{equation*}
\hat{T}(\mathbf{l})|\mathbf{x}\rangle=|\mathbf{x}+\mathbf{l}\rangle \tag{5}
\end{equation*}
$$

for any eigenket $|\mathbf{x}\rangle$ of the position.
In other words, the operator $\hat{T}(\mathbf{l})$ translates any $|\mathbf{x}\rangle$ into $|\mathbf{x}+\mathbf{l}\rangle$. From the completeness of the system $\{|\mathbf{x}\rangle\}$ it follows that the (5) uniquely defines the aforementioned operator, in the sense that the result of the application of $\hat{T}(\mathbf{l})$ to any ket is well defined $|\psi\rangle$ (expanded into position autoket):

$$
|\psi\rangle=\int_{\mathbb{R}^{3}} d^{3} x|\mathbf{x}\rangle\langle\mathbf{x} \mid \psi\rangle
$$

The square of the ket norm $|\psi\rangle$ is

$$
\|\psi\|^{2}=\langle\psi \mid \psi\rangle=\langle\psi| \hat{1}|\psi\rangle=\langle\psi| \int_{\mathbb{R}^{3}} d^{3} x|\mathbf{x}\rangle\langle\mathbf{x}||\psi\rangle=\int_{\mathbb{R}^{3}}|\psi(\mathbf{x})|^{2} d^{3} x
$$

Interpreting $|\psi(\mathbf{x})|^{2}$ as the probability density of finding the particle in the volume element $d^{3} x$ centered at \mathbf{x}, it must be $\|\psi\|^{2}=1$ or in any case $<+\infty$ and then normalized to 1 . It follows that the Hilbert space \mathcal{H} is identified with the functional space $\mathcal{L}^{2}\left(\mathbb{R}^{3}\right)$ whose elements are the summable square modulus functions in \mathbb{R}^{3}.

It is physically reasonable to require probability conservation with respect to translations (definition 1), so if $\left|\psi^{\prime}\right\rangle$ is the translated ket i.e. $\hat{T}(\mathbf{l})|\psi\rangle=\left|\psi^{\prime}\right\rangle$, it must be

$$
\left\langle\psi^{\prime} \mid \psi^{\prime}\right\rangle=\langle\psi \mid \psi\rangle \Longleftrightarrow\langle\psi| \hat{T}^{\dagger}(\mathbf{l}) \hat{T}(\mathbf{l})|\psi\rangle=\langle\psi \mid \psi\rangle, \quad \forall|\psi\rangle \in \mathcal{H}
$$

i.e. $\hat{T}^{\dagger}(\mathbf{l}) \hat{T}(\mathbf{l})=\hat{1} \Longleftrightarrow \hat{T}(\mathbf{l}) \hat{T}^{\dagger}(\mathbf{l})=\hat{1}$ or what is the same, the adjoint $\hat{T}^{\dagger}(\mathbf{l})$ of $\hat{T}(\mathbf{l})$ coincides with the inverse: $\hat{T}^{\dagger}(\mathbf{l})=\hat{T}^{-1}(\mathbf{l})$. It follows that the operator $\hat{T}(\mathbf{l})$ is unitary.

Conclusion 2 For a nonrelativistic quantum system, a translation is a unit transformation in the appropriate Hilbert space.

We compose two successive translations:

$$
\begin{equation*}
\left(\hat{T}(\mathbf{l}) \hat{T}\left(\mathbf{l}^{\prime}\right)\right)|\mathbf{x}\rangle=\hat{T}(\mathbf{l})\left(\hat{T}\left(\mathbf{l}^{\prime}\right)|\mathbf{x}\rangle\right)=\hat{T}(\mathbf{l})\left(\left|\mathbf{x}+\mathbf{l}^{\prime}\right\rangle\right)=\left|\mathbf{x}+\mathbf{l}^{\prime}+\mathbf{l}\right\rangle=\hat{T}\left(\mathbf{l}^{\prime}+\mathbf{l}\right) \tag{6}
\end{equation*}
$$

From the completeness of $\{|\mathbf{x}\rangle\}$ it follows

$$
\hat{T}\left(\mathbf{l}+\mathbf{l}^{\prime}\right)=\hat{T}(\mathbf{l}) \hat{T}\left(\mathbf{l}^{\prime}\right), \quad \forall \mathbf{l}, \mathbf{l}^{\prime} \in \mathbb{R}^{3}
$$

In the set $\mathcal{T}=\left\{\hat{T}(\mathbf{l}) \mid \mathbf{l} \in \mathbb{R}^{3}\right\}$ we can therefore define a law of internal composition χ :

$$
\begin{align*}
& \chi: \mathcal{T} \times \mathcal{T} \longrightarrow \mathcal{T} \tag{7}\\
& \chi:\left(\hat{T}(\mathbf{l}), \hat{T}\left(\mathbf{l}^{\prime}\right)\right) \longrightarrow \hat{T}(\mathbf{l}) \hat{T}\left(\mathbf{l}^{\prime}\right)
\end{align*}
$$

which checks the following properties:

1. Associative property:

$$
\hat{T}(\mathbf{l})\left(\hat{T}\left(\mathbf{l}^{\prime}\right) \hat{T}\left(\mathbf{l}^{\prime \prime}\right)\right)=\left(\hat{T}(\mathbf{l}) \hat{T}\left(\mathbf{l}^{\prime}\right)\right) \hat{T}\left(\mathbf{l}^{\prime \prime}\right)
$$

2. Existence of the neutral element $\hat{T}(\mathbf{0})=\hat{1}$:

$$
\hat{T}(\mathbf{0})|\psi\rangle=|\psi\rangle, \quad \forall|\psi\rangle \in \mathcal{H}
$$

3. Existence of the inverse:

$$
\forall \hat{T}(\mathbf{l}) \in \mathcal{T}, \quad \exists \hat{T}^{\dagger}(\mathbf{l}) \in \mathcal{T} \mid \hat{T}^{\dagger}(\mathbf{l}) \hat{T}(\mathbf{l})=\hat{T}(\mathbf{0})
$$

From these properties it follows that the ordered pair (\mathcal{T}, χ) or the set \mathcal{T} with the composition law (7), takes on the group structure.

Definition 3 The group (\mathcal{T}, χ) is called translation group.

The composition law (7) manifestly verifies the commutative property, so the translation group is abelian.

For an infinitesimal translation $d \mathbf{x}$ the operator (5) ddiffers from the identity operator 1 by a first order term on $d \mathbf{x}$ right:

$$
\begin{equation*}
T(d \mathbf{x})=\hat{1}-i \hat{\mathbf{G}} \cdot d \mathbf{x} \tag{8}
\end{equation*}
$$

where $\hat{\mathbf{G}}=\left(\hat{G}_{x}, \hat{G}_{y}, \hat{G}_{z}\right)$ with \hat{G}_{k} Hermitian operators.
Definition $4 \hat{G}$ is translation generator.
By analogy with classical mechanics: $\hat{\mathrm{G}}=\varkappa \hat{\mathbf{p}}$ being $\varkappa>0$ a constant with the dimensions of the reciprocal of an action. Old Quantum Theory says $\varkappa=\hbar^{-1}$, so

$$
\begin{equation*}
T(d \mathbf{x})=\hat{1}-i \frac{\hat{\mathbf{p}}}{\hbar} \cdot d \mathbf{x} \tag{9}
\end{equation*}
$$

For (6) any translation $\hat{T}(\mathbf{l})$ is the result of the composition of N translations $\hat{T}\left(\frac{1}{N}\right)$ and in the limit for $N \rightarrow+\infty$

$$
\begin{equation*}
\hat{T}(\mathbf{l})=\lim _{N \rightarrow+\infty}\left(\hat{1}-i \frac{\hat{\mathbf{p}}}{\hbar} \cdot \frac{\mathbf{l}}{N}\right)^{N}=e^{-\frac{i}{\hbar} \hat{\mathbf{p}} \cdot \mathbf{l}} \tag{10}
\end{equation*}
$$

2 Eigenfunctions of the momentum operator

Without loss of generality we consider the one-dimensional case:

$$
\begin{equation*}
\hat{H}=\frac{\hat{p}^{2}}{2 m}+V(\hat{x}) \tag{11}
\end{equation*}
$$

Since $[\hat{H}, \hat{p}] \neq \hat{0}$ i.e. \hat{H} does not commute with the momentum, it follows that p is not a constant of motion. On the other hand

$$
[\hat{p}, \hat{T}(l)]=\hat{0}, \quad \forall l \in \mathbb{R}
$$

so that the operators \hat{p} and $\hat{T}(l)$ have in common a complete orthonormal system of simultaneous eigenkets. Recall that the spectrum of \hat{p} is purely continuous: $\sigma(\hat{p}) \equiv \sigma_{c}(\hat{p})=(-\infty,+\infty)$ so the simultaneous eigenfunctions we are looking for are eigenfunctions in the improper sense $(\Longrightarrow$ $\left.\notin \mathcal{L}^{2}(\mathbb{R})\right)$. We write the respective eigenvalue equations:

$$
\left\{\begin{array}{l}
\hat{p}|p\rangle=p|p\rangle \tag{12}\\
\hat{T}(l)|p\rangle=\tau(p)|p\rangle
\end{array}\right.
$$

But $\hat{T}(l)=e^{-\frac{i}{\hbar} \hat{p l}}$ so $\tau(p)=e^{-\frac{i}{\hbar} p l}, \quad \forall l \in \mathbb{R}$. In the coordinate representation, the second of (12) is written:

$$
\begin{equation*}
\langle x| \hat{T}(l)|p\rangle=e^{-\frac{i}{\hbar} p l} \underbrace{\langle x \mid p\rangle}_{u_{p}(x)} \tag{13}
\end{equation*}
$$

where $u_{p}(x)$ is the eigenfunction of the impulse corresponding to the eigenvalue p. For the above, $u_{p}(x)$ is also an eigenfunction of $\hat{T}(l)$ with eigenvalue $e^{-\frac{i}{\hbar} p l}, \quad \forall l \in \mathbb{R}$. To evaluate the first member of (13) we observe that

$$
\begin{aligned}
& \langle x| \hat{T}(l)|p\rangle=(\langle x| \hat{T}(l)) \cdot|p\rangle \\
& \langle x| \hat{T}(l) \stackrel{\mathrm{DC}}{\leftrightarrow} \hat{T}^{\dagger}(l)|x\rangle=|x-l\rangle
\end{aligned}
$$

where $\mathrm{DC}=$ dual correspondence. It follows

$$
\langle x| \hat{T}(l)|p\rangle=\langle x-l \mid p\rangle=u_{p}(x-l)
$$

so (??) is written:

$$
u_{p}(x-l)=e^{-\frac{i}{\hbar} p l} u_{p}(x), \quad \forall l \in \mathbb{R}
$$

equivalent to

$$
\begin{equation*}
u_{p}(x)=e^{-\frac{i}{\hbar} p l} u_{p}(x+l), \quad \forall l \in \mathbb{R} \tag{14}
\end{equation*}
$$

which is a functional equation in $u_{p}(x)$. Since $u_{p}(x)$ is an eigenfunction in the improper sense, we attempt the solution:

$$
\begin{equation*}
u_{p}(x)=\varphi_{p}(x) e^{\frac{i}{\hbar} p x} \tag{15}
\end{equation*}
$$

where $\varphi_{p}(x)$ it is a real function to be determined. By inserting the (15) into (14):

$$
\varphi_{p}(x) \equiv \varphi_{p}(x+l), \quad \forall l \in \mathbb{R}
$$

cioè $\varphi_{p}(x)$ is a periodic function of arbitrary period, i.e. a constant A. It follows that the eigenfunctions of the impulse are

$$
u_{p}(x)=A e^{\frac{i}{\hbar} p x}
$$

The real constant A is obtained from the normalization of the eigenfunctions $u_{p}(x)$. Precisely, reasoning in terms of autokets:

$$
\begin{align*}
&\left\langle p \mid p^{\prime}\right\rangle=\delta\left(p-p^{\prime}\right) \tag{16}\\
& \Longleftrightarrow\langle p| \hat{1}\left|p^{\prime}\right\rangle=\delta\left(p-p^{\prime}\right) \\
&\langle p| \int_{-\infty}^{+\infty} d x|x\rangle\langle x|\left|p^{\prime}\right\rangle=\delta\left(p-p^{\prime}\right)
\end{align*}>\int_{-\infty}^{+\infty} u_{p}^{*}(x) u_{p^{\prime}}(x) d x=\delta\left(p-p^{\prime}\right)
$$

But

$$
\delta(\alpha)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{-i \alpha x} d x
$$

i.e. the Fourier transform of the function $f(x)=1$, so from the last of the (16) we obtain= $\pm(2 \pi \hbar)^{-1 / 2}$. Assuming $A>0$ we finally obtain the eigenfunctions of the impulse:

$$
\begin{equation*}
u_{p}(x)=\frac{1}{\sqrt{2 \pi \hbar}} e^{\frac{i}{\hbar} p x} \tag{17}
\end{equation*}
$$

Ne concludiamo che le autofunzioni dell'impulso sono onde piane di numero d'onde $k=\frac{p}{\hbar}$. Nel caso speciale della particella libera le (17) sono anche autofunzioni dell'energia con autovalore $E=\frac{p^{2}}{2 m}$, per cui lo spettro dell'hamiltoniano della particella libera è puramente continuo: $\sigma(\hat{H})=[0,+\infty)$ ed è degenere con ordine di degenerazione 2 giacché agli autokets $|p\rangle$ e $|-p\rangle$ corrisponde lo stesso autovalore dell'energia.

3 Bloch Theorem

Let us consider the case of a period periodic potential a :

$$
\begin{equation*}
V(x+n a) \equiv V(x), \quad \forall n \in \mathbb{Z} \tag{18}
\end{equation*}
$$

It follows

$$
[\hat{H}, \hat{T}(a)]=\hat{0}
$$

so \hat{H} and $\hat{T}(a)$ they have in common a complete orthonormal system of simultaneous eigenkets. We write the respective eigenvalue equations:

$$
\left\{\begin{array}{l}
\hat{H}|k\rangle=E(k)|k\rangle \tag{19}\\
\hat{T}(a)|k\rangle=\tau(k)|k\rangle
\end{array}\right.
$$

where $k \in \mathbb{R}$. The unitarity of $\hat{T}(a)$ suggests $\tau(k)=e^{-i k a}$. In the coordinate representation, the second of (19) is written:

$$
\begin{equation*}
\langle x| \hat{T}(a)|k\rangle=e^{-i k a} \underbrace{\langle x \mid k\rangle}_{u_{k}(x)} \tag{20}
\end{equation*}
$$

being $u_{k}(x)$ the energy eigenfunction corresponding to the eigenvalue $E(k)$. Along the lines of the procedure in the previous section, we arrive at the functional equation

$$
\begin{equation*}
u_{k}(x)=e^{-i k a} u_{k}(x+a) \tag{21}
\end{equation*}
$$

Let's try the solution:

$$
\begin{equation*}
u_{k}(x)=\varphi_{k}(x) e^{i k x} \tag{22}
\end{equation*}
$$

here $\varphi_{k}(x)$ is a real function to be determined. Inserting the (22) into (21):

$$
\varphi_{k}(x) \equiv \varphi_{k}(x+a)
$$

i.e. $\varphi_{k}(x)$ it is a periodic function of period a, i.e. with the same period as the potential $V(x)$. It follows that the energy eigenfunctions of a particle in a periodic potential are amplitude-modulated plane waves. The modulation envelope is a periodic function with the same period as the potential. This conclusion is the statement of Bloch Theorem. The real number k is the wave number of the aforementioned plane wave, and unlike the case of the free particle it is not identified with the impulse i.e. $k \neq p / \hbar$.

For k varying from $-\infty$ to $+\infty$, the eigenvalues $e^{-i k a}$ of the translation operator $\hat{T}(a)$ repeat with periodicity $2 \pi / a$ since $e^{-i k a}=\cos (k a)+i \sin (k a)$. It follows that for the values of k and therefore of the corresponding eigenfunctions u_{k}, is sufficient to refer to a single interval $\left[-\frac{\pi}{a}+\frac{2 n \pi}{a}, \frac{\pi}{a}+\frac{2 n \pi}{a}\right]$, $\forall n \in \mathbb{Z}$. For a question of symmetry it is preferable to take the interval $\left[-\frac{\pi}{a}, \frac{\pi}{a}\right]$ known as the first Brillouin zone.

References

[1] Dirac P.AM., I principi della meccanica quantistica.
[2] Sakurai J.J. Modern Quantum Mechanics.

