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ABSTRACT 

Euclidean (Abstract) Mathematics: Mathematics based on a discrete model for 
Space. It is built on the assumption that a piece of space, called a point, with zero 
extent exists and that all other spatial entities are synthesised by aggregation of 
points. 

Leibnizian Mathematics: Mathematics based on a continuous model for Space. It is 
built on the assumption that all spatial entities have extent, and that space can be 
analysed by isolating and delimiting pieces of continuous Space. 

Theis relevant basic assumptions of Mathematics that lead to some of the salient 
features of Abstract Mathematics are stated. These features are then deduced from 
these assumptions in a fundamental way. Infinitesimals and Infinitesimal Numbers 
are introduced and then used in an example of a Riemann sum to create a 
contradiction that motivates the introduction of Leibnizian Mathematics as a model 
for Mathematics that is supplemental to Abstract Mathematics. Leibnizian 
Mathematics is then introduced by stating its basic assumptions. Lastly a list of the 
meanings of some words that are common to both models, but describe properties 
that differ between the models, is given. The reader is then referred to the document 
LEIBNIZIAN MATHEMATICS, accessible on the link given on page 8.  
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1. PROLOGUE 

Different Mathematics result when different assumptions are made. For example: 

 

Let a straight line and a point not on that line be given. 

 Euclidean Geometry results if it is assumed that one, and only one, line 
parallel to the given line can be drawn through the given point. In Euclidean 
geometry the sum of the interior angles of a triangle is exactly 180°. 

 Riemannian Geometry results if it is assumed that no line parallel to the 
given line can be drawn through the given point. In Riemannian Geometry the 
sum of the interior angles of a triangle is more than 180°.  

 Hyperbolic Geometry (Lobachevsky Geometry) results if it is assumed that 
more than one line parallel to the given line can be drawn through the given 
point. In Hyperbolic Geometry the sum of the interior angles of a triangle is 
less than 180°. 
 
 

2. UNIVERSAL ASSUMPTIONS 

 

Universal assumptions about Space, held as true for all Mathematics: 

 U1: Solids exist and extend in three dimensions. 
 U2: A surface is the interface between two abutting solids and extends in two 

dimensions. 
 U3: A line is the interface between two intersecting surfaces and extends in 

one dimension. 
 U4: A point is the interface between two intersecting lines. It is a place in 

space and extends in no direction. 
 
 

3. EUCLIDEAN ASSUMPTIONS 

 

Assumptions about Space, particular to Abstract Mathematics (Here called 
Euclidean Mathematics) 

 E1: Axiom of Euclid: A point exists and is a piece of space with zero 
extent. 

 E2: A solid is a clump of points. 
 E3: A surface is a single layer of points. 
 E4: A line is a string of points. 
 E5: The Real line: There is an order-preserving one to one 

mapping of the real numbers onto the points of a line.   
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4. ESSENTIAL ANATOMY OF EUCLIDEAN MATHEMATICS 

 

Let Z be an index set and let 

{𝐴 |𝛼𝜖𝑍} 

be a set of points onto which Z is mapped one to one. Let 

𝐷 =  𝑑(𝐴 )

∝

 

Where 𝑑(𝐴 ) is the maximum diameter of the point 𝐴  and therefore 𝑑(𝐴 ) = 0. 

 

EA1) If Z is a finite set, then D is a finite sum of zeros and therefore D=0. 

 

EA2) If Z is a countable set, then D is the limit as n tends to infinity of the partial 
sums to n terms; and these are all zero. Hence D=0. 

 

EA3) But in this model D must be larger than zero when the points are to form a 
line of non-zero length. Therefore, to form a line of non-zero length, the 
cardinality of the set Z must necessarily be more than countable in this model. 
This necessitates the introduction of the concept ‘more than countable’ into 
Euclidean Mathematics. There must therefore also exist more than countable 
many points and thus there must exist more than countable many real numbers 
to form the real line in this model. 

 

EA4) As in EA2) above, D would always be zero whenever the sum is obtained 
by taking the limit of finite or countable sums of zeros. Therefore, to get D to be 
larger than zero without taking a limit requires in this model that more than 
countable many actions (additions) must be performed one by one until the sum 
is complete. This introduces the essence of the axiom of choice into Euclidean 
Mathematicsi. It also validates the assumption that in this model an irrational 
number is an infinite string of digitsii, with “infinite” as defined in EA5, because it 
is possible to determine all the required digits down to the last. All this is 
obviously not possible in perceived reality, hence the name “Abstract 
Mathematics”.  

 

EA5) The words ‘infinite’ and ‘infinity’ both mean ‘an integer larger than all Natural 
Numbers’ in this model. 
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EA6) Euclidean space is complete: Every set of nested intervals of which the 
lengths converge to zero has a point as limit. 

 

5. EXTENSION OF NOMENCLATURE 

Let {A0; A1; A2; A3; …} be given points on a line and let {sn = L(An,A0): n=1, 2, 3, …} 
form a Cauchy sequence converging to zero where sn = L(An,A0) is the length of the 
line between the points An and A0 for all n. 

 

Definition 

The set of nested intervals {(An,A0): n=1,2,3, …} as described above is called an 
infinitesimal focussed on A0, and the Cauchy sequence {sn; n=1, 2, 3, …}, which 
belongs to the equivalence class of Cauchy sequences converging to zero, is called 
an infinitesimal number. 

The extension of these definitions to the case where the point A0 is internal to the 
intervals forming the set of nested intervals is trivial. This definition can be extended 
to areas and solids. 

 

6. DICHOTOMY 

The first way of forming a line of non-zero length from points was by stringing 
together more than countable many points of zero length and then adding their 
lengths - as was done in section 4 above for Euclidean Mathematics.  

But an alternative way of forming a line of non-zero length from points would be (as 
is done in Calculus for the Riemann integral) to begin with a line of non-zero length 
and then divide it into ever shorter pieces. After doing this an infinite number of times 
(as can implicitly be done in Euclidean Mathematics according to EA4 above) the 
limits should all be single points and the line would have been transformed into a 
string of points. 

Are these two ways equivalent? 

 

7. DECIDER 

An example can prove nothing, a counterexample can disprove 
anything. 

 

Consider the Riemann Integral: 

1 = 1 ∙ 𝑑𝑥 
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Riemann sums can be formed by starting with an interval (line) of length one on the 
X-axis as partition zero, then form successive partitions by dividing each interval of 
the previous partition into three equal parts. In this way the nth partition will consist of 
3n intervals, each of length 3-n. If x = ain is at the centre of the ith interval of the nth 
partition, then 

 nn
i

i
a 

 3
2

12
   For i = 1, 2, 3, …, 3n and n = 0, 1, 2, …. [6A] 

But the length of the whole interval is the sum of the lengths of the parts so that: 

1 =  ∑ 𝐿(𝑎 −    ,  𝑎 +  3 )     for n=0, 1, 2, …. 

Where:  

𝐿  𝑎 −  
1

2
3  ,  𝑎 +  

1

2
3 = 3  

Is the length of the line (with  𝑎  at its centre) between the points  𝑎 −  3  and 

 𝑎 +  3  on the real line. 

Since this sum is the same for all values of n 

1 = lim
→

∑ 𝐿(𝑎 −    ,  𝑎 +  3 )     [6B] 

Thus, the right-hand side of 6B is in some vague way a kind of multiple (that goes to 
infinity) of interval lengths (that all go to zero), and it is therefore some kind of 
indefinite form ∞ ∙ 0 

 

But these partitions have two specific properties that can be shown rigorously to be 
true, but can easily be seen by drawing three lines of unit length below each other 
and marking the partitions on them: 

Firstly, when a point is in the middle of one part of a partition, it will be in the middle 
of a part for all subsequent partitions. Secondly, a set of nested intervals can be 
formed by selecting from consecutive partitions intervals having the same midpoint. 
The lengths of these intervals converge to zero while they remain symmetric about 
their common midpoint. In Euclidean Mathematics the set of intervals will have this 
point as a limit. 

 

A nested set of intervals of which the lengths converge to zero was defined above as 
an infinitesimal, and here every infinitesimal is focussed on the common midpoint of 
all the intervals forming the infinitesimal.  

The set of all the infinitesimals formed as described above is a directed set where 
the pre-order is defined by: “A<B is true when the first interval (part) of the 
infinitesimal B is contained in an interval that is a part of A”. The infinitesimal that has 
the whole unit interval as first partition is the first element in this directed set. The 
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Riemann integral can then be defined as a net on the directed set of infinitesimals 
mapping onto a value in the real numbers (in this case the number one).  

But this net also maps onto the set: 

D = { 𝑎 : for some n and some i}  

of points that are the limits of the infinitesimals in Euclidean Mathematics. Note that 
these points all represent rational numbers.  

Thus, for the limit of the Riemann sums, an obvious notational change implies that 
for the set D: 

1 = ∑ 𝑑(𝐴 )∝     [A] 

But D is a set of rational numbers and hence it is countable. Therefore, according to 
the property EA2 of Euclidean Mathematics 

 

      0 = ∑ 𝑑(𝐴 )∝     [B] 

The contradiction formed by the results [A] and [B] of this informal argumentiii is 
resolved by: 

 

Conclusion 

 

A set of nested lines of which the lengths converge to zero may not have 
a point (or any spatial entity of zero length) as a limit.  

 

But, for the set of nested intervals to have a point as limit is a 
fundamental property of Euclidean Mathematics because of EA6. 
Therefore, this result implies that the Riemann integral – and by 
implication all of Calculus – should not be part of Euclidean Mathematics 
(hence the name “Non-standard Analysis”).  

 

Therefore: 

Referring to the prologue, it is thus necessary to find a set of 
assumptions - different from those of Euclidean Mathematics – to form a 
model called Leibnizian Mathematics in which a set of nested intervals of 
which the lengths converge to zero does not have a limit of zero extent 
but is merely a never-ending sequence of nested intervals. 
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8. NOTE ON THE LIMITS OF LINES IN MATHEMATICS 

A geometrical vector has both magnitude and direction and is represented as a 
straight line of which the length is the magnitude of the vector, and the direction is 
the direction of the vector. When the length of a vector converges to zero the limit is 
the zero vector which has zero magnitude and has an indeterminate direction.  

When the length of a line converges to zero in Euclidean Mathematics, the limit is a 
point. The limit has no length, and the line’s property of direction has completely 
disappeared. In Euclidean Mathematics the nature of a line therefore changes in the 
limit from being a one-dimensional line into being a zero-dimensional point (I.E. In 
vectorial terms it changes from being a vector to being a scalar). In Leibnizian 
Mathematics this discrepancy does not occur. 

 

 

9. LEIBNIZIAN MATHEMATICS 

Leibnizian Mathematics is based on an alternative set of assumptions about Space 
in which points are mere places in space indicated by the endpoints of lines. To form 
this model, the Euclidean Assumptions EA1 … EA6 of paragraph 3 above are 
supplanted by: 

 

LEIBNIZIAN ASSUMPTIONS 

 
 L1: Axiom of Parmenides: All spatial entities have non-zero extent. 
 L2: Any solid, surface or line can always be divided.iv 
 L3: When divided, the total extent of the parts equals the extent of the 

original. 
 L4: The Real line: There is an order-preserving one to one mapping of the 

real numbers onto lines from the origin; mapping the magnitudes of the 
numbers onto the lengths of the lines. 

 

In this model a point is merely the endpoint of a line as noted in U4 above, and 
therefore the role of points in forming the model is taken over by lines. This model 
and its properties are developed in the document “LEIBNIZIAN MATHEMATICS” and 
is posted on viXra. It can be accessed using the link: 

 

http://viXra.org/abs/2201.0175 

 

The model is developed from page 9 onwards in this document (But please also take 
note of TO THE READER on page 8). 
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10. PRIMER 

In Leibnizian Mathematics space is not synthesised from points, but is analysed by 
solids, surfaces and lines. It is never required to sum zeros to a non-zero total, and 
hence none of the conclusions of paragraph 4 are applicable to Leibnizian 
Mathematics. To ease access to the document “LEIBNIZIAN MATHEMATICS” 
referred to above, the following primer is a discussion of some consequential 
differences in the meaning of words common to both models as an effort to alleviate 
paradigm shock. 

Mathematics 

Euclidean (Abstract) Mathematics: Mathematics based on a discrete 
model for Space. It is built on the assumption that a piece of space, called a point, 
with zero extent exists and that all other spatial entities are formed through 
aggregation of points. 

 

Leibnizian Mathematics: Mathematics based on a continuous model for 
Space. It is built on the assumption that all spatial entities have extent, and that 
space can be analysed by isolating and bounding pieces of continuous Space. 

 

Zero 

Euclidean: It can be defined as a number less than all positive numbers. As a real 
number it is also the equivalence class of Cauchy sequences converging to zero. 

Leibnizian: Same as in Euclidean Mathematics. As a Cauchy (infinitesimal) 
number it is the null Cauchy sequence (0.; 0.0; 0.00; ….). 

 

Infinity (Noun) 

Euclidean: An integer larger than all other integers. 

Leibnizian: An irrational number only; the equivalence class of divergent 
sequences. The individual divergent sequences in this class are the infinite Cauchy 
numbers. 

 

Infinite (Adjective, Adverb) 

Euclidean: Larger than all integers. 

Leibnizian: Never ending, open ended, unbounded.  
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Infinite decimal fraction 

Euclidean: A non-finite decimal fraction containing all its digits up to and including 
the last one. 

Leibnizian: A proper name given to an equivalence class of Cauchy sequences 
without any other numerical connotation. 

 

Point 

Euclidean: A piece of space with zero extent. 

Leibnizian: The endpoint of a line. (As such it cannot have intrinsic extent 
because it is not a spatial entity but a property of a line.) 

 

Limit 

Euclidean: A way of handling continuity in a model of Mathematics based on a 
discrete model of space. 

Leibnizian: Absent - in the sense of being not required. 

(See the adaptation of the rule of L’Hospital on page 18 of the reference.) 

 

Cauchy Number 

Euclidean: Absent. 

Leibnizian: The Cauchy numbers are the sequences that form the equivalence 
classes that define the real numbers. They are classified as: 

Infinitesimal numbers: The Cauchy sequences that form the real number zero. 

Infinite Numbers: The divergent Sequences that form the real number infinity. 

Rated numbers: The Cauchy sequences that form all other real numbers. 

 

More than countable 

Euclidean: Cardinality of the sets of points and real numbers 

Leibnizian: Absent 
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11. CONCLUSION 

Like with Geometry as mentioned in the prologue, Mathematics divides into two sub 
models namely Euclidean Mathematics that is more suitable for discrete problems 
(like in Algebra and in the Theory of Probability for discrete events that are modelled 
as non-spatial entities) and Leibnizian Mathematics that is more suitable for 
continuous problems (like in Calculus and in parts of Statistics).  

Hence, they are different and independent Models, suitable to be used in different 
circumstances. 

 

-ooOOoo- 

 

 

 
i It is therefore mandatory, whenever using Euclidean Mathematics, to make sure that 
the Axiom of Choice is only applied in arguments solely about abstract entities. 
 
ii In Cantor’s well-known proof that there are more than countable many real 
numbers, his argument assumes that these numbers are countable and therefore 
that it is possible to make a list of all infinite decimal fractions. He then showed that 
there existed an infinite decimal fraction that was not in the list, and from that he 
concluded that all infinite decimal fractions cannot be listed and thus there must be 
more than countable many real numbers. But an equally valid conclusion is that the 
real numbers cannot be listed at all – namely that a list of a single infinite decimal 
fraction cannot be made (as in perceived reality). The conclusion EA4 ensures the 
existence of such a symbol and validates the proof, albeit valid only in abstract 
Euclidean space. 
 
iii Even though the argument is informal and D dense in the unit interval, one should 
note that any number that is not of the form [6A] will eventually fall outside the 
intervals forming any given infinitesimal, and hence cannot be a limit for any 
infinitesimal. This gives the argument a claim to being formal even though it lacks a 
proper notation. 
 
iv The well-known rhyme about fleas can be adapted to Leibnizian Mathematics: 
 

Big space has little space 
That sum to what is in it, 

And little space has lesser space, 
And so on without limit. 

 


