A Geometric Algebra Solution to a Hard Contest Problem

May 11, 2024

LinkedIn group ("Pre-University Geometric Algebra")

Abstract

We show how to use rotations of vectors in GA to solve the following problem: "The following are known about a triangle: The ratio of the lengths of two sides; the angle formed by those sides; and the length of that angle's bisector. Find the length of the side opposite that angle."

Given α, d, and k (but not l), find the length $B C$.

Figure 1: Given α, d, and k (but not l), find the length $B C$.

1 Statement of the Problem

The problem that we solve here is a generalization of a contest problem that the YouTube channel "Mind Your Decisions" solved by conventional means at https://www.youtube.com/watch?v=BeuLmUjPFsk. We state that generalizaton as: Given α, d, and k (but not l), find the length $B C$ (Fig. 1).

2 Ideas that We Will Use

1. For any two parallel vectors \mathbf{u} and $\mathbf{v}, \mathbf{u} \wedge \mathbf{v}=0$.
2. For any two vectors \mathbf{u} and $\mathbf{v}, \mathbf{u} \wedge \mathbf{v}=\langle\mathbf{u v}\rangle_{2}$.
3. Ideas concern the rotation of a vector \mathbf{v} that is parallel to a given bivector i:
(a) The vectors $\mathbf{v} e^{\mathbf{i} \theta}$ and $\mathbf{v} e^{-\mathbf{i} \theta}$ are rotations of \mathbf{v} by the same angle θ, but in opposite directions.

(b) For any angle θ, and any vector \mathbf{v} that is parallel to bivector \mathbf{i}, $\mathbf{v} e^{\mathbf{i} \theta}=e^{-\mathbf{i} \theta} \mathbf{v}$. Here is a proof:

Figure 2: Formulation of the problem in terms of vectors. Note that $\mathbf{b}=k l \hat{\mathbf{d}} e^{-\mathbf{i} \alpha}$; $\mathbf{d}=d \hat{\mathbf{d}} ;$ and $\mathbf{c}=l \hat{\mathbf{d}} e^{\mathbf{i} \alpha}$.

$$
\begin{aligned}
\mathbf{v} e^{\mathbf{i} \theta} & =\mathbf{v}[\cos \theta+\mathbf{i} \sin \theta] \\
& =\mathbf{v} \cos \theta+\mathbf{v i} \sin \theta \\
& =\mathbf{v} \cos \theta-\mathbf{i} \mathbf{v} \sin \theta \\
& =[\cos \theta-\mathbf{i} \sin \theta] \mathbf{v} \\
& =e^{-\mathbf{i} \theta} \mathbf{v} .
\end{aligned}
$$

(c) From $\mathbf{v} e^{\mathbf{i} \theta}=e^{-\mathbf{i} \theta} \mathbf{v}$, we can see that $\mathbf{v} e^{\mathbf{i} \theta} \mathbf{v}=v^{2} e^{-\mathbf{i} \theta}$, and that $\hat{\mathbf{v}} e^{\mathbf{i} \theta} \hat{\mathbf{v}}=$ $e^{-\mathbf{i} \theta}$.

3 Solution Strategy

We will use rotation of vectors to determine l, then (knowing l) we will use the Law of Cosines to calculate $B C$.

4 Formulation in Terms of Vectors

We formulate the problem as shown in Fig. 2

5 Solution

We begin by recognizing that $[\mathbf{c}-\mathbf{d}] \|[\mathbf{d}-\mathbf{b}]$. Therefore, $[\mathbf{c}-\mathbf{d}] \wedge[\mathbf{d}-\mathbf{b}]=0$, and

$$
\begin{aligned}
&\langle[\mathbf{c}-\mathbf{d}][\mathbf{d}-\mathbf{b}]\rangle_{2}=0 \\
&\left\langle\left[l \hat{\mathbf{d}} e^{\mathbf{i} \alpha}-d \hat{\mathbf{d}}\right]\left[d \hat{\mathbf{d}}-k l \hat{\mathbf{d}} e^{-\mathbf{i} \alpha}\right]\right\rangle_{2}=0 \\
&\left\langle l d \hat{\mathbf{d}} e^{\mathbf{i} \alpha} \hat{\mathbf{d}}-k l^{2} \hat{\mathbf{d}} e^{\mathbf{i} \alpha} \hat{\mathbf{d}} e^{-\mathbf{i} \alpha}-d^{2}+k d l e^{-\mathbf{i} \alpha}\right\rangle_{2}=0 \\
&\left\langle l d e^{-\mathbf{i} \alpha}-k l^{2} e^{-\mathbf{i} \alpha} e^{-\mathbf{i} \alpha}+k d l e^{-\mathbf{i} \alpha}\right\rangle_{2}=0 \\
&\left\langle d e^{-\mathbf{i} \alpha}-k l e^{-2 \mathbf{i} \alpha}+k d e^{-\mathbf{i} \alpha}\right\rangle_{2}=0 \\
&-d \sin \alpha+k l \sin 2 \alpha-k d \sin \alpha=0 \\
& \therefore \quad l=\frac{(k+1) d \sin \alpha}{k \sin 2 \alpha} .
\end{aligned}
$$

Because $\sin 2 \alpha=2 \sin \alpha \cos \alpha$,

$$
l=\frac{(k+1) d}{2 k \cos \alpha}
$$

Finally, from the Law of Cosines,

$$
\begin{aligned}
B C & =\sqrt{A B^{2}+A C^{2}-2(A B)(A C) \cos 2 \alpha} \\
& =\sqrt{(k l)^{2}+l^{2}-2 k l^{2} \cos 2 \alpha} \\
& =l \sqrt{k^{2}+1-2 k \cos 2 \alpha} \\
& =\left[\frac{(k+1) d}{2 k \cos \alpha}\right] \sqrt{(k+1)^{2}-2 k(1+\cos 2 \alpha)} \\
& =\left[\frac{(k+1) d}{2 k \cos \alpha}\right] \sqrt{(k+1)^{2}-4 k \cos ^{2} \alpha} .
\end{aligned}
$$

References

[1] A. Macdonald, Linear and Geometric Algebra (First Edition), CreateSpace Independent Publishing Platform (Lexington, 2012).
[2] J. A. Smith, "Some Solution Strategies for Equations that Arise in Geometric (Clifford) Algebra", 2016.

