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ABSTRACT. We give a polynomial-time solution for
the "modulo NP-complete problem" on the base of in-
teger optimization algorithms.

1. Introduction. Despite in general, Integer Programming is NP-hard or
even incomputable (see, e.g., Hemmecke et al. [10]), for some subclasses of
target functions and constraints it can be computed in time polynomial.

A fixed-dimensional polynomial minimization in integer variables, where
the objective function is a convex polynomial and the convex feasible set is
described by arbitrary polynomials can be solved in time polynomial(see, e.g
Khachiyan and Porkolab [11]), see Lenstra [13] as well.

A fixed-dimensional polynomial minimization over the integer variables,
where the objective function is a quasiconvex polynomial with integer coeff-
icients and where the constraints are inequalities with quasiconvex polynom-
ials of degree at most > 2 with integer coefficients can be solved in time po-
lynomial in the degrees and the binary encoding of the coefficients(see, e.g.,
Heinz [8], Hemmecke et al. [10], Lee [12]).

Minimizing a convex function over the integer points of a bounded conv-
ex set is polynomial in fixed dimension, according to Oertel et al. [15].

Del Pia and Weismantel [4] showed that Integer Quadratic Programming
can be solved in polynomial time in the plane.

It was further generalized for cubic and homogeneous polynomials in Del
Pia et al. [5].

We are going to transform well-known AP -complete problem to the pol-
ynomial-time integer minimization algorithm. It would mean, that @ = NP,
since if there is a polynomial-time algorithm for any AP -hard problem, th-
en there are polynomial-time algorithms for all problems in VP (see Garey
and Johnson [7], Manders and Adleman [14], Cormen et al. [2]).

2020 Mathematics Subject Classification. Primary: 90C11; Secondary: 90C48, 68Q25.
Key words and phrases. Integer optimization, NP -complete, polynomial-time.



2 YULY SHIPILEVSKY

Fortnow in [6] stated: "We call the very hardest AP problems (which in-
clude Partition Into Triangles, Clique, Hamiltonian Cycle and 3-Coloring)
“NP-complete”, i.e. given an efficient algorithm for one of them, we can fi-
nd efficient algorithm for all of them and in fact any problem in NP".

2. Polynomial-time Algorithm. Sliding Tangent.

Lemma 1 (De Loera et al. [3], Hemmecke et al. [10], Del Pia et al. [5]).
The problem of minimizing a degree-4 polynomial over the lattice points
of a convex polygon is NP -hard.

Proof. They use the AP -complete problem AN1 on page 249 of Garey and
Johnson [7]. This problem states it is MP-complete to decide whether, given
three positive integers a, b, c, there exists a positive integer x < ¢ such that x”
is congruent with "a" modulo "b". This problem is clearly equivalent to as-
king whether the minimum of the quartic polynomial function (x*— a — by)’
over the lattice points of the rectangle:

{(xy)]1<x <c-1,1—a < by < (c—1)>—a} is zero or not. O

According to Del Pia and Weismantel [4], minimization problem, given in
the above proof of Lemma 1 is equivalent to the following problem:

min { (x’—a —by) subject to
x’—a—by>0, (1)
I<x<c—l,l-a<by<(c—1)’—a, x,y € Z}.

If L:={(x,y)eR*| xX’~a— by>0, x>0},
G:={(x,y)eR*| 1<x<c—1,1-a<by<(c—1Y-a},

problem (1) can be rewritten as follows:
= min{(x’~a-by) | x,y) e (LNG)NZ*}. )

If bymn =1 —a, bymax =(c — 1)2 — a, then the above defined rectangle:
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G={(xyY)eR|1<x<c— 1, Yun <V < Vimax }-

Note that parabola: by = bf(x)= x> — a, x >0 is a part of the border of
set L (the top) and we have:

bf(1)= 1—a=Dbymmn bflc—1)= (c— 1)’ — a=bymax
Thus: f(1) = Ymin, f(C— 1) = Ymax-

Set L 1s not convex, as well as the set L n G (see Boyd and Vandenberg-
he [1], Osborne [16]).

The equation of the tangent to the parabola: by = bf(x) = x° — a, at the
pointi: 1 <1 < c—1,1€Z,x € Ris given by:

byi(x)=2i(x—1i)+i’ —a. (3)

The segment of this tangent (hypotenuse), which is inside G and having
one end D; = (dy;, dy; ) on the horizontal line by = 1 — a, and another end H; =
(hy;, hy;) on the vertical line x =c¢ — 1, together with two other segments: on
the horizontal line by = 1 —a and on the vertical line x =c¢ — 1, both segme-
nts intersect at the point E = (e, e,): e, =c — 1, be, = 1 — a (cathetuses), fo-
rm some right triangle D;HE:

DHE =S, ={(x,y) e G| y<yix)}, 1<1<c—-1l,1eZ

Proposition 1. 2id;; = P+ 1,bdy=1-a,
hi=c—1 bhy =2ic—1)-i —a,
1 <i<c—-11i€el

Proof. It follows from the definition of points D;, H; and (3): considering
points D; and H; as intersections of the tangent (3) and the corresponding ho-
rizontal and vertical lines, described above, we have for the points D;:

¥i(d1i) = dai = Ymin, and for the points H;i: hy; = y; (hy;) = yi(c — 1). 0

Corollary 1. d;;=1,2(c— 1) dyc.1 =1+ (c— 1)%,
d<d;<dj.,i=2 .,c—2,
d[,' < d[,ur[, 1= ], ey C — 2.
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Proof. Function d(t): 2d(t)=t+t" is a strictly increasing function over the
interval 1 < t < ¢— 1, since its derivative d(t):  2d(t)=1—t? is positive
for t > 1 and equal to zero at the pointt=1, t € R. O

Corollary 2. bhy;=2c —3—a, bhy..1=(c—1)* —a,
hg] < hgi < hgc_l, ] :2, ey C — 2,
hgi < h2i+1, 1= ], ey C 2.

Proof. Function h(t): bh(t)= 2t(c — 1) — t* —a is a strictly increasing

function over the interval 1 < t < ¢ — I, since its derivative h(t):  bh(t) =
2(c — 1) — 2t is positive on the interval 1 < t < ¢ — 1 and equal to zero at the
pointt=c—1,te R O

Lemma2. (LNG)NZ' = US,NZ)1<i<c-1ieZ
Proof. 1t follows from the above given definitions and properties of sets

L,G,S,(1<1 < c¢c—1,1¢€ Z)and due to continuity, differentiability, conv-
exity and monotonicity of function f(x), (x > 0).

In particular, it is well-known that a differentiable function of one vari-
able 1s convex on an interval Q if and only if its graph lies above all of its ta-
ngents: f(x) > f(y) + f (y) (x —y), X,y € Q (see, e.g., Boyd and Vandenber-
ghe [1, section 3.1.3]). O

Thus, instead of non-convex set L N G, we can consider a collection of
right triangles: { S; }, so that search space of the problem (2): (L "G ) N Z°
is identical to the union: U (S§; N Zz), I<i<c—-1l,ieZ

Let us denote:

W = min { (xX’—a—by) | (x,y) € SSnZ*}, 4)
I<i1<c—-1,1€Z.

Theorem 1. y =min { |1<i<c—1ieZ)

Proof. It follows from the above given definitions of p, 1; and Lemma 2.
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Each problem (4) is Integer Quadratic Programming problem in the pla-
ne. According to Del Pia and Weismantel [4], Theorem 1.1, they can be sol-
ved in polynomial time.

Recall that polynomial-time algorithms are closed under union, composi-
tion, concatenation, intersection, complementation and some other operatio-
ns: see, e.g., Hopcroft et al. [9], pp. 425—426, Cormen et al. [2], p. 1055.

The class of languages decidable in polynomial time, class @, is closed
under union, concatenation and the other above mentioned operations. This
means that if you have two languages in @, their union, concatenation, etc.,
is alsoin @ Using mathematical induction, it can be trivially extended to
any finite number of languages and combinations of the above given operati-
ons.

That is why, due to Theorem 1, our original MP-complete problem (2)
can be solved in polynomial time as well.

As aresult, since due to the above algorithm, NP -complete problem can
be solved in polynomial time, we can conclude that ?= M\P, since as we me-
ntioned above, if there is a polynomial-time algorithm for any W®-hard pro-
blem, then there are polynomial-time algorithms for all problems in NP.

Since the original MNP -complete problem is asking whether the corresp-
onding minimum is zero or not, we can, finally, give the following algorithm
(polynomial-time) for its solution:

Input: positive integers a, b, c.
Output: Zero Or Not.

Set Zero Or Not ="Not Zero" .

fori=1,..,c—1do
if min {(xX’—a—by) | X,y) e SNZ*}=0
then Set Zero Or Not="Zero"
break
end
end
return Zero Or Not
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3. Conclusion. We reduced MP-complete problem to the polynomial-time
algorithm, Thus, we can conclude that = M, since if there is a polynomial-
time algorithm for any MP-hard problem then there are polynomial-time al-
gorithms for all problems in NP.
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