A very simple proof of the Bloch's Theorem Marcello Colozzo

Abstract

We prove the famous Bloch's Theorem using the symmetry for discrete translations in Dirac notation.

1 Unitary transformations. The Translations group

Let S_q be a quantum system consisting of a nonrelativistic particle of mass m. In the presence of a conservative force field of potential energy V(x), the Hamiltonian operator of the system is

$$\hat{H} = \frac{\hat{\mathbf{p}}^2}{2m} + V\left(\hat{\mathbf{x}}\right) \tag{1}$$

where $\hat{\mathbf{x}} = (\hat{x}, \hat{y}, \hat{z})$ and $\hat{\mathbf{p}} = (\hat{p}_x, \hat{p}_y, \hat{p}_z)$ are the hermitian operators representing the observable position \mathbf{x} and the observable momentum \mathbf{p} respectively. In Dirac notation [1]-[2], the eigenvalue equation for $\hat{\mathbf{x}}$ is written:

$$\hat{\mathbf{x}} | \mathbf{x} \rangle = \mathbf{x} | \mathbf{x} \rangle$$
 (2)

The eigenket system $\{|\mathbf{x}\rangle\}$ is a complete orthonormal system in the Hilbert space \mathcal{H} associated with the system:

$$\langle \mathbf{x} | \mathbf{x}' \rangle = \delta^{(3)} \left(\mathbf{x} - \mathbf{x}' \right), \quad \int_{\mathbb{R}^3} d^3 x \left| \mathbf{x} \right\rangle \left\langle \mathbf{x} \right| = \hat{1}$$
(3)

where $\delta^{(3)}(\mathbf{x} - \mathbf{x}') = \delta(x - x') \delta(y - y') \delta(z - z')$ us the Dirac 3-delta function, while $\hat{1}$ is the identity operator in \mathcal{H} .

Assuming $\{|\mathbf{x}\rangle\}$ as the orthonormal basis of \mathcal{H} , we have that the representation of the impulse operator in this basis is [2]

$$\langle \mathbf{x} | \hat{\mathbf{p}} | \psi \rangle = -i\hbar \nabla \psi \left(\mathbf{x} \right), \quad \forall | \psi \rangle \in \mathcal{H}$$
 (4)

where $\psi(\mathbf{x}) = \langle \mathbf{x} | \psi \rangle$ i.e. the representation in the base of the ket coordinates $|\psi\rangle$. If $|\psi\rangle$ is the state ket of the particle at a given instant, $\psi(\mathbf{x})$ is the wave function at that instant.

Definition 1 The translation operator according to an arbitrary direction l, is defined by:

$$\hat{T}(\mathbf{l}) |\mathbf{x}\rangle = |\mathbf{x} + \mathbf{l}\rangle$$
 (5)

for any eigenket $|\mathbf{x}\rangle$ of the position.

In other words, the operator $\hat{T}(\mathbf{l})$ translates any $|\mathbf{x}\rangle$ into $|\mathbf{x} + \mathbf{l}\rangle$. From the completeness of the system $\{|\mathbf{x}\rangle\}$ it follows that the (5) uniquely defines the aforementioned operator, in the sense that the result of the application of $\hat{T}(\mathbf{l})$ to any ket is well defined $|\psi\rangle$ (expanded into position autoket):

$$\left|\psi\right\rangle = \int_{\mathbb{R}^{3}} d^{3}x \left|\mathbf{x}\right\rangle \left\langle \mathbf{x} \right|\psi\right\rangle$$

The square of the ket norm $|\psi\rangle$ is

$$||\psi||^{2} = \langle \psi|\psi\rangle = \langle \psi|\hat{1}|\psi\rangle = \left\langle \psi|\int_{\mathbb{R}^{3}} d^{3}x |\mathbf{x}\rangle \langle \mathbf{x}| |\psi\rangle = \int_{\mathbb{R}^{3}} |\psi(\mathbf{x})|^{2} d^{3}x$$

Interpreting $|\psi(\mathbf{x})|^2$ as the probability density of finding the particle in the volume element d^3x centered at \mathbf{x} , it must be $||\psi||^2 = 1$ or in any case $< +\infty$ and then normalized to 1. It follows that the Hilbert space \mathcal{H} is identified with the functional space $\mathcal{L}^2(\mathbb{R}^3)$ whose elements are the summable square modulus functions in \mathbb{R}^3 .

It is physically reasonable to require probability conservation with respect to translations (definition 1), so if $|\psi'\rangle$ is the translated ket i.e. $\hat{T}(\mathbf{l}) |\psi\rangle = |\psi'\rangle$, it must be

$$\langle \psi' | \psi' \rangle = \langle \psi | \psi \rangle \iff \left\langle \psi | \hat{T}^{\dagger} \left(\mathbf{l} \right) \hat{T} \left(\mathbf{l} \right) | \psi \right\rangle = \left\langle \psi | \psi \right\rangle, \quad \forall | \psi \rangle \in \mathcal{H}$$

i.e. $\hat{T}^{\dagger}(\mathbf{l}) \hat{T}(\mathbf{l}) = \hat{1} \iff \hat{T}(\mathbf{l}) \hat{T}^{\dagger}(\mathbf{l}) = \hat{1}$ or what is the same, the adjoint $\hat{T}^{\dagger}(\mathbf{l})$ of $\hat{T}(\mathbf{l})$ coincides with the inverse: $\hat{T}^{\dagger}(\mathbf{l}) = \hat{T}^{-1}(\mathbf{l})$. It follows that the operator $\hat{T}(\mathbf{l})$ is unitary.

Conclusion 2 For a nonrelativistic quantum system, a translation is a unit transformation in the appropriate Hilbert space.

We compose two successive translations:

$$\left(\hat{T}\left(\mathbf{l}\right)\hat{T}\left(\mathbf{l}'\right)\right)|\mathbf{x}\rangle = \hat{T}\left(\mathbf{l}\right)\left(\hat{T}\left(\mathbf{l}'\right)|\mathbf{x}\rangle\right) = \hat{T}\left(\mathbf{l}\right)\left(|\mathbf{x}+\mathbf{l}'\rangle\right) = |\mathbf{x}+\mathbf{l}'+\mathbf{l}\rangle = \hat{T}\left(\mathbf{l}'+\mathbf{l}\right)$$
(6)

From the completeness of $\{|\mathbf{x}\rangle\}$ it follows

$$\hat{T}(\mathbf{l} + \mathbf{l}') = \hat{T}(\mathbf{l}) \hat{T}(\mathbf{l}'), \quad \forall \mathbf{l}, \mathbf{l}' \in \mathbb{R}^3$$

In the set $\mathcal{T} = \left\{ \hat{T}(\mathbf{l}) \mid \mathbf{l} \in \mathbb{R}^3 \right\}$ we can therefore define a law of internal composition χ :

$$\chi : \mathcal{T} \times \mathcal{T} \longrightarrow \mathcal{T}$$

$$\chi : \left(\hat{T} \left(\mathbf{l} \right), \hat{T} \left(\mathbf{l}' \right) \right) \longrightarrow \hat{T} \left(\mathbf{l} \right) \hat{T} \left(\mathbf{l}' \right)$$

$$(7)$$

which checks the following properties:

1. Associative property:

$$\hat{T}(\mathbf{l})\left(\hat{T}(\mathbf{l}')\,\hat{T}(\mathbf{l}'')\right) = \left(\hat{T}(\mathbf{l})\,\hat{T}(\mathbf{l}')\right)\hat{T}(\mathbf{l}'')$$

2. Existence of the neutral element $\hat{T}(\mathbf{0}) = \hat{1}$:

$$\hat{T}(\mathbf{0}) |\psi\rangle = |\psi\rangle, \ \forall |\psi\rangle \in \mathcal{H}$$

3. Existence of the inverse:

$$\forall \hat{T}(\mathbf{l}) \in \mathcal{T}, \ \exists \hat{T}^{\dagger}(\mathbf{l}) \in \mathcal{T} \mid \hat{T}^{\dagger}(\mathbf{l}) \hat{T}(\mathbf{l}) = \hat{T}(\mathbf{0})$$

From these properties it follows that the ordered pair (\mathcal{T}, χ) or the set \mathcal{T} with the composition law (7), takes on the group structure.

Definition 3 The group (\mathcal{T}, χ) is called **translation group**.

The composition law (7) manifestly verifies the commutative property, so the translation group is abelian.

For an infinitesimal translation $d\mathbf{x}$ the operator (5) ddiffers from the identity operator 1 by a first order term on $d\mathbf{x}$ right:

$$T\left(d\mathbf{x}\right) = \hat{\mathbf{1}} - i\hat{\mathbf{G}} \cdot d\mathbf{x} \tag{8}$$

where $\hat{\mathbf{G}} = \left(\hat{G}_x, \hat{G}_y, \hat{G}_z\right)$ with \hat{G}_k Hermitian operators.

Definition 4 $\hat{\mathbf{G}}$ is translation generator.

By analogy with classical mechanics: $\hat{\mathbf{G}} = \varkappa \hat{\mathbf{p}}$ being $\varkappa > 0$ a constant with the dimensions of the reciprocal of an action. Old Quantum Theory says $\varkappa = \hbar^{-1}$, so

$$T\left(d\mathbf{x}\right) = \hat{1} - i\frac{\hat{\mathbf{p}}}{\hbar} \cdot d\mathbf{x}$$
(9)

For (6) any translation $\hat{T}(\mathbf{l})$ is the result of the composition of N translations $\hat{T}(\frac{\mathbf{l}}{N})$ and in the limit for $N \to +\infty$

$$\hat{T}(\mathbf{l}) = \lim_{N \to +\infty} \left(\hat{1} - i \frac{\hat{\mathbf{p}}}{\hbar} \cdot \frac{\mathbf{l}}{N} \right)^N = e^{-\frac{i}{\hbar} \hat{\mathbf{p}} \cdot \mathbf{l}}$$
(10)

2 Eigenfunctions of the momentum operator

Without loss of generality we consider the one-dimensional case:

$$\hat{H} = \frac{\hat{p}^2}{2m} + V\left(\hat{x}\right) \tag{11}$$

Since $\lfloor \hat{H}, \hat{p} \rfloor \neq \hat{0}$ i.e. \hat{H} does not commute with the momentum, it follows that p is not a constant of motion. On the other hand

$$\left[\hat{p},\hat{T}\left(l\right)\right]=\hat{0}, \quad \forall l\in\mathbb{R}$$

so that the operators \hat{p} and $\hat{T}(l)$ have in common a complete orthonormal system of simultaneous eigenkets. Recall that the spectrum of \hat{p} is purely continuous: $\sigma(\hat{p}) \equiv \sigma_c(\hat{p}) = (-\infty, +\infty)$ so the simultaneous eigenfunctions we are looking for are eigenfunctions in the improper sense ($\Longrightarrow \notin \mathcal{L}^2(\mathbb{R})$). We write the respective eigenvalue equations:

$$\begin{cases} \hat{p} | p \rangle = p | p \rangle \\ \hat{T} (l) | p \rangle = \tau (p) | p \rangle \end{cases}$$
(12)

But $\hat{T}(l) = e^{-\frac{i}{\hbar}\hat{p}l}$ so $\tau(p) = e^{-\frac{i}{\hbar}pl}$, $\forall l \in \mathbb{R}$. In the coordinate representation, the second of (12) is written:

$$\left\langle x|\hat{T}\left(l\right)|p\right\rangle = e^{-\frac{i}{\hbar}pl}\underbrace{\langle x|p\rangle}_{u_{p}(x)} \tag{13}$$

where $u_p(x)$ is the eigenfunction of the impulse corresponding to the eigenvalue p. For the above, $u_p(x)$ is also an eigenfunction of $\hat{T}(l)$ with eigenvalue $e^{-\frac{i}{\hbar}pl}$, $\forall l \in \mathbb{R}$. To evaluate the first member of (13) we observe that

$$\left\langle x | \hat{T}(l) | p \right\rangle = \left(\left\langle x | \hat{T}(l) \right\rangle \cdot | p \right\rangle$$
$$\left\langle x | \hat{T}(l) \stackrel{\text{DC}}{\leftrightarrow} \hat{T}^{\dagger}(l) | x \right\rangle = | x - l \rangle$$

where DC=dual correspondence. It follows

$$\left\langle x|\hat{T}\left(l\right)|p\right\rangle = \left\langle x-l|p\right\rangle = u_{p}\left(x-l\right)$$

so (??) is written:

$$u_{p}\left(x-l\right) = e^{-\frac{i}{\hbar}pl}u_{p}\left(x\right), \ \forall l \in \mathbb{R}$$

equivalent to

$$u_p(x) = e^{-\frac{i}{\hbar}pl} u_p(x+l), \quad \forall l \in \mathbb{R}$$
(14)

which is a functional equation in $u_p(x)$. Since $u_p(x)$ is an eigenfunction in the improper sense, we attempt the solution:

$$u_p(x) = \varphi_p(x) e^{\frac{i}{\hbar}px} \tag{15}$$

where $\varphi_p(x)$ it is a real function to be determined. By inserting the (15) into (14):

$$\varphi_p(x) \equiv \varphi_p(x+l), \ \forall l \in \mathbb{R}$$

cioè $\varphi_p(x)$ is a periodic function of arbitrary period, i.e. a constant A. It follows that the eigenfunctions of the impulse are

$$u_p\left(x\right) = A e^{\frac{i}{\hbar}px}$$

The real constant A is obtained from the normalization of the eigenfunctions $u_p(x)$. Precisely, reasoning in terms of autokets:

$$\langle p|p'\rangle = \delta (p-p') \iff \langle p|\hat{1}|p'\rangle = \delta (p-p')$$

$$\left\langle p|\int_{-\infty}^{+\infty} dx |x\rangle \langle x| |p'\rangle = \delta (p-p') \iff \int_{-\infty}^{+\infty} u_p^* (x) u_{p'} (x) dx = \delta (p-p')$$

$$A^2 \int_{-\infty}^{+\infty} e^{-\frac{i}{\hbar}(p-p')x} dx = \delta (p-p')$$
(16)

But

$$\delta\left(\alpha\right) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-i\alpha x} dx$$

i.e. the Fourier transform of the function f(x) = 1, so from the last of the (16) we obtain $\pm (2\pi\hbar)^{-1/2}$. Assuming A > 0 we finally obtain the eigenfunctions of the impulse:

$$u_p\left(x\right) = \frac{1}{\sqrt{2\pi\hbar}} e^{\frac{i}{\hbar}px} \tag{17}$$

Ne concludiamo che le autofunzioni dell'impulso sono onde piane di numero d'onde $k = \frac{p}{\hbar}$. Nel caso speciale della particella libera le (17) sono anche autofunzioni dell'energia con autovalore $E = \frac{p^2}{2m}$, per cui lo spettro dell'hamiltoniano della particella libera è puramente continuo: $\sigma\left(\hat{H}\right) = [0, +\infty)$ ed è degenere con ordine di degenerazione 2 giacché agli autokets $|p\rangle \in |-p\rangle$ corrisponde lo stesso autovalore dell'energia.

3 Bloch Theorem

Let us consider the case of a period periodic potential *a*:

$$V(x+na) \equiv V(x), \quad \forall n \in \mathbb{Z}$$
 (18)

It follows

$$\left[\hat{H},\hat{T}\left(a\right)\right]=\hat{0}$$

so \hat{H} and $\hat{T}(a)$ they have in common a complete orthonormal system of simultaneous eigenkets. We write the respective eigenvalue equations:

$$\begin{cases} \hat{H} |k\rangle = E(k) |k\rangle \\ \hat{T}(a) |k\rangle = \tau(k) |k\rangle \end{cases}$$
(19)

where $k \in \mathbb{R}$. The unitarity of $\hat{T}(a)$ suggests $\tau(k) = e^{-ika}$. In the coordinate representation, the second of (19) is written:

$$\left\langle x|\hat{T}\left(a\right)|k\right\rangle = e^{-ika}\underbrace{\left\langle x|k\right\rangle}_{u_{k}\left(x\right)}$$

$$(20)$$

being $u_k(x)$ the energy eigenfunction corresponding to the eigenvalue E(k). Along the lines of the procedure in the previous section, we arrive at the functional equation

$$u_k(x) = e^{-ika}u_k(x+a) \tag{21}$$

Let's try the solution:

$$u_k(x) = \varphi_k(x) e^{ikx} \tag{22}$$

here $\varphi_k(x)$ is a real function to be determined. Inserting the (22) into (21):

$$\varphi_k\left(x\right) \equiv \varphi_k\left(x+a\right)$$

i.e. $\varphi_k(x)$ it is a periodic function of period a, i.e. with the same period as the potential V(x). It follows that the energy eigenfunctions of a particle in a periodic potential are amplitude-modulated plane waves. The modulation envelope is a periodic function with the same period as the potential. This conclusion is the statement of *Bloch Theorem*. The real number k is the wave number of the aforementioned plane wave, and unlike the case of the free particle it is not identified with the impulse i.e. $k \neq p/\hbar$.

For k varying from $-\infty$ to $+\infty$, the eigenvalues e^{-ika} of the translation operator $\hat{T}(a)$ repeat with periodicity $2\pi/a$ since $e^{-ika} = \cos(ka) + i\sin(ka)$. It follows that for the values of k and therefore of the corresponding eigenfunctions u_k , is sufficient to refer to a single interval $\left[-\frac{\pi}{a} + \frac{2n\pi}{a}, \frac{\pi}{a} + \frac{2n\pi}{a}\right]$, $\forall n \in \mathbb{Z}$. For a question of symmetry it is preferable to take the interval $\left[-\frac{\pi}{a}, \frac{\pi}{a}\right]$ known as the first Brillouin zone.

References

- [1] Dirac P.AM., I principi della meccanica quantistica.
- [2] Sakurai J.J. Modern Quantum Mechanics.