Rational formal power series

Jānis Buls, Aigars Valainis
Department of Mathematics, University of Latvia, Jelgavas iela 3, Rīga, LV-1004 Latvia, buls1950@gmail.com; AValainis@gmail.com

Abstract

We are following [1] and [5]. Nevertheless, we are interested only in the clarification of proofs.

Keywords

finite commutative rings, formal power series

1. Structure of finite commutative rings

Our object of interest is an associative-commutative ring with a multiplicative identity element. In this text, the term ring will mean exactly such a ring, i.e., an associative-commutative ring with a multiplicative identity element. We will denote rings R commutative group by R^{\times}. In this section, we will consider only finite rings and we are following [1].
1.1. Definition. Subset H of ring R, is called a subring if

- H is a subgroup of the additive group,
- H is a subsemigroup of the multiplicative semigroup.
1.2. Definition. Subring \mathcal{I} of ring R is called an ideal if

$$
R \mathcal{I} \subseteq \mathcal{I}
$$

1.3. Proposition. If $\mathcal{I}_{1}, \mathcal{I}_{2}, \ldots, \mathcal{I}_{n}$ are ideals of ring R, then mapping

$$
\Phi: R \rightarrow R / \mathcal{I}_{1} \times R / \mathcal{I}_{2} \times \cdots \times R / \mathcal{I}_{n}: r \mapsto\left(r+\mathcal{I}_{1}, r+\mathcal{I}_{2}, \ldots, r+\mathcal{I}_{n}\right)
$$

is a ring homomorphism.
We will use notation $[x]_{j}=x+\mathcal{I}_{j}$.
Let $x, y \in R$, then

$$
\begin{aligned}
\Phi(x+y) & =\left([x+y]_{1},[x+y]_{2}, \ldots,[x+y]_{n}\right) \\
& =\left([x]_{1}+[y]_{1},[x]_{2}+[y]_{2}, \ldots,[x]_{n}+[y]_{n}\right) \\
& =\left([x]_{1},[x]_{2}, \ldots,[y]_{n}\right)+\left(\left[y_{1}\right],[y]_{2}, \ldots,[y]_{n}\right) \\
& =\Phi(x)+\Phi(y) \\
\Phi(1) & =\left([1]_{1},[1]_{2}, \ldots,[1]_{n}\right),
\end{aligned}
$$

$$
\begin{aligned}
\Phi(x y) & =\left([x y]_{1},[x y]_{2}, \ldots,[x y]_{n}\right) \\
& =\left([x]_{1}[y]_{1},[x]_{2}[y]_{2}, \ldots,[x]_{n}[y]_{n}\right) \\
& =\left([x]_{1},[x]_{2}, \ldots,[y]_{n}\right)\left(\left[y_{1}\right],[y]_{2}, \ldots,[y]_{n}\right) \\
& =\Phi(x) \Phi(y) .
\end{aligned}
$$

1.4. Definition. $\{0\}$ and R are called trivial ideals of ring R.

All other ideals of ring R are called nontrivial ideals. Ideal \mathcal{I} are called proper ideal if $\mathcal{I} \neq R$.

Let $\mathcal{I}_{1}, \mathcal{I}_{2}, \ldots, \mathcal{I}_{n}$ be proper ideals of ring R.
1.5. Definition. Proper ideals \mathcal{I}_{k} un $\mathcal{I}_{m}, 1 \leq k<m \leq n$, are called coprime if $\mathcal{I}_{k}+\mathcal{I}_{m}=R$.
Here $\mathcal{I}_{k}+\mathcal{I}_{m} \rightleftharpoons\left\{a+b \mid a \in \mathcal{I}_{k} \wedge b \in \mathcal{I}_{m}\right\}$
1.6. Example. $\mathcal{I}_{1}=\{0,2,4\}, \mathcal{I}_{2}=\{0,3\}$ are coprime ideals of ring \mathbb{Z}_{6}.

$$
\mathcal{I}_{1} \mathbb{Z}_{6}=\{0,2,4\}\{0,1,2,3,4,5\}=\{0,2,4\}
$$

$$
\begin{array}{rrr}
2 \cdot 3=6 \equiv 0 & 2 \cdot 4=8 \equiv 2 & 2 \cdot 5=10 \equiv 4 \\
4 \cdot 3=12 \equiv 0 & 4 \cdot 4=16 \equiv 4 & 4 \cdot 5=20 \equiv 2 \\
\mathcal{I}_{2} \mathbb{Z}_{6}=\{0,3\}\{0,1,2,3,4,5\}=\{0,3\} &
\end{array}
$$

$3 \cdot 3=9 \equiv 3$
$3 \cdot 4=12 \equiv 0$
$3 \cdot 5=15 \equiv 3$
$\mathcal{I}_{1}+\mathcal{I}_{2}=\{0,2,4\}+\{0,3\}=\{0+0,0+3,2+0,2+3,4+0,4+3\}=\{0,3,2,5,4,7 \equiv 1\}=\mathbb{Z}_{6}$
Notice that

$$
\forall x \in \mathcal{I}_{1} \forall y \in \mathcal{I}_{2} x y=0
$$

1.7. Proposition. If $\mathcal{I}_{1}, \mathcal{I}_{2}, \ldots, \mathcal{I}_{n}$ are coprime ideals of ring R, then

$$
\bigcap_{k=1}^{n} \mathcal{I}_{k}=\prod_{k=1}^{n} \mathcal{I}_{k}
$$

Notice that

$$
\prod_{k=1}^{n} \mathcal{I}_{k} F\left\{\sum_{k} x_{k 1} x_{k 2} \ldots x_{k n} \mid \forall j x_{k j} \in \mathcal{I}_{j}\right\}
$$

Here, $\sum_{k} x_{k 1} x_{k 2} \ldots x_{k n}$ denotes all possible finite sums of such form. In sum $\sum_{k} x_{k} y_{k}$ there is a possibility for $x_{1}=x_{2}$, but if so then $y_{1} \neq y_{2}$. \square As \mathcal{I}_{1} un \mathcal{I}_{2} are ideals, then

$$
\mathcal{I}_{1} \cap \mathcal{I}_{2}=\left\{h \in R \mid h \in \mathcal{I}_{1} \wedge h \in \mathcal{I}_{2}\right\}
$$

is a proper ideal since $0 \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$. Notice that

$$
\prod_{k=1}^{2} \mathcal{I}_{k}=\mathcal{I}_{1} \mathcal{I}_{2}=\left\{\sum_{k} x_{k} y_{k} \mid x_{k} \in \mathcal{I}_{1} \wedge y_{k} \in \mathcal{I}_{2}\right\}
$$

Each member of sum $\sum_{k} x_{k} y_{k}$ belongs to ideal $\mathrm{A} \mathcal{I}_{1}$ and also to \mathcal{I}_{2}, therefore $\sum_{k} x_{k} y_{k} \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$. Hence $\mathcal{I}_{1} \mathcal{I}_{2} \subseteq \mathcal{I}_{1} \cap \mathcal{I}_{2}$.

Let $a \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$. As \mathcal{I}_{1} and \mathcal{I}_{2} are coprime ideals, then there exist such $x \in \mathcal{I}_{1}$ and $y \in \mathcal{I}_{2}$, that $x+y=1$. Therefore

$$
a=a \cdot 1=a(x+y)=a x+a y=x a+a y \in \mathcal{I}_{1} \mathcal{I}_{2} .
$$

Hence $\mathcal{I}_{1} \cap \mathcal{I}_{2}=\mathcal{I}_{1} \mathcal{I}_{2}$.
Notice that $\prod_{k=1}^{n} \mathcal{I}_{k}=\left\{\sum_{k} x_{k 1} x_{k 2} \ldots x_{k n} \mid \forall j x_{k j} \in \mathcal{I}_{j}\right\}$. As the ring is commutative, it follows that each member of $\sum_{k} x_{k 1} x_{k 2} \ldots x_{k n}$ is a member of an arbitrary ideal $\mathcal{I}_{k}, k \in \overline{1, n}$, therefore $\prod_{k=1}^{n} \mathcal{I}_{k} \subseteq \bigcap_{k=1}^{n} \mathcal{I}_{k}$.

Further proof is inductive, assuming that ideals $\mathcal{I}_{1}, \mathcal{I}_{2}, \ldots, \mathcal{I}_{m+1}$ are pairwise coprime.

$$
\bigcap_{k=1}^{m+1} \mathcal{I}_{k}=\left(\bigcap_{k=1}^{m} \mathcal{I}_{k}\right) \cap \mathcal{I}_{m+1}=\left(\prod_{k=1}^{m} \mathcal{I}_{k}\right) \cap \mathcal{I}_{m+1}
$$

As all the pairs $\mathcal{I}_{m+1}, \mathcal{I}_{k}, k \in \overline{1, m}$ are coprime ideals, then there exist such $a_{k} \in \mathcal{I}_{k}, b_{k} \in \mathcal{I}_{m+1}$, that $a_{k}+b_{k}=1$. Therefore

$$
1=\left(a_{1}+b_{1}\right)\left(a_{2}+b_{2}\right) \cdots\left(a_{m}+b_{m}\right)=a_{1} a_{2} \cdots a_{m}+B
$$

where B is a sum. Here each member of B contains some b_{k} as a multiplier, therefore $B \in \mathcal{I}_{m+1}$.

Let $a \in \bigcap_{k=1}^{m+1} \mathcal{I}_{k}$, then
$a=a \cdot 1=a\left(a_{1}+b_{1}\right)\left(a_{2}+b_{2}\right) \cdots\left(a_{m}+b_{m}\right)=a_{1} a_{2} \cdots a_{m} a+a B$
As $a \in \bigcap_{k=1}^{m+1} \mathcal{I}_{k}$, it follows that $a \in \bigcap_{k=1}^{m} \mathcal{I}_{k}$.
From the inductive assumption $\bigcap_{k=1}^{m} \mathcal{I}_{k}=\prod_{k=1}^{m} \mathcal{I}_{k}$. Therefore a can be written as a sum $\sum_{k} x_{k 1} x_{k 2} \ldots x_{k m}$, where $\forall x_{k j} \in \mathcal{I}_{j}$. Thus

$$
a B=\sum_{k} x_{k 1} x_{k 2} \ldots x_{k m} B \in \prod_{k=1}^{m+1} \mathcal{I}_{k},
$$

and therefore

$$
\begin{aligned}
a & =a_{1} a_{2} \cdots a_{m} a+a B \\
& =a_{1} a_{2} \cdots a_{m} a+\sum_{k} x_{k 1} x_{k 2} \ldots x_{k m} B \in \prod_{k=1}^{m+1} \mathcal{I}_{k}
\end{aligned}
$$

1.8. Proposition. If \mathcal{I}, \mathcal{J} are coprime ideals, then $\mathcal{I}^{m}, \mathcal{J}^{m}$ also are coprime for all $m \in \mathbb{Z}_{+}$.

Notice that $\mathcal{I}^{m}=\underbrace{\mathcal{I I} \cdots \mathcal{I}}_{m}$.
\square As \mathcal{I}, \mathcal{J} are coprime ideals, then there exist such $a \in \mathcal{I}, b \in \mathcal{J}$, that $a+b=1$. Hence

$$
1=(a+b)^{2}=a^{2}+2 a b+b^{2}
$$

- If $a b=0$, then $a^{2}+b^{2} \in \mathcal{I}^{2}+\mathcal{J}^{2}$;
- If $a b \neq 0$, then $2 a b=1 \cdot 2 a b=2(a+b) a b=2 a^{2} b+2 a b^{2} \in \mathcal{I}^{2}+\mathcal{J}^{2}$.

Further proof is inductive. If $\mathcal{I}^{k}, \mathcal{J}^{k}$ are coprime ideals, then there exist such $a \in \mathcal{I}^{k}, b \in \mathcal{J}^{k}$, that $a+b=1$. Hence

$$
1=(a+b)^{2}=a^{2}+2 a b+b^{2} .
$$

- If $a b=0$, then $a^{2}+b^{2} \in \mathcal{I}^{k+1}+\mathcal{J}^{k+1}$;
- If $a b \neq 0$, then $2 a b=1 \cdot 2 a b=2(a+b) a b=2 a^{2} b+2 a b^{2} \in \mathcal{I}^{k+1}+\mathcal{J}^{k+1}$.

We are using the property of ideals: if $a \in \mathcal{I}^{m+1}$, then $a \in \mathcal{I}^{m}$. This arises from

$$
a=\sum_{i} x_{i 1} x_{i 2} x_{i 3} \ldots x_{i m+1}=\sum_{i}\left(x_{i 1} x_{i 2}\right) x_{i 3} \ldots x_{i m+1} \in \mathcal{I}^{m}
$$

because $x_{i 1} x_{i 2} \in \mathcal{I}$. By further use of induction, it's provable that: if $a \in \mathcal{I}^{m+n}$, then $a \in \mathcal{I}^{m}$.
1.9. Proposition. Ring homomorphism $f: G \rightarrow G^{\prime}$ is monomorphism if and only if $\operatorname{Ker} f=0$.
$\square \Rightarrow$ If $f(x)=0$ and $x \neq 0$, then $f(0)=0=f(x)$. Therefore f is not an injection.
\Leftarrow Let $f(x)=f(y)$, then $f(x-y)=0$. As $\operatorname{Ker} f=0$, then $x-y=0$, i.e., $x=y$.
1.10. Proposition. Assume that $\mathcal{I}_{1}, \mathcal{I}_{2}, \ldots, \mathcal{I}_{n}$ are ideals of ring R. Mapping

$$
\Phi: R \rightarrow R / \mathcal{I}_{1} \times R / \mathcal{I}_{2} \times \cdots \times R / \mathcal{I}_{n}: r \mapsto\left(r+\mathcal{I}_{1}, r+\mathcal{I}_{2}, \ldots, r+\mathcal{I}_{n}\right)
$$

is ring monomorphism if and only if $\bigcap_{k=1}^{n} \mathcal{I}_{k}=0$.
\square Let $\Phi(r)=\left([0]_{1},[0]_{2}, \ldots,[0]_{n}\right)$. Therefore $r \in \bigcap_{k=1}^{n} \mathcal{I}_{k}$. It shows that $\operatorname{Ker} \Phi=\bigcap_{k=1}^{n} \mathcal{I}_{k}$. From previous proposition follows that Φ is injective only when $\operatorname{Ker} \Phi=0$, i.e., $0=\operatorname{Ker} \Phi=\bigcap_{k=1}^{n} \mathcal{I}_{k}$.
1.11. Lemma. If $\mathcal{I}_{1}, \mathcal{I}_{2}, \ldots, \mathcal{I}_{n}$ are coprime ideals of ring R, then \mathcal{I}_{1} and $\prod_{k=2}^{n} \mathcal{I}_{k}$ are coprime ideals of ring R.

We have (1.7. Proposition) $\prod_{k=2}^{n} \mathcal{I}_{k}=\bigcap_{k=2}^{n} \mathcal{I}_{k}$, therefore $\prod_{k=2}^{n} \mathcal{I}_{k}$ is an ideal. As all pairs $\mathcal{I}_{1}, \mathcal{I}_{k}, k \in \overline{2, n}$ are coprime, then there exist such $a_{k} \in \mathcal{I}_{1}, b_{k} \in \mathcal{I}_{k}$, that $a_{k}+b_{k}=1$. Hence

$$
1=\left(a_{2}+b_{2}\right)\left(a_{3}+b_{3}\right) \cdots\left(a_{n}+b_{n}\right)=A+b_{2} b_{3} \cdots b_{n},
$$

where A is a sum. Here each term of sum A contains some a_{k} as a multipler, therefore $A \in \mathcal{I}_{1}$.

Thus $1=A+b_{2} b_{3} \cdots b_{n}$, where $A \in \mathcal{I}_{1}$ and $b_{2} b_{3} \cdots b_{n} \in \prod_{k=2}^{n} \mathcal{I}_{k}$.
1.12. Proposition. Assume that $\mathcal{I}_{1}, \mathcal{I}_{2}, \ldots, \mathcal{I}_{n}$ are ideals of ring R. Mapping

$$
\Phi: R \rightarrow R / \mathcal{I}_{1} \times R / \mathcal{I}_{2} \times \cdots \times R / \mathcal{I}_{n}: r \mapsto\left(r+\mathcal{I}_{1}, r+\mathcal{I}_{2}, \ldots, r+\mathcal{I}_{n}\right)
$$

is a ring epimorphism if and only if for all different indexes $k, j \in \overline{1, n}$ ideals $\mathcal{I}_{k}, \mathcal{I}_{j}$ are coprime.
$\square \Rightarrow$ If Φ is a epimorphism, then there exists such $x \in R$, that

$$
\begin{aligned}
\Phi(x) & =\left([1]_{1},[0]_{2}, \ldots,[0]_{n}\right) \\
\Phi(1-x) & =\Phi(1)-\Phi(x) \\
& =\left([1]_{1},[1]_{2}, \ldots,[1]_{n}\right)-\left([1]_{1},[0]_{2}, \ldots,[0]_{n}\right) \\
& =\left([0]_{1},[1]_{2}, \ldots,[1]_{n}\right)
\end{aligned}
$$

It shows that $1-x \in \mathcal{I}_{1}$, and also $x \in \mathcal{I}_{k}$ for all $k \in \overline{2, n}$. Hence $1 \in \mathcal{I}_{1}+\mathcal{I}_{k}$ for all $k \in \overline{2, n}$.

Generally, $m \in \overline{1, n}$ reasoning is similar. If Φ is an epimorphism, then there exist such $x_{m} \in R$, that $\Phi\left(x_{m}\right)=\left(\left[x_{m 1}\right]_{1},\left[x_{m 2}\right]_{2}, \ldots,\left[x_{m n}\right]_{n}\right)$, where

$$
x_{m j}= \begin{cases}0, & \text { if } j \neq m \\ 1, & \text { if } j=m\end{cases}
$$

$\Phi\left(1-x_{m}\right)=\left(\left[y_{m 1}\right]_{1},\left[y_{m 2}\right]_{2}, \ldots,\left[y_{m n}\right]_{n}\right)$, where

$$
y_{m j}= \begin{cases}1, & \text { if } j \neq m \\ 0, & \text { if } j=m\end{cases}
$$

It shows that $1-x_{m} \in \mathcal{I}_{m}$. Also $x_{m} \in \mathcal{I}_{k}$ for all $k \neq m$. Hence $1 \in \mathcal{I}_{m}+\mathcal{I}_{k}$ for all $k \neq m$.
\Leftarrow Assume that all pairs $\mathcal{I}_{k}, \mathcal{I}_{j}$ of ideals are coprime.
If $n=2$, then there exist such $x \in \mathcal{I}_{1}, y \in \mathcal{I}_{2}$, that $x+y=1$. As $x=1-y$ and $y=1-x$, then

$$
\begin{aligned}
{[x]_{2} } & =[1-y]_{2}=[1]_{2}-[y]_{2}=[1]_{2}-[0]=[1]_{2}, \\
{[y]_{1} } & =[1-x]_{1}=[1]_{1}-[x]_{1}=[1]_{1}, \\
\Phi(x) & =\left([x]_{1},[x]_{2}\right)=\left([0]_{1},[1]_{2}\right), \\
\Phi(y) & =\left([y]_{1},[y]_{2}\right)=\left([1]_{1},[0]_{2}\right), \\
\Phi(b x+a y) & =\Phi(b) \Phi(x)+\Phi(a) \Phi(y) \\
& =\left([b]_{1},\left[b_{2}\right]\right)\left([0]_{1},[1]_{2}\right)+\left([a]_{1},[a]_{2}\right)\left([1]_{1},[0]_{2}\right) \\
& =\left([0]_{1},[b]_{2}\right)+\left([a]_{1},[0]_{2}\right)=\left([a]_{1},[b]_{2}\right) .
\end{aligned}
$$

Hence mapping Φ is surjective. Further proof is inductive.
From (1.14. Lemma) follows, that $\mathcal{I}_{1}, \mathcal{I}_{2} \mathcal{I}_{3} \cdots \mathcal{I}_{n}$ are coprime, therefore homomorphism

$$
\Psi: R \rightarrow R / \mathcal{I}_{1} \times R / \mathcal{I}_{2} \mathcal{I}_{3} \cdots \mathcal{I}_{n}: r \mapsto\left(r+\mathcal{I}_{1}, r+\mathcal{I}_{2} \mathcal{I}_{3} \cdots \mathcal{I}_{n}\right)
$$

is surjective. From the inductions assumption, it follows that mapping

$$
\Phi_{2}: R \rightarrow R / \mathcal{I}_{2} \times R / \mathcal{I}_{3} \times \cdots R / \mathcal{I}_{n}: r \mapsto\left(r+\mathcal{I}_{2}, r+\mathcal{I}_{3}, \ldots, r+\mathcal{I}_{n}\right)
$$

ir surjective. From the homomorphism theorem, there exists such homomorphism Φ_{2}^{*}, that diagram

is commutative. Additionally, homomorphism Φ_{2}^{*} is a monomorphism. Therefore $R / \operatorname{Ker} \Phi_{2}$ is isomorphic with ring $R / \mathcal{I}_{2} \times R / \mathcal{I}_{3} \times \cdots \times R / \mathcal{I}_{n}$ (homomorphism Φ_{2} is also surjective).

From proof of (1.10. Proposition) follows, that $\operatorname{Ker} \Phi_{2}=\bigcap_{k=2}^{n} \mathcal{I}_{k}$, additionally (1.7. Proposition) $\bigcap_{k=2}^{n} \mathcal{I}_{k}=\prod_{k=2}^{n} \mathcal{I}_{k}$. Therefore

$$
R / \mathcal{I}_{2} \mathcal{I}_{3} \cdots \mathcal{I}_{n} \quad \text { isisomorphic with } \quad R / \mathcal{I}_{2} \times R / \mathcal{I}_{3} \times \cdots \times R / \mathcal{I}_{n}
$$

Hence mapping $\Phi_{2}^{*}: R / \mathcal{I}_{2} \mathcal{I}_{3} \cdots \mathcal{I}_{n} \rightarrow R / \mathcal{I}_{2} \times R / \mathcal{I}_{3} \times \cdots \times R / \mathcal{I}_{n}$ is an isomorphism.

Let $\left(\left[r_{1}\right]_{1},\left[r_{2}\right]_{2}, \ldots,\left[r_{n}\right]_{n}\right) \in R / \mathcal{I}_{1} \times R / \mathcal{I}_{2} \times R / \mathcal{I}_{3} \times \cdots \times R / \mathcal{I}_{n}$. Notice that

$$
\begin{array}{rll}
\Phi_{1}: r & \mapsto & \left([r]_{1},[r]_{2}, \ldots,[r]_{n}\right), \\
\Phi_{2}: r & \mapsto & \left([r]_{2},[r]_{3}, \ldots,[r]_{n}\right) .
\end{array}
$$

From the inductions assumption, mapping Φ_{2} is an epimorphism, therefore there exists such $x \in R$, that

$$
\Phi_{2}: x \mapsto\left(\left[r_{2}\right]_{2},\left[r_{3}\right]_{3}, \ldots,\left[r_{n}\right]_{n}\right),
$$

i.e., $[x]_{2}=\left[r_{2}\right]_{2},[x]_{3}=\left[r_{3}\right]_{3}, \ldots,[x]_{n}=\left[r_{n}\right]_{n}$. Let's consider epimorphism

$$
\Psi: r \mapsto\left(r+\mathcal{I}_{1}, r+\mathcal{I}_{2} \mathcal{I}_{3} \ldots \mathcal{I}_{n}\right)
$$

As mapping Ψ is an epimorphism, then there exists such $y \in R$, that

$$
\Psi: y \mapsto\left(y+\mathcal{I}_{1}, y+\mathcal{I}_{2} \mathcal{I}_{3} \ldots \mathcal{I}_{n}\right)
$$

where $y+\mathcal{I}_{1}=[y]_{1}=\left[r_{1}\right]_{1}$ and $\left(\Phi_{2}^{*}\right)^{-1}\left(\left[r_{2}\right]_{2},\left[r_{3}\right]_{3}, \ldots,\left[r_{n}\right]_{n}\right)=y+$ $\mathcal{I}_{2} \mathcal{I}_{3} \ldots \mathcal{I}_{n}$. Notice that $[y]_{1}=\left[r_{1}\right]_{1}$, thus

$$
\Phi_{1}: y \mapsto\left(\left[r_{1}\right]_{1},[y]_{2},[y]_{3}, \ldots,[y]_{n}\right) .
$$

Diagram (D) is commutative, therefore

$$
\begin{aligned}
\left([y]_{2},[y]_{3}, \ldots,[y]_{n}\right) & =\Phi_{2}(y)=\Phi_{2}^{*}(\pi(y))=\Phi_{2}^{*}\left(y+\mathcal{I}_{2} \mathcal{I}_{3} \ldots \mathcal{I}_{n}\right) \\
& =\left(\left[r_{2}\right]_{2},\left[r_{3}\right]_{3}, \ldots,\left[r_{n}\right]_{n}\right) .
\end{aligned}
$$

Thus $\Phi_{1}: y \mapsto\left(\left[r_{1}\right]_{1},\left[r_{2}\right]_{2}, \ldots,\left[r_{n}\right]_{n}\right)$, showing that mapping Φ_{1} is an epimorphism.
1.13. Definition. Element e of ring R is called idempotent if $e^{2}=e$. Idempotents e, f are called orthogonal if ef $=0$.
1.14. Definition. Ideal \mathcal{I} of ring R is called principal ideal, if there exist such $a \in R$, that $\mathcal{I}=a R$.
1.15. Proposition. The following statements are equivalent:

1. $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$; here all R_{i} are subrings of ring R;
2. There exist such orthogonal idempotents e_{i}, that $\sum_{i=1}^{n} e_{i}=1$ and $R_{i} \cong$ $e_{i} R$;
3. $R \cong \mathcal{I}_{1} \times \mathcal{I}_{2} \times \cdots \times \mathcal{I}_{n}$, here all \mathcal{I}_{j} are main ideals of ring R and $I_{j} \cong R_{j}$.
$\square 1 . \Rightarrow 2$. The unit element of ring $R_{1} \times R_{2} \times \cdots \times R_{n}$ is tuple $(1,1, \ldots, 1)$. Therefore tuples $\delta_{k}=\left(\delta_{1 k}, \delta_{2 k}, \ldots, \delta_{n k}\right)$ are idempotents of ring $R_{1} \times R_{2} \times \cdots \times R_{n}$. Here

$$
\delta_{i k}= \begin{cases}0, & \text { if } i \neq k \\ 1, & \text { if } i=k\end{cases}
$$

Assume that $\varphi: R_{1} \times R_{2} \times \cdots \times R_{n} \rightarrow R$ is a ring isomorphism. Then $\varphi\left(\delta_{k}\right) \leftrightharpoons e_{k}$ is an idempotent of ring R, because

$$
e_{k}=\varphi\left(\delta_{k}\right)=\varphi\left(\delta_{k}^{2}\right)=\varphi\left(\delta_{k}\right) \varphi\left(\delta_{k}\right)=e_{k} e_{k}=e_{k}^{2}
$$

additionally

$$
1=\varphi(1,1, \ldots, 1)=\varphi\left(\sum_{k=1}^{n} \delta_{k}\right)=\sum_{k=1}^{n} \varphi\left(\delta_{k}\right)=\sum_{k=1}^{n} e_{k}
$$

$\varphi^{-1}\left(e_{k} e_{i}\right)=\varphi^{-1}\left(e_{k}\right) \varphi^{-1}\left(e_{i}\right)=(0,0, \ldots, 0)$ if $i \neq k$. As φ is an isomorphism, then $e_{k} e_{i}=0$ only if $i \neq k$. Let $x \in R$, then $\varphi^{-1}(x)=$ $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where all $x_{j} \in R_{j}$.

$$
\begin{aligned}
\varphi^{-1}\left(e_{i} x\right) & =\varphi^{-1}\left(e_{i}\right) \varphi^{-1}(x) \\
& =(0,0, \ldots, \underbrace{1}_{i}, \ldots, 0)\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}\right) \\
& =\left(0,0, \ldots, x_{i}, \ldots, 0\right)
\end{aligned}
$$

Hence $e_{i} R \cong R_{i}$.
2. $\Rightarrow 3 . \quad \mathcal{I}_{j}=e_{j} R$. Notice that $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ is the unit element of ring $\mathcal{I}_{1} \times \mathcal{I}_{2} \times \cdots \times \mathcal{I}_{n}$. Let's prove that

$$
\varphi: \mathcal{I}_{1} \times \mathcal{I}_{2} \times \cdots \times \mathcal{I}_{n} \rightarrow R:\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mapsto a_{1}+a_{2}+\cdots+a_{n}
$$

is a ring isomorphism.
(i) Let $\bar{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathcal{I}_{1} \times \mathcal{I}_{2} \times \cdots \times \mathcal{I}_{n}$ and $\bar{b}=\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in$ $\mathcal{I}_{1} \times \mathcal{I}_{2} \times \cdots \times \mathcal{I}_{n}$, then

$$
\begin{aligned}
\varphi(\bar{a}+\bar{b}) & =\varphi\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right) \\
& =a_{1}+b_{1}+a_{2}+b_{2}+\cdots+a_{n}+b_{n} \\
& =\left(a_{1}+a_{2}+\cdots+a_{n}\right)+\left(b_{1}+b_{2}+\cdots+b_{n}\right) \\
& =\varphi(\bar{a})+\varphi(\bar{b}) .
\end{aligned}
$$

(ii) If $x \in \mathcal{I}_{j}, y \in \mathcal{I}_{k}$ and $j \neq k$, then $x y=0$. As $x \in \mathcal{I}_{j}$, then there exist such $x^{\prime} \in R$, that $x=e_{j} x^{\prime}$. Also, there exists such $y^{\prime} \in R$, that $y=e_{k} y^{\prime}$. Hence $x y=e_{j} x^{\prime} e_{k} y^{\prime}=e_{j} e_{k} x^{\prime} y^{\prime}=0 x^{\prime} y^{\prime}=0$.

$$
\begin{aligned}
\varphi(\bar{a} \bar{b}) & =\varphi\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\left(b_{1}, b_{2}, \ldots, b_{n}\right)\right) \\
& =\varphi\left(a_{1} b_{1}, a_{2} b_{2}, \ldots, a_{n} b_{n}\right) \\
& =a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n} \\
& =\left(a_{1}+a_{2}+\cdots+a_{n}\right)\left(b_{1}+b_{2}+\cdots+b_{n}\right) \\
& =\varphi(\bar{a}) \varphi(\bar{b}) .
\end{aligned}
$$

(iii) Assume that $x \in \mathcal{I}_{j} \cap \mathcal{I}_{k}$, then $x \in \mathcal{I}_{j}=e_{j} R$ and $x \in \mathcal{I}_{k}=e_{k} R$. Therefore $x=e_{j} x_{j}=e_{k} x_{k}$, where x_{j}, x_{k} are elements of ring R.

If $j \neq k$, then $e_{j} e_{k}=0$, hence

$$
x=e_{j} x_{j}=e_{j}^{2} x_{j}=e_{j} e_{k} x_{k}=0 \cdot x_{k}=0
$$

Thus $\mathcal{I}_{j} \cap \mathcal{I}_{k}=0$.
Let $y \in \mathcal{I}_{k}=e_{k} R$. Then $y=e_{k} y_{k}$, where $y_{k} \in R$. If $i \neq k$, then $e_{i} y=e_{i} e_{k} y_{k}=0 \cdot y_{k}=0$.
(iv) Let $\varphi(\bar{a})=\varphi(\bar{b})$, i.e.,

$$
a_{1}+a_{2}+\cdots+a_{n}=b_{1}+b_{2}+\cdots+b_{n}
$$

then

$$
\begin{equation*}
a_{i}-b_{i}=\sum_{j \neq i}\left(b_{j}-a_{j}\right) . \tag{1}
\end{equation*}
$$

As for all $k a_{k}$ and b_{k} are elements of ideal $\mathcal{I}_{k}=e_{k} R$, then $a_{k}=e_{k} x_{k}, b_{k}=$ $e_{k} y_{k}$, where x_{k}, y_{k} belongs to ring R. Expression (1) can be written as

$$
\begin{aligned}
e_{i}\left(x_{i}-y_{i}\right) & =\sum_{j \neq i} e_{j}\left(y_{j}-x_{j}\right), \\
e_{i}\left(x_{i}-y_{i}\right)=e_{i}^{2}\left(x_{i}-y_{i}\right) & =\sum_{j \neq i} e_{i} e_{j}\left(y_{j}-x_{j}\right)=0 .
\end{aligned}
$$

Then $a_{i}-b_{i}=e_{i} x_{i}-e_{i} y_{i}=0$ or $a_{i}=b_{i}$. We have proven that φ is injective.
(v) Let $x \in R$ and $x_{k}=e_{k} x$, then $\forall k x_{k} \in e_{k} R=\mathcal{I}_{k}$ and

$$
\begin{aligned}
\left(x_{1}, x_{2}, \ldots, x_{n}\right) & \in \mathcal{I}_{1} \times \mathcal{I}_{2} \times \cdots \times \mathcal{I}_{n} \\
x_{1}+x_{2}+\cdots+x_{n} & =e_{1} x+e_{2} x+\cdots+e_{n} x \\
& =\left(e_{1}+e_{2}+\cdots+e_{n}\right) x=1 \cdot x=x
\end{aligned}
$$

Hence $\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x$. Therefore φ is surjective. We can conclude that φ is an isomorphism, therefore $R \cong \mathcal{I}_{1} \times \mathcal{I}_{2} \times \cdots \times \mathcal{I}_{n}$.
$3 . \Rightarrow 1$. An ideal is a subring of a ring.
1.16. Definition. Ideal \mathcal{I} of commutative ring R is called a prime ideal if

$$
a b \in \mathcal{I} \Rightarrow a \in \mathcal{I} \vee b \in \mathcal{I}
$$

1.17. Definition. Ideal \mathcal{M} of ring $R, \mathcal{M} \neq R$ is called maximal ideal if for any ideal \mathcal{I} of ring R :

$$
\mathcal{M} \subseteq \mathcal{I} \subseteq R \Rightarrow \mathcal{M}=\mathcal{I} \vee \mathcal{I}=R
$$

1.18. Lemma. If \mathcal{I} and \mathcal{J} are ideals of commutatve ring R, then $\mathcal{I}+\mathcal{J}$ is ideal of ring R.
\square Let a, b be elements of ideal \mathcal{I} and, in turn, x, y to be elements of ideal \mathcal{J}. Thus $a+x$ and $b+y$ are elements of set $\mathcal{I}+\mathcal{J}$.
(i) $(a+x)+(b+y)=(a+b)+(x+y) \in \mathcal{I}+\mathcal{J} .-a-b \in \mathcal{I}+\mathcal{J}$. $0=0+0 \in \mathcal{I}+\mathcal{J}$.
(ii) Let $r \in R$. Then $r(a+x)=r a+r b \in \mathcal{I}+\mathcal{J}$. Hence $\mathcal{I}+\mathcal{J}$ is an ideal.

Let's denote the equivalence class of element x in the quotient ring by [x].
1.19. Proposition. If $1 \in R$ and \mathcal{M} is maximal ideal of commutative ring R, then quotient ring R / \mathcal{M} is a field.
\square Assume that $[x] \neq[0]$, then $x \notin \mathcal{M}$. Thus $\mathcal{M}+R x \neq \mathcal{M}$ and $\mathcal{M}+R x=R$. Then exist such $x \in \mathcal{M}$ and $y \in R$, that $(u+y x=1)$. Thus for equivalence classes: $[1]=[u+y x]=[u]+[y x]=[0]+[y][x]=[y][x]$.
1.20. Corollary. If \mathcal{M} is a maximal ideal of $\operatorname{ring} R$, then \mathcal{M} is a prime ideal.
$\square R / \mathcal{M}$ is a field. A field is a ring without zero divisors.
1.21. Proposition. If \mathcal{M} is ideal of commutative ring R and R / \mathcal{M} is a field, then \mathcal{M} is maximal ideal of ring R.

As R / \mathcal{M} is a field, then $\operatorname{card}(R / \mathcal{M}) \geq 2$. Let $\mathcal{M} \neq R$. If \mathcal{I} is an ideal such that $\mathcal{M} \subset \mathcal{I} \subseteq R$, then exists $x \in \mathcal{I}$, that $x \notin \mathcal{M}$. As $[x] \neq[0]$, then there exists such y, that $[x y]=[x][y]=[1]$. As $[x y]=x y+\mathcal{M}$, therefore exist such $u \in \mathcal{M}$, that $u+x y=1$. We have $\mathcal{M} \subset \mathcal{I}$, therefore $u \in \mathcal{I}, x y \in \mathcal{I} y \subseteq \mathcal{I}$ because \mathcal{I} is an ideal. Thus $1=u+x y \in \mathcal{I}$. Hence $\mathcal{I}=R$.
1.22. Definition. The set of all prime ideals of ring R is called the spectrum of ring R and is denoted by Spec (R). The set of all maximal ideals of ring R is called the maximal spectrum of ring R and is denoted by $\operatorname{Specm}(R)$.
1.23. Corollary. $\operatorname{Specm}(R) \subseteq \operatorname{Spec}(R)$.
1.24. Definition. Jacobson radical:

$$
\mathcal{J}(R) \rightleftharpoons \bigcap_{\mathcal{I} \in \operatorname{Specm}(R)} \mathcal{I} .
$$

1.25. Theorem. \mathcal{I} is prime ideal of ring R if and only if R / \mathcal{I} is an integral domain.
\square An integral domain is a nonzero commutative ring with no nonzero zero divisors.
$\Rightarrow \quad[a][b]=[0]$ implies $a b \in \mathcal{I}$. If \mathcal{I} is prime, then $a \in \mathcal{I} \vee b \in \mathcal{I}$. Thus $[a]=[0] \vee[b]=[0]$. Hence R / \mathcal{I} is an integral domain.
\Leftarrow Assume that \mathcal{I} is not prime, then exist such $a \notin \mathcal{I}$ and $b \notin \mathcal{I}$, that $a b \in \mathcal{I} .[a][b]=[0] \in R / \mathcal{I}$ and $[a] \neq[0] \wedge[b] \neq[0]$. Hence R / \mathcal{I} is not an integral domain.

1.26. Proposition. A finite integral domain is a field.

\square Let $R=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a finite integral domain, $a \in R$ and $a \neq 0$. Consider terms $a a_{1}, a a_{2}, \ldots, a a_{n}$. All those terms are unique. If the contrary is true, then $a a_{i}=a a_{j}$. Thus $a a_{i}-a a_{j}=0, a\left(a_{i}-a_{j}\right)=0$. As R is an integral domain and $a \neq 0$, then $a_{i}-a_{j}=0$, i.e., $a_{i}=a_{j}$. As

$$
R=\left\{a a_{1}, a a_{2}, \ldots, a a_{n}\right\},
$$

therefore there exists such a_{k}, that $a a_{k}=1$. As an integral domain is commutative, then $1=a a_{k}=a_{k} a$. Hence $a_{k}=a^{-1}$.
1.27. Corollary. If \mathcal{I} is a prime ideal of ring R, then it is a maximal ideal.
\square As \mathcal{I} is a prime ideal, then (1.25. Theorem) R / \mathcal{I} is an integral domain. Integral domain R / \mathcal{I} is finite, therefore (1.26. Proposition) it is a field. Thus (1.21. Proposition) ideal \mathcal{I} is maximal.
1.28. Proposition. If \mathcal{I} and \mathcal{J} are distinct maximal ideals of ring R, then they are coprime ideals.
\square As $\mathcal{I} \neq \mathcal{J}$, then $\mathcal{I}+\mathcal{J} \supset \mathcal{I}$ or $\mathcal{I}+\mathcal{J} \supset \mathcal{J}$. Thus

$$
R \supseteq \mathcal{I}+\mathcal{J} \supset \mathcal{I} \quad \text { or } \quad R \supseteq \mathcal{I}+\mathcal{J} \supset \mathcal{J} .
$$

Notice that $\mathcal{I}+\mathcal{J}$ is ideal (1.18. Lemma) and \mathcal{I}, \mathcal{J} are maximal ideals. Its possible only if $\mathcal{I}+\mathcal{J}=R$.
1.29. Definition. Element $a \in R$ is called a nilpotent element, if exists such natural n, that $a^{n}=0$.
1.30. Definition. Set $N i l(R)$, consisting of all nilpotent elements of ring R, is called a nilradical.
1.31. Proposition. $N i l(R)$ is ideal of ring R.
\square Assume that $a^{n}=0=b^{m}$, then

$$
(a+b)^{n+m}=\sum_{k=0}^{n+m}\binom{n+m}{k} a^{k} b^{n+m-k}
$$

While $k<n$, we have $n+m-k>m$. As a result, all terms of sum are equal to 0 .

Let $r \in R$, then $(r a)^{n}=r^{n} a^{n}=r^{n} \cdot 0=0$. Thus $\operatorname{RNil}(R) \subseteq \operatorname{Nil}(R)$.
1.32. Proposition. If R is a commutative ring, then

$$
\operatorname{Nil}(R)=\bigcap_{\mathcal{I} \in \operatorname{Spec}(R)} \mathcal{I} .
$$

\square Let $r \in \operatorname{Nil(R)}$, Then there exists such n, that $r^{n}=0 \in \mathcal{I} \in$ $\operatorname{Spec}(R) . \mathcal{I}$ is an ideal, therefore $0 \in \mathcal{I} . \mathcal{I}$ is prime ideal and $r \cdot r^{n-1} \in \mathcal{I}$, therefore $r \in \mathcal{I}$ or $r^{n-1} \in \mathcal{I}$. If $r \in \mathcal{I}$, then we have obtained the desired result. If the contrary is true, then we proceed inductively, i.e., we assume that $r^{n-k} \in \mathcal{I}$ and $n-k>1$, then $r \cdot r^{n-k-1} \in \mathcal{I}$ and therefore $r \in \mathcal{I}$ or $r^{n-k-1} \in \mathcal{I}$. We proceed until $n-k-i=1$. Thus we have proven, that $r \in \mathcal{I}$ for any $\mathcal{I} \in \operatorname{Spec}(R)$. Thus $r \in \cap_{\mathcal{I} \in \operatorname{Spec}(R)} \mathcal{I}$ and $N i l(R) \subseteq \cap_{\mathcal{I} \in \operatorname{Spec}(R)} \mathcal{I}$.

Let's now assume that $f \notin \operatorname{Nil}(R)$ and consider set

$$
\mathfrak{F} \rightleftharpoons\left\{J \subseteq R \mid J \text { is an ideal and } \forall m \in \mathbb{Z}_{+} f^{m} \notin J\right\} .
$$

Set $\mathfrak{F} \neq \emptyset$, because 0 is an ideal. Set \mathfrak{F} is partially ordered with respect to \subseteq, and for each chain $J_{1} \subseteq J_{2} \subseteq \ldots$ there exist a upper bound

$$
\mathfrak{J}=\bigcup_{k>0} J_{k}
$$

Let's prove that \mathfrak{J} is an ideal.
\triangleright If $a \in \mathfrak{J}$ and $b \in \mathfrak{J}$, then $\exists i a \in J_{i}$ and $\exists k b \in J_{k}$. Assume for concreteness that $J_{i} \subseteq J_{k}$, then $a \in J_{k}$. Hence $a+b \in J_{k} \subseteq \mathfrak{J}$.

Let $r \in R$ un $c \in \mathfrak{J}$, then $\exists \varkappa c \in J_{\varkappa}$. Hence $r c \in J_{\varkappa} \subseteq \mathfrak{J}$. \triangleleft
Let $f^{m} \in \mathfrak{J}$, then $\exists k f^{m} \in J_{k}$. A contradiction!
As for each such chain an upper bound exists, then by Zorn's lemma, in set \mathfrak{F} exists a maximal element \mathcal{M}. Let's prove that $\mathcal{M} \in \operatorname{Spec}(R)$.
\triangleright Let $a \notin \mathcal{M}$ and $b \notin \mathcal{M}$, then $a R+\mathcal{M} \supset \mathcal{M}$ and $b R+\mathcal{M} \supset \mathcal{M}$. Therefore $a R+\mathcal{M} \notin \mathfrak{F}$ and $b R+\mathcal{M} \notin \mathfrak{F}$, thus

$$
\exists n f^{n} \in a R+\mathcal{M} \quad \text { and } \quad \exists m f^{m} \in b R+\mathcal{M}
$$

As $f^{n} \in a R+\mathcal{M}$, then $f^{n}=a r_{1}+m_{1}$, where $r_{1} \in R$ and $m_{1} \in \mathcal{M}$. Similarly $f^{m} \in b R+\mathcal{M}, f^{m}=b r_{2}+m_{2}$, where $r_{2} \in R$ and $m_{2} \in \mathcal{M}$.
$f^{n+m}=f^{n} f^{m}=\left(a r_{1}+m_{1}\right)\left(b r_{2}+m_{2}\right)=a b r_{1} r_{2}+a r_{1} m_{2}+b r_{2} m_{1}+m_{1} m_{2}$.
Hence $f^{m+n} \in a b R+\mathcal{M}$. Therefore $a b R+\mathcal{M} \notin \mathfrak{F}$, thus $a b \notin \mathcal{M}$.
With some logical transformations:

$$
\begin{array}{rll}
a \notin \mathcal{M} \wedge b \notin \mathcal{M} & \Rightarrow & a b \notin \mathcal{M}, \\
\neg(a \notin \mathcal{M} \wedge b \notin \mathcal{M}) & \vee & a b \notin \mathcal{M}, \\
a \in \mathcal{M} \vee b \in \mathcal{M} & \vee & a b \notin \mathcal{M}, \\
a b \notin \mathcal{M} & \vee & a \in \mathcal{M} \vee b \in \mathcal{M}, \\
a b \in \mathcal{M} & \Rightarrow & a \in \mathcal{M} \vee b \in \mathcal{M} .
\end{array}
$$

Therefore \mathcal{M} is a prime ideal. \triangleleft
Thus if element f is not nilpotent, then there exists such prime ideal \mathcal{M} to whom f doesn't belong.

$$
f \notin \operatorname{Nil}(R) \Rightarrow \exists \mathcal{M} \in \operatorname{Spec}(R)(f \notin \mathcal{M}) .
$$

From contraposition, we obtain:

$$
\forall \mathcal{M} \in \operatorname{Spec}(R)(f \in \mathcal{M}) \Rightarrow f \in \operatorname{Nil}(R)
$$

Thats proves the inclusion $\bigcap_{\mathcal{I} \in \operatorname{Spec}(R)} \mathcal{I} \subseteq \operatorname{Nil}(R)$.
1.33. Lemma. There exists m, that $(\operatorname{Nil}(R))^{m}=0$.
\square If $a \in \operatorname{Nil}(R)$, then there exists such κ_{a}, that $a^{\kappa_{a}}=0$. As R is a finite set, then $\operatorname{Nil}(R)$ also is a finite set, therefore there exists

$$
\kappa \rightleftharpoons \max _{a \in N i l(R)}\left(\kappa_{a}\right) .
$$

Let's assume for concreteness, that $|\operatorname{Nil}(R)|=n$. In product $a_{1} a_{2} \ldots a_{m}$, where all $a_{i} \in N i l(R)$ and $m=n \kappa$, there is at least one nilpotent element a_{j}, whose power ν is no less than κ, i.e., $\nu \geq \kappa$, therefore $a_{j}^{\nu}=0$.
1.34. Lemma. If $\phi: R \rightarrow R^{\prime}$ is a ring epimorphism and \mathcal{I} is a ideal of ring R, then $\phi(\mathcal{I})$ is ideal of R^{\prime}.
(i) Let $x^{\prime} \in R^{\prime}$ and $a^{\prime} \in \phi(\mathcal{I})$, then there exist such $x \in R$ and $a \in \mathcal{I}$, that $\phi(x)=x^{\prime}$ and $\phi(a)=a^{\prime}$. As $x \in R$ and $a \in \mathcal{I}$, then $a x \in \mathcal{I}$, therefore

$$
a^{\prime} x^{\prime}=\phi(a) \phi(x)=\phi(a x) \in \phi(\mathcal{I}) .
$$

(ii) Notice that $\phi: \mathcal{I} \rightarrow R^{\prime}$ is a ring homomorphism, then according to the theorem of homomorphism $\phi(\mathcal{I})$ is a ring.
1.35. Lemma. If $\phi: R \rightarrow R^{\prime}$ is a ring epimorphism and \mathcal{I}^{\prime} is ideal of ring R^{\prime}, then there exists such \mathcal{I} ideal of ring R, that $\phi(\mathcal{I})=\mathcal{I}^{\prime}$.
(i) Let's define

$$
\mathcal{I} \rightleftharpoons\left\{x \in G \mid \exists x^{\prime} \in \mathcal{I}^{\prime} \phi(x)=x^{\prime}\right\} .
$$

(ii) Let $a \in \mathcal{I}$ un $b \in \mathcal{I}$, then

$$
\begin{aligned}
\phi(a+b) & =\phi(a)+\phi(b) \in \mathcal{I}^{\prime} \\
\phi(a b) & =\phi(a) \phi(b) \in \mathcal{I}^{\prime}
\end{aligned}
$$

Thus $a+b$ and $a b$ belong to set \mathcal{I}.
(iii) Let $r \in R$, then $\phi(r a)=\phi(r) \phi(a) \in \mathcal{I}^{\prime}$, because \mathcal{I}^{\prime} is a ideal of ring R^{\prime}. Hence $r a \in \mathcal{I}$.

Let us consider groups. A subgroup, as usual, is denoted by \leq, and a normal subgroup is denoted by \unlhd.
1.36. Lemma. Let $N \unlhd G$. If $K \leq G / N$, then there exists such $H \leq G$, that $K=H / N$.
\square From the definition of K :

$$
K=\{h N \mid h N \in K \wedge h \in G\} .
$$

Let's define $H \rightleftharpoons\{h \mid h N \in \mathscr{H} \wedge h \in G\}$. Thus $h \in H \Leftrightarrow h N \in \mathscr{H}$. If $n \in N$, then $n N=N \in K$, because N is the unit element of group G / N.
(i) Assume that $g \in H$ and $h \in H$. As $K \leq G / N$, then

$$
g h N=(g N)(h N) \in K
$$

Hence $g h \in H$.
(ii) As $h N \in K$, then $h^{-1} N=(h N)^{-1} \in K$. Thus accordingly to definition of H we have $h^{-1} \in H$. Thus $H \leq G$.
(iii) Notice

$$
H / N=\{h N \mid h \in H\}=\{h N \mid h N \in K\}=K .
$$

1.37. Theorem (Correspondence theorem). Let $N \unlhd G$.
(i) If $N \subseteq H \unlhd G$, then $H / N \unlhd G / N$.
(ii) If $K \unlhd G / N$, then there exist such $H \unlhd G$, that $K=H / N$.
(iii) Let

- $S=\{H \mid N \subseteq H \wedge H \unlhd G\}$,
- $\mathscr{S}=\{K \mid K \unlhd G / N\}$.

If $\phi: S \rightarrow G / N: H \mapsto H / N$, then $\phi: S \rightarrow \mathscr{S}$ is a bijection.
\square (i) Let $g N \in G / N$ un $h N \in H / N$, then

$$
(g N)(h N)(g N)^{-1}=(g h N)\left(g^{-1} N\right)=g h g^{-1} N .
$$

As $H \unlhd G$, then $g h g^{-1} \in H$. Hence $g h g^{-1} N \in H / N$. Thus for each $g N \in G / N$ and any $h N \in H / N$ we have proven

$$
(g N)(h N)(g N)^{-1} \in H / N
$$

Thus by definition $H / N \unlhd G / N$.
(ii) There exists (1.36. Lemma) such $H \leq G$, that $K=H / N$. We need to prove that $H \unlhd G$ and thus $H / N \unlhd G / N$.

Let $g \in G$ and $h \in H$, then $g N$ and $g^{-1} N$ belong to group G / N. In turn, $h N$ belongs to group H / N. As $H / N \unlhd G / N$, then

$$
g h g^{-1} N=(g N)(h N)(g N)^{-1} N \in H / N .
$$

Hence $g h g^{-1} \in H$. Thus for each $g \in G$ and any $h \in H$ we have proven, that $g h g^{-1} \in H$. Then according to the definition $H \unlhd G$.
(iii) From (ii) for each element K of set \mathscr{S} there exists such $H \unlhd G$, that $K=H / N$. Thus range of $\phi: S \rightarrow G / N: H \mapsto H / N$ is $\operatorname{Ran}(\phi)=\mathscr{S}$, and thus mapping $\phi: S \rightarrow \mathscr{S}$ is surjective (with \mathscr{S} as a codomain).

Assume that $\phi\left(H_{1}\right)=\phi\left(H_{2}\right)$, i.e., $H_{1} / N=H_{2} / N$. Let $h_{1} \in H_{1}$, then $h_{1} N \in H_{1} / N=H_{2} / N$. Hence $h_{1} \in H_{2}$. Thus $H_{1} \subseteq H_{2}$. We may construct a symmetrical argument: $h_{2} \in H_{2}$, then $h_{2} N \in H_{2} / N=H_{1} / N$ and $h_{2} \in H_{1}$. Thus $H_{2} \subseteq H_{1}$. Thus $H_{1} \subseteq H_{2} \subseteq H_{1}$, i.e., $H_{1}=H_{2}$. We have proven that $\phi: S \rightarrow \mathscr{S}$ is an injection.

The correspondence theorem holds also for rings. We will consider commutative rings.
1.38. Theorem (Correspondence theorem for rings). Assume that

- R is a ring;
- $\mathcal{I} \subseteq R$ is an ideal;
- $\pi: R \rightarrow R / \mathcal{I}: r \mapsto[r]$ is the natural mapping;
- $S=\{G \mid \mathcal{I} \subseteq G$ and G is a subring of $R\}$;
- $\mathscr{S}=\{H \mid H$ ir a subring of ring $R / \mathcal{I}\}$.

Mapping $\phi: S \rightarrow \mathscr{S}: G \mapsto G / \mathcal{I}$ is a bijction. If

- $S^{\prime}=\{\mathcal{J} \mid \mathcal{I} \subseteq \mathcal{J}$ and \mathcal{J} is an ideal of $R\}$,
- $\mathscr{S}^{\prime}=\{L \mid L$ is an ideal of ring $R / \mathcal{I}\}$,
then mapping $\psi: S^{\prime} \rightarrow \mathscr{S}^{\prime}: \mathcal{J} \mapsto \mathcal{J} / \mathcal{I}$ is a bijection.
(i) First we have to prove that mapping $\phi: S \rightarrow \mathscr{S}: G \mapsto G / \mathcal{I}$ is correctly defined,i.e., $\operatorname{Ran}(\phi) \subseteq \mathscr{S}$. Assume that $\mathcal{I} \subseteq G$ is a subring of ring R. The image of the additive group of ring G (1.37. Theorem) is G / \mathcal{I}.As \mathcal{I} is an ideal, then G / \mathcal{I} is a ring. Thus we have proven that $\operatorname{Ran}(\phi) \subseteq \mathscr{S}$.

For different subrings of ring R additive groups are distinct. Thus (1.37. Theorem) mapping ϕ is injective.

Let H be a subring of ring R / \mathcal{I}, then for H the additive group can be expressed as (1.37. Theorem) $H=A / \mathcal{I}$, where A is a subgroup of the additive group of ring R. Thus $a \in A \Leftrightarrow a+\mathcal{I} \in A / \mathcal{I}$. As $H=A / \mathcal{I}$ is a subring, then $(a+\mathcal{I})(b+\mathcal{I})=a b+\mathcal{I}$ for all $a \in A, b \in A$. Therefore $a b \in A$, i.e., A is subring of ring G. According to the definition of ϕ, we have $\phi(A)=A / \mathcal{I}$. Thus mapping ϕ is surjective.
(ii) Let L be an ideal of ring R / \mathcal{I}, than the additive group of L can be expressed (1.37. Theorem) as $L=A / \mathcal{I}$, where A is a subroup of the additive group of ring R. Thus $a \in A \Leftrightarrow a+\mathcal{I} \in A / \mathcal{I}$. As $L=A / \mathcal{I}$ is an ideal, then $r a+\mathcal{I}=(r+\mathcal{I})(a+\mathcal{I}) \in A / \mathcal{I}$ for all $r \in R, a \in A$. Therefore $r a \in A$, i.e., A is an ideal of ring G. According to the definition ψ we have $\psi(A)=A / \mathcal{I}$. Hence mapping ψ is surjective.

Let \mathcal{J} be an ideal of $\operatorname{ring} R$ and $\mathcal{I} \subseteq \mathcal{J}$. If we consider the additive group of \mathcal{J}, then (1.37. Theorem) mapping $\psi: \mathcal{J} \mapsto \mathcal{J} / \mathcal{I}$ is injective.

We must prove that $\mathcal{J} / \mathcal{I}$ is an ideal. From the definition of $\mathcal{J} / \mathcal{I}$ fallows, that $a \in \mathcal{J} \Leftrightarrow a+\mathcal{I} \in \mathcal{J} / \mathcal{I}$. If $r \in R$, then $a r \in \mathcal{J}$, thus

$$
(a+\mathcal{I})(r+\mathcal{I})=a r+\mathcal{I} \in \mathcal{J} / \mathcal{I} .
$$

Therefore $\mathcal{J} / \mathcal{I}$ is ideal of ring R / \mathcal{I}. Hence mapping ψ is also injective.
1.39. Corollary. Assume that

- R is a ring;
- $\mathcal{I} \subseteq R$ is an ideal;
- $\pi: R \rightarrow R / \mathcal{I}: r \mapsto[r]$ is the natural mapping;
- $S^{\prime}=\{\mathcal{J} \mid \mathcal{I} \subseteq \mathcal{J}$ and \mathcal{J} is an ideal of $R\}$;
- $\mathscr{S}^{\prime}=\{L \mid L$ is an ideal of ring $R / \mathcal{I}\}$;
- $\psi: S^{\prime} \rightarrow \mathscr{S}^{\prime}: \mathcal{J} \mapsto \mathcal{J} / \mathcal{I}$.
$\mathcal{J} / \mathcal{I}$ is a maximal ideal of ring R / \mathcal{I} if and only if \mathcal{J} is a maximal ideal of ring R, and \mathcal{J} contains ideal \mathcal{I}.
\square Notice that mapping ψ is bijective.
\Rightarrow Assume that L is a maximal ideal if ring R / \mathcal{I}. We already know that there exist an ideal \mathcal{J} of $\operatorname{ring} \mathcal{R}, \mathcal{I} \subseteq \mathcal{J}$, that $L=\mathcal{J} / \mathcal{I}$ and $\psi(\mathcal{J})=\mathcal{J} / \mathcal{I}$. If in turn, \mathcal{J} is not a maximal ideal, then there exists such ideal \mathfrak{M} of ring R, that $\mathcal{J} \subset \mathfrak{M} \subset R$. Thus if $\mathcal{J} \subset \mathfrak{M}$, then $\mathcal{J} / \mathcal{I} \subseteq \mathfrak{M} / \mathcal{I}$. As ψ is bijective, then $\mathcal{J} / \mathcal{I} \neq \mathfrak{M} / \mathcal{I}$. Thus $\mathcal{J} / \mathcal{I} \subset \mathfrak{M} / \mathcal{I}$, e.i., $\mathcal{J} / \mathcal{I}$ is not a maximal ideal. A contradiction!
\Leftarrow Assume that \mathcal{J} is a maximal ideal of ring $R, \mathcal{I} \subseteq \mathcal{J}$. If in turn, $\mathcal{J} / \mathcal{I}$ is not a maximal ideal of ring R / \mathcal{I}, then there exists such ideal M of ring R / \mathcal{I}, that $\mathcal{J} / \mathcal{I} \subset M \subset R / \mathcal{I}$. As M is an ideal of $\operatorname{ring} R / \mathcal{I}$, then there exist such ideal \mathfrak{M} of ring $R, \mathcal{I} \subseteq \mathfrak{M}$, that $\mathfrak{M} / \mathcal{I}=M$. Thus $\mathcal{J} / \mathcal{I} \subset \mathfrak{M} / \mathcal{I}$. Notice that

$$
\begin{aligned}
a+\mathcal{J} \in \mathcal{J} / \mathcal{I} & \Leftrightarrow a \in \mathcal{J} \\
b+\mathcal{I} \in \mathfrak{M} / \mathcal{I} & \Leftrightarrow b \in \mathfrak{M} .
\end{aligned}
$$

Hence $\mathcal{J} \subseteq \mathfrak{M}$. As ψ is bijective, then $\mathcal{J} \neq \mathfrak{M}$. Thus $\mathcal{J} \subset \mathfrak{M}$. As $\mathfrak{M} / \mathcal{I} \subset R / \mathcal{I}$, then thre exist such $r \in R$, that $r+\mathcal{I} \notin \mathfrak{M} / \mathcal{I}$. Therefore $r \notin \mathfrak{M}$. Thus \mathcal{J} is not a maximal ideal. A contradiction!
1.40. Definition. A ring with only one maximal ideal is called a local ring.
The commutative group of ring R is denoted as R^{\times}, i.e., it is the set of all invertible elements in ring R.
1.41. Proposition. If $\mathfrak{M} \neq R$ is an ideal of ring R and $R^{\times}=R \backslash \mathfrak{M}$, then R is a local ring and \mathfrak{M} is the maximal ideal.
\square (i) Assume that $\mathcal{I} \subseteq R$ is ideal of ring R and $a \in \mathcal{I} \cap R^{\times}$. Then $a^{-1} \in R$. As \mathcal{I} is an ideal, then $1=a a^{-1} \in \mathcal{I}$.
(ii) Assume that $r \in R$ and $r 1 \in \mathcal{I}$. Thus $\mathcal{I}=R$. Thus any ideal $\mathcal{J} \subset R$ doesn't contain elements of set R^{\times}.
(iii) As ideal \mathfrak{M} contain all the nonreversible (in ring R) elements of set R, then $\mathcal{J} \subseteq \mathfrak{M}$. Thus \mathfrak{M} is the one maximal ideal.
1.42. Proposition. If \mathfrak{M} is the maximal ideal of local ring R, then $\mathfrak{M}=R \backslash R^{\times}$.
\square Assume that $a \notin R^{\times}$.
(i) It is obvious that $a \in a R$ and $a R$ is a commutative group. If $r \in R$ and $b \in a R$, then $b=a \beta$, where $\beta \in R$ and $b r=a \beta r \in a R$. Hence $a R$ is an ideal.

As $a \notin R^{\times}$, then in ring R dosnt exist a^{-1}, therefore $1 \notin a R$ and $a R \subset R$, i.e., $a R$ is a proper ideal of $\operatorname{ring} R$.
(ii) Let

$$
S \leftharpoondown\{\mathcal{I} \mid a R \subseteq \mathcal{I} \subset R, \text { where } \mathcal{I} \text { is an ideal of ring } R\}
$$

Let $\left\{\mathcal{J}_{\alpha}\right\}$ be a chain of set S, i.e., if $\mathcal{J}_{\beta} \in\left\{\mathcal{J}_{\alpha}\right\}$ and $\mathcal{J}_{\gamma} \in\left\{\mathcal{J}_{\alpha}\right\}$, then $\mathcal{J}_{\beta} \subset \mathcal{J}_{\gamma}$ or $\mathcal{J}_{\gamma} \subset \mathcal{J}_{\beta}$.

If $\mathcal{J} F \bigcup_{\alpha} \mathcal{J}_{\alpha}$, then $\mathcal{J} \subset R$ because $1 \notin \mathcal{J}$.

Let $b \in \mathcal{J}$ and $c \in \mathcal{J}$. Then there exist such β and γ, that $b \in \mathcal{J}_{\beta}$ and $c \in \mathcal{J}_{\gamma}$. We have $\mathcal{J}_{\beta} \subset \mathcal{J}_{\gamma}$ or $\mathcal{J}_{\gamma} \subset \mathcal{J}_{\beta}$. For concreteness assume $\mathcal{J}_{\beta} \subset \mathcal{J}_{\gamma}$, then b and c are elements of ideal \mathcal{J}_{γ}. As \mathcal{J}_{γ} is an ideal, then $b+c \in \mathcal{J}_{\gamma}$ also $0 \in \mathcal{J}_{\gamma}$ and $-b \in \mathcal{J}_{\gamma}$. As \mathcal{J}_{γ} is an ideal, then $b r \in \mathcal{J}_{\gamma}$ for all $r \in R$. Thus $b+c, 0,-b, b r$ belong to set \mathcal{J}, because $\mathcal{J}_{\beta} \subset \mathcal{J}$. Additionally, the sum is associative and commutative, while the multiplication is associative $(\mathcal{J} \subset R)$. Thus \mathcal{J} is an ideal. Thus $\mathcal{J} \in S$ and is upper bound of chain $\left\{\mathcal{J}_{\alpha}\right\}$. According to Zorn's lemma, set S has at least one maximal element \mathfrak{N}. Thus \mathfrak{N} is a maximal ideal and $\mathfrak{N} \neq \mathfrak{M}$, because $a \notin \mathfrak{M}$ and $a \in \mathfrak{N}$. This gives us a contradiction because R is a local ring.
1.43. Lemma. In a local ring, there are only two idempotent elements: 0 and 1.
\square Assume that $0 \neq e \neq 1$ is idempotent. Then $e(1-e)=e-e^{2}=0$, i.e., both elements are zero divisors, thus $e \notin R^{\times}$and $1-e \notin R^{\times}$. Thus both elements belong to the maximal ideal, but $1=e+(1-e)$, i.e., 1 belongs to the maximal ideal. A contradiction!
1.44. Lemma. If $e \in R$ is idempotent, then $e R$ is a ring with unit element e.
\square From (proof of 1.42. Proposition) $e R$ is an ideal. Let's show that e is the unit element. Assume that $x \in e R$, then $x=e r$, where $r \in R$.

$$
x e=e x=e^{2} r=e r=x
$$

1.45. Theorem. Finite ring R is isomorph to the direct sum of local rings (with precision to term order in the sum).
\square Let $\operatorname{Spec}(R)=\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$. As R is a finite ring, P_{i} is a maximal ideal (1.27. Corollary). Thus $\operatorname{Spec}(R)=\operatorname{Specm}(R)$, because each maximal ideal is also a prime ideal (1.20. Corollary). Hence

$$
\operatorname{Nil}(R)=\bigcap_{P \in \operatorname{Spec}(R)} P=\bigcap_{P \in \operatorname{Specm}(R)} P=\mathcal{J}(R),
$$

Additionaly, if $k \neq \varkappa$, then ideals P_{k} and P_{\varkappa} are coprime (1.28. Proposition). Thus (1.7. Proposition)

$$
\bigcap_{k=1}^{n} P_{k}=\prod_{k=1}^{n} P_{k}
$$

Also there (1.33. Lemma) exists such m, that $\mathcal{J}(R)^{m}=0$.
If $x \in \prod_{j=1}^{n} P_{j}^{m}$, then $x=\sum_{k} x_{k 1} x_{k 2} \ldots x_{k n}$, where all $x_{k j} \in P_{j}^{m}$. Each $x_{k j}=\sum_{i} y_{i k j 1} y_{i k j 2} \ldots y_{i k j m}$, where all $y_{i k j \nu} \in P_{j}$. As a result, x is representable as a sum, whose terms are a product of $n m$ elements. By taking into account the commutativity of multiplication, elements can be rearranged so that in product term first m elements belong to set P_{1}, then in turn m elements belonging to set $P_{2} m$, etc., until the last m elements belonging to set P_{n}. Thus

$$
\prod_{j=1}^{n} P_{j}^{m}=\left(\prod_{j=1}^{n} P_{j}\right)^{m}=\mathcal{J}(R)^{m}
$$

Note (1.8. Proposition), that P_{i}^{m}, P_{j}^{m} ere coprime if $i \neq j$, therefore (1.7. Proposition) $\bigcap_{j=1}^{n} P_{j}^{m}=\prod_{j=1}^{n} P_{j}^{m}$.

Let's define a homeomorphism of rings

$$
\Phi: R \rightarrow R / P_{1}^{m} \times R / P_{2}^{m} \times \cdots \times R / P_{n}^{m}: r \mapsto\left([r]_{1},[r]_{2}, \ldots,[r]_{n}\right)
$$

Homeomorphism Φ is injective (1.10. Proposition), because

$$
\bigcap_{j=1}^{n} P_{j}^{m}=\prod_{j=1}^{n} P_{j}^{m}=\left(\prod_{j=1}^{n} P_{j}\right)^{m}=\mathcal{J}(R)^{m}=0
$$

Additionally Φ is surjective (1.12. Proposition), because P_{i}^{m}, P_{j}^{m} are coprime, if $i \neq j$. Thus Φ is an isomorphism.
(i) We have a natural mapping

$$
\Phi_{i}: R \rightarrow R / P_{i}^{m}: r \mapsto[r]_{i}
$$

Thus (1.38. Theorem) each ideal P (of ring R) containing P_{i}^{m} is mapped to ideal of ring R / P_{i}^{m}. Additionally mapping $\phi: P \mapsto P / P_{i}^{m}$ is bijective.
(ii) From (1.8. Proposition) we have: if $k \neq l$, then P_{k}^{m}, P_{l}^{m} are coprime, because P_{k}, P_{l} are coprime. Thus $P_{k}^{m}+P_{l}^{m}=R$. Assume that $P_{k}^{m} \subseteq P_{l}$, then $R=P_{k}^{m}+P_{l}^{m} \subseteq P_{l}+P_{l}^{m} \subseteq P_{l}+P_{l}=P_{l}$. A contradiction!

Hence P_{k} is the one maximal ideal, containing P_{k}^{m}. Thus from (1.39. Corollary): P_{k} / P_{k}^{m} is the one maximal ideal of ring R / P_{k}^{m}. Thus R / P_{k}^{m} is a local ring.
(iii) Assume that $R \cong \bigoplus_{j=1}^{n} R_{j} \cong \bigoplus_{k=1}^{m} S_{k}$, where all R_{j}, S_{k} are local rings. From (1.15. Proposition) there exist such orthogonal idempotents $e_{j} \in R, f_{k} \in R$, that $R_{j} \cong e_{j} R, S_{k} \cong f_{k} R$ and

$$
1=\sum_{j=1}^{n} e_{j}=\sum_{k=1}^{m} f_{k}
$$

Hence

$$
\begin{aligned}
e_{j} & =e_{j} \sum_{k=1}^{m} f_{k}=\sum_{k=1}^{m} e_{j} f_{k} \in e_{j} R, \\
\left(e_{j} f_{k}\right)^{2} & =e_{j}^{2} f_{k}^{2}=e_{j} f_{k}
\end{aligned}
$$

If $s \neq k$, then $\left(e_{j} f_{k}\right)\left(e_{j} f_{s}\right)=e_{j}^{2} f_{k} f_{s}=e_{j} \cdot 0=0$. Thus

$$
e_{j} f_{1}, e_{j} f_{2}, \ldots, e_{j} f_{m}
$$

are orthogonal idempotents of ring $e_{j} R$. As $e_{j} R$ is a local ring, then

$$
e_{j} f_{k}=0, \quad \text { vai } \quad e_{j} f_{k}=e_{j}
$$

Note that (1.44. Lemma) e_{j} is unit element of ring $e_{j} R$. As all these idempotents $e_{j} f_{1}, e_{j} f_{2}, \ldots, e_{j} f_{m}$ are orthogonal, then only one of them is not equal to 0 (all can't be equal to 0 , because $e_{j}=\sum_{k=1}^{m} e_{j} f_{k}$). Hence there exists such κ, that $e_{j}=e_{j} f_{\kappa}=f_{\kappa} e_{j} \in f_{\kappa} R$. As in the local ring $f_{\kappa} R$, exists only 2 idempotents, then $e_{j}=f_{\kappa}$. Thus

$$
\left\{e_{1}, e_{2}, \ldots, e_{n}\right\} \subseteq\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}
$$

Similarly, we can make an argument for

$$
\left\{f_{1}, f_{2}, \ldots, f_{m}\right\} \subseteq\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}
$$

Hence $n=m$ and

$$
\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}=\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}
$$

2. Periodical rings

We are following [5] in this section.
Assume $X \notin R$. We identify set R^{ω} with $R[[X]]$, i.e., by using standart notation

$$
a_{0} a_{1} a_{2} \cdots a_{n} \cdots \mapsto \sum_{k=0}^{\infty} a_{k} X^{k}
$$

If $f=\sum_{k=0}^{\infty} a_{k} X^{k}$, then we use notation for coeficient extraction $f(n)=a_{n}$.
2.1. Definition. Algebra $\langle R[[X]],+, \cdot\rangle$ is called formal power series if

$$
\begin{aligned}
\sum_{k=0}^{\infty} a_{k} X^{k}+\sum_{k=0}^{\infty} b_{k} X^{k} & =\sum_{k=0}^{\infty}\left(a_{k}+b_{k}\right) X^{k}, \\
\left(\sum_{k=0}^{\infty} a_{k} X^{k}\right)\left(\sum_{k=0}^{\infty} b_{k} X^{k}\right) & =\sum_{k=0}^{\infty}\left(\sum_{i=0}^{k} a_{i} b_{k-i}\right) X^{k} .
\end{aligned}
$$

We use "formal power series" (or simply "series") also when referring to a concrete $f \in R[[X]]$.
2.2. Proposition. Series $f=\sum_{k=0}^{\infty} a_{k} X^{k}$ are invertible in algebra $R[[X]]$ if and only if $a_{0} \in R^{\times}$.

This is a standard result found in textbooks dedicated to formal power series. If series $A=a_{0}+a_{1} X+\ldots$ has a multiplicative inverse $B=$ $b_{0}+b_{1} X+\ldots$, then the constant term $a_{0} b_{0}$ of $A \cdot B$ is the constant term of the identity series, i.e., it is 1 . The condition of invertibility of a_{0} in R is also sufficient, coefficients of the inverse series B can be computed as:

$$
b_{0}=a_{0}^{-1} ; \quad b_{n}=-a_{0}^{-1} \sum_{i=1}^{n} a_{i} b_{n-1}, n \geq 1
$$

Polynomial ring $R[X]$ is a subring of ring $R[[X]]$.
2.3. Definition. Series $f \in R[[X]]$ is called rational series, if $f=\frac{h}{g}$, where $h, g \in R[X]$ and g is invertible in ring $R[[X]]$.
2.4. Definition. Series $f=\sum_{i=0}^{\infty} a_{i} X^{i}$ is called periodical series if there exists such

$$
k \in \mathbb{Z}_{+}=\{1,2, \ldots, n, \ldots\}
$$

that $\forall i a_{i}=a_{i+k}$. Series f is called semiperiodic series, if there exist such $n \in \mathbb{Z}_{+}$, that series $\sum_{j=0}^{\infty} a_{j+n} X^{j}$ is periodical.
2.5. Proposition. If series $f \in R[[X]]$ is semiperiodic series, then series f is rational series.
\square If $f=\sum_{k=0}^{\infty} a_{k} X^{k}$, then there exist such m and n, that $\forall i>m a_{i}=$ a_{i+n}. Hence

$$
\begin{aligned}
f & =a_{0}+a_{1} X+\ldots+a_{m} X^{m} \\
& +\sum_{i=0}^{\infty}\left(a_{m+1} X^{m+1}+a_{m+2} X^{m+2}+\ldots+a_{m+n} X^{m+n}\right) X^{i n} \\
& =p(X)+q(X) \sum_{i=0}^{\infty} X^{i n} \\
& =p(X)+\frac{q(X)}{1-X^{n}} .
\end{aligned}
$$

Here

$$
\begin{aligned}
p(X) & =a_{0}+a_{1} X+\ldots+a_{m} X^{m} \\
q(X) & =a_{m+1} X^{m+1}+a_{m+2} X^{m+2}+\ldots+a_{m+n} X^{m+n}
\end{aligned}
$$

2.6. Definition. Ring R is called a periodic ring, if

$$
\forall a \in R \exists m \in \mathbb{Z}_{+} \exists n \in \mathbb{Z}_{+}\left(m \neq n \wedge a^{m}=a^{n}\right)
$$

2.7. Definition. $n \in \mathbb{N}$ is called characteristic of ring R, denoted by $\operatorname{char}(R)$, if $\mathbb{Z} n$ is the kernel of homomorphism

$$
\lambda: \mathbb{Z} \rightarrow R: k \mapsto k 1 .
$$

2.8. Corollary. If R is a periodical ring, then $\operatorname{char}(R) \neq 0$.
\square Let e be the unit element of periodic ring R. If $e \neq 0$ and $e+e=0$, then $\operatorname{char}(R)=2$. Assume that $e \neq 0 \neq e+e$, then there exist such $m>0$ and $n>0$, that $(e+e)^{m}=(e+e)^{m+n}$. Thus $(e+e)^{m+n}-(e+e)^{n}=0$, i.e.,

$$
\begin{aligned}
0 & =(e+e)^{m+n}-(e+e)^{n} \\
& =\sum_{s=0}^{m+n}\binom{m+n}{s} e-\sum_{\sigma=0}^{n}\binom{n}{\sigma} e \\
& =\left(\sum_{s=0}^{m+n}\binom{m+n}{s}-\sum_{\sigma=0}^{n}\binom{n}{\sigma}\right) e .
\end{aligned}
$$

Here $k e=\underbrace{e+e+\cdots+e}_{k}$. Note that $2 e$ is not idempotent. If the contrary is true, then $e+e=(e+e)^{2}=e^{2}+2 e+e^{2}=e+2 e+e$. Hence $e+e=0$.
2.9. Proposition. If $\operatorname{char}(R)=m \neq 0$, then there exist such subring G of ring R, that G is isomorph to ring \mathbb{Z}_{m}.
\square Let's define set $G \rightleftharpoons\{k e \mid k \in \mathbb{N}\}$, here e is the unit element of ring R. If

$$
\begin{aligned}
k+n & =m q_{1}+r_{1}, \quad 0 \leq r_{1}<m \\
k n & =m q_{2}+r_{2}, \quad 0 \leq r_{2}<m
\end{aligned}
$$

then

$$
\begin{aligned}
(k+n) e & =\left(m q_{1}+r_{1}\right) e=q_{1}(m e)+r_{1} e=r_{1} e \\
k n e & =\left(m q_{2}+r_{2}\right) e=q_{2}(m e)+r_{2} e=r_{2} e
\end{aligned}
$$

In \mathbb{Z}_{m} we have

$$
\begin{aligned}
k+n & \equiv r_{1} \quad \bmod m \\
k n & \equiv r_{2} \quad \bmod m
\end{aligned}
$$

Hence mapping $f: G \rightarrow \mathbb{Z}_{m}: k e \mapsto k$ is an isomorphism of rings.
We will use 1 instead of e, unless it may cause misunderstandings.
2.10. Definition. Consider a commutative ring with unity R. Extension G of R is called an integral extension, if for each $c \in G$, there exists such monic polynomial $p(X) \in R[X]$, that $p(c)=0$.
2.11. Proposition. A periodic ring is an integral extension of \mathbb{Z}_{m} (up to isomorphism).

Assume that R is periodical and $a \in R$. From (2.8. corollary) and (2.9. Proposition) there exist such m, that R contains a subring isomorph to ring \mathbb{Z}_{m}. As R is periodic, then there exists such $0<k<n$, that $a^{k}=a^{n}$. Thus a is the root of the monic polynomial $X^{n}-X^{n-k}$.
2.12. Lemma. If $\mathcal{I} \subseteq \mathcal{J}$ are ideal of ring R, then mapping

$$
f: R / \mathcal{I} \rightarrow R / \mathcal{J}: x+\mathcal{I} \mapsto x+\mathcal{J}
$$

is an epimorphism of rings.(i) Let's show that mapping f is defined correctly. Assume that $x+\mathcal{I}=y+\mathcal{I}$, then $x-y \in \mathcal{I}$ and therefore $x-y \in \mathcal{J}$. Hence $x+\mathcal{J}=y+\mathcal{J}$.
(ii) Let's introduce notation:

$$
\begin{aligned}
{[x]_{\mathcal{I}} } & \rightleftharpoons x+\mathcal{I} \\
{[x]_{\mathcal{J}} } & \rightleftharpoons x+\mathcal{J}
\end{aligned}
$$

then

$$
\begin{aligned}
f[x+y]_{\mathcal{I}} & =[x+y]_{\mathcal{J}}=[x]_{\mathcal{J}}+[y]_{\mathcal{J}}=f[x]_{\mathcal{I}}+f[y]_{\mathcal{I}} \\
f[x y]_{\mathcal{I}} & =[x y]_{\mathcal{J}}=[x]_{\mathcal{J}}[y]_{\mathcal{J}}=f[x]_{\mathcal{I}} f[y]_{\mathcal{I}} \\
f[1]_{\mathcal{I}} & =[1]_{\mathcal{J}}
\end{aligned}
$$

Thus f is a homomorphism of rings.
(iii) Assume that $[x]_{\mathcal{J}} \in R / \mathcal{J}$, then

$$
[x]_{\mathcal{J}}=x+\mathcal{J} \supseteq x+\mathcal{I}=[x]_{\mathcal{I}}
$$

Thus $f[x]_{\mathcal{I}}=[x]_{\mathcal{J}}$, e.i, f is surjective.
Let's denote principal ideal $g(X) R[X]$ as $\langle g(X)\rangle$.
2.13. Lemma. If R is a finite commutative local ring and

$$
g(X)=1+a_{1} X+a_{2} X^{2}+\cdots+a_{k} X^{k} \in R[X],
$$

then $|R[X] /\langle g(X)\rangle|<\infty$.
\square (i) Assume that \mathfrak{M} is maximal ideal of ring $R, a_{t} \in R^{\times}$, but

$$
a_{t+1}, a_{t+2}, \ldots, a_{k} \notin R^{\times}
$$

thus (1.42. Proposition) $a_{t+1}, a_{t+2}, \ldots, a_{k} \in \mathfrak{M}$.
(ii) Maximal ideal \mathfrak{M} of ring R is prime (1.20. Corollary). If \mathcal{I} is a prime ideal of finite ring R, then it is maximal (1.27. Corollary). In the given case, this means we have only one prime ideal, e.i., \mathfrak{M}. As R is commutative ring, then (1.32. Proposition)

$$
\operatorname{Nil}(R)=\bigcap_{\mathcal{I} \in \operatorname{Spec}(R)} \mathcal{I} .
$$

Here

- $\operatorname{Nil}(R)$ is a nilradical, e.i., a set consisting of all nilpotent elements of R;
- $\operatorname{Spec}(R)$ is a spectrum of ring R spektrs, e.i., set of all prime ideals.

In this case $\operatorname{Nil}(R)=\mathfrak{M}$. Thus (1.33. Lemma) there exist such l, that $(\operatorname{Nil}(R))^{l}=\mathfrak{M}^{l}=0$. Note that R here is a finite ring.
(iii) Let $g_{1}(X) \rightleftharpoons\left(1+a_{1} X+a_{2} X^{2}+\cdots+a_{t} X^{t}\right)^{l}$. For any commutative ring holds

$$
\alpha^{l}-\beta^{l}=(\alpha-\beta) \sum_{i=1}^{l} \alpha^{l-i} \beta^{i-1} .
$$

If

- α is given as $1+a_{1} X+a_{2} X^{2}+\cdots+a_{t} X^{t}$,
- β is given as $-\sum_{i=t+1}^{k} a_{i} X^{i}$,
then $\alpha-\beta=g(X)$ and thus $g(X)$ divides polynomial

$$
\left(1+a_{1} X+a_{2} X^{2}+\cdots+a_{t} X^{t}\right)^{l}-\left(-\sum_{i=t+1}^{k} a_{i} X^{i}\right)^{l}
$$

As $\mathfrak{M}^{l}=0$, then all coeficient of polynomial $\left(-\sum_{i=t+1}^{k} a_{i} X^{i}\right)^{l}$ are equal to 0 , because $a_{t+1}, a_{t+2}, \ldots, a_{k} \in \mathfrak{M}$. Hence

$$
g_{1}(X)=\left(1+a_{1} X+a_{2} X^{2}+\cdots+a_{t} X^{t}\right)^{l}-\left(-\sum_{i=t+1}^{k} a_{i} X^{i}\right)^{l} .
$$

(iv) Lets rewrite $g_{1}(X)$ as $1+b_{1} X+\cdots+b_{u} X^{u}$. Here $u=t l$ and $b_{u}=a_{t}^{u} \in R^{\times}$. Hence $\left|R[X] /\left\langle g_{1}(X)\right\rangle\right|=|R|^{u}<\infty$. Note that

$$
\begin{aligned}
R[X] / g_{1}(X) & =\{[r(X)] \mid h(X) \in R[X] \\
& \wedge h(X)=f(X) g_{1}(X)+r(X) \\
& \left.\wedge \operatorname{deg}(r(X))<\operatorname{deg}\left(g_{1}(X)\right)=u\right\}
\end{aligned}
$$

(v) If $a=b c$, then $a R \subseteq b R$. Thus if $x \in a R$, then $x=a r$, where $r \in R$ and $x=a r=b c r \in b R$.

As $g(X)$ divides $g_{1}(X)$, then $\left\langle g_{1}(X)\right\rangle=g_{1}(X) R[X] \subseteq g(X) R[X]=$ $\langle g(X)\rangle$. From (2.12. Lemma) mapping

$$
f: R[X] /\left\langle g_{1}(X)\right\rangle \rightarrow R[X] /\langle g(X)\rangle: p(X)+\left\langle g_{1}(X)\right\rangle \mapsto p(X)+\langle g(X)\rangle
$$

is surjective. Thus $\left|R[X] /\left\langle g_{1}(X)\right\rangle\right| \geq|R[X] /\langle g(X)\rangle|$, i.e., $|R|^{u} \geq|R[X] /\langle g(X)\rangle|$.

Let R and G be rings and $\varphi: R \rightarrow G^{n}$ be a ring isomorphism. Let $\bar{a}_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right)$, where

$$
a_{i j}= \begin{cases}a_{i}, & \text { if } i=j \\ 0, & \text { if } i \neq j\end{cases}
$$

Thus $\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\bar{a}_{1}+\bar{a}_{2}+\cdots+\bar{a}_{n}$. As φ is an isomorphism, then $\varphi^{-1}: G^{n} \rightarrow R$ also is an isomorphism. Hence

$$
\begin{aligned}
\varphi^{-1}\left(a_{1}, a_{2}, \ldots, a_{n}\right) & =\varphi^{-1}\left(\bar{a}_{1}+\bar{a}_{2}+\cdots+\bar{a}_{n}\right) \\
& =\varphi^{-1}\left(\bar{a}_{1}\right)+\varphi^{-1}\left(\bar{a}_{2}\right)+\cdots+\varphi^{-1}\left(\bar{a}_{n}\right)
\end{aligned}
$$

Let $\bar{e}_{i}=\left(e_{i 1}, e_{i 2}, \ldots, e_{i n}\right)$, where

$$
e_{i j}= \begin{cases}1, & \text { if } i=j \\ 0, & \text { if } i \neq j\end{cases}
$$

Thus $(1,1, \ldots, 1)=\bar{e}_{1}+\bar{e}_{2}+\cdots+\bar{e}_{n}$. Hence

$$
\begin{aligned}
1 & =\varphi^{-1}(1,1, \ldots, 1)=\varphi^{-1}\left(\bar{e}_{1}+\bar{e}_{2}+\cdots+\bar{e}_{n}\right) \\
& =\varphi^{-1}\left(\bar{e}_{1}\right)+\varphi^{-1}\left(\bar{e}_{2}\right)+\cdots+\varphi^{-1}\left(\bar{e}_{n}\right) .
\end{aligned}
$$

2.14. Lemma. If $\phi: R \rightarrow S$ is a homomorphism of rings, then

$$
\phi: R[X] \rightarrow S[X]: \sum_{i=0}^{m} a_{i} X^{i} \mapsto \sum_{i=0}^{m} \phi\left(a_{i}\right) X^{i}
$$

is a homomorphism of rings.

$$
\begin{aligned}
\square \phi\left(\sum_{i=0}^{m}\left(a_{i}+b_{i}\right) X^{i}\right) & =\sum_{i=0}^{m} \phi\left(a_{i}+b_{i}\right) X^{i}=\sum_{i=0}^{m}\left(\phi\left(a_{i}\right)+\phi\left(b_{i}\right)\right) X^{i} \\
& =\sum_{i=0}^{m} \phi\left(a_{i}\right) X^{i}+\sum_{i=0}^{m} \phi\left(b_{i}\right) X^{i} \\
& =\phi\left(\sum_{i=0}^{m} a_{i} X^{i}\right)+\phi\left(\sum_{i=0}^{m} b_{i} X^{i}\right) .
\end{aligned}
$$

$$
\begin{aligned}
\phi\left(\left(\sum_{i=0}^{m} a_{i} X^{i}\right)\left(\sum_{j=0}^{n} b_{j} X^{j}\right)\right) & =\phi\left(\sum_{k=0}^{m+n}\left(\sum_{s=0}^{k} a_{s} b_{k-s}\right) X^{k}\right) \\
& =\sum_{k=0}^{m+n} \phi\left(\sum_{s=0}^{k} a_{s} b_{k-s}\right) X^{k} \\
& =\sum_{k=0}^{m+n} \sum_{s=0}^{k} \phi\left(a_{s}\right) \phi\left(b_{k-s}\right) X^{k} \\
& =\left(\sum_{i=0}^{m} \phi\left(a_{i}\right) X^{i}\right)\left(\sum_{j=0}^{n} \phi\left(b_{j}\right) X^{j}\right) \\
& =\phi\left(\sum_{i=0}^{m} a_{i} X^{i}\right) \phi\left(\sum_{j=0}^{n} b_{j} X^{j}\right) .
\end{aligned}
$$

Thus we have proven:

- $\phi(p+q)=\phi(p)+\phi(q)$,
- $\phi(p q)=\phi(p) \phi(q)$
for all $p, q \in R[X]$.
2.15. Corollary. (i) If $\phi: R \rightarrow S$ is a ring epimorphism, then $\phi: R[X] \rightarrow S[X]: \sum_{i=0}^{m} a_{i} X^{i} \mapsto \sum_{i=0}^{m} \phi\left(a_{i}\right) X^{i}$ is a ring epimorphism.
(ii) If $\phi: R \rightarrow S$ is a ring monomorphism, then $\phi: R[X] \rightarrow S[X]: \sum_{i=0}^{m} a_{i} X^{i} \mapsto \sum_{i=0}^{m} \phi\left(a_{i}\right) X^{i}$ is a ring monomorphism.
(iii) If $\phi: R \rightarrow S$ is a ring isomorphism, then
$\phi: R[X] \rightarrow S[X]: \sum_{i=0}^{m} a_{i} X^{i} \mapsto \sum_{i=0}^{m} \phi\left(a_{i}\right) X^{i}$ is a ring isomorphism.
\square (i) Let $\sum_{i=0}^{m} \alpha_{i} X^{i} \in S[X]$. As $\phi: R \rightarrow S$ is an epimorphism, then exist such $a_{1}, a_{2}, \ldots, a_{m} \in R$, that $\forall i \phi\left(a_{i}\right)=\alpha_{i}$. Hence $\phi\left(\sum_{i=0}^{m} a_{i} X^{i}\right)=$ $\sum_{i=0}^{m} \alpha_{i} X^{i}$.
(ii) Let $\sum_{i=0}^{m} a_{i} X^{i} \neq \sum_{i=0}^{m} b_{i} X^{i}$. Thus there exists such k, that $a_{k} \neq$ b_{k}. Hence $\sum_{i=0}^{m} \phi\left(a_{i}\right) X^{i} \neq \sum_{i=0}^{m} \phi\left(b_{i}\right) X^{i}$.
(iii) Follows as a consequence of (i) and (ii).
2.16. Lemma. If $\phi: R \rightarrow S$ is a ring isomorphism, then

$$
R[X] /\left\langle\sum_{i=0}^{m} a_{i} X^{i}\right\rangle \cong S[X] /\left\langle\sum_{i=0}^{m} \phi\left(a_{i}\right) X^{i}\right\rangle .
$$

Let $\sum_{i=0}^{n} b_{i} X^{i} \equiv_{R} \sum_{i=0}^{n} c_{i} X^{i}$, i.e.., they represent the same element of set $R[X] /\left\langle\sum_{i=0}^{m} a_{i} X^{i}\right\rangle$. There is a possibility of polynomials $\sum_{i=0}^{n} b_{i} X^{i}$ and $\sum_{i=0}^{n} c_{i} X^{i}$ to have different orders, then some of the coefficients are equal to 0 .

Let's denote polynomials in consideration as: $f=\sum_{i=0}^{m} a_{i} X^{i}, \phi(f) \rightleftharpoons \sum_{i=0}^{m} \phi\left(a_{i}\right) X^{i}$, $p \rightleftharpoons \sum_{i=0}^{n} b_{i} X^{i}, q \rightleftharpoons \sum_{i=0}^{n} c_{i} X^{i}$.

Then

$$
\begin{array}{rll}
p & \equiv_{R} & q, \\
p-q & \equiv_{R} & 0, \\
\exists r \in R[X] f r & = & p-q, \\
\phi(r) \phi(f)=\phi(r f) & = & \phi(p-q)=\phi(p)-\phi(q), \\
\phi(p)-\phi(q) & \equiv_{S} & 0, \\
\phi(p) & \equiv_{S} & \phi(q) .
\end{array}
$$

As mapping $\phi: \underline{R} \rightarrow S$ is an isomorpism, then $p \equiv_{R} q \Leftrightarrow \phi(p) \equiv_{S} \phi(q)$. Hence mapping $\bar{\phi}: R[X] / f \rightarrow S[X] / \phi(f):[p]_{R} \rightarrow[\phi(p)]_{S}$ is bijectivre. Here

$$
\begin{aligned}
{[p]_{R} F\{g \mid g} & \left.\equiv_{R} p\right\}, \quad[\phi(p)]_{S}=\left\{h \mid h \equiv_{S} \phi(p)\right\} . \\
\bar{\phi}\left([p]_{R}[q]_{R}\right) & =\bar{\phi}\left([p q]_{R}\right)=[\phi(p q)]_{S}=[\phi(p) \phi(q)]_{S} \\
& =[\phi(p)]_{S}[\phi(q)]_{S}=\bar{\phi}\left([p]_{R}\right) \bar{\phi}\left([q]_{R}\right), \\
\bar{\phi}\left([p]_{R}+[q]_{R}\right) & =\bar{\phi}\left([p+q]_{R}\right)=[\phi(p+q)]_{S}=[\phi(p)+\phi(q)]_{S} \\
& =[\phi(p)]_{S}+[\phi(q)]_{S}=\bar{\phi}\left([p]_{R}\right)+\bar{\phi}\left([q]_{R}\right) .
\end{aligned}
$$

Thus $\bar{\phi}$ is an isomorphism.
2.17. Lemma. If $\phi: R \mapsto G_{1} \times G_{2} \times \cdots \times G_{n}$ is a ring homomorphism, then for all i

$$
\phi_{i}: R \rightarrow G_{i}: r \mapsto \operatorname{pr}_{i}(\phi(r))
$$

is a ring homomorphism. Here $\operatorname{pr}_{i}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \rightleftharpoons r_{i}$.
\square Let $\phi(x)=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\phi(y)=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$, then

$$
\begin{aligned}
\phi_{i}(x+y) & =\operatorname{pr}_{i}(\phi(x+y))=\operatorname{pr}_{i}(\phi(x)+\phi(y))=x_{i}+y_{i} \\
& =\phi_{i}(x)+\phi_{i}(y) ; \\
\phi_{i}(x y) & =\operatorname{pr}_{i}(\phi(x y))=\operatorname{pr}_{i}(\phi(x) \phi(y))=x_{i} y_{i} \\
& =\phi_{i}(x) \phi_{i}(y) .
\end{aligned}
$$

2.18. Proposition. If $\phi: R \rightarrow G_{1} \times G_{2} \times \cdots \times G_{n}$ is a ring isomorphism and $f=\sum_{j=0}^{m} a_{j} X^{j} \in R[X]$, then

$$
R[X] /\langle f\rangle \cong G_{1}[X] /\left\langle\phi_{1}(f)\right\rangle \times G_{2}[X] /\left\langle\phi_{2}(f)\right\rangle \times \cdots \times G_{n}[X] /\left\langle\phi_{n}(f)\right\rangle
$$

Here $\quad \phi_{i}(f)=\sum_{j=0}^{m} \operatorname{pr}_{i}\left(\phi\left(a_{j}\right)\right) X^{j}$.
\square (i) Mapping $\phi_{i}: R \rightarrow G_{i}: r \mapsto \operatorname{pr}_{i}(\phi(r))$ is ring homomorphism (2.17. Lemma). As ϕ is an isomorphism, then ϕ_{i} is an epimorphism. Thus (2.15. Corollary)

$$
\phi_{i}: R[X] \rightarrow G_{i}[X]: p \mapsto \phi_{i}(p)
$$

is an epimorphism.

Assume that $\sum_{j=0}^{\nu} b_{j} X^{j} \equiv_{R} \sum_{j=0}^{\nu} c_{j} X^{j}$, i.e,, they represent the same element from set $R[X] /\left\langle\sum_{j=0}^{m} a_{j} X^{j}\right\rangle$. Let's denote polynomials in consideration as: $p \rightleftharpoons \sum_{j=0}^{\nu} b_{j} X^{j}, q \rightleftharpoons \sum_{j=0}^{\nu} c_{j} X^{j}$. Then

$$
\begin{array}{rll}
p & \equiv_{R} & q, \\
p-q & \equiv_{R} & 0, \\
\exists r \in R[X] f r & = & p-q, \\
\phi_{i}(r) \phi_{i}(f)=\phi_{i}(r f) & = & \phi_{i}(p-q)=\phi_{i}(p)-\phi_{i}(q), \\
\phi_{i}(p)-\phi_{i}(q) & \equiv_{G_{i}} & 0, \\
\phi_{i}(p) & \equiv_{G_{i}} & \phi_{i}(q) .
\end{array}
$$

This shows that mappings

$$
\bar{\phi}_{i}: R[X] /\langle f\rangle \rightarrow G_{i}[X] /\left\langle\phi_{i}(f)\right\rangle:[p]_{R} \mapsto\left[\phi_{i}(p)\right]_{G_{i}}
$$

are defined correctly. Here

$$
\begin{aligned}
{[p]_{R} F\{g \mid g} & \left.\equiv_{R} p\right\}, \quad\left[\phi_{i}(p)\right]_{G_{i}} F\left\{h \mid h \equiv_{G_{i}} \phi_{i}(p)\right\} . \\
\bar{\phi}_{i}\left([p]_{R}[q]_{R}\right) & =\bar{\phi}_{i}\left([p q]_{R}\right)=\left[\phi_{i}(p q)\right]_{G_{i}}=\left[\phi_{i}(p) \phi_{i}(q)\right]_{G_{i}} \\
& =\left[\phi_{i}(p)\right]_{G_{i}}\left[\phi_{i}(q)\right]_{G_{i}}=\bar{\phi}_{i}\left([p]_{R}\right) \bar{\phi}_{i}\left([q]_{R}\right), \\
\bar{\phi}_{i}\left([p]_{R}+[q]_{R}\right) & =\bar{\phi}_{i}\left([p+q]_{R}\right)=\left[\phi_{i}(p+q)\right]_{G_{i}}=\left[\phi_{i}(p)+\phi_{i}(q)\right]_{G_{i}} \\
& =\left[\phi_{i}(p)\right]_{G_{i}}+\left[\phi_{i}(q)\right]_{G_{i}}=\bar{\phi}_{i}\left([p]_{R}\right)+\bar{\phi}_{i}\left([q]_{R}\right) .
\end{aligned}
$$

Hence $\bar{\phi}_{i}$ is a homomorphism. Thus

$$
\bar{\phi}:[p]_{R} \mapsto\left(\bar{\phi}_{1}\left([p]_{R}\right), \bar{\phi}_{2}\left([p]_{R}\right), \ldots, \bar{\phi}_{n}\left([p]_{R}\right)\right)
$$

is a homomorphism.
(ii) Let $p_{i} \in G_{i}[X]$ and $k=\max _{i} \operatorname{deg}\left(p_{i}\right)$. Thus

$$
p_{i}(X)=\sum_{j=0}^{k} a_{i j} X^{j} \in G_{i}[X] .
$$

As ϕ is bijective, then there exist such $r_{s}, s \in \overline{1, k}$, that

$$
\phi\left(r_{s}\right)=\left(a_{1 s}, a_{2 s}, \ldots, a_{n s}\right)
$$

Lets choose $p(X) \rightleftharpoons \sum_{j=0}^{k} r_{j} X^{j}$. Thus mapping
$\Phi: R[X] \rightarrow G_{1}[X] \times G_{2}[X] \times \cdots \times G_{n}[X]: p \mapsto\left(\phi_{1}(p), \phi_{2}(p), \ldots, \phi_{n}(p)\right)$
is surjective. As $\operatorname{deg}\left(\phi_{i}(p)\right)=\operatorname{deg}(p)$, then only case, when Φ is not injective, might arise when $p \neq q$, but $\operatorname{deg}(p)=\operatorname{deg}(q)$. Let $q(X)=$ $\sum_{j=0}^{k} \rho_{j} X^{j}, r_{\varkappa} \neq \rho_{\varkappa}$ and $\phi\left(\rho_{\varkappa}\right)=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$. In expanded expression:

$$
\left(a_{1 \varkappa}, a_{2 \varkappa}, \ldots, a_{n \varkappa}\right)=\phi\left(r_{\varkappa}\right) \neq \phi\left(\rho_{\varkappa}\right)=\left(b_{1}, b_{2}, \ldots, b_{n}\right) .
$$

Thus there exist such ν, that $a_{\nu \varkappa} \neq b_{\nu}$.

$$
\begin{aligned}
\phi_{\nu}(p) & =\sum_{j=0}^{k} \phi_{\nu}\left(r_{j}\right) X^{j}=\sum_{j=0}^{k} a_{\nu j} X^{j}=\sum_{j \neq \varkappa} a_{\nu j} X^{j}+a_{\nu \varkappa} X^{\varkappa} . \\
\phi_{\nu}(q) & =\sum_{j=0}^{k} \phi_{\nu}\left(\rho_{j}\right) X^{j}=\sum_{j \neq \varkappa} \phi_{\nu}\left(\rho_{j}\right) X^{j}+\phi_{\nu}\left(\rho_{\varkappa}\right) X^{\varkappa} \\
& =\sum_{j \neq \varkappa} \phi_{\nu}\left(\rho_{j}\right) X^{j}+b_{\nu} X^{\varkappa} .
\end{aligned}
$$

Thus $\phi_{\nu}(p) \neq \phi_{\nu}(q)$, i.e., Φ is injective. From all the above, we conclude that Φ is bijective.
(iii) Let

$$
\begin{aligned}
& \left(\left[p_{1}\right]_{G_{1}},\left[p_{2}\right]_{G_{2}}, \ldots,\left[p_{n}\right]_{G_{n}}\right) \in \\
& G_{1}[X] /\left\langle\phi_{1}(f)\right\rangle \times G_{2}[X] /\left\langle\phi_{2}(f)\right\rangle \times \cdots \times G_{n}[X] /\left\langle\phi_{n}(f)\right.
\end{aligned}
$$

Thus $\left[p_{i}\right] \subseteq G_{i}[X]$ and $p_{i} \in G_{i}[X]$. As Φ is bijective, then exist such $p \in R[X]$, that $\Phi(p)=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, e.i.,

$$
p_{1}=\phi_{1}(p), p_{2}=\phi_{2}(p), \ldots, p_{n}=\phi_{n}(p) .
$$

Hence $\left[p_{i}\right]_{G_{i}}=\left[\phi_{i}(p)\right]_{G_{i}}$. From the definition of $\bar{\phi}_{i}$, we have $\bar{\phi}_{i}:[p]_{R} \mapsto$ $\left[\phi_{i}(p)\right]_{G_{i}}$ and

$$
\begin{aligned}
\bar{\phi}:[p]_{R} & \mapsto\left(\bar{\phi}_{1}\left([p]_{R}\right), \bar{\phi}_{2}\left([p]_{R}\right), \ldots, \bar{\phi}_{n}\left([p]_{R}\right)\right) \\
& =\left(\left[p_{1}\right]_{G_{1}},\left[p_{2}\right]_{G_{2}}, \ldots,\left[p_{n}\right]_{G_{n}}\right) .
\end{aligned}
$$

Hence $\bar{\phi}$ is surjective.
Let $\bar{\phi}\left([p]_{R}\right)=\bar{\phi}\left([0]_{R}\right)$, then $\forall i \bar{\phi}_{i}\left([p]_{R}\right)=\bar{\phi}_{i}\left([0]_{R}\right)$, t.i., $\left[\phi_{i}(p)\right]_{G_{i}}=$ $\left[\phi_{i}(0)\right]_{G_{i}}=[0]_{G_{i}}$. Thus there exist such $r_{i} \in G_{i}[X]$, that $\phi_{i}(p)=r_{i} \phi_{i}(f)$. As

$$
\Phi: R[X] \rightarrow G_{1}[X] \times G_{2}[X] \times \cdots \times G_{n}[X]
$$

is bijective, then exists $\rho \in R[X]$, that $\Phi(\rho)=\left(r_{1}, r_{2}, \ldots, r_{n}\right)$. On the other hand $\Phi(\rho)=\left(\phi_{1}(\rho), \phi_{2}(\rho), \ldots, \phi_{n}(\rho)\right)$. Thus $r_{i}=\phi_{i}(\rho)$, therefore $\phi_{i}(p)=r_{i} \phi_{i}(f)=\phi_{i}(\rho) \phi_{i}(f)=\phi_{i}(\rho f)$. Hence
$\Phi(p)=\left(\phi_{1}(p), \phi_{2}(p), \ldots, \phi_{n}(p)\right)=\left(\phi_{1}(\rho f), \phi_{2}(\rho f), \ldots, \phi_{n}(\rho f)\right)=\Phi(\rho f)$.
Mapping Φ is bijective, therefore $p=\rho f$, t.i., $[p]_{R}=[0]_{R}$. Thus the kernel of homomorphism $\bar{\phi}$ is trivial, hence $\bar{\phi}$ is a monomorphism.

From all the above we conclude:

$$
\bar{\phi}: R[X] /\langle f\rangle \rightarrow G_{1}[X] /\left\langle\phi_{1}(f)\right\rangle \times G_{2}[X] /\left\langle\phi_{2}(f)\right\rangle \times \cdots \times G_{n}[X] /\left\langle\phi_{n}(f)\right\rangle
$$

is an isomorphism.
2.19. Lemma. Let $g(X)=1+a_{1} X+a_{2} X^{2}+\cdots+a_{k} X^{k} \in R[X]$. If R is integral extension of ring $\mathcal{Z}_{m} \cong \mathbb{Z}_{m}$, then there exist such n, that $g(X)$ divides $X^{n}-1$.
\square (i) Let $\alpha=a a_{1}^{s_{1}} a_{2}^{s_{2}} \ldots a_{k}^{s_{k}}, \beta=b a_{1}^{s_{1}} a_{2}^{s_{2}} \ldots a_{k}^{s_{k}}$, where $a, b \in \mathcal{Z}_{m}$, then $\alpha+\beta=(a+b) a_{1}^{s_{1}} a_{2}^{s_{2}} \ldots a_{k}^{s_{k}}$ and $a+b \in \mathcal{Z}_{m}$. Let denote by $\mathcal{Z}_{m}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ the smallest extension of ring \mathcal{Z}_{m}, containing all elements $a_{1}, a_{2}, \ldots, a_{k}$. Thus $\mathcal{Z}_{m}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ consists of sums:

$$
\sum_{\bar{\varkappa} \in \mathcal{Z}_{m}} a_{\bar{\varkappa}} a_{1}^{\varkappa_{1}} a_{2}^{\varkappa_{2}} \ldots a_{k}^{\varkappa_{k}}
$$

where $a_{\bar{\varkappa}} \in \mathcal{Z}_{m}$ and $\bar{\varkappa}=\left(\varkappa_{1}, \varkappa_{2}, \ldots, \varkappa_{k}\right)$. There all $\bar{\varkappa}$ are distinct.
(ii) As $\mathcal{Z}_{m}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is an integral extension, then for each a_{i} there exists such monic polinomial

$$
p_{i}(X)=X^{m_{i}}+b_{i m_{i}-1} X^{m_{i}-1}+\cdots+b_{i 2} X^{2}+b_{i 1} X+b_{i 0}
$$

that $p_{i}\left(a_{i}\right)=0$. Hence

$$
a_{i}^{m_{i}}=-b_{i m_{i}-1} a_{i}^{m_{i}-1}-\cdots-b_{i 2} a_{i}^{2}-b_{i 1} a_{i}-b_{i 0} .
$$

Thus each element of $\operatorname{ring} \mathcal{Z}_{m}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is representable as a sum

$$
\sum_{\bar{\varkappa} \in \mathcal{Z}_{m}} a_{\bar{\varkappa}} a_{1}^{\varkappa_{1}} a_{2}^{\varkappa_{2}} \ldots a_{k}^{\varkappa_{k}}
$$

where all $\bar{\varkappa}=\left(\varkappa_{1}, \varkappa_{2}, \ldots, \varkappa_{k}\right)$ are distinct and all $\varkappa_{i}<m_{i}$. Then count of such sums is finite, because ring \mathcal{Z}_{m} is finite. Thus ring $\mathcal{Z}_{m}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is finite.
(iii) As $S=\mathcal{Z}_{m}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is a finite ring, then (1.45. Theorem)

$$
S \cong S_{1} \times S_{2} \times \cdots \times S_{t}
$$

where all S_{i} are finite commutative rings. Thus (2.18. Proposition)

$$
S[X] /\langle g\rangle \cong S_{1}[X] /\left\langle\phi_{1}(g)\right\rangle \times S_{2}[X] /\left\langle\phi_{2}(g)\right\rangle \times \cdots \times S_{t}[X] /\left\langle\phi_{t}(g)\right\rangle .
$$

Here

$$
\bar{\phi}: S[X] /\langle g\rangle \rightarrow S_{1}[X] /\left\langle\phi_{1}(g)\right\rangle \times S_{2}[X] /\left\langle\phi_{2}(g)\right\rangle \times \cdots \times S_{t}[X] /\left\langle\phi_{t}(g)\right\rangle
$$

is an isomorphism, where

$$
\phi: S \rightarrow S_{1} \times S_{2} \times \cdots \times S_{t}
$$

is an isomorphism, $\phi_{i}(g)=\sum_{j=0}^{k} \operatorname{pr}_{i}\left(\phi\left(a_{j}\right)\right) X^{j}$ and $a_{0}=1$. Thus

$$
\phi_{i}(g)=1_{S_{i}}+\sum_{j=1}^{k} \operatorname{pr}_{i}\left(\phi\left(a_{j}\right)\right) X^{j}
$$

(2.13. Lemma) $S_{i}[X] /\left\langle\phi_{i}(g)\right\rangle$ is a finite set, thus $S[X] /\langle g\rangle$ is a finite ring. Therefore all classes $[1],[X],\left[X^{2}\right],\left[X^{3}\right], \ldots,\left[X^{s}\right], \ldots$ can't be distinct. Thus there exist such $\nu \geq 0$ and $n>0$, that $\left[X^{\nu}\right]=\left[X^{\nu+n}\right]$ or $\left[X^{\nu}\left(X^{n}-1\right)\right]=[0]$. Thus thre exist such $q(X) \in S[X]$, that $g(X) q(X)=$ $X^{\nu}\left(X^{n}-1\right)$. As $g(0)=1$, then $q(X)=X^{\nu} r(X)$. Hence $X^{\nu} g(X) r(X)=$ $X^{\nu}\left(X^{n}-1\right)$. It is possible only if $g(X) r(X)=X^{n}-1$.
2.20. Proposition. If integral extension f of $\mathcal{Z}_{m} \cong \mathbb{Z}_{m}$ is a rational series, then f is semiperiodic.
\square Let R be extension of ring $\mathcal{Z}_{m}, f(X)=\frac{h(X)}{g(X)}$ and $g(X)=\sum_{k=0}^{\nu} a_{k} X^{k}$, then $g(X)=a_{0}\left(1+\sum_{k=1}^{\nu} a_{0}^{-1} a_{k} X^{k}\right)$. Thus (2.19. Lemma) exists such n, that $X^{n}-1=a_{0}^{-1} g r$, where $r \in R[X]$. Hence

$$
\begin{aligned}
f & =\frac{h}{g}=\frac{h\left(X^{n}-1\right)}{g\left(X^{n}-1\right)}=\frac{a_{0}^{-1} h}{X^{n}-1} \cdot \frac{X^{n}-1}{a_{0}^{-1} g}=\frac{a_{0}^{-1} h}{X^{n}-1} \cdot \frac{a_{0}^{-1} g r}{a_{0}^{-1} g} \\
& =\frac{a_{0}^{-1} h r}{X^{n}-1}=-a_{0}^{-1} h r \sum_{k=0}^{\infty} X^{k n}
\end{aligned}
$$

Assume that $-a_{0}^{-1} h r=\sum_{\varkappa=0}^{\sigma} b_{\varkappa} X^{\varkappa}$, then $f=\sum_{\varkappa=0}^{\sigma} b_{\varkappa} X^{\varkappa} \sum_{k=0}^{\infty} X^{k n}$. If $n=1$, then

$$
\begin{aligned}
f & =\sum_{\varkappa=0}^{\sigma} b_{\varkappa} X^{\varkappa} \sum_{k=0}^{\infty} X^{k} \\
& =\left(b_{0}+b_{1} X+b_{2} X^{2} \ldots+b_{\sigma} X^{\sigma}\right)\left(1+X+X^{2}+\ldots+X^{\sigma}+\ldots\right) \\
& =b_{0}+\left(b_{0}+b_{1}\right) X+\left(b_{0}+b_{1}+b_{2}\right) X^{2}+\ldots+\left(b_{0}+b_{1}+\ldots+b_{\sigma}\right) X^{\sigma} \\
& +\left(b_{0}+b_{1}+\ldots+b_{\sigma}\right) X^{\sigma+1}+\ldots+\left(b_{0}+b_{1}+\ldots+b_{\sigma}\right) X^{\sigma+n}+\ldots \\
& =\sum_{k=0}^{\sigma-1}\left(\sum_{i=0}^{k} b_{i}\right) X^{k}+\sum_{n=0}^{\infty}\left(\sum_{i=0}^{\sigma} b_{i}\right) X^{\sigma+n}
\end{aligned}
$$

If $\sigma<n$, then

$$
\begin{aligned}
f & =\sum_{\varkappa=0}^{\sigma} b_{\varkappa} X^{\varkappa} \sum_{k=0}^{\infty} X^{k n} \\
& =\left(b_{0}+b_{1} X+b_{2} X^{2} \ldots+b_{\sigma} X^{\sigma}\right)\left(1+X^{n}+X^{2 n}+\ldots+X^{k n}+\ldots\right) \\
& =b_{0}+b_{1} X+b_{2} X^{2}+\ldots+b_{\sigma} X^{\sigma} \\
& +b_{0} X^{n}+b_{1} X^{n+1}+b_{2} X^{n+2}+\ldots+b_{\sigma} X^{n+\sigma} \\
& +b_{0} X^{2 n}+b_{1} X^{2 n+1}+b_{2} X^{2 n+2}+\ldots+b_{\sigma} X^{2 n+\sigma}+\ldots \\
& =\sum_{k=0}^{\infty} \sum_{i=0}^{\sigma} b_{i} X^{k n+i}
\end{aligned}
$$

If $\sigma=n+\tau$ un $0 \leq \tau<n$, then

$$
\begin{aligned}
f & =\sum_{\varkappa=0}^{\sigma} b_{\varkappa} X^{\varkappa} \sum_{k=0}^{\infty} X^{k n} \\
& =\left(b_{0}+b_{1} X+b_{2} X^{2} \ldots+b_{n-1} X^{n-1}+b_{n} X^{n}+\ldots+b_{n+\tau} X^{n+\tau}\right) \\
& \times\left(1+X^{n}+X^{2 n}+\ldots+X^{k n}+\ldots\right) \\
& =b_{0}+b_{1} X+b_{2} X^{2}+\ldots+b_{n-1} X^{n-1} \\
& +\left(b_{0}+b_{n}\right) X^{n}+\left(b_{1}+b_{n+1}\right) X^{n+1}+\ldots+\left(b_{\tau}+b_{n+\tau}\right) X^{n+\tau} \\
& +b_{\tau+1} X^{n+\tau+1}+b_{\tau+2} X^{n+\tau+2}+\ldots+b_{n-1} X^{2 n-1} \\
& +\left(b_{0}+b_{n}\right) X^{2 n}+\left(b_{1}+b_{n+1}\right) X^{2 n+1}+\ldots+\left(b_{\tau}+b_{n+\tau}\right) X^{2 n+\tau}
\end{aligned}
$$

$$
\begin{aligned}
& +b_{\tau+1} X^{2 n+\tau+1}+b_{\tau+2} X^{2 n+\tau+2}+\ldots+b_{n-1} X^{3 n-1}+\ldots \\
& =\sum_{k=0}^{n-1} b_{k} X^{k}+\sum_{k=1}^{\infty}\left(\sum_{i=0}^{\tau}\left(b_{i}+b_{n+i}\right) X^{k n+i}+\sum_{i=\tau+1}^{n-1} b_{i} X^{k n+i}\right)
\end{aligned}
$$

If $\sigma=m n+\tau$ un $0 \leq \tau<n$, then

$$
\begin{aligned}
f & =\sum_{\varkappa=0}^{\sigma} b_{\varkappa} X^{\varkappa} \sum_{k=0}^{\infty} X^{k n} \\
& =\left(b_{0}+b_{1} X+b_{2} X^{2} \ldots+b_{n-1} X^{n-1}+b_{n} X^{n}+\ldots+b_{m n+\tau} X^{m n+\tau}\right) \\
& \times\left(1+X^{n}+X^{2 n}+\ldots+X^{k n}+\ldots\right) \\
& =b_{0}+b_{1} X+b_{2} X^{2}+\ldots+b_{n-1} X^{n-1} \\
& +\left(b_{0}+b_{n}\right) X^{n}+\left(b_{1}+b_{n+1}\right) X^{n+1}+\ldots+\left(b_{n-1}+b_{2 n-1}\right) X^{2 n-1}+ \\
& \ldots+\left(b_{0}+b_{n}+b_{2 n} \ldots+b_{(m-1) n}\right) X^{(m-1) n} \\
& +\left(b_{1}+b_{n+1}+b_{2 n+1}+\ldots+b_{(m-1) n+1}\right) X^{(m-1) n+1}+\ldots \\
& +\left(b_{n-1}+b_{2 n-1}+b_{3 n-1}+\ldots+b_{m n-1}\right) X^{m n-1} \\
& +\left(b_{0}+b_{n}+\ldots+b_{m n}\right) X^{m n}+\left(b_{1}+b_{n+1}+\ldots+b_{m n+1}\right) X^{m n+1}+ \\
& \ldots \\
& +\left(b_{\tau}+b_{n+\tau}+\ldots+b_{m n+\tau}\right) X^{m n+\tau} \\
& =\left(b_{\tau+1}+b_{n+\tau+1}+\ldots+b_{(m-1) n+\tau+1}\right) X^{m n+\tau+1}+\ldots \\
& \sum_{k=0}^{m-1} \sum_{i=0}^{n-1}\left(\sum_{j=0}^{k} b_{i+j n}\right) X^{n k+i} \\
& +\sum_{k=m}^{\infty}\left(\sum_{i=0}^{\tau}\left(\sum_{j=0}^{m} b_{i+j n}\right) X^{k n+i}+\sum_{i=\tau+1}^{n-1}\left(\sum_{j=0}^{m-1} b_{i+j n}\right) X^{k n+i}\right)
\end{aligned}
$$

2.21. Corollary. Each formal power series of a periodic ring is semiperiodic.
\square Periodic ring is integral extension of ring \mathbb{Z}_{m} (2.11. Proposition), up to isomorphism. The result follows from (2.20. Proposition).
2.22. Example. $f(X)=\frac{X^{2}+2 X-1}{X^{2}+X+1}$, where polinomials are elements of ring $\mathbb{Z}_{6}[X]$.

$$
\begin{aligned}
f(X) & =\frac{X^{2}+2 X-1}{X^{2}+X+1}=\frac{\left(X^{2}+2 X-1\right)\left(X^{3}-1\right)}{\left(X^{2}+X+1\right)\left(X^{3}-1\right)} \\
& =\frac{\left(X^{2}+2 X-1\right)(X-1)}{X^{3}-1} \\
& =-\left(1-3 X+X^{2}+X^{3}\right)\left(1+X^{3}+X^{6}+X^{9}+\ldots\right)
\end{aligned}
$$

Let's consider the general expression: $\sigma=n=3$ and $\tau=0$.

$$
\begin{aligned}
f(X) & =\left(b_{0}+b_{1} X+b_{2} X^{2}+b_{3} X^{3}\right)\left(1+X^{3}+X^{6}+X^{9}+\ldots\right) \\
& =b_{0}+b_{1} X+b_{2} X^{2}+\sum_{k=1}^{\infty}\left(\left(b_{0}+b_{3}\right) X^{3 k}+b_{1} X^{3 k+1}+b_{2} X^{3 k+2}\right)
\end{aligned}
$$

In our case:

$$
\begin{aligned}
f(X) & =-1+3 X-X^{2}+\sum_{k=1}^{\infty}\left((-1-1) X^{3 k}+3 X^{3 k+1}-X^{3 k+2}\right) \\
& =-1+3 X-X^{2}+\sum_{k=1}^{\infty}\left(-2 X^{3 k}+3 X^{3 k+1}-X^{3 k+2}\right)
\end{aligned}
$$

3. Mealy machines

We will consider mappings

$$
\begin{aligned}
& \mu[f] \\
& \alpha[f]
\end{aligned}: \quad g(X) \mapsto f(X) g(X), ~ g(X) \mapsto f(X)+g(X), ~ \$
$$

where $f(X)$ and $g(X)$ are elements of ring $R[[X]]$.
We recall some facts from [6]. Details see in [2], [3] and [4].

3.1. Proposition.

- $\alpha[f]$ is a bijection;
- if f is invertible in ring $R[[x]]$, then $\mu[f]$ is bijective;
- if f is invertible in ring $R[[x]]$, then $(\mu[f])^{-1}=\mu\left[f^{-1}\right]$;
- if f is invertible in ring $R[[x]]$, then $\mu\left[f^{-1}\right] \alpha[h] \mu[f]=\alpha[f h]$
3.2. Definition. Mapping

$$
\sigma(f)=\sum_{k=0}^{\infty} a_{k+1} X^{k}
$$

is called a shift. Here $f(X)=\sum_{k=0}^{\infty} a_{k} X^{k}$.

3.3. Corollary.

- $f=a_{0}+\sigma(f) X$;
- $(1-a X)^{-1}=\sum_{k=0}^{\infty} a^{k} X^{k}$;
- if $f=\frac{1}{1-a X}$ then $\sigma(f)=a f$;
- if f is invertible in ring $R[[x]]$, then $\mu\left[f^{-1}\right] \alpha[h] \mu[f]=\alpha[f h]$
3.4. Definition. Let $\zeta: A^{\omega} \rightarrow B^{\omega}$ is ω-determined function. Function ζ defines set

$$
Q_{\zeta}=\left\{\zeta_{u} \mid u \in A^{*}\right\}
$$

where ζ_{u} is restriction of function ζ. If set Q_{f} is finite, then ζ is called a finitely determined function.
3.5. Theorem. If $f=\frac{1}{1-X}$, then $\mu[f]$ is finitely determined function, whose restriction set $Q_{f}=\{\mu[f] \circ \alpha[s] \mid s \in R\}$.

Let $f=\frac{1}{1-X}$. Define $\mathcal{M}_{f}=\left\langle Q_{f}, R, \circ, *\right\rangle$:

- with set $Q_{f}=\{\alpha[s] \mu[f] \mid s \in R\}$ of states and
- alphabet R,
- $Q \times R \xrightarrow{\circ} Q: \alpha[s] \mu[f] \circ r=\alpha[s+r] \mu[f]$,
- $Q \times A \xrightarrow{*} A: \alpha[s] \mu[f] * r=s+r$.

If R is Galois field $G F(2)$, then we obtain the Lamplighter group. Here

$$
\alpha[0] \mu[f] \mapsto q, \quad \alpha[1] \mu[f] \mapsto p
$$

and $\Gamma\left(\mathcal{M}_{2}\right)=\langle\bar{q}, \bar{p}\rangle=\langle\alpha[0] \mu[f], \alpha[1] \mu[f]\rangle$.

1. Figure: Mealy machine generating the Lamplighter group.

Problem. Witch groups are generated by the rational series of commutative rings?

Here are some intuitive considerations as to why this might be interesting.

- Are all groups defined by rational formal power series of finite commutative rings infinite?
- If there still are finite groups defined by rational formal power series of finite commutative rings, then a question arises: is the finiteness problem algorithmically decidable?
3.6. Example. What kind of group is determined by polynomial $f(X)=$ $1+X+X^{2}$?

Let $g(X)=s_{0}+s_{1} X+s_{2} X^{2}+\cdots=\sum_{k=0}^{\infty} s_{k} X^{k}$, then
$g \alpha[r] \mu[f]=\left(r+s_{0}+\sum_{k=1}^{\infty} s_{k} X^{k}\right) \mu[f]=\left(r+s_{0}\right) f(X)+f(X) \sum_{k=1}^{\infty} s_{k} X^{k}$
$=\left(r+s_{0}\right)+\left(r+s_{0}\right) X+\left(r+s_{0}\right) X^{2}$
$+\left(1+X+X^{2}\right)\left(s_{1} X+s_{2} X^{2}+s_{3} X^{3}+s_{4} X^{4}+\cdots\right)$
$=\left(r+s_{0}\right)+\left(r+s_{0}\right) X+\left(r+s_{0}\right) X^{2}$
$+s_{1} X+\left(s_{1}+s_{2}\right) X^{2}$
$+\left(s_{1}+s_{2}+s_{3}\right) X^{3}+\left(s_{2}+s_{3}+s_{4}\right) X^{4}+\left(s_{3}+s_{4}+s_{5}\right) X^{5}+\cdots$
$=\left(r+s_{0}\right)+\left(r+s_{0}+s_{1}\right) X+\left(r+s_{0}+s_{1}+s_{2}\right) X^{2}$
$+\left(s_{1}+s_{2}+s_{3}\right) X^{3}+\left(s_{2}+s_{3}+s_{4}\right) X^{4}+\left(s_{3}+s_{4}+s_{5}\right) X^{5}+\cdots$

$$
\begin{aligned}
g \mu[f] & =s_{0}+\left(s_{0}+s_{1}\right) X+\left(s_{0}+s_{1}+s_{2}\right) X^{2}+\left(s_{1}+s_{2}+s_{3}\right) X^{3}+\cdots \\
& =s_{0}+\left(s_{0}+s_{1}\right) X+\sum_{k=0}^{\infty}\left(s_{k}+s_{k+1}+s_{k+2}\right) X^{k+2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& g \mu_{r}[f]=r+s_{0}+\left(r+s_{0}+s_{1}\right) X+\left(s_{0}+s_{1}+s_{2}\right) X^{2}+\left(s_{1}+s_{2}+s_{3}\right) X^{3}+\cdots \\
& =r+s_{0}+\left(r+s_{0}+s_{1}\right) X+\sum_{k=0}^{\infty}\left(s_{k}+s_{k+1}+s_{k+2}\right) X^{k+2}, \\
& g \mu_{r^{2}}[f]=2 r+s_{0}+\left(r+s_{0}+s_{1}\right) X+\left(s_{0}+s_{1}+s_{2}\right) X^{2}+\left(s_{1}+s_{2}+s_{3}\right) X^{3}+\cdots \\
& =2 r+s_{0}+\left(r+s_{0}+s_{1}\right) X+\sum_{k=0}^{\infty}\left(s_{k}+s_{k+1}+s_{k+2}\right) X^{k+2}, \\
& g \mu_{r^{3}}[f]=2 r+s_{0}+\left(r+s_{0}+s_{1}\right) X+\left(s_{0}+s_{1}+s_{2}\right) X^{2}+\left(s_{1}+s_{2}+s_{3}\right) X^{3}+\cdots \\
& =2 r+s_{0}+\left(r+s_{0}+s_{1}\right) X+\sum_{k=0}^{\infty}\left(s_{k}+s_{k+1}+s_{k+2}\right) X^{k+2}, \\
& g \mu_{r^{n}}[f]=2 r+s_{0}+\left(r+s_{0}+s_{1}\right) X+\sum_{k=0}^{\infty}\left(s_{k}+s_{k+1}+s_{k+2}\right) X^{k+2} . \\
& g \mu_{r_{1} r_{2}}[f]=r_{1}+r_{2}+s_{0}+\left(r_{2}+s_{0}+s_{1}\right) X+\left(s_{0}+s_{1}+s_{2}\right) X^{2}+\cdots \\
& =r_{1}+r_{2}+s_{0}+\left(r_{2}+s_{0}+s_{1}\right) X+\sum_{k=0}^{\infty}\left(s_{k}+s_{k+1}+s_{k+2}\right) X^{k+2}, \\
& g \mu_{r_{1} r_{2} r_{3}}[f]=r_{2}+r_{3}+s_{0}+\left(r_{3}+s_{0}+s_{1}\right) X+\left(s_{0}+s_{1}+s_{2}\right) X^{2}+\cdots \\
& =r_{2}+r_{3}+s_{0}+\left(r_{3}+s_{0}+s_{1}\right) X+\sum_{k=0}^{\infty}\left(s_{k}+s_{k+1}+s_{k+2}\right) X^{k+2}, \\
& g \mu_{r_{1} \cdots r_{n-1} r_{n}}[f]=r_{n-1}+r_{n}+s_{0}+\left(r_{n}+s_{0}+s_{1}\right) X+\left(s_{0}+s_{1}+s_{2}\right) X^{2}+\cdots \\
& =r_{n-1}+r_{n}+s_{0}+\left(r_{n}+s_{0}+s_{1}\right) X \\
& +\sum_{k=0}^{\infty}\left(s_{k}+s_{k+1}+s_{k+2}\right) X^{k+2},
\end{aligned}
$$

Lets introduce notation $\mu u \rightleftharpoons \mu_{u}[f]$ for each $u \in R^{*}$.
What happens if $R=G F(2)$?
from the above, it follows that:

$$
\begin{array}{rlrr}
\mu & =\mu 0=\mu u 00 & & s_{0}+\left(s_{0}+s_{1}\right) X \\
\mu 1 & =\mu 01=\mu u 01 & & -\rightarrow \\
1+s_{0}+\left(1+s_{0}+s_{1}\right) X \\
\mu 10 & =\mu u 10 & & -\rightarrow \\
\mu 11 & =\mu u 11 & & 1+s_{0}+\left(s_{0}+s_{1}\right) X \\
& & s_{0}+\left(1+s_{0}+s_{1}\right) X
\end{array}
$$

What happens if $R=G F(4)$?

2. Figure: Machine defined by $1+X+X^{2}$ in field $G F(2)$.

addition $x+y$					multiplication $x y$			
$x \backslash y$	0	1	a	b	0	1	a	b
0	0	1	a	b	0	0	0	0
1	1	0	b	a	0	1	a	b
a	a	b	0	1	0	a	b	1
b	b	a	1	0	0	b	1	a

$\mu=\mu 0=\mu u 00$	\rightarrow	$s_{0}+\left(s_{0}+s_{1}\right) X$
$\mu 1=\mu 01=\mu u 01$	--	$1+s_{0}+\left(1+s_{0}+s_{1}\right) X$
$\mu a=\mu 0 a=\mu u 0 a$	--	$a+s_{0}+\left(a+s_{0}+s_{1}\right) X$
$\mu b=\mu 0 b=\mu u 0 b$	--	$b+s_{0}+\left(b+s_{0}+s_{1}\right) X$
$\mu 10=\mu u 10$	--	$1+s_{0}+\left(s_{0}+s_{1}\right) X$
$\mu 11=\mu u 11$	-->	$s_{0}+\left(1+s_{0}+s_{1}\right) X$
$\mu 1 a=\mu u 1 a$	--	$b+s_{0}+\left(a+s_{0}+s_{1}\right) X$
$\mu 1 b=\mu u 1 b$	-->	$a+s_{0}+\left(b+s_{0}+s_{1}\right) X$
$\mu a 0=\mu u a 0$	-->	$a+s_{0}+\left(s_{0}+s_{1}\right) X$
$\mu a 1=\mu u a 1$	-->	$b+s_{0}+\left(1+s_{0}+s_{1}\right) X$
$\mu a a=\mu u a a$	--	$s_{0}+\left(a+s_{0}+s_{1}\right) X$
$\mu a b=\mu u a b$	\rightarrow	$1+s_{0}+\left(b+s_{0}+s_{1}\right) X$
$\mu b 0=\mu u b 0$	--	$b+s_{0}+\left(s_{0}+s_{1}\right) X$
$\mu b 1=\mu u b 1$	--	$a+s_{0}+\left(1+s_{0}+s_{1}\right) X$
$\mu b a=\mu u b a$	\rightarrow	$1+s_{0}+\left(a+s_{0}+s_{1}\right) X$
$\mu b b=\mu u b b$	-->	$s_{0}+\left(b+s_{0}+s_{1}\right) X$

\circ	μ	$\mu 1$	μa	μb	$\mu 10$	$\mu 11$	$\mu 1 a$	$\mu 1 b$
0	μ	$\mu 10$	$\mu a 0$	$\mu b 0$	μ	$\mu 10$	$\mu a 0$	$\mu b 0$
1	$\mu 1$	$\mu 11$	$\mu a 1$	$\mu b 1$	$\mu 1$	$\mu 11$	$\mu a 1$	$\mu b 1$
a	μa	$\mu 1 a$	$\mu a a$	$\mu b a$	μa	$\mu 1 a$	$\mu a a$	$\mu b a$
b	μb	μ	$\mu a b$	$\mu b b$	μb	$\mu 1 b$	$\mu a b$	$\mu b b$
$*$	μ	$\mu 1$	μa	μb	$\mu 10$	$\mu 11$	$\mu 1 a$	$\mu 1 b$
0	0	1	a	b	1	0	b	a
1	1	0	b	a	0	1	a	b
a	a	b	0	1	b	a	1	0
b	b	a	1	0	a	b	0	1

\circ	$\mu a 0$	$\mu a 1$	$\mu a a$	$\mu a b$	$\mu b 0$	$\mu b 1$	$\mu b a$	$\mu b b$
0	μ	$\mu 10$	$\mu a 0$	$\mu b 0$	μ	$\mu 10$	$\mu a 0$	$\mu b 0$
1	$\mu 1$	$\mu 11$	$\mu a 1$	$\mu b 1$	$\mu 1$	$\mu 11$	$\mu a 1$	$\mu b 1$
a	μa	$\mu 1 a$	$\mu a a$	$\mu b a$	μa	$\mu 1 a$	$\mu a a$	$\mu b a$
b	μb	$\mu 1 b$	$\mu a b$	$\mu b b$	μb	$\mu 1 b$	$\mu a b$	$\mu b b$
$*$	$\mu a 0$	$\mu a 1$	$\mu a a$	$\mu a b$	$\mu b 0$	$\mu b 1$	$\mu b a$	$\mu b b$
0	a	b	0	1	b	a	1	0
1	b	a	1	0	a	b	0	1
a	0	1	a	b	1	0	b	a
b	1	0	b	a	0	1	a	b

References

[1] Bini G., Flamini F. (2002) Finite Commutative Rings and Their Applications. Springer New York, 176 pages.
[2] Buls J., Užule L., Valainis A. (2018) Automaton (Semi)groups (Basic Concepts). https://arxiv.org/abs/1801.09552, 46 pages.
[3] Buls J. (2022) The Lamplighter Group. https://arxiv.org/abs/2202.04107, 29 pages.
[4] Eckenthal S. (2012) The Lamplighter Group. https://digitalrepository.trincoll.edu/cgi/viewcontent.cgi?article= 1266\&context $=$ theses, 60 pages.
[5] Hou X-D., Lopez-Permouth S. R., Parra-Avila B. R. (2009) Rational power series, sequential codes and periodicity of sequences. Journal of Pure and Applied Algebra 213. P. 1157-1169.
[6] Skipper R., Steinberg B. (2019) Lamplighter Groups, Bireversible Automata and Rational Series over Finite Rings. https://arxiv.org/abs/1807.00433v3, 23 pages.

