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Abstract

We are following [1] and [5]. Nevertheless, we are interested only in
the clarification of proofs.
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1. Structure of finite commutative rings

Our object of interest is an associative-commutative ring with a multi-
plicative identity element. In this text, the term ring will mean exactly
such a ring, i.e., an associative-commutative ring with a multiplicative
identity element. We will denote rings R commutative group by R×. In
this section, we will consider only finite rings and we are following [1].

1.1. Definition. Subset H of ring R, is called a subring if

� H is a subgroup of the additive group,

� H is a subsemigroup of the multiplicative semigroup.

1.2. Definition. Subring I of ring R is called an ideal if

RI ⊆ I.

1.3. Proposition. If I1, I2, . . . , In are ideals of ring R, then map-
ping

Φ : R → R/I1 ×R/I2 × · · · ×R/In : r 7→ (r + I1, r + I2, . . . , r + In)

is a ring homomorphism.

2 We will use notation [x]j ↽ x+ Ij .
Let x, y ∈ R, then

Φ(x+ y) = ([x+ y]1, [x+ y]2, . . . , [x+ y]n)

= ([x]1 + [y]1, [x]2 + [y]2, . . . , [x]n + [y]n)

= ([x]1, [x]2, . . . , [y]n) + ([y1], [y]2, . . . , [y]n)

= Φ(x) + Φ(y)

Φ(1) = ([1]1, [1]2, . . . , [1]n),
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Φ(xy) = ([xy]1, [xy]2, . . . , [xy]n)

= ([x]1[y]1, [x]2[y]2, . . . , [x]n[y]n)

= ([x]1, [x]2, . . . , [y]n)([y1], [y]2, . . . , [y]n)

= Φ(x)Φ(y).

1.4. Definition. {0} and R are called trivial ideals of ring R.

All other ideals of ring R are called nontrivial ideals. Ideal I are called
proper ideal if I ≠ R.

Let I1, I2, . . . , In be proper ideals of ring R.

1.5. Definition. Proper ideals Ik un Im, 1 ≤ k < m ≤ n, are called
coprime if Ik + Im = R.

Here Ik + Im ↽ {a+ b | a ∈ Ik ∧ b ∈ Im}

1.6. Example. I1 = {0, 2, 4}, I2 = {0, 3} are coprime ideals of ring
Z6.

I1Z6 = {0, 2, 4}{0, 1, 2, 3, 4, 5} = {0, 2, 4}

2 · 3 = 6 ≡ 0 2 · 4 = 8 ≡ 2 2 · 5 = 10 ≡ 4

4 · 3 = 12 ≡ 0 4 · 4 = 16 ≡ 4 4 · 5 = 20 ≡ 2

I2Z6 = {0, 3}{0, 1, 2, 3, 4, 5} = {0, 3}

3 · 3 = 9 ≡ 3 3 · 4 = 12 ≡ 0 3 · 5 = 15 ≡ 3

I1+I2 = {0, 2, 4}+{0, 3} = {0+0, 0+3, 2+0, 2+3, 4+0, 4+3} = {0, 3, 2, 5, 4, 7 ≡ 1} = Z6

Notice that
∀x ∈ I1∀y ∈ I2 xy = 0.

1.7. Proposition. If I1, I2, . . . , In are coprime ideals of ring R, then

n⋂
k=1

Ik =

n∏
k=1

Ik

Notice that

n∏
k=1

Ik ↽
{∑

k

xk1xk2 . . . xkn | ∀j xkj ∈ Ij

}
.

Here,
∑

k xk1xk2 . . . xkn denotes all possible finite sums of such form. In
sum

∑
k xkyk there is a possibility for x1 = x2, but if so then y1 ̸= y2.

2 As I1 un I2 are ideals, then

I1 ∩ I2 = {h ∈ R |h ∈ I1 ∧ h ∈ I2}

is a proper ideal since 0 ∈ I1 ∩ I2. Notice that

2∏
k=1

Ik = I1I2 =
{∑

k

xkyk |xk ∈ I1 ∧ yk ∈ I2

}
.
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Each member of sum
∑

k xkyk belongs to ideal A I1 and also to I2,
therefore

∑
k xkyk ∈ I1 ∩ I2. Hence I1I2 ⊆ I1 ∩ I2.

Let a ∈ I1∩I2. As I1 and I2 are coprime ideals, then there exist such
x ∈ I1 and y ∈ I2, that x+ y = 1. Therefore

a = a · 1 = a(x+ y) = ax+ ay = xa+ ay ∈ I1I2.

Hence I1 ∩ I2 = I1I2.

Notice that
n∏

k=1

Ik ↽
{∑

k xk1xk2 . . . xkn | ∀j xkj ∈ Ij

}
. As the ring

is commutative, it follows that each member of
∑

k xk1xk2 . . . xkn is a

member of an arbitrary ideal Ik, k ∈ 1, n, therefore
n∏

k=1

Ik ⊆
n⋂

k=1

Ik.

Further proof is inductive, assuming that ideals I1, I2, . . . , Im+1 are
pairwise coprime.

m+1⋂
k=1

Ik =
( m⋂
k=1

Ik

)
∩ Im+1 =

( m∏
k=1

Ik

)
∩ Im+1

As all the pairs Im+1, Ik, k ∈ 1,m are coprime ideals, then there exist
such ak ∈ Ik, bk ∈ Im+1, that ak + bk = 1. Therefore

1 = (a1 + b1)(a2 + b2) · · · (am + bm) = a1a2 · · · am +B,

where B is a sum. Here each member of B contains some bk as a multiplier,
therefore B ∈ Im+1.

Let a ∈
m+1⋂
k=1

Ik, then

a = a · 1 = a(a1 + b1)(a2 + b2) · · · (am + bm) = a1a2 · · · ama+ aB

As a ∈
m+1⋂
k=1

Ik, it follows that a ∈
m⋂

k=1

Ik.

From the inductive assumption
m⋂

k=1

Ik =
m∏

k=1

Ik. Therefore a can be

written as a sum
∑

k xk1xk2 . . . xkm, where ∀xkj ∈ Ij . Thus

aB =
∑
k

xk1xk2 . . . xkmB ∈
m+1∏
k=1

Ik,

and therefore

a = a1a2 · · · ama+ aB

= a1a2 · · · ama+
∑
k

xk1xk2 . . . xkmB ∈
m+1∏
k=1

Ik.

1.8. Proposition. If I,J are coprime ideals, then Im,Jm also are
coprime for all m ∈ Z+.

Notice that Im = II · · · I︸ ︷︷ ︸
m

.

2 As I,J are coprime ideals, then there exist such a ∈ I, b ∈ J , that
a+ b = 1. Hence

1 = (a+ b)2 = a2 + 2ab+ b2.
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� If ab = 0, then a2 + b2 ∈ I2 + J 2;

� If ab ̸= 0, then 2ab = 1 · 2ab = 2(a+ b)ab = 2a2b+ 2ab2 ∈ I2 + J 2.

Further proof is inductive. If Ik,J k are coprime ideals, then there
exist such a ∈ Ik, b ∈ J k, that a+ b = 1. Hence

1 = (a+ b)2 = a2 + 2ab+ b2.

� If ab = 0, then a2 + b2 ∈ Ik+1 + J k+1;

� If ab ̸= 0, then 2ab = 1·2ab = 2(a+b)ab = 2a2b+2ab2 ∈ Ik+1+J k+1.

We are using the property of ideals: if a ∈ Im+1, then a ∈ Im. This
arises from

a =
∑
i

xi1xi2xi3 . . . xim+1 =
∑
i

(xi1xi2)xi3 . . . xim+1 ∈ Im,

because xi1xi2 ∈ I. By further use of induction, it’s provable that: if
a ∈ Im+n, then a ∈ Im.

1.9. Proposition. Ring homomorphism f : G → G′ is monomor-
phism if and only if Kerf = 0.

2 ⇒ If f(x) = 0 and x ̸= 0, then f(0) = 0 = f(x). Therefore f is not
an injection.

⇐ Let f(x) = f(y), then f(x− y) = 0. As Kerf = 0, then x− y = 0,
i.e., x = y.

1.10. Proposition. Assume that I1, I2, . . . , In are ideals of ring R.
Mapping

Φ : R → R/I1 ×R/I2 × · · · ×R/In : r 7→ (r + I1, r + I2, . . . , r + In)

is ring monomorphism if and only if
n⋂

k=1

Ik = 0.

2 Let Φ(r) = ([0]1, [0]2, . . . , [0]n). Therefore r ∈
n⋂

k=1

Ik. It shows that

KerΦ =
n⋂

k=1

Ik. From previous proposition follows that Φ is injective only

when KerΦ = 0, i.e., 0 = KerΦ =
n⋂

k=1

Ik.

1.11. Lemma. If I1, I2, . . . , In are coprime ideals of ring R, then I1

and
n∏

k=2

Ik are coprime ideals of ring R.

2 We have (1.7. Proposition)
n∏

k=2

Ik =
n⋂

k=2

Ik , therefore
n∏

k=2

Ik is

an ideal. As all pairs I1, Ik, k ∈ 2, n are coprime, then there exist such
ak ∈ I1, bk ∈ Ik, that ak + bk = 1. Hence

1 = (a2 + b2)(a3 + b3) · · · (an + bn) = A+ b2b3 · · · bn,

where A is a sum. Here each term of sum A contains some ak as a
multipler, therefore A ∈ I1.

Thus 1 = A+ b2b3 · · · bn, where A ∈ I1 and b2b3 · · · bn ∈
n∏

k=2

Ik.
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1.12. Proposition. Assume that I1, I2, . . . , In are ideals of ring R.
Mapping

Φ : R → R/I1 ×R/I2 × · · · ×R/In : r 7→ (r + I1, r + I2, . . . , r + In)

is a ring epimorphism if and only if for all different indexes k, j ∈ 1, n
ideals Ik, Ij are coprime.

2 ⇒ If Φ is a epimorphism, then there exists such x ∈ R, that

Φ(x) = ([1]1, [0]2, . . . , [0]n).

Φ(1− x) = Φ(1)− Φ(x)

= ([1]1, [1]2, . . . , [1]n)− ([1]1, [0]2, . . . , [0]n)

= ([0]1, [1]2, . . . , [1]n)

It shows that 1 − x ∈ I1, and also x ∈ Ik for all k ∈ 2, n. Hence
1 ∈ I1 + Ik for all k ∈ 2, n.

Generally, m ∈ 1, n reasoning is similar. If Φ is an epimorphism,
then there exist such xm ∈ R, that Φ(xm) = ([xm1]1, [xm2]2, . . . , [xmn]n),
where

xmj =

{
0, if j ̸= m;

1, if j = m.

Φ(1− xm) = ([ym1]1, [ym2]2, . . . , [ymn]n), where

ymj =

{
1, if j ̸= m;

0, if j = m.

It shows that 1−xm ∈ Im. Also xm ∈ Ik for all k ̸= m. Hence 1 ∈ Im+Ik

for all k ̸= m.

⇐ Assume that all pairs Ik, Ij of ideals are coprime.
If n = 2, then there exist such x ∈ I1, y ∈ I2, that x + y = 1. As

x = 1− y and y = 1− x, then

[x]2 = [1− y]2 = [1]2 − [y]2 = [1]2 − [0] = [1]2,

[y]1 = [1− x]1 = [1]1 − [x]1 = [1]1,

Φ(x) = ([x]1, [x]2) = ([0]1, [1]2),

Φ(y) = ([y]1, [y]2) = ([1]1, [0]2),

Φ(bx+ ay) = Φ(b)Φ(x) + Φ(a)Φ(y)

= ([b]1, [b2])([0]1, [1]2) + ([a]1, [a]2)([1]1, [0]2)

= ([0]1, [b]2) + ([a]1, [0]2) = ([a]1, [b]2).

Hence mapping Φ is surjective. Further proof is inductive.
From (1.14. Lemma) follows, that I1, I2I3 · · · In are coprime, there-

fore homomorphism

Ψ : R → R/I1 ×R/I2I3 · · · In : r 7→ (r + I1, r + I2I3 · · · In)

is surjective. From the inductions assumption, it follows that mapping

Φ2 : R → R/I2 ×R/I3 × · · ·R/In : r 7→ (r + I2, r + I3, . . . , r + In)
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ir surjective. From the homomorphism theorem, there exists such homo-
morphism Φ∗

2, that diagram

R R/I2 ×R/I3 × · · · ×R/In

(D)

R/KerΦ2

Φ2

π
Φ∗

2

is commutative. Additionally, homomorphism Φ∗
2 is a monomorphism.

Therefore R/KerΦ2 is isomorphic with ring R/I2 × R/I3 × · · · × R/In

(homomorphism Φ2 is also surjective).

From proof of (1.10. Proposition) follows, that KerΦ2 =
n⋂

k=2

Ik, addi-

tionally (1.7. Proposition)
n⋂

k=2

Ik =
n∏

k=2

Ik. Therefore

R/I2I3 · · · In isisomorphic with R/I2 ×R/I3 × · · · ×R/In.

Hence mapping Φ∗
2 : R/I2I3 · · · In → R/I2 × R/I3 × · · · × R/In is an

isomorphism.
Let ([r1]1, [r2]2, . . . , [rn]n) ∈ R/I1×R/I2×R/I3×· · ·×R/In. Notice

that

Φ1 : r 7→ ([r]1, [r]2, . . . , [r]n),

Φ2 : r 7→ ([r]2, [r]3, . . . , [r]n).

From the inductions assumption, mapping Φ2 is an epimorphism, there-
fore there exists such x ∈ R, that

Φ2 : x 7→ ([r2]2, [r3]3, . . . , [rn]n),

i.e., [x]2 = [r2]2, [x]3 = [r3]3, . . . , [x]n = [rn]n. Let’s consider epimorphism

Ψ : r 7→ (r + I1, r + I2I3 . . . In).

As mapping Ψ is an epimorphism, then there exists such y ∈ R, that

Ψ : y 7→ (y + I1, y + I2I3 . . . In),

where y + I1 = [y]1 = [r1]1 and (Φ∗
2)

−1([r2]2, [r3]3, . . . , [rn]n) = y +
I2I3 . . . In. Notice that [y]1 = [r1]1, thus

Φ1 : y 7→ ([r1]1, [y]2, [y]3, . . . , [y]n).

Diagram (D) is commutative, therefore

([y]2, [y]3, . . . , [y]n) = Φ2(y) = Φ∗
2(π(y)) = Φ∗

2(y + I2I3 . . . In)

= ([r2]2, [r3]3, . . . , [rn]n).

Thus Φ1 : y 7→ ([r1]1, [r2]2, . . . , [rn]n), showing that mapping Φ1 is an
epimorphism.
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1.13. Definition. Element e of ring R is called idempotent if e2 = e.
Idempotents e, f are called orthogonal if ef = 0.

1.14. Definition. Ideal I of ring R is called principal ideal, if there
exist such a ∈ R, that I = aR.

1.15. Proposition. The following statements are equivalent:

1. R ∼= R1 ×R2 × · · · ×Rn; here all Ri are subrings of ring R;

2. There exist such orthogonal idempotents ei, that
n∑

i=1

ei = 1 and Ri
∼=

eiR;

3. R ∼= I1 × I2 × · · · × In, here all Ij are main ideals of ring R and
Ij ∼= Rj.

2 1. ⇒ 2. The unit element of ring R1 × R2 × · · · × Rn is tuple
(1, 1, . . . , 1). Therefore tuples δk = (δ1k, δ2k, . . . , δnk) are idempotents of
ring R1 ×R2 × · · · ×Rn. Here

δik =

{
0, if i ̸= k;

1, if i = k.

Assume that φ : R1 ×R2 × · · ·×Rn → R is a ring isomorphism. Then
φ(δk)⇁ ek is an idempotent of ring R, because

ek = φ(δk) = φ(δ2k) = φ(δk)φ(δk) = ekek = e2k,

additionally

1 = φ(1, 1, . . . , 1) = φ(

n∑
k=1

δk) =

n∑
k=1

φ(δk) =

n∑
k=1

ek.

φ−1(ekei) = φ−1(ek)φ
−1(ei) = (0, 0, . . . , 0) if i ̸= k. As φ is an iso-

morphism, then ekei = 0 only if i ̸= k. Let x ∈ R, then φ−1(x) =
(x1, x2, . . . , xn), where all xj ∈ Rj .

φ−1(eix) = φ−1(ei)φ
−1(x)

= (0, 0, . . . , 1︸︷︷︸
i

, . . . , 0)(x1, x2, . . . , xi, . . . , xn)

= (0, 0, . . . , xi, . . . , 0).

Hence eiR ∼= Ri.
2. ⇒ 3. Ij ↽ ejR. Notice that (e1, e2, . . . , en) is the unit element

of ring I1 × I2 × · · · × In. Let’s prove that

φ : I1 × I2 × · · · × In → R : (a1, a2, . . . , an) 7→ a1 + a2 + · · ·+ an

is a ring isomorphism.
(i) Let ā = (a1, a2, . . . , an) ∈ I1×I2×· · ·×In and b̄ = (b1, b2, . . . , bn) ∈

I1 × I2 × · · · × In, then

φ(ā+ b̄) = φ(a1 + b1, a2 + b2, . . . , an + bn)

= a1 + b1 + a2 + b2 + · · ·+ an + bn

= (a1 + a2 + · · ·+ an) + (b1 + b2 + · · ·+ bn)

= φ(ā) + φ(b̄).
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(ii) If x ∈ Ij , y ∈ Ik and j ̸= k, then xy = 0. As x ∈ Ij , then there
exist such x′ ∈ R, that x = ejx

′. Also, there exists such y′ ∈ R, that
y = eky

′. Hence xy = ejx
′eky

′ = ejekx
′y′ = 0x′y′ = 0.

φ(āb̄) = φ((a1, a2, . . . , an)(b1, b2, . . . , bn))

= φ(a1b1, a2b2, . . . , anbn)

= a1b1 + a2b2 + · · ·+ anbn

= (a1 + a2 + · · ·+ an)(b1 + b2 + · · ·+ bn)

= φ(ā)φ(b̄).

(iii) Assume that x ∈ Ij ∩ Ik, then x ∈ Ij = ejR and x ∈ Ik = ekR.
Therefore x = ejxj = ekxk, where xj , xk are elements of ring R.

If j ̸= k, then ejek = 0, hence

x = ejxj = e2jxj = ejekxk = 0 · xk = 0.

Thus Ij ∩ Ik = 0.
Let y ∈ Ik = ekR. Then y = ekyk, where yk ∈ R. If i ̸= k, then

eiy = eiekyk = 0 · yk = 0.
(iv) Let φ(ā) = φ(b̄), i.e.,

a1 + a2 + · · ·+ an = b1 + b2 + · · ·+ bn,

then

ai − bi =
∑
j ̸=i

(bj − aj). (1)

As for all k ak and bk are elements of ideal Ik = ekR, then ak = ekxk, bk =
ekyk, where xk, yk belongs to ring R. Expression (1) can be written as

ei(xi − yi) =
∑
j ̸=i

ej(yj − xj),

ei(xi − yi) = e2i (xi − yi) =
∑
j ̸=i

eiej(yj − xj) = 0.

Then ai − bi = eixi − eiyi = 0 or ai = bi. We have proven that φ is
injective.

(v) Let x ∈ R and xk = ekx, then ∀k xk ∈ ekR = Ik and

(x1, x2, . . . , xn) ∈ I1 × I2 × · · · × In,

x1 + x2 + · · ·+ xn = e1x+ e2x+ · · ·+ enx

= (e1 + e2 + · · ·+ en)x = 1 · x = x.

Hence φ(x1, x2, . . . , xn) = x. Therefore φ is surjective. We can conclude
that φ is an isomorphism, therefore R ∼= I1 × I2 × · · · × In.

3. ⇒ 1. An ideal is a subring of a ring.

1.16. Definition. Ideal I of commutative ring R is called a prime
ideal if

ab ∈ I ⇒ a ∈ I ∨ b ∈ I.
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1.17. Definition. Ideal M of ring R,M ̸= R is called maximal ideal
if for any ideal I of ring R:

M ⊆ I ⊆ R ⇒ M = I ∨ I = R.

1.18. Lemma. If I and J are ideals of commutatve ring R, then
I + J is ideal of ring R.

2 Let a, b be elements of ideal I and, in turn, x, y to be elements of
ideal J . Thus a+ x and b+ y are elements of set I + J .

(i) (a + x) + (b + y) = (a + b) + (x + y) ∈ I + J . −a − b ∈ I + J .
0 = 0 + 0 ∈ I + J .

(ii) Let r ∈ R. Then r(a+ x) = ra+ rb ∈ I + J . Hence I + J is an
ideal.

Let’s denote the equivalence class of element x in the quotient ring by
[x].

1.19. Proposition. If 1 ∈ R and M is maximal ideal of commutative
ring R, then quotient ring R/M is a field.

2 Assume that [x] ̸= [0], then x /∈ M. Thus M + Rx ̸= M and
M+Rx = R. Then exist such x ∈ M and y ∈ R, that (u+yx = 1). Thus
for equivalence classes: [1] = [u+ yx] = [u] + [yx] = [0] + [y][x] = [y][x].

1.20. Corollary. If M is a maximal ideal of ring R, then M is a
prime ideal.

2 R/M is a field. A field is a ring without zero divisors.

1.21. Proposition. If M is ideal of commutative ring R and R/M
is a field, then M is maximal ideal of ring R.

2 As R/M is a field, then card(R/M) ≥ 2. Let M ≠ R. If I is an
ideal such that M ⊂ I ⊆ R, then exists x ∈ I, that x /∈ M. As [x] ̸= [0],
then there exists such y, that [xy] = [x][y] = [1]. As [xy] = xy + M,
therefore exist such u ∈ M, that u+ xy = 1. We have M ⊂ I, therefore
u ∈ I, xy ∈ Iy ⊆ I because I is an ideal. Thus 1 = u + xy ∈ I. Hence
I = R.

1.22. Definition. The set of all prime ideals of ring R is called the
spectrum of ring R and is denoted by Spec(R). The set of all maximal
ideals of ring R is called the maximal spectrum of ring R and is denoted
by Specm(R).

1.23. Corollary. Specm(R) ⊆ Spec(R).

1.24. Definition. Jacobson radical:

J (R)↽
⋂

I∈Specm(R)

I.

1.25. Theorem. I is prime ideal of ring R if and only if R/I is an
integral domain.
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2 An integral domain is a nonzero commutative ring with no nonzero zero
divisors.

⇒ [a][b] = [0] implies ab ∈ I. If I is prime, then a ∈ I ∨ b ∈ I.
Thus [a] = [0] ∨ [b] = [0]. Hence R/I is an integral domain.

⇐ Assume that I is not prime, then exist such a /∈ I and b /∈ I, that
ab ∈ I. [a][b] = [0] ∈ R/I and [a] ̸= [0] ∧ [b] ̸= [0]. Hence R/I is not an
integral domain.

1.26. Proposition. A finite integral domain is a field.

2 Let R = {a1, a2, . . . , an} be a finite integral domain, a ∈ R and
a ̸= 0. Consider terms aa1, aa2, . . . , aan. All those terms are unique. If
the contrary is true, then aai = aaj . Thus aai − aaj = 0, a(ai − aj) = 0.
As R is an integral domain and a ̸= 0, then ai − aj = 0, i.e., ai = aj . As

R = {aa1, aa2, . . . , aan},

therefore there exists such ak, that aak = 1. As an integral domain is
commutative, then 1 = aak = aka. Hence ak = a−1.

1.27. Corollary. If I is a prime ideal of ring R, then it is a maximal
ideal.

2 As I is a prime ideal, then (1.25. Theorem) R/I is an integral domain.
Integral domain R/I is finite, therefore (1.26. Proposition) it is a field.
Thus (1.21. Proposition) ideal I is maximal.

1.28. Proposition. If I and J are distinct maximal ideals of ring
R, then they are coprime ideals.

2 As I ≠ J , then I + J ⊃ I or I + J ⊃ J . Thus

R ⊇ I + J ⊃ I or R ⊇ I + J ⊃ J .

Notice that I + J is ideal (1.18. Lemma) and I, J are maximal ideals.
Its possible only if I + J = R.

1.29. Definition. Element a ∈ R is called a nilpotent element, if
exists such natural n, that an = 0.

1.30. Definition. Set Nil(R), consisting of all nilpotent elements of
ring R, is called a nilradical.

1.31. Proposition. Nil(R) is ideal of ring R.

2 Assume that an = 0 = bm, then

(a+ b)n+m =

n+m∑
k=0

(
n+m
k

)
akbn+m−k.

While k < n, we have n +m − k > m. As a result, all terms of sum are
equal to 0.

Let r ∈ R, then (ra)n = rnan = rn · 0 = 0. Thus RNil(R) ⊆ Nil(R).
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1.32. Proposition. If R is a commutative ring, then

Nil(R) =
⋂

I∈Spec(R)

I.

2 Let r ∈ Nil(R), Then there exists such n, that rn = 0 ∈ I ∈
Spec(R). I is an ideal, therefore 0 ∈ I. I is prime ideal and r · rn−1 ∈ I,
therefore r ∈ I or rn−1 ∈ I. If r ∈ I, then we have obtained the
desired result. If the contrary is true, then we proceed inductively, i.e.,
we assume that rn−k ∈ I and n−k > 1, then r ·rn−k−1 ∈ I and therefore
r ∈ I or rn−k−1 ∈ I. We proceed until n − k − i = 1. Thus we have
proven, that r ∈ I for any I ∈ Spec(R). Thus r ∈ ∩I∈Spec(R)I and
Nil(R) ⊆ ∩I∈Spec(R)I.

Let’s now assume that f /∈ Nil(R) and consider set

F↽ {J ⊆ R | J is an ideal and ∀m ∈ Z+ fm /∈ J}.

Set F ̸= ∅, because 0 is an ideal. Set F is partially ordered with respect
to ⊆, and for each chain J1 ⊆ J2 ⊆ . . . there exist a upper bound

J↽
⋃
k>0

Jk.

Let’s prove that J is an ideal.
� If a ∈ J and b ∈ J, then ∃i a ∈ Ji and ∃k b ∈ Jk. Assume for

concreteness that Ji ⊆ Jk, then a ∈ Jk. Hence a+ b ∈ Jk ⊆ J.
Let r ∈ R un c ∈ J, then ∃κ c ∈ Jκ . Hence rc ∈ Jκ ⊆ J. �
Let fm ∈ J, then ∃k fm ∈ Jk. A contradiction!
As for each such chain an upper bound exists, then by Zorn’s lemma,

in set F exists a maximal element M. Let’s prove that M ∈ Spec(R).
� Let a /∈ M and b /∈ M, then aR + M ⊃ M and bR + M ⊃ M.

Therefore aR+M /∈ F and bR+M /∈ F, thus

∃n fn ∈ aR+M and ∃m fm ∈ bR+M.

As fn ∈ aR + M, then fn = ar1 + m1, where r1 ∈ R and m1 ∈ M.
Similarly fm ∈ bR+M, fm = br2 +m2, where r2 ∈ R and m2 ∈ M.

fn+m = fnfm = (ar1+m1)(br2+m2) = abr1r2+ar1m2+br2m1+m1m2.

Hence fm+n ∈ abR+M. Therefore abR+M /∈ F, thus ab /∈ M.
With some logical transformations:

a /∈ M∧ b /∈ M ⇒ ab /∈ M,

¬(a /∈ M∧ b /∈ M) ∨ ab /∈ M,

a ∈ M∨ b ∈ M ∨ ab /∈ M,

ab /∈ M ∨ a ∈ M∨ b ∈ M,

ab ∈ M ⇒ a ∈ M∨ b ∈ M.

Therefore M is a prime ideal. �
Thus if element f is not nilpotent, then there exists such prime ideal

M to whom f doesn’t belong.

f /∈ Nil(R) ⇒ ∃M ∈ Spec(R) (f /∈ M).

11



From contraposition, we obtain:

∀M ∈ Spec(R) (f ∈ M) ⇒ f ∈ Nil(R).

Thats proves the inclusion
⋂

I∈Spec(R)

I ⊆ Nil(R).

1.33. Lemma. There exists m, that (Nil(R))m = 0.

2 If a ∈ Nil(R), then there exists such κa, that a
κa = 0. As R is a

finite set, then Nil(R) also is a finite set, therefore there exists

κ ↽ max
a∈Nil(R)

(κa).

Let’s assume for concreteness, that |Nil(R)| = n. In product a1a2 . . . am,
where all ai ∈ Nil(R) and m = nκ, there is at least one nilpotent element
aj , whose power ν is no less than κ, i.e., ν ≥ κ, therefore aνj = 0.

1.34. Lemma. If ϕ : R → R′ is a ring epimorphism and I is a ideal
of ring R, then ϕ(I) is ideal of R′.

2 (i) Let x′ ∈ R′ and a′ ∈ ϕ(I), then there exist such x ∈ R and
a ∈ I, that ϕ(x) = x′ and ϕ(a) = a′. As x ∈ R and a ∈ I, then ax ∈ I,
therefore

a′x′ = ϕ(a)ϕ(x) = ϕ(ax) ∈ ϕ(I).
(ii) Notice that ϕ : I → R′ is a ring homomorphism, then according to
the theorem of homomorphism ϕ(I) is a ring.

1.35. Lemma. If ϕ : R → R′ is a ring epimorphism and I′ is ideal
of ring R′, then there exists such I ideal of ring R, that ϕ(I) = I′.

2 (i) Let’s define

I ↽ {x ∈ G | ∃x′ ∈ I′ ϕ(x) = x′}.

(ii) Let a ∈ I un b ∈ I, then

ϕ(a+ b) = ϕ(a) + ϕ(b) ∈ I′,

ϕ(ab) = ϕ(a)ϕ(b) ∈ I′.

Thus a+ b and ab belong to set I.
(iii) Let r ∈ R, then ϕ(ra) = ϕ(r)ϕ(a) ∈ I′, because I′ is a ideal of

ring R′. Hence ra ∈ I.
Let us consider groups. A subgroup, as usual, is denoted by ≤, and a

normal subgroup is denoted by ⊴.

1.36. Lemma. Let N ⊴ G. If K ≤ G/N , then there exists such
H ≤ G, that K = H/N .

2 From the definition of K:

K = {hN |hN ∈ K ∧ h ∈ G}.

Let’s define H ↽ {h |hN ∈ H ∧ h ∈ G}. Thus h ∈ H ⇔ hN ∈ H . If
n ∈ N , then nN = N ∈ K, because N is the unit element of group G/N .
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(i) Assume that g ∈ H and h ∈ H. As K ≤ G/N , then

ghN = (gN)(hN) ∈ K.

Hence gh ∈ H.
(ii) As hN ∈ K, then h−1N = (hN)−1 ∈ K. Thus accordingly to

definition of H we have h−1 ∈ H. Thus H ≤ G.
(iii) Notice

H/N = {hN |h ∈ H} = {hN |hN ∈ K} = K.

1.37. Theorem (Correspondence theorem). Let N ⊴ G.
(i) If N ⊆ H ⊴ G, then H/N ⊴ G/N .
(ii) If K ⊴ G/N , then there exist such H ⊴ G, that K = H/N .
(iii) Let

� S = {H |N ⊆ H ∧ H ⊴ G},
� S = {K |K ⊴ G/N}.

If ϕ : S → G/N : H 7→ H/N , then ϕ : S → S is a bijection.

2 (i) Let gN ∈ G/N un hN ∈ H/N , then

(gN)(hN)(gN)−1 = (ghN)(g−1N) = ghg−1N.

As H ⊴ G, then ghg−1 ∈ H. Hence ghg−1N ∈ H/N . Thus for each
gN ∈ G/N and any hN ∈ H/N we have proven

(gN)(hN)(gN)−1 ∈ H/N.

Thus by definition H/N ⊴ G/N .
(ii) There exists (1.36. Lemma) such H ≤ G, that K = H/N . We

need to prove that H ⊴ G and thus H/N ⊴ G/N .
Let g ∈ G and h ∈ H, then gN and g−1N belong to group G/N . In

turn, hN belongs to group H/N . As H/N ⊴ G/N , then

ghg−1N = (gN)(hN)(gN)−1N ∈ H/N.

Hence ghg−1 ∈ H. Thus for each g ∈ G and any h ∈ H we have proven,
that ghg−1 ∈ H. Then according to the definition H ⊴ G.

(iii) From (ii) for each element K of set S there exists such H ⊴ G,
that K = H/N . Thus range of ϕ : S → G/N : H 7→ H/N is Ran(ϕ) = S ,
and thus mapping ϕ : S → S is surjective (with S as a codomain).

Assume that ϕ(H1) = ϕ(H2), i.e., H1/N = H2/N . Let h1 ∈ H1,
then h1N ∈ H1/N = H2/N . Hence h1 ∈ H2. Thus H1 ⊆ H2. We may
construct a symmetrical argument: h2 ∈ H2, then h2N ∈ H2/N = H1/N
and h2 ∈ H1. Thus H2 ⊆ H1. Thus H1 ⊆ H2 ⊆ H1, i.e., H1 = H2. We
have proven that ϕ : S → S is an injection.

The correspondence theorem holds also for rings. We will consider
commutative rings.

1.38. Theorem (Correspondence theorem for rings). Assume that

� R is a ring;

� I ⊆ R is an ideal;
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� π : R → R/I : r 7→ [r] is the natural mapping;

� S = {G | I ⊆ G and G is a subring of R};
� S = {H |H ir a subring of ring R/I }.

Mapping ϕ : S → S : G 7→ G/I is a bijction. If

� S′ = {J | I ⊆ J and J is an ideal of R},
� S ′ = {L |L is an ideal of ring R/I},

then mapping ψ : S′ → S ′ : J 7→ J /I is a bijection.

2 (i) First we have to prove that mapping ϕ : S → S : G 7→ G/I
is correctly defined,i.e., Ran(ϕ) ⊆ S . Assume that I ⊆ G is a subring
of ringR. The image of the additive group of ring G (1.37. Theorem)
is G/I.As I is an ideal, then G/I is a ring. Thus we have proven that
Ran(ϕ) ⊆ S .

For different subrings of ring R additive groups are distinct. Thus
(1.37. Theorem) mapping ϕ is injective.

Let H be a subring of ring R/I, then for H the additive group can
be expressed as (1.37. Theorem) H = A/I, where A is a subgroup of the
additive group of ring R. Thus a ∈ A ⇔ a + I ∈ A/I. As H = A/I is
a subring, then (a + I)(b + I) = ab + I for all a ∈ A, b ∈ A. Therefore
ab ∈ A, i.e., A is subring of ring G. According to the definition of ϕ, we
have ϕ(A) = A/I. Thus mapping ϕ is surjective.

(ii) Let L be an ideal of ring R/I, than the additive group of L can
be expressed (1.37. Theorem) as L = A/I, where A is a subroup of the
additive group of ring R. Thus a ∈ A⇔ a+ I ∈ A/I. As L = A/I is an
ideal, then ra+ I = (r+ I)(a+ I) ∈ A/I for all r ∈ R, a ∈ A. Therefore
ra ∈ A, i.e., A is an ideal of ring G. According to the definition ψ we
have ψ(A) = A/I. Hence mapping ψ is surjective.

Let J be an ideal of ring R and I ⊆ J . If we consider the additive
group of J , then (1.37. Theorem) mapping ψ : J 7→ J /I is injective.

We must prove that J /I is an ideal. From the definition of J /I
fallows, that a ∈ J ⇔ a+ I ∈ J /I. If r ∈ R, then ar ∈ J , thus

(a+ I)(r + I) = ar + I ∈ J /I.

Therefore J /I is ideal of ring R/I. Hence mapping ψ is also injective.

1.39. Corollary. Assume that

� R is a ring;

� I ⊆ R is an ideal;

� π : R → R/I : r 7→ [r] is the natural mapping;

� S′ = {J | I ⊆ J and J is an ideal of R};
� S ′ = {L |L is an ideal of ring R/I};
� ψ : S′ → S ′ : J 7→ J /I.

J /I is a maximal ideal of ring R/I if and only if J is a maximal ideal
of ring R, and J contains ideal I.
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2 Notice that mapping ψ is bijective.
⇒ Assume that L is a maximal ideal if ring R/I. We already know that

there exist an ideal J of ring R, I ⊆ J , that L = J /I and ψ(J ) = J /I.
If in turn, J is not a maximal ideal, then there exists such ideal M of
ring R, that J ⊂ M ⊂ R. Thus if J ⊂ M, then J /I ⊆ M/I. As ψ
is bijective, then J /I ≠ M/I. Thus J /I ⊂ M/I, e.i., J /I is not a
maximal ideal. A contradiction!

⇐ Assume that J is a maximal ideal of ring R, I ⊆ J . If in turn, J /I
is not a maximal ideal of ring R/I, then there exists such ideal M of ring
R/I, that J /I ⊂ M ⊂ R/I. As M is an ideal of ring R/I, then there
exist such ideal M of ring R, I ⊆ M, that M/I =M . Thus J /I ⊂ M/I.
Notice that

a+ J ∈ J /I ⇔ a ∈ J ,
b+ I ∈ M/I ⇔ b ∈ M.

Hence J ⊆ M. As ψ is bijective, then J ≠ M. Thus J ⊂ M. As
M/I ⊂ R/I, then thre exist such r ∈ R, that r + I ̸∈ M/I. Therefore
r ̸∈ M. Thus J is not a maximal ideal. A contradiction!

1.40. Definition. A ring with only one maximal ideal is called a local
ring.

The commutative group of ring R is denoted as R×, i.e., it is the set of
all invertible elements in ring R.

1.41. Proposition. If M ̸= R is an ideal of ring R and R× = R\M,
then R is a local ring and M is the maximal ideal.

2 (i) Assume that I ⊆ R is ideal of ring R and a ∈ I ∩ R×. Then
a−1 ∈ R. As I is an ideal, then 1 = aa−1 ∈ I.

(ii) Assume that r ∈ R and r1 ∈ I. Thus I = R. Thus any ideal
J ⊂ R doesn’t contain elements of set R×.

(iii) As ideal M contain all the nonreversible (in ring R) elements of
set R, then J ⊆ M. Thus M is the one maximal ideal.

1.42. Proposition. If M is the maximal ideal of local ring R, then
M = R \R×.

2 Assume that a /∈ R×.
(i) It is obvious that a ∈ aR and aR is a commutative group. If r ∈ R

and b ∈ aR, then b = aβ, where β ∈ R and br = aβr ∈ aR. Hence aR is
an ideal.

As a /∈ R×, then in ring R dosnt exist a−1, therefore 1 /∈ aR and
aR ⊂ R, i.e., aR is a proper ideal of ring R.

(ii) Let

S ↽ {I | aR ⊆ I ⊂ R, where I is an ideal of ring R}.

Let {Jα} be a chain of set S, i.e., if Jβ ∈ {Jα} and Jγ ∈ {Jα}, then
Jβ ⊂ Jγ or Jγ ⊂ Jβ .

If J ↽
⋃
α

Jα, then J ⊂ R because 1 /∈ J .
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Let b ∈ J and c ∈ J . Then there exist such β and γ, that b ∈ Jβ and
c ∈ Jγ . We have Jβ ⊂ Jγ or Jγ ⊂ Jβ . For concreteness assume Jβ ⊂ Jγ ,
then b and c are elements of ideal Jγ . As Jγ is an ideal, then b+ c ∈ Jγ

also 0 ∈ Jγ and −b ∈ Jγ . As Jγ is an ideal, then br ∈ Jγ for all r ∈ R.
Thus b + c, 0,−b, br belong to set J , because Jβ ⊂ J . Additionally, the
sum is associative and commutative, while the multiplication is associative
(J ⊂ R). Thus J is an ideal. Thus J ∈ S and is upper bound of chain
{Jα}. According to Zorn’s lemma, set S has at least one maximal element
N.Thus N is a maximal ideal andN ̸= M, because a /∈ M and a ∈ N. This
gives us a contradiction because R is a local ring.

1.43. Lemma. In a local ring, there are only two idempotent ele-
ments: 0 and 1.

2 Assume that 0 ̸= e ̸= 1 is idempotent. Then e(1− e) = e− e2 = 0,
i.e., both elements are zero divisors, thus e /∈ R× and 1 − e /∈ R×. Thus
both elements belong to the maximal ideal, but 1 = e + (1 − e), i.e., 1
belongs to the maximal ideal. A contradiction!

1.44. Lemma. If e ∈ R is idempotent, then eR is a ring with unit
element e.

2 From (proof of 1.42. Proposition) eR is an ideal. Let’s show that e
is the unit element. Assume that x ∈ eR, then x = er, where r ∈ R.

xe = ex = e2r = er = x.

1.45. Theorem. Finite ring R is isomorph to the direct sum of local
rings (with precision to term order in the sum).

2 Let Spec(R) = {P1, P2, . . . , Pn}. As R is a finite ring, Pi is a
maximal ideal (1.27. Corollary). Thus Spec(R) = Specm(R), because
each maximal ideal is also a prime ideal (1.20. Corollary). Hence

Nil(R) =
⋂

P∈Spec(R)

P =
⋂

P∈Specm(R)

P = J (R),

Additionaly, if k ̸= κ, then ideals Pk and Pκ are coprime (1.28. Propo-
sition). Thus (1.7. Proposition)

n⋂
k=1

Pk =

n∏
k=1

Pk.

Also there (1.33. Lemma) exists such m, that J (R)m = 0.
If x ∈

∏n
j=1 P

m
j , then x =

∑
k xk1xk2 . . . xkn, where all xkj ∈ Pm

j .
Each xkj =

∑
i yikj1yikj2 . . . yikjm, where all yikjν ∈ Pj . As a result, x is

representable as a sum, whose terms are a product of nm elements. By
taking into account the commutativity of multiplication, elements can be
rearranged so that in product term first m elements belong to set P1, then
in turn m elements belonging to set P2 m, etc., until the last m elements
belonging to set Pn. Thus

n∏
j=1

Pm
j =

( n∏
j=1

Pj

)m
= J (R)m.
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Note (1.8. Proposition), that Pm
i , Pm

j ere coprime if i ̸= j, therefore (1.7.
Proposition)

⋂n
j=1 P

m
j =

∏n
j=1 P

m
j .

Let’s define a homeomorphism of rings

Φ : R → R/Pm
1 ×R/Pm

2 × · · · ×R/Pm
n : r 7→ ([r]1, [r]2, . . . , [r]n)

Homeomorphism Φ is injective (1.10. Proposition), because

n⋂
j=1

Pm
j =

n∏
j=1

Pm
j =

( n∏
j=1

Pj

)m
= J (R)m = 0,

Additionally Φ is surjective (1.12. Proposition), because Pm
i , Pm

j are
coprime, if i ̸= j. Thus Φ is an isomorphism.

(i) We have a natural mapping

Φi : R → R/Pm
i : r 7→ [r]i.

Thus (1.38. Theorem) each ideal P (of ring R) containing Pm
i is mapped

to ideal of ring R/Pm
i . Additionally mapping ϕ : P 7→ P/Pm

i is bijective.
(ii) From (1.8. Proposition) we have: if k ̸= l, then Pm

k , Pm
l are

coprime, because Pk, Pl are coprime. Thus Pm
k + Pm

l = R. Assume that
Pm
k ⊆ Pl, then R = Pm

k +Pm
l ⊆ Pl+P

m
l ⊆ Pl+Pl = Pl. A contradiction!

Hence Pk is the one maximal ideal, containing Pm
k . Thus from (1.39.

Corollary): Pk/P
m
k is the one maximal ideal of ring R/Pm

k . Thus R/Pm
k

is a local ring.
(iii) Assume that R ∼=

⊕n
j=1Rj

∼=
⊕m

k=1 Sk, where all Rj , Sk are local
rings. From (1.15. Proposition) there exist such orthogonal idempotents
ej ∈ R, fk ∈ R, that Rj

∼= ejR, Sk
∼= fkR and

1 =

n∑
j=1

ej =

m∑
k=1

fk.

Hence

ej = ej

m∑
k=1

fk =

m∑
k=1

ejfk ∈ ejR,

(ejfk)
2 = e2jf

2
k = ejfk.

If s ̸= k, then (ejfk)(ejfs) = e2jfkfs = ej · 0 = 0. Thus

ejf1, ejf2, . . . , ejfm

are orthogonal idempotents of ring ejR. As ejR is a local ring, then

ejfk = 0, vai ejfk = ej .

Note that (1.44. Lemma) ej is unit element of ring ejR. As all these
idempotents ejf1, ejf2, . . . , ejfm are orthogonal, then only one of them is
not equal to 0 (all can’t be equal to 0, because ej =

∑m
k=1 ejfk). Hence

there exists such κ, that ej = ejfκ = fκej ∈ fκR. As in the local ring
fκR, exists only 2 idempotents, then ej = fκ. Thus

{e1, e2, . . . , en} ⊆ {f1, f2, . . . , fm}.
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Similarly, we can make an argument for

{f1, f2, . . . , fm} ⊆ {e1, e2, . . . , en}.

Hence n = m and

{e1, e2, . . . , en} = {f1, f2, . . . , fn}.

2. Periodical rings

We are following [5] in this section.
Assume X ̸∈ R. We identify set Rω with R[[X]], i.e., by using standart

notation

a0a1a2 · · · an · · · 7→
∞∑

k=0

akX
k.

If f =
∞∑

k=0

akX
k, then we use notation for coeficient extraction f(n) = an.

2.1. Definition. Algebra ⟨R[[X]],+, ·⟩ is called formal power series
if

∞∑
k=0

akX
k +

∞∑
k=0

bkX
k =

∞∑
k=0

(ak + bk)X
k,(

∞∑
k=0

akX
k

)(
∞∑

k=0

bkX
k

)
=

∞∑
k=0

(
k∑

i=0

aibk−i

)
Xk.

We use ”formal power series” (or simply ”series”) also when referring
to a concrete f ∈ R[[X]].

2.2. Proposition. Series f =
∞∑

k=0

akX
k are invertible in algebra R[[X]]

if and only if a0 ∈ R×.

This is a standard result found in textbooks dedicated to formal power
series. If series A = a0 + a1X + ... has a multiplicative inverse B =
b0 + b1X + ..., then the constant term a0b0 of A · B is the constant term
of the identity series, i.e., it is 1. The condition of invertibility of a0 in R
is also sufficient, coefficients of the inverse series B can be computed as:

b0 = a−1
0 ; bn = −a−1

0

n∑
i=1

aibn−1, n ≥ 1.

Polynomial ring R[X] is a subring of ring R[[X]].

2.3. Definition. Series f ∈ R[[X]] is called rational series, if f = h
g
,

where h, g ∈ R[X] and g is invertible in ring R[[X]].

2.4. Definition. Series f =
∞∑
i=0

aiX
i is called periodical series if

there exists such
k ∈ Z+ = {1, 2, . . . , n, . . .},

that ∀i ai = ai+k. Series f is called semiperiodic series, if there exist such

n ∈ Z+, that series
∞∑
j=0

aj+nX
j is periodical.
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2.5. Proposition. If series f ∈ R[[X]] is semiperiodic series, then
series f is rational series.

2 If f =
∞∑

k=0

akX
k, then there exist such m and n, that ∀i > m ai =

ai+n. Hence

f = a0 + a1X + . . .+ amX
m

+

∞∑
i=0

(am+1X
m+1 + am+2X

m+2 + . . .+ am+nX
m+n)Xin

= p(X) + q(X)

∞∑
i=0

Xin

= p(X) +
q(X)

1−Xn
.

Here

p(X) = a0 + a1X + . . .+ amX
m,

q(X) = am+1X
m+1 + am+2X

m+2 + . . .+ am+nX
m+n.

2.6. Definition. Ring R is called a periodic ring, if

∀a ∈ R ∃m ∈ Z+ ∃n ∈ Z+ (m ̸= n ∧ am = an).

2.7. Definition. n ∈ N is called characteristic of ring R, denoted by
char(R), if Zn is the kernel of homomorphism

λ : Z → R : k 7→ k1.

2.8. Corollary. If R is a periodical ring, then char(R) ̸= 0.

2 Let e be the unit element of periodic ring R. If e ̸= 0 and e+ e = 0,
then char(R) = 2. Assume that e ̸= 0 ̸= e+e, then there exist such m > 0
and n > 0, that (e+ e)m = (e+ e)m+n. Thus (e+ e)m+n − (e+ e)n = 0,
i.e.,

0 = (e+ e)m+n − (e+ e)n

=

m+n∑
s=0

(
m+ n

s

)
e−

n∑
σ=0

(
n

σ

)
e

=

(
m+n∑
s=0

(
m+ n

s

)
−

n∑
σ=0

(
n

σ

))
e.

Here ke = e+ e+ · · ·+ e︸ ︷︷ ︸
k

. Note that 2e is not idempotent. If the contrary

is true, then e+ e = (e+ e)2 = e2 +2e+ e2 = e+2e+ e. Hence e+ e = 0.

2.9. Proposition. If char(R) = m ̸= 0, then there exist such subring
G of ring R, that G is isomorph to ring Zm.
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2 Let’s define set G↽ {ke | k ∈ N}, here e is the unit element of ring
R. If

k + n = mq1 + r1, 0 ≤ r1 < m;

kn = mq2 + r2, 0 ≤ r2 < m,

then

(k + n)e = (mq1 + r1)e = q1(me) + r1e = r1e,

kne = (mq2 + r2)e = q2(me) + r2e = r2e.

In Zm we have

k + n ≡ r1 mod m,

kn ≡ r2 mod m.

Hence mapping f : G→ Zm : ke 7→ k is an isomorphism of rings.

We will use 1 instead of e, unless it may cause misunderstandings.

2.10. Definition. Consider a commutative ring with unity R. Ex-
tension G of R is called an integral extension, if for each c ∈ G, there
exists such monic polynomial p(X) ∈ R[X], that p(c) = 0.

2.11. Proposition. A periodic ring is an integral extension of Zm

(up to isomorphism).

2 Assume that R is periodical and a ∈ R. From (2.8. corollary) and
(2.9. Proposition) there exist such m, that R contains a subring isomorph
to ring Zm. As R is periodic, then there exists such 0 < k < n, that
ak = an. Thus a is the root of the monic polynomial Xn −Xn−k.

2.12. Lemma. If I ⊆ J are ideal of ring R, then mapping

f : R/I → R/J : x+ I 7→ x+ J

is an epimorphism of rings.

2 (i) Let’s show that mapping f is defined correctly. Assume that
x+I = y+I, then x−y ∈ I and therefore x−y ∈ J . Hence x+J = y+J .

(ii) Let’s introduce notation:

[x]I ↽ x+ I,
[x]J ↽ x+ J ,

then

f [x+ y]I = [x+ y]J = [x]J + [y]J = f [x]I + f [y]I ,

f [xy]I = [xy]J = [x]J [y]J = f [x]If [y]I ,

f [1]I = [1]J .

Thus f is a homomorphism of rings.
(iii) Assume that [x]J ∈ R/J , then

[x]J = x+ J ⊇ x+ I = [x]I .

Thus f [x]I = [x]J , e.i, f is surjective.
Let’s denote principal ideal g(X)R[X] as ⟨g(X)⟩.
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2.13. Lemma. If R is a finite commutative local ring and

g(X) = 1 + a1X + a2X
2 + · · ·+ akX

k ∈ R[X],

then |R[X]/⟨g(X)⟩| <∞.

2 (i) Assume that M is maximal ideal of ring R, at ∈ R×, but

at+1, at+2, . . . , ak /∈ R×,

thus (1.42. Proposition) at+1, at+2, . . . , ak ∈ M.
(ii) Maximal ideal M of ring R is prime (1.20. Corollary). If I is a

prime ideal of finite ring R, then it is maximal (1.27. Corollary). In the
given case, this means we have only one prime ideal, e.i., M. As R is
commutative ring, then (1.32. Proposition)

Nil(R) =
⋂

I∈Spec(R)

I.

Here

� Nil(R) is a nilradical, e.i., a set consisting of all nilpotent elements
of R;

� Spec(R) is a spectrum of ring R spektrs, e.i., set of all prime ideals.

In this case Nil(R) = M. Thus (1.33. Lemma) there exist such l, that
(Nil(R))l = Ml = 0. Note that R here is a finite ring.

(iii) Let g1(X)↽ (1+a1X+a2X
2+· · ·+atXt)l. For any commutative

ring holds

αl − βl = (α− β)

l∑
i=1

αl−iβi−1.

If

� α is given as 1 + a1X + a2X
2 + · · ·+ atX

t,

� β is given as −
∑k

i=t+1 aiX
i,

then α− β = g(X) and thus g(X) divides polynomial

(1 + a1X + a2X
2 + · · ·+ atX

t)l − (−
k∑

i=t+1

aiX
i)l.

As Ml = 0, then all coeficient of polynomial (−
∑k

i=t+1 aiX
i)l are equal

to 0, because at+1, at+2, . . . , ak ∈ M. Hence

g1(X) = (1 + a1X + a2X
2 + · · ·+ atX

t)l − (−
k∑

i=t+1

aiX
i)l.

(iv) Lets rewrite g1(X) as 1 + b1X + · · · + buX
u. Here u = tl and

bu = aut ∈ R×. Hence |R[X]/⟨g1(X)⟩| = |R|u <∞. Note that

R[X]/g1(X) = {[r(X)] |h(X) ∈ R[X]

∧ h(X) = f(X)g1(X) + r(X)

∧ deg(r(X)) < deg(g1(X)) = u}
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(v) If a = bc, then aR ⊆ bR. Thus if x ∈ aR, then x = ar, where
r ∈ R and x = ar = bcr ∈ bR.

As g(X) divides g1(X), then ⟨g1(X)⟩ = g1(X)R[X] ⊆ g(X)R[X] =
⟨g(X)⟩. From (2.12. Lemma) mapping

f : R[X]/⟨g1(X)⟩ → R[X]/⟨g(X)⟩ : p(X) + ⟨g1(X)⟩ 7→ p(X) + ⟨g(X)⟩

is surjective. Thus |R[X]/⟨g1(X)⟩| ≥ |R[X]/⟨g(X)⟩|, i.e., |R|u ≥ |R[X]/⟨g(X)⟩|.

Let R and G be rings and φ : R → Gn be a ring isomorphism. Let
āi = (ai1, ai2, . . . , ain), where

aij =

{
ai, if i = j;

0, if i ̸= j.

Thus (a1, a2, . . . , an) = ā1 + ā2 + · · ·+ ān. As φ is an isomorphism, then
φ−1 : Gn → R also is an isomorphism. Hence

φ−1(a1, a2, . . . , an) = φ−1(ā1 + ā2 + · · ·+ ān)

= φ−1(ā1) + φ−1(ā2) + · · ·+ φ−1(ān).

Let ēi = (ei1, ei2, . . . , ein), where

eij =

{
1, if i = j;

0, if i ̸= j.

Thus (1, 1, . . . , 1) = ē1 + ē2 + · · ·+ ēn. Hence

1 = φ−1(1, 1, . . . , 1) = φ−1(ē1 + ē2 + · · ·+ ēn)

= φ−1(ē1) + φ−1(ē2) + · · ·+ φ−1(ēn).

2.14. Lemma. If ϕ : R → S is a homomorphism of rings, then

ϕ : R[X] → S[X] :

m∑
i=0

aiX
i 7→

m∑
i=0

ϕ(ai)X
i

is a homomorphism of rings.

2 ϕ(

m∑
i=0

(ai + bi)X
i) =

m∑
i=0

ϕ(ai + bi)X
i =

m∑
i=0

(ϕ(ai) + ϕ(bi))X
i

=

m∑
i=0

ϕ(ai)X
i +

m∑
i=0

ϕ(bi)X
i

= ϕ(

m∑
i=0

aiX
i) + ϕ(

m∑
i=0

biX
i).
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ϕ((

m∑
i=0

aiX
i)(

n∑
j=0

bjX
j)) = ϕ(

m+n∑
k=0

(

k∑
s=0

asbk−s)X
k)

=

m+n∑
k=0

ϕ(

k∑
s=0

asbk−s)X
k

=

m+n∑
k=0

k∑
s=0

ϕ(as)ϕ(bk−s)X
k

= (

m∑
i=0

ϕ(ai)X
i)(

n∑
j=0

ϕ(bj)X
j)

= ϕ(

m∑
i=0

aiX
i)ϕ(

n∑
j=0

bjX
j).

Thus we have proven:

� ϕ(p+ q) = ϕ(p) + ϕ(q),

� ϕ(pq) = ϕ(p)ϕ(q)

for all p, q ∈ R[X].

2.15. Corollary. (i) If ϕ : R → S is a ring epimorphism, then
ϕ : R[X] → S[X] :

∑m
i=0 aiX

i 7→
∑m

i=0 ϕ(ai)X
i is a ring epimorphism.

(ii) If ϕ : R → S is a ring monomorphism, then
ϕ : R[X] → S[X] :

∑m
i=0 aiX

i 7→
∑m

i=0 ϕ(ai)X
i is a ring monomorphism.

(iii) If ϕ : R → S is a ring isomorphism, then
ϕ : R[X] → S[X] :

∑m
i=0 aiX

i 7→
∑m

i=0 ϕ(ai)X
i is a ring isomorphism.

2 (i) Let
∑m

i=0 αiX
i ∈ S[X]. As ϕ : R → S is an epimorphism, then

exist such a1, a2, . . . , am ∈ R, that ∀i ϕ(ai) = αi. Hence ϕ(
∑m

i=0 aiX
i) =∑m

i=0 αiX
i.

(ii) Let
∑m

i=0 aiX
i ̸=

∑m
i=0 biX

i. Thus there exists such k, that ak ̸=
bk. Hence

∑m
i=0 ϕ(ai)X

i ̸=
∑m

i=0 ϕ(bi)X
i.

(iii) Follows as a consequence of (i) and (ii).

2.16. Lemma. If ϕ : R → S is a ring isomorphism, then

R[X]/⟨
m∑
i=0

aiX
i⟩ ∼= S[X]/⟨

m∑
i=0

ϕ(ai)X
i⟩.

2 Let
∑n

i=0 biX
i ≡R

∑n
i=0 ciX

i, i.e.., they represent the same element
of set R[X]/⟨

∑m
i=0 aiX

i⟩. There is a possibility of polynomials
∑n

i=0 biX
i

and
∑n

i=0 ciX
i to have different orders, then some of the coefficients are

equal to 0.
Let’s denote polynomials in consideration as: f ↽

∑m
i=0 aiX

i, ϕ(f)↽
∑m

i=0 ϕ(ai)X
i,

p ↽
∑n

i=0 biX
i, q ↽

∑n
i=0 ciX

i.
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Then

p ≡R q,

p− q ≡R 0,

∃r ∈ R[X] fr = p− q,

ϕ(r)ϕ(f) = ϕ(rf) = ϕ(p− q) = ϕ(p)− ϕ(q),

ϕ(p)− ϕ(q) ≡S 0,

ϕ(p) ≡S ϕ(q).

As mapping ϕ : R → S is an isomorpism, then p ≡R q ⇔ ϕ(p) ≡S ϕ(q).
Hence mapping ϕ̄ : R[X]/f → S[X]/ϕ(f) : [p]R → [ϕ(p)]S is bijectivre.
Here

[p]R ↽ {g | g ≡R p}, [ϕ(p)]S ↽ {h |h ≡S ϕ(p)}.

ϕ̄([p]R[q]R) = ϕ̄([pq]R) = [ϕ(pq)]S = [ϕ(p)ϕ(q)]S

= [ϕ(p)]S [ϕ(q)]S = ϕ̄([p]R)ϕ̄([q]R),

ϕ̄([p]R + [q]R) = ϕ̄([p+ q]R) = [ϕ(p+ q)]S = [ϕ(p) + ϕ(q)]S

= [ϕ(p)]S + [ϕ(q)]S = ϕ̄([p]R) + ϕ̄([q]R).

Thus ϕ̄ is an isomorphism.

2.17. Lemma. If ϕ : R 7→ G1×G2×· · ·×Gn is a ring homomorphism,
then for all i

ϕi : R → Gi : r 7→ pri(ϕ(r))

is a ring homomorphism. Here pri(r1, r2, . . . , rn)↽ ri.

2 Let ϕ(x) = (x1, x2, . . . , xn) and ϕ(y) = (y1, y2, . . . , yn), then

ϕi(x+ y) = pri(ϕ(x+ y)) = pri(ϕ(x) + ϕ(y)) = xi + yi

= ϕi(x) + ϕi(y);

ϕi(xy) = pri(ϕ(xy)) = pri(ϕ(x)ϕ(y)) = xiyi

= ϕi(x)ϕi(y).

2.18. Proposition. If ϕ : R → G1 ×G2 × · · · ×Gn is a ring isomor-
phism and f =

∑m
j=0 ajX

j ∈ R[X], then

R[X]/⟨f⟩ ∼= G1[X]/⟨ϕ1(f)⟩ ×G2[X]/⟨ϕ2(f)⟩ × · · · ×Gn[X]/⟨ϕn(f)⟩.

Here ϕi(f)↽
∑m

j=0 pri(ϕ(aj))X
j.

2 (i) Mapping ϕi : R → Gi : r 7→ pri(ϕ(r)) is ring homomorphism
(2.17. Lemma). As ϕ is an isomorphism, then ϕi is an epimorphism. Thus
(2.15. Corollary)

ϕi : R[X] → Gi[X] : p 7→ ϕi(p)

is an epimorphism.
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Assume that
∑ν

j=0 bjX
j ≡R

∑ν
j=0 cjX

j , i.e,, they represent the same

element from set R[X]/⟨
∑m

j=0 ajX
j⟩. Let’s denote polynomials in consid-

eration as: p ↽
∑ν

j=0 bjX
j , q ↽

∑ν
j=0 cjX

j . Then

p ≡R q,

p− q ≡R 0,

∃r ∈ R[X] fr = p− q,

ϕi(r)ϕi(f) = ϕi(rf) = ϕi(p− q) = ϕi(p)− ϕi(q),

ϕi(p)− ϕi(q) ≡Gi 0,

ϕi(p) ≡Gi ϕi(q).

This shows that mappings

ϕ̄i : R[X]/⟨f⟩ → Gi[X]/⟨ϕi(f)⟩ : [p]R 7→ [ϕi(p)]Gi

are defined correctly. Here

[p]R ↽ {g | g ≡R p}, [ϕi(p)]Gi ↽ {h |h ≡Gi ϕi(p)}.

ϕ̄i([p]R[q]R) = ϕ̄i([pq]R) = [ϕi(pq)]Gi = [ϕi(p)ϕi(q)]Gi

= [ϕi(p)]Gi [ϕi(q)]Gi = ϕ̄i([p]R)ϕ̄i([q]R),

ϕ̄i([p]R + [q]R) = ϕ̄i([p+ q]R) = [ϕi(p+ q)]Gi = [ϕi(p) + ϕi(q)]Gi

= [ϕi(p)]Gi + [ϕi(q)]Gi = ϕ̄i([p]R) + ϕ̄i([q]R).

Hence ϕ̄i is a homomorphism. Thus

ϕ̄ : [p]R 7→ (ϕ̄1([p]R), ϕ̄2([p]R), . . . , ϕ̄n([p]R))

is a homomorphism.
(ii) Let pi ∈ Gi[X] and k = max

i
deg(pi). Thus

pi(X) =

k∑
j=0

aijX
j ∈ Gi[X].

As ϕ is bijective, then there exist such rs, s ∈ 1, k, that

ϕ(rs) = (a1s, a2s, . . . , ans).

Lets choose p(X)↽
∑k

j=0 rjX
j . Thus mapping

Φ : R[X] → G1[X]×G2[X]× · · · ×Gn[X] : p 7→ (ϕ1(p), ϕ2(p), . . . , ϕn(p))

is surjective. As deg(ϕi(p)) = deg(p), then only case, when Φ is not
injective, might arise when p ̸= q, but deg(p) = deg(q). Let q(X) =∑k

j=0 ρjX
j , rκ ̸= ρκ and ϕ(ρκ) = (b1, b2, . . . , bn). In expanded expres-

sion:
(a1κ , a2κ , . . . , anκ) = ϕ(rκ) ̸= ϕ(ρκ) = (b1, b2, . . . , bn).
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Thus there exist such ν, that aνκ ̸= bν .

ϕν(p) =

k∑
j=0

ϕν(rj)X
j =

k∑
j=0

aνjX
j =

∑
j ̸=κ

aνjX
j + aνκX

κ .

ϕν(q) =

k∑
j=0

ϕν(ρj)X
j =

∑
j ̸=κ

ϕν(ρj)X
j + ϕν(ρκ)X

κ

=
∑
j ̸=κ

ϕν(ρj)X
j + bνX

κ .

Thus ϕν(p) ̸= ϕν(q), i.e., Φ is injective. From all the above, we conclude
that Φ is bijective.

(iii) Let

([p1]G1 , [p2]G2 , . . . , [pn]Gn) ∈
G1[X]/⟨ϕ1(f)⟩ ×G2[X]/⟨ϕ2(f)⟩ × · · · ×Gn[X]/⟨ϕn(f).

Thus [pi] ⊆ Gi[X] and pi ∈ Gi[X]. As Φ is bijective, then exist such
p ∈ R[X], that Φ(p) = (p1, p2, . . . , pn), e.i.,

p1 = ϕ1(p), p2 = ϕ2(p), . . . , pn = ϕn(p).

Hence [pi]Gi = [ϕi(p)]Gi . From the definition of ϕ̄i, we have ϕ̄i : [p]R 7→
[ϕi(p)]Gi and

ϕ̄ : [p]R 7→ (ϕ̄1([p]R), ϕ̄2([p]R), . . . , ϕ̄n([p]R))

= ([p1]G1 , [p2]G2 , . . . , [pn]Gn).

Hence ϕ̄ is surjective.
Let ϕ̄([p]R) = ϕ̄([0]R), then ∀i ϕ̄i([p]R) = ϕ̄i([0]R), t.i., [ϕi(p)]Gi =

[ϕi(0)]Gi = [0]Gi . Thus there exist such ri ∈ Gi[X], that ϕi(p) = riϕi(f).
As

Φ : R[X] → G1[X]×G2[X]× · · · ×Gn[X]

is bijective, then exists ρ ∈ R[X], that Φ(ρ) = (r1, r2, . . . , rn). On the
other hand Φ(ρ) = (ϕ1(ρ), ϕ2(ρ), . . . , ϕn(ρ)). Thus ri = ϕi(ρ), therefore
ϕi(p) = riϕi(f) = ϕi(ρ)ϕi(f) = ϕi(ρf). Hence

Φ(p) = (ϕ1(p), ϕ2(p), . . . , ϕn(p)) = (ϕ1(ρf), ϕ2(ρf), . . . , ϕn(ρf)) = Φ(ρf).

Mapping Φ is bijective, therefore p = ρf , t.i., [p]R = [0]R. Thus the kernel
of homomorphism ϕ̄ is trivial, hence ϕ̄ is a monomorphism.

From all the above we conclude:

ϕ̄ : R[X]/⟨f⟩ → G1[X]/⟨ϕ1(f)⟩ ×G2[X]/⟨ϕ2(f)⟩ × · · · ×Gn[X]/⟨ϕn(f)⟩

is an isomorphism.

2.19. Lemma. Let g(X) = 1 + a1X + a2X
2 + · · · + akX

k ∈ R[X].
If R is integral extension of ring Zm

∼= Zm, then there exist such n, that
g(X) divides Xn − 1.
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2 (i) Let α = aas11 a
s2
2 . . . a

sk
k , β = bas11 a

s2
2 . . . a

sk
k , where a, b ∈ Zm,

then α + β = (a + b)as11 a
s2
2 . . . a

sk
k and a + b ∈ Zm. Let denote by

Zm(a1, a2, . . . , ak) the smallest extension of ring Zm, containing all el-
ements a1, a2, . . . , ak. Thus Zm(a1, a2, . . . , ak) consists of sums:∑

κ̄∈Zm

aκ̄a
κ1
1 aκ2

2 . . . a
κk
k ,

where aκ̄ ∈ Zm and κ̄ = (κ1,κ2, . . . ,κk). There all κ̄ are distinct.
(ii) As Zm(a1, a2, . . . , ak) is an integral extension, then for each ai

there exists such monic polinomial

pi(X) = Xmi + bimi−1X
mi−1 + · · ·+ bi2X

2 + bi1X + bi0,

that pi(ai) = 0. Hence

ami
i = −bimi−1a

mi−1
i − · · · − bi2a

2
i − bi1ai − bi0.

Thus each element of ring Zm(a1, a2, . . . , ak) is representable as a sum∑
κ̄∈Zm

aκ̄a
κ1
1 aκ2

2 . . . a
κk
k ,

where all κ̄ = (κ1,κ2, . . . ,κk) are distinct and all κi < mi. Then count of
such sums is finite, because ring Zm is finite. Thus ring Zm(a1, a2, . . . , ak)
is finite.

(iii) As S ↽ Zm(a1, a2, . . . , ak) is a finite ring, then (1.45. Theorem)

S ∼= S1 × S2 × · · · × St,

where all Si are finite commutative rings. Thus (2.18. Proposition)

S[X]/⟨g⟩ ∼= S1[X]/⟨ϕ1(g)⟩ × S2[X]/⟨ϕ2(g)⟩ × · · · × St[X]/⟨ϕt(g)⟩.

Here

ϕ̄ : S[X]/⟨g⟩ → S1[X]/⟨ϕ1(g)⟩ × S2[X]/⟨ϕ2(g)⟩ × · · · × St[X]/⟨ϕt(g)⟩

is an isomorphism, where

ϕ : S → S1 × S2 × · · · × St

is an isomorphism, ϕi(g) =
∑k

j=0 pri(ϕ(aj))X
j and a0 = 1. Thus

ϕi(g) = 1Si +

k∑
j=1

pri(ϕ(aj))X
j .

(2.13. Lemma) Si[X]/⟨ϕi(g)⟩ is a finite set, thus S[X]/⟨g⟩ is a finite
ring. Therefore all classes [1], [X], [X2], [X3], . . . , [Xs], . . . can’t be dis-
tinct. Thus there exist such ν ≥ 0 and n > 0, that [Xν ] = [Xν+n] or
[Xν(Xn − 1)] = [0]. Thus thre exist such q(X) ∈ S[X], that g(X)q(X) =
Xν(Xn − 1). As g(0) = 1, then q(X) = Xνr(X). Hence Xνg(X)r(X) =
Xν(Xn − 1). It is possible only if g(X)r(X) = Xn − 1.
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2.20. Proposition. If integral extension f of Zm
∼= Zm is a rational

series, then f is semiperiodic.

2 LetR be extension of ring Zm, f(X) = h(X)
g(X)

and g(X) =
∑ν

k=0 akX
k,

then g(X) = a0(1 +
∑ν

k=1 a
−1
0 akX

k). Thus (2.19. Lemma) exists such n,
that Xn − 1 = a−1

0 gr, where r ∈ R[X]. Hence

f =
h

g
=
h(Xn − 1)

g(Xn − 1)
=

a−1
0 h

Xn − 1
· X

n − 1

a−1
0 g

=
a−1
0 h

Xn − 1
· a

−1
0 gr

a−1
0 g

=
a−1
0 hr

Xn − 1
= −a−1

0 hr

∞∑
k=0

Xkn

Assume that −a−1
0 hr =

∑σ
κ=0 bκX

κ , then f =
∑σ

κ=0 bκX
κ∑∞

k=0X
kn.

If n = 1, then

f =

σ∑
κ=0

bκX
κ

∞∑
k=0

Xk

= (b0 + b1X + b2X
2 . . .+ bσX

σ)(1 +X +X2 + . . .+Xσ + . . .)

= b0 + (b0 + b1)X + (b0 + b1 + b2)X
2 + . . .+ (b0 + b1 + . . .+ bσ)X

σ

+ (b0 + b1 + . . .+ bσ)X
σ+1 + . . .+ (b0 + b1 + . . .+ bσ)X

σ+n + . . .

=

σ−1∑
k=0

( k∑
i=0

bi
)
Xk +

∞∑
n=0

( σ∑
i=0

bi
)
Xσ+n

If σ < n, then

f =

σ∑
κ=0

bκX
κ

∞∑
k=0

Xkn

= (b0 + b1X + b2X
2 . . .+ bσX

σ)(1 +Xn +X2n + . . .+Xkn + . . .)

= b0 + b1X + b2X
2 + . . .+ bσX

σ

+ b0X
n + b1X

n+1 + b2X
n+2 + . . .+ bσX

n+σ

+ b0X
2n + b1X

2n+1 + b2X
2n+2 + . . .+ bσX

2n+σ + . . .

=

∞∑
k=0

σ∑
i=0

biX
kn+i

If σ = n+ τ un 0 ≤ τ < n, then

f =

σ∑
κ=0

bκX
κ

∞∑
k=0

Xkn

= (b0 + b1X + b2X
2 . . .+ bn−1X

n−1 + bnX
n + . . .+ bn+τX

n+τ )

× (1 +Xn +X2n + . . .+Xkn + . . .)

= b0 + b1X + b2X
2 + . . .+ bn−1X

n−1

+ (b0 + bn)X
n + (b1 + bn+1)X

n+1 + . . .+ (bτ + bn+τ )X
n+τ

+ bτ+1X
n+τ+1 + bτ+2X

n+τ+2 + . . .+ bn−1X
2n−1

+ (b0 + bn)X
2n + (b1 + bn+1)X

2n+1 + . . .+ (bτ + bn+τ )X
2n+τ
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+ bτ+1X
2n+τ+1 + bτ+2X

2n+τ+2 + . . .+ bn−1X
3n−1 + . . .

=

n−1∑
k=0

bkX
k +

∞∑
k=1

( τ∑
i=0

(bi + bn+i)X
kn+i +

n−1∑
i=τ+1

biX
kn+i

)
If σ = mn+ τ un 0 ≤ τ < n, then

f =

σ∑
κ=0

bκX
κ

∞∑
k=0

Xkn

= (b0 + b1X + b2X
2 . . .+ bn−1X

n−1 + bnX
n + . . .+ bmn+τX

mn+τ )

× (1 +Xn +X2n + . . .+Xkn + . . .)

= b0 + b1X + b2X
2 + . . .+ bn−1X

n−1

+ (b0 + bn)X
n + (b1 + bn+1)X

n+1 + . . .+ (bn−1 + b2n−1)X
2n−1 +

. . . +(b0 + bn + b2n . . .+ b(m−1)n)X
(m−1)n

+ (b1 + bn+1 + b2n+1 + . . .+ b(m−1)n+1)X
(m−1)n+1 + . . .

+ (bn−1 + b2n−1 + b3n−1 + . . .+ bmn−1)X
mn−1

+ (b0 + bn + . . .+ bmn)X
mn + (b1 + bn+1 + . . .+ bmn+1)X

mn+1 +

. . . +(bτ + bn+τ + . . .+ bmn+τ )X
mn+τ

+ (bτ+1 + bn+τ+1 + . . .+ b(m−1)n+τ+1)X
mn+τ+1 + . . .

=

m−1∑
k=0

n−1∑
i=0

( k∑
j=0

bi+jn

)
Xnk+i

+

∞∑
k=m

( τ∑
i=0

( m∑
j=0

bi+jn

)
Xkn+i +

n−1∑
i=τ+1

(m−1∑
j=0

bi+jn

)
Xkn+i

)
2.21. Corollary. Each formal power series of a periodic ring is semiperi-

odic.

2 Periodic ring is integral extension of ring Zm (2.11. Proposition),
up to isomorphism. The result follows from (2.20. Proposition).

2.22. Example. f(X) = X2+2X−1
X2+X+1

, where polinomials are elements
of ring Z6[X].

f(X) =
X2 + 2X − 1

X2 +X + 1
=

(X2 + 2X − 1)(X3 − 1)

(X2 +X + 1)(X3 − 1)

=
(X2 + 2X − 1)(X − 1)

X3 − 1

= −(1− 3X +X2 +X3)(1 +X3 +X6 +X9 + . . .)

Let’s consider the general expression: σ = n = 3 and τ = 0.

f(X) = (b0 + b1X + b2X
2 + b3X

3)(1 +X3 +X6 +X9 + . . .)

= b0 + b1X + b2X
2 +

∞∑
k=1

(
(b0 + b3)X

3k + b1X
3k+1 + b2X

3k+2)
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In our case:

f(X) = −1 + 3X −X2 +

∞∑
k=1

(
(−1− 1)X3k + 3X3k+1 −X3k+2)

= −1 + 3X −X2 +

∞∑
k=1

(
− 2X3k + 3X3k+1 −X3k+2)

3. Mealy machines

We will consider mappings

µ[f ] : g(X) 7→ f(X)g(X),

α[f ] : g(X) 7→ f(X) + g(X),

where f(X) and g(X) are elements of ring R[[X]].
We recall some facts from [6]. Details see in [2], [3] and [4].

3.1. Proposition.

� α[f ] is a bijection;

� if f is invertible in ring R[[x]], then µ[f ] is bijective;

� if f is invertible in ring R[[x]], then (µ[f ])−1 = µ[f−1];

� if f is invertible in ring R[[x]], then µ[f−1]α[h]µ[f ] = α[fh]

3.2. Definition. Mapping

σ(f) =

∞∑
k=0

ak+1X
k

is called a shift. Here f(X) =
∞∑

k=0

akX
k.

3.3. Corollary.

� f = a0 + σ(f)X;

� (1− aX)−1 =
∞∑

k=0

akXk;

� if f =
1

1− aX
then σ(f) = af ;

� if f is invertible in ring R[[x]], then µ[f−1]α[h]µ[f ] = α[fh]

3.4. Definition. Let ζ : Aω → Bω is ω–determined function. Func-
tion ζ defines set

Qζ = {ζu |u ∈ A∗},
where ζu is restriction of function ζ. If set Qf is finite, then ζ is called a
finitely determined function.

3.5. Theorem. If f =
1

1−X
, then µ[f ] is finitely determined func-

tion, whose restriction set Qf = {µ[f ] ◦ α[s] | s ∈ R}.
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Let f =
1

1−X
. Define Mf = ⟨Qf , R, ◦, ∗⟩:

� with set Qf = {α[s]µ[f ] | s ∈ R} of states and

� alphabet R,

� Q×R
◦−→ Q : α[s]µ[f ] ◦ r = α[s+ r]µ[f ],

� Q×A
∗−→ A : α[s]µ[f ] ∗ r = s+ r.

If R is Galois field GF (2), then we obtain the Lamplighter group. Here

α[0]µ[f ] 7→ q, α[1]µ[f ] 7→ p

and Γ(M2) = ⟨q̄, p̄⟩ = ⟨α[0]µ[f ], α[1]µ[f ]⟩.

���
M2 M−1

2

? ���
? ���

?���
?

~ ~

} }

p q p−1 q−1
0/0

1/0
0/1 0/0

1/0 0/1

1/11/1

1. Figure: Mealy machine generating the Lamplighter group.

Problem. Witch groups are generated by the rational series of com-
mutative rings?

Here are some intuitive considerations as to why this might be inter-
esting.

� Are all groups defined by rational formal power series of finite com-
mutative rings infinite?

� If there still are finite groups defined by rational formal power series
of finite commutative rings, then a question arises: is the finiteness
problem algorithmically decidable?

3.6. Example. What kind of group is determined by polynomial f(X) =
1 +X +X2?

Let g(X) = s0 + s1X + s2X
2 + · · · =

∑∞
k=0 skX

k, then

gα[r]µ[f ] = (r + s0 +

∞∑
k=1

skX
k)µ[f ] = (r + s0)f(X) + f(X)

∞∑
k=1

skX
k

= (r + s0) + (r + s0)X + (r + s0)X
2

+ (1 +X +X2)(s1X + s2X
2 + s3X

3 + s4X
4 + · · · )

= (r + s0) + (r + s0)X + (r + s0)X
2

+ s1X + (s1 + s2)X
2

+ (s1 + s2 + s3)X
3 + (s2 + s3 + s4)X

4 + (s3 + s4 + s5)X
5 + · · ·

= (r + s0) + (r + s0 + s1)X + (r + s0 + s1 + s2)X
2

+ (s1 + s2 + s3)X
3 + (s2 + s3 + s4)X

4 + (s3 + s4 + s5)X
5 + · · ·
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gµ[f ] = s0 + (s0 + s1)X + (s0 + s1 + s2)X
2 + (s1 + s2 + s3)X

3 + · · ·

= s0 + (s0 + s1)X +

∞∑
k=0

(sk + sk+1 + sk+2)X
k+2.

Hence

gµr[f ] = r + s0 + (r + s0 + s1)X + (s0 + s1 + s2)X
2 + (s1 + s2 + s3)X

3 + · · ·

= r + s0 + (r + s0 + s1)X +

∞∑
k=0

(sk + sk+1 + sk+2)X
k+2,

gµr2 [f ] = 2r + s0 + (r + s0 + s1)X + (s0 + s1 + s2)X
2 + (s1 + s2 + s3)X

3 + · · ·

= 2r + s0 + (r + s0 + s1)X +

∞∑
k=0

(sk + sk+1 + sk+2)X
k+2,

gµr3 [f ] = 2r + s0 + (r + s0 + s1)X + (s0 + s1 + s2)X
2 + (s1 + s2 + s3)X

3 + · · ·

= 2r + s0 + (r + s0 + s1)X +

∞∑
k=0

(sk + sk+1 + sk+2)X
k+2,

gµrn [f ] = 2r + s0 + (r + s0 + s1)X +

∞∑
k=0

(sk + sk+1 + sk+2)X
k+2.

gµr1r2 [f ] = r1 + r2 + s0 + (r2 + s0 + s1)X + (s0 + s1 + s2)X
2 + · · ·

= r1 + r2 + s0 + (r2 + s0 + s1)X +

∞∑
k=0

(sk + sk+1 + sk+2)X
k+2,

gµr1r2r3 [f ] = r2 + r3 + s0 + (r3 + s0 + s1)X + (s0 + s1 + s2)X
2 + · · ·

= r2 + r3 + s0 + (r3 + s0 + s1)X +

∞∑
k=0

(sk + sk+1 + sk+2)X
k+2,

gµr1···rn−1rn [f ] = rn−1 + rn + s0 + (rn + s0 + s1)X + (s0 + s1 + s2)X
2 + · · ·

= rn−1 + rn + s0 + (rn + s0 + s1)X

+

∞∑
k=0

(sk + sk+1 + sk+2)X
k+2,

Lets introduce notation µu ↽ µu[f ] for each u ∈ R∗.
What happens if R = GF (2)?
from the above, it follows that:

µ = µ0 = µu00 99K s0 + (s0 + s1)X

µ1 = µ01 = µu01 99K 1 + s0 + (1 + s0 + s1)X

µ10 = µu10 99K 1 + s0 + (s0 + s1)X

µ11 = µu11 99K s0 + (1 + s0 + s1)X

What happens if R = GF (4)?
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2. Figure: Machine defined by 1 +X +X2 in field GF (2).

addition x+ y multiplication xy

x⧹y 0 1 a b 0 1 a b

0 0 1 a b 0 0 0 0

1 1 0 b a 0 1 a b

a a b 0 1 0 a b 1

b b a 1 0 0 b 1 a

µ = µ0 = µu00 99K s0 + (s0 + s1)X

µ1 = µ01 = µu01 99K 1 + s0 + (1 + s0 + s1)X

µa = µ0a = µu0a 99K a+ s0 + (a+ s0 + s1)X

µb = µ0b = µu0b 99K b+ s0 + (b+ s0 + s1)X

µ10 = µu10 99K 1 + s0 + (s0 + s1)X

µ11 = µu11 99K s0 + (1 + s0 + s1)X

µ1a = µu1a 99K b+ s0 + (a+ s0 + s1)X

µ1b = µu1b 99K a+ s0 + (b+ s0 + s1)X

µa0 = µua0 99K a+ s0 + (s0 + s1)X

µa1 = µua1 99K b+ s0 + (1 + s0 + s1)X

µaa = µuaa 99K s0 + (a+ s0 + s1)X

µab = µuab 99K 1 + s0 + (b+ s0 + s1)X

µb0 = µub0 99K b+ s0 + (s0 + s1)X

µb1 = µub1 99K a+ s0 + (1 + s0 + s1)X

µba = µuba 99K 1 + s0 + (a+ s0 + s1)X

µbb = µubb 99K s0 + (b+ s0 + s1)X
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◦ µ µ1 µa µb µ10 µ11 µ1a µ1b

0 µ µ10 µa0 µb0 µ µ10 µa0 µb0

1 µ1 µ11 µa1 µb1 µ1 µ11 µa1 µb1

a µa µ1a µaa µba µa µ1a µaa µba

b µb µ µab µbb µb µ1b µab µbb

∗ µ µ1 µa µb µ10 µ11 µ1a µ1b

0 0 1 a b 1 0 b a

1 1 0 b a 0 1 a b

a a b 0 1 b a 1 0

b b a 1 0 a b 0 1

◦ µa0 µa1 µaa µab µb0 µb1 µba µbb

0 µ µ10 µa0 µb0 µ µ10 µa0 µb0

1 µ1 µ11 µa1 µb1 µ1 µ11 µa1 µb1

a µa µ1a µaa µba µa µ1a µaa µba

b µb µ1b µab µbb µb µ1b µab µbb

∗ µa0 µa1 µaa µab µb0 µb1 µba µbb

0 a b 0 1 b a 1 0

1 b a 1 0 a b 0 1

a 0 1 a b 1 0 b a

b 1 0 b a 0 1 a b
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