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Abstract

We present a novel approach to quantum theory construction that
involves maximizing the Shannon entropy of quantum measurements rel-
ative to their initial preparation. By constraining the maximization prob-
lem with a vanishing phase (i.e., a phase that vanish under measurements),
we obtain quantum mechanics (vanishing U(1)-valued phase), relativis-
tic quantum mechanics (vanishing Spinc(3, 1)-valued phase), and quan-
tum gravity (vanishing SL(4,R)-valued phase). The first two cases are
equivalent to established theory, whereas the later case yields a quantum
theory of accelerated reference frames, in which a quantized version of
the Einstein field equation lives. Specifically, the spacetime interval is
promoted to an observable, effectively building the metric tensor from
the underlying quantum structure. Subsequently, the Schrödinger equa-
tion generates metric tensor diffeomorphisms and SO(3,1) transforma-
tions, providing a unified description of quantum mechanics and general
relativity. Remarkably, the quantized Einstein Field Equations derived
from this framework are provably non-perturbatively finite. Moreover,
the SU(3)× SU(2)×U(1) gauge symmetries of the Standard Model also
arise naturally without additional assumptions. Notably, the solution is
consistent only with 3+1 spacetime dimensions, as it encounters obstruc-
tions in all other dimensional configurations. This framework integrates
quantum mechanics, relativistic quantum mechanics, quantum gravity,
spacetime dimensionality, and particle physics gauge symmetries from a
simple entropy maximization problem constrained by a vanishing phase.

1 Introduction

The canonical formalism of quantum mechanics (QM) is based on five principal
axioms[1, 2]:

∗aht@protonmail.ch
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(QM) Axiom 1 of 5 State Space: Each physical system corresponds to a complex Hilbert
space, with the system’s state represented by a ray in this space.

(QM) Axiom 2 of 5 Observables: Physical observables correspond to Hermitian operators
within the Hilbert space.

(QM) Axiom 3 of 5 Dynamics: The time evolution of a quantum system is dictated by the
Schrödinger equation, where the Hamiltonian operator signifies the sys-
tem’s total energy.

(QM) Axiom 4 of 5 Measurement: The act of measuring an observable results in the sys-
tem’s transition to an eigenstate of the associated operator, with the mea-
surement value being one of the eigenvalues.

(QM) Axiom 5 of 5 Probability Interpretation: The likelihood of a specific measurement
outcome is determined by the squared magnitude of the state vector’s
projection onto the relevant eigenstate.

Contrastingly, statistical mechanics (SM), the other statistical pillar of physics,
derives its probability measures through entropy maximization, constrained by
the following expression:

(SM) Constraint 1 of 1: Average Energy Constraint: The average of energy measurements of
a system at thermodynamic equilibrium converge to a specific value (E):

E =
󰁛

q∈Q
ρ(q)E(q) (1)

To maximize entropy while satisfying this constraint, the theory uses a La-
grange multiplier approach.

Definition 1 (Fundamental Lagrange Multiplier Equation of SM).

L(ρ,λ,β) = −kB
󰁛

q∈Q
ρ(q) ln ρ(q)

󰁿 󰁾󰁽 󰂀
Boltzmann entropy

+ λ

󰀳

󰁃1−
󰁛

q∈Q
ρ(q)

󰀴

󰁄

󰁿 󰁾󰁽 󰂀
Normalization Constraint

+β

󰀳

󰁃E −
󰁛

q∈Q
ρ(q)E(q)

󰀴

󰁄

󰁿 󰁾󰁽 󰂀
Average Energy Constraint

(2)

where λ and β are the Lagrange multipliers.

Theorem 1 (Gibbs Measure). The solution to the Lagrange multiplier equation
of SM, is the well-known Gibbs measure.

ρ(q) =
1󰁓

r∈Q exp(−βE(r))
󰁿 󰁾󰁽 󰂀
Microcanonical Ensemble

exp(−βE(q)) (3)

Proof. This is an well-known result by E. T. Jaynes [3, 4]. As a convenience,
we replicate the proof in Annex A.
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As evident from E. T. Jaynes’ methodological innovation, SM relies on a
single constraint related to the nature of the measurements under consideration,
which allows the formulation of an optimization problem sufficient to derive the
relevant probability measure. This is an exceptionally parsimonious formulation
of a physical theory.

We propose a generalization of E. T. Jaynes’ approach to the realms of Quan-
tum Mechanics (QM), Relativistic Quantum Mechanics (RQM), and Quantum
Gravity (QG). For each of these three domains, we will introduce a single con-
straint related to measurements, formulate a corresponding entropy maximiza-
tion problem, and present a main theorem that fully encapsulates the theory
within each realm. This formulation reduces fundamental physics to its sim-
plest and most parsimonious expression, deriving the core theories as optimal
solutions to a well-defined entropy maximization problem.

1.1 Quantum Mechanics

To reformulate QM as the solution to an entropy maximization problem, we
propose the following constraint:

QM Constraint 1 of 1 Vanishing Complex-Phase: Quantum measurements admit a vanish-
ing complex phase. The constraint is:

0 = tr
󰁛

q∈Q
ρ(q)

󰁫
0 −E(q)

E(q) 0

󰁬
(4)

which associates to the follow equation:

Definition 2 (Fundamental Lagrange Multiplier Equation of QM).

L(ρ,λ, τ) = −
󰁛

q∈Q
ρ(q) ln

ρ(q)

p(q)
󰁿 󰁾󰁽 󰂀

Relative Shannon Entropy

+λ

󰀳

󰁃1−
󰁛

q∈Q
ρ(q)

󰀴

󰁄

󰁿 󰁾󰁽 󰂀
Normalization
Constraint

+ τ

󰀳

󰁃− tr
󰁛

q∈Q
ρ(q)

󰁫
0 −E(q)

E(q) 0

󰁬
󰀴

󰁄

󰁿 󰁾󰁽 󰂀
Vanishing Complex-Phase

(5)

where λ and τ are the Lagrange multipliers.

The relative Shannon entropy[5, 6] is utilized because we are solving for
the least biased theory that connects an initial preparation p(q) to its final
measurement ρ(q).

Theorem 2. The least biased theory that connects an initial preparation p(q) to
its final measurement ρ(q), under the constraint of the vanishing complex-phase,
is:

ρ(q) =
1󰁓

r∈Q p(r)󰀂exp(−itE(r)/󰄁)󰀂
󰁿 󰁾󰁽 󰂀

Unitarily Invariant Ensemble

󰀂exp(−itE(q)/󰄁)󰀂󰁿 󰁾󰁽 󰂀
Born Rule

p(q)󰁿󰁾󰁽󰂀
Initial Preparation

(6)

where we have defined τ = t/󰄁 (analogous to β = 1/(kBT ) in SM).
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The proof of this theorem will be presented in the results section. We will
show that this solution entails the five axioms of QM, which are now promoted
to theorems, thereby establishing it as the most parsimonious yet complete
formulation of QM to date.

1.2 Relativistic Quantum Mechanics

Before we can discuss RQM, we first need to introduce some notation. Let
u = a+ x+ f + v + b, where a is a scalar, x is a vector, f is a bivector, v is a
pseudo-vector and b is a pseudo-scalar, be a multivector of the geometric algebra
GA(3, 1), and let Mu be its matrix representation. Then, the fundamental
constraint of RQM is:

RQM Constraint 1 of 1 Vanishing Relativistic Phase: Our formulation of RQM is based around
a vanishing phase spanning the Spinc(3, 1) group. The constraint is:

0 = tr
1

2

󰁛

q∈Q
ρ(q)Mu(q)|a→0,x→0,v→0 (7)

whereMu(q) is the matrix representation of the multivector u of GA(3, 1),
using the real Majorana representation of the gamma matrices.

The Lagrange multiplier equation is as follows:

Definition 3 (Fundamental Lagrange Multiplier Equation of RQM).

L(ρ,λ, ζ) = −
󰁛

q∈Q
ρ(q) ln

ρ(q)

p(q)
󰁿 󰁾󰁽 󰂀
Relative Shannon
Entropy

+λ

󰀳

󰁃1−
󰁛

q∈Q
ρ(q)

󰀴

󰁄

󰁿 󰁾󰁽 󰂀
Normalization
Constraint

+ ζ

󰀳

󰁃− tr
1

2

󰁛

q∈Q
ρ(q)Mu(q)|a→0,x→0,v→0

󰀴

󰁄

󰁿 󰁾󰁽 󰂀
Vanishing Relativistic Phase

(8)

where λ and ζ are the Lagrange multipliers.

Theorem 3. The least biased theory that connects an initial preparation p(q)
to its final measurement ρ(q), under the constraint of the vanishing relativistic
phase, is:

ρ(q) =
1󰁓

r∈Q p(r) det exp
󰀃
−ζ 1

2Mu(r)|a→0,x→0,b→0

󰀄
󰁿 󰁾󰁽 󰂀

Spinc(3,1) Invariant Ensemble

det exp

󰀕
−ζ

1

2
Mu(q)|a→0,x→0,b→0

󰀖

󰁿 󰁾󰁽 󰂀
Spinc(3,1) Born Rule

p(q)󰁿󰁾󰁽󰂀
Initial Preparation

(9)

In the results section, we aim to demonstrate that this solution represents
a quantum mechanical theory of inertial reference frames, where ζ is a ”phase-
twisted” version of the rapidity. This theory allows for measurements, superpo-
sitions, and interference between inertial reference frames, providing the arena
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in which relativistic quantum mechanics (RQM) operates. While incorporating
David Hestenes’ results regarding the geometric algebra formulation of RQM,
the Dirac current, and the Dirac equation, our approach completes his formu-
lation by introducing missing elements which allow the promotion of the space-
time interval to an observable constructing the metric tensor. The formulation
thus lays the foundation for the forthcoming development of quantum gravity
through the introduction of quantum frame fields and metric measurements.

1.3 Quantum Gravity

Our formulation of QG is based on a quantum theory of accelerated reference
frames. To formulate the maximization problem whose resolution automatically
yields the theory, we introduce the following constraint:

QG Constraint 1 of 1 Vanishing Linear Phase:

A = tr
1

2

󰁛

q∈Q
ρ(q)Mu(q)|a→0 (10)

where Mu(q)|a→0 is the matrix representation of a multivector u = x +
f + v + b of GA(3, 1).

Definition 4 (Fundamental Lagrange Multiplier Equation of QG). The least
biased theory that connects an initial preparation A0(q) to its final measurement
A(q), under the constraint of the special linear phase, is:

L(A,λ,κ) = −
󰁛

q∈Q
A(q) ln

A(q)

A0(q)
󰁿 󰁾󰁽 󰂀

Relative Shannon
Entropy

+ λ

󰀳

󰁃A−
󰁛

q∈Q
A(q)

󰀴

󰁄

󰁿 󰁾󰁽 󰂀
Normalization Constraint

+κ

󰀳

󰁃− tr
1

2

󰁛

q∈Q
A(q)M(q)|a→0

󰀴

󰁄

󰁿 󰁾󰁽 󰂀
Vanishing Linear Phase

(11)

where λ and κ are the Lagrange multipliers.

The Lagrange multiplier equation reaches a maximum level of generality in
terms of wavefunctions living in a vector space; evidently, one cannot be more
general than an arbitrary matrix, which exponentiates to the GL+(4,R) group,
without completely departing from the linear domain.

Theorem 4. The least biased theory which connects an initial preparation A0(q)
to its final measurement A(q), under the constraint of the vanishing linear phase,
is:

A(q) =
A󰁓

r∈Q A0(r) det exp
󰀃
−κ 1

2M(r)
󰀄

󰁿 󰁾󰁽 󰂀
Geometrically Invariant Ensemble

det exp

󰀕
−κ

1

2
M(q)

󰀖

󰁿 󰁾󰁽 󰂀
Geometric Born Rule

A0(q)󰁿 󰁾󰁽 󰂀
Initial Preparation

(12)
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In the results section, we aim to demonstrate that the solution entails a
quantum theory of accelerated reference frames. This theory defines the arena
in which QG operates. In the solution, A(q) is not a probability distribution
but, as revealed by dimensional analysis, an area distribution. The size of this
area serves as the normalization constraint, remains invariant with respect to all
transformations, and its entropy is associated with the information required to
describe all quantum states of the system. The Lagrange multiplier κ serves as
the generator of special linear flow which preserves the area-size associated with
the GL+(4,R)-valued wavefunction. The Schrödinger equation is the active
generator of diffeomorphism and SO(3,1) metric transformations, associating
with the symmetries of GR. As in the RQM case, the spacetime interval is an
observable, enabling the construction of the metric tensor, here valid for metrics
of any curvature. Finally, we construct a Fock space in which the metric tensor
is promoted to an operator, derive the quantized Einstein field equations, and
demonstrate that they are non-perturbatively finite.

1.4 Dimensional Obstructions

We end the result section with a number of theorems showing that the formal-
ism, except for the scalar case of SM and the U(1) case of QM, is found to be
consistent only with 3+1-dimensional spacetime, encountering various obstruc-
tions in all other dimensional configurations, and we discuss the implications.

2 Results

2.1 Quantum Mechanics

In statistical mechanics, the founding observation is that energy measurements
of a thermally equilibrated system tend towards an average value. Compar-
atively, in QM, the founding observation involves the interplay between the
systematic elimination of complex phases in measurement outcomes and the
presence of interference effects in repeated measurement outcomes. To represent
this observation, we introduce the Vanishing Complex-Phase Anti-Constraint:

0 = tr
󰁛

q∈Q
ρ(q)

󰁫
0 −E(q)

E(q) 0

󰁬
(13)

where E(q) are scalar-valued functions of Q. The usage of the matrix generates
a U(1) phase, and the trace causes it to vanish under specific circumstances
(which will correspond to measurements).

At first glance, this expression may seem to reduce to a tautology equating
zero with zero, suggesting it imposes no restriction on energy measurements.
However, this appearance is deceptive. Unlike a conventional constraint that
limits the solution space, this expression serves as a formal device to expand it,
allowing for the incorporation of complex phases into the probability measure.
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The expression’s role in broadening, rather than restricting, the solution space
leads to its designation as an ”anti-constraint.”

In general, usage of anti-constraints expand classical probability distribu-
tions into larger domains, such as quantum probabilities.

Its significance will become evident upon the completion of the optimization
problem. For the moment, this expression can be conceptualized as the correct
expression that, when incorporated as an anti-constraint within an entropy-
maximization problem, resolves into the axioms of quantum mechanics.

Our next procedural step involves solving the corresponding Lagrange multi-
plier equation, mirroring the methodology employed in statistical mechanics by
E. T. Jaynes. We utilize the relative Shannon entropy because we wish to solve
for the least biased distribution that connects an initial preparation p(q) to its
final measurement ρ(q). For that, we deploy the following Lagrange multiplier
equation:

L = −
󰁛

q∈Q
ρ(q) ln

ρ(q)

p(q)
󰁿 󰁾󰁽 󰂀
Relative Shannon
Entropy

+λ

󰀳

󰁃1−
󰁛

q∈Q
ρ(q)

󰀴

󰁄

󰁿 󰁾󰁽 󰂀
Normalization
Constraint

+ τ

󰀳

󰁃tr
󰁛

q∈Q
ρ(q)

󰁫
0 −E(q)

E(q) 0

󰁬
󰀴

󰁄

󰁿 󰁾󰁽 󰂀
Vanishing Complex-Phase

(14)

Where λ and τ are the Lagrange multipliers.
We solve the maximization problem as follows:

∂L(ρ,λ, τ)
∂ρ(q)

= − ln
ρ(q)

p(q)
− 1− λ− τ tr

󰁫
0 −E(q)

E(q) 0

󰁬
(15)

0 = ln
ρ(q)

p(q)
+ 1 + λ− τ tr

󰁫
0 −E(q)

E(q) 0

󰁬
(16)

=⇒ ln
ρ(q)

p(q)
= −1− λ− τ tr

󰁫
0 −E(q)

E(q) 0

󰁬
(17)

=⇒ ρ(q) = p(q) exp(−1− λ) exp
󰀓
−τ tr

󰁫
0 −E(q)

E(q) 0

󰁬󰀔
(18)

=
1

Z(τ)
p(q) exp

󰀓
−τ tr

󰀅 0 −E(q)
E(q) 0

󰁬󰀔
(19)

The partition function, is obtained as follows:

1 =
󰁛

r∈Q
p(r) exp(−1− λ) exp

󰀓
−τ tr

󰁫
0 −E(r)

E(r) 0

󰁬󰀔
(20)

=⇒ (exp(−1− λ))
−1

=
󰁛

r∈Q
p(r) exp

󰀓
−τ tr

󰁫
0 −E(r)

E(r) 0

󰁬󰀔
(21)

Z(τ) :=
󰁛

r∈Q
p(r) exp

󰀓
−τ tr

󰁫
0 −E(r)

E(r) 0

󰁬󰀔
(22)

Finally, the least biased theory that connects an initial preparation p(q) to its
final measurement ρ(q), under the constraint of the vanishing complex phase,
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is:

ρ(q) =
1

󰁓
r∈Q p(r) exp

󰀓
−τ tr

󰁫
0 −E(r)

E(r) 0

󰁬󰀔 exp
󰀓
−τ tr

󰁫
0 −E(q)

E(q) 0

󰁬󰀔
p(q) (23)

Though initially unfamiliar, this form effectively establishes a comprehensive
formulation of quantum mechanics, as we will demonstrate.

Upon examination, we find that phase elimination is manifestly evident in
the probability measure: since the trace evaluates to zero, the probability mea-
sure simplifies to classical probabilities, aligning precisely with the Born rule’s
exclusion of complex phases:

ρ(q) =
p(q)󰁓
r∈Q p(r)

(24)

However, the significance of this phase elimination extends beyond this mere
simplicity. As we will soon see, the partition function Z gains unitary invari-
ance, allowing for the emergence of interference patterns and other quantum
characteristics under appropriate basis changes.

We will begin by aligning our results with the conventional quantum me-
chanical notation. As such, we transform the representation of complex num-
bers from

󰀅
a −b
b a

󰀆
to a + ib. For instance, the exponential of a complex matrix

is:

exp
󰁫
a −b
b a

󰁬
= r

󰁫
cos(b) − sin(b)
sin(b) cos(b)

󰁬
, where r = exp a (25)

Then, we associate the exponential trace to the complex norm using exp trM ≡
det expM:

exp tr
󰁫
a −b
b a

󰁬
= det exp

󰁫
a −b
b a

󰁬
= r2 det

󰁫
cos(b) − sin(b)
sin(b) cos(b)

󰁬
, where r = exp a (26)

= r2(cos2(b) + sin2(b)) (27)

= 󰀂r(cos(b) + i sin(b))󰀂 (28)

= 󰀂r exp(ib)󰀂 (29)

Finally, substituting τ = t/󰄁 analogously to β = 1/(kBT ), and applying the
complex-norm representation to both the numerator and to the denominator,
consolidates the Born rule, normalization, and initial prepration into :

ρ(q) =
1󰁓

r∈Q p(r)󰀂exp(−itE(r)/󰄁)󰀂
󰁿 󰁾󰁽 󰂀

Unitarily Invariant Partition Function

󰀂exp(−itE(q)/󰄁)󰀂󰁿 󰁾󰁽 󰂀
Born Rule

p(q)󰁿󰁾󰁽󰂀
Initial Preparation

(30)

We are now in a position to explore the solution space.
The wavefunction is delineated by decomposing the complex norm into a

complex number and its conjugate. It is then visualized as a vector within a
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complex n-dimensional Hilbert space. The partition function acts as the inner
product. This relationship is articulated as follows:

󰁛

r∈Q
p(r)󰀂exp(−itE(r)/󰄁)󰀂 = Z = 〈ψ|ψ〉 (31)

where
󰀵

󰀹󰀷
ψ1(t)
...

ψn(t)

󰀶

󰀺󰀸 =

󰀵

󰀹󰀷
exp(−itE(q1)/󰄁)

. . .

exp(−itE(qn)/󰄁)

󰀶

󰀺󰀸

󰀵

󰀹󰀷
ψ1(0)

...
ψn(0)

󰀶

󰀺󰀸 (32)

We clarify that p(q) represents the probability associated with the initial
preparation of the wavefunction, where p(qi) = 〈ψi(0)|ψi(0)〉.

We also note that Z is invariant under unitary transformations.
Let us now investigate how the axioms of quantum mechanics are recovered

from this result:

• The entropy maximization procedure inherently normalizes the vectors
|ψ〉 with 1/Z = 1/

󰁳
〈ψ|ψ〉. This normalization links |ψ〉 to a unit vector

in Hilbert space. Furthermore, as the POP formulation of QM associates
physical states with its probability measure, and the probability is defined
up to a phase, we conclude that physical states map to Rays within Hilbert
space. This demonstrates (QM) Axiom 1 of 5.

• In Z, an observable must satisfy:

O =
󰁛

r∈Q
p(r)O(r)󰀂exp(−itE(r)/󰄁)󰀂 (33)

Since Z = 〈ψ|ψ〉, then any self-adjoint operator satisfying the condition
〈Oψ|φ〉 = 〈ψ|Oφ〉 will equate the above equation, simply because 〈O〉 =
〈ψ|O |ψ〉. This demonstrates (QM) Axiom 2 of 5.

• Upon transforming Equation 32 out of its eigenbasis through unitary op-
erations, we find that the energy, E(q), typically transforms in the manner
of a Hamiltonian operator:

|ψ(t)〉 = exp(−itH/󰄁) |ψ(0)〉 (34)

The system’s dynamics emerge from differentiating the solution with re-
spect to the Lagrange multiplier. This is manifested as:

∂

∂t
|ψ(t)〉 = ∂

∂t
(exp(−itH/󰄁) |ψ(0)〉) (35)

= −iH/󰄁 exp(−itH/󰄁) |ψ(0)〉 (36)

= −iH/󰄁 |ψ(t)〉 (37)

=⇒ H |ψ(t)〉 = i󰄁
∂

∂t
|ψ(t)〉 (38)
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Which is the Schrödinger equation. This demonstrates (QM) Axiom 3 of
5.

• From Equation 32 it follows that the possible microstates E(q) of the
system correspond to specific eigenvalues of H. An observation can thus
be conceptualized as sampling from ρ(q, t), with the measured state be-
ing the occupied microstate q of Q. Consequently, when a measurement
occurs, the system invariably emerges in one of these microstates, which
directly corresponds to an eigenstate of H. Measured in the eigenbasis,
the probability distribution is:

ρ(q, t) =
1

〈ψ|ψ〉 (ψ(q, t))
†ψ(q, t). (39)

In scenarios where the probability measure ρ(q, τ) is expressed in a basis
other than its eigenbasis, the probability P (λi) of obtaining the eigenvalue
λi is given as a projection on a eigenstate:

P (λi) = |〈λi|ψ〉|2 (40)

Here, |〈λi|ψ〉|2 signifies the squared magnitude of the amplitude of the
state |ψ〉 when projected onto the eigenstate |λi〉. As this argument hold
for any observables, this demonstrates (QM) Axiom 4 of 5.

• Finally, since the probability measure (Equation 30) replicates the Born
rule, (QM) Axiom 5 of 5 is also demonstrated.

Revisiting quantum mechanics with this perspective offers a coherent and
unified narrative. Specifically, the vanishing complex phase constraint (Equation
13) is sufficient to entail the foundations of quantum mechanics (Axiom 1, 2, 3,
4 and 5) through the principle of entropy maximization. Equation 13 becomes
the formulation’s new singular foundation, and Axioms 1, 2, 3, 4, and 5 are now
theorems.

2.2 RQM in 2D

In this section, we investigate RQM in 2D. Although all dimensional configu-
rations except 3+1D contain obstructions, which will be discussed later in this
section, the 2D case provides a valuable starting point before addressing the
more complex 3+1D case. In RQM 2D, the fundamental Lagrange Multiplier
Equation is:

L(ρ,λ, θ) = −
󰁛

q∈Q
ρ(q) ln

ρ(q)

p(q)
󰁿 󰁾󰁽 󰂀

Relative Shannon
Entropy

+λ

󰀳

󰁃1−
󰁛

q∈Q
ρ(q)

󰀴

󰁄

󰁿 󰁾󰁽 󰂀
Normalization
Constraint

+ θ

󰀳

󰁃− tr
1

2

󰁛

q∈Q
ρ(q)Mu(q)|a→0,x→0

󰀴

󰁄

󰁿 󰁾󰁽 󰂀
Vanishing Relativistic Phase

(41)
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where λ and θ are the Lagrange multipliers, and where Mu(q) is the matrix
representation of a multivector u = a+ x+ b of GA(2), where a is a scalar, x
is a vector and b is a bivector:

󰀗
a+ x y − b
y + b a− x

󰀘
∼= a+ xx̂+ yŷ + bx̂ ∧ ŷ (42)

where the basis elements are defined as:

x̂ =

󰀗
1 0
0 −1

󰀘
, ŷ =

󰀗
0 1
1 0

󰀘
, x̂ ∧ ŷ =

󰀗
0 −1
1 0

󰀘
(43)

If we take a → 0,x → 0 then Mu reduces as follows:

u = a+ x+ b|a→0,x→0 = b =⇒ Mu|a→0,x→0 =

󰀗
0 −b
b 0

󰀘
(44)

The Lagrange multiplier equation can be solved as follows:

∂L(ρ,λ, θ)
∂ρ(q)

= 0 = − ln
ρ(q)

p(q)
− 1− λ− θ tr

1

2

󰁫
0 −b(q)

b(q) 0

󰁬
(45)

0 = ln
ρ(q)

p(q)
+ 1 + λ+ θ tr

1

2

󰁫
0 −b(q)

b(q) 0

󰁬
(46)

=⇒ ln
ρ(q)

p(q)
= −1− λ− θ tr

1

2

󰁫
0 −b(q)

b(q) 0

󰁬
(47)

=⇒ ρ(q) = p(q) exp(−1− λ) exp

󰀕
−θ tr

1

2

󰁫
0 −b(q)

b(q) 0

󰁬󰀖
(48)

=
1

Z(θ)
p(q) exp

󰀕
−θ tr

1

2

󰁫
0 −b(q)

b(q) 0

󰁬󰀖
(49)

The partition function Z(θ), serving as a normalization constant, is deter-
mined as follows:

1 =
󰁛

r∈Q
p(r) exp(−1− λ) exp

󰀕
−θ tr

1

2

󰁫
0 −b(q)

b(q) 0

󰁬󰀖
(50)

=⇒ (exp(−1− λ))
−1

=
󰁛

r∈Q
p(r) exp

󰀕
−θ tr

1

2

󰁫
0 −b(q)

b(q) 0

󰁬󰀖
(51)

Z(θ) :=
󰁛

r∈Q
p(r) exp

󰀕
−θ tr

1

2

󰁫
0 −b(q)

b(q) 0

󰁬󰀖
(52)

Consequently, the least biased theory that connects an initial preparation
p(q) to a final measurement ρ(q), under the constraint of the vanishing rela-
tivistic phase in 2D is:

ρ(q) =
1

󰁓
r∈Q p(r) det exp

󰀓
− 1

2θ
󰁫

0 −b(q)
b(q) 0

󰁬󰀔

󰁿 󰁾󰁽 󰂀
Spin(2) Invariant Ensemble

det exp

󰀕
−1

2
θ
󰁫

0 −b(q)
b(q) 0

󰁬󰀖

󰁿 󰁾󰁽 󰂀
Spin(2) Born Rule

p(q)󰁿󰁾󰁽󰂀
Initial Preparation

(53)

11



where det expM = exp trM .
In 2D, the Lagrange multiplier θ correspond to an angle of rotation, and in

1+1D it would correspond to the rapidity ζ:

2D : exp θ
󰁫
0 −1
1 0

󰁬
=

󰁫
cos θ − sin θ
sin θ cos θ

󰁬
θ is the angle of rotation (54)

1 + 1D : exp ζ
󰁫
0 1
1 0

󰁬
=

󰁫
cosh ζ sinh ζ
sinh ζ cosh ζ

󰁬
ζ is the rapidity (55)

The 2D solution may appear equivalent to the QM case because they are
related by an isomorphism Spin(2) ∼= SO(2) ∼= U(1) and under the replacement
θ → τ . However, an isomorphism is not an equality, and in Spin(2) we gain
extra structures related to a relativistic description, which are not available in
the QM case.

To investigate the solution in more detail, we introduce the multivector
conjugate, also known as the Clifford conjugate, which generalizes the concept
of complex conjugation to multivectors.

Definition 5 (Multivector conjugate (a.k.a Clifford conjugate)). Let u = a +
x+b be a multi-vector of the geometric algebra over the reals in two dimensions
GA(2). The multivector conjugate is defined as:

u‡ = a− x− b (56)

The determinant of the matrix representation of a multivector can be ex-
pressed as a self-product:

Theorem 5 (Determinant as a Multivector Self-Product).

u‡u = detMu (57)

Proof. Let u = a+ xx̂+ yŷ + bx̂ ∧ ŷ, and let Mu be its matrix representation󰀅 a+x y−b
y+b a−x

󰀆
. Then:

1 : u‡u (58)

= (a+ xx̂+ yŷ + bx̂ ∧ ŷ)‡(a+ xx̂+ yŷ + bx̂ ∧ ŷ) (59)

= (a− xx̂− yŷ − bx̂ ∧ ŷ)(a+ xx̂+ yŷ + bx̂ ∧ ŷ) (60)

= a2 − x2 − y2 + b2 (61)

2 : detMu (62)

= det
󰀅 a+x y−b
y+b a−x

󰀆
(63)

= (a+ x)(a− x)− (y − b)(y + b) (64)

= a2 − x2 − y2 + b2 (65)

12



Building upon the concept of the multivector conjugate, we introduce the
multivector conjugate transpose, which serves as an extension of the Hermitian
conjugate to the domain of multivectors.

Definition 6 (Multivector Conjugate Transpose). Let |V 〉〉 ∈ (GA(2))n:

|V 〉〉 =

󰀵

󰀹󰀷
a1 + x1 + b1

...
an + xn + bn

󰀶

󰀺󰀸 (66)

The multivector conjugate transpose of |V 〉〉 is defined as first taking the
transpose and then the element-wise multivector conjugate:

〈〈V | =
󰀅
a1 − x1 − b1 . . . an − xn − bn

󰀆
(67)

Definition 7 (Bilinear Form). Let |V 〉〉 and |W 〉〉 be two vectors valued in GA(2).
We introduce the following bilinear form:

〈〈V |W 〉〉 = (a1 − x1 − b1)(a1 + x1 + b1) + . . . (an − xn − bn)(an + xn + bn)
(68)

Theorem 6 (Inner Product). Restricted to the even sub-algebra of GA(2), the
bilinear form is an inner product.

Proof.

〈〈V |W 〉〉x→0 = (a1 − b1)(a1 + b1) + . . . (an − bn)(an + bn) (69)

This is isomorphic to the inner product of a complex Hilbert space, with the
identification i ∼= x̂ ∧ ŷ.

Definition 8 (Spin(2)-valued Wavefunction).

|ψ〉〉 =

󰀵

󰀹󰀷
e

1
2 (a1+b1)

...

e
1
2 (an+bn)

󰀶

󰀺󰀸 =

󰀵

󰀹󰀷

√
ρ1R1

...√
ρ2R2

󰀶

󰀺󰀸 (70)

where
√
ρi = e

1
2ai representing the square root of the probability and Ri = e

1
2bi

representing a rotor in 2D (or boost in 1+1D).

The partition function of the probability distribution can be expressed using
the bilinear form applied to the Spin(2)-valued Wavefunction:

Theorem 7 (Partition Function). Z = 〈〈ψ|ψ〉〉
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Proof.

〈〈ψ|ψ〉〉 =
󰁛

q∈Q
ψ(q)‡ψ(q) =

󰁛

q∈Q
ρ(q)R(q)‡R(q) =

󰁛

q∈Q
ρ(q) = Z (71)

Thus, the Spin(2)-valued wavefunction |ψ〉〉 is a linear object whose inner
product reduces to the partition function.

Definition 9 (Spin(2)-valued Evolution Operator).

T =

󰀵

󰀹󰀷
e−

1
2 θb1

. . .

e−
1
2 θbn

󰀶

󰀺󰀸 (72)

Theorem 8. The partition function is invariant with respect to the Spin(2)-
valued evolution operator.

Proof.

〈〈Tψ|Tψ〉〉 =
󰁛

q∈Q
det(T (q)ψ(q)) =

󰁛

q∈Q
detT (q) detψ(q) =

󰁛

q∈Q
detψ(q) = 〈〈ψ|ψ〉〉

(73)

where detT (q) = 1, because e−
1
2 θb(q) is traceless.

We note that since the even sub-algebra of GA(2) is closed under addition
and multiplication, and the bilinear form constitutes an inner product, it follows
that it can be employed to construct a Hilbert space, in this case a Spin(2)-
valued Hilbert space. The primary difference between a wavefunction living in
a complex Hilbert space and one living in a Spin(2) Hilbert space relates to
the subject matter of the theory. In the present case, the subject matter is a
quantum theory of inertial reference frames in 2D.

The dynamics of reference frame transformations follow from the Schrödinger
equation, which is obtained by taking the derivative of the wavefunction with
respect to the Lagrange multiplier θ. Each element of the wavefunction repre-
sents an inertial reference frame, whose transformation is generated by the θ
angle (for instance, the change of angle experienced by an inertial observer).

Definition 10 (Spin(2)-valued Schrödinger Equation).

d

dθ

󰀵

󰀹󰀷
ψ1(θ)

...
ψn(θ)

󰀶

󰀺󰀸 =

󰀵

󰀹󰀷
− 1

2b1

. . .

− 1
2bn

󰀶

󰀺󰀸

󰀵

󰀹󰀷
ψ1(θ)

...
ψn(θ)

󰀶

󰀺󰀸 (74)
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Definition 11 (Reference Frame Measurement). The (QM) Axiom 5 of 5, re-
garding the measurement postulates, is derived as a theorem in the RQM case
as well (for the same reason as it is in the QM case). This allows us to measure
the wavefunction |ψ〉 into one of its states q according to probability ρ(q). Here
the post-measurement state q corresponds to picking a specific inertial reference
frame q from Q.

We note that, as a linear system, linear combinations of the wavefunction
(such as ψ(q) = λ1ψ1(q) + λ2ψ2(q)) will also be solutions. This can introduce
interference patterns between inertial reference frames:

Theorem 9 (Reference Frame Superpositions and Interference).

Proof. Let T = 1√
2

󰁫
1 1
1 −1

󰁬
, and |ψ〉〉 = 1√

2

󰁫√
ρ1R1√
ρ2R2

󰁬
, then:

T |ψ〉〉 = 1√
2

󰀗
1 1
1 −1

󰀘
1√
2

󰀗√
ρ1R1√
ρ1R2

󰀘
(75)

=
1

2

󰀗√
ρ1R1 +

√
ρ2R2√

ρ1R1 −
√
ρ2R2

󰀘
(76)

=
1

2
(
√
ρ1R1 +

√
ρ2R2) |0〉〉+

1

2
(
√
ρ1R1 −

√
ρ2R2) |1〉〉 (77)

Then the probability can be computed as follows:

|〈〈0|ψ〉〉|2 =
1

2
(
√
ρ1R1 +

√
ρ2R2)

‡(
√
ρ1R1 +

√
ρ2R2) (78)

=
1

2
ρ1 +

1

2
ρ2 +

1

2

√
ρ1ρ2(R

‡
1R2 +R‡

2R1) (79)

=
1

2
ρ1 +

1

2
ρ2 +

1

2

√
ρ1ρ2 cos(θb1 − θb2)

󰁿 󰁾󰁽 󰂀
Spin(2)-valued Interference

(80)

Since Spin(2)∼=U(1), then Spin(2)-valued interference is isomorphism to com-
plex interference.

Definition 12 (David Hestenes’ Formulation). In 3+1D, the David Hestenes’
formulation [7] of the wavefunction is ψ =

√
ρReib/2, where R = ef/2 is a

Lorentz boost or rotation and where eib/2 is a phase. In 2D, as the algebra only
admits a bivector, his formulation would reduce to ψ =

√
ρR, which is identical

to what we recovered.

The definition of the Dirac current applicable to our wavefunction follows
the formulation of David Hestenes:

Definition 13 (Dirac Current). Given the basis x̂ and ŷ, the Dirac current is
defined as:

J1 ≡ ψ(q)‡x̂ψ(q) = ρ(q)R(q)‡x̂(q)R(q) = ρ(q)e1 (81)

J2 ≡ ψ(q)‡ŷψ(q) = ρ(q)R(q)‡ŷ(q)R(q) = ρ(q)e2 (82)
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where e1 and e2 are a Spin(2) rotated frame field.

Theorem 10 (Dirac Equation). The Dirac equation in 2D is a special case of
the Spin(2)-valued Schrödinger equation.

Proof. A number of steps is required to reduce the Spin(2)-valued Schrödinger
equation to the Dirac equation in 2D.

1. We pose ψ(θ) = 〈〈θ|ψ〉〉.

2. We parametrize θ in (x, y), yielding θ(x, y).

3. We expand the left-side of the Schrödinger equation into a total derivative:

d

dθ
ψ(θ(x, y)) =

d

dx
ψ(θ(x, y))

dx

dθ
+

d

dy
ψ(θ(x, y))

dy

dθ
(83)

We set θ(x, y) to be a constant, entailing a global reference frame. With
θ(x, y) constant, the terms x̂ = dx/dθ and ŷ = dy/dθ are basis vector
within the tangent space of θ(x, y) and correspond to the basis vector of
the underlying space (x, y). Thus:

d

dθ
ψ(θ(x, y)) = x̂

d

dx
ψ(θ(x, y)) + ŷ

d

dy
ψ(θ(x, y)) (84)

= ∇ψ(θ(x, y)) (85)

4. On the right-side, we note the isomorphism x̂ ∧ ŷ ∼= i, yielding

−1

2
bψ(θ(x, y)) = −1

2
ibψ(θ(x, y)) (86)

5. Bringing both sides back together we have

i∇ψ(θ(x, y)) =
b

2
ψ(θ(x, y)) (87)

6. Finally, posing b/2 ≡ mc/󰄁 and ϕ(x, y) ≡ ψ(θ(x, y)), we get

(i󰄁∇−mc)ϕ(x, y) = 0 (88)

which is the Dirac equation in 2D.

2.2.1 Obstructions

We identify two obstructions:
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1. In 1+1D: The 1+1D theory results in a split-complex quantum theory
due to the bilinear form (a − bt̂ ∧ x̂)(a + bt̂ ∧ x̂), which yields negative
probabilities: a2 − b2 ∈ R for certain wavefunction states, in contrast to
the non-negative probabilities a2 + b2 ∈ R≥0 obtained in the Euclidean
2D case. (This is why we had to use 2D instead of 1+1D in this two-
dimensional introduction...)

2. In 1+1D and in 2D: The basis vectors (x̂ and ŷ in 2D, and t̂ and x̂
in 1+1D) are not self-adjoint. Although used in the context defining the
Dirac current, their non-self-adjointness prevents the construction of the
spacetime interval (or in 2D, the Euclidean distance) as a quantum ob-
servable. The benefits of having the basis vectors self-adjoint will become
obvious in the 3+1D case, where we will be able to construct the metric
tensor from spacetime interval measurements. Specifically, in 2D:

(x̂µu)
‡u ∕= u‡x̂µu (89)

because (x̂µu)
‡u = u‡x̂‡

µu = u‡(−x̂µ)u.

In the following section, we will explore the obstruction-free 3+1D case.

2.3 RQM in 3+1D

In this section, we extend the concepts and techniques developed for multivector
amplitudes in 2D to the more physically relevant case of 3+1D dimensions. The
Lagrange multiplier equation is as follows:

L(ρ,λ, τ) = −
󰁛

q∈Q
ρ(q) ln

ρ(q)

p(q)
󰁿 󰁾󰁽 󰂀

Relative Shannon
Entropy

+λ

󰀳

󰁃1−
󰁛

q∈Q
ρ(q)

󰀴

󰁄

󰁿 󰁾󰁽 󰂀
Normalization
Constraint

+ ζ

󰀳

󰁃− tr
1

2

󰁛

q∈Q
ρ(q)Mu(q)|a→0,x→0,v→0

󰀴

󰁄

󰁿 󰁾󰁽 󰂀
Vanishing Relativistic-Phase

(90)

The solution (proof in Annex B) is obtained using the same step-by-step
process as the 2D case, and yields:

ρ(q) =
1󰁓

r∈Q p(r) det exp
󰀃
−ζ 1

2Mu(r)|a→0,x→0,b→0

󰀄
󰁿 󰁾󰁽 󰂀

Spinc(3,1) Invariant Ensemble

det exp

󰀕
−ζ

1

2
Mu(q)|a→0,x→0,b→0

󰀖

󰁿 󰁾󰁽 󰂀
Spinc(3,1) Born Rule

p(q)󰁿󰁾󰁽󰂀
Initial Preparation

(91)

where ζ is a ”twisted-phase” rapidity. (If the invariance group was Spin(3,1)
instead of Spinc(3,1), obtainable by posing b → 0, then it would simply be the
rapidity).

Our initial goal will be to express the partition function as a self-product of
elements of the vector space. As such, we begin by defining a general multivector
in the geometric algebra GA(3, 1).
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Definition 14 (Multivector). Let u be a multivector of GA(3, 1). Its general
form is:

u = a (92)

+ xx̂+ yŷ + zẑ+ t̂t (93)

+ f01t̂ ∧ x̂+ f02t̂ ∧ ŷ + f03t̂ ∧ ẑ+ f12x̂ ∧ ŷ + f13x̂ ∧ ẑ+ f23ŷ ∧ ẑ (94)

+ px̂ ∧ ŷ ∧ ẑ+ qt̂ ∧ ŷ ∧ ẑ+ vt̂ ∧ x̂ ∧ ẑ+ wt̂ ∧ x̂ ∧ ŷ (95)

+ bt̂ ∧ x̂ ∧ ŷ ∧ ẑ (96)

where t̂, x̂, ŷ, ẑ are the basis vectors in the real Majorana representation.
A more compact notation for u is

u = a+ x+ f + v + b (97)

where a is a scalar, x a vector, f a bivector, v is pseudo-vector and b a pseudo-
scalar.

This general multivector can be represented by a 4× 4 real matrix using the
real Majorana representation:

Definition 15 (Matrix Representation Mu of u).

Mu =

󰀵

󰀹󰀹󰀷

a+ f02 − q − z b− f13 + w − x −f01 + f12 − p+ v f03 + f23 + t+ y
−b+ f13 + w − x a+ f02 + q + z f03 + f23 − t− y f01 − f12 − p+ v
−f01 − f12 + p+ v f03 − f23 + t− y a− f02 + q − z −b− f13 − w − x
f03 − f23 − t+ y f01 + f12 + p+ v b+ f13 − w − x a− f02 − q + z

󰀶

󰀺󰀺󰀸

(98)

To manipulate and analyze multivectors in GA(3, 1), we introduce several
important operations, such as the multivector conjugate, the 3,4 blade conju-
gate, and the multivector self-product.

Definition 16 (Multivector Conjugate (in 4D)).

u‡ = a− x− f + v + b (99)

Definition 17 (3,4 Blade Conjugate). The 3,4 blade conjugate of u is

⌊u⌋3,4 = a+ x+ f − v − b (100)

The results of Lundholm[8], demonstrates that the multivector norms in the
following definition, are the unique forms which carries the properties of the
determinants such as N(uv) = N(u)N(v) to the domain of multivectors:
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Definition 18. The self-products associated with low-dimensional geometric
algebras are:

GA(0, 1) : ϕ†ϕ (101)

GA(2, 0) : ϕ‡ϕ (102)

GA(3, 0) : ⌊ϕ‡ϕ⌋3ϕ‡ϕ (103)

GA(3, 1) : ⌊ϕ‡ϕ⌋3,4ϕ‡ϕ (104)

GA(4, 1) : (⌊ϕ‡ϕ⌋3,4ϕ‡ϕ)†(⌊ϕ‡ϕ⌋3,4ϕ‡ϕ) (105)

We can now express the determinant of the matrix representation of a mul-
tivector via the self-product ⌊ϕ‡ϕ⌋3,4ϕ‡ϕ. This choice is not arbitrary, but the
unique choice with allows us to represent the determinant of the matrix repre-
sentation of a multivector within GA(3, 1):

Theorem 11 (Determinant as a Multivector Self-Product).

⌊u‡u⌋3,4u‡u = detMu (106)

Proof. Please find a computer assisted symbolic proof of this equality in Annex
C.

Definition 19 (GA(3, 1)-valued Vector).

|V 〉〉 =

󰀵

󰀹󰀷
u1

...
un

󰀶

󰀺󰀸 =

󰀵

󰀹󰀷
a1 + x1 + f1 + v1 + b1

...
an + xn + fn + vn + bn

󰀶

󰀺󰀸 (107)

These constructions allow us to express the distribution in terms of the
multivector self-product.

Definition 20 (Multilinear Form).

〈〈V |V |V |V 〉〉 = ⌊
󰀅
u‡
1 . . . un

󰀆
󰀵

󰀹󰀷
u1 . . . 0
...

. . .
...

0 . . . un

󰀶

󰀺󰀸⌋3,4

󰀵

󰀹󰀷
u‡
1 . . . 0
...

. . .
...

0 . . . u‡
n

󰀶

󰀺󰀸

󰀵

󰀹󰀷
u1

...
un

󰀶

󰀺󰀸

(108)

Theorem 12 (Partition Function). Z = 〈〈V |V |V |V 〉〉
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Proof.

〈〈V |V |V |V 〉〉 (109)

= ⌊
󰀅
u‡
1 . . . un

󰀆
󰀵

󰀹󰀷
u1 . . . 0
...

. . .
...

0 . . . un

󰀶

󰀺󰀸⌋3,4

󰀵

󰀹󰀷
u‡
1 . . . 0
...

. . .
...

0 . . . u‡
n

󰀶

󰀺󰀸

󰀵

󰀹󰀷
u1

...
un

󰀶

󰀺󰀸 (110)

= ⌊
󰀅
u‡
1u1 . . . unun

󰀆
⌋3,4

󰀵

󰀹󰀷
u‡
1u1

...
u‡
nun

󰀶

󰀺󰀸 (111)

= ⌊u‡
1u1⌋3,4u‡

1u1 + · · ·+ ⌊u‡
nun⌋3,4u‡

nun (112)

=

n󰁛

i=1

detMui
(113)

= Z (114)

Theorem 13 (Non-negative inner product). The multilinear form, applied to
the even sub-algebra of GA(3, 1) is awlays non-negative.

Proof. Let |V 〉〉 =

󰀵

󰀹󰀷
a1 + f1 + b1

...
an + fn + bn

󰀶

󰀺󰀸. Then,

〈〈V |V |V |V 〉〉 (115)

= ⌊
󰀅
(a1 + f1 + b1)

‡(a1 + f1 + b1) . . .
󰀆
⌋3,4

󰀥
(a1 + f1 + b1)

‡(a1 + f1 + b1)
...

󰀦

(116)

= ⌊
󰀅
(a1 − f1 + b1)(a1 + f1 + b1) . . .

󰀆
⌋3,4

󰀥
(a1 − f1 + b1)(a1 + f1 + b1)

...

󰀦

(117)

= ⌊
󰀅
a21 + a1f1 + a1b1 − f1a1 − f21 − f1b1 + b1a1 + b1f1 + b2

1 . . .
󰀆
⌋3,4 . . .

(118)

= ⌊
󰀅
a21 − f21 + b2

1 . . .
󰀆
⌋3,4 . . . (119)

We note 1) b2 = (bI)2 = −b2 and 2) f2 = −E2
1 − E2

2 − E2
3 + B2

1 + B2
2 + B2

3 +
4e0e1e2e3(E1B1 + E2B2 + E3B3)

= ⌊
󰀅
a21 − b21 + E2

1 + E2
2 + E2

3 −B2
1 −B2

2 −B2
3 − 4e0e1e2e3(E1B1 + E2B2 + E3B3) . . .

󰀆
⌋3,4 . . .

(120)
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We note that the terms are now complex numbers, which we rewrite as Re(z) =
a21− b21+E2

1 +E2
2 +E2

3 −B2
1 −B2

2 −B2
3 and Im(z) = −4(E1B1+E2B2+E3B3)

= ⌊
󰀅
z1 . . . z2

󰀆
⌋3,4

󰀵

󰀹󰀷
zn
...
zn

󰀶

󰀺󰀸 (121)

=
󰀅
z†1 . . . z†2

󰀆
󰀵

󰀹󰀷
zn
...
zn

󰀶

󰀺󰀸 (122)

= z‡1z1 + · · ·+ z‡nzn (123)

Which is always non-negative.

We now define the Spinc(3, 1)-valued wavefunction, which is valued in the
even sub-algebra of GA(3, 1):

Definition 21 (Spinc(3, 1)-valued Wavefunction).

|ψ〉〉 =

󰀵

󰀹󰀷
e

1
2 (a1+f1+b1)

...

e
1
2 (an+fn+bn)

󰀶

󰀺󰀸 =

󰀵

󰀹󰀷

√
ρ1R1B1

...√
ρnRnBn

󰀶

󰀺󰀸 (124)

where Ri is a rotor, Bi is a phase, and
󰁓

q∈Q ρ(q) = 1.

The evolution operator, leaving the partition function invariant, becomes:

Definition 22 (Spinc(3, 1) Evolution Operator).

T =

󰀵

󰀹󰀷
e−

1
2 ζ(f1+b1)

. . .

e−
1
2 ζ(fn+bn)

󰀶

󰀺󰀸 (125)

In turn, this leads to a Schrödinger equation obtained by taking the deriva-
tive of the wavefunction with respect to the Lagrange multiplier ζ:

Definition 23 (Spinc(3, 1)-valued Schrödinger equation).

d

dζ

󰀵

󰀹󰀷
ψ1(ζ)

...
ψn(ζ)

󰀶

󰀺󰀸 =

󰀵

󰀹󰀷
− 1

2 (f1 + b1)
. . .

− 1
2 (fn + bn)

󰀶

󰀺󰀸

󰀵

󰀹󰀷
ψ1(ζ)

...
ψn(ζ)

󰀶

󰀺󰀸 (126)

Definition 24 (David Hestenes’ Formulation). Our Spinc(3, 1)-valued wave-
function is identical to David Hestenes’ formulation of the wavefunction within
GA(3,1). Both contain a rotor R = e−f/2, a phase B = e−b/2 and the probabil-
ity term

√
ρ.
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Definition 25 (Dirac Current). The definition employed in the 2D case (same
as Hestenes’) applies here as well:

J ≡ ψ‡γµψ = ρR‡B‡γµBR = ρR‡γµB
−1BR = ρeµ (127)

Theorem 14 (Dirac Equation). The Dirac equation is a special case of the
Spinc(3,1)-valued Schrödinger equation, but the derivation contains an extra
step compared to the 2D derivation, eliminating f from the evolution operator
leaving only U(1)-valued evolution.

Proof. A number of steps is required to reduce the Spinc(3,1)-valued Schrödinger
equation to the Dirac equation.

1. We pose ψ(ζ) = 〈〈ζ|ψ|ζ|ψ〉〉.

2. We parametrize ζ in (t, x, y, z), yielding ζ(t, x, y, z), or just ζ(󰂓x) for short.

3. We expand the left-side of the Schrödinger equation into a total derivative:

d

dζ
ψ(ζ(󰂓x)) =

d

dt
ψ(ζ(󰂓x))

dt

dζ
+

d

dx
ψ(ζ(󰂓x))

dx

dζ
+

d

dy
ψ(ζ(󰂓x))

dy

dζ
+

d

dz
ψ(ζ(󰂓x))

dz

dζ
(128)

We set ζ(󰂓x) to be a constant, entailing a global reference frame. With
ζ(󰂓x) constant, the terms t̂ = dx/dθ, x̂ = dy/dθ, etc. are basis vector
within the tangent space of ζ(󰂓x), and correspond to the basis vectors of
the underlying flat spacetime. Thus:

d

dζ
ψ(ζ(󰂓x)) = t̂

d

dt
ψ(ζ(󰂓x)) + x̂

d

dx
ψ(ζ(󰂓x)) + ŷ

d

dy
ψ(ζ(󰂓x)) + ẑ

d

dz
ψ(ζ(󰂓x))

(129)

= ∇ψ(ζ(󰂓x)) (130)

4. On the right-side, we note the appearance of f and b in the evolution
operator. We must pose f → 0, focusing only on the phase transforma-
tions. (We do not pose f → 0 in the wavefunction, just in the evolution
operator.)

5. Then, again on the right-side, we note the isomorphism t̂ ∧ x̂ ∧ ŷ ∧ ẑ ∼= i,
yielding

−1

2
bψ(ζ(󰂓x)) = −1

2
ibψ(ζ(󰂓x)) (131)

6. Bringing both sides together we have

i∇ψ(ζ(󰂓x)) =
b

2
ψ(ζ(󰂓x)) (132)
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7. Finally, posing b/2 ≡ mc/󰄁 and ϕ(t, x, y, z) ≡ ψ(ζ(󰂓x)), we get

(i󰄁∇−mc)ϕ(t, x, y, z) = 0 (133)

which is the Dirac equation.

In addition to linearity, the multilinear form supports a double-copy wave-
function. Specifically, we note that in the multilinear form, the term

󰁳
ρ(q) will

be multiplied four times, leading to ρ(q)2 as the probability. This is acceptable
because the multiplication of two probabilities yields a probability. In fact, the
multilinear form supports a double-copy of a wavefunction:

Definition 26 (Double-copy). Let ψ and ϕ be two Spinc(3,1)-valued wavefunc-
tions. Then, the double copy

⌊ψ(q)‡ψ(q)⌋3,4󰁿 󰁾󰁽 󰂀
copy 1

ϕ(q)‡ϕ(q)󰁿 󰁾󰁽 󰂀
copy 2

= ρψρϕ = ρ (134)

is a valid probability.

This double-copy feature is the reason why the spacetime interval is an
observable, and will be important to define the metric tensor, both for quan-
tum inertial reference frames in this section, and quantum accelerated reference
frames in the next section.

Theorem 15 (Inner Product as an Observable).

1

2

󰀕
〈〈ψ|vψ|ψ|wψ〉〉
〈〈ψ|ψ|ψ|ψ〉〉 +

〈〈ψ|wψ|ψ|vψ〉〉
〈〈ψ|ψ|ψ|ψ〉〉

󰀖
== v ·w (135)

where v = tvγ0 + xvγ1 + yvγ2 + zvγ2 and w = twγ0 + xwγ1 + ywγ2 + zwγ3.

Proof.

1 :
1

2

󰀕
〈〈ψ|vψ|ψ|wψ〉〉
〈〈ψ|ψ|ψ|ψ〉〉 +

〈〈ψ|wψ|ψ|vψ〉〉
〈〈ψ|ψ|ψ|ψ〉〉

󰀖
(136)

=
1

2
(R‡BvBRR‡BwRB +R‡BwBRR‡BvRB) (137)

=
1

2
(R‡vwR+R‡wvR) (138)

=
1

2
(R‡(vw +wv)R) (139)

= R‡(v ·w)R (140)

= v ·w (141)
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We also demonstrate that its self-adjoint yields the same answer:

2 :
1

2

󰀕
〈〈vψ|ψ|wψ|ψ〉〉
〈〈ψ|ψ|ψ|ψ〉〉 +

〈〈wψ|ψ|vψ|ψ〉〉
〈〈ψ|ψ|ψ|ψ〉〉

󰀖
(142)

=
1

2
(R‡B(−v)BRR‡B(−w)RB +R‡B(−w)BRR‡B(−v)RB) (143)

=
1

2
(R‡BvBRR‡BwRB +R‡BwBRR‡BvRB) (144)

the rest proceeds the same as above...

= v ·w (145)

This leads us to the metric tensor constructed as an observable. Here, the
metric is flat because the wavefunction only contains rotors, but in the next
section on quantum gravity, this definition will apply to curved spacetimes:

Theorem 16 (Metric Tensor as an Observable). The metric tensor is the ex-
pectation value of the γµ and γν spacetime intervals:

〈ηµν〉 =
1

2

󰀕
〈〈ψ|γµψ|ψ|γνψ〉〉

〈〈ψ|ψ|ψ|ψ〉〉 +
〈〈ψ|γνψ|ψ|γµψ〉〉

〈〈ψ|ψ|ψ|ψ〉〉

󰀖
(146)

where to improve the legibility, we have dropped the explicit parametrization in
(q).

Proof.

1

2
〈〈ψ|γµψ|ψ|γνψ〉〉+

1

2
〈〈ψ|γνψ|ψ|γµψ〉〉 (147)

=
1

2
⌊R‡B‡γµBR⌋3,4R‡B‡γνBR+

1

2
⌊R‡B‡γνBR⌋3,4R‡B‡γµBR (148)

=
1

2
R‡⌊B‡⌋3,4γµγνBR+

1

2
R‡⌊B‡⌋3,4γνγµBR (149)

because ⌊BR⌋3,4R‡B‡ = e−
1
2be

1
2 fe−

1
2 fe

1
2b = 1

=
1

2
R‡γµγνR+

1

2
R‡γνγµR (150)

because ⌊B‡⌋3,4 = B−1 and B−1γµγνB = γµγνB
−1B = γµγν

=
1

2
(eµeν + eνeµ) (151)

because R‡γµγνR = R‡γµRR‡γνR = eµeν , since R‡R = 1.

= ηµν (152)
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As one can swap γµ with γν and obtain the same metric tensor, the multilin-
ear form guarantees that ηµν is symmetric. Finally, since 〈γµψ(q)|ψ(q)|γνψ(q)|ψ(q)〉 =
〈ψ(q)|γµψ(q)|ψ(q)|γνψ(q)〉, then γµ and γν are self-adjoint within the multilin-
ear form, entailing the interpretation of ηµν as a quantum observable.

This definition will automatically extend to gµν in the next section.
We will now demonstrate that the theory contains the U(1), SU(2), and

SU(3) gauge symmetries, which play a fundamental role in the standard model
of particle physics. Using the γ0 basis (instead of any of γ1, γ2, γ3), means that
we are interested in a transformation that preserves a charge density in time,
rather than that of a charge current in space.

Theorem 17 (U(1) Invariance). [9, 10]

〈ψ(q)|γ0ψ(q)|ψ(q)|γ0ψ(q)〉 = 〈e 1
2bψ(q)|γ0e

1
2bψ(q)|e 1

2bψ(q)|γ0e
1
2bψ(q)〉 (153)

Proof.

〈e 1
2bψ(q)|γ0e

1
2bψ(q)|e 1

2bψ(q)|γ0e
1
2bψ(q)〉 (154)

= ⌊ψ(q)‡e 1
2bγ0e

1
2bψ(q)⌋3,4ψ(q)‡e

1
2bγ0e

1
2bψ(q) (155)

= ⌊ψ(q)‡γ0e−
1
2be

1
2bψ(q)⌋3,4ψ(q)‡γ0e−

1
2be

1
2bψ(q) (156)

= ⌊ψ(q)‡γ0ψ(q)⌋3,4ψ(q)‡γ0ψ(q) (157)

= 〈ψ(q)|γ0ψ(q)|ψ(q)|γ0ψ(q)〉 (158)

Theorem 18 (SU(2) Invariance). [9, 10]

〈ψ(q)|γ0ψ(q)|ψ(q)|γ0ψ(q)〉 = 〈e 1
2 fψ(q)|γ0e

1
2 fψ(q)|e 1

2 fψ(q)|γ0e
1
2 fψ(q)〉 (159)

implies f = θ1γ0γ1 + θ2γ0γ2 + θ3γ0γ3, which generates SU(2).

Proof.

〈e 1
2 fψ(q)|γ0e

1
2 fψ(q)|e 1

2 fψ(q)|γ0e
1
2 fψ(q)〉 (160)

= ⌊ψ(q)‡e− 1
2 fγ0e

1
2 fψ(q)⌋3,4ψ(q)‡e−

1
2 fγ0e

1
2 fψ(q) (161)

We can now identify that the condition to preserve the equality reduces to
this expression:

e−
1
2 fγ0e

1
2 f = γ0 (162)

We further note that moving the left most term to the right yields:

e−θ1γ0γ1−θ2γ0γ2−θ3γ0γ3−B1γ2γ3−B2γ1γ3−B3γ1γ2γ0e
1
2 f (163)

= γ0e
−θ1γ0γ1−θ2γ0γ2−θ3γ0γ3+B1γ2γ3+B2γ1γ3+B3γ1γ2e

1
2 f (164)

Therefore, the product e−
1
2 fγ0e

1
2 f reduces to γ0 if and only if B1 = B2 = B3 = 0,

leaving f = θ1γ0γ1 + θ2γ0γ2 + θ3γ0γ3:
Finally, we note that eθ1γ0γ1+θ2γ0γ2+θ3γ0γ3 generates SU(2).
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Theorem 19 (SU(3) invariance). [9, 10]

〈ψ(q)|γ0ψ(q)|ψ(q)|γ0ψ(q)〉 = 〈fψ(q)|γ0fψ(q)|fψ(q)|γ0fψ(q)〉 (165)

Proof. From the above relation, we identify that the following expression must
remain invariant: −fγ0f = γ0. Now, let f = E1γ0γ1 + E2γ0γ2 + E3γ0γ3 +
B1γ2γ3 +B2γ1γ3 +B3γ1γ2. Then:

−(E1γ0γ1 + E2γ0γ2 + E3γ0γ3 +B1γ2γ3 +B2γ1γ3 +B3γ1γ2)γ0f (166)

The first three terms anticommute with γ0, while the last three commute with
γ0:

= γ0(E1γ0γ1 + E2γ0γ2 + E3γ0γ3 −B1γ2γ3 −B2γ1γ3 −B3γ1γ2)f (167)

This can be written as:

γ0(E−B)(E+B) (168)

= γ0(E
2 +EB−BE−B2) (169)

where E = E1γ0γ1 + E2γ0γ2 + E3γ0γ3 and B = B1γ2γ3 +B2γ1γ3 +B3γ1γ2.
Thus, for −fγ0f = γ0, we require: 1) E2 −B2 = 1 and 2) EB = BE. The

second requirement means that E andBmust commute (and thus be isomorphic
to three complex numbers), and the first implies:

E2 −B2 = (E2
1 +B2

1) + (E2
2 +B2

2) + (E2
3 +B2

3) = 1 (170)

which are the defining conditions for the SU(3) symmetry group.

We have now demonstrated that the solution to the entropy maximization
problem offers a powerful framework that naturally incorporates SU(3)×SU(2)×
U(1) gauge symmetries, retains invariance with respect to the Spinc(3, 1) group,
includes the Dirac current and equation, and introduces the notion of the metric
tensor via spacetime interval measurements. The specificity of these gauges is
attributable to the set of all time-invariant gauges supported by the multilinear
form in GA(3, 1), and cannot be different.

2.4 Quantum Gravity in 3+1D

In the previous section, we developed a quantum theory of inertial reference
frames valued in Spinc(3,1), in which RQM lives. Our goal in this section is to
extend the methodology to accelerated frame fields, in which General Relativity
(GR) lives. Specifically, we will investigate a wavefunction that includes all
multivector grades a,x, f ,v, and b of GA(3, 1).

In general, an arbitrary 4 × 4 matrix Mu(q) exponentiates to a surjection
of the GL+(4,R) group. Thus, the wavefunction becomes a GL+(4,R)-valued
vector, which we call a world vector:
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Definition 27 (World Vector).

|ψ〉〉 =

󰀵

󰀹󰀷
e

1
2 (a1+x1+f1+v1+b1)

...

e
1
2 (an+xn+fn+vn+bn)

󰀶

󰀺󰀸 =

󰀵

󰀹󰀷
e

1
2a1e

1
2 (x

′
1+v′

1+b′
1)e

1
2 f

′
1

...

e
1
2ane

1
2 (x

′
n+v′

n+b′
n)e

1
2 f

′
n

󰀶

󰀺󰀸 =

󰀵

󰀹󰀷
Q1R1

...
QnRn

󰀶

󰀺󰀸 (171)

where e
1
2aie

1
2 (x

′
i+v′

i+b′
i)e

1
2 f

′
i is the QR decomposition of e

1
2 (ai+xi+fi+vi+bi), where

Qi = e
1
2aie

1
2 (x

′
i+v′

i+b′
i) and Ri = e

1
2 f

′
i .

The frame field then becomes an object transformed by said wavefunction.
Specifically, the basis elements are given by its adjoint action on the gamma
matrices:

⌊ψ‡⌋3,4γµψ (172)

= e−
1
2 f

′
e

1
2ae−

1
2 (x

′+v′+b′)γµe
1
2ae

1
2 (x

′+v′+b′)

󰁿 󰁾󰁽 󰂀
FX+/SO(3,1)

e
1
2 f

′
(173)

= e−
1
2 f

′
eµe

1
2 f

′

󰁿 󰁾󰁽 󰂀
SO(3,1)

(174)

where a FX+/SO(3, 1)-valued transformation was applied to the frame field,
yielding an arbitrary curvilinear basis, as well as a SO(3, 1) transformation
constituting the invariant symmetry of the metric tensor.

The construction of the metric tensor as a quantum observable relies on the
inner product being an observable within the multilinear form (Theorem 15):

Theorem 20 (Metric Measurement). The metric measurement is the expecta-
tion value of the γµ and γν operators, applied to a GL+(4,R)-valued wavefunc-
tion:

〈gµν〉 =
1

2

󰀓
〈〈ψ|γµψ|ψ|γνψ〉〉+ 〈〈ψ|γνψ|ψ|γµψ〉〉

󰀔
(175)

where to improve the legibility, we have dropped the explicit parametrization in
(q).

Proof.

1

2
〈〈ψ|γµψ|ψ|γνψ〉〉+

1

2
〈〈ψ|γνψ|ψ|γµψ〉〉 (176)

=
1

2
⌊R̃Q̃γµQR⌋3,4R̃Q̃γνQR+

1

2
⌊R̃Q̃γνQR⌋3,4R̃Q̃γµQR (177)

where R̃ = e−
1
4 f and where Q̃ = e

1
4ae

1
4 (−x+v+b).

=
1

2

√
ρR̃⌊Q̃⌋3,4γµγνQR+

1

2

√
ρR̃⌊Q̃⌋3,4γνγµQR (178)
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because ⌊QR⌋3,4R̃Q̃ = e
1
4ae

1
4 (x−v−b)e

1
4 fe−

1
4 fe

1
4ae

1
4 (−x+v+b) = e

1
2a =

√
ρ

=
1

2
(eµeν + eνeµ) (179)

= gµν (180)

As one can swap γµ with γν and obtain the same metric tensor, the multilinear
form guarantees that gµν is symmetric. Finally, since 〈γµψ(q)|ψ(q)|γνψ(q)|ψ(q)〉 =
〈ψ(q)|γµψ(q)|ψ(q)|γνψ(q)〉, then γµ and γν are self-adjoint within the multilin-
ear form, entailing the interpretation of gµν as a quantum observable.

2.5 The Lagrange Multiplier Equation

Following this initial heuristic investigation, we now define the problem for-
mally via a Lagrange multiplier equation. First, we raise an interpretational
observation regarding the scalar term e

1
2a of ψ. In the previous sections on

QM and RQM, this term was associated with the square root of the probability
e

1
2a =

√
ρ. However, as we noted in Equation 173, it now associates with a dila-

tion factor. The frame field absorbs the term into its curvilinear transformation.
Hence, the world vector cannot be a statement regarding probabilities.

The breakthrough in understanding the precise role of e
1
2a came from dimen-

sional analysis. Specifically, to construct the entries of the metric tensor from
the world vector, the factor e

1
2a ends up being multiplied four times with itself

(twice per gamma matrix). The 4-volume density of the metric, given by the
square root of the metric determinant

󰁳
−|g|, thus scales as e4a. Significantly,

e2a is the square root of the 4-volume e4a, indicating that the distribution grows
with the area associated with the metric it defines.

This area, given as the sum total of the distribution, will replace the typical
normalization constraint of a probability measure, and thus, will remain invari-
ant with respect to all geometric transformations of the system. It will bear an
entropy proportional to its size, and its size will be proportional to the informa-
tion required to encode the states of the quantum system. A candidate for such
an area in GR is, of course, the area of a horizon boundary to a system, as its
size remains invariant under the transformations of GR, and it has already been
associated with entropy in the physics literature on multiple occasions[11, 12].
However, we intuit that it is a property related to the area density (i.e. the
square root of the 4-volume density) defined by the metric over all spacetime,
irrespective of the presence of absence of horizons.

Consequently, the solution will not be a probability distribution; rather, it
will be a distribution of entropy-bearing oriented areas. In the case of a world
manifold (such as required by GR), differently oriented areas will not enter the
picture because they would flip the orientation of parts of the manifold, and
world manifolds are orientable. Thus, GR will automatically force all areas to
be similarly oriented. Similar orientedness draws a parallel with the requirement
that probabilities are always positive in a probability measure.

In line of this interpretation, the Lagrange multiplier equation is as follows:
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Definition 28 (The Fundamental Lagrange Multiplier Equation of QG).

L(A,λ,κ) = −
󰁛

q∈Q
A(q) ln

A(q)

A0(q)
󰁿 󰁾󰁽 󰂀

Relative Shannon Entropy

+ λ

󰀳

󰁃A−
󰁛

q∈Q
A(q)

󰀴

󰁄

󰁿 󰁾󰁽 󰂀
Normalization Constraint

+κ

󰀳

󰁃−1

2
tr
󰁛

q∈Q
A(q)Mu(q)|a→0

󰀴

󰁄

󰁿 󰁾󰁽 󰂀
Vanishing Linear Phase

(181)

where A(q) is the distribution, A0(q) is the initial preparation, A is the total
area, Mu(q) maps q to a 4 × 4 matrix, and where κ is the Lagrange multiplier
which will generate general linear flow on frame fields.

Theorem 21. The least biased theory which connects an initial preparation
A0(q) to its final measurement A(q), under the constraint of the vanishing linear
phase, is:

A(q) =
A󰁓

r∈Q A0(r) det exp
󰀃
− 1

2κMu(r)
󰀄 det exp

󰀕
−1

2
κMu(q)

󰀖
A0(q) (182)

Proof.

∂L(A,λ,κ)

∂A(q)
= 0 = − ln

A(q)

A0(q)
− 1− λ− κ tr

1

2
Mu(q) (183)

0 = ln
A(q)

A0(q)
+ 1 + λ+ κ tr

1

2
Mu(q) (184)

=⇒ ln
A(q)

A0(q)
= −1− λ− κ tr

1

2
Mu(q) (185)

=⇒ A(q) = A0(q) exp(−1− λ) exp

󰀕
−κ tr

1

2
Mu(q)

󰀖
(186)

=
1

Z(κ)
A(q) exp

󰀕
−κ tr

1

2
Mu(q)

󰀖
(187)

The partition function Z(κ), serving as a normalization constant, is deter-
mined as follows:

A =
󰁛

r∈Q
p(r) exp(−1− λ) exp

󰀕
−κ tr

1

2
Mu(q)

󰀖
(188)

=⇒ (exp(−1− λ))
−1

=
1

A
󰁛

r∈Q
p(r) exp

󰀕
−κ tr

1

2
Mu(q)

󰀖
(189)

Z(κ) :=
1

A
󰁛

r∈Q
p(r) exp

󰀕
−κ tr

1

2
Mu(q)

󰀖
(190)

Theorem 22 (Area-Entropy Relation). The Shannon entropy S = −
󰁓

q∈Q A(q) lnA(q)
leads to a thermodynamic law relating the entropy to the area.
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Proof.

S = −
󰁛

q∈Q
A(q) lnA(q) (191)

= −
󰁛

q∈Q

1

Z(κ)
exp

󰀕
−

1

2
trκMu(q)

󰀖
A0(q) ln

1

Z(κ)
exp

󰀕
−

1

2
κ trMu(q)

󰀖
A0(q) (192)

= −
󰁛

q∈Q

󰀕
1

Z(κ)
exp

󰀕
−

1

2
trκMu(q)

󰀖
A0(q)

󰀖󰀕
ln exp

󰀕
−

1

2
κ trMu(q)

󰀖
+ ln

A0(q)

Z(κ)

󰀖
(193)

= −
󰁛

q∈Q

󰀕
1

Z(κ)
exp

󰀕
−

1

2
trκMu(q)

󰀖
A0(q)

󰀖󰀕
ln

A0(q)

Z(κ)

󰀖
(194)

Since trMu(q) = 0, then

= −
󰁛

q∈Q

A0(q)

Z(κ)
ln

A0(q)

Z(κ)
(195)

This mid result is not surprising, because the evolution operator preserves the probability. Contin-
uing...

= −
󰁛

q∈Q

A0(q)

Z(κ)
(lnA0(q) − lnZ(κ)) (196)

Since A0(q) = e−
1
2

tr(a(q)+x(q)+f(q)+v(q)+b(q) = e−2a, then

= −
󰁛

q∈Q

e−2a

Z(κ)
(ln e

−2a − lnZ(κ)) (197)

=
󰁛

q∈Q

e−2a

Z(κ)
2a +

󰁛

q∈Q

e−2a

Z(κ)
lnZ(κ) (198)

Since 1
Z(κ)

= A
󰁓

r∈Q A0(r) det exp
󰀓
− 1

2
κMu(r)

󰀔 = A󰁓
r∈Q A0(r)

= A󰁓
r∈Q e−2a(r)

, then

= A
󰁛

q∈Q

e−2a(q)

Z(κ)
2a(q) +

󰁛

q∈Q

e−2a(q)

Z(κ)
lnZ(κ) (199)

Since
󰁓

q∈Q
e−2a(q)

Z(κ)
2a(q) is the definition of the average, it yields 2a. Furthermore,

󰁓
q∈Q e−2a(q)

is the definition Z(κ). Then:

= A2a + lnZ(κ) (200)

This result connects the entropy to the area A. The terms 2a(q) form the
Lie algebra of the dilation group, which are applied to the gamma matrices as
an adjoint action: e

1
2a(q)γµe

1
2a(q). As such, they determine the scale factor for

the area defined by the metric. As an example, an area scaling factor with value
of 2a = 1/4l2p leads to the Bekenstein-Hawking entropy[12].

S = kB
1

4l2p
A+ kB lnZ(κ) (201)
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where the additional logarithmic term is there to satisfy the third law of ther-
modynamics.

The dynamics are governed by the general linear Schrödinger equation, or
as we prefer to call it, the world generator. It is able to generate all possible
worlds (all metrics) whose entropy is consistent with the size of the surface (the
normalization constraint). The equation is obtained by taking the derivative of
the world vector with respect to the Lagrange multiplier κ:

Definition 29 (World Generator).

d

dκ

󰀵

󰀹󰀷
ψ1(κ)

...
ψn(κ)

󰀶

󰀺󰀸 = −1

2

󰀵

󰀹󰀷
x1 + f1 + v1 + b1

. . .

xn + f1 + v1 + bn

󰀶

󰀺󰀸

󰀵

󰀹󰀷
ψ1(κ)

...
ψn(κ)

󰀶

󰀺󰀸

(202)

Let us investigate a special case of interest where both the wavefunction and
the Schrödinger equation are valued in x. The diffeomorphism-generating part
of the Schrödinger equation, where f ,v,b → 0 (leaving only x), bears a strong
resemblance to the equation that generates infinitesimal diffeomorphisms from
a point p on a manifold X, commonly used in differential geometry:

d

dt
ϕp(t) = xϕp(t), with initial condition ϕp(0) = p (203)

Specifically, the multivector Schrödinger equation (f ,v,b → 0,x ∕= 0) for
state ψi(κ) reduces to:

d

dκ
ψi(κ) = −1

2
xiψi(κ), with initial condition ψi(0) = e

1
2xi (204)

where e
1
2xi , in geometric algebra, represents a point on the manifold, obtained

by applying the exponential map to the vector 1
2xi in the tangent space at some

origin p. The −1/2 factor is a choice of convention that does not change the
meaning of the equation.

Thus, the Schrödinger equation is the generator of active diffeomorphisms.
Furthermore, as the probability measure is invariant with respect to the action
of the Schrödinger equation, it follows that the theory is invariant under active
diffeomorphisms.

In the general case, the multivectorial Schrödinger equation governs the dy-
namics that enable the active generation of all possible metric transformations,
not just diffeomorphisms. In fact, each geometric ”block” is represented:

d

dκ
ψi(κ) = −1

2
fiψi(κ), with initial condition ψi(0) = e

1
2 fi (205)

generates Spin(3,1) transformations.

d

dκ
ψi(κ) = −1

2
biψi(κ), with initial condition ψi(0) = e

1
2bi (206)
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generates phase transformations

d

dκ
ψi(κ) = −1

2
viψi(κ), with initial condition ψi(0) = e

1
2vi (207)

generates volume shears.
The evolution operator can be applied directly to the spacetime interval ob-

servable to generate both diffeomorphisms and SO(3,1) transformations. Due to
the structure of the multilinear form, only diffeomorphisms and SO(3,1) trans-
formations of the metric tensor are possible, which are precisely the symmetry
invariances of GR. First, let us see how these transformations are applied:

1. Diffeomorphism transformations of the metric tensor by action of the
Schrödinger equation:

1

2

󰀃
〈
󰀍
e

x
2 ψ

󰀏󰀏γµe
x
2 ψ

󰀏󰀏e x
2 ψ

󰀏󰀏γνe
x
2 ψ

󰀎
〉+ 〈

󰀍
e

x
2 ψ

󰀏󰀏e x
2 γνψ

󰀏󰀏e x
2 ψ

󰀏󰀏e x
2 γµψ

󰀎
〉
󰀄

(208)

= ⌊ψ‡e−κ x
2 γµe

x
2 ψ⌋3,4ψ‡e−κ x

2 γνe
κ x

2 ψ + . . . (209)

... (sames steps as in Theorem 20) (210)

= g′µν (211)

where the relation v′ = e−κ x
2 veκ

x
2 transports the vector v across the mani-

fold. This leads to a metric tensor g′µν related to gµν by a diffeomorphism.

2. Lorentz transformations of the metric tensor by action of the Schrödinger
equation:

1

2

󰀓
〈
󰁇
e

f
2ψ

󰀏󰀏󰀏γµe
f
2ψ

󰀏󰀏󰀏e
f
2ψ

󰀏󰀏󰀏γνe
f
2ψ

󰁈
〉+ 〈

󰁇
e

f
2ψ

󰀏󰀏󰀏e
f
2 γνψ

󰀏󰀏󰀏e
f
2ψ

󰀏󰀏󰀏e
f
2 γµψ

󰁈
〉
󰀔

(212)

= ⌊ψ‡e−κ f
2 γµe

f
2ψ⌋3,4ψ‡e−κ f

2 γνe
κ f

2ψ + . . . (213)

... (sames steps as in Theorem 20) (214)

= g′µν (215)

where the relation v′ = e−κ f
2 veκ

f
2 boosts or rotates the vector within the

SO(3,1) group. This leads to a metric tensor g′µν related to gµν by a
Lorentz transformation.

Both of these transformations when applied to the metric tensor, as they are
the symmetries of GR, will leave the Einstein tensor invariant. It is interest-
ing to note that pseudo-vectors v are applied as eκv/2veκv/2 by the multilinear
form (notice the absence of a minus sign on the first term), and this is not a
valid adjoint action for a volume shear transformation. Thus, volume shears
are not accepted by the multilinear form to transform the metric tensor. Fur-
thermore, applying a phase transformation automatically causes it to vanish:
v = eκb/2veκb/2 = ve−κb/2eκb/2 = v. Consequently, phase transformations
are negated by the multilinear form when applied to the metric tensor. Thus,
when constructing the metric tensor, the multilinear form allows precisely the
invariant transformations of GR.
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2.5.1 Fock Space

Fock spaces in this context are to be interpretated as allowing the creation and
annihilation of worlds.

The elements of a Fock space can be constructed from individual world
vectors by taking the symmetric or antisymmetric tensor:

|ψ1,ψ2〉〉 =
1√
2
(|ψ1〉〉 ⊗ |ψ2〉〉+ |ψ2〉〉 ⊗ |ψ1〉〉) Symmetric (216)

|ψ1,ψ2〉〉 =
1√
2
(|ψ1〉〉 ⊗ |ψ2〉〉 − |ψ2〉〉 ⊗ |ψ1〉〉) Anti-Symmetric (217)

This allows the construction of a Fock space:

|φ〉〉 = α0 |0〉〉+
󰁛

i

αi |ψi〉〉+
󰁛

i,j

αij |ψi,ψj〉〉+
󰁛

i,j,k

αijk |ψi,ψj ,ψk〉〉+ . . . (218)

where α0,αi,αij ,αijk, . . . are multi-vector valued.
Expressed with world creation and world annihilation operators, we get:

|φ〉〉 = α0 |0〉〉+
󰁛

i

αiâ
†
i |0〉〉+

󰁛

i,j

αij â
†
i â

†
j |0〉〉+

󰁛

i,j,k

αijkâ
†
i â

†
j â

†
k |0〉〉+ ... (219)

where [âi, â
†
j ] = δij (symmetric) or {âi, â†j} = δij (anti-symmetric).

We expand the metric measurements (Theorem 20) to an operator:

Definition 30 (Metric Operator).

〈ĝµν〉 =
1

2

󰀓
〈〈φ|γµφ|φ|γνφ〉〉+ 〈〈φ|γνφ|φ|γµφ〉〉

󰀔
(220)

where |φ〉〉 is a element of the Fock space.

Metric fluctuations are defined using the standard definition of fluctuations
in statistical mechanics:

Definition 31 (Metric Fluctuations).

σ(ĝµν)
2 = 〈ĝ2µν〉 − 〈ĝµν〉2 (221)

2.5.2 Quantized Einstein Field Equations

Since the multilinear form allows the application of both diffeomorphisms and
SO(3,1) transformations, then it follows that the Einstein tensor, which admits
the same invariant symmetries, will remain invariant under action by the world
generator on the metric tensor.

To study the EFE within the present framework, we must express the Ein-
stein tensor in terms of the metric operator ĝµν (Definition 30), yielding Ĝµν ,
instead of the classical metric tensor gµν .
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Definition 32 (Quantum EFE). The quantum version of the Einstein Field
Equation becomes:

〈Ĝµν〉 = 〈T̂µν〉 (222)

• where

〈Ĝµν〉 = 〈R̂µν〉 −
1

2
〈ĝµν〉〈R̂〉 (223)

• where

〈R̂µν〉 = (1/2)〈ĝλσ〉(∂λ∂ν〈ĝµσ〉+ ∂λ∂µ〈ĝνσ〉 − ∂λ∂σ〈ĝµν〉 − ∂ν∂µ〈ĝλσ〉)
(224)

+ 〈ĝλσ〉〈ĝρτ 〉(〈Γ̂λρµ〉〈Γ̂στν〉 − 〈Γ̂λρν〉〈Γ̂στµ〉) (225)

• where

〈Γ̂λρµ〉 = (1/2)(∂ρ〈ĝλµ〉+ ∂λ〈ĝρµ〉 − ∂µ〈ĝλρ〉) (226)

• where

〈R̂〉 = 〈R̂µν〉〈ĝµν〉 (227)

With this in hand, we can now demonstrate that the quantized Einstein
tensor is, in this framework, non-perturbatively finite.

Theorem 23 (QG is non-perturbatively finite). 〈Ĝµν〉 is finite for all possible
ψ.

Proof. The proof is in two parts.

1. First, we show that the elements of the metric tensor are real-valued. As
such, they contain no singularities.

This is because the metric is engendered by the joint action of the wave-
function on the basis vectors (γ0, γ1, γ2, γ3), which is valued in GL+(4,R).
Any element of GL+(4,R), applied to the gamma basis to yield the metric
tensor, will yield a real number:

1

2
(⌊ψ‡γµψ⌋3,4ψ‡γνψ + ⌊ψ‡γµψ⌋3,4ψ‡γνψ) = gµν ∈ R4×4 (228)

Thus, metric tensors that contain, say, a term in 1/r, yielding a singularity
at r = 0, cannot be constructed from the wavefunction, as we would need
to pick an element from GL+(4,R) that contains ∞ at r = 0, and no such
element exists in GL+(4,R).
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2. Second, the finiteness of 〈ĝµν〉 implies the finiteness of 〈Ĝµν〉 if 〈ĝµν〉 is
twice differentiable. Since 〈ĝµν〉, as a metric tensor, is smooth, it is at
least twice differentiable.

While we concede that this proof does not automatically provide the most ef-
ficient algorithm for perturbatively calculating graviton amplitudes, it nonethe-
less constitutes a valid proof of the claim. That is, 〈Ĝµν〉 is finite for all possible
ψ, and consequently the solution yields a non-perturbatively finite theory of
quantum gravity

2.5.3 Observables

We recall that in a complex Hilbert space an observable is given as: 〈Aψ|φ〉 =
〈ψ|Aφ〉 =⇒ A† = A.

Here, we investigate the general self-adjoint equation for the multilinear
form.

Theorem 24 (World Observable).

〈〈Oψ|φ|ϕ|ξ〉〉 = 〈〈ψ|Oφ|ϕ|ξ〉〉 = 〈〈ψ|φ|Oϕ|ξ〉〉 = 〈〈ψ|φ|ϕ|Oξ〉〉 =⇒ OT = O
(229)

where the elements of ψ,φ,ϕ and ξ are valued in GA(3, 1).
This relation implies the eigenvalues of O are real-valued and that its eigen-

vectors are orthogonal, allowing for proper treatment of observables in 3+1D.

Proof. Let us show the theorem for a two-state system. The observable O is
represented by a 2× 2 matrix:

O =

󰀗
o00 o01

o10 o11

󰀘
(230)

where o00, o01, o10, and o11 are multivectors, encapsulating the components of
the observable.

Let us calculate each part of the equality:

1.

⌊
󰀅
ψ‡
1 ψ‡

2

󰀆 󰀗o‡
00 o‡

10

o‡
01 o‡

11

󰀘 󰀗
φ1

φ2

󰀘
⌋3,4

󰀗
ϕ‡
1

ϕ‡
2

󰀘 󰀗
ξ1
ξ2

󰀘
(231)

=
󰀅
⌊ψ‡

1⌋3,4 ⌊ψ‡
2⌋3,4

󰀆 󰀗⌊o‡
00⌋3,4 ⌊o‡

10⌋3,4
⌊o‡

01⌋3,4 ⌊o‡
11⌋3,4

󰀘 󰀗
⌊φ1⌋3,4ϕ‡

1ξ1
⌊φ2⌋3,4ϕ‡

2ξ2

󰀘
(232)

=
󰀅
⌊ψ‡

1⌋3,4 ⌊ψ‡
2⌋3,4

󰀆 󰀗⌊o‡
00⌋3,4⌊φ1⌋3,4ϕ‡

1ξ1 + ⌊o‡
10⌋3,4⌊φ2⌋3,4ϕ‡

2ξ2
⌊o‡

01⌋3,4⌊φ1⌋3,4ϕ‡
1ξ1 + ⌊o‡

11⌋3,4⌊φ2⌋3,4ϕ‡
2ξ2

󰀘

(233)

= ⌊ψ‡
1⌋3,4⌊o

‡
00⌋3,4⌊φ1⌋3,4ϕ‡

1ξ1 + ⌊ψ‡
2⌋3,4⌊o

‡
10⌋3,4⌊φ2⌋3,4ϕ‡

2ξ2

+ ⌊ψ‡
1⌋3,4⌊o

‡
01⌋3,4⌊φ1⌋3,4ϕ‡

1ξ1 + ⌊ψ‡
2⌋3,4⌊o

‡
11⌋3,4⌊φ2⌋3,4ϕ‡

2ξ2 (234)
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2.

⌊
󰀅
ψ‡
1 ψ‡

2

󰀆 󰀗o00 o01

o10 o11

󰀘 󰀗
φ1

φ2

󰀘
⌋3,4

󰀗
ϕ‡
1

ϕ‡
2

󰀘 󰀗
ξ1
ξ2

󰀘
(235)

= ⌊ψ‡
1⌋3,4⌊o00⌋3,4⌊φ1⌋3,4ϕ‡

1ξ1 + ⌊ψ‡
2⌋3,4⌊o01⌋3,4⌊φ2⌋3,4ϕ‡

2ξ2

+ ⌊ψ‡
1⌋3,4⌊o10⌋3,4⌊φ1⌋3,4ϕ‡

1ξ1 + ⌊ψ‡
2⌋3,4⌊o11⌋3,4⌊φ2⌋3,4ϕ‡

2ξ2 (236)

3.

⌊
󰀅
ψ‡
1 ψ‡

2

󰀆 󰀗φ1

φ2

󰀘
⌋3,4

󰀗
ϕ‡
1

ϕ‡
2

󰀘 󰀗
o‡
00 o‡

10

o‡
01 o‡

11

󰀘 󰀗
ξ1
ξ2

󰀘
(237)

= ⌊ψ‡
1⌋3,4⌊φ1⌋3,4ϕ‡

1o
‡
00ξ1 + ⌊ψ‡

2⌋3,4⌊φ2⌋3,4ϕ‡
2o

‡
10ξ2

+ ⌊ψ‡
1⌋3,4⌊φ1⌋3,4ϕ‡

1o
‡
01ξ1 + ⌊ψ‡

2⌋3,4⌊φ2⌋3,4ϕ‡
2o

‡
11ξ2 (238)

4.

⌊
󰀅
ψ‡
1 ψ‡

2

󰀆 󰀗φ1

φ2

󰀘
⌋3,4

󰀗
ϕ‡
1

ϕ‡
2

󰀘 󰀗
o00 o01

o10 o11

󰀘 󰀗
ξ1
ξ2

󰀘
(239)

= ⌊ψ‡
1⌋3,4⌊φ1⌋3,4ϕ‡

1o00ξ1 + ⌊ψ‡
2⌋3,4⌊φ2⌋3,4ϕ‡

2o01ξ2

+ ⌊ψ‡
1⌋3,4⌊φ1⌋3,4ϕ‡

1o10ξ1 + ⌊ψ‡
2⌋3,4⌊φ2⌋3,4ϕ‡

2o11ξ2 (240)

For the equality to be realized, it must be the case that the elements of O
commute with with the elements of ψ,φ,ϕ and ξ, because we must move them
between the elements of the self-products; for instance the observable elements
in 3) and 4) must be move to the left by 2 places to realize the equality. The
relations are then:

⌊o‡
00⌋3,4 = ⌊o00⌋3,4 = o‡

00 = o00 (241)

⌊o‡
10⌋3,4 = ⌊o01⌋3,4 = o‡

10 = o01 (242)

⌊o‡
01⌋3,4 = ⌊o10⌋3,4 = o‡

01 = o10 (243)

⌊o‡
11⌋3,4 = ⌊o11⌋3,4 = o‡

11 = o11 (244)

which reduces to

o10 = o01 (245)

o01 = o10 (246)

implying simply that OT = O and that the elements of O are valued in the
reals (so that the commute with all grades of a multivector). The eigenvalues of
a symmetric matrix are real-valued, and its eigenvectors are orthogonal, allowing
the consistent description of observables within the theory.
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A general observable for a two-state system would therefore be expressed as
follows:

A =

󰀗
a00 a
a a11

󰀘
(247)

for a three-state system, as follows:

B =

󰀵

󰀷
b00 b1 b2
b1 b11 b3
b2 b3 b22

󰀶

󰀸 (248)

and so on.
We can notice that such matrices spawns the set of all possible inner product

for a n-dimensional quantum system (i.e. O defines an inner product as vTOv).
Thus observables in our theory associates to the set of all possible inner products
on the vector space.

Finally, since we utilize a multilinear form (and not just a bilinear form), we
repeat that we also have access to another kind of observables, relying on the
double copy structure, and already mentioned for the spacetime interval as an
observable in Theorem 15.

2.5.4 A Geometric Twist on Einstein’s Dice

Einstein famously remarked, ”God does not play dice.” It appears that Einstein
may have been right: God plays with disks, not dice.

The entropy in 4D spacetime is associated with oriented area elements, or
”disks.” This arises from the fact that the determinant of the metric tensor, as
produced by the general linear wavefunction, in 4D contains 16 products of e

1
2a,

yielding e8a. The square root of the determinant of the metric tensor, which
gives the 4-volume density, scales as e4a. The square root of this 4-volume
density scaling, e2a, corresponds to the scaling of an area element and matches
the factor found in the multilinear form. Thus, entropy-bearing oriented disks
are the geometric objects that solves the problem of maximizing the entropy of
all possible measurements in 4D spacetime.

But the game changes in different dimensions. In 2D space, God trades
disks for sticks. The determinant of the metric tensor in 2D contains 4 prod-
ucts of e

1
2a, yielding e2a. The square root of this expression, ea, corresponds

to the scaling of a line element, matching the factor in the theory’s bilinear
form in 2D. Therefore, in 2D space, entropy-bearing oriented line elements, or
”sticks,” solves the problem of maximizing the entropy of all possible geometric
measurements.

Moving up to 6D space, God finally picks up the dice. The determinant
of the metric tensor in 6D contains 24 products of e

1
2a, yielding e12a. The 6D

hyper-volume scaling is given by the square root of this expression, e6a. The
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square root of this 6D hyper-volume scaling, e3a, corresponds to the scaling of a
3D volume element, matching the factor in the determinant of a 6x6 matrix in
the theory. Thus, in 6D space, entropy-bearing oriented 3D volume elements,
or ”dice,” are the geometric objects that solves the problem of maximizing the
entropy of all possible geometric measurements.

In summary, while Einstein was right that God does not play dice in 4D
spacetime, the multivector-valued quantum mechanics theory suggests that the
divine game varies across dimensions. God flips the sticks in 2D, spins the disks
in 4D, and finally rolls the dice in 6D.

2.6 Dimensional Obstructions

In this section, we explore the dimensional obstructions that arise when at-
tempting to extend the multivector amplitude formalism to other dimensional
configurations. We found that all dimensional configurations except those ex-
plored in this paper (e.g. GA(0), GA(0, 1) and GA(3, 1)) are obstructed:

Dimensions Obstruction

GA(0) Unobstructed =⇒ statistical mechanics (249)

GA(0, 1) Unobstructed =⇒ quantum mechanics (250)

GA(1, 0) Negative probabilities in the RQM (251)

GA(2, 0) No metric measurement =⇒ Geometry not observationally complete (252)

GA(1, 1) Negative probabilities in the RQM (253)

GA(0, 2) Not isomorphic to a real matrix algebra (254)

GA(3, 0) Not isomorphic to a real matrix algebra (255)

GA(2, 1) Not isomorphic to a real matrix algebra (256)

GA(1, 2) Not isomorphic to a real matrix algebra (257)

GA(0, 3) Not isomorphic to a real matrix algebra (258)

GA(4, 0) Not isomorphic to a real matrix algebra (259)

GA(3, 1) Unobstructed =⇒ quantum gravity ∧ SU(3) × SU(2) × U(1) (260)

GA(2, 2) Negative probabilities in the RQM (261)

GA(1, 3) Not isomorphic to a real matrix algebra (262)

GA(0, 4) Not isomorphic to a real matrix algebra (263)

GA(5, 0) Not isomorphic to a real matrix algebra (264)

...
...

GA(6, 0) No multilinear form as a self-product (265)

...
...

∞ (266)

Let us now demonstrate the obstructions mentioned above.
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Theorem 25 (Not isomorphic to a real matrix algebra). The determinant of
the matrix representation of the geometric algebras in this category is either
complex-valued or quaternion-valued, making them unsuitable as a probability.

Proof. The geometric algebras are classified as follows:

GA(0, 2) ∼= H (267)

GA(3, 0) ∼= M2(C) (268)

GA(2, 1) ∼= M2
2(R) (269)

GA(1, 2) ∼= M2(C) (270)

GA(0, 3) ∼= H2 (271)

GA(4, 0) ∼= M2(H) (272)

GA(1, 3) ∼= M2(H) (273)

GA(0, 4) ∼= M2(H) (274)

GA(5, 0) ∼= M2
2(H) (275)

The determinant of these objects, when such a thing exists, is valued in C or in
H, where C are the complex numbers, and where H are the quaternions.

Theorem 26 (Negative Probabilities in the RQM). The even sub-algebra, which
associates to the RQM part of the theory, of these dimensional configurations
allows for negative probabilities, making them unsuitable as a RQM.

Proof. We note three cases:

GA(1, 0): Let ψ(q) = a+ be1, then:

(a+ be1)
‡(a+ be1) = (a− be1)(a+ be1) = a2 − b2e1e1 = a2 − b2 (276)

which is valued in R.

GA(1, 1): Let ψ(q) = a+ be0e1, then:

(a+ be0e1)
‡(a+ be0e1) = (a− be0e1)(a+ be0e1) = a2 − b2e0e1e0e1 = a2 − b2

(277)

which is valued in R.

GA(2, 2): Let ψ(q) = a+ be0e∅e1e2, where e20 = −1, e2∅ = −1, e21 = 1, e22 = 1, then:

⌊(a+ b)‡(a+ b)⌋3,4(a+ b)‡(a+ b) (278)

= ⌊a2 + 2ab+ b2⌋3,4(a2 + 2ab+ b2) (279)

We note that b2 = b2e0e∅e1e2e0e∅e1e2 = b2, therefore:

= (a2 + b2 − 2ab)(a2 + b2 + 2ab) (280)

= (a2 + b2)2 − 4a2b2 (281)

= (a2 + b2)2 − 4a2b2 (282)

which is valued in R.
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In all of these cases the RQM probability can be negative.

We repeat the following self-products[8] (Definition 18), which will help us
demonstrate the next theorem:

GA(0, 1) : ϕ†ϕ (283)

GA(2, 0) : ϕ‡ϕ (284)

GA(3, 0) : ⌊ϕ‡ϕ⌋3ϕ‡ϕ (285)

GA(3, 1) : ⌊ϕ‡ϕ⌋3,4ϕ‡ϕ (286)

GA(4, 1) : (⌊ϕ‡ϕ⌋3,4ϕ‡ϕ)†(⌊ϕ‡ϕ⌋3,4ϕ‡ϕ) (287)

Theorem 27 (No Metric Measurements). This obstruction applies to GA(2, 0).
Multilinear forms of at least four self-products are required for the theory to be
observationally complete with respect to the geometry.

Proof. A metric measurement requires a multilinear form of 4 self products
because the metric tensor is defined using 2 self-products of the gamma matrices:

gµν =
1

2
(eµeν + eνeµ) (288)

Each pair of wavefunction products fixes one basis elements. Thus, two pairs
of wavefunction products are required to fix the geometry from the wavefunc-
tion. As multilinear forms of four self-products begin to appear in 3D, then the
GA(2, 0) cannot produce a metric measurement as a quantum observable, thus
its geometry is not observationally complete.

Conjecture 1 (No multilinear form as a self-product (in 6D)). The multivector
representation of the norm in 6D cannot satisfy any observables.

Argument. In six dimensions and above, the self-product patterns found in Def-
inition 18 collapse. The research by Acus et al.[13] in 6D geometric algebra
demonstrates that the determinant, so far defined through a self-products of
the multivector, fails to extend into 6D. The crux of the difficulty is evident
in the reduced case of a 6D multivector containing only scalar and grade-4
elements:

s(B) = b1Bf5(f4(B)f3(f2(B)f1(B))) + b2Bg5(g4(B)g3(g2(B)g1(B))) (289)

This equation is not a multivector self-product but a linear sum of two multi-
vector self-products[13].

The full expression is given in the form of a system of 4 equations, which is
too long to list in its entirety. A small characteristic part is shown:

a40 − 2a20a
2
47 + b2a

2
0a

2
47p412p422 + 〈72 monomials〉 = 0 (290)

b1a
3
0a52 + 2b2a0a

2
47a52p412p422p432p442p452 + 〈72 monomials〉 = 0 (291)

〈74 monomials〉 = 0 (292)

〈74 monomials〉 = 0 (293)
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From Equation 289, it is possible to see that no observable O can satisfy
this equation because the linear combination does not allow one to factor it out
of the equation.

b1OBf5(f4(B)f3(f2(B)f1(B))) + b2Bg5(g4(B)g3(g2(B)g1(B))) = b1Bf5(f4(B)f3(f2(B)f1(B))) + b2OBg5(g4(B)g3(g2(B)g1(B)))
(294)

Any equality of the above type between b1O and b2O is frustrated by the factors
b1 and b2, forcing O = 1 as the only satisfying observable. Since the obstruction
occurs within grade-4, which is part of the even sub-algebra it is questionable
that a satisfactory quantum theory (with observables) be constructible in 6D.

This conjecture proposes that the multivector representation of the deter-
minant in 6D does not allow for the construction of non-trivial observables,
which is a crucial requirement for a consistent quantum formalism. The lin-
ear combination of multivector self-products in the 6D expression prevents the
factorization of observables, limiting their role to the identity operator.

Conjecture 2 (No multilinear form as a self-product (above 6D)). The norms
beyond 6D are progressively more complex than the 6D case, which is already
obstructed.

These theorems and conjectures provide additional insights into the unique
role of the unobstructed 3+1D signature in our proposal.

It is also interesting that our proposal is able to rule out GA(1, 3) even if
in relativity, the signature of the metric (+,−,−,−) versus (−,−,−,+) does
not influence the physics. However, in geometric algebra, GA(1, 3) represents
1 space dimension and 3 time dimensions. Therefore, it is not the signature
itself that is ruled out but rather the specific arrangement of 3 time and 1 space
dimensions, as this configuration yields quaternion-valued ”probabilities” (i.e.
GA(1, 3) ∼= M2(H) and detM2(H) ∈ H).

Consequently, 3+1D is the only dimensional configuration (other than the
”non-geometric” configurations of GA(0) ∼= R and GA(0, 1) ∼= C) in which a
’least biased’ solution to the problem of maximizing the Shannon entropy of
quantum measurements relative to an initial preparation, exists. This is an
extremely strong claim regarding the possible spacetime configurations of the
universe, and our ability (or inability) to construct an objective theory to explain
it.

3 Discussion

3.1 Maximizing The Relative Shannon Entropy

The principle of maximum entropy[3] states that the probabil-
ity distribution that best represents the current state of knowledge
about a system is the one with the largest entropy, constrained by
prior data.
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In QM, an experiment begins with an initial preparation, followed by some
transformations, and concludes with a final measurement of the system, yielding
the result of the experiment. Consistent with the maximum entropy principle,
our aim is to derive the ’least biased’ theory that connects the initial preparation
p(q) to its final measurement ρ(q), thereby formulating the theory as a solution
to a maximization problem, rather than merely by axiomatic stipulation.

Using this methodology, fundamental physics can be formulated as the gen-
eral solution to a maximization problem involving the Shannon entropy of all
possible measurements of an arbitrary system relative to its initial preparation,
under the constraint of a vanishing phase. As such, the structure of the inferred
theory is determined by the nature and generality of the employed constraint.
In this paper, we have investigated these four entropy maximization problems:

Vanishing Phase Constraint Inferred Theory Wavefunction

none E =
󰁛

q∈Q
ρ(q)E(q) SM R≥0

U(1) 0 = tr
󰁛

q∈Q
ρ(q)

󰁫
0 −E(q)

E(q) 0

󰁬
QM C

Spinc(3, 1) 0 = tr
󰁛

q∈Q
ρ(q)Mu|a→0,x→0,v→0 RQM R× Spinc(3, 1)

SL(4,R) 0 = tr
󰁛

q∈Q
ρ(q)Mu|a → 0 QG GL+(4,R)

Despite the differences in constraints, all four theories hereso formulated
share a common logical genesis, adhere to the same principle of maximum en-
tropy, and qualify as the least biased theory for their given constraint.

3.2 The Multilinear Form

David Hestenes’ work on the representation of the relativistic wavefunction
within GA(3, 1) was instrumental in the development of this research. His re-
sults served as a milestone, confirming the validity of our approach at various
stages. Hestenes’ wavefunction, ψ = e

1
2 (a+f+b) =

√
ρRe−ib/2, contains the same

geometric structures as the Spinc(3, 1) wavefunction in our theory.
However, it is noteworthy that Hestenes’ work does not include a fully sat-

isfactory probability measure. He proposes multiplying the wavefunction with
its reverse:

ψ̃ψ = ρR̃e−ib/2Re−b/2 = ρe−ib (295)

The result ρe−ib does contains ρ, but it also includes a phase factor e−ib. As
such, it is not a proper probability measure.

Subsequently, Hestenes proposes sandwiching the γµ basis to obtain the
Dirac current:
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J = ψ̃γµψ = ρeµ (296)

This approach eliminates the phase contribution because e−ib/2γµe
−ib/2 =

γµe
ib/2e−ib/2 = γµ. Likewise, the Dirac current is not a proper probability

measure (nor is it designed to be) as it contains a basis eµ.
To construct an adapted Born rule that directly yields the probability when

applied to the wavefunction, one might be tempted to apply the conjugate to ψ
in addition to the reverse:

ψ̃‡ψ = ρR̃eib/2Re−ib/2 = ρ (297)

In this case one indeeds maps ψ to ρ, however, this approach disrupts the
definition of the Dirac current: ψ̃‡γµψ = ρR̃γµe

ib/2Re−ib/2 = ρeµe
−ib/2 ∕= J .

To correctly incorporate all the necessary features, including both the Dirac
current and a probability measure yielding the probability density, the multi-
linear form must be employed. Transitioning from bilinear forms to multilinear
forms involving four self-products of ψ represents a significant conceptual leap.
The strength of the entropy maximization problem lies in its ability to auto-
matically reveal the appropriate form to use. Specifically:

1. The multilinear form maps ψ to a probability measure:

⌊ψ‡ψ⌋3,4ψ‡ψ = ⌊√ρR̃e−ib/2√ρRe−ib/2⌋3,4
√
ρR̃e−ib/2√ρRe−ib/2 (298)

= ρ2R̃RR̃Reib/2eib/2e−ib/2e−ib/2 (299)

= ρ2 (300)

2. The definition of the Dirac current is retained:

ψ‡γµψ =
√
ρR‡e−ib/2γµ

√
ρeib/2R (301)

= ρR̃γµR (302)

= ρeµ (303)

= J (304)

3. In the multilinear form the ”Dirac current” (i.e. sandwiching the gamma
matrices within the form) is upgraded to a metric measurement:

1

2

󰀕
⌊ψ‡γµψ⌋3,4ψ‡γνψ

⌊ψ‡ψ⌋3,4ψ‡ψ
+

⌊ψ‡γνψ⌋3,4ψ‡γµψ

⌊ψ‡ψ⌋3,4ψ‡ψ

󰀖
= 〈ηµν〉 (305)

4. In the context of quantum gravity with the GL+(4,R)-valued wavefunc-
tion, the multilinear form leads to metric measurements (Theorem 20):

1

2

󰀓
⌊ψ‡γµψ⌋3,4ψ‡γνψ + ⌊ψ‡γνψ⌋3,4ψ‡γµψ

󰀔
= 〈gµν〉 (306)
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5. And even to a metric operator over the Fock space (Definition 30):

1

2

󰀓
⌊φ‡γµφ⌋3,4φ‡γνφ+ ⌊φ‡γνφ⌋3,4φ‡γµφ

󰀔
= 〈ĝµν〉 (307)

6. In general the multilinear form permits a spacetime interval measurement:

1

2

󰀓
⌊ψ‡vψ⌋3,4ψ‡wψ + ⌊ψ‡wψ⌋3,4ψ‡vψ

󰀔
= v ·w (308)

3.3 The Double-Copy Gauge Theory

In recent years, a remarkable connection between gauge theories and gravity has
been discovered, known as the ”double-copy” relationship. This relationship,
first proposed by Bern, Carrasco, and Johansson (BCJ) [14], states that the
scattering amplitudes of certain gravity theories can be expressed as a ”double-
copy” of the scattering amplitudes of gauge theories, such as Yang-Mills theory.

The BCJ double-copy is based on the observation that the scattering am-
plitudes of gauge theories can be written in a form where the kinematic numer-
ators obey the same algebraic relations as the color factors. This is known as
the ”color-kinematics duality.” By replacing the color factors with another copy
of the kinematic numerators, one obtains the scattering amplitudes of a related
gravity theory.

Our multilinear form is able to engender its own version of a double-copy of
gauge theories. It would be interesting to establish if this relates to the BCJ
double copy, or if it is a different double-copy effect.

Theorem 28 (Double-Copy Gauge Theory). Let |ψ1〉〉 and |ψ2〉〉 be two Spinc(3, 1)-
valued wavefunction, and let f1 and f2 be two bivectors of GA(3, 1). Then:

〈〈f1ψ1(q)|γ0f1ψ1(q)|f2ψ2(q)|γ0f1ψ2(q)〉〉 = 〈〈ψ1(q)|γ0ψ1(q)|ψ2(q)|γ0ψ2(q)〉〉 (309)

implies two copies of a SU(3) gauge theory, satisfying the invariance of the
multilinear form.

Proof. The relation ⌊(f1ψ1(q))
‡γ0f1ψ1(q)⌋3,4(f2ψ2(q))

‡f2ψ2(q) remains invariant
if

−f1γ0f1 = γ0 (copy 1) (310)

−f2γ0f2 = γ0 (copy 2) (311)

(312)

which according to Theorem 19, each copy yields a realization of the SU(3)
gauge; in the present case, yielding two distinct copies. Any perturbative ex-
pansion of the metric operator will be formulated in terms of these wavefunction
double-copies which can be related to gauge theory. We are not sure if this can
be connected to the BCJ double-copy conjecture, but we think it may be an
interesting avenue for future research.

44



3.4 Density and Continuum

Merely for completeness, let us now extend the entropy maximization problem
from the discreet Σ to the continuum

󰁕
, using a Riemann sum. We will take the

quantum mechanics Lagrange multiplier equation an example, but the method
can be applied to any of the three Lagrange multiplier equations we introduced.

L = lim
n→∞

󰀣
−

n󰁛

i=1

ρ(xi) ln
ρ(xi)

ρ0(xi)
+ λ

󰀣
1−

n󰁛

x=1

ρ(xi)

󰀤
+ κ

󰀣
− tr

1

2

n󰁛

i=1

ρ(xi)
1

m(xi)
E(xi)

󰀤󰀤
∆x

(313)

where E(xi) :=
󰁫

0 −E(xi)
E(xi) 0

󰁬
, and where

• n is the number of subintervals,

• ∆x = (b− a)/n is the width of each subinterval,

• xi is a point within the i-th subinterval [xi−1, xi], often chosen to be the
midpoint (xi−1 + xi)/2.

• 1/m(xi) is a factor required to transform the components of the matrix
M(xi) into a density, required for integration.

which yields an integral:

L = −
󰁝 b

a

ρ(x) ln
ρ(x)

ρ0(x)
dx+ λ

󰀣
1−

󰁝 b

a

ρ(x)dx

󰀤
+ κ

󰀣
− tr

1

2

󰁝 b

a

ρ(x)
1

m(x)
E(x)dx

󰀤

(314)

The solution to this optimization problem is a distribution density:

∂L
∂ρ

= 0 =⇒ ρ(x) =
1

󰁕 b

a
ρ0(r) exp

󰀓
− 1

2
κ 1

m(r)
trE(r)

󰀔
dr

󰁿 󰁾󰁽 󰂀
Unitarily Invariant Ensemble

exp

󰀕
−1

2
κ

1

m(x)
trE(x)

󰀖

󰁿 󰁾󰁽 󰂀
Born Rule

p(x)
󰁿󰁾󰁽󰂀

Initial Preparation

(315)

This formulation extends the framework to the continuum, allowing for the
description of continuous systems while preserving the geometric structure and
invariance properties of the theory.

4 Conclusion

In conclusion, this paper presents a novel approach to physical theory con-
struction by solving a maximization problem on the Shannon entropy of all
possible measurements of a system relative to its initial preparation, under the
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constraint of a vanishing phase. By appropriately selecting the group of the van-
ishing phase, the solution resolves to quantum mechanics, relativistic quantum
mechanics, or a theory of quantum gravity. Our findings reveal the exceptional
ability of this approach to generate a mathematically well-behaved theory that
generalizes quantum probabilities through the introduction of vanishing phases.
The resulting measure is invariant under a wide range of geometric transforma-
tions, including those generated by the gauge groups of the Standard Model,
those associated to general relativity, and leads to the metric tensor as a quan-
tum mechanical observable, without the need for additional assumptions beyond
the vanishing phase. This finding aligns with the observed dimensionality and
gauge symmetries of the universe and suggests a possible explanation for its
specificity.

This research represents a significant step in reconciling quantum mechanics
with general relativity, challenging and expanding conventional methodologies
in theoretical physics, and potentially paving the way for new insights in the
field. By reducing fundamental physics to its simplest and most parsimonious
expression, deriving the core theories as optimal solutions to a well-defined
entropy maximization problem, we offer a unified framework that integrates
statistical mechanics, quantum mechanics, relativistic quantum mechanics, and
quantum gravity, while also accounting for the dimensionality of spacetime and
the gauge symmetries of particle physics.
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A SM

Here, we solve the Lagrange multiplier equation of SM.

L(ρ,λ,β) = −kB
󰁛

q∈Q
ρ(q) ln ρ(q)

󰁿 󰁾󰁽 󰂀
Boltzmann
Entropy

+λ

󰀳

󰁃1−
󰁛

q∈Q
ρ(q)

󰀴

󰁄

󰁿 󰁾󰁽 󰂀
Normalization
Constraint

+β

󰀳

󰁃E −
󰁛

q∈Q
ρ(q)E(q)

󰀴

󰁄

󰁿 󰁾󰁽 󰂀
Average Energy Constraint

(316)

We solve the maximization problem as follows:

∂L(ρ,λ,β)
∂ρ(q)

= 0 = − ln ρ(q)− 1− λ− βE(q) (317)

0 = ln ρ(q) + 1 + λ+ βE(q) (318)

=⇒ ln ρ(q) = −1− λ− βE(q) (319)

=⇒ ρ(q) = exp(−1− λ) exp (−βE(q)) (320)

=
1

Z(τ)
exp (−βE(q)) (321)

The partition function, is obtained as follows:

1 =
󰁛

r∈Q
exp(−1− λ) exp (−βE(q)) (322)

=⇒ (exp(−1− λ))
−1

=
󰁛

r∈Q
exp (−βE(q)) (323)

Z(τ) :=
󰁛

r∈Q
exp (−βE(q)) (324)

Finally, the probability measure is:

ρ(q) =
1󰁓

r∈Q exp (−βE(q))
exp (−βE(q)) (325)

B RQM in 3+1D

L(ρ,λ, τ) = −
󰁛

q∈Q
ρ(q) ln

ρ(q)

p(q)
󰁿 󰁾󰁽 󰂀

Relative Shannon
Entropy

+λ

󰀳

󰁃1−
󰁛

q∈Q
ρ(q)

󰀴

󰁄

󰁿 󰁾󰁽 󰂀
Normalization
Constraint

+ ζ

󰀳

󰁃− tr
1

2

󰁛

q∈Q
ρ(q)Mu(q)|a→0,x→0,v→0

󰀴

󰁄

󰁿 󰁾󰁽 󰂀
Vanishing Relativistic-Phase
Anti-Constraint

(326)
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The solution is obtained using the same step-by-step process as the 2D case,
and yields:

ρ(q) =
1󰁓

r∈Q p(r) det exp
󰀃
−ζ 1

2Mu(r)|a→0,x→0,b→0

󰀄
󰁿 󰁾󰁽 󰂀

Spinc(3,1) Invariant Ensemble

det exp

󰀕
−ζ

1

2
Mu(q)|a→0,x→0,b→0

󰀖

󰁿 󰁾󰁽 󰂀
Spinc(3,1) Born Rule

p(q)󰁿󰁾󰁽󰂀
Initial Preparation

(327)

Proof. The Lagrange multiplier equation can be solved as follows:

∂L(ρ,λ, ζ)
∂ρ(q)

= 0 = − ln
ρ(q)

p(q)
− 1− λ− ζ tr

1

2
Mu(q)|a→0,x→0,b→0 (328)

0 = ln
ρ(q)

p(q)
+ 1 + λ+ ζ tr

1

2
Mu(q)|a→0,x→0,b→0 (329)

=⇒ ln
ρ(q)

p(q)
= −1− λ− ζ tr

1

2
Mu(q)|a→0,x→0,b→0 (330)

=⇒ ρ(q) = p(q) exp(−1− λ) exp

󰀕
−ζ tr

1

2
Mu(q)|a→0,x→0,b→0

󰀖
(331)

=
1

Z(ζ)
p(q) exp

󰀕
−ζ tr

1

2
Mu(q)|a→0,x→0,b→0

󰀖
(332)

The partition function Z(ζ), serving as a normalization constant, is deter-
mined as follows:

1 =
󰁛

r∈Q
p(r) exp(−1− λ) exp

󰀕
−ζ tr

1

2
Mu(q)|a→0,x→0,b→0

󰀖

(333)

=⇒ (exp(−1− λ))
−1

=
󰁛

r∈Q
p(r) exp

󰀕
−ζ tr

1

2
Mu(q)|a→0,x→0,b→0

󰀖
(334)

Z(ζ) :=
󰁛

r∈Q
p(r) exp

󰀕
−ζ tr

1

2
Mu(q)|a→0,x→0,b→0

󰀖
(335)

C SageMath program showing ⌊u‡u⌋3,4u‡u = detMu

from sage . a l g eb ra s . c l i f f o r d a l g e b r a import C l i f f o rdA lg eb ra
from sage . quadrat i c f o rms . quadrat i c fo rm import QuadraticForm
from sage . symbol ic . r i ng import SR
from sage . matrix . c on s t ruc to r import Matrix

# Def ine the quadrat i c form f o r GA(3 , 1 ) over the Symbolic Ring
Q = QuadraticForm (SR, 4 , [−1 , 0 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 1 ] )
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# I n i t i a l i z e the GA(3 , 1 ) a lgebra over the Symbolic Ring
a lgebra = Cl i f f o rdA lg eb ra (Q)

# Def ine the ba s i s v e c t o r s
e0 , e1 , e2 , e3 = a lgebra . gens ( )

# Def ine the s c a l a r v a r i a b l e s f o r each ba s i s element
a = var ( ’ a ’ )
t , x , y , z = var ( ’ t x y z ’ )
f01 , f02 , f03 , f12 , f23 , f13 = var ( ’ f01 f02 f03 f12 f23 f13 ’ )
v , w, q , p = var ( ’ v w q p ’ )
b = var ( ’ b ’ )

# Create a gene ra l mu l t i vec to r
udegree0=a
udegree1=t ∗ e0+x∗ e1+y∗ e2+z∗ e3
udegree2=f01 ∗ e0∗ e1+f02 ∗ e0∗ e2+f03 ∗ e0∗ e3+f12 ∗ e1∗ e2+f13 ∗ e1∗ e3+f23 ∗ e2∗ e3
udegree3=v∗ e0∗ e1∗ e2+w∗ e0∗ e1∗ e3+q∗ e0∗ e2∗ e3+p∗ e1∗ e2∗ e3
udegree4=b∗ e0∗ e1∗ e2∗ e3
u=udegree0+udegree1+udegree2+udegree3+udegree4

u2 = u . c l i f f o r d c o n j u g a t e ( )∗u

u2degree0 = sum(x f o r x in u2 . terms ( ) i f x . degree ( ) == 0)
u2degree1 = sum(x f o r x in u2 . terms ( ) i f x . degree ( ) == 1)
u2degree2 = sum(x f o r x in u2 . terms ( ) i f x . degree ( ) == 2)
u2degree3 = sum(x f o r x in u2 . terms ( ) i f x . degree ( ) == 3)
u2degree4 = sum(x f o r x in u2 . terms ( ) i f x . degree ( ) == 4)
u2conj34 = u2degree0+u2degree1+u2degree2−u2degree3−u2degree4

I = Matrix (SR, [ [ 1 , 0 , 0 , 0 ] ,
[ 0 , 1 , 0 , 0 ] ,
[ 0 , 0 , 1 , 0 ] ,
[ 0 , 0 , 0 , 1 ] ] )

#MAJORANA MATRICES
y0 = Matrix (SR, [ [ 0 , 0 , 0 , 1 ] ,

[ 0 , 0 , −1, 0 ] ,
[ 0 , 1 , 0 , 0 ] ,
[−1 , 0 , 0 , 0 ] ] )

y1 = Matrix (SR, [ [ 0 , −1, 0 , 0 ] ,
[−1 , 0 , 0 , 0 ] ,
[ 0 , 0 , 0 , −1] ,
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[ 0 , 0 , −1, 0 ] ] )

y2 = Matrix (SR, [ [ 0 , 0 , 0 , 1 ] ,
[ 0 , 0 , −1, 0 ] ,
[ 0 , −1, 0 , 0 ] ,
[ 1 , 0 , 0 , 0 ] ] )

y3 = Matrix (SR, [ [−1 , 0 , 0 , 0 ] ,
[ 0 , 1 , 0 , 0 ] ,
[ 0 , 0 , −1, 0 ] ,
[ 0 , 0 , 0 , 1 ] ] )

mdegree0 = a
mdegree1 = t ∗y0+x∗y1+y∗y2+z∗y3
mdegree2 = f01 ∗y0∗y1+f02 ∗y0∗y2+f03 ∗y0∗y3+f12 ∗y1∗y2+f13 ∗y1∗y3+f23 ∗y2∗y3
mdegree3 = v∗y0∗y1∗y2+w∗y0∗y1∗y3+q∗y0∗y2∗y3+p∗y1∗y2∗y3
mdegree4 = b∗y0∗y1∗y2∗y3
m=mdegree0+mdegree1+mdegree2+mdegree3+mdegree4

p r i n t ( u2conj34 ∗u2 == m. det ( ) )

The program outputs

True

showing, by computer assisted symbolic manipulations, that the determinant of
the real Majorana representation of a multivector u is equal to the multilinear
form: detMu = ⌊u‡u⌋3,4u‡u.
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