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Abstract. We treat Sieve of Eratosthenes (algorithm that generates all
prime numbers) and Dirichlet eta function (proxy function for Riemann
zeta function that generates all nontrivial zeros) as infinite series. We
apply infinitesimals to their outputs. We ignore even prime number 2.
Based on every even Prime gaps 2, 4, 6, 8, 10...; the complete set and
its derived subsets of Odd Primes all contain arbitrarily large number
of elements while fully satisfying Prime number theorem for Arithmetic
Progressions, Generic Squeeze theorem and Theorem of Divergent-to-
Convergent series conversion for Prime numbers. With these theorems
satisfied by all Odd Primes, Polignac’s and Twin prime conjectures are
proven to be true when usefully regarded as Incompletely Predictable
Problems. Riemann hypothesis proposes all nontrivial zeros of Riemann
zeta function are located on its critical line. It is separately proven to
be true when usefully regarded as an Incompletely Predictable Problem.
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1. Introduction

Broadly viewed as vast ”resource materials” that support the completed
2001 proofs on modularity theorem, we have bi-directional correspondences
(bridges) existing between Number theory ↔ Harmonic analysis forming
”framework” for L-functions and modular forms database (LMFDB, launched
on May 10, 2016)[2]: (i) {Elliptic curves ↔ Modular forms}; (ii) {Counting
problem 1+p−number of solutions mod p [in finite series Elliptic curves] ↔
Coefficients of qp [in infinite series Modular forms]} whereby nome q = eπiτ

& p = prime numbers from Modular forms act as the (periodic) ’generating
series or functions’ having Group of symmetry = SL2(Z) [involving unit disk
in complex plane], which is analogous to Group of symmetry = Group of
integers Z [involving real number line present in general solutions such as sin
(x+2πn) = sin (x) with n = ...−3,−2,−1, 0, 1, 2, 3...]; viz, these properties
conform to Langlands program ”Theory of Symmetry” [for Transformations
of Rotation, Translation, Dilation & Reflection]; and (iii) {Representations
of Galois groups ↔ Automorphic forms} whereby the modular forms are
classified as a specific type of these [more general] automorphic forms, which
are ultimate objects in Harmonic analysis.

Diophantine equations are effectively various ”finite series” polynomial
equations that generally involve the operation of adding finitely many terms
e.g. Fermat’s equation xn + yn = zn and elliptic curve y2 = x3 + ax + b.
Proposed by Pierre de Fermat in 1637, Fermat’s Last Theorem states that
no three positive integers a, b and c can satisfy Fermat’s equation for any
integer value of n greater than 2. The modularity theorem asserts that every
elliptic curve over the rational numbers is modular, meaning that it can be
associated with an ”infinite series” modular form. In a nutshell, this was
broadly a crucial step in proving Fermat’s Last Theorem because it famously
allowed Prof. Andrew Wiles to prove the theorem in 1994 by establishing a
deep connection between [semistable] elliptic curves and modular forms. Sir
Andrew Wiles was deservingly awarded the 2016 Abel Prize for this work.

We have infinities or infinitely large numbers as unbounded and limitless
quantities (∞) at the big end, and infinitesimals or infinitely small numbers

as extremely small but nonzero quantities (
1

∞
) at the small end. Applying

infinitesimals to their corresponding outputs in section 6 allow us to prove
1859-dated Riemann hypothesis [viz, the proposal that relevant outputs as
infinitely many nontrivial zeros or Origin intercept points of Riemann zeta
function are all located on its σ = 1

2 -critical line or σ = 1
2 -Origin point],

and Polignac’s and Twin prime conjectures [viz, the proposal that relevant
outputs as subsets of Odd Primes derived from every even Prime gaps 2, 4,
6, 8, 10... all contain infinitely many unique elements]. Referring to even
Prime gap 2, 1846-dated Twin prime conjecture is simply a subset of 1849-
dated Polignac’s conjecture [which refers to all even Prime gaps 2, 4, 6, 8,
10...]. Altered terminology on cardinality of Odd Primes being arbitrarily



PRIME NUMBERS, NONTRIVIAL ZEROS 3

large number (ALN) instead of infinitely many was previously used to denote
Modified Polignac’s and Twin prime conjectures.

The correct and complete mathematical arguments as condensed in this
self-sufficient ”Summary Paper” include major (core) arguments obtained
from previous extensive works [4], [5] & [6] whereby Riemann zeta function
[viz, function that faithfully generates output of all nontrivial zeros via its
proxy Dirichlet eta function] and Sieve of Eratosthenes [viz, algorithm that
faithfully generates output of all prime numbers] are treated as de novo
or derived infinite series in order to prove their connected open problems in
Number theory. These infinite series are either convergent series or divergent
series where partial sums of the sequence from the former tends to a finite
limit, while that from the later do not tend to a finite limit [viz, it tends
to infinity]. Prime number theorem for Arithmetic Progressions [as Axiom
1], Generic Squeeze theorem [as Theorem 1] and Theorem of Divergent-to-
Convergent series conversion for Prime numbers [as Theorem 2] are outlined
(respectively) in section 2, section 3 and section 4. Lemma 1 and Lemma
2 in section 5 (respectively) introduce the novel concept of Incompletely
Predictable entities and innovatively classifying the countably infinite sets
into accelerating, linear or decelerating subtypes. To the extent that many
associated minor (peripheral) arguments from published research paper [6]
were not included in this Summary Paper, we advocate their absence will
not adversely reflect the rigorous nature of derived proofs but, rather, helps
disseminate mathematical knowledge to lay person and scientific community.

A function [sometimes loosely termed as an operator or an equation] is
a relation between a set of inputs (called the domain) and a set of possible
outputs (called the codomain) where each input is related to EXACTLY one
output. More precisely, a classical example of a [linear] operator performed
on a [eligible] function is differentiation. An algorithm is a finite sequence
of rigorous instructions typically used to solve a class of specific problems
or to perform a computation. We can represent functions or algorithms as
infinite-dimensional vectors. Then a function or algorithm defined on real
numbers R can be represented by an uncountably infinite set of vectors (as a
vector field) while a function or algorithm defined on natural numbers N [or
any other countably infinite domain such as prime numbers and composite
numbers] can be represented by a countably infinite set of vectors (as a vector
field). One could also use the later countably infinite set of vectors involving
[discrete] N {e.g. all nontrivial zeros of Riemann zeta function interpolated
as ”nearest” t-valued N 14, 21, 25, 30, 33, 38, 41, 43...} to approximate the
former uncountably infinite set of vectors ”pseudo-representing” [continuous]
R {given as actual t-valued transcendental numbers} ≊ Law of continuity:
If a quantity changes ”continuously”, then its value at any point between
two given values can be determined by the process of interpolation.

Based on Figure 1 and Figure 2 that accommodate both positive (+ve)
parts and negative (–ve) counterparts of prime numbers, composite numbers
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Figure 1. Narrow range of positive & negative prime
and composite numbers plotted together on integer number
line generated using Sieve-of-Eratosthenes and complement-
Sieve-of-Eratossthenes. The combined [positive] image and
[negative] mirror image will conceptually represent a one-
dimensional line (state) having perfect Mirror symmetry with
integer number 0 acting as the Point of symmetry.

Figure 2. OUTPUT for σ = 1
2 as Gram points. Polar graph

of ζ(12 + ıt) depicted as a two-dimensional figure (state) plot-
ted along critical line for real values of t between −30 and
+30 [viz, for s = σ ± t range], horizontal axis: Re{ζ(12 + ıt)},
and vertical axis: Im{ζ(12 + ıt)}. Origin intercept points are
present. There is manifestation of perfect Mirror symmetry
about horizontal x-axis acting as the line of symmetry.

and nontrivial zeros, we can represent eligible functions with complex
vector space [having +ve and –ve complex vectors pointing in
opposite directions] and eligible algorithms with real vector space
[having +ve and –ve real vectors pointing in opposite directions]:
Recall that a row vector or a column vector is, respectively, a one-row matrix
or a one-column matrix. Real numbers R [and natural numbers N] are
exactly one-dimensional vectors (on a line) and complex numbers C are
exactly two-dimensional vectors (in a plane). A complex vector (or complex
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matrix) as Cartesian representation z = x+ iy or Polar representation z =

r(cos θ+ i · sin θ) [where x & y are R, r = |z| =
√
x2 + y2, θ = arctan(y/x)

and i=
√
−1] is simply a vector (matrix) of the complex numbers. A two-

dimensional real vector (or real matrix) in a plane is given by Cartesian
representation as v = x + y or Polar representation as v = r(cos θ + sin θ)

[where x & y are R, r =
√
x2 + y2 and θ = arctan(y/x)].

Integers {0, 1} are neither prime nor composite. Prime & composite
numbers form distinct countably infinite sets of integers as two subsets in
uncountably infinite set of real numbers. Both [algorithmic] inputs Sieve-of-
Eratosthenes and Complement-Sieve-of-Eratosthenes in section 2 that faith-
fully generate outputs prime & composite numbers are visually represented
by countably infinite set of real vectors. We recognize all real vector sub-
spaces for even Prime gaps 2, 4, 6, 8, 10... with each unique sub-space
constituted by its corresponding countably infinite set of real vectors, must
imply Modified Polignac’s and Twin prime conjectures are true.

Where σ, t, Re{ζ(s)}, Im{ζ(s)}, Re{η(s)} and Im{η(s)} are R, (input)
parameter s = σ± it used in (output) functions from section 2 such as non-
alternating Riemann zeta function Eq. 1 ζ(s) = Re{ζ(s)}+ i ·Im{ζ(s)} and
alternating Dirichlet eta function Eq. 2 η(s) = Re{η(s)}+ i · Im{η(s)} are
recognized to all be given in z = x + iy format, thus allowing uncountably
infinite set of complex vectors to visually represent them. Next consider
the two derived functions from section 2: simplified Dirichlet eta function
or sim-η(s) and Dirichlet Sigma-Power Law or DSPL [=

∫
sim-η(s)dn] with

their corresponding horizontal and vertical axes being perpendicular to each

other or, equivalently, being
π

2
out-of-phase with each other (as per Page 12

of [4]). Complex vectors representing sim-η(s) and DSPL when combined
together form an orthonormal set in the inner product space since all these
vectors in the set are mutually orthogonal (”perpendicular”) and depicted
using their (”normalized”) unit length. When equivalently expressed using
countably infinite set of complex vectors; we recognize nontrivial zeros of
ζ(s), η(s), sim-η(s) or DSPL that can only exist in unique σ = 1

2 complex
vector sub-space, must imply Riemann hypothesis is true.

Non-alternating power series

∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + . . .

Alternating power series

∞∑
n=0

(−1)nanx
n = a0 − a1x+ a2x

2 − a3x
3 + . . .

Non-alternating harmonic series

∞∑
n=1

1

n
=

1

1
+

1

2
+

1

3
+

1

4
+

1

5
+ · · ·

Alternating harmonic series

∞∑
n=1

(−1)n+1

n
=

1

1
− 1

2
+

1

3
− 1

4
+

1

5
− · · ·

An infinite series [listed above] (or a finite series) is sum of [≥ 1] infinite
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(or finite) sequence of terms constituted by numbers, scalars, or anything
e.g. functions, vectors, matrices. Power series [with VARYING coefficients
an] are infinite polynomials. Sieve-of-Eratosthenes & Complement-Sieve-
of-Eratosthenes as well-defined infinite algorithms give rise to [infinite] n
solutions of all primes & composites; viz, they are the ”analogs” of power or
harmonic series as well-defined infinite functions. With SAME coefficients

a, the (non-alternating) geometric series

∞∑
n=0

axn = a+ ax+ ax2 + ax3 + . . .

having +ve common ratio x between successive terms, is simply a special
case of (non-alternating) power series. With a = 1

2 & −1
2 for –ve common

ratio [vs 1
2 for +ve common ratio in a (non-alternating) geometric series]; we

create an ”inverse” (alternating) geometric series [with SAME coefficients
a], which is simply a special case of (alternating) power series (Page 56 of [6]):

1

2
− 1

4
+

1

8
− 1

16
+ · · ·=

1
2

1− (−1
2)
=
1

3
vs

1

2
+

1

4
+

1

8
+

1

16
+ · · ·=

1
2

1− (+1
2)
=1.

A solution in radicals meant an expression using only the operations of
addition, subtraction, multiplication, division and nth root extraction on
coefficients of a polynomial equation. Following directly from Galois theory
using polynomial f(x) = x5 − x − 1 as one of the simplest examples of a
non-solvable quintic polynomial, Abel-Ruffini theorem states that there is
no solution in radicals to general (finite) polynomial equations of degree five
or higher with arbitrary coefficients. Here, general meant the coefficients of
a polynomial equation are viewed and manipulated as indeterminates. We
extrapolate: ”Any power series as a general (infinite) polynomial equations
having infinitely many coefficients should have no solution in radicals”.

Eq. 1 ζ(s) & Eq. 2 η(s) have complex variable s = σ + it. In 0 < σ < 1
critical strip containing σ = 1

2 critical line, η(s) must act as proxy function
for ζ(s) [with both ≡ infinite series]. When s = 1 in ζ(s) & η(s) with
n = +ve integers, we get non-alternating and alternating harmonic series.
Our ”amalgated” generic Fundamental Theorem of Algebra heuristically =⇒
(eligible) general [finite or infinite] algorithms and functions (of degree n with
real or complex coefficients) have exactly [finite or infinite or ALN] n roots
or n solutions as real or complex numbers, counting multiplicities. Riemann
hypothesis is true when nontrivial zeros as Origin point intercepts are the
infinitely many n roots that only occur when parameter σ = 1

2 resulting in
[optimal] ”formula symmetry” for η(s) [as infinite series]. Polignac’s and
Twin prime conjectures are true when Sieve-of-Eratosthenes algorithm and

its derived sub-algorithms [as ”infinite series” via

ALN∑
n=i

pn+1 = 3 +

n∑
i=2

gi]

have ALN of n solutions represented by the Set [≡ total] of Odd Primes and
Subsets [≡ subtotals] of Odd Primes derived from all even Prime gaps.

Common abbreviations used in this paper: CP = Completely Predictable,
IP = Incompletely Predictable, FL = Finite-Length, IL = Infinite-Length,
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Figure 3. INPUT for σ = 1
2 (for Figure 4), 2

5 (for Figure

5), and 3
5 (for Figure 6). Riemann zeta function ζ(s) has

two countable infinite sets of firstly, Completely Predictable
trivial zeros located at s = all negative even numbers and
secondly, Incompletely Predictable nontrivial zeros located
at σ = 1

2 as various t-valued transcendental numbers.

Figure 4. OUTPUT for σ = 1
2 as Gram points. Polar graph

of ζ(12 + ıt) plotted along critical line for real values of t

running from 0 to 34. Horizontal axis: Re{ζ(12+ıt)}. Vertical
axis: Im{ζ(12 + ıt)}. Presence of Origin intercept points.

CFS = countably finite set, CIS = countably infinite set, IM = infinitely-
many, ALN = arbitrarily large number. We treat eligible algorithms and
functions as de novo infinite series in section 2 below.

2. General notations, Prime number theorem for Arithmetic
Progressions and creating de novo Infinite Series

Critical strip≡{s ∈ C : 0 < Re(s) < 1}&Critical line≡{s ∈ C : Re(s) = 1
2}

in Figure 3. Phrase ”inside the critical strip” refers to parameter s [=
σ±it with 0 < σ < 1; viz, 0 < Re(s) < 1] having complex number values de-
fined for η(s) as given by parameter t over ± real numbers. Phrase ”outside
the critical strip” refers to parameter s [= σ± it with σ > 1; viz, Re(s) > 1]
having complex number values defined for ζ(s) as given by parameter t over
± real numbers. When s is considered for (purely) real number values:
ζ(−1) = − 1

12 , ζ(0) = −1
2 , ζ(

1
2) = –1.4603545..., etc. Via Eq. (3) as its

functional equation, ζ(s) has Completely Predictable infinitely many trivial
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Figure 5. OUTPUT for σ = 2
5 as virtual Gram points.

Varying Loops are shifted to left of Origin with horizontal
axis: Re{ζ(25 + ıt)}, and vertical axis: Im{ζ(25 + ıt)}. Nil
Origin intercept points.

Figure 6. OUTPUT for σ = 3
5 as virtual Gram points.

Varying Loops are shifted to right of Origin with horizontal
axis: Re{ζ(35 + ıt)}, and vertical axis: Im{ζ(35 + ıt)}. Nil
Origin intercept points.

Figure 7. Close-up view of virtual Origin points when σ =
1
3 . OUTPUT for σ = 1

3 [σ < 1
2 situation] as virtual Gram

points. Polar graph of ζ(13+ıt) plotted along non-critical line
for real values of t running between 0 and 100, horizontal axis:
Re{ζ(13+ıt)}, and vertical axis: Im{ζ(13+ıt)}. Total absence
of all Origin intercept points at ”static” Origin point. Total
presence of all virtual Origin intercept points (as additional
negative virtual Gram[y=0] points on x-axis) at ”varying”
[infinitely many] virtual Origin points.
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zeros at each even negative integer s = −2n for n = 1, 2, 3, 4, 5.... Even
though ζ(1) is undefined as it diverges to ∞, its Cauchy principal value

lim
ε→0

ζ(1 + ε) + ζ(1− ε)

2
exists and is equal to Euler-Mascheroni constant γ

= 0.577218... [a transcendental number].
List of abbreviations incorporating relevant definitions:
·CP entities: These entities manifest CP independent properties.
·IP entities: These entities manifest IP dependent properties.
·ζ(s): f(n) Riemann zeta function [≡ infinite (converging) series for
Re(s) > 1] – see Eq. (1) below containing variable n, and parameters t and
σ will generate [via its proxy Dirichlet eta function] Zeroes when σ = 1

2 and

virtual Zeroes when σ ̸= 1
2 .

·η(s): f(n) Dirichlet eta function [≡ infinite (converging) series for
Re(s) > 0] – see Eq. (2) below as the analytic continuation of ζ(s), con-
taining variable n, and parameters t and σ will generate Zeroes when σ = 1

2

and virtual Zeroes when σ ̸= 1
2 .

·sim-η(s): f(n) simplified Dirichlet eta function [≡ infinite (converging)
series for Re(s) > 0], derived by applying Euler formula to η(s), containing
variable n, and parameters t and σ will generate Zeroes when σ = 1

2 – see

Eq. (4) below and virtual Zeroes when σ ̸= 1
2 – see Eq. (5) below.

·DSPL: F (n) Dirichlet Sigma-Power Law [≡ ”continuous” infinite (con-
verging) series for Re(s) > 0] =

∫
sim-η(s)dn containing variable n, and

parameters t and σ will generate Pseudo-zeroes when σ = 1
2 – see Eq. (6)

below and virtual Pseudo-zeroes when σ ̸= 1
2 whereby the (virtual) Zeros

= (virtual) Pseudo-zeros – π
2 relationship allows (virtual) Pseudo-zeros to

(virtual) Zeros conversion and vice versa.
·NTZ: Nontrivial zeros located on the one-dimensional (mathematical) σ =
1
2 -critical line are precisely equivalent to G[x=0,y=0]P: Gram[x=0,y=0]
points as Origin intercept points which are located at the zero-dimensional
(geometrical) σ = 1

2 -Origin point [as per Figure 4]. These entities, mathe-
matically defined by

∑
ReIm{η(s)} = Re{η(s)} + Im{η(s)} = 0, are gen-

erated by equation G[x=0,y=0]P-η(s) containing exponent 1
2 when σ = 1

2 .
·GP or G[y=0]P: ’usual’ or ’traditional’ Gram points = Gram[y=0] points
= x-axis intercept points that are [multiple-positioned] located on one-
dimensional x-axis line are generated by equation G[y=0]P-η(s) when σ = 1

2 .

These entities are mathematically defined by
∑

ReIm{η(s)}=Re{η(s)}+ 0,

or simply Im{η(s)} = 0. Riemann hypothesis is usefully stated as none of
the [additional] virtual G[x=0]P generated by equation G[x=0]P-η(s) when
σ ̸= 1

2 – as demonstrated by Figure 7 for σ = 1
3 – can be constituted by

t transcendental number values that [incorrectly] coincide with t transcen-
dental number values for NTZ when σ = 1

2 .
·G[x=0]P: Gram[x=0] points = y-axis intercept points that are [multiple-
positioned] located on one-dimentional y-axis line are generated by equation
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G[x=0]P-η(s) when σ = 1
2 . These entities are mathematically defined by∑

ReIm{η(s)} = 0 + Im{η(s)}, or simply Re{η(s)} = 0.

·virtual NTZ: virtual nontrivial zeros or virtual G[x=0,y=0]P: virtual
Gram[x=0,y=0] points. These are virtual Origin intercept points located at
the multiple-positioned virtual Origin points which are generated by equa-
tion virtual-G[x=0,y=0]P-η(s) containing exponent values ̸= 1

2 when σ ̸= 1
2 .

We note that each virtual NTZ when σ < 1
2 in Figure 5 equates to an

[additional] negative virtual G[y=0]P located at IP varying positions on
horizontal axis, and each virtual NTZ when σ > 1

2 in Figure 6 equates to
an [additional] positive virtual G[y=0]P located at IP varying positions on
horizontal axis. We observe overall less virtual G[x=0]P when σ > 1

2 , and

overall more virtual G[x=0]P when σ < 1
2 .

·Sieve-of-Eratosthenes (S-of-E): For i = 1, 2, 3, 4, 5... and with p1 = 2
[≡ even prime number 2 forming a CFS with cardinality of 1] as the first term

in S-of-E; the algorithm S-of-E as symbolically denoted by pn+1 = 2 +
n∑

i=1

gi

with gn = pn+1 − pn and its derived sub-algorithms faithfully generate the
set of all prime numbers 2, 3, 5, 7, 11, 13... and subsets of Odd Primes
derived from even Prime gaps 2, 4, 6, 8, 10.... We now ignore even prime
number 2 by changing variable i to instead commence from 2nd position.
For i = 2, 3, 4, 5, 6... and with p2 = 3 [≡ first Odd Prime 3] as the first
term in Modified-S-of-E; the altered algorithm Modified-S-of-E as symbol-

ically denoted by pn+1 = 3 +

n∑
i=2

gi with gn = pn+1 − pn and its derived

sub-algorithms will faithfully generate the set of all Odd Primes 3, 5, 7, 11,
13, 17... and subsets of Odd Primes derived from even Prime gaps 2, 4,
6, 8, 10.... By performing summation [viz, conducting repeated addition of
sequence from ALN of prime gaps and prime numbers that are arranged

in an unique order] on above two algorithms as
ALN∑
n=i

pn+1 = 2 +

n∑
i=1

gi and

ALN∑
n=i

pn+1 = 3 +
n∑

i=2

gi, we obtain (de novo) infinite series. These infinite

series are all diverging series for this two algorithms [and their derived
sub-algorithms]. In contrast, Brun’s constants as outlined in section 4 are
converging series. The cardinality of CIS-ALN-decelerating is applicable
for (i) set of all prime numbers, (ii) set of all Odd Primes, (iii) subsets of
Odd Primes, and (iv) set of all even Prime gaps =⇒ Modified Polignac’s
and Twin prime conjectures are true.
·Complement-Sieve-of-Eratosthenes: For i = 1, 2, 3, 4, 5... and with

c1 = 4; this algorithm as symbolically denoted by cn+1 = 4 +

n∑
i=1

ci with
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gn = cn+1 − cn and its derived sub-algorithms will faithfully generate all
composite numbers. Parallel arguments to construct de novo infinite series
as diverging series for (sub)sets of composite numbers are also possible.

In general, we note the infinite-length sequence of a given converging series
or diverging series can theoretically be constituted by either positive terms
e.g. ζ(s) as non-alternating harmonic series Eq. (1) OR alternating positive
and negative terms e.g. η(s) as alternating harmonic series Eq. (2).

ζ(s) =
∞∑
n=1

1

ns

(1)

=
1

1s
+

1

2s
+

1

3s
+

1

4s
+

1

5s
+ · · ·

= Πp prime
1

(1− p−s)

=
1

(1− 2−s)
.

1

(1− 3−s)
.

1

(1− 5−s)
.

1

(1− 7−s)
.

1

(1− 11−s)
· · · 1

(1− p−s)
· · ·

Eq. (1) non-alternating harmonic series Riemann zeta function ζ(s) is a
function of complex variable s (= σ ± ıt) that continues sum of infinite

series ζ(s) =

∞∑
n=1

1

ns
=

1

1s
+

1

2s
+

1

3s
+ · · · for Re(s) > 1, and its analytic

continuation elsewhere for 0 < Re(s) < 1. Containing no nontrivial zeros,
ζ(s) is defined only in 1 < σ < ∞ region where it is absolutely convergent.
The common convention is to write s as σ + ıt with ı =

√
−1, and with σ

and t real. Valid for σ > 1, we write ζ(s) as Re{ζ(s)}+ıIm{ζ(s)} and note
that ζ(σ+ ıt) when 0 < t < +∞ is the complex conjugate of ζ(σ− ıt) when
−∞ < t < 0. In Eq. (1), the equivalent Euler product formula with product
over all prime numbers implies the presence of Sieve of Eratosthenes.

η(s) =

∞∑
n=1

(−1)n+1

ns
=

1

1s
− 1

2s
+

1

3s
− 1

4s
+

1

5s
− · · ·(2)

Eq. (2) alternating harmonic series Dirichlet eta function η(s) that faithfully
generates all three types of Gram points as three dependent CIS-IM-linear
Incompletely Predictable entities when σ = 1

2 must represent and act as
proxy function for Eq. (1) in 0 < σ < 1-critical strip [viz, for 0 < Re(s) < 1]
containing σ = 1

2 -critical line because ζ(s) only converges when σ > 1. They

are related to each other as ζ(s) = γ · η(s) or equivalently as η(s) =
1

γ
· ζ(s)

with proportionality factor γ =
1

(1− 21−s)
.

ζ(s) = 2sπs−1 sin
(πs
2

)
Γ(1− s) ζ(1− s)(3)
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ζ(s) satisfies Eq. (3) as the functional equation whereby Γ is the gamma
function. [NOTE: Derived for complex numbers with a positive real part,

Γ is defined via a convergent improper integral Γ(z) =

∫ ∞

0
tz−1e−t dt,ℜ(z)

> 0. Γ is then defined as analytic continuation of this integral function to a
meromorphic function that is holomorphic in the whole complex plane except
zero and negative integers, where the function has simple poles. The main
motivation for its development is Γ(x+ 1) interpolates the factorial function
x! = 1 · 2 · 3 · ...· x to non-integer values.] As an equality of meromorphic
functions valid on whole complex plane, Eq. (3) relates values of ζ(s) at
points s and 1 − s; in particular, it relates even positive integers with odd
negative integers. Owing to zeros of sine function, the functional equation
implies ζ(s) has a simple zero at each even negative integer s = −2n =
−2,−4,−6,−8,−10... known as trivial zeros of ζ(s). When s is an even

positive integer, product sin(
πs

2
)Γ(1− s) on right is non-zero because Γ(1−

s) has a simple pole, which cancels simple zero of sine factor.
At σ = 1

2 , sim-η(s) =

∞∑
n=1

(2n)−
1
2 2

1
2 cos(t ln(2n) +

1

4
π)−

∞∑
n=1

(2n− 1)−
1
2 2

1
2 cos(t ln(2n− 1) +

1

4
π)

(4)

At σ = 2
5 , sim-η(s) =

∞∑
n=1

(2n)−
2
5 2

1
2 cos(t ln(2n) +

1

4
π)−

∞∑
n=1

(2n− 1)−
2
5 2

1
2 cos(t ln(2n− 1) +

1

4
π)

(5)

For any real number n, eın = cosn + ı · sinn is Euler’s formula where e
[≊transcendental number 2.71828] is base of natural logarithm, ı =

√
−1

is imaginary unit. When n = π [≊transcendental number 3.14159], then
eiπ+1 = 0 or eiπ = −1, known as Euler’s identity. Applying this formula to
f(n) η(s) results in Eq. (4) f(n) simplified η(s) at σ = 1

2 that incorporate all
nontrivial zeros [as Zeroes]. There is total absence of (non-existent) virtual
nontrivial zeros [as virtual Zeroes]. Eq. (5) f(n) simplified η(s) at σ = 2

5
will incorporate all (non-existent) virtual nontrivial zeros [as virtual Zeroes].
There is total absence of nontrivial zeros [as Zeroes].

At σ = 1
2 , DSPL =

1

2
1
2

(
t2 +

1

4

) 1
2
[
(2n)

1
2 cos(t ln(2n)− 1

4
π)− (2n− 1)

1
2 cos(t ln(2n− 1)− 1

4
π) + C

]∞
1

(6)

F (n) Dirichlet Sigma-Power Law, denoted by DSPL, refers to
∫
sim-η(s)dn.

Eq. (6) is F(n) DSPL at σ = 1
2 that will incorporate all nontrivial zeros [as

Pseudo-zeroes to Zeroes conversion].
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Figure 8. The natural logarithm function logex or ln(x)
and natural exponential function exp(x) or ex. The graphs
of logex and its inverse ex are symmetric with respect to
line y = x thus geometrically denoting diagonal symmetry of
these two functions.

Given δ = 1
10 , the left-shifted σ = 1

2−δ = 2
5 -non-critical line (Figure 5) and

right-shifted σ = 1
2+δ = 3

5 -non-critical line (Figure 6) are equidistant from

nil-shifted σ = 1
2 -critical line (Figure 4). Let x = (2n) or

1

(2n)
or (2n−1) or

1

(2n− 1)
. With multiplicative inverse operation of xδ·x−δ = 1 or

1

xδ
· 1

x−δ
= 1

that is applicable, this imply intrinsic presence of Multiplicative Inverse
in sim-η(s) or DSPL for all σ values with this function or law rigidly obeying
relevant trigonometric identity. Then both f(n) sim-η(s) and F (n) DSPL
will manifest Principle of Equidistant for Multiplicative Inverse (as
per Page 41 of [6]). The dissertation based on Figure 8 with inverse functions
ln(x) & e(x) in Page 30 – 35 of [6] confirms Asymptotic law of distribution for

prime numbers as lim
x→∞

Prime-π(x)[
x

ln(x)

] =1 and Asymptotic law of distribution

for composite numbers as lim
x→∞

Composite-π(x)[
x

e(x)

] = 1. This fully supports

Prime number theorem [viz, Prime-π(x)≈ x

ln(x)
] and the derived Composite

number theorem [viz, Composite-π(x) ≈ x

e(x)
].

A number base, consisting of any whole number greater than 0, is number
of digits or combination of digits that a number system uses to represent
numbers e.g. decimal number system or base 10, binary number system
or base 2, octal number system or base 8, hexa-decimal number system or
base 16. Prime counting function, Prime-π(x) = number of primes ≤ x and
Composite counting function, Composite-π(x) = number of composites ≤ x.
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As x → ∞, derived properties of Prime-π(x) occur in, for instance, Prime
number theorem for Arithmetic Progressions, Prime-π(x; b, a) [= number of
primes ≤ x with last digit of primes given by a in base b]. For any choice of

digit a in base b with gcd(a,b) = 1: Prime-π(x; b, a) ∼ Prime-π(x)

ϕ(b)
. Here,

Euler’s totient function ϕ(n) is defined as the number of positive integers
≤ n that are relatively prime to (i.e., do not contain any factor in common
with) n, where 1 is counted as being relatively prime to all numbers. Then
each of the last digit of primes given by digit a in base b as x → ∞ is equally
distributed between the permitted choices for digit a with this result being
valid for, and is independent of, any chosen base b.

Numbers with their last digit ending in (i) 1, 3, 7 or 9 [which can be either
primes or composites] constitute ∼40% of all integers; and (ii) 0, 2, 4, 5, 6
or 8 [which must be composites] constitute ∼60% of all integers. We validly
ignore the only single-digit even prime number 2 and odd prime number 5.
We note ≥ 2-digit Odd Primes can only have their last digit ending in 1, 3,
7 or 9 but not in 0, 2, 4, 5, 6 or 8. These are given as the complete List:
The last digit of Odd Primes having their Prime gaps with last digit ending
in 2 [viz, Gap 2, Gap 12, Gap 22, Gap 32...] can only be 1, 3 or 9 [but not
(5) or 7] as three choices.
The last digit of Odd Primes having their Prime gaps with last digit ending
in 4 [viz, Gap 4, Gap 14, Gap 24, Gap 34...] can only be 1, 3 or 7 [but not
(5) or 9] as three choices.
The last digit of Odd Primes having their Prime gaps with last digit ending
in 6 [viz, Gap 6, Gap 16, Gap 26, Gap 36...] can only be 3, 7 or 9 [but not
(5) or 1] as three choices.
The last digit of Odd Primes having their Prime gaps with last digit ending
in 8 [viz, Gap 8, Gap 18, Gap 28, Gap 38...] can only be 1, 7 or 9 [but not
(5) or 3] as three choices.
The last digit of Odd Primes having their Prime gaps with last digit ending
in 0 [viz, Gap 10, Gap 20, Gap 30, Gap 40...] can only be 1, 3, 7 or 9 [but
not (5)] as four choices.

Axiom 1. Applications of Prime number theorem for Arithmetic
Progressions will confirm Modified Polignac’s and Twin prime
conjectures to be true (as per Page 31 – 32 in [6]).

Proof. We use decimal number system (base b = 10), and ignore the
only single-digit even prime number 2 and odd prime number 5. For i =
1, 2, 3, 4, 5...; the last digit of all Gap 2i-Odd Primes can only end in
1, 3, 7 or 9 that are each proportionally and equally distributed as ∼25%
when x → ∞, whereby this result is consistent with Prime number theorem
for Arithmetic Progressions. The 100%-Set of, and its derived four unique
25%-Subsets of, Gap 2i-Odd Primes based on their last digit being 1, 3, 7
or 9 must all be CIS-ALN-decelerating. ”Different Prime numbers literally
equates to different Prime gaps” is a well-known intrinsic property. Since
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the ALN of Gap 2i as fully represented by all Prime gaps with last digit
ending in 0, 2, 4, 6 or 8 are associated with various permitted combinations
of last digit in Gap 2i-Odd Primes being 1, 3, 7 and/or 9 as three or four
choices [outlined above in List from preceding paragraph]; then these ALN
unique subsets of Prime gaps based on their last digit being 0, 2, 4, 6 or 8
together with their correspondingly derived ALN unique subsets constituted
by Gap 2i-Odd Primes having last digit 1, 3, 7 or 9 must also all be CIS-
ALN-decelerating. The Probability (any Gap 2i abruptly terminating as
x → ∞) = Probability (any Gap 2i-Odd Primes abruptly terminating as
x → ∞) = 0. Thus Modified Polignac’s and Twin prime conjectures is
confirmed to be true. With the ordinary Riemann hypothesis being a special
case, we additionally note the generalized Riemann hypothesis formulated

for Dirichlet L-function holds once x > b2, or base b < x
1
2 as x → ∞.

The [”statistical” or ”probabilistic”] proof is now complete for Axiom 1□.

3. Generic Squeeze theorem as a novel mathematical tool

We adopt abbreviations P = Prime numbers, C = Composite numbers,
NTZ = nontrivial zeros, G[y=0]P = Gram[y=0] points (usual / traditional
Gram points), and G[x=0]P = Gram[x=0] points.

Gram’s Law and Rosser’s Rule for Riemann zeta function via its proxy
Dirichlet eta function at σ = 1

2 are perpetually associated with recurring
violations (failures). Violations of Gram’s Law equates to intermittently
observing various geometric variants of two consecutive (positive first and
then negative) G[y=0]P that is alternatingly followed by two consecutive
NTZ. Violations of Rosser’s Rule equates to intermittently observing var-
ious geometric variants of reduction in expected number of certain x-axis
intercept points. Both types of violations may give rise to intermittent or
cyclical events of two missing G[y=0]P or, equivalently, to two extra NTZ.

We hereby artificially and conveniently regard the G[y=0]P ≤ G[x=0]P
≤ NTZ inequality as being applicable for Theorem 1 below. Observe that
this particular inequality has never been definitively confirmed to be true
over the large range of numbers. With full analysis, one of the following
alternative inequalities G[x=0]P ≤ G[y=0]P ≤ NTZ or NTZ ≤ G[y=0]P ≤
G[x=0]P or NTZ ≤ G[x=0]P ≤ G[y=0]P or G[x=0]P ≤ NTZ ≤ G[y=0]P or
G[y=0]P ≤ NTZ ≤ G[x=0]P over the large range of numbers could instead
be true. Even the equality G[y=0]P = G[x=0]P = NTZ over the large range
of numbers could instead also be true. It may even be the case that all types
of inequalities mentioned above could cyclically co-exist over the large range
of numbers. In principle, Theorem 1 should intuitively be validly applicable
to the correctly chosen inequality [or equality].

Theorem 1. (Generic Squeeze theorem). Crucially applicable to prime
numbers, composite numbers and nontrivial zeros, our devised Theorem 1 is
formally stated as follows (as per Page 51 – 53 in [6]).
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Let I be an interval containing point a. Let g, f , and h be algorithms or
functions defined on I, except possibly at a itself. Suppose for every x in
I not equal to a, we have g(x) ≤ f(x) ≤ h(x) and also suppose lim

x→a
g(x)=

lim
x→a

h(x) = L. Then lim
x→a

f(x) = L. The algorithms or functions g and h are

said to be lower and upper bounds (respectively) of f . Here, a is not required
to lie in the interior of I. Indeed, if a is an endpoint of I, then the above
limits are left- or right-hand limits. A similar statement holds for infinite
intervals e.g. applicable to the IM t-valued NTZ (as CIS-IM-linear) obtained
from Riemann zeta function via its proxy Dirichlet eta function, and the
ALN of P (as CIS-ALN-decelerating) obtained from Sieve-of-Eratosthenes
and IM C (as CIS-IM-accelerating) obtained from Complement-Sieve-of-
Eratosthenes. In particular, if I = (0,∞) or (0, ALN), then the conclusion
holds, taking the limits as x → ∞ or ALN.

Let an, cn be two sequences converging to ℓ, and bn a sequence. If ∀n ≥ N ,
N ∈ N we have an ≤ bn ≤ cn, then bn also converges to ℓ. From previous
arguments, we logically notice Generic Squeeze theorem is valid for care-
fully selected sequences e.g. those precisely derived from algorithm Sieve-
of-Eratosthenes generating set of all unique P 2, 3, 5, 7, 11, 13, 17, 19, 23,
29... with progressive ”cummulative” cardinality ≡ cn and sub-algorithms
from Complement-Sieve-of-Eratosthenes generating two subsets of all unique
pre-prime-Gap 2-Even C 4, 6, 10, 12, 16, 18, 22, 28... with progressive ”cum-
mulative” cardinality ≡ bn and of all unique 1st post-prime-Gap 1-Even C
8, 14, 20, 24, 32, 38, 44... with progressive ”cummulative” cardinality ≡ an.
We recognize even P 2 is not a pre-prime-Gap 2-Even C, and 1st P 3, 5, 11,
17, 29, 41, 59... from all twin prime pairings (3, 5), (5, 7), (11, 13), (17, 19),
(29, 31), (41, 43), (59, 61)... are never associated with 1st post-prime-Gap
1-Even C as these even numbers 4, 6, 12, 18, 30, 42, 60... [which must be
*eternally ubiquitous*, not least, to comply with Law of Continuity] are
all pre-prime-Gap 2-Even C. Incorporating mixtures of P & C, our findings
on twin prime pairings =⇒ {cn representing progressive total of all P}
> {bn representing progressive total of all pre-prime-Gap 2-Even C} > {an
representing progressive total of all 1st post-prime-Gap 1-Even C}. Since
lim

n→ALN
an = lim

n→ALN
cn = CIS-ALN-decelerating, then lim

n→ALN
bn =CIS-ALN-

decelerating. Stated in another insightful way: The perpetual recurrence of
intermittent inevitable DISAPPEARANCE of 1st post-prime-Gap 1-Even C
is solely due to coinciding intermittent inevitable APPEARANCE of twin
primes =⇒ Twin prime conjecture is true.
*The 1st post-prime-Gap 1-Even C precisely forms OEIS sequence A014574
Average of twin prime pairs 4, 6, 12, 18, 30, 42, 60, 72, 102, 108, 138, 150,
180, 192, 198, 228, 240, 270, 282, 312, 348, 420, 432, 462, 522, 570, 600,
618... by R. K. Guy, N. J. A. Sloane & E. W. Weisstein (June 11, 2011)
https://oeis.org/A014574 whereby
(i) With an initial 1 added, these numbers form part of the complement of
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closure of {2} under the operations a ∗ b + 1 and a ∗ b − 1 within the set
of all non-zero positive even numbers U = {2, 4, 6, 8, 10...}. For a ∗ b + 1:
2 ∗ 2+ 1 = 5. For a ∗ b− 1: 2 ∗ 2− 1 = 3. Under both operations, we obtain
the set S = {2, 3, 5}. Therefore the complement of S within U would be all
even numbers except 2 [and 5 & 3]; viz, S′ = {4, 6, 8, 10, 12, 14, 16...}.
(ii) These numbers are also the square root of the product of twin prime
pairs + 1. Two consecutive odd numbers can be written as 2k + 1, 2k + 3.
Then (2k + 1)(2k + 3) + 1 = 4(k2 + 2k + 1) = 4(k + 1)2, a perfect square
[where the countably infinite set of all perfect squares ≡ product of an in-
teger multiplied by itself = 1, 4, 9, 16, 25, 36, 49, 64, 81, 100...]. Since twin
prime pairs are two consecutive odd numbers, the statement is true for all
CIS-ALN-decelerating twin prime pairs.
(iii) These numbers are single (or isolated) composites. Nonprimes k such
that neither k − 1 nor k + 1 is nonprime.
(iv) These form the numbers n such that σ(n−1) = ϕ(n+1). This equation
involves two arithmetic functions: the sum of divisors function σ [which
calculates the sum of all positive divisors of n e.g. when n = 30: Prime
factorization of (n − 1) = 29 is 29 = 291, and σ(29) = 1 + 29 = 30] and
Euler’s totient function ϕ [which gives the count of positive integers less
than n that are coprime to n e.g. Prime factorization of (n+ 1) = 31 is 31
= 311, and ϕ(31) = 31− 1 = 30].
(v) Aside from the first term 4 in the sequence, all remaining terms 6, 12,
18, 30, 42, 60, 72, 102, 108, 138, 150... have digital root 3, 6, or 9 e.g. the
digital root of 138 is 3 since 138 = 1 + 3 + 8 = 12 and 1 + 2 = 3.
(vi) These form the numbers n such that n2 − 1 is a semiprime [a natural
number that is the product of two prime numbers].
(vii) Every term but the first term 4 is a multiple of 6 [and all the multiple
of 6 clearly constitute a countably infinite set].

From above synopsis that is valid for [mixed] prime & composite numbers
as x →ALN, we conclude: Since there is an ALN of all prime numbers as
(cn) and also an ALN of all 1st post-prime-Gap 1-Even composite numbers
as (an), then by the Generic Squeeze theorem, there must also be an ALN
of all Gap 2-Even composite numbers as (bn). Thus ℓ must have the value
of ALN. In theory, even if there are [incorrectly] only finitely many twin
primes, the mathematical relationship of an ≤ bn ≤ cn will still hold except
that the Generic Squeeze theorem is no longer applicable as there will be
inevitable ”errors” present in the computed an, bn and cn.

By applying Generic Squeeze theorem [only] to Odd P, we now prove
Polignac’s and Twin prime conjectures are true: We ignore even P 2. Let
algorithm Sieve-of-Eratosthenes that generate the set of all unique Total Odd
P 3, 5, 7, 11, 13, 17, 19, 23, 29... with progressive ”cummulative” cardinality
≡ cn and sub-algorithms from Sieve-of-Eratosthenes that generate the two
[randomly selected] subsets of all unique Gap 4-Odd P 7, 13, 19, 37, 43, 67...
with progressive ”cummulative” cardinality ≡ an and of all unique Gap 2,
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6, 8, 10, 12...-Odd P 3, 5, 11, 17, 23, 23, 29, 31, 41, 47, 53, 59, 61... [viz, not
including Gap 4-Odd P] with progressive ”cummulative” cardinality ≡ bn.
Instead of choosing bn to be even Prime gap 4, one could choose any other
eligible even Prime gap derived from the set of all even Prime gaps [which will
inevitably also include Zhang’s landmark result of an unknown even Prime
gap N < 70 million]. Since lim

n→ALN
an = lim

n→ALN
cn = CIS-ALN-decelerating,

then lim
n→ALN

bn = CIS-ALN-decelerating. Stated in another insightful way:

In order for our novel method Generic Squeeze theorem to be ubiquitously
applicable for Odd P, all even Prime gaps 2, 4, 6, 8, 10... must be associated
with their corresponding ALN of Odd P.

On 17 April 2013, Yitang Zhang announced an incredible proof that
there are infinitely many pairs of prime numbers that differ by less than
70 million[7]; viz, there is an arbitrarily large number of Odd Primes with
an unknown even Prime gap N of less than 70 million. By optimizing
Zhang’s bound, subsequent Polymath Project collaborative efforts using a
new refinement of GPY sieve in 2014 loweredN to 246; and assuming Elliott-
Halberstam conjecture and its generalized form further lower N to 12 and
6, respectively. Intuitively, N has more than one valid values such that the
same condition holds for each N value. Using different methods, we can
at most lower N to 2 and 4 in regards to Odd Primes having small even
Prime gaps 2 & 4 with each uniquely generating CIS-ALN-decelerating Odd
Primes. We anticipate there are all remaining even Prime gaps w.r.t. Odd
Primes with large even Prime gaps ≥ 6 as denoted by corresponding N
≥ 6 values whereby each large even Prime gap will generate its own unique
CIS-ALN-decelerating Odd Primes.

We justify ”Zhang’s optimized result ≥ 3 up to ALN even Prime
gaps with each having ALN of elements”: Always as finite [but NOT
infinite] length, we observe as side note that two or more consecutive Odd
Primes are validly and rarely constituted by [same] even Prime gap of 6 or
multiples of 6. With just one or two existing even Prime gaps that have
ALN of elements being simply ”insufficient” in the large range of prime
numbers, then the landmark result by Zhang on this unknown even Prime
gap N of less than 70 million is usefully extrapolated as ”There must be
at least one subset of Odd Primes having ALN of elements”. Hence there
are aesthetically at least two, if not three, existing even Prime gaps that
generate their corresponding CIS-ALN-decelerating Odd Primes. Modified
Polignac’s and Twin prime conjectures equates to all even Prime gaps 2, 4, 6,
8, 10... generating their corresponding CIS-ALN-decelerating Odd Primes.

Near-identical arguments can be made for three types of Gram points
located at σ = 1

2 -critical line of Riemann zeta function but we leave out
the full exercise of applying Generic Squeeze theorem to NTZ as progressive
”cummulative” cardinality ≡ cn, G[x=0]P as progressive ”cummulative”
cardinality ≡ bn and G[y=0]P as progressive ”cummulative” cardinality ≡
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an. We immediately recognize the [trivial] conclusion: Since lim
n→∞

an =

lim
n→∞

cn = CIS-IM-linear, then lim
n→∞

bn = CIS-IM-linear.

Eq. (4) manifests exact Dimensional analysis homogeneity when σ = 1
2

whereby Σ(all fractional exponents) = 2(−σ) = exact negative whole number
–1 [c.f. Eq. (5) manifests inexact Dimensional analysis homogeneity when
σ = 2

5 whereby Σ(all fractional exponents) = 2(–σ) = inexact negative

fractional number –4
5 ]. Only Dirichlet eta function having parameter σ = 1

2
will mathematically depict [optimal] ”formula symmetry” on Σ(all fractional
exponents) as an exact negative whole number, whereby absolute values of
all fractional exponents = 1

2 when associated with constant 2 and variable
(2n) or (2n–1). This formula symmetry is not equivalent to geometrical
symmetry about X-axis, Y-axis, Diagonal, or Origin point that do not exist
for any Dirichlet eta function when considered for either −∞ < t < 0 or 0 <
t < +∞ from full range −∞ < t < +∞; whereby we conventionally adopt
the positive range. Simple observation of [optimal] ”formula symmetry”
implies only σ = 1

2 -Dirichlet eta function will perpetually & geometrically

intercept σ = 1
2 -Origin point as Origin intercept points or Gram[x=0,y=0]

points (i.e. will perpetually & mathematically lie on σ = 1
2 -critical line as

nontrivial zeros) an infinite number of times.
Conceptually a form of Langlands program ”Theory of Symmetry”,

IL (sub-)algorithms or IL (sub-)equations and FL (sub-)algorithms or FL
(sub-)equations will respectively generate infinitely-many and finitely-many
entities. All the FL (sub-)algorithms or FL (sub-)equations are CP but the
IL (sub-)algorithms or IL (sub-)equations can be either CP or IP. Here,
we validly regard equation Dirichlet eta function (proxy for Riemann zeta
function that generate nontrivial zeros when σ = 1

2), and algorithms Sieve-
of-Eratosthenes [for prime numbers] and Complement-Sieve-of-Eratosthenes
[for composite numbers] as non-overlapping ”IP IL number generators”.

Remark 3.1. Not least to maintain Dimensional analysis homogeneity and
to conserve Total number of elements (cardinality), it is a sine qua non
Pre-requisite Mathematical Condition that a parent IP IL algorithm which is
precisely constituted by its IP IL sub-algorithms or a parent IP IL equation
which is precisely constituted by its IP IL sub-equations must generally all be
wholly IP IL [and not be mixed IP IL and CP FL]. Useful self-explanatory
analogy using CP IL (sub)algorithms or (sub)equations: Set ”twin” even
numbers 0, 2, 4, 6, 8, 10... with Even gap 2, Subset ”cousin” even numbers
0, 4, 8, 12, 16, 20... with Even gap 4, Subset ”sexy” even numbers 0, 6, 12,
18, 24, 30... with Even gap 6, etc must all be constituted by CP IL [and not
mixed CP IL and IP IL] even numbers that are derived from, paradoxically,
overlapping ”CP IL number generators”.

Remark 3.2. It was correctly asserted on Page 3 – 4 of [6] that any created
Prime-tuplet or Prime-tuple is not able to be used to either prove or dis-
prove Modified Polignac’s and Twin prime conjectures. The reason is that
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Prime-tuplets or Prime-tuples are simply ”overlapping and incomplete”
(Sub)Tuples Classification of consecutive primes. In contrast, we can
use the ”non-overlapping and complete” (Sub)Sets Classification of
grouped primes to prove Modified Polignac’s and Twin prime conjectures.
Thus even Prime gap 2 = Prime 2-tuplets of diameter 2 and even Prime
gaps 4, 6, 8, 10, 12... = Prime 2-tuples of diameter 4, 6, 8, 10, 12....

4. Theorem of Divergent-to-Convergent series conversion for
Prime numbers as a novel mathematical tool

Recall from section 2 the algorithms Sieve-of-Eratosthenes (S-of-E) and
Modified-S-of-E. Both algorithms and their derived sub-algorithms faithfully
generate set of all prime numbers 2, 3, 5, 7, 11, 13...; set of all Odd Primes 3,
5, 7, 11, 13, 17...; and subsets of Odd Primes derived from even Prime gaps 2,

4, 6, 8, 10.... By performing summation given by
ALN∑
n=i

pn+1 = 2 +
n∑

i=1

gi and

ALN∑
n=i

pn+1 = 3 +
n∑

i=2

gi, we obtain (de novo) infinite series as diverging series

for these two algorithms [and their derived sub-algorithms]. For Polignac’s
and Twin prime conjectures to be true, we deduce the cardinality for (i) set
of all prime numbers, (ii) set of all Odd Primes, (iii) subsets of Odd Primes,
and (iv) set of all even Prime gaps must all be CIS-ALN-decelerating. In
contrast, we deduce below after Theorem 2 that all Brun’s constants as
(derived) infinite series are, in fact, converging series.

Useful preliminary information explain Theorem 2: Four basic
arithmetic operations of addition [and complementary substraction] and
multiplication [and complementary division] obey Axioms of Addition and
Multiplication, and Axioms of Order. Division of one number by another
is equivalent to multiplying first number by reciprocal (or multiplicative
inverse) of second number, whereby division by 0 is always undefined. Sub-
traction of one number from another is equivalent to adding additive inverse
of second number (viz, a negative number) to first number (viz, a positive
number). Completely Predictable properties arising from (non-)alternating
addition of any Even numbers (E) 0, 2, 4, 6, 8, 10, 12... and any Odd num-
bers (O) 1, 3, 5, 7, 9, 11, 13...:
(1) E + E + E + E... when involving any number of terms = E.
(2) O + O + O + O... when involving an even number of terms = E; and
when involving an odd number of terms = O.
The alternating sum E + O + E + O + E + O... when involving (1 + n)
terms for n = 1, 2, 3, 4, 5... = repeating patterns of O, O, E, E, O, O,....

A convergent series (CS) as an infinite series having its partial sums of
sequence that tends to a finite limit is validly represented by the [defined]
value of this finite limit. A divergent series (DS) as an infinite series having
its partial sums of sequence that tends to a infinite limit is validly represented
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by the [undefined] value of this infinite limit. As previously discussed in
section 2, the infinite-length sequence of a given CS or DS can theoretically
be constituted by either positive terms OR alternating positive and negative
terms. The following are Completely Predictable properties arising from
addition of any infinite series constituted by ≥ 1 CS and/or ≥ 1 DS:
I. DS + DS + DS +... when involving any number of DS terms = DS.
II. CS + CS +... + DS + DS +... when involving any number of CS terms
and any number of DS terms = DS.
III. CS + CS + CS +... when involving a finite number of CS terms = CS.
IV. CS + CS + CS +... when involving an infinite number of CS terms or
arbitrarily large number (ALN) of CS terms = DS.

In mathematics and theoretical physics, the techniques of zeta function
regularization, dimensional regularization and analytic regularization are
types of regularization or summability methods that assigns finite values to
divergent sums or products. They are then used to define determinants and
traces of some self-adjoint operators [which admit orthonormal eigenbasis
with real eigenvalues]. Inspired by the Method of Smoothed asymptotics
previously developed by Prof. Terence Tao in 2010, we broadly base some
deductions in this paper on recent introduction in 2024 by Prof. Antonio
Padilla and Prof. Robert Smith of a new ultra-violet regularization scheme
for loop integrals in Quantum field theory dubbed η regularization. We will
outline below rich underlying connections between analytic number theory
and perturbative quantum field theory.

Theorem 2. (Theorem of Divergent-to-Convergent series conversion for
Prime numbers) (as per Page 53 – 54 in [6]).

We validly ignore even prime number 2. Theorem 2, aka Smoothed
asymptotics for Prime numbers with an enhanced regulator, as
given in next two paragraphs is further expanded below using three Brun’s
constants computed for twin primes, cousin primes and sexy primes.

For [eligible] homogenous entities of prime numbers with application of
divergent series (DS) to convergent series (CS) conversion relationship, we
obtain CS + CS + CS +... when involving arbitrarily large number (ALN)
of CS terms [that faithfully ”represent” all Subsets of Odd Primes] = DS
[that faithfully ”represent” the Set of all Odd Primes]. We recognize the
ALN of computed CS terms will precisely correspond to Brun’s constants.
The correctly chosen enhanced regulator for prime numbers ≡ sine
qua non condition [that must be fully complied with by all Odd Primes]:
Derived from the set of all Odd Primes, there must be an ALN of subsets of
Odd Primes derived from even Prime gaps 2, 4, 6, 8, 10... with each subset
of Odd Primes containing an ALN of unique elements.

The elimination of a DS to CS under our novel Divergent-to-Convergent
series theorem for Prime numbers fully supports Polignac’s and Twin prime
conjectures to be true. This procedure is reminiscent of invoking ’Method of
Smooth asymptotics’ and ’regularization of divergent series or integrals’ to
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enable elimination of divergences in analytic number theory and preservation
of gauge invariance at one loop in a wide class of non-abelian gauge theories
coupled to Dirac fermions that preserves the Ward identity for the vacuum
polarisation tensor [viz, a regularized quantum field theory]. This is achieved
by Padilla and Smith via adopting suitable choices from their proposed
families of enhanced regulators[3] with analytic continuation that converge
to Riemann zeta function value ζ(−1) = − 1

12 of extra relevance to quantum
gravity, string theory, etc.

Considering Euler products
∞∑
n=1

1

n
=

∏
p

(
1 +

1

p
+

1

p2
+ · · ·

)
=

∏
p

1

1− p−1

when taken over the set of all infinitely many primes, Leonhard Euler in 1737
showed the [harmonic] infinite series of all infinitely many primes (as sum
of the reciprocals of all infinitely many primes) diverges very slowly; viz,∑
p prime

1

p
=

1

2
+

1

3
+

1

5
+

1

7
+

1

11
+

1

13
+

1

17
+

1

19
+ · · · = ∞. If it were the

case that this sum of the reciprocals of twin primes (Prime gap 2), cousin
primes (Prime gap 4), sexy primes (Prime gap 6), etc all diverged; then
that fact would imply that there are infinitely many of twin primes, cousin
primes, sexy primes, etc. However twin primes are less frequent than all in-
finitely many prime numbers by nearly a logarithmic factor with this bound
giving the intuition that the sum of the reciprocals of twin primes converges
very slowly, or stated in other words, twin primes form a small set. The sum∑
p : p+2∈P

(
1

p
+

1

p+ 2

)
=

(
1

3
+

1

5

)
+

(
1

5
+

1

7

)
+

(
1

11
+

1

13

)
+

(
1

17
+

1

19

)
+ · · ·

= 1.902160583104... in explicit terms either has finitely many terms or has
infinitely many terms but is very slowly convergent with its value known as
Brun’s constant for (consecutive) twin primes. Similar deductive arguments
can be developed for the sum of the reciprocals of cousin primes, sexy primes,
etc that also converges very slowly with their associated Brun’s constant
for (consecutive) cousin primes [≈ 1.19705479], (consecutive) sexy primes
[≈ 1.13583508], etc. All these heuristically computed Brun’s constants are
irrational (transcendental) numbers ONLY IF there are infinitely many twin
primes, cousin primes, sexy primes, etc. Based on Zhang’s result[7], there
must be at least one computed Brun’s constant that is irrational (transcen-
dental) associated with infinitely many Odd Primes having an even Prime
gap < 70 million. Ignore solitary even prime number 2. Use ”Arbitrarily
Large Number” to denote ”infinitely many”. As an absolutely indispensable
condition, there are ALN of subsets of Odd Primes with each subset of Odd
Primes containing ALN of elements – this is akin to choosing the correct
”enhanced regulator”. From above discussions, we heuristically deduce very
slowly diverging sum (series) of the reciprocals of all ALN Odd Primes are
fully constituted by very slowly converging sum (series) of the reciprocals
of ALN Odd Primes derived from each and every subsets of Odd Primes.
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Erdos primitive set conjecture, now proven as a theorem by Prof. Jared
Lichtman[1], is the assertion that for any primitive set S with exactly k prime

factors (with repetition),
∑
n∈S

1

n log n
≤

∑
p

1

p log p
=

1

2 log 2
+

1

3 log 3
+

1

5 log 5
+

1

7 log 7
+

1

11 log 11
+... = 1.6366... [as a very slowly converging

sum when k = 1 over infinitely-many integers 1, 2, 3, 4, 5...] =⇒ fk is

maximized by the prime sum f1 =
∑
p

1

p log p
= 1.6366... [representing

the unique ”largest” primitive set that ONLY contains all infinitely-many
prime numbers 2, 3, 5, 7, 11, 13...]. As supporting Modified Polignac’s and
Twin prime conjectures to be true [with all Odd Primes belonging to

CIS-ALN-decelerating]; one can calculate the equivalent f1 =
∑
p

1

p log p

[also as very slowly converging sums with values < 1.6366...] for individual
subsets of Odd Primes obtained from even Prime gaps 2, 4, 6, 8, 10... and
notice these [derived] ”infinite series” calculations must all, in principle
and in synchrony, incorporate correspondingCIS-ALN-decelerating Odd
Primes from each subset. This last statement is heavily supported by
Yitang Zhang’s result[7] which can be extrapolated as ”There must be at
least one subset of Odd Primes [obtained from an even Prime gap < 70
million] having infinitely many elements”.

5. Subtypes of Countably Infinite Sets with Incompletely
Predictable entities from Riemann zeta function and
Sieve of Eratosthenes

The sets of numbers generated using power (exponent) such as 2 or 1
2 , even

numbers, odd numbers, etc are morphologically constituted by Completely
Predictable (CP) numbers in the sense that these sets of numbers are actually
not random and do not behave like one. The sets of nontrivial zeros, primes,
composites, etc are morphologically constituted by Incompletely Predictable
(IP) numbers [or pseudo-random numbers] in the sense that these sets of
numbers are actually not random but behave like one; thus giving rise to
so-called ”Mathematics for Incompletely Predictable Problems”. The word
number [singular noun] or numbers [plural noun] in reference to CP even and
odd numbers, IP prime and composite numbers, IP Gram points and virtual
Gram points can be interchanged with the word entity [singular noun] or
entities [plural noun].

Lemma 1. We can formally define the elements from (sub)sets and (sub)tuples
as Completely Predictable or Incompletely Predictable entities (as per Page
18 in [6]). Please also see Remark 3.1 & Remark 3.2 above in section 3
indicating the important significances arising from Lemma 1.



24 JOHN TING

Proof. A set is a collection of zero (viz, the empty set) or more elements
(viz, a finite set with a finite number of elements or an infinite set with
an infinite number of elements). A singleton refers to a finite set with a
single element. A set can be any kind of mathematical objects: numbers,
symbols, points in space, lines, other geometrical shapes, variables, or even
other sets whereby these [mutable] non-repeating elements are not arranged
in an unique order. A subset can be a [smaller] finite set derived from its
[larger] parent finite set or its [larger] parent infinite set. A subset can also
be a [smaller] infinite set derived from its [larger] parent infinite set. A tuple,
which can potentially be subdivided into subtuples, is a finite ordered list
(sequence) of elements whereby these [immutable] non-repeating elements
are arranged in an unique order. Thus a tuple or a subtuple is regarded as a
special type of finite set with the extra imposed restriction. As shown below
using worked examples:
CP simple equation or algorithm generates CP numbers e.g. even numbers
0, 2, 4, 6, 8, 10... or odd numbers 1, 3, 5, 7, 9, 11.... Thus a generated CP
number is locationally defined as a number whose ith position is indepen-
dently determined by simple calculations without needing to know related
positions of all preceding numbers – this is a Universal Property.
IP complex equation or algorithm generates IP numbers e.g. prime numbers
2, 3, 5, 7, 11, 13... or composite numbers 4, 6, 8, 9, 10, 12.... Thus a gen-
erated IP number is locationally defined as a number whose ith position
is dependently determined by complex calculations with needing to know
related positions of all preceding numbers – this is a Universal Property.
We clearly note the elements in (sub)sets and (sub)tuples when generated by
equations or algorithms will precisely constitute relevant entities or numbers
of interest. The proof is now complete for Lemma 1□.

A formula for primes in Number theory is a formula generating all prime
numbers 2, 3, 5, 7, 11, 13, 17, 19, 23... exactly and without exception. Com-
putationally slow and inefficient formulas for calculating primes exist e.g.

1964 Willans formula pn = 1+

2n∑
i=1




n

i∑
j=1

⌊(
cos

(j − 1)! + 1

j
π

)2
⌋


1/n


which is based on Wilson’s theorem n+ 1 is prime iff n! ≡ n (mod n+ 1).
Then critics may ask the question ”For n = 1, 2, 3, 4, 5,...; does Willans
formula that faithfully compute corresponding nth prime number pn for all
infinitely-many primes contradict Sieve-of-Eratosthenes algorithm as being
an Infinite Length (IL) and Incompletely Predictable (IP) algorithm?” The
answer is categorically ’no’ based on carefully analyzing this formula using
following arguments [which lend further support to Polignac’s and Twin
prime conjectures being true]: Willans formula has two sub-components
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(j − 1)! + 1

j
π
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=

1 if j is prime or 1

0 if j is composite
&

i∑
j=1

⌊(
cos

(j − 1)! + 1

j
π

)2
⌋

= (# primes ≤ i) + 1. We recognize this second sub-component stipulating
(# primes ≤ i) + 1 meant the actual position of every nth prime number
will have to be fully and indirectly computed each time, thus confirming the
infinitely-many prime numbers are IP and of IL. Note all [complementary]
composite numbers 4, 6, 8, 9, 10, 12, 14, 15, 16, 18... are simply obtained by
discarding all prime numbers from integers 2, 3, 4, 5, 6, 7, 8, 9, 10... whereby
”special” integers 0 & 1 are neither prime nor composite. We ignore even
prime number 2. Zhang’s landmark result[7] states there are infinitely many
Odd Primes having an even Prime gap < 70 million. One could extrapolate
Zhang’s result to: There must be at least two or three up to all even Prime
gaps being each associated with infinitely many Odd Primes. All obtained
consecutive Odd Primes pn and pn+1 can have their calculated pn+1 – pn
values grouped together as belonging to even Prime gaps 2, 4, 6, 8, 10...
whereby when the Zhang’s result is maximally extrapolated, Polignac’s and
Twin prime conjectures are supported to be true.

Lemma 2. We can validly classify countably infinite sets as accelerating,
linear or decelerating subtypes (as per Page 18 – 19 in [6]).

Proof. We provide the following required mathematical arguments.
Cardinality: With increasing size, arbitrary Set [or Subset] X can be
countably finite set (CFS), countably infinite set (CIS) or uncountably
infinite set (UIS). Denoted as ∥X∥ in this paper, the cardinality of Set X
measures number of elements in Set X. E.g., Set negative Gram[y=0]
point as constituted by a [solitary] rational (Q) t-value of 0 instead of a
usual transcendental (R− A) t-value has CFS of negative Gram[y=0] point
with this particular ∥negative Gram[y=0] point∥ = 1, Set even Prime
number (P) has CFS of solitary even P 2 with ∥even P∥ = 1, Set Natural
numbers (N) has CIS of N with ∥N∥ = ℵ0, and Set Real numbers (R) has
UIS of R with ∥R∥ = c (cardinality of the continuum). Then with ∥CIS∥ =
ℵ0 = [countably] infinitely many elements; we provide a novel classification
for CIS based on its number of elements (cardinality) manifesting linear,
accelerating or decelerating property constituting three subtypes of CIS.
CIS-IM-accelerating: CIS with cardinality = ∥CIS-IM-accelerating∥
= ℵ0-accelerating = [countably] infinitely many elements that (overall) ac-
celeratingly reach an infinity value. Examples: CP integers 0, 1, 4, 9, 16...
generated by simple equation y = x2 for x = 0, 1, 2, 3, 4... and CP val-
ues obtained from natural exponential function y = e(x); and IP composite
numbers 4, 6, 8, 9, 10... faithfully generated by complex Complement-Sieve-
of-Eratosthenes algorithm [which is equivalent to simply discarding 0, 1, and
all generated prime numbers via Sieve-of-Eratosthenes algorithm from the
set of integers 0, 1, 2, 3, 4, 5...].
CIS-IM-linear: CIS with cardinality = ∥CIS-IM-linear∥ = ℵ0-linear =
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[countably] infinitely many elements that (overall) linearly reach an infinity
value. Examples: CP entities 0, 1, 2, 3, 4, 5... [representing all positive inte-
ger numbers] generated by simple equation y = x for x = 0, 1, 2, 3, 4...; CP
entities 0, 2, 4, 6, 8, 10... [representing all positive even numbers] generated
by simple equation y = 2x for x = 0, 1, 2, 3, 4...; CP entities 1, 3, 5, 7, 9,
11... [representing all positive odd numbers] generated by simple equation
y = 2x− 1 for x = 1, 2, 3, 4, 5...; and IP nontrivial zeros, Gram[y=0] points
and Gram[x=0] points (all given as R− A t-values) generated from complex
equation Riemann zeta function via its proxy Dirichlet eta function. These
IP entities will inevitably manifest IP perpetual repeating violations (fail-
ures) in Gram’s Law and Rosser’s Rule occuring infinitely many times. E.g.,
the former give rise to Set negative Gram[y=0] points whereby CIS neg-
ative Gram[y=0] points is constituted by R− A t-values classified as having
∥negative Gram[y=0] points∥ = ∥CIS-IM-linear∥ = ℵ0-linear.
CIS-ALN-decelerating: CIS with cardinality = ∥CIS-ALN-decelerating∥
= ℵ0-decelerating = [countably] arbitrarily large number of elements that
(overall) deceleratingly reach an Arbitrarily Large Number value. Examples:
CP entities 0, 1,

√
2,

√
3, 2,

√
5... generated by simple equation y =

√
x for x

= 0, 1, 2, 3, 4, 5... and CP values obtained from natural logarithm function
y = ln(x); and IP prime numbers 2, 3, 5, 7, 11... faithfully generated by
complex Sieve-of-Eratosthenes algorithm.
The proof is now complete for Lemma 2□.

6. Conclusions including applying infinitesimals to outputs
from Sieve of Eratosthenes and Riemann zeta function

Figure 1 [depicting positive & negative prime numbers and composite
numbers] and Figure 2 [depicting the Co-linear Riemann zeta function for
positive & negative range] will manifest perfect Mirror symmetry and fully
comply with Law of Continuity. Valid comments: Whereas the continuous-
like equation Riemann zeta function ζ(s) Eq. (1) [via proxy Dirichlet eta
function η(s) Eq. (2)] for s = σ ± t range that generate mutually exclusive
CIS-IM-linear σ-valued co-lines be mathematically regarded as smoothly
continuous everywhere thus obeying Law of continuity; so must the discrete-
like algorithms Sieve-of-Eratosthenes and Complement-Sieve-of-Eratosthenes
that generate mutually exclusive Primes and Composites be conceptually
regarded as jaggedly continuous everywhere thus also obeying Law of con-
tinuity. CIS-ALN-decelerating Primes and CIS-IM-accelerating Composites
are dependent complementary entities. In ζ(s) Eq. (1), the equivalent Euler
product formula with product over prime numbers [instead of summation
over natural numbers] represents ζ(s) =⇒ all primes and, by default, [com-
plementary] composites are intrinsically encoded in ζ(s). Since via analytic

continuation, η(s) =
1

γ
· ζ(s) [proxy function for ζ(s) in 0 < σ < 1- critical
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strip]; then all primes and, by default, [complementary] composites are also
intrinsically encoded in η(s) Eq. (2).

Defined on Page 14 of [6] for i = 1, 2, 3, 4, 5,..., n: Perpetually contain-
ing Accelerating primes as Prime gapi+2 – Prime gapi+1 > Prime gapi+1 –
Prime gapi, Decelerating primes as Prime gapi+2 – Prime gapi+1 < Prime
gapi+1 – Prime gapi and Steady primes as Prime gapi+2 – Prime gapi+1 =
Prime gapi+1 – Prime gapi; we use relevant algorithm and sub-algorithms
to compute mutually exclusive but dependent prime numbers consisting of
solitary odd Prime gap 1 for even prime number 2, and even Prime gaps 2,
4 and 6 for odd Twin primes, odd Cousin primes and odd Sexy primes:
(a) For IP IL algorithm [Gap 2, 4, 6, 8, 10...]-Sieve of Eratosthenes pn+1 = 3

+

n∑
i=1

gi [where n = ALN] that faithfully generates all Odd P {3, 5, 7, 11, 13,

17, 19...} with cardinality ℵ0-decelerating, the nth even Prime gap between
two successive Odd P is denoted by gn = (n + 1)st Odd P – (n)th Odd P,
i.e. gn = pn+1 − pn = 2, 2, 4, 2, 4, 2....

(b) For CP FL sub-algorithm [Gap 1]-Sieve of Eratosthenes pn+1 = 2 +
n∑

i=1

gi

[where n = 1 and not ALN] that faithfully generates the first and only Even
P {2} ≡ first and only paired Even P {(2,3)} with cardinality CFS of 1, the
solitary nth odd prime gap between two successive primes is denoted by gn
= (n+ 1)st Odd P – (n)th Even P, i.e. gn = pn+1 − pn = 3− 2 = 1.

(c) For IP IL sub-algorithm [Gap 2]-Sieve of Eratosthenes pn+1 = 3 +
n∑

i=1

gi

[where n = ALN] that faithfully generates all Odd twin P {3, 5, 11, 17, 29,
41, 59...} ≡ all paired Odd twin P {(3,5), (5,7), (11,13), (17,19), (29,31),
(41,43), (59,61)...} with cardinality ℵ0-decelerating, the nth even Prime gap
between two successive Odd twin P is denoted by gn = (n+ 1)st Odd twin
P – (n)th Odd twin P, i.e. gn = pn+1 − pn = 2, 6, 6, 12, 12, 18....

(d) For IP IL sub-algorithm [Gap 4]-Sieve of Eratosthenes pn+1 = 7 +

n∑
i=1

gi

[where n = ALN] that faithfully generates all Odd cousin P {7, 13, 19, 37, 43,
67...} ≡ all paired Odd cousin P {(7,11), (13,17), (19,23), (37,41), (43,47),
(67,71)...} with cardinality ℵ0-decelerating, the n

th even Prime gap between
two successive Odd cousin P is denoted by gn = (n + 1)st Odd cousin P –
(n)th Odd cousin P, i.e. gn = pn+1 − pn = 6, 6, 8, 6, 24....

(e) For IP IL sub-algorithm [Gap 6]-Sieve of Eratosthenes pn+1 = 23 +
n∑

i=1

gi

[where n = ALN] that faithfully generates all Odd sexy P {23, 31, 47, 53,
61, 73, 83...} ≡ all paired Odd sexy P {(23,29), (31,37), (47,53), (53,59),
(61,67), (73,79), (83,89)...} with cardinality ℵ0-decelerating, the nth even
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Prime gap between two successive Odd sexy P is denoted by gn = (n+ 1)st

Odd sexy P – (n)th Odd sexy P, i.e. gn = pn+1 − pn = 8, 16, 6, 8, 12, 10....
With n = ALN or, traditionally, ∞; rigorous algorithm-type proof for

Modified Polignac’s and Twin prime conjectures can be stated here as two
statements. Statement 1: All known prime numbers = IP IL algorithm (a)
+ CP FL sub-algorithm (b). Statement 2: IP IL algorithm (a) = IP IL
sub-algorithm (c) + IP IL sub-algorithm (d) + IP IL sub-algorithm (e) +...
[that involves all even Prime gaps 2, 4, 6, 8, 10...].

As proxy function for Riemann zeta function in 0 < σ < 1 critical strip,
Dirichlet eta function when treated as equation and sub-equation at (unique)
σ = 1

2 -critical line will faithfully generate all x-axis intercept points as usual
Gram points or Gram[y=0] points, all y-axis intercept points as Gram[x=0]
points, and all Origin intercept points as Gram[x=0,y=0] points or non-
trivial zeros. Confirming Riemann hypothesis to be true, these entities that
constitute the three types of Gram points are mutually exclusive, dependent
and endowed with t-valued irrational (transcendental) numbers except for
initial Gram[y=0] point endowed with a t-valued rational number:
(a) Considered for t = 0 to +∞ at σ = 1

2 , Dirichlet eta function as IP IL
equation will faithfully generate all above-mentioned three types of Gram
points that are endowed with t-valued irrational (transcendental) numbers
except for first Gram[y=0] point.
(b) Considered only for t = 0 at σ = 1

2 , Dirichlet eta function as CP FL
sub-equation will faithfully generate the first and only Gram[y=0] point that
is endowed with t-valued rational number 0.

We analyze the data of all CIS-IM-linear computed nontrivial zeros (NTZ)
when extrapolated out over a wide range of t ≥ 0 real number values. Akin
to Prime counting function Prime-π(x) = number of primes ≤ x, we can
symbolically define nontrivial zeros counting function NTZ-π(t) = number of
NTZ ≤ t with t assigned to having real number values which are conveniently
designated by 10n whereby n = 1, 2, 3, 4, 5.... The cumulative Prevalence
of nontrivial zeros = NTZ-π(t) / t = NTZ-π(t) / (10n) when t = 0 to 10n,
whereby denominator t is [artificially] regarded as having integer number
values. We conceptually define all consecutive NTZ gaps as ith t-valued NTZ
– (i-1)th t-valued NTZ. Thus there are CIS-IM-linear computed NTZ gaps.
The numbers of NTZ between 100 – 101 [interval = 9], 101 – 102 [interval =
90], 102 – 103 [interval = 900], 103 – 104 [interval = 9000], 104 – 105 [interval
= 90000], 105 – 106 [interval = 900000], 106 – 107 [interval = 9000000], 107 –
108 [interval = 90000000]... are 0, 29, 620, 9493, 127927, 1609077, 19388979,
226871900... with corresponding rolling Prevalence of nontrivial zeros=
0, 0.322, 0.689, 1.055, 1.421, 1.788, 2.154, 2.521... =⇒ rolling Prevalence
of nontrivial zeros seems to overall fluctuatingly increase by around 0.366
in a ”linear” manner. This limited observation alone suggests Cardinality
of nontrivial zeros = ∥CIS-IM-linear∥ = ℵ0-linear.
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Figure 9. Proportion (Prevalence) of Twin primes, Cousin
primes [as partial calculations] and Sexy Primes [as partial
calculations] with Proportion (Prevalence) of all Primes in-
cluded. These Proportions (Prevalences) are essentially self-
similar fractal objects. The n = 1, 2, 3, 4, 5, 6, 7, 8... in 10n

that is denoted with horizontal x-axis =⇒ the scale of this
axis is non-linearly depicted using increasing powers of 10.

In comparison, we further notice here the numbers of NTZ between 100 –
101 [interval = 9], 100 – 102 [interval = 99], 100 – 103 [interval = 999], 100

– 104 [interval = 9999], 100 – 105 [interval = 99999], 100 – 106 [interval =
999999], 100 – 107 [interval = 9999999], 100 – 108 [interval = 99999999]...
are 0, 29, 649, 10142, 138069, 1747146, 21136125, 248008025... with corre-
sponding cumulative Prevalence of nontrivial zeros = 0, 0.293, 0.650,
1.014, 1.381, 1.747, 2.114, 2.480...

On the overall objective to rigorously derive Algorithm-type proofs for
Modified Polignac’s and Twin prime conjectures [as based on Figure 9] and
Equation-type proof for Riemann hypothesis [as based on Figure 10], we

apply infinitesimal numbers
1

∞
at two places using the following colloquially-

stated propositions with their formal proofs given in Page 44 – 45 of [6].

Proposition 1. In the limit of never reaching a [nonexisting] zero
hereby conceptually visualized as Prevalences of both even Prime gaps and
the associated [positive and negative] Odd Primes never becoming zero whereby
arbitrarily large number of different even Prime gaps that uniquely accom-
pany all Odd Primes in totality will never stop recurring. Foundation Figure
9 is roughly and analogically based on cohomology as an algebraic tool in
topology allowing Geometrical-Mathematical interpretation for positive Odd

Primes. We note these Prevalences can only have
1

∞
values above zero in

the large range of prime numbers [but must never have zero values].

Proposition 2. In the limit of reaching an [existing] zero hereby
conceptually visualized as the entire −∞ < t < +∞ trajectory of Dirichlet
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Figure 10. Simulated dynamic trajectories showing Origin
intercept points when σ = 1

2 and virtual Origin intercept

points when σ = 2
5 and σ = 4

5 . Horizontal axis: Re{ζ(σ +
ıt)}, and vertical axis: Im{ζ(σ + ıt)}. Total presence of all
Origin intercept points at the [static] Origin point. Total
presence of all virtual Origin intercept points as additional
negative virtual Gram[y=0] points on the x-axis (e.g. when
using σ = 2

5 value) at the [infinitely many varying] virtual
Origin points; viz, these negative virtual Gram[y=0] points
on the x-axis cannot exist at the solitary Origin point since
the two trajectories form two colinear lines (or co-lines); viz,
two parallel lines that never cross over.

eta function, proxy for Riemann zeta function, touching (symbolic) zero-
dimensional σ = 1

2 -Origin point only when parameter σ = 1
2 whereby all non-

trivial zeros [mathematically] located on (symbolic) one-dimensional σ = 1
2 -

critical line will [geometrically] declare themselves in totality as correspond-
ing Origin intercept points. Foundation Figure 10 is roughly and analogically
based on cohomology as an algebraic tool in topology allowing Geometrical-
Mathematical interpretation for 0 < t < +∞ range. Our Corollary is: Any

σ ̸= 1
2 co-lines that are

1

∞
above or below the zero-dimensional σ = 1

2 -Origin

point must never be classified as having nontrivial zeros. Then the assigned
Proposition must be: Only one unique σ = 1

2 co-line that [repeatedly] touch

the zero-dimensional σ = 1
2 -Origin point must always be classified as having

[infinitely-many] nontrivial zeros.

As an obvious overall summary, we can insightfully conclude the mutually
exclusive (sub)sets arising from prime numbers, composite numbers, Gram
points and virtual Gram points MUST all fully comply with the Inclusion-
Exclusion Principle when ”extended to the infinite (sub)sets”.
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