Rational formal power series

Jānis Buls, Aigars Valainis

Department of Mathematics, University of Latvia, Jelgavas iela 3, Rīga, LV-1004 Latvia, buls1950@gmail.com; AValainis@gmail.com

Abstract

We are following [1] and [5]. Nevertheless, we are interested only in the clarification of proofs.

Keywords

finite commutative rings, formal power series

1. Structure of finite commutative rings

Our object of interest is an associative-commutative ring with a multiplicative identity element. In this text, the term ring will mean exactly such a ring, i.e., an associative-commutative ring with a multiplicative identity element. We will denote rings R commutative group by R^{\times} . In this section, we will consider only finite rings and we are following [1].

1.1. Definition. Subset H of ring R, is called a subring if

- *H* is a subgroup of the additive group,
- *H* is a subsemigroup of the multiplicative semigroup.
- **1.2. Definition.** Subring \mathcal{I} of ring R is called an ideal if

 $R\mathcal{I} \subseteq \mathcal{I}.$

1.3. Proposition. If $\mathcal{I}_1, \mathcal{I}_2, \ldots, \mathcal{I}_n$ are ideals of ring R, then mapping

 $\Phi: R \to R/\mathcal{I}_1 \times R/\mathcal{I}_2 \times \cdots \times R/\mathcal{I}_n: r \mapsto (r + \mathcal{I}_1, r + \mathcal{I}_2, \dots, r + \mathcal{I}_n)$

is a ring homomorphism.

 $\Box \text{ We will use notation } [x]_j \rightleftharpoons x + \mathcal{I}_j.$ Let $x, y \in R$, then

$$\begin{split} \Phi(x+y) &= ([x+y]_1, [x+y]_2, \dots, [x+y]_n) \\ &= ([x]_1 + [y]_1, [x]_2 + [y]_2, \dots, [x]_n + [y]_n) \\ &= ([x]_1, [x]_2, \dots, [y]_n) + ([y_1], [y]_2, \dots, [y]_n) \\ &= \Phi(x) + \Phi(y) \\ \Phi(1) &= ([1]_1, [1]_2, \dots, [1]_n), \end{split}$$

$$\begin{split} \Phi(xy) &= ([xy]_1, [xy]_2, \dots, [xy]_n) \\ &= ([x]_1[y]_1, [x]_2[y]_2, \dots, [x]_n[y]_n) \\ &= ([x]_1, [x]_2, \dots, [y]_n)([y_1], [y]_2, \dots, [y]_n) \\ &= \Phi(x)\Phi(y). \end{split}$$

1.4. Definition. $\{0\}$ and R are called trivial ideals of ring R.

All other ideals of ring R are called nontrivial ideals. Ideal \mathcal{I} are called proper ideal if $\mathcal{I} \neq R$.

Let $\mathcal{I}_1, \mathcal{I}_2, \ldots, \mathcal{I}_n$ be proper ideals of ring R.

1.5. Definition. Proper ideals \mathcal{I}_k un \mathcal{I}_m , $1 \le k < m \le n$, are called coprime if $\mathcal{I}_k + \mathcal{I}_m = R$.

Here $\mathcal{I}_k + \mathcal{I}_m \rightleftharpoons \{a + b \mid a \in \mathcal{I}_k \land b \in \mathcal{I}_m\}$

1.6. Example. $\mathcal{I}_1 = \{0, 2, 4\}, \ \mathcal{I}_2 = \{0, 3\}$ are coprime ideals of ring \mathbb{Z}_6 .

$$\mathcal{I}_1 \mathbb{Z}_6 = \{0, 2, 4\} \{0, 1, 2, 3, 4, 5\} = \{0, 2, 4\}$$
$$2 \cdot 3 = 6 \equiv 0 \qquad 2 \cdot 4 = 8 \equiv 2 \qquad 2 \cdot 5 = 10 \equiv 4$$
$$4 \cdot 3 = 12 \equiv 0 \qquad 4 \cdot 4 = 16 \equiv 4 \qquad 4 \cdot 5 = 20 \equiv 2$$
$$\mathcal{I}_2 \mathbb{Z}_6 = \{0, 3\} \{0, 1, 2, 3, 4, 5\} = \{0, 3\}$$

$$3 \cdot 3 = 9 \equiv 3$$
 $3 \cdot 4 = 12 \equiv 0$ $3 \cdot 5 = 15 \equiv 3$

 $\mathcal{I}_1 + \mathcal{I}_2 = \{0, 2, 4\} + \{0, 3\} = \{0+0, 0+3, 2+0, 2+3, 4+0, 4+3\} = \{0, 3, 2, 5, 4, 7 \equiv 1\} = \mathbb{Z}_6$ Notice that

$$\forall x \in \mathcal{I}_1 \forall y \in \mathcal{I}_2 \ xy = 0$$

1.7. Proposition. If $\mathcal{I}_1, \mathcal{I}_2, \ldots, \mathcal{I}_n$ are coprime ideals of ring R, then

$$\bigcap_{k=1}^{n} \mathcal{I}_{k} = \prod_{k=1}^{n} \mathcal{I}_{k}$$

Notice that

$$\prod_{k=1}^{n} \mathcal{I}_{k} \coloneqq \{\sum_{k} x_{k1} x_{k2} \dots x_{kn} \, | \, \forall j \, x_{kj} \in \mathcal{I}_{j} \}.$$

Here, $\sum_k x_{k1} x_{k2} \dots x_{kn}$ denotes all possible finite sums of such form. In sum $\sum_k x_k y_k$ there is a possibility for $x_1 = x_2$, but if so then $y_1 \neq y_2$. \Box As \mathcal{I}_1 un \mathcal{I}_2 are ideals, then

$$\mathcal{I}_1 \cap \mathcal{I}_2 = \{ h \in R \mid h \in \mathcal{I}_1 \land h \in \mathcal{I}_2 \}$$

is a proper ideal since $0 \in \mathcal{I}_1 \cap \mathcal{I}_2$. Notice that

$$\prod_{k=1}^{2} \mathcal{I}_{k} = \mathcal{I}_{1} \mathcal{I}_{2} = \left\{ \sum_{k} x_{k} y_{k} \, | \, x_{k} \in \mathcal{I}_{1} \, \land \, y_{k} \in \mathcal{I}_{2} \right\}.$$

Each member of sum $\sum_k x_k y_k$ belongs to ideal A \mathcal{I}_1 and also to \mathcal{I}_2 , therefore $\sum_k x_k y_k \in \mathcal{I}_1 \cap \mathcal{I}_2$. Hence $\mathcal{I}_1 \mathcal{I}_2 \subseteq \mathcal{I}_1 \cap \mathcal{I}_2$.

Let $a \in \mathcal{I}_1 \cap \mathcal{I}_2$. As \mathcal{I}_1 and \mathcal{I}_2 are coprime ideals, then there exist such $x \in \mathcal{I}_1$ and $y \in \mathcal{I}_2$, that x + y = 1. Therefore

$$a = a \cdot 1 = a(x+y) = ax + ay = xa + ay \in \mathcal{I}_1\mathcal{I}_2.$$

Hence $\mathcal{I}_1 \cap \mathcal{I}_2 = \mathcal{I}_1 \mathcal{I}_2$.

Notice that $\prod_{k=1}^{n} \mathcal{I}_k \rightleftharpoons \{\sum_k x_{k1} x_{k2} \dots x_{kn} | \forall j \ x_{kj} \in \mathcal{I}_j \}$. As the ring is commutative, it follows that each member of $\sum_k x_{k1} x_{k2} \dots x_{kn}$ is a member of an arbitrary ideal $\mathcal{I}_k, k \in \overline{1, n}$, therefore $\prod_{k=1}^n \mathcal{I}_k \subseteq \bigcap_{k=1}^n \mathcal{I}_k$. Further proof is inductive, assuming that ideals $\mathcal{I}_1, \mathcal{I}_2, \dots, \mathcal{I}_{m+1}$ are

pairwise coprime.

$$\bigcap_{k=1}^{m+1} \mathcal{I}_k = \left(\bigcap_{k=1}^m \mathcal{I}_k\right) \cap \mathcal{I}_{m+1} = \left(\prod_{k=1}^m \mathcal{I}_k\right) \cap \mathcal{I}_{m+1}$$

As all the pairs $\mathcal{I}_{m+1}, \mathcal{I}_k, k \in \overline{1, m}$ are coprime ideals, then there exist such $a_k \in \mathcal{I}_k, b_k \in \mathcal{I}_{m+1}$, that $a_k + b_k = 1$. Therefore

 $1 = (a_1 + b_1)(a_2 + b_2) \cdots (a_m + b_m) = a_1 a_2 \cdots a_m + B,$

where B is a sum. Here each member of B contains some b_k as a multiplier, therefore $B \in \mathcal{I}_{m+1}$.

Let $a \in \bigcap_{k=1}^{m+1} \mathcal{I}_k$, then $a = a \cdot 1 = a(a_1 + b_1)(a_2 + b_2) \cdots (a_m + b_m) = a_1 a_2 \cdots a_m a + aB$

As $a \in \bigcap_{k=1}^{m+1} \mathcal{I}_k$, it follows that $a \in \bigcap_{k=1}^m \mathcal{I}_k$.

From the inductive assumption $\bigcap_{k=1}^{m} \mathcal{I}_k = \prod_{k=1}^{m} \mathcal{I}_k$. Therefore *a* can be written as a sum $\sum_k x_{k1} x_{k2} \dots x_{km}$, where $\forall x_{kj} \in \mathcal{I}_j$. Thus

$$aB = \sum_{k} x_{k1} x_{k2} \dots x_{km} B \in \prod_{k=1}^{m+1} \mathcal{I}_k,$$

and therefore

C

$$a = a_1 a_2 \cdots a_m a + aB$$

= $a_1 a_2 \cdots a_m a + \sum_k x_{k1} x_{k2} \dots x_{km} B \in \prod_{k=1}^{m+1} \mathcal{I}_k.$

1.8. Proposition. If \mathcal{I}, \mathcal{J} are coprime ideals, then $\mathcal{I}^m, \mathcal{J}^m$ also are coprime for all $m \in \mathbb{Z}_+$.

Notice that $\mathcal{I}^m = \underbrace{\mathcal{II}\cdots\mathcal{I}}_m$. \Box As \mathcal{I}, \mathcal{J} are coprime ideals, then there exist such $a \in \mathcal{I}, b \in \mathcal{J}$, that a + b = 1. Hence

$$1 = (a+b)^2 = a^2 + 2ab + b^2$$

• If ab = 0, then $a^2 + b^2 \in \mathcal{I}^2 + \mathcal{J}^2$;

• If $ab \neq 0$, then $2ab = 1 \cdot 2ab = 2(a+b)ab = 2a^2b + 2ab^2 \in \mathcal{I}^2 + \mathcal{J}^2$.

Further proof is inductive. If $\mathcal{I}^k, \mathcal{J}^k$ are coprime ideals, then there exist such $a \in \mathcal{I}^k, b \in \mathcal{J}^k$, that a + b = 1. Hence

$$1 = (a+b)^2 = a^2 + 2ab + b^2$$

- If ab = 0, then $a^2 + b^2 \in \mathcal{I}^{k+1} + \mathcal{J}^{k+1}$;
- If $ab \neq 0$, then $2ab = 1 \cdot 2ab = 2(a+b)ab = 2a^2b + 2ab^2 \in \mathcal{I}^{k+1} + \mathcal{J}^{k+1}$.

We are using the property of ideals: if $a \in \mathcal{I}^{m+1}$, then $a \in \mathcal{I}^m$. This arises from

$$a = \sum_{i} x_{i1} x_{i2} x_{i3} \dots x_{im+1} = \sum_{i} (x_{i1} x_{i2}) x_{i3} \dots x_{im+1} \in \mathcal{I}^m,$$

because $x_{i1}x_{i2} \in \mathcal{I}$. By further use of induction, it's provable that: if $a \in \mathcal{I}^{m+n}$, then $a \in \mathcal{I}^m$.

1.9. Proposition. Ring homomorphism $f : G \to G'$ is monomorphism if and only if Kerf = 0.

 $\Box \Rightarrow$ If f(x) = 0 and $x \neq 0$, then f(0) = 0 = f(x). Therefore f is not an injection.

 \Leftarrow Let f(x)=f(y), then f(x-y)=0. As $\mathrm{Ker} f=0,$ then x-y=0, i.e., x=y. \blacksquare

1.10. Proposition. Assume that $\mathcal{I}_1, \mathcal{I}_2, \ldots, \mathcal{I}_n$ are ideals of ring R. Mapping

$$\Phi: R \to R/\mathcal{I}_1 \times R/\mathcal{I}_2 \times \cdots \times R/\mathcal{I}_n: r \mapsto (r + \mathcal{I}_1, r + \mathcal{I}_2, \dots, r + \mathcal{I}_n)$$

is ring monomorphism if and only if $\bigcap_{k=1}^{n} \mathcal{I}_{k} = 0$.

 $\Box \text{ Let } \Phi(r) = ([0]_1, [0]_2, \dots, [0]_n). \text{ Therefore } r \in \bigcap_{k=1}^n \mathcal{I}_k. \text{ It shows that}$ Ker $\Phi = \bigcap_{k=1}^n \mathcal{I}_k.$ From previous proposition follows that Φ is injective only when Ker $\Phi = 0$, i.e., $0 = \text{Ker}\Phi = \bigcap_{k=1}^n \mathcal{I}_k.$

1.11. Lemma. If $\mathcal{I}_1, \mathcal{I}_2, \ldots, \mathcal{I}_n$ are coprime ideals of ring R, then \mathcal{I}_1 and $\prod_{k=-2}^{n} \mathcal{I}_k$ are coprime ideals of ring R.

 \square We have (1.7. Proposition) $\prod_{k=2}^{n} \mathcal{I}_{k} = \bigcap_{k=2}^{n} \mathcal{I}_{k}$, therefore $\prod_{k=2}^{n} \mathcal{I}_{k}$ is an ideal. As all pairs $\mathcal{I}_{1}, \mathcal{I}_{k}, k \in \overline{2, n}$ are coprime, then there exist such $a_{k} \in \mathcal{I}_{1}, b_{k} \in \mathcal{I}_{k}$, that $a_{k} + b_{k} = 1$. Hence

$$1 = (a_2 + b_2)(a_3 + b_3) \cdots (a_n + b_n) = A + b_2 b_3 \cdots b_n,$$

where A is a sum. Here each term of sum A contains some a_k as a multipler, therefore $A \in \mathcal{I}_1$.

Thus $1 = A + b_2 b_3 \cdots b_n$, where $A \in \mathcal{I}_1$ and $b_2 b_3 \cdots b_n \in \prod_{k=2}^n \mathcal{I}_k$.

1.12. Proposition. Assume that $\mathcal{I}_1, \mathcal{I}_2, \ldots, \mathcal{I}_n$ are ideals of ring R. Mapping

$$\Phi: R \to R/\mathcal{I}_1 \times R/\mathcal{I}_2 \times \cdots \times R/\mathcal{I}_n: r \mapsto (r + \mathcal{I}_1, r + \mathcal{I}_2, \dots, r + \mathcal{I}_n)$$

is a ring epimorphism if and only if for all different indexes $k, j \in \overline{1, n}$ ideals $\mathcal{I}_k, \mathcal{I}_j$ are coprime.

 $\Box \Rightarrow$ If Φ is a epimorphism, then there exists such $x \in R$, that

$$\Phi(x) = ([1]_1, [0]_2, \dots, [0]_n).$$

$$\Phi(1-x) = \Phi(1) - \Phi(x)$$

$$= ([1]_1, [1]_2, \dots, [1]_n) - ([1]_1, [0]_2, \dots, [0]_n)$$

$$= ([0]_1, [1]_2, \dots, [1]_n)$$

It shows that $1 - x \in \mathcal{I}_1$, and also $x \in \mathcal{I}_k$ for all $k \in \overline{2, n}$. Hence $1 \in \mathcal{I}_1 + \mathcal{I}_k$ for all $k \in \overline{2, n}$.

Generally, $m \in \overline{1, n}$ reasoning is similar. If Φ is an epimorphism, then there exist such $x_m \in R$, that $\Phi(x_m) = ([x_{m1}]_1, [x_{m2}]_2, \dots, [x_{mn}]_n)$, where

$$x_{mj} = \begin{cases} 0, & \text{if } j \neq m; \\ 1, & \text{if } j = m. \end{cases}$$

 $\Phi(1-x_m) = ([y_{m1}]_1, [y_{m2}]_2, \dots, [y_{mn}]_n),$ where

$$y_{mj} = \begin{cases} 1, & \text{if } j \neq m; \\ 0, & \text{if } j = m. \end{cases}$$

It shows that $1 - x_m \in \mathcal{I}_m$. Also $x_m \in \mathcal{I}_k$ for all $k \neq m$. Hence $1 \in \mathcal{I}_m + \mathcal{I}_k$ for all $k \neq m$.

 $\Leftarrow \text{Assume that all pairs } \mathcal{I}_k, \mathcal{I}_j \text{ of ideals are coprime.}$

If n = 2, then there exist such $x \in \mathcal{I}_1, y \in \mathcal{I}_2$, that x + y = 1. As x = 1 - y and y = 1 - x, then

$$\begin{split} [x]_2 &= [1-y]_2 = [1]_2 - [y]_2 = [1]_2 - [0] = [1]_2, \\ [y]_1 &= [1-x]_1 = [1]_1 - [x]_1 = [1]_1, \\ \Phi(x) &= ([x]_1, [x]_2) = ([0]_1, [1]_2), \\ \Phi(y) &= ([y]_1, [y]_2) = ([1]_1, [0]_2), \\ \Phi(bx + ay) &= \Phi(b)\Phi(x) + \Phi(a)\Phi(y) \\ &= ([b]_1, [b_2])([0]_1, [1]_2) + ([a]_1, [a]_2)([1]_1, [0]_2) \\ &= ([0]_1, [b]_2) + ([a]_1, [0]_2) = ([a]_1, [b]_2). \end{split}$$

Hence mapping Φ is surjective. Further proof is inductive.

From (1.14. Lemma) follows, that $\mathcal{I}_1, \mathcal{I}_2\mathcal{I}_3\cdots\mathcal{I}_n$ are coprime, therefore homomorphism

$$\Psi: R \to R/\mathcal{I}_1 \times R/\mathcal{I}_2\mathcal{I}_3 \cdots \mathcal{I}_n : r \mapsto (r + \mathcal{I}_1, r + \mathcal{I}_2\mathcal{I}_3 \cdots \mathcal{I}_n)$$

is surjective. From the inductions assumption, it follows that mapping

$$\Phi_2: R \to R/\mathcal{I}_2 \times R/\mathcal{I}_3 \times \cdots R/\mathcal{I}_n: r \mapsto (r + \mathcal{I}_2, r + \mathcal{I}_3, \dots, r + \mathcal{I}_n)$$

ir surjective. From the homomorphism theorem, there exists such homomorphism Φ_2^* , that diagram

is commutative. Additionally, homomorphism Φ_2^* is a monomorphism. Therefore $R/\text{Ker}\Phi_2$ is isomorphic with ring $R/\mathcal{I}_2 \times R/\mathcal{I}_3 \times \cdots \times R/\mathcal{I}_n$ (homomorphism Φ_2 is also surjective).

From proof of (1.10. Proposition) follows, that $\operatorname{Ker}\Phi_2 = \bigcap_{k=2}^n \mathcal{I}_k$, additionally (1.7. Proposition) $\bigcap_{k=2}^n \mathcal{I}_k = \prod_{k=2}^n \mathcal{I}_k$. Therefore

$$R/\mathcal{I}_2\mathcal{I}_3\cdots\mathcal{I}_n$$
 isomorphic with $R/\mathcal{I}_2\times R/\mathcal{I}_3\times\cdots\times R/\mathcal{I}_n$.

Hence mapping $\Phi_2^* : R/\mathcal{I}_2\mathcal{I}_3\cdots\mathcal{I}_n \to R/\mathcal{I}_2 \times R/\mathcal{I}_3 \times \cdots \times R/\mathcal{I}_n$ is an isomorphism.

Let $([r_1]_1, [r_2]_2, \dots, [r_n]_n) \in R/\mathcal{I}_1 \times R/\mathcal{I}_2 \times R/\mathcal{I}_3 \times \dots \times R/\mathcal{I}_n$. Notice that

$$\Phi_1 : r \quad \mapsto \quad ([r]_1, [r]_2, \dots, [r]_n),$$

$$\Phi_2 : r \quad \mapsto \quad ([r]_2, [r]_3, \dots, [r]_n).$$

From the inductions assumption, mapping Φ_2 is an epimorphism, therefore there exists such $x \in R$, that

$$\Phi_2: x \mapsto ([r_2]_2, [r_3]_3, \dots, [r_n]_n),$$

i.e., $[x]_2 = [r_2]_2, [x]_3 = [r_3]_3, \dots, [x]_n = [r_n]_n$. Let's consider epimorphism

 $\Psi: r \mapsto (r + \mathcal{I}_1, r + \mathcal{I}_2 \mathcal{I}_3 \dots \mathcal{I}_n).$

As mapping Ψ is an epimorphism, then there exists such $y \in R$, that

$$\Psi: y \mapsto (y + \mathcal{I}_1, y + \mathcal{I}_2 \mathcal{I}_3 \dots \mathcal{I}_n),$$

where $y + \mathcal{I}_1 = [y]_1 = [r_1]_1$ and $(\Phi_2^*)^{-1}([r_2]_2, [r_3]_3, \dots, [r_n]_n) = y + \mathcal{I}_2\mathcal{I}_3 \dots \mathcal{I}_n$. Notice that $[y]_1 = [r_1]_1$, thus

 $\Phi_1: y \mapsto ([r_1]_1, [y]_2, [y]_3, \dots, [y]_n).$

Diagram (D) is commutative, therefore

$$\begin{aligned} ([y]_2, [y]_3, \dots, [y]_n) &= \Phi_2(y) = \Phi_2^*(\pi(y)) = \Phi_2^*(y + \mathcal{I}_2\mathcal{I}_3 \dots \mathcal{I}_n) \\ &= ([r_2]_2, [r_3]_3, \dots, [r_n]_n). \end{aligned}$$

Thus $\Phi_1 : y \mapsto ([r_1]_1, [r_2]_2, \dots, [r_n]_n)$, showing that mapping Φ_1 is an epimorphism.

1.13. Definition. Element e of ring R is called idempotent if $e^2 = e$. Idempotents e, f are called orthogonal if ef = 0.

1.14. Definition. Ideal \mathcal{I} of ring R is called principal ideal, if there exist such $a \in R$, that $\mathcal{I} = aR$.

1.15. Proposition. The following statements are equivalent:

- 1. $R \cong R_1 \times R_2 \times \cdots \times R_n$; here all R_i are subrings of ring R;
- 2. There exist such orthogonal idempotents e_i , that $\sum_{i=1}^n e_i = 1$ and $R_i \cong e_i R_i$;
- 3. $R \cong \mathcal{I}_1 \times \mathcal{I}_2 \times \cdots \times \mathcal{I}_n$, here all \mathcal{I}_j are main ideals of ring R and $I_j \cong R_j$.

 \Box 1. \Rightarrow 2. The unit element of ring $R_1 \times R_2 \times \cdots \times R_n$ is tuple (1,1,...,1). Therefore tuples $\delta_k = (\delta_{1k}, \delta_{2k}, \ldots, \delta_{nk})$ are idempotents of ring $R_1 \times R_2 \times \cdots \times R_n$. Here

$$\delta_{ik} = \begin{cases} 0, & \text{if } i \neq k; \\ 1, & \text{if } i = k. \end{cases}$$

Assume that $\varphi : R_1 \times R_2 \times \cdots \times R_n \to R$ is a ring isomorphism. Then $\varphi(\delta_k) = e_k$ is an idempotent of ring R, because

$$e_k = \varphi(\delta_k) = \varphi(\delta_k^2) = \varphi(\delta_k)\varphi(\delta_k) = e_k e_k = e_k^2,$$

additionally

$$1 = \varphi(1, 1, \dots, 1) = \varphi(\sum_{k=1}^{n} \delta_k) = \sum_{k=1}^{n} \varphi(\delta_k) = \sum_{k=1}^{n} e_k$$

 $\varphi^{-1}(e_k e_i) = \varphi^{-1}(e_k)\varphi^{-1}(e_i) = (0, 0, \dots, 0)$ if $i \neq k$. As φ is an isomorphism, then $e_k e_i = 0$ only if $i \neq k$. Let $x \in R$, then $\varphi^{-1}(x) = (x_1, x_2, \dots, x_n)$, where all $x_j \in R_j$.

$$\varphi^{-1}(e_i x) = \varphi^{-1}(e_i)\varphi^{-1}(x) = (0, 0, \dots, \underbrace{1}_i, \dots, 0)(x_1, x_2, \dots, x_i, \dots, x_n) = (0, 0, \dots, x_i, \dots, 0).$$

Hence $e_i R \cong R_i$.

2. \Rightarrow 3. $\mathcal{I}_j \rightleftharpoons e_j R$. Notice that (e_1, e_2, \dots, e_n) is the unit element of ring $\mathcal{I}_1 \times \mathcal{I}_2 \times \cdots \times \mathcal{I}_n$. Let's prove that

$$\varphi: \mathcal{I}_1 \times \mathcal{I}_2 \times \cdots \times \mathcal{I}_n \to R: (a_1, a_2, \dots, a_n) \mapsto a_1 + a_2 + \cdots + a_n$$

is a ring isomorphism.

(i) Let $\bar{a} = (a_1, a_2, \dots, a_n) \in \mathcal{I}_1 \times \mathcal{I}_2 \times \dots \times \mathcal{I}_n$ and $\bar{b} = (b_1, b_2, \dots, b_n) \in \mathcal{I}_1 \times \mathcal{I}_2 \times \dots \times \mathcal{I}_n$, then

$$\varphi(\bar{a} + \bar{b}) = \varphi(a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$$

= $a_1 + b_1 + a_2 + b_2 + \dots + a_n + b_n$
= $(a_1 + a_2 + \dots + a_n) + (b_1 + b_2 + \dots + b_n)$
= $\varphi(\bar{a}) + \varphi(\bar{b}).$

(ii) If $x \in \mathcal{I}_j, y \in \mathcal{I}_k$ and $j \neq k$, then xy = 0. As $x \in \mathcal{I}_j$, then there exist such $x' \in R$, that $x = e_j x'$. Also, there exists such $y' \in R$, that $y = e_k y'$. Hence $xy = e_j x' e_k y' = e_j e_k x' y' = 0 x' y' = 0$.

$$\begin{aligned} \varphi(\bar{a}\bar{b}) &= & \varphi((a_1, a_2, \dots, a_n)(b_1, b_2, \dots, b_n)) \\ &= & \varphi(a_1b_1, a_2b_2, \dots, a_nb_n) \\ &= & a_1b_1 + a_2b_2 + \dots + a_nb_n \\ &= & (a_1 + a_2 + \dots + a_n)(b_1 + b_2 + \dots + b_n) \\ &= & \varphi(\bar{a})\varphi(\bar{b}). \end{aligned}$$

(iii) Assume that $x \in \mathcal{I}_j \cap \mathcal{I}_k$, then $x \in \mathcal{I}_j = e_j R$ and $x \in \mathcal{I}_k = e_k R$. Therefore $x = e_j x_j = e_k x_k$, where x_j, x_k are elements of ring R.

If $j \neq k$, then $e_j e_k = 0$, hence

$$x = e_j x_j = e_j^2 x_j = e_j e_k x_k = 0 \cdot x_k = 0.$$

Thus $\mathcal{I}_j \cap \mathcal{I}_k = 0.$

Let $y \in \mathcal{I}_k = e_k R$. Then $y = e_k y_k$, where $y_k \in R$. If $i \neq k$, then $e_i y = e_i e_k y_k = 0 \cdot y_k = 0$.

(iv) Let $\varphi(\bar{a}) = \varphi(\bar{b})$, i.e.,

$$a_1 + a_2 + \dots + a_n = b_1 + b_2 + \dots + b_n$$

 then

$$a_i - b_i = \sum_{j \neq i} (b_j - a_j). \tag{1}$$

As for all $k a_k$ and b_k are elements of ideal $\mathcal{I}_k = e_k R$, then $a_k = e_k x_k, b_k = e_k y_k$, where x_k, y_k belongs to ring R. Expression (1) can be written as

$$e_i(x_i - y_i) = \sum_{j \neq i} e_j(y_j - x_j),$$

 $e_i(x_i - y_i) = e_i^2(x_i - y_i) = \sum_{j \neq i} e_i e_j(y_j - x_j) = 0.$

Then $a_i - b_i = e_i x_i - e_i y_i = 0$ or $a_i = b_i$. We have proven that φ is injective.

(v) Let $x \in R$ and $x_k = e_k x$, then $\forall k \ x_k \in e_k R = \mathcal{I}_k$ and

$$(x_1, x_2, \dots, x_n) \in \mathcal{I}_1 \times \mathcal{I}_2 \times \dots \times \mathcal{I}_n,$$

$$x_1 + x_2 + \dots + x_n = e_1 x + e_2 x + \dots + e_n x$$

$$= (e_1 + e_2 + \dots + e_n) x = 1 \cdot x = x.$$

Hence $\varphi(x_1, x_2, \ldots, x_n) = x$. Therefore φ is surjective. We can conclude that φ is an isomorphism, therefore $R \cong \mathcal{I}_1 \times \mathcal{I}_2 \times \cdots \times \mathcal{I}_n$.

3. \Rightarrow 1. An ideal is a subring of a ring.

1.16. Definition. Ideal \mathcal{I} of commutative ring R is called a prime ideal if

$$ab \in \mathcal{I} \Rightarrow a \in \mathcal{I} \lor b \in \mathcal{I}.$$

1.17. Definition. Ideal \mathcal{M} of ring $R, \mathcal{M} \neq R$ is called maximal ideal if for any ideal \mathcal{I} of ring R:

$$\mathcal{M} \subseteq \mathcal{I} \subseteq R \Rightarrow \mathcal{M} = \mathcal{I} \lor \mathcal{I} = R.$$

1.18. Lemma. If \mathcal{I} and \mathcal{J} are ideals of commutative ring R, then $\mathcal{I} + \mathcal{J}$ is ideal of ring R.

 \Box Let a, b be elements of ideal \mathcal{I} and, in turn, x, y to be elements of ideal \mathcal{J} . Thus a + x and b + y are elements of set $\mathcal{I} + \mathcal{J}$.

(i) $(a+x) + (b+y) = (a+b) + (x+y) \in \mathcal{I} + \mathcal{J}$. $-a-b \in \mathcal{I} + \mathcal{J}$. $0 = 0 + 0 \in \mathcal{I} + \mathcal{J}$.

(ii) Let $r \in R$. Then $r(a + x) = ra + rb \in \mathcal{I} + \mathcal{J}$. Hence $\mathcal{I} + \mathcal{J}$ is an ideal.

Let's denote the equivalence class of element x in the quotient ring by [x].

1.19. Proposition. If $1 \in R$ and \mathcal{M} is maximal ideal of commutative ring R, then quotient ring R/\mathcal{M} is a field.

□ Assume that $[x] \neq [0]$, then $x \notin \mathcal{M}$. Thus $\mathcal{M} + Rx \neq \mathcal{M}$ and $\mathcal{M} + Rx = R$. Then exist such $x \in \mathcal{M}$ and $y \in R$, that (u + yx = 1). Thus for equivalence classes: [1] = [u + yx] = [u] + [yx] = [0] + [y][x] = [y][x].

1.20. Corollary. If \mathcal{M} is a maximal ideal of ring R, then \mathcal{M} is a prime ideal.

 $\Box R/\mathcal{M}$ is a field. A field is a ring without zero divisors.

1.21. Proposition. If \mathcal{M} is ideal of commutative ring R and R/\mathcal{M} is a field, then \mathcal{M} is maximal ideal of ring R.

 \Box As R/\mathcal{M} is a field, then $\operatorname{card}(R/\mathcal{M}) \geq 2$. Let $\mathcal{M} \neq R$. If \mathcal{I} is an ideal such that $\mathcal{M} \subset \mathcal{I} \subseteq R$, then exists $x \in \mathcal{I}$, that $x \notin \mathcal{M}$. As $[x] \neq [0]$, then there exists such y, that [xy] = [x][y] = [1]. As $[xy] = xy + \mathcal{M}$, therefore exist such $u \in \mathcal{M}$, that u + xy = 1. We have $\mathcal{M} \subset \mathcal{I}$, therefore $u \in \mathcal{I}, xy \in \mathcal{I}y \subseteq \mathcal{I}$ because \mathcal{I} is an ideal. Thus $1 = u + xy \in \mathcal{I}$. Hence $\mathcal{I} = R$.

1.22. Definition. The set of all prime ideals of ring R is called the spectrum of ring R and is denoted by Spec(R). The set of all maximal ideals of ring R is called the maximal spectrum of ring R and is denoted by Specm(R).

1.23. Corollary. $Specm(R) \subseteq Spec(R)$.

1.24. Definition. Jacobson radical:

$$\mathcal{J}(R) \coloneqq \bigcap_{\mathcal{I} \in Specm(R)} \mathcal{I}.$$

1.25. Theorem. \mathcal{I} is prime ideal of ring R if and only if R/\mathcal{I} is an integral domain.

 \square An integral domain is a nonzero commutative ring with no nonzero zero divisors.

 $\Rightarrow [a][b] = [0] \text{ implies } ab \in \mathcal{I}. \text{ If } \mathcal{I} \text{ is prime, then } a \in \mathcal{I} \lor b \in \mathcal{I}.$ Thus $[a] = [0] \lor [b] = [0].$ Hence R/\mathcal{I} is an integral domain.

 \Leftarrow Assume that \mathcal{I} is not prime, then exist such $a \notin \mathcal{I}$ and $b \notin \mathcal{I}$, that $ab \in \mathcal{I}$. $[a][b] = [0] \in R/\mathcal{I}$ and $[a] \neq [0] \land [b] \neq [0]$. Hence R/\mathcal{I} is not an integral domain.

1.26. Proposition. A finite integral domain is a field.

 \Box Let $R = \{a_1, a_2, \ldots, a_n\}$ be a finite integral domain, $a \in R$ and $a \neq 0$. Consider terms aa_1, aa_2, \ldots, aa_n . All those terms are unique. If the contrary is true, then $aa_i = aa_j$. Thus $aa_i - aa_j = 0$, $a(a_i - a_j) = 0$. As R is an integral domain and $a \neq 0$, then $a_i - a_j = 0$, i.e., $a_i = a_j$. As

$$R = \{aa_1, aa_2, \ldots, aa_n\},\$$

therefore there exists such a_k , that $aa_k = 1$. As an integral domain is commutative, then $1 = aa_k = a_ka$. Hence $a_k = a^{-1}$.

1.27. Corollary. If \mathcal{I} is a prime ideal of ring R, then it is a maximal ideal.

 \Box As \mathcal{I} is a prime ideal, then (1.25. Theorem) R/\mathcal{I} is an integral domain. Integral domain R/\mathcal{I} is finite, therefore (1.26. Proposition) it is a field. Thus (1.21. Proposition) ideal \mathcal{I} is maximal.

1.28. Proposition. If \mathcal{I} and \mathcal{J} are distinct maximal ideals of ring R, then they are coprime ideals.

 \square As $\mathcal{I} \neq \mathcal{J}$, then $\mathcal{I} + \mathcal{J} \supset \mathcal{I}$ or $\mathcal{I} + \mathcal{J} \supset \mathcal{J}$. Thus

 $R \supseteq \mathcal{I} + \mathcal{J} \supset \mathcal{I} \quad \text{or} \quad R \supseteq \mathcal{I} + \mathcal{J} \supset \mathcal{J}.$

Notice that $\mathcal{I} + \mathcal{J}$ is ideal (1.18. Lemma) and \mathcal{I} , \mathcal{J} are maximal ideals. Its possible only if $\mathcal{I} + \mathcal{J} = R$.

1.29. Definition. Element $a \in R$ is called a nilpotent element, if exists such natural n, that $a^n = 0$.

1.30. Definition. Set Nil(R), consisting of all nilpotent elements of ring R, is called a nilradical.

1.31. Proposition. Nil(R) is ideal of ring R.

 \Box Assume that $a^n = 0 = b^m$, then

$$(a+b)^{n+m} = \sum_{k=0}^{n+m} \binom{n+m}{k} a^k b^{n+m-k}.$$

While k < n, we have n + m - k > m. As a result, all terms of sum are equal to 0.

Let $r \in R$, then $(ra)^n = r^n a^n = r^n \cdot 0 = 0$. Thus $RNil(R) \subseteq Nil(R)$.

1.32. Proposition. If R is a commutative ring, then

$$Nil(R) = \bigcap_{\mathcal{I} \in Spec(R)} \mathcal{I}.$$

 $\label{eq:spec_relation} \begin{array}{l} \Box \mbox{ Let } r \in Nil(R), \mbox{ Then there exists such } n, \mbox{ that } r^n = 0 \in \mathcal{I} \in Spec(R). \ \mathcal{I} \mbox{ is an ideal, therefore } 0 \in \mathcal{I}. \ \mathcal{I} \mbox{ is prime ideal and } r \cdot r^{n-1} \in \mathcal{I}, \mbox{ therefore } r \in \mathcal{I} \mbox{ or } r^{n-1} \in \mathcal{I}. \ \mbox{ If } r \in \mathcal{I}, \mbox{ then we have obtained the desired result. If the contrary is true, then we proceed inductively, i.e., we assume that <math>r^{n-k} \in \mathcal{I} \mbox{ and } n-k > 1, \mbox{ then } r \cdot r^{n-k-1} \in \mathcal{I} \mbox{ and therefore } r \in \mathcal{I} \mbox{ or } r^{n-k-1} \in \mathcal{I}. \ \mbox{ We proceed until } n-k-i=1. \ \mbox{ Thus we have proven, that } r \in \mathcal{I} \mbox{ for any } \mathcal{I} \in Spec(R). \ \mbox{ Thus } r \in \cap_{\mathcal{I} \in Spec(R)} \mathcal{I} \mbox{ and } Nil(R) \subseteq \cap_{\mathcal{I} \in Spec(R)} \mathcal{I}. \end{array}$

Let's now assume that $f \notin Nil(R)$ and consider set

$$\mathfrak{F} = \{J \subseteq R \mid J \text{ is an ideal and } \forall m \in \mathbb{Z}_+ f^m \notin J\}.$$

Set $\mathfrak{F} \neq \emptyset$, because 0 is an ideal. Set \mathfrak{F} is partially ordered with respect to \subseteq , and for each chain $J_1 \subseteq J_2 \subseteq \ldots$ there exist a upper bound

$$\mathfrak{J} \models \bigcup_{k>0} J_k.$$

Let's prove that $\mathfrak J$ is an ideal.

 \triangleright If $a \in \mathfrak{J}$ and $b \in \mathfrak{J}$, then $\exists i \ a \in J_i$ and $\exists k \ b \in J_k$. Assume for concreteness that $J_i \subseteq J_k$, then $a \in J_k$. Hence $a + b \in J_k \subseteq \mathfrak{J}$.

Let $r \in R$ un $c \in \mathfrak{J}$, then $\exists \varkappa \ c \in J_{\varkappa}$. Hence $rc \in J_{\varkappa} \subseteq \mathfrak{J}$.

Let $f^m \in \mathfrak{J}$, then $\exists k \ f^m \in J_k$. A contradiction!

As for each such chain an upper bound exists, then by Zorn's lemma, in set \mathfrak{F} exists a maximal element \mathcal{M} . Let's prove that $\mathcal{M} \in Spec(R)$.

 $\triangleright \text{ Let } a \notin \mathcal{M} \text{ and } b \notin \mathcal{M}, \text{ then } aR + \mathcal{M} \supset \mathcal{M} \text{ and } bR + \mathcal{M} \supset \mathcal{M}.$ Therefore $aR + \mathcal{M} \notin \mathfrak{F}$ and $bR + \mathcal{M} \notin \mathfrak{F},$ thus

$$\exists n f^n \in aR + \mathcal{M} \text{ and } \exists m f^m \in bR + \mathcal{M}.$$

As $f^n \in aR + \mathcal{M}$, then $f^n = ar_1 + m_1$, where $r_1 \in R$ and $m_1 \in \mathcal{M}$. Similarly $f^m \in bR + \mathcal{M}$, $f^m = br_2 + m_2$, where $r_2 \in R$ and $m_2 \in \mathcal{M}$.

 $f^{n+m} = f^n f^m = (ar_1 + m_1)(br_2 + m_2) = abr_1r_2 + ar_1m_2 + br_2m_1 + m_1m_2.$

Hence $f^{m+n} \in abR + \mathcal{M}$. Therefore $abR + \mathcal{M} \notin \mathfrak{F}$, thus $ab \notin \mathcal{M}$.

With some logical transformations:

$$\begin{array}{rcl} a \notin \mathcal{M} \wedge b \notin \mathcal{M} & \Rightarrow & ab \notin \mathcal{M}, \\ \neg (a \notin \mathcal{M} \wedge b \notin \mathcal{M}) & \lor & ab \notin \mathcal{M}, \\ a \in \mathcal{M} \lor b \in \mathcal{M} & \lor & ab \notin \mathcal{M}, \\ ab \notin \mathcal{M} & \lor & a \in \mathcal{M} \lor b \in \mathcal{M}, \\ ab \in \mathcal{M} & \Rightarrow & a \in \mathcal{M} \lor b \in \mathcal{M}. \end{array}$$

Therefore \mathcal{M} is a prime ideal. \triangleleft

Thus if element f is not nilpotent, then there exists such prime ideal \mathcal{M} to whom f doesn't belong.

$$f \notin Nil(R) \Rightarrow \exists \mathcal{M} \in Spec(R) \ (f \notin \mathcal{M}).$$

From contraposition, we obtain:

$$\forall \mathcal{M} \in Spec(R) \ (f \in \mathcal{M}) \Rightarrow f \in Nil(R).$$

Thats proves the inclusion $\bigcap_{\mathcal{I} \in Spec(R)} \mathcal{I} \subseteq Nil(R)$.

1.33. Lemma. There exists m, that $(Nil(R))^m = 0$.

 \Box If $a \in Nil(R)$, then there exists such κ_a , that $a^{\kappa_a} = 0$. As R is a finite set, then Nil(R) also is a finite set, therefore there exists

$$\kappa = \max_{a \in Nil(R)} (\kappa_a).$$

Let's assume for concreteness, that |Nil(R)| = n. In product $a_1 a_2 \ldots a_m$, where all $a_i \in Nil(R)$ and $m = n\kappa$, there is at least one nilpotent element a_j , whose power ν is no less than κ , i.e., $\nu \geq \kappa$, therefore $a_j^{\nu} = 0$.

1.34. Lemma. If $\phi : R \to R'$ is a ring epimorphism and \mathcal{I} is a ideal of ring R, then $\phi(\mathcal{I})$ is ideal of R'.

 \Box (i) Let $x' \in R'$ and $a' \in \phi(\mathcal{I})$, then there exist such $x \in R$ and $a \in \mathcal{I}$, that $\phi(x) = x'$ and $\phi(a) = a'$. As $x \in R$ and $a \in \mathcal{I}$, then $ax \in \mathcal{I}$, therefore

$$a'x' = \phi(a)\phi(x) = \phi(ax) \in \phi(\mathcal{I})$$

(ii) Notice that $\phi : \mathcal{I} \to R'$ is a ring homomorphism, then according to the theorem of homomorphism $\phi(\mathcal{I})$ is a ring.

1.35. Lemma. If $\phi : R \to R'$ is a ring epimorphism and \mathcal{I}' is ideal of ring R', then there exists such \mathcal{I} ideal of ring R, that $\phi(\mathcal{I}) = \mathcal{I}'$.

 \Box (i) Let's define

$$\mathcal{I} := \{ x \in G \mid \exists x' \in \mathcal{I}' \ \phi(x) = x' \}.$$

(ii) Let $a \in \mathcal{I}$ un $b \in \mathcal{I}$, then

$$\begin{aligned} \phi(a+b) &= \phi(a) + \phi(b) \in \mathcal{I}' \\ \phi(ab) &= \phi(a)\phi(b) \in \mathcal{I}'. \end{aligned}$$

Thus a + b and ab belong to set \mathcal{I} .

(iii) Let $r \in R$, then $\phi(ra) = \phi(r)\phi(a) \in \mathcal{I}'$, because \mathcal{I}' is a ideal of ring R'. Hence $ra \in \mathcal{I}$.

Let us consider groups. A subgroup, as usual, is denoted by \leq , and a normal subgroup is denoted by \leq .

1.36. Lemma. Let $N \trianglelefteq G$. If $K \le G/N$, then there exists such $H \le G$, that K = H/N.

 \Box From the definition of K:

$$K = \{hN \mid hN \in K \land h \in G\}.$$

Let's define $H := \{h \mid hN \in \mathscr{H} \land h \in G\}$. Thus $h \in H \Leftrightarrow hN \in \mathscr{H}$. If $n \in N$, then $nN = N \in K$, because N is the unit element of group G/N.

(i) Assume that $g \in H$ and $h \in H$. As $K \leq G/N$, then

$$ghN = (gN)(hN) \in K.$$

Hence $gh \in H$.

(ii) As $hN \in K$, then $h^{-1}N = (hN)^{-1} \in K$. Thus accordingly to definition of H we have $h^{-1} \in H$. Thus $H \leq G$.

(iii) Notice

$$H/N = \{hN \mid h \in H\} = \{hN \mid hN \in K\} = K.$$

1.37. Theorem (Correspondence theorem). Let N ≤ G.
(i) If N ⊆ H ≤ G, then H/N ≤ G/N.
(ii) If K ≤ G/N, then there exist such H ≤ G, that K = H/N.
(iii) Let

- $S = \{H \mid N \subseteq H \land H \trianglelefteq G\},\$
- $\mathscr{S} = \{K \mid K \trianglelefteq G/N\}.$

If $\phi: S \to G/N: H \mapsto H/N$, then $\phi: S \to \mathscr{S}$ is a bijection.

 \Box (i) Let $gN \in G/N$ un $hN \in H/N$, then

$$(gN)(hN)(gN)^{-1} = (ghN)(g^{-1}N) = ghg^{-1}N.$$

As $H \leq G$, then $ghg^{-1} \in H$. Hence $ghg^{-1}N \in H/N$. Thus for each $gN \in G/N$ and any $hN \in H/N$ we have proven

$$(gN)(hN)(gN)^{-1} \in H/N.$$

Thus by definition $H/N \leq G/N$.

(ii) There exists (1.36. Lemma) such $H \leq G$, that K = H/N. We need to prove that $H \leq G$ and thus $H/N \leq G/N$.

Let $g \in G$ and $h \in H$, then gN and $g^{-1}N$ belong to group G/N. In turn, hN belongs to group H/N. As $H/N \trianglelefteq G/N$, then

$$ghg^{-1}N = (gN)(hN)(gN)^{-1}N \in H/N.$$

Hence $ghg^{-1} \in H$. Thus for each $g \in G$ and any $h \in H$ we have proven, that $ghg^{-1} \in H$. Then according to the definition $H \trianglelefteq G$.

(iii) From (ii) for each element K of set \mathscr{S} there exists such $H \leq G$, that K = H/N. Thus range of $\phi: S \to G/N: H \mapsto H/N$ is $\operatorname{Ran}(\phi) = \mathscr{S}$, and thus mapping $\phi: S \to \mathscr{S}$ is surjective (with \mathscr{S} as a codomain).

Assume that $\phi(H_1) = \phi(H_2)$, i.e., $H_1/N = H_2/N$. Let $h_1 \in H_1$, then $h_1N \in H_1/N = H_2/N$. Hence $h_1 \in H_2$. Thus $H_1 \subseteq H_2$. We may construct a symmetrical argument: $h_2 \in H_2$, then $h_2N \in H_2/N = H_1/N$ and $h_2 \in H_1$. Thus $H_2 \subseteq H_1$. Thus $H_1 \subseteq H_2 \subseteq H_1$, i.e., $H_1 = H_2$. We have proven that $\phi: S \to \mathscr{S}$ is an injection.

The correspondence theorem holds also for rings. We will consider commutative rings.

1.38. Theorem (Correspondence theorem for rings). Assume that

- R is a ring;
- $\mathcal{I} \subseteq R$ is an ideal;

- $\pi: R \to R/\mathcal{I}: r \mapsto [r]$ is the natural mapping;
- $S = \{G \mid \mathcal{I} \subseteq G \text{ and } G \text{ is a subring of } R\};$
- $\mathscr{S} = \{H \mid H \text{ ir a subring of ring } R/\mathcal{I} \}.$

Mapping $\phi: S \to \mathscr{S}: G \mapsto G/\mathcal{I}$ is a bijetion. If

- $S' = \{ \mathcal{J} \mid \mathcal{I} \subseteq \mathcal{J} \text{ and } \mathcal{J} \text{ is an ideal of } R \},$
- $\mathscr{S}' = \{L \mid L \text{ is an ideal of ring } R/\mathcal{I}\},\$

then mapping $\psi: S' \to \mathscr{S}': \mathcal{J} \mapsto \mathcal{J}/\mathcal{I}$ is a bijection.

 \Box (i) First we have to prove that mapping $\phi : S \to \mathscr{S} : G \mapsto G/\mathcal{I}$ is correctly defined, i.e., $\operatorname{Ran}(\phi) \subseteq \mathscr{S}$. Assume that $\mathcal{I} \subseteq G$ is a subring of ring R. The image of the additive group of ring G (1.37. Theorem) is G/\mathcal{I} . As \mathcal{I} is an ideal, then G/\mathcal{I} is a ring. Thus we have proven that $\operatorname{Ran}(\phi) \subseteq \mathscr{S}$.

For different subrings of ring R additive groups are distinct. Thus (1.37. Theorem) mapping ϕ is injective.

Let H be a subring of ring R/\mathcal{I} , then for H the additive group can be expressed as (1.37. Theorem) $H = A/\mathcal{I}$, where A is a subgroup of the additive group of ring R. Thus $a \in A \Leftrightarrow a + \mathcal{I} \in A/\mathcal{I}$. As $H = A/\mathcal{I}$ is a subring, then $(a + \mathcal{I})(b + \mathcal{I}) = ab + \mathcal{I}$ for all $a \in A$, $b \in A$. Therefore $ab \in A$, i.e., A is subring of ring G. According to the definition of ϕ , we have $\phi(A) = A/\mathcal{I}$. Thus mapping ϕ is surjective.

(ii) Let L be an ideal of ring R/\mathcal{I} , than the additive group of L can be expressed (1.37. Theorem) as $L = A/\mathcal{I}$, where A is a subroup of the additive group of ring R. Thus $a \in A \Leftrightarrow a + \mathcal{I} \in A/\mathcal{I}$. As $L = A/\mathcal{I}$ is an ideal, then $ra + \mathcal{I} = (r + \mathcal{I})(a + \mathcal{I}) \in A/\mathcal{I}$ for all $r \in R$, $a \in A$. Therefore $ra \in A$, i.e., A is an ideal of ring G. According to the definition ψ we have $\psi(A) = A/\mathcal{I}$. Hence mapping ψ is surjective.

Let \mathcal{J} be an ideal of ring R and $\mathcal{I} \subseteq \mathcal{J}$. If we consider the additive group of \mathcal{J} , then (1.37. Theorem) mapping $\psi : \mathcal{J} \mapsto \mathcal{J}/\mathcal{I}$ is injective.

We must prove that \mathcal{J}/\mathcal{I} is an ideal. From the definition of \mathcal{J}/\mathcal{I} fallows, that $a \in \mathcal{J} \Leftrightarrow a + \mathcal{I} \in \mathcal{J}/\mathcal{I}$. If $r \in R$, then $ar \in \mathcal{J}$, thus

$$(a+\mathcal{I})(r+\mathcal{I}) = ar + \mathcal{I} \in \mathcal{J}/\mathcal{I}.$$

Therefore \mathcal{J}/\mathcal{I} is ideal of ring R/\mathcal{I} . Hence mapping ψ is also injective.

1.39. Corollary. Assume that

- R is a ring;
- $\mathcal{I} \subseteq R$ is an ideal;
- $\pi: R \to R/\mathcal{I}: r \mapsto [r]$ is the natural mapping;
- $S' = \{ \mathcal{J} \mid \mathcal{I} \subseteq \mathcal{J} \text{ and } \mathcal{J} \text{ is an ideal of } R \};$
- $\mathscr{S}' = \{L \mid L \text{ is an ideal of ring } R/\mathcal{I}\};$
- $\psi: S' \to \mathscr{S}': \mathcal{J} \mapsto \mathcal{J}/\mathcal{I}.$

 \mathcal{J}/\mathcal{I} is a maximal ideal of ring R/\mathcal{I} if and only if \mathcal{J} is a maximal ideal of ring R, and \mathcal{J} contains ideal \mathcal{I} .

 \Box Notice that mapping ψ is bijective.

 \Rightarrow Assume that L is a maximal ideal if ring R/\mathcal{I} . We already know that there exist an ideal \mathcal{J} of ring $\mathcal{R}, \mathcal{I} \subseteq \mathcal{J}$, that $L = \mathcal{J}/\mathcal{I}$ and $\psi(\mathcal{J}) = \mathcal{J}/\mathcal{I}$. If in turn, $\mathcal J$ is not a maximal ideal, then there exists such ideal $\mathfrak M$ of ring R, that $\mathcal{J} \subset \mathfrak{M} \subset R$. Thus if $\mathcal{J} \subset \mathfrak{M}$, then $\mathcal{J}/\mathcal{I} \subseteq \mathfrak{M}/\mathcal{I}$. As ψ is bijective, then $\mathcal{J}/\mathcal{I} \neq \mathfrak{M}/\mathcal{I}$. Thus $\mathcal{J}/\mathcal{I} \subset \mathfrak{M}/\mathcal{I}$, e.i., \mathcal{J}/\mathcal{I} is not a maximal ideal. A contradiction!

 \Leftarrow Assume that \mathcal{J} is a maximal ideal of ring $R, \mathcal{I} \subseteq \mathcal{J}$. If in turn, \mathcal{J}/\mathcal{I} is not a maximal ideal of ring R/\mathcal{I} , then there exists such ideal M of ring R/\mathcal{I} , that $\mathcal{J}/\mathcal{I} \subset M \subset R/\mathcal{I}$. As M is an ideal of ring R/\mathcal{I} , then there exist such ideal \mathfrak{M} of ring $R, \mathcal{I} \subseteq \mathfrak{M}$, that $\mathfrak{M}/\mathcal{I} = M$. Thus $\mathcal{J}/\mathcal{I} \subset \mathfrak{M}/\mathcal{I}$. Notice that

$$\begin{aligned} a + \mathcal{J} \in \mathcal{J}/\mathcal{I} & \Leftrightarrow \quad a \in \mathcal{J}, \\ b + \mathcal{I} \in \mathfrak{M}/\mathcal{I} & \Leftrightarrow \quad b \in \mathfrak{M}. \end{aligned}$$

Hence $\mathcal{J} \subseteq \mathfrak{M}$. As ψ is bijective, then $\mathcal{J} \neq \mathfrak{M}$. Thus $\mathcal{J} \subset \mathfrak{M}$. As $\mathfrak{M}/\mathcal{I} \subset R/\mathcal{I}$, then thre exist such $r \in R$, that $r + \mathcal{I} \notin \mathfrak{M}/\mathcal{I}$. Therefore $r \notin \mathfrak{M}$. Thus \mathcal{J} is not a maximal ideal. A contradiction!

1.40. Definition. A ring with only one maximal ideal is called a local ring.

The commutative group of ring R is denoted as R^{\times} , i.e., it is the set of all invertible elements in ring R.

1.41. Proposition. If $\mathfrak{M} \neq R$ is an ideal of ring R and $R^{\times} = R \setminus \mathfrak{M}$, then R is a local ring and \mathfrak{M} is the maximal ideal.

 \square (i) Assume that $\mathcal{I} \subseteq R$ is ideal of ring R and $a \in \mathcal{I} \cap R^{\times}$. Then $a^{-1} \in R$. As \mathcal{I} is an ideal, then $1 = aa^{-1} \in \mathcal{I}$.

(ii) Assume that $r \in R$ and $r1 \in \mathcal{I}$. Thus $\mathcal{I} = R$. Thus any ideal $\mathcal{J} \subset R$ doesn't contain elements of set R^{\times} .

(iii) As ideal \mathfrak{M} contain all the nonreversible (in ring R) elements of set R, then $\mathcal{J} \subseteq \mathfrak{M}$. Thus \mathfrak{M} is the one maximal ideal.

1.42. Proposition. If \mathfrak{M} is the maximal ideal of local ring R, then $\mathfrak{M} = R \setminus R^{\times}.$

 \Box Assume that $a \notin R^{\times}$.

(i) It is obvious that $a \in aR$ and aR is a commutative group. If $r \in R$ and $b \in aR$, then $b = a\beta$, where $\beta \in R$ and $br = a\beta r \in aR$. Hence aR is an ideal.

As $a \notin R^{\times}$, then in ring R dosnt exist a^{-1} , therefore $1 \notin aR$ and $aR \subset R$, i.e., aR is a proper ideal of ring R.

(ii) Let

 $S \models \{\mathcal{I} \mid aR \subseteq \mathcal{I} \subset R, \text{ where } \mathcal{I} \text{ is an ideal of ring } R\}.$

Let $\{\mathcal{J}_{\alpha}\}$ be a chain of set S, i.e., if $\mathcal{J}_{\beta} \in \{\mathcal{J}_{\alpha}\}$ and $\mathcal{J}_{\gamma} \in \{\mathcal{J}_{\alpha}\}$, then $\mathcal{J}_{\beta} \subset \mathcal{J}_{\gamma} \text{ or } \mathcal{J}_{\gamma} \subset \mathcal{J}_{\beta}.$ If $\mathcal{J} = \bigcup_{\alpha} \mathcal{J}_{\alpha}$, then $\mathcal{J} \subset R$ because $1 \notin \mathcal{J}.$

Let $b \in \mathcal{J}$ and $c \in \mathcal{J}$. Then there exist such β and γ , that $b \in \mathcal{J}_{\beta}$ and $c \in \mathcal{J}_{\gamma}$. We have $\mathcal{J}_{\beta} \subset \mathcal{J}_{\gamma}$ or $\mathcal{J}_{\gamma} \subset \mathcal{J}_{\beta}$. For concreteness assume $\mathcal{J}_{\beta} \subset \mathcal{J}_{\gamma}$, then b and c are elements of ideal \mathcal{J}_{γ} . As \mathcal{J}_{γ} is an ideal, then $b + c \in \mathcal{J}_{\gamma}$ also $0 \in \mathcal{J}_{\gamma}$ and $-b \in \mathcal{J}_{\gamma}$. As \mathcal{J}_{γ} is an ideal, then $br \in \mathcal{J}_{\gamma}$ for all $r \in R$. Thus b + c, 0, -b, br belong to set \mathcal{J} , because $\mathcal{J}_{\beta} \subset \mathcal{J}$. Additionally, the sum is associative and commutative, while the multiplication is associative $(\mathcal{J} \subset R)$. Thus \mathcal{J} is an ideal. Thus $\mathcal{J} \in S$ and is upper bound of chain $\{\mathcal{J}_{\alpha}\}$. According to Zorn's lemma, set S has at least one maximal element \mathfrak{N} . Thus \mathfrak{N} is a maximal ideal and $\mathfrak{N} \neq \mathfrak{M}$, because $a \notin \mathfrak{M}$ and $a \in \mathfrak{N}$. This gives us a contradiction because R is a local ring.

1.43. Lemma. In a local ring, there are only two idempotent elements: 0 and 1.

 \Box Assume that $0 \neq e \neq 1$ is idempotent. Then $e(1-e) = e - e^2 = 0$, i.e., both elements are zero divisors, thus $e \notin R^{\times}$ and $1 - e \notin R^{\times}$. Thus both elements belong to the maximal ideal, but 1 = e + (1 - e), i.e., 1 belongs to the maximal ideal. A contradiction!

1.44. Lemma. If $e \in R$ is idempotent, then eR is a ring with unit element e.

 \Box From (proof of 1.42. Proposition) eR is an ideal. Let's show that eis the unit element. Assume that $x \in eR$, then x = er, where $r \in R$.

$$xe = ex = e^2r = er = x.$$

1.45. Theorem. Finite ring R is isomorph to the direct sum of local rings (with precision to term order in the sum).

 \Box Let $Spec(R) = \{P_1, P_2, \dots, P_n\}$. As R is a finite ring, P_i is a maximal ideal (1.27. Corollary). Thus Spec(R) = Specm(R), because each maximal ideal is also a prime ideal (1.20. Corollary). Hence

$$Nil(R) = \bigcap_{P \in Spec(R)} P = \bigcap_{P \in Specm(R)} P = \mathcal{J}(R),$$

Additionaly, if $k \neq \varkappa$, then ideals P_k and P_\varkappa are coprime (1.28. Proposition). Thus (1.7. Proposition)

$$\bigcap_{k=1}^{n} P_k = \prod_{k=1}^{n} P_k.$$

Also there (1.33. Lemma) exists such m, that $\mathcal{J}(R)^m = 0$. If $x \in \prod_{j=1}^n P_j^m$, then $x = \sum_k x_{k1} x_{k2} \dots x_{kn}$, where all $x_{kj} \in P_j^m$. Each $x_{kj} = \sum_i y_{ikj1} y_{ikj2} \dots y_{ikjm}$, where all $y_{ikj\nu} \in P_j$. As a result, x is representable as a sum, whose terms are a product of nm elements. By taking into account the commutativity of multiplication, elements can be rearranged so that in product term first m elements belong to set P_1 , then in turn m elements belonging to set $P_2 m$, etc., until the last m elements belonging to set P_n . Thus

$$\prod_{j=1}^{n} P_j^m = \left(\prod_{j=1}^{n} P_j\right)^m = \mathcal{J}(R)^m.$$

Note (1.8. Proposition), that P_i^m , P_j^m ere coprime if $i \neq j$, therefore (1.7. Proposition) $\bigcap_{j=1}^n P_j^m = \prod_{j=1}^n P_j^m$.

Let's define a homeomorphism of rings

$$\Phi: R \to R/P_1^m \times R/P_2^m \times \cdots \times R/P_n^m : r \mapsto ([r]_1, [r]_2, \dots, [r]_n)$$

Homeomorphism Φ is injective (1.10. Proposition), because

$$\bigcap_{j=1}^{n} P_{j}^{m} = \prod_{j=1}^{n} P_{j}^{m} = \left(\prod_{j=1}^{n} P_{j}\right)^{m} = \mathcal{J}(R)^{m} = 0,$$

Additionally Φ is surjective (1.12. Proposition), because P_i^m , P_j^m are coprime, if $i \neq j$. Thus Φ is an isomorphism.

(i) We have a natural mapping

$$\Phi_i: R \to R/P_i^m: r \mapsto [r]_i.$$

Thus (1.38. Theorem) each ideal P (of ring R) containing P_i^m is mapped to ideal of ring R/P_i^m . Additionally mapping $\phi: P \mapsto P/P_i^m$ is bijective.

(ii) From (1.8. Proposition) we have: if $k \neq l$, then P_k^m, P_l^m are coprime, because P_k, P_l are coprime. Thus $P_k^m + P_l^m = R$. Assume that $P_k^m \subseteq P_l$, then $R = P_k^m + P_l^m \subseteq P_l + P_l^m \subseteq P_l + P_l = P_l$. A contradiction! Hence P_k is the one maximal ideal, containing P_k^m . Thus from (1.39. Corollary): P_k/P_k^m is the one maximal ideal of ring R/P_k^m . Thus R/P_k^m

is a local ring.

(iii) Assume that $R \cong \bigoplus_{j=1}^{n} R_j \cong \bigoplus_{k=1}^{m} S_k$, where all R_j, S_k are local rings. From (1.15. Proposition) there exist such orthogonal idempotents $e_j \in R, f_k \in R$, that $R_j \cong e_j R, S_k \cong f_k R$ and

$$1 = \sum_{j=1}^{n} e_j = \sum_{k=1}^{m} f_k$$

Hence

$$e_{j} = e_{j} \sum_{k=1}^{m} f_{k} = \sum_{k=1}^{m} e_{j} f_{k} \in e_{j} R$$
$$(e_{j} f_{k})^{2} = e_{j}^{2} f_{k}^{2} = e_{j} f_{k}.$$

If $s \neq k$, then $(e_j f_k)(e_j f_s) = e_j^2 f_k f_s = e_j \cdot 0 = 0$. Thus

 $e_j f_1, e_j f_2, \ldots, e_j f_m$

are orthogonal idempotents of ring $e_j R$. As $e_j R$ is a local ring, then

$$e_j f_k = 0$$
, vai $e_j f_k = e_j$.

Note that (1.44. Lemma) e_j is unit element of ring $e_j R$. As all these idempotents $e_j f_1, e_j f_2, \ldots, e_j f_m$ are orthogonal, then only one of them is not equal to 0 (all can't be equal to 0, because $e_j = \sum_{k=1}^m e_j f_k$). Hence there exists such κ , that $e_j = e_j f_{\kappa} = f_{\kappa} e_j \in f_{\kappa} R$. As in the local ring $f_{\kappa} R$, exists only 2 idempotents, then $e_j = f_{\kappa}$. Thus

$$\{e_1, e_2, \dots, e_n\} \subseteq \{f_1, f_2, \dots, f_m\}.$$

Similarly, we can make an argument for

$$\{f_1, f_2, \dots, f_m\} \subseteq \{e_1, e_2, \dots, e_n\}$$

Hence n = m and

$$\{e_1, e_2, \dots, e_n\} = \{f_1, f_2, \dots, f_n\}.$$

2. Periodical rings

We are following [5] in this section.

Assume $X \notin R$. We identify set R^{ω} with R[[X]], i.e., by using standart notation

$$a_0a_1a_2\cdots a_n\cdots\mapsto \sum_{k=0}^{\infty}a_kX^k.$$

If $f = \sum_{k=0}^{\infty} a_k X^k$, then we use notation for coefficient extraction $f(n) = a_n$.

2.1. Definition. Algebra $\langle R[[X]], +, \cdot \rangle$ is called formal power series if

$$\sum_{k=0}^{\infty} a_k X^k + \sum_{k=0}^{\infty} b_k X^k = \sum_{k=0}^{\infty} (a_k + b_k) X^k,$$
$$\left(\sum_{k=0}^{\infty} a_k X^k\right) \left(\sum_{k=0}^{\infty} b_k X^k\right) = \sum_{k=0}^{\infty} \left(\sum_{i=0}^k a_i b_{k-i}\right) X^k.$$

We use "formal power series" (or simply "series") also when referring to a concrete $f \in R[[X]]$.

2.2. Proposition. Series
$$f = \sum_{k=0}^{\infty} a_k X^k$$
 are invertible in algebra $R[[X]]$

if and only if $a_0 \in \mathbb{R}^{\times}$.

This is a standard result found in textbooks dedicated to formal power series. If series $A = a_0 + a_1X + ...$ has a multiplicative inverse $B = b_0 + b_1X + ...$, then the constant term a_0b_0 of $A \cdot B$ is the constant term of the identity series, i.e., it is 1. The condition of invertibility of a_0 in Ris also sufficient, coefficients of the inverse series B can be computed as:

$$b_0 = a_0^{-1}; \ b_n = -a_0^{-1} \sum_{i=1}^n a_i b_{n-1}, \ n \ge 1.$$

Polynomial ring R[X] is a subring of ring R[[X]].

2.3. Definition. Series $f \in R[[X]]$ is called rational series, if $f = \frac{h}{g}$, where $h, g \in R[X]$ and g is invertible in ring R[[X]].

2.4. Definition. Series $f = \sum_{i=0}^{\infty} a_i X^i$ is called periodical series if there exists such

$$k \in \mathbb{Z}_+ = \{1, 2, \dots, n, \dots\}$$

that $\forall i \ a_i = a_{i+k}$. Series f is called semiperiodic series, if there exist such $n \in \mathbb{Z}_+$, that series $\sum_{j=0}^{\infty} a_{j+n} X^j$ is periodical.

2.5. Proposition. If series $f \in R[[X]]$ is semiperiodic series, then series f is rational series.

 \Box If $f=\sum\limits_{k=0}^{\infty}a_kX^k,$ then there exist such m and n, that $\forall i>m\;a_i=a_{i+n}.$ Hence

$$f = a_0 + a_1 X + \dots + a_m X^m + \sum_{i=0}^{\infty} (a_{m+1} X^{m+1} + a_{m+2} X^{m+2} + \dots + a_{m+n} X^{m+n}) X^{in} = p(X) + q(X) \sum_{i=0}^{\infty} X^{in} = p(X) + \frac{q(X)}{1 - X^n}.$$

Here

$$p(X) = a_0 + a_1 X + \ldots + a_m X^m,$$

$$q(X) = a_{m+1} X^{m+1} + a_{m+2} X^{m+2} + \ldots + a_{m+n} X^{m+n}.$$

2.6. Definition. Ring R is called a periodic ring, if

$$\forall a \in R \; \exists m \in \mathbb{Z}_+ \; \exists n \in \mathbb{Z}_+ \; (m \neq n \; \land \; a^m = a^n).$$

2.7. Definition. $n \in \mathbb{N}$ is called characteristic of ring R, denoted by char(R), if $\mathbb{Z}n$ is the kernel of homomorphism

$$\lambda:\mathbb{Z}\to R:k\mapsto k1.$$

2.8. Corollary. If R is a periodical ring, then $char(R) \neq 0$.

 \Box Let *e* be the unit element of periodic ring *R*. If $e \neq 0$ and e + e = 0, then char(*R*) = 2. Assume that $e \neq 0 \neq e + e$, then there exist such m > 0 and n > 0, that $(e + e)^m = (e + e)^{m+n}$. Thus $(e + e)^{m+n} - (e + e)^n = 0$, i.e.,

$$0 = (e+e)^{m+n} - (e+e)^n$$

=
$$\sum_{s=0}^{m+n} {m+n \choose s} e - \sum_{\sigma=0}^n {n \choose \sigma} e$$

=
$$\left(\sum_{s=0}^{m+n} {m+n \choose s} - \sum_{\sigma=0}^n {n \choose \sigma}\right) e.$$

Here $ke = \underbrace{e + e + \dots + e}_{k}$. Note that 2e is not idempotent. If the contrary is true, then $e + e = (e + e)^2 = e^2 + 2e + e^2 = e + 2e + e$. Hence e + e = 0.

2.9. Proposition. If $char(R) = m \neq 0$, then there exist such subring G of ring R, that G is isomorph to ring \mathbb{Z}_m .

 \Box Let's define set $G := \{ke \, | \, k \in \mathbb{N}\},$ here e is the unit element of ring R. If

$$\begin{aligned} k+n &= mq_1 + r_1, \quad 0 \leq r_1 < m; \\ kn &= mq_2 + r_2, \quad 0 \leq r_2 < m, \end{aligned}$$

then

$$(k+n)e = (mq_1+r_1)e = q_1(me) + r_1e = r_1e,$$

 $kne = (mq_2+r_2)e = q_2(me) + r_2e = r_2e.$

In \mathbb{Z}_m we have

 $k+n \equiv r_1 \mod m,$ $kn \equiv r_2 \mod m.$

Hence mapping $f: G \to \mathbb{Z}_m : ke \mapsto k$ is an isomorphism of rings.

We will use 1 instead of e, unless it may cause misunderstandings.

2.10. Definition. Consider a commutative ring with unity R. Extension G of R is called an integral extension, if for each $c \in G$, there exists such monic polynomial $p(X) \in R[X]$, that p(c) = 0.

2.11. Proposition. A periodic ring is an integral extension of \mathbb{Z}_m (up to isomorphism).

□ Assume that *R* is periodical and $a \in R$. From (2.8. corollary) and (2.9. Proposition) there exist such *m*, that *R* contains a subring isomorph to ring \mathbb{Z}_m . As *R* is periodic, then there exists such 0 < k < n, that $a^k = a^n$. Thus *a* is the root of the monic polynomial $X^n - X^{n-k}$.

2.12. Lemma. If $\mathcal{I} \subseteq \mathcal{J}$ are ideal of ring R, then mapping

$$f: R/\mathcal{I} \to R/\mathcal{J}: x + \mathcal{I} \mapsto x + \mathcal{J}$$

is an epimorphism of rings.

 \Box (i) Let's show that mapping f is defined correctly. Assume that $x+\mathcal{I} = y+\mathcal{I}$, then $x-y \in \mathcal{I}$ and therefore $x-y \in \mathcal{J}$. Hence $x+\mathcal{J} = y+\mathcal{J}$. (ii) Let's introduce notation:

$$\begin{array}{lll} [x]_{\mathcal{I}} & \rightleftharpoons & x + \mathcal{I}, \\ [x]_{\mathcal{J}} & \rightleftharpoons & x + \mathcal{J}, \end{array}$$

then

$$\begin{split} f[x+y]_{\mathcal{I}} &= [x+y]_{\mathcal{J}} = [x]_{\mathcal{J}} + [y]_{\mathcal{J}} = f[x]_{\mathcal{I}} + f[y]_{\mathcal{I}}, \\ f[xy]_{\mathcal{I}} &= [xy]_{\mathcal{J}} = [x]_{\mathcal{J}}[y]_{\mathcal{J}} = f[x]_{\mathcal{I}}f[y]_{\mathcal{I}}, \\ f[1]_{\mathcal{I}} &= [1]_{\mathcal{J}}. \end{split}$$

Thus f is a homomorphism of rings.

(iii) Assume that $[x]_{\mathcal{J}} \in R/\mathcal{J}$, then

$$[x]_{\mathcal{J}} = x + \mathcal{J} \supseteq x + \mathcal{I} = [x]_{\mathcal{I}}.$$

Thus $f[x]_{\mathcal{I}} = [x]_{\mathcal{J}}$, e.i, f is surjective.

Let's denote principal ideal g(X)R[X] as $\langle g(X)\rangle$.

2.13. Lemma. If R is a finite commutative local ring and

$$g(X) = 1 + a_1 X + a_2 X^2 + \dots + a_k X^k \in R[X],$$

then $|R[X]/\langle g(X)\rangle| < \infty$.

$$\square$$
 (i) Assume that \mathfrak{M} is maximal ideal of ring $R, a_t \in \mathbb{R}^{\times}$, but

$$a_{t+1}, a_{t+2}, \ldots, a_k \notin R^{\times},$$

thus (1.42. Proposition) $a_{t+1}, a_{t+2}, \ldots, a_k \in \mathfrak{M}$.

(ii) Maximal ideal \mathfrak{M} of ring R is prime (1.20. Corollary). If \mathcal{I} is a prime ideal of finite ring R, then it is maximal (1.27. Corollary). In the given case, this means we have only one prime ideal, e.i., \mathfrak{M} . As R is commutative ring, then (1.32. Proposition)

$$Nil(R) = \bigcap_{\mathcal{I} \in \operatorname{Spec}(R)} \mathcal{I}.$$

Here

- *Nil*(*R*) is a nilradical, e.i., a set consisting of all nilpotent elements of *R*;
- Spec(R) is a spectrum of ring R spektrs, e.i., set of all prime ideals.

In this case $Nil(R) = \mathfrak{M}$. Thus (1.33. Lemma) there exist such l, that $(Nil(R))^l = \mathfrak{M}^l = 0$. Note that R here is a finite ring.

(iii) Let $g_1(X) = (1 + a_1 X + a_2 X^2 + \dots + a_t X^t)^l$. For any commutative ring holds

$$\alpha^{l} - \beta^{l} = (\alpha - \beta) \sum_{i=1}^{l} \alpha^{l-i} \beta^{i-1}.$$

If

- α is given as $1 + a_1 X + a_2 X^2 + \dots + a_t X^t$,
- β is given as $-\sum_{i=t+1}^{k} a_i X^i$,

then $\alpha - \beta = g(X)$ and thus g(X) divides polynomial

$$(1 + a_1X + a_2X^2 + \dots + a_tX^t)^l - (-\sum_{i=t+1}^k a_iX^i)^l.$$

As $\mathfrak{M}^{l} = 0$, then all coefficient of polynomial $(-\sum_{i=t+1}^{k} a_{i}X^{i})^{l}$ are equal to 0, because $a_{t+1}, a_{t+2}, \ldots, a_{k} \in \mathfrak{M}$. Hence

$$g_1(X) = (1 + a_1 X + a_2 X^2 + \dots + a_t X^t)^l - (-\sum_{i=t+1}^k a_i X^i)^l.$$

(iv) Lets rewrite $g_1(X)$ as $1 + b_1 X + \dots + b_u X^u$. Here u = tl and $b_u = a_t^u \in \mathbb{R}^{\times}$. Hence $|\mathbb{R}[X]/\langle g_1(X)\rangle| = |\mathbb{R}|^u < \infty$. Note that

$$R[X]/g_1(X) = \{ [r(X)] \mid h(X) \in R[X] \\ \land \quad h(X) = f(X)g_1(X) + r(X) \\ \land \quad \deg(r(X)) < \deg(g_1(X)) = u \}$$

(v) If a = bc, then $aR \subseteq bR$. Thus if $x \in aR$, then x = ar, where $r \in R$ and $x = ar = bcr \in bR$.

As g(X) divides $g_1(X)$, then $\langle g_1(X) \rangle = g_1(X)R[X] \subseteq g(X)R[X] = \langle g(X) \rangle$. From (2.12. Lemma) mapping

$$f: R[X]/\langle g_1(X)\rangle \to R[X]/\langle g(X)\rangle: p(X) + \langle g_1(X)\rangle \mapsto p(X) + \langle g(X)\rangle$$

is surjective. Thus $|R[X]/\langle g_1(X)\rangle| \ge |R[X]/\langle g(X)\rangle|$, i.e., $|R|^u \ge |R[X]/\langle g(X)\rangle|$.

Let R and G be rings and $\varphi : R \to G^n$ be a ring isomorphism. Let $\bar{a}_i = (a_{i1}, a_{i2}, \dots, a_{in})$, where

$$a_{ij} = \begin{cases} a_i, & \text{if } i = j; \\ 0, & \text{if } i \neq j. \end{cases}$$

Thus $(a_1, a_2, \ldots, a_n) = \bar{a}_1 + \bar{a}_2 + \cdots + \bar{a}_n$. As φ is an isomorphism, then $\varphi^{-1}: G^n \to R$ also is an isomorphism. Hence

$$\varphi^{-1}(a_1, a_2, \dots, a_n) = \varphi^{-1}(\bar{a}_1 + \bar{a}_2 + \dots + \bar{a}_n)$$

= $\varphi^{-1}(\bar{a}_1) + \varphi^{-1}(\bar{a}_2) + \dots + \varphi^{-1}(\bar{a}_n).$

Let $\bar{e}_i = (e_{i1}, e_{i2}, ..., e_{in})$, where

$$e_{ij} = \begin{cases} 1, & \text{if } i = j; \\ 0, & \text{if } i \neq j. \end{cases}$$

Thus $(1, 1, \ldots, 1) = \bar{e}_1 + \bar{e}_2 + \cdots + \bar{e}_n$. Hence

$$1 = \varphi^{-1}(1, 1, \dots, 1) = \varphi^{-1}(\bar{e}_1 + \bar{e}_2 + \dots + \bar{e}_n)$$

= $\varphi^{-1}(\bar{e}_1) + \varphi^{-1}(\bar{e}_2) + \dots + \varphi^{-1}(\bar{e}_n).$

2.14. Lemma. If $\phi : R \to S$ is a homomorphism of rings, then

$$\phi: R[X] \to S[X]: \sum_{i=0}^{m} a_i X^i \mapsto \sum_{i=0}^{m} \phi(a_i) X^i$$

is a homomorphism of rings.

$$\Box \quad \phi(\sum_{i=0}^{m} (a_i + b_i)X^i) = \sum_{i=0}^{m} \phi(a_i + b_i)X^i = \sum_{i=0}^{m} (\phi(a_i) + \phi(b_i))X^i$$
$$= \sum_{i=0}^{m} \phi(a_i)X^i + \sum_{i=0}^{m} \phi(b_i)X^i$$
$$= \phi(\sum_{i=0}^{m} a_iX^i) + \phi(\sum_{i=0}^{m} b_iX^i).$$

$$\begin{split} \phi((\sum_{i=0}^{m} a_i X^i)(\sum_{j=0}^{n} b_j X^j)) &= & \phi(\sum_{k=0}^{m+n} (\sum_{s=0}^{k} a_s b_{k-s}) X^k) \\ &= & \sum_{k=0}^{m+n} \phi(\sum_{s=0}^{k} a_s b_{k-s}) X^k \\ &= & \sum_{k=0}^{m+n} \sum_{s=0}^{k} \phi(a_s) \phi(b_{k-s}) X^k \\ &= & (\sum_{i=0}^{m} \phi(a_i) X^i)(\sum_{j=0}^{n} \phi(b_j) X^j) \\ &= & \phi(\sum_{i=0}^{m} a_i X^i) \phi(\sum_{j=0}^{n} b_j X^j). \end{split}$$

Thus we have proven:

- $\phi(p+q) = \phi(p) + \phi(q),$
- $\phi(pq) = \phi(p)\phi(q)$

for all $p, q \in R[X]$.

2.15. Corollary. (i) If $\phi : R \to S$ is a ring epimorphism, then $\phi : R[X] \to S[X] : \sum_{i=0}^{m} a_i X^i \mapsto \sum_{i=0}^{m} \phi(a_i) X^i$ is a ring epimorphism. (ii) If $\phi : R \to S$ is a ring monomorphism, then $\phi : R[X] \to S[X] : \sum_{i=0}^{m} a_i X^i \mapsto \sum_{i=0}^{m} \phi(a_i) X^i$ is a ring monomorphism. (iii) If $\phi : R \to S$ is a ring isomorphism, then $\phi : R[X] \to S[X] : \sum_{i=0}^{m} a_i X^i \mapsto \sum_{i=0}^{m} \phi(a_i) X^i$ is a ring isomorphism.

 \Box (i) Let $\sum_{i=0}^m \alpha_i X^i \in S[X]$. As $\phi: R \to S$ is an epimorphism, then exist such $a_1, \overline{a_2}, \ldots, a_m \in R$, that $\forall i \ \phi(a_i) = \alpha_i$. Hence $\phi(\sum_{i=0}^m a_i X^i) =$ $\sum_{i=0}^{m} \alpha_i X^i.$

(ii) Let $\sum_{i=0}^{m} a_i X^i \neq \sum_{i=0}^{m} b_i X^i$. Thus there exists such k, that $a_k \neq b_k$. Hence $\sum_{i=0}^{m} \phi(a_i) X^i \neq \sum_{i=0}^{m} \phi(b_i) X^i$.

(iii) Follows as a consequence of (i) and (ii).

2.16. Lemma. If $\phi : R \to S$ is a ring isomorphism, then

$$R[X]/\langle \sum_{i=0}^{m} a_i X^i \rangle \cong S[X]/\langle \sum_{i=0}^{m} \phi(a_i) X^i \rangle.$$

 $\Box \operatorname{Let} \sum_{i=0}^{n} b_i X^i \equiv_R \sum_{i=0}^{n} c_i X^i, \text{ i.e.., they represent the same element}$ of set $R[X]/\langle \sum_{i=0}^{m} a_i X^i \rangle$. There is a possibility of polynomials $\sum_{i=0}^{n} b_i X^i$ and $\sum_{i=0}^{n} c_i X^i$ to have different orders, then some of the coefficients are equal to 0.

Let's denote polynomials in consideration as: $f \rightleftharpoons \sum_{i=0}^{m} a_i X^i$, $\phi(f) \rightleftharpoons \sum_{i=0}^{m} \phi(a_i) X^i$, $p \rightleftharpoons \sum_{i=0}^{n} b_i X^i$, $q \rightleftharpoons \sum_{i=0}^{n} c_i X^i$.

Then

$$p \equiv_{R} q,$$

$$p-q \equiv_{R} 0,$$

$$\exists r \in R[X] fr = p-q,$$

$$\phi(r)\phi(f) = \phi(rf) = \phi(p-q) = \phi(p) - \phi(q),$$

$$\phi(p) - \phi(q) \equiv_{S} 0,$$

$$\phi(p) \equiv_{S} \phi(q).$$

As mapping $\phi: R \to S$ is an isomorphism, then $p \equiv_R q \Leftrightarrow \phi(p) \equiv_S \phi(q)$. Hence mapping $\bar{\phi}: R[X]/f \to S[X]/\phi(f): [p]_R \to [\phi(p)]_S$ is bijective. Here

$$[p]_R \rightleftharpoons \{g \mid g \equiv_R p\}, \qquad [\phi(p)]_S \rightleftharpoons \{h \mid h \equiv_S \phi(p)\}.$$

$$\begin{split} \bar{\phi}([p]_R[q]_R) &= \bar{\phi}([pq]_R) = [\phi(pq)]_S = [\phi(p)\phi(q)]_S \\ &= [\phi(p)]_S[\phi(q)]_S = \bar{\phi}([p]_R)\bar{\phi}([q]_R), \\ \bar{\phi}([p]_R + [q]_R) &= \bar{\phi}([p+q]_R) = [\phi(p+q)]_S = [\phi(p) + \phi(q)]_S \\ &= [\phi(p)]_S + [\phi(q)]_S = \bar{\phi}([p]_R) + \bar{\phi}([q]_R). \end{split}$$

Thus $\bar{\phi}$ is an isomorphism.

2.17. Lemma. If $\phi : R \mapsto G_1 \times G_2 \times \cdots \times G_n$ is a ring homomorphism, then for all *i*

$$\phi_i : R \to G_i : r \mapsto \mathrm{pr}_i(\phi(r))$$

is a ring homomorphism. Here $pr_i(r_1, r_2, \ldots, r_n) \equiv r_i$.

 \Box Let $\phi(x) = (x_1, x_2, ..., x_n)$ and $\phi(y) = (y_1, y_2, ..., y_n)$, then

$$\begin{split} \phi_i(x+y) &= \operatorname{pr}_i(\phi(x+y)) = \operatorname{pr}_i(\phi(x) + \phi(y)) = x_i + y_i \\ &= \phi_i(x) + \phi_i(y); \\ \phi_i(xy) &= \operatorname{pr}_i(\phi(xy)) = \operatorname{pr}_i(\phi(x)\phi(y)) = x_i y_i \\ &= \phi_i(x)\phi_i(y). \end{split}$$

2.18. Proposition. If $\phi : R \to G_1 \times G_2 \times \cdots \times G_n$ is a ring isomorphism and $f = \sum_{j=0}^m a_j X^j \in R[X]$, then

$$R[X]/\langle f \rangle \cong G_1[X]/\langle \phi_1(f) \rangle \times G_2[X]/\langle \phi_2(f) \rangle \times \cdots \times G_n[X]/\langle \phi_n(f) \rangle.$$

Here $\phi_i(f) = \sum_{j=0}^m \operatorname{pr}_i(\phi(a_j)) X^j$.

 \Box (i) Mapping $\phi_i : R \to G_i : r \mapsto \operatorname{pr}_i(\phi(r))$ is ring homomorphism (2.17. Lemma). As ϕ is an isomorphism, then ϕ_i is an epimorphism. Thus (2.15. Corollary)

$$\phi_i : R[X] \to G_i[X] : p \mapsto \phi_i(p)$$

is an epimorphism.

Assume that $\sum_{j=0}^{\nu} b_j X^j \equiv_R \sum_{j=0}^{\nu} c_j X^j$, i.e., they represent the same element from set $R[X]/\langle \sum_{j=0}^{m} a_j X^j \rangle$. Let's denote polynomials in consideration as: $p \rightleftharpoons \sum_{j=0}^{\nu} b_j X^j$, $q \rightleftharpoons \sum_{j=0}^{\nu} c_j X^j$. Then

$$p \equiv_{R} q,$$

$$p-q \equiv_{R} 0,$$

$$\exists r \in R[X] fr = p-q,$$

$$\phi_{i}(r)\phi_{i}(f) = \phi_{i}(rf) = \phi_{i}(p) - \phi_{i}(q),$$

$$\phi_{i}(p) - \phi_{i}(q) \equiv_{G_{i}} 0,$$

$$\phi_{i}(p) \equiv_{G_{i}} \phi_{i}(q).$$

This shows that mappings

$$\bar{\phi}_i : R[X]/\langle f \rangle \to G_i[X]/\langle \phi_i(f) \rangle : [p]_R \mapsto [\phi_i(p)]_{G_i}$$

are defined correctly. Here

$$[p]_R \rightleftharpoons \{g \mid g \equiv_R p\}, \qquad [\phi_i(p)]_{G_i} \rightleftharpoons \{h \mid h \equiv_{G_i} \phi_i(p)\}.$$

$$\begin{split} \bar{\phi}_i([p]_R[q]_R) &= \bar{\phi}_i([pq]_R) = [\phi_i(pq)]_{G_i} = [\phi_i(p)\phi_i(q)]_{G_i} \\ &= [\phi_i(p)]_{G_i}[\phi_i(q)]_{G_i} = \bar{\phi}_i([p]_R)\bar{\phi}_i([q]_R), \\ \bar{\phi}_i([p]_R + [q]_R) &= \bar{\phi}_i([p+q]_R) = [\phi_i(p+q)]_{G_i} = [\phi_i(p) + \phi_i(q)]_{G_i} \\ &= [\phi_i(p)]_{G_i} + [\phi_i(q)]_{G_i} = \bar{\phi}_i([p]_R) + \bar{\phi}_i([q]_R). \end{split}$$

Hence $\bar{\phi}_i$ is a homomorphism. Thus

$$\bar{\phi}: [p]_R \mapsto (\bar{\phi}_1([p]_R), \bar{\phi}_2([p]_R), \dots, \bar{\phi}_n([p]_R))$$

is a homomorphism.

(ii) Let $p_i \in G_i[X]$ and $k = \max_i \deg(p_i)$. Thus

$$p_i(X) = \sum_{j=0}^k a_{ij} X^j \in G_i[X]$$

As ϕ is bijective, then there exist such $r_s, s \in \overline{1, k}$, that

$$\phi(r_s) = (a_{1s}, a_{2s}, \dots, a_{ns}).$$

Lets choose $p(X) = \sum_{j=0}^{k} r_j X^j$. Thus mapping

$$\Phi: R[X] \to G_1[X] \times G_2[X] \times \cdots \times G_n[X]: p \mapsto (\phi_1(p), \phi_2(p), \dots, \phi_n(p))$$

is surjective. As $\deg(\phi_i(p)) = \deg(p)$, then only case, when Φ is not injective, might arise when $p \neq q$, but $\deg(p) = \deg(q)$. Let $q(X) = \sum_{j=0}^{k} \rho_j X^j$, $r_{\varkappa} \neq \rho_{\varkappa}$ and $\phi(\rho_{\varkappa}) = (b_1, b_2, \dots, b_n)$. In expanded expression:

$$(a_{1\varkappa}, a_{2\varkappa}, \ldots, a_{n\varkappa}) = \phi(r_{\varkappa}) \neq \phi(\rho_{\varkappa}) = (b_1, b_2, \ldots, b_n).$$

Thus there exist such ν , that $a_{\nu\varkappa} \neq b_{\nu}$.

$$\phi_{\nu}(p) = \sum_{j=0}^{k} \phi_{\nu}(r_{j}) X^{j} = \sum_{j=0}^{k} a_{\nu j} X^{j} = \sum_{j \neq \varkappa} a_{\nu j} X^{j} + a_{\nu \varkappa} X^{\varkappa}.$$

$$\phi_{\nu}(q) = \sum_{j=0}^{k} \phi_{\nu}(\rho_{j}) X^{j} = \sum_{j \neq \varkappa} \phi_{\nu}(\rho_{j}) X^{j} + \phi_{\nu}(\rho_{\varkappa}) X^{\varkappa}$$

$$= \sum_{j \neq \varkappa} \phi_{\nu}(\rho_{j}) X^{j} + b_{\nu} X^{\varkappa}.$$

Thus $\phi_{\nu}(p) \neq \phi_{\nu}(q)$, i.e., Φ is injective. From all the above, we conclude that Φ is bijective.

(iii) Let

$$([p_1]_{G_1}, [p_2]_{G_2}, \dots, [p_n]_{G_n}) \in G_1[X]/\langle \phi_1(f) \rangle \times G_2[X]/\langle \phi_2(f) \rangle \times \dots \times G_n[X]/\langle \phi_n(f).$$

Thus $[p_i] \subseteq G_i[X]$ and $p_i \in G_i[X]$. As Φ is bijective, then exist such $p \in R[X]$, that $\Phi(p) = (p_1, p_2, \dots, p_n)$, e.i.,

$$p_1 = \phi_1(p), p_2 = \phi_2(p), \dots, p_n = \phi_n(p).$$

Hence $[p_i]_{G_i} = [\phi_i(p)]_{G_i}$. From the definition of $\bar{\phi}_i$, we have $\bar{\phi}_i : [p]_R \mapsto [\phi_i(p)]_{G_i}$ and

$$\bar{\phi} : [p]_R \quad \mapsto \quad (\bar{\phi}_1([p]_R), \bar{\phi}_2([p]_R), \dots, \bar{\phi}_n([p]_R)) = \quad ([p_1]_{G_1}, [p_2]_{G_2}, \dots, [p_n]_{G_n}).$$

Hence $\overline{\phi}$ is surjective.

Let $\phi([p]_R) = \phi([0]_R)$, then $\forall i \ \phi_i([p]_R) = \phi_i([0]_R)$, t.i., $[\phi_i(p)]_{G_i} = [\phi_i(0)]_{G_i} = [0]_{G_i}$. Thus there exist such $r_i \in G_i[X]$, that $\phi_i(p) = r_i \phi_i(f)$. As

$$\Phi: R[X] \to G_1[X] \times G_2[X] \times \cdots \times G_n[X]$$

is bijective, then exists $\rho \in R[X]$, that $\Phi(\rho) = (r_1, r_2, \ldots, r_n)$. On the other hand $\Phi(\rho) = (\phi_1(\rho), \phi_2(\rho), \ldots, \phi_n(\rho))$. Thus $r_i = \phi_i(\rho)$, therefore $\phi_i(p) = r_i \phi_i(f) = \phi_i(\rho) \phi_i(f) = \phi_i(\rho f)$. Hence

$$\Phi(p) = (\phi_1(p), \phi_2(p), \dots, \phi_n(p)) = (\phi_1(\rho f), \phi_2(\rho f), \dots, \phi_n(\rho f)) = \Phi(\rho f).$$

Mapping Φ is bijective, therefore $p = \rho f$, t.i., $[p]_R = [0]_R$. Thus the kernel of homomorphism $\bar{\phi}$ is trivial, hence $\bar{\phi}$ is a monomorphism.

From all the above we conclude:

$$\bar{\phi}: R[X]/\langle f \rangle \to G_1[X]/\langle \phi_1(f) \rangle \times G_2[X]/\langle \phi_2(f) \rangle \times \cdots \times G_n[X]/\langle \phi_n(f) \rangle$$

is an isomorphism. \blacksquare

2.19. Lemma. Let $g(X) = 1 + a_1X + a_2X^2 + \cdots + a_kX^k \in R[X]$. If R is integral extension of ring $\mathcal{Z}_m \cong \mathbb{Z}_m$, then there exist such n, that g(X) divides $X^n - 1$. $\Box \text{ (i) Let } \alpha = aa_1^{s_1}a_2^{s_2}\dots a_k^{s_k}, \beta = ba_1^{s_1}a_2^{s_2}\dots a_k^{s_k}, \text{ where } a, b \in \mathcal{Z}_m,$ then $\alpha + \beta = (a + b)a_1^{s_1}a_2^{s_2}\dots a_k^{s_k}$ and $a + b \in \mathcal{Z}_m$. Let denote by $\mathcal{Z}_m(a_1, a_2, \dots, a_k)$ the smallest extension of ring \mathcal{Z}_m , containing all elements a_1, a_2, \dots, a_k . Thus $\mathcal{Z}_m(a_1, a_2, \dots, a_k)$ consists of sums:

$$\sum_{\bar{\varkappa}\in\mathcal{Z}_m}a_{\bar{\varkappa}}a_1^{\varkappa_1}a_2^{\varkappa_2}\dots a_k^{\varkappa_k},$$

where $a_{\bar{\varkappa}} \in \mathcal{Z}_m$ and $\bar{\varkappa} = (\varkappa_1, \varkappa_2, \ldots, \varkappa_k)$. There all $\bar{\varkappa}$ are distinct.

(ii) As $\mathcal{Z}_m(a_1, a_2, \ldots, a_k)$ is an integral extension, then for each a_i there exists such monic polynomial

$$p_i(X) = X^{m_i} + b_{im_i-1}X^{m_i-1} + \dots + b_{i2}X^2 + b_{i1}X + b_{i0}$$

that $p_i(a_i) = 0$. Hence

$$a_i^{m_i} = -b_{im_i-1}a_i^{m_i-1} - \dots - b_{i2}a_i^2 - b_{i1}a_i - b_{i0}a_i$$

Thus each element of ring $\mathcal{Z}_m(a_1, a_2, \ldots, a_k)$ is representable as a sum

$$\sum_{\bar{\varkappa}\in\mathcal{Z}_m}a_{\bar{\varkappa}}a_1^{\varkappa_1}a_2^{\varkappa_2}\dots a_k^{\varkappa_k},$$

where all $\bar{\varkappa} = (\varkappa_1, \varkappa_2, \dots, \varkappa_k)$ are distinct and all $\varkappa_i < m_i$. Then count of such sums is finite, because ring \mathcal{Z}_m is finite. Thus ring $\mathcal{Z}_m(a_1, a_2, \dots, a_k)$ is finite.

(iii) As $S \equiv \mathcal{Z}_m(a_1, a_2, \dots, a_k)$ is a finite ring, then (1.45. Theorem)

$$S \cong S_1 \times S_2 \times \cdots \times S_t,$$

where all S_i are finite commutative rings. Thus (2.18. Proposition)

$$S[X]/\langle g \rangle \cong S_1[X]/\langle \phi_1(g) \rangle \times S_2[X]/\langle \phi_2(g) \rangle \times \cdots \times S_t[X]/\langle \phi_t(g) \rangle.$$

Here

$$\bar{\phi}: S[X]/\langle g \rangle \to S_1[X]/\langle \phi_1(g) \rangle \times S_2[X]/\langle \phi_2(g) \rangle \times \cdots \times S_t[X]/\langle \phi_t(g) \rangle$$

is an isomorphism, where

$$\phi: S \to S_1 \times S_2 \times \cdots \times S_t$$

is an isomorphism, $\phi_i(g) = \sum_{j=0}^k \operatorname{pr}_i(\phi(a_j)) X^j$ and $a_0 = 1$. Thus

$$\phi_i(g) = 1_{S_i} + \sum_{j=1}^k \operatorname{pr}_i(\phi(a_j)) X^j.$$

(2.13. Lemma) $S_i[X]/\langle \phi_i(g) \rangle$ is a finite set, thus $S[X]/\langle g \rangle$ is a finite ring. Therefore all classes $[1], [X], [X^2], [X^3], \ldots, [X^s], \ldots$ can't be distinct. Thus there exist such $\nu \geq 0$ and n > 0, that $[X^{\nu}] = [X^{\nu+n}]$ or $[X^{\nu}(X^n-1)] = [0]$. Thus thre exist such $q(X) \in S[X]$, that $g(X)q(X) = X^{\nu}(X^n-1)$. As g(0) = 1, then $q(X) = X^{\nu}r(X)$. Hence $X^{\nu}g(X)r(X) = X^{\nu}(X^n-1)$. It is possible only if $g(X)r(X) = X^n - 1$.

2.20. Proposition. If integral extension f of $\mathcal{Z}_m \cong \mathbb{Z}_m$ is a rational series, then f is semiperiodic.

 \Box Let R be extension of ring \mathcal{Z}_m , $f(X) = \frac{h(X)}{g(X)}$ and $g(X) = \sum_{k=0}^{\nu} a_k X^k$, then $g(X) = a_0(1 + \sum_{k=1}^{\nu} a_0^{-1} a_k X^k)$. Thus (2.19. Lemma) exists such n, that $X^n - 1 = a_0^{-1} gr$, where $r \in R[X]$. Hence

$$f = \frac{h}{g} = \frac{h(X^n - 1)}{g(X^n - 1)} = \frac{a_0^{-1}h}{X^n - 1} \cdot \frac{X^n - 1}{a_0^{-1}g} = \frac{a_0^{-1}h}{X^n - 1} \cdot \frac{a_0^{-1}gr}{a_0^{-1}g}$$
$$= \frac{a_0^{-1}hr}{X^n - 1} = -a_0^{-1}hr\sum_{k=0}^{\infty} X^{kn}$$

Assume that $-a_0^{-1}hr = \sum_{\varkappa=0}^{\sigma} b_{\varkappa} X^{\varkappa}$, then $f = \sum_{\varkappa=0}^{\sigma} b_{\varkappa} X^{\varkappa} \sum_{k=0}^{\infty} X^{kn}$. If n = 1, then

$$f = \sum_{\varkappa=0}^{\sigma} b_{\varkappa} X^{\varkappa} \sum_{k=0}^{\infty} X^{k}$$

= $(b_{0} + b_{1} X + b_{2} X^{2} \dots + b_{\sigma} X^{\sigma})(1 + X + X^{2} + \dots + X^{\sigma} + \dots)$
= $b_{0} + (b_{0} + b_{1})X + (b_{0} + b_{1} + b_{2})X^{2} + \dots + (b_{0} + b_{1} + \dots + b_{\sigma})X^{\sigma}$
+ $(b_{0} + b_{1} + \dots + b_{\sigma})X^{\sigma+1} + \dots + (b_{0} + b_{1} + \dots + b_{\sigma})X^{\sigma+n} + \dots$
= $\sum_{k=0}^{\sigma-1} (\sum_{i=0}^{k} b_{i})X^{k} + \sum_{n=0}^{\infty} (\sum_{i=0}^{\sigma} b_{i})X^{\sigma+n}$

If $\sigma < n$, then

$$f = \sum_{\varkappa=0}^{\sigma} b_{\varkappa} X^{\varkappa} \sum_{k=0}^{\infty} X^{kn}$$

= $(b_0 + b_1 X + b_2 X^2 \dots + b_{\sigma} X^{\sigma})(1 + X^n + X^{2n} + \dots + X^{kn} + \dots)$
= $b_0 + b_1 X + b_2 X^2 + \dots + b_{\sigma} X^{\sigma}$
+ $b_0 X^n + b_1 X^{n+1} + b_2 X^{n+2} + \dots + b_{\sigma} X^{n+\sigma}$
+ $b_0 X^{2n} + b_1 X^{2n+1} + b_2 X^{2n+2} + \dots + b_{\sigma} X^{2n+\sigma} + \dots$
= $\sum_{k=0}^{\infty} \sum_{i=0}^{\sigma} b_i X^{kn+i}$

If $\sigma = n + \tau$ un $0 \le \tau < n$, then

$$f = \sum_{\varkappa=0}^{\sigma} b_{\varkappa} X^{\varkappa} \sum_{k=0}^{\infty} X^{kn}$$

$$= (b_0 + b_1 X + b_2 X^2 \dots + b_{n-1} X^{n-1} + b_n X^n + \dots + b_{n+\tau} X^{n+\tau})$$

$$\times (1 + X^n + X^{2n} + \dots + X^{kn} + \dots)$$

$$= b_0 + b_1 X + b_2 X^2 + \dots + b_{n-1} X^{n-1}$$

$$+ (b_0 + b_n) X^n + (b_1 + b_{n+1}) X^{n+1} + \dots + (b_{\tau} + b_{n+\tau}) X^{n+\tau}$$

$$+ b_{\tau+1} X^{n+\tau+1} + b_{\tau+2} X^{n+\tau+2} + \dots + b_{n-1} X^{2n-1}$$

$$+ (b_0 + b_n) X^{2n} + (b_1 + b_{n+1}) X^{2n+1} + \dots + (b_{\tau} + b_{n+\tau}) X^{2n+\tau}$$

+
$$b_{\tau+1}X^{2n+\tau+1} + b_{\tau+2}X^{2n+\tau+2} + \dots + b_{n-1}X^{3n-1} + \dots$$

= $\sum_{k=0}^{n-1} b_k X^k + \sum_{k=1}^{\infty} \left(\sum_{i=0}^{\tau} (b_i + b_{n+i}) X^{kn+i} + \sum_{i=\tau+1}^{n-1} b_i X^{kn+i} \right)$

If $\sigma = mn + \tau$ un $0 \le \tau < n$, then

$$\begin{split} f &= \sum_{\varkappa=0}^{\sigma} b_{\varkappa} X^{\varkappa} \sum_{k=0}^{\infty} X^{kn} \\ &= (b_0 + b_1 X + b_2 X^2 \dots + b_{n-1} X^{n-1} + b_n X^n + \dots + b_{mn+\tau} X^{mn+\tau}) \\ &\times (1 + X^n + X^{2n} + \dots + X^{kn} + \dots) \\ &= b_0 + b_1 X + b_2 X^2 + \dots + b_{n-1} X^{n-1} \\ &+ (b_0 + b_n) X^n + (b_1 + b_{n+1}) X^{n+1} + \dots + (b_{n-1} + b_{2n-1}) X^{2n-1} + \\ &\dots + (b_0 + b_n + b_{2n} \dots + b_{(m-1)n}) X^{(m-1)n} \\ &+ (b_1 + b_{n+1} + b_{2n+1} + \dots + b_{(m-1)n+1}) X^{(m-1)n+1} + \dots \\ &+ (b_{n-1} + b_{2n-1} + b_{3n-1} + \dots + b_{mn-1}) X^{mn-1} \\ &+ (b_0 + b_n + \dots + b_{mn}) X^{mn} + (b_1 + b_{n+1} + \dots + b_{mn+1}) X^{mn+1} + \\ &\dots + (b_{\tau} + b_{n+\tau} + \dots + b_{mn+\tau}) X^{mn+\tau} \\ &+ (b_{\tau+1} + b_{n+\tau+1} + \dots + b_{(m-1)n+\tau+1}) X^{mn+\tau+1} + \dots \\ &= \sum_{k=0}^{m-1} \sum_{i=0}^{n-1} \left(\sum_{j=0}^k b_{i+jn}\right) X^{nk+i} \\ &+ \sum_{k=m}^{\infty} \left(\sum_{i=0}^{\tau} \left(\sum_{j=0}^m b_{i+jn}\right) X^{kn+i} + \sum_{i=\tau+1}^{n-1} \left(\sum_{j=0}^{m-1} b_{i+jn}\right) X^{kn+i}\right) \blacksquare$$

2.21. Corollary. Each formal power series of a periodic ring is semiperiodic.

 \Box Periodic ring is integral extension of ring \mathbb{Z}_m (2.11. Proposition), up to isomorphism. The result follows from (2.20. Proposition).

2.22. Example. $f(X) = \frac{X^2 + 2X - 1}{X^2 + X + 1}$, where polynomials are elements of ring $\mathbb{Z}_6[X]$.

$$f(X) = \frac{X^2 + 2X - 1}{X^2 + X + 1} = \frac{(X^2 + 2X - 1)(X^3 - 1)}{(X^2 + X + 1)(X^3 - 1)}$$
$$= \frac{(X^2 + 2X - 1)(X - 1)}{X^3 - 1}$$
$$= -(1 - 3X + X^2 + X^3)(1 + X^3 + X^6 + X^9 + \dots)$$

Let's consider the general expression: $\sigma = n = 3$ and $\tau = 0$.

$$f(X) = (b_0 + b_1 X + b_2 X^2 + b_3 X^3)(1 + X^3 + X^6 + X^9 + \dots)$$

= $b_0 + b_1 X + b_2 X^2 + \sum_{k=1}^{\infty} ((b_0 + b_3) X^{3k} + b_1 X^{3k+1} + b_2 X^{3k+2})$

In our case:

$$f(X) = -1 + 3X - X^{2} + \sum_{k=1}^{\infty} \left((-1 - 1)X^{3k} + 3X^{3k+1} - X^{3k+2} \right)$$
$$= -1 + 3X - X^{2} + \sum_{k=1}^{\infty} \left(-2X^{3k} + 3X^{3k+1} - X^{3k+2} \right)$$

3. Mealy machines

We will consider mappings

$$\begin{split} \mu[f] &: \quad g(X) \mapsto f(X)g(X), \\ \alpha[f] &: \quad g(X) \mapsto f(X) + g(X). \end{split}$$

where f(X) and g(X) are elements of ring R[[X]].

We recall some facts from [6]. Details see in [2], [3] and [4].

3.1. Proposition.

- α[f] is a bijection;
- if f is invertible in ring R[[x]], then $\mu[f]$ is bijective;
- if f is invertible in ring R[[x]], then $(\mu[f])^{-1} = \mu[f^{-1}]$;
- if f is invertible in ring R[[x]], then $\mu[f^{-1}]\alpha[h]\mu[f] = \alpha[fh]$
- **3.2. Definition.** Mapping

$$\sigma(f) = \sum_{k=0}^{\infty} a_{k+1} X^k$$

is called a shift. Here $f(X) = \sum_{k=0}^{\infty} a_k X^k$.

3.3. Corollary.

- $f = a_0 + \sigma(f)X;$
- $(1 aX)^{-1} = \sum_{k=0}^{\infty} a^k X^k;$
- if $f = \frac{1}{1 aX}$ then $\sigma(f) = af;$
- if f is invertible in ring R[[x]], then $\mu[f^{-1}]\alpha[h]\mu[f] = \alpha[fh]$

3.4. Definition. Let $\zeta : A^{\omega} \to B^{\omega}$ is ω -determined function. Function ζ defines set

$$Q_{\zeta} = \{\zeta_u \mid u \in A^*\}$$

where ζ_u is restriction of function ζ . If set Q_f is finite, then ζ is called a finitely determined function.

3.5. Theorem. If $f = \frac{1}{1-X}$, then $\mu[f]$ is finitely determined function, whose restriction set $Q_f = \{\mu[f] \circ \alpha[s] | s \in R\}$.

Let $f = \frac{1}{1-X}$. Define $\mathcal{M}_f = \langle Q_f, R, \circ, * \rangle$:

- with set $Q_f = \{\alpha[s]\mu[f] \mid s \in R\}$ of states and
- alphabet R,
- $Q \times R \xrightarrow{\circ} Q : \alpha[s]\mu[f] \circ r = \alpha[s+r]\mu[f],$
- $Q \times A \xrightarrow{*} A : \alpha[s]\mu[f] * r = s + r.$
- If R is Galois field GF(2), then we obtain the Lamplighter group. Here

$$\alpha[0]\mu[f] \mapsto q, \qquad \alpha[1]\mu[f] \mapsto p$$

and $\Gamma(\mathcal{M}_2) = \langle \bar{q}, \bar{p} \rangle = \langle \alpha[0]\mu[f], \alpha[1]\mu[f] \rangle.$

1. Figure: Mealy machine generating the Lamplighter group.

Problem. Witch groups are generated by the rational series of commutative rings?

Here are some intuitive considerations as to why this might be interesting.

- Are all groups defined by rational formal power series of finite commutative rings infinite?
- If there still are finite groups defined by rational formal power series of finite commutative rings, then a question arises: is the finiteness problem algorithmically decidable?

3.6. Example. What kind of group is determined by polynomial $f(X) = 1 + X + X^2$?

Let
$$g(X) = s_0 + s_1 X + s_2 X^2 + \dots = \sum_{k=0}^{\infty} s_k X^k$$
, then

$$g\alpha[r]\mu[f] = (r + s_0 + \sum_{k=1}^{\infty} s_k X^k)\mu[f] = (r + s_0)f(X) + f(X)\sum_{k=1}^{\infty} s_k X^k$$

$$= (r + s_0) + (r + s_0)X + (r + s_0)X^2$$

$$+ (1 + X + X^2)(s_1 X + s_2 X^2 + s_3 X^3 + s_4 X^4 + \dots)$$

$$= (r + s_0) + (r + s_0)X + (r + s_0)X^2$$

$$+ s_1 X + (s_1 + s_2)X^2$$

$$+ (s_1 + s_2 + s_3)X^3 + (s_2 + s_3 + s_4)X^4 + (s_3 + s_4 + s_5)X^5 + \dots$$

$$= (r + s_0) + (r + s_0 + s_1)X + (r + s_0 + s_1 + s_2)X^2$$

$$+ (s_1 + s_2 + s_3)X^3 + (s_2 + s_3 + s_4)X^4 + (s_3 + s_4 + s_5)X^5 + \dots$$

$$g\mu[f] = s_0 + (s_0 + s_1)X + (s_0 + s_1 + s_2)X^2 + (s_1 + s_2 + s_3)X^3 + \cdots$$

= $s_0 + (s_0 + s_1)X + \sum_{k=0}^{\infty} (s_k + s_{k+1} + s_{k+2})X^{k+2}.$

Hence

$$\begin{split} g\mu_r[f] &= r + s_0 + (r + s_0 + s_1)X + (s_0 + s_1 + s_2)X^2 + (s_1 + s_2 + s_3)X^3 + \cdots \\ &= r + s_0 + (r + s_0 + s_1)X + \sum_{k=0}^{\infty} (s_k + s_{k+1} + s_{k+2})X^{k+2}, \\ g\mu_{r^2}[f] &= 2r + s_0 + (r + s_0 + s_1)X + (s_0 + s_1 + s_2)X^2 + (s_1 + s_2 + s_3)X^3 + \cdots \\ &= 2r + s_0 + (r + s_0 + s_1)X + \sum_{k=0}^{\infty} (s_k + s_{k+1} + s_{k+2})X^{k+2}, \\ g\mu_{r^3}[f] &= 2r + s_0 + (r + s_0 + s_1)X + (s_0 + s_1 + s_2)X^2 + (s_1 + s_2 + s_3)X^3 + \cdots \end{split}$$

$$= 2r + s_0 + (r + s_0 + s_1)X + \sum_{k=0}^{\infty} (s_k + s_{k+1} + s_{k+2})X^{k+2},$$

$$g\mu_{r^n}[f] = 2r + s_0 + (r + s_0 + s_1)X + \sum_{k=0}^{\infty} (s_k + s_{k+1} + s_{k+2})X^{k+2}.$$

$$g\mu_{r_1r_2}[f] = r_1 + r_2 + s_0 + (r_2 + s_0 + s_1)X + (s_0 + s_1 + s_2)X^2 + \cdots$$
$$= r_1 + r_2 + s_0 + (r_2 + s_0 + s_1)X + \sum_{k=0}^{\infty} (s_k + s_{k+1} + s_{k+2})X^{k+2},$$

$$g\mu_{r_1r_2r_3}[f] = r_2 + r_3 + s_0 + (r_3 + s_0 + s_1)X + (s_0 + s_1 + s_2)X^2 + \cdots$$
$$= r_2 + r_3 + s_0 + (r_3 + s_0 + s_1)X + \sum_{k=0}^{\infty} (s_k + s_{k+1} + s_{k+2})X^{k+2},$$

$$g\mu_{r_1\cdots r_{n-1}r_n}[f] = r_{n-1} + r_n + s_0 + (r_n + s_0 + s_1)X + (s_0 + s_1 + s_2)X^2 + \cdots$$

= $r_{n-1} + r_n + s_0 + (r_n + s_0 + s_1)X$
+ $\sum_{k=0}^{\infty} (s_k + s_{k+1} + s_{k+2})X^{k+2},$

Lets introduce notation $\mu u \rightleftharpoons \mu_u[f]$ for each $u \in R^*$. What happens if R = GF(2)?

from the above, it follows that:

$\mu=\mu 0=\mu u 00$	>	$s_0 + (s_0 + s_1)X$
$\mu 1=\mu 01=\mu u01$	>	$1 + s_0 + (1 + s_0 + s_1)X$
$\mu 10 = \mu u 10$	>	$1 + s_0 + (s_0 + s_1)X$
$\mu 11 = \mu u 11$	>	$s_0 + (1 + s_0 + s_1)X$

What happens if R = GF(4)?

2. Figure: Machine defined by $1 + X + X^2$ in field GF(2).

ad	ditio	n x	+y		mu	ıltip	licat	ion <i>xy</i>
$x \searrow y$	0	1	a	b	0	1	a	b
0	0	1	a	b	0	0	0	0
1	1	0	b	a	0	1	a	b
a	a	b	0	1	0	a	b	1
b	b	a	1	0	0	b	1	a

$\mu = \mu 0 = \mu u 00$	>	$s_0 + (s_0 + s_1)X$
$\mu 1=\mu 01=\mu u 01$		$1 + s_0 + (1 + s_0 + s_1)X$
$\mu a = \mu 0 a = \mu u 0 a$	$ \rightarrow$	$a + s_0 + (a + s_0 + s_1)X$
$\mu b = \mu 0 b = \mu u 0 b$	$ \rightarrow$	$b + s_0 + (b + s_0 + s_1)X$
$\mu 10 = \mu u 10$	>	$1 + s_0 + (s_0 + s_1)X$
$\mu 11 = \mu u 11$	>	$s_0 + (1 + s_0 + s_1)X$
$\mu 1a=\mu u 1a$	>	$b + s_0 + (a + s_0 + s_1)X$
$\mu 1b=\mu u 1b$	>	$a + s_0 + (b + s_0 + s_1)X$
$\mu a0 = \mu ua0$	>	$a + s_0 + (s_0 + s_1)X$
$\mu a 1 = \mu u a 1$		$b + s_0 + (1 + s_0 + s_1)X$
$\mu aa=\mu uaa$	>	$s_0 + (a + s_0 + s_1)X$
$\mu ab=\mu uab$	>	$1 + s_0 + (b + s_0 + s_1)X$
$\mu b0=\mu ub0$	>	$b + s_0 + (s_0 + s_1)X$
$\mu b1=\mu ub1$	>	$a + s_0 + (1 + s_0 + s_1)X$
$\mu ba=\mu uba$		$1 + s_0 + (a + s_0 + s_1)X$
$\mu bb=\mu ubb$	>	$s_0 + (b + s_0 + s_1)X$

0	μ	$\mu 1$	μa	μb	$\mu 10$	$\mu 11$	$\mu 1a$	$\mu 1b$
0	μ	$\mu 10$	$\mu a 0$	$\mu b0$	μ	$\mu 10$	$\mu a 0$	$\mu b0$
1	$\mu 1$	$\mu 11$	$\mu a1$	$\mu b1$	$\mu 1$	$\mu 11$	$\mu a1$	$\mu b1$
a	μa	$\mu 1a$	μaa	μba	μa	$\mu 1a$	μaa	μba
b	μb	μ	μab	μbb	μb	$\mu 1b$	μab	μbb
*	μ	$\mu 1$	μa	μb	$\mu 10$	$\mu 11$	$\mu 1a$	$\mu 1b$
0	0	1	a	b	1	0	b	a
1	1	0	b	a	0	1	a	b
a	a	b	0	1	b	a	1	0
b	b	a	1	0	a	b	0	1
	ual	401	uga	uah	ub0	ub1	uha	ubb
	$\mu u 0$	μu_1	µuu o	$\mu u v$	μ00			μου
0	μ	$\mu 10$	$\mu a 0$	$\mu b0$	μ	$\mu 10$	$\mu a 0$	$\mu b0$
1	$\mu 1$	μ11	$\mu a 1$	$\mu b1$	$\mu 1$	μ11	$\mu a1$	$\mu b1$
a	μa	$\mu 1a$	μaa	μba	μa	$\mu 1a$	μaa	μba
b	μb	$\mu 1b$	μab	$\mid \mu bb$	μb	$\mu 1b$	μab	μbb
*	$\mu a 0$	$\mu a 1$	μaa	μab	$\mu b0$	$\mu b1$	μba	μbb
0	a	b	0	1	b	a	1	0
1	b	a	1	0	a	b	0	1
a	0	1	a	b	1	0	b	a
<u> </u>								

References

- Bini G., Flamini F. (2002) Finite Commutative Rings and Their Applications. Springer New York, 176 pages.
- Buls J., Užule L., Valainis A. (2018) Automaton (Semi)groups (Basic Concepts). https://arxiv.org/abs/1801.09552, 46 pages.
- [3] Buls J. (2022) The Lamplighter Group. https://arxiv.org/abs/2202.04107, 29 pages.
- [4] Eckenthal S. (2012) The Lamplighter Group. https://digitalrepository.trincoll.edu/cgi/viewcontent.cgi?article= 1266&context=theses, 60 pages.
- [5] Hou X–D., Lopez–Permouth S. R., Parra–Avila B. R. (2009) Rational power series, sequential codes and periodicity of sequences. Journal of Pure and Applied Algebra 213. P. 1157–1169.
- [6] Skipper R., Steinberg B. (2019) Lamplighter Groups, Bireversible Automata and Rational Series over Finite Rings. https://arxiv.org/abs/1807.00433v3, 23 pages.