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ABSTRACT 

A new Rayleigh-Schrödinger pertubation theory (RSPT) sheme along the Pauli (P) contribution is 

presented,  with the unpertubated system being the artificial Kohn-Sham (KS) system of noninteracting 

fermions, which is linked to the real system of interacting fermions via the Hohenberg-Kohn theorem, 

with 𝛽 = 0, i.e. no Pauli contribution, is scaled up by the coupling strength 0 ≤ 𝛽 ≤ 1 to a fictitious 

system, with 𝛽 = 1, i.e. full Pauli contribution, the pertubated system of noninteracting bosons given 

by the Levy-Perdew-Sahni (LPS) equation. This formalism to introduced in order to give a pathway for 

constructing novel Kinetic energy density functionals (KEDF) for the Pauli kinetic energy as an 

(generalized) adiabatic-connection-like (GAC) theorem similar as to for constructing KS correlation 

functionals with the adiabatic-connection fluctuation-dissipation (ACFD) theorem or as been done in 

Görling-Levy pertubation theory (GLPT). 

__________________________________________________________________________________ 

I. INTRODUCTION: THE ADIABATIC CONNECTION FLUCTUATION-

DISSIPATION (ACFD) THEOREM  FOR THE KOHN-SHAM (KS) 

CORRELATION ENERGY 

We start at the adiabatic-connection fluctuation-dissipation (ACFD) theorem  for the KS correlation 

energy [9], [10], [11], [12] 

𝐸𝐶
𝐴𝐶𝐹𝐷[𝜚] = −

1

2𝜋
∫ 𝑑𝛼∫ 𝑑𝜔

∞

0

1

0

∫𝑑𝑟𝑑𝑟′ 𝑓𝐻(𝑟, 𝑟
′)[𝜒𝛼(𝑖𝜔, 𝑟, 𝑟

′) − 𝜒0(𝑖𝜔, 𝑟, 𝑟
′)] (1) 

Which equals 

𝐸𝐶[𝜚] = 𝐸[𝜚] − 𝐸𝑆[𝜚] = ⟨Ψ|�̂�|Ψ⟩ − ⟨Φ𝑆|�̂�|Φ𝑆⟩ = 𝑇𝐶[𝜚] + 𝑉𝐶[𝜚] (2) 

Where 𝑇𝐶[𝜚] = ⟨Ψ|�̂�|Ψ⟩ − ⟨Φ𝑆|�̂�|Φ𝑆⟩ is the kinetic part and 𝑉𝐶[𝜚] = ⟨Ψ|�̂�𝑒𝑒|Ψ⟩ − ⟨Φ𝑆|�̂�𝑒𝑒|Φ𝑆⟩ the 

interaction part of correlation. By considering the  pertubative adiabatic-connection (AC) Schrödinger 

equation, where the electron-electron interaction  �̂�𝑒𝑒 = ∑ 𝑟𝑖𝑗
−1

𝑖<𝑗  is scaled by the coupling strength  

0 ≤ 𝛼 ≤ 1  and for 𝛼 = 1 �̂�(𝛼 = 1) = 𝑣(𝑟) turns into the external potential and Ψ(𝛼 = 1) = Ψ0 as 

E(𝛼 = 1) = 𝐸[𝜚] is the exact groundstate wavefunction and energy, therefore the pertubated 

Schrödinger equation describing the real system of interacting fermions is the electronic Schrödinger 

equation, and for 𝛼 = 0 �̂�(𝛼 = 0) = 𝑣𝑆(𝑟) = 𝑣(𝑟) + 𝑣𝐻𝑋𝐶(𝑟) turns into the KS potential (with the 

Hartree-Exchange-Correlation potential) and Ψ(𝛼 = 0) = Φ𝑆 turns in to the KS determinant and the 

KS energy E(𝛼 = 0) = 𝐸𝑆[𝜚], thus the unpertubated Schrödinger equation is the many-body KS 

equation describing a system of noninteracting fermions, the artificial KS system   

[�̂� + �̂�(𝛼) + 𝛼�̂�𝑒𝑒]Ψ(𝛼) = 𝐸(𝛼)Ψ(𝛼) (3) 
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By invoking the fundamental theorem of calculus (FTC) and the Hellmann-Feynman theorem [13] one 

obtains the adiabatic-connection (AC) theorem for the KS correlation energy [11], [5], [6], [7], [8], [14] 

𝐸𝐶
𝐴𝐶[𝜚] =𝐸𝐶(𝛼 = 1) − 𝐸𝐶(𝛼 = 0)

𝐹𝑇𝐶
⇔ ∫ 𝑑𝛼

1

0

𝑑𝐸𝐶(𝛼)

𝑑𝛼

𝐻𝑒𝑙𝑙𝑚𝑎𝑛𝑛−𝐹𝑒𝑦𝑛𝑚𝑎𝑛
⇔               ∫ 𝑑𝛼

1

0

𝑉𝐶(𝛼)

= ∫ 𝑑𝛼
1

2
∫𝑑𝑟𝑑𝑟′𝑓𝐻(𝑟, 𝑟

′)𝜌𝐶(𝑟, 𝑟
′, 𝛼)

1

0

 

(4) 

Where 𝐸𝐶(𝛼 = 0) = 0 and 𝜌𝐶(𝑟, 𝑟
′, 𝛼) = −

1

𝜋
∫ 𝑑𝜔
∞

0
[𝜒𝛼(𝑖𝜔, 𝑟, 𝑟

′) − 𝜒0(𝑖𝜔, 𝑟, 𝑟
′)] = 2[𝜌2(𝑟, 𝑟

′, 𝛼) −

𝜌2(𝑟, 𝑟
′ , 0)] is the correlation pair density . 

 

II. RAYLEIGH-SCHRÖDINGER PERTUBATION THEORY (RSPT) ALONG THE 

PAULI (P) CONTRIBUTION AND A GENERALIZED ADIABATIC-

CONNECTION-LIKE (GAC) THEOREM FOR THE PAULI KINETIC ENERGY 

DENSITY FUNCTIONAL (KEDF) 

 

Looking  at the Pauli (P) kinetic energy density functional (KEDF) consisting of the KS KEDF 𝑇𝑆[𝜚] =

⟨Φ𝑆|�̂�|Φ𝑆⟩
𝑆𝐶𝑟
⇔ ∑ ∫𝑑𝑟𝜙𝑖(𝑟) (−

1

2
∆)𝜙𝑖(𝑟)

𝑁
𝑖=1

𝑃𝐼
⇔

1

2
∑ ∫𝑑𝑟|∇𝜙𝑖(𝑟)|

2𝑁
𝑖=1  and the von Weizsäcker KEDF [ 

𝑇𝑊[𝜚] = ∫
1

8

|∇𝜚(𝑟)|2

𝜚(𝑟)
𝑑𝑟

𝑃𝐼
⇔∫𝑑𝑟 √𝜚(𝑟)(−

1

2
∆)√𝜚(𝑟) = ∑

1

𝑁
∫𝑑𝑟√𝜚(𝑟𝑖) (−

1

2
∆)√𝜚(𝑟𝑖)

𝑁
𝑖=1 =

∑ ∫𝑑𝑟𝜙𝐵(𝑟𝑖) (−
1

2
∆)𝜙𝐵(𝑟𝑖)

𝑁
𝑖=1

𝑆𝐶𝑟
⇔ ⟨Φ𝐵|�̂�|Φ𝐵⟩ = 𝑇𝐵[𝜚] [19], [20] which links the KS system to the 

fictitious system of noninteracting bosons (whereas comparable the correlation energy links the KS 

system to the real system of interacting fermions) 

𝑇𝑃[𝜚] = 𝑇𝑆[𝜚] − 𝑇𝑊[𝜚] = 𝑇(𝛽 = 0) − 𝑇(𝛽 = 1)
𝐹𝑇𝐶
⇔ ∫ 𝑑𝛽

𝑑𝑇(𝛽)

𝑑𝛽

0

1

= 𝑇𝑃
𝐺𝐴𝐶[𝜚] (5) 

One might try to contruct a similar (generalized) adiabatic-connection-like (GAC) theorem. 

Considering the Schrödinger equation of the unpertubated system, that being the KS system of 

noninteracting fermions with the coupling constant 𝛽 = 0 with the KS equation [1], [2] 

(−
1

2
Δ(𝑟) + 𝑣𝑆(𝑟))𝜙𝑆(𝑟) = 𝜀𝑖𝜙𝑆(𝑟) (6) 

And the Schrödinger equation of pertubated system, that being the ficititous system of noninteracting 

bosons with the coupling constant 𝛽 = 1 with the Levy-Perdew-Sahni (LPS) equation of Orbital-free 

density functional theory (OFDFT) / bosonic Schrödinger equation [3], [4], [20] 

(−
1

2
∆ + 𝑣𝑆(𝑟) + 𝑣𝑃(𝑟))√𝜚(𝑟) = 𝜇√𝜚(𝑟) (7) 

Where the boson orbital corresponds to 𝜙𝐵(𝑟) =
1

√𝑁
√𝜚(𝑟). We invoke a Rayleigh-Schrödinger 

pertubation theory (RSPT) sheme [17], [18] along the Pauli (P) contribution 𝑣𝑃(𝑟) =
𝛿𝑇𝑃[𝜚]

𝛿𝜚(𝑟)
=
𝛿𝑇𝑆[𝜚]

𝛿𝜚(𝑟)
−

𝑣𝑊(𝑟, [𝜚]) with the coupling constant 0 ≤ 𝛽 ≤ 1, where 𝑣𝑊(𝑟, [𝜚]) =
𝛿𝑇𝑊[𝜚]

𝛿𝜚(𝑟)
=
1

8

|∇𝜚(𝑟)|2

𝜚2(𝑟)
−

∆𝜚(𝑟)

4𝜚(𝑟)

𝑃𝐼
⇔

(−
1

2
∆)√𝜚(𝑟)

√𝜚(𝑟)
 is the von Weizsäcker potential, we arrive at the following novel pertubative 

Schrödinger equation 

(−
1

2
∆ + 𝑣𝑆(𝑟) + 𝛽𝑣𝑃(𝑟))𝜙𝑖(𝛽, 𝑟) = 𝜀𝑖(𝛽)𝜙𝑖(𝛽, 𝑟) (8) 

We can look a bit closer at the GAC theorem for the Pauli kinetic energy and with the product rule, the 

Hermicity of the KE operator and its invariance to 𝛽 as well as Slater-Condon rules (SCr) yields 
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𝑇𝑃
𝐺𝐴𝐶[𝜚] = ∫ 𝑑𝛽

𝑑

𝑑𝛽
∑⟨𝜙𝑖(𝛽, 𝑟)|−

1
2
∆|𝜙𝑖(𝛽, 𝑟)⟩

𝑁

𝑖=1

0

1

= 2∫ 𝑑𝛽∑⟨
𝑑𝜙𝑖(𝛽, 𝑟)
𝑑𝛽

|−
1
2
∆|𝜙𝑖(𝛽, 𝑟)⟩

𝑁

𝑖=1

0

1

 (9) 

Notice here, that the Hellmann-Feynman theorem [13] cannot be applied, since the 𝛽-dependent KE 

𝑇(𝛽) = ∑ ⟨𝜙𝑖(𝛽, 𝑟)|−
1

2
∆|𝜙𝑖(𝛽, 𝑟)⟩

𝑁
𝑖=1  is no eigenvalue to the pertubative Schrödinger equation, but the 

FTC can indeed be utilized. Integration by parts (PI) gives the Pauli KEDF back 

𝑇𝑃[𝜚] = 2∑⟨𝜙𝑖(𝛽, 𝑟)|−
1
2
∆|𝜙𝑖(𝛽, 𝑟)⟩

𝑁

𝑖=1

|
𝛽 = 0
𝛽 = 1

− 2∫ 𝑑𝛽∑⟨𝜙𝑖(𝛽, 𝑟)|−
1
2
∆|
𝑑𝜙𝑖(𝛽, 𝑟)
𝑑𝛽

⟩

𝑁

𝑖=1

0

1

 (10) 

We acknowlege for the Slater Condon rules (SCr), that the many-body wave function of the KS system 

is a KS (Slater) determinant 

Φ𝑆(𝑟1, 𝑟2, … , 𝑟𝑁) = det({𝜙𝑆(𝑟𝑖)}) (11) 
And the many-body wavefunction of the noninteracting boson system is in the simplest case a Hartree 

product (or a more sophisticated permanent Φ𝐵(𝑟1, 𝑟2, … , 𝑟𝑁) = perm({𝜙𝐵(𝑟𝑖)}) respectively) 

Φ𝐵(𝑟1, 𝑟2, … , 𝑟𝑁) =∏𝜙𝐵(𝑟𝑖)

𝑁

𝑖=1

 (12) 

We also make the constraint, that the density stays invariant with respect to the coupling constant, similar 

to the reguler adiabatic-connection (AC) ∀𝛼 ∈ [0,1] ∶ 𝜚(𝑟) = ⟨Ψ(𝛼)|�̂�(𝑟)|Ψ(𝛼)⟩ as 

∀𝛽 ∈ [0,1] ∶ 𝜚(𝑟) = ⟨Φ(𝛽)|�̂�(𝑟)|Φ(𝛽)⟩ (13) 
If we assume, that we can express 𝜙𝑖(𝛽, 𝑟) in a Maclaurin series, that converges 

𝜙𝑖(𝛽, 𝑟) =∑𝛽𝑗𝜙𝑖
(𝑗)

∞

𝑗=0

= 𝜙𝑖
(0)
+ 𝛽𝜙𝑖

(1)
+ 𝛽2𝜙𝑖

(2)
+⋯ (14) 

Where the 0-st order contribution is the KS orbital 𝜙𝑖
(0)
= 𝜙𝑆(𝑟). We can find for the derivative 

𝑑𝜙𝑖(𝛽, 𝑟)

𝑑𝛽
=∑𝑗𝛽𝑗−1𝜙𝑖

(𝑗)

∞

𝑗=0

= 𝜙𝑖
(1)
+ 2𝛽𝜙𝑖

(2)
+ 3𝛽2𝜙𝑖

(3)
+⋯ (15) 

We can construct the 1-st order contribution in terms of KS orbitals 𝜙𝑆 as 

𝜙𝑖
(1)
=∑𝜙𝑡

⟨𝜙𝑡|𝑣𝑃(𝑟)|𝜙𝑖⟩

𝜀𝑖 − 𝜀𝑡𝑡
𝑡≠𝑖

 
(16) 

We can analogously construct higher order contributions and see that for 𝛽 = 1 

𝜙𝐵(𝑟) = 𝜙𝑖(𝛽, 𝑟)|𝛽=1 =
1

√𝑁
√𝜚(𝑟) =∑𝜙𝑖

(𝑗)

∞

𝑗=0

= 𝜙𝑖
(0)
+ 𝜙𝑖

(1)
+ 𝜙𝑖

(2)
+⋯

= 𝜙𝑆(𝑟) +∑𝜙𝑖
(𝑗)

∞

𝑗=1

 

(17) 

Looking at the orbital energy in a power series 

𝜀𝑖(𝛽) =∑𝛽𝑗𝜀𝑖
(𝑗)

∞

𝑗=0

= 𝜀𝑖
(0)
+ 𝛽𝜀𝑖

(1)
+ 𝛽2𝜀𝑖

(2)
+⋯ (18) 

Where the 0-st order contribution is just the KS orbital energy 𝜀𝑖
(0)
= 𝜀𝑖 and the 1-st order contribution 

𝜀𝑖
(1)
= ⟨𝜙𝑖|𝑣𝑃(𝑟)|𝜙𝑖⟩ = ⟨𝜙𝑖|

𝑑ℎ̂(𝛽)
𝑑𝛽

|𝜙𝑖⟩ =
𝑑𝜀𝑖(𝛽)

𝑑𝛽
|
𝛽=0

 (19) 
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Corresponds to applying the Hellmann-Feynman theorem [13] to the coupling-constant-dependent 

orbital energy evaluated at 𝛽 = 0. The 2-nd order contribution is therefore 

𝜀𝑖
(2)
=∑

⟨𝜙𝑡|𝑣𝑃(𝑟)|𝜙𝑖⟩⟨𝜙𝑖|𝑣𝑃(𝑟)|𝜙𝑡⟩

𝜀𝑖 − 𝜀𝑡𝑡
𝑡≠𝑖

 
(20) 

We can arrive at the Euler-Lagrange equation of DFT as 

𝜀𝑖(𝛽)|𝛽=1 =∑𝜀𝑖
(𝑗)

∞

𝑗=0

= 𝜀𝑖
(0)
+ 𝜀𝑖

(1)
+ 𝜀𝑖

(2)
+⋯ = 𝜀𝑖 +∑𝜀𝑖

(𝑗)

∞

𝑗=1

= 𝜇 =
𝛿𝐸[𝜚]

𝛿𝜚(𝑟)

=
𝛿𝑇𝑆[𝜚]

𝛿𝜚(𝑟)
+ 𝑣𝑆(𝑟) = 𝑣𝑊(𝑟) + 𝑣𝑆(𝑟) + 𝑣𝑃(𝑟) = 𝑣𝑊(𝑟) + 𝑣𝐵(𝑟) 

(21) 

III. THE BARTOLOTTI-ACHARYA (BA) AND LEVY-OU YANG (LO) FORMULAS 

FOR THE EXACT PAULI POTENTIAL 

We shall lastly note, that the Pauli potential is known exactly in terms of KS orbitals from the Bartolotti-

Acharya (BA) [15] or Levy-Ou Yang (LO) formulas [16] as 

𝑣𝑃(𝑟) =
𝜏𝑆(𝑟) − 𝜏𝑊(𝑟)

𝜚(𝑟)
+∑(𝜇 − 𝜀𝑖)

|𝜙𝑖(𝑟)|
2

𝜚(𝑟)

𝑁

𝑖=1

 (22) 

Where 𝜏𝑆(𝑟) =
1

2
∑ |∇𝜙𝑖(𝑟)|

2𝑁
𝑖=1  is the KS KED, 𝜏𝑊(𝑟) =

1

8

|∇𝜚(𝑟)|2

𝜚(𝑟)
 the von Weizsäcker KED and lastly 

𝜏𝑃(𝑟) =
1

2𝜚(𝑟)
∑ |𝜙𝑖(𝑟)∇𝜙𝑘(𝑟) − ∇𝜙𝑘(𝑟)𝜙𝑖(𝑟)|

2
𝑖<𝑘  the Pauli KED. Thus we can write the respective 

KEDF 

𝑇[𝜚] = ∫𝑑𝑟𝜏(𝑟) (23) 

IV. COMPARISON OF KOHN-SHAM DENSITY FUNCTIONAL THEORY (KSDFT) 

TO ORBITAL-FREE DENSITY FUNCTIONAL THEORY (OFDFT) 

We can write the in principal exact energy density functional in a suitable way for KSDFT [1], [2] and 

OFDFT [4respectively 

𝐸[𝜚] = 𝐹𝐻𝐾[𝜚] + ∫𝑑𝑟 𝑣(𝑟)𝜚(𝑟) = 𝑇𝑆[𝜚] + ∫𝑑𝑟 𝑣(𝑟)𝜚(𝑟) + 𝐸𝐻𝑥𝑐[𝜚]

= 𝑇𝑊[𝜚] + ∫𝑑𝑟 𝑣(𝑟)𝜚(𝑟) + 𝐸𝐻𝑥𝑐[𝜚] + 𝑇𝑃[𝜚] 
(24) 

Where 𝐸𝐻[𝜚] =
1

2
∬𝑑𝑟𝑑𝑟′𝑓𝐻(𝑟, 𝑟

′)𝜚(𝑟)𝜚(𝑟′) is the Hartree energy, 𝑣𝐻(𝑟) =
𝛿𝐸𝐻[𝜚]

𝛿𝜚(𝑟)
=

∫𝑑𝑟𝜚(𝑟′)𝑓𝐻(𝑟, 𝑟
′) the Hartree potential and 𝐹𝐻𝐾[𝜚] the Hohenberg-Kohn functional [1] and in OFDFT 

for approximating the exchange-(correlation) functional and potential mostly the Local density 

approximation (LDA) is used from Dirac [23] or Slater exchange 𝐸𝑋[𝜚] = −𝐶𝑋 ∫ 𝑑𝑟𝜚
4

3(𝑟) ⇔

𝑣𝑋(𝑟, [𝜚]) =
𝛿𝐸𝑋[𝜚]

𝛿𝜚(𝑟)
= 𝐶𝑋

4

3
𝜚
1

3(𝑟) with 𝐶𝑋 = −
3

4
(
3

𝜋
)

1

3
, whereas in KSDFT the exchange energy is 

evaluated with KS orbitals, which can be done exactly in an Exact Exchange (EXX) method and the 

correlation energy for e.g. with the ACFD theorem in the Random Phase Approcimation (RPA). Note 

that in regular OFDFT the Pauli KEDF is being approximated as 

𝑇𝑃[𝜚] = 𝑇𝑇𝐹[𝜚] + 𝑇𝑊[𝜚, ∇𝜚, ∆𝜚] + 𝑇𝑁𝐿[𝜚](𝑟, 𝑟′) (25) 

Where 𝑇𝑇𝐹[𝜚] = 𝐶𝑇𝐹 ∫ 𝑑𝑟 𝜚
5

3(𝑟) with 𝑣𝑇𝐹(𝑟, [𝜚]) =
𝛿𝑇𝑇𝐹[𝜚]

𝛿𝜚(𝑟)
= 𝐶𝑇𝐹

5

3
𝜚
2

3(𝑟) is the Thomas-Fermi (TF) 

KEDF [21], [22] with its respective TF potential and the TF constant 𝐶𝑇𝐹 =
3(3𝜋2)2/3

10
 and 𝑇𝑁𝐿[𝜚] is a 
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nonlocal KEDF correction. The von-Weizsäcker functional can be interpreted as Generalized Gradient 

Approximation (GGA) or meta-GGA.  

 

V. GÖRLING-LEVY PERTUBATION THEORY (GLPT) 

With coupling-strength 𝛼-dependent Görling-Levy pertubation theory (GLPT) [5], [6] 

𝐸[𝜚] = 𝑇𝑆[𝜚] + 𝐸𝐻𝑋[𝜚] + 𝐸𝐶 = 𝐸0 + 𝐸1 +∑𝐸𝑗

∞

𝑗=2

 (26) 

Where 𝐸(𝛼) = ∑ 𝛼𝑗𝐸𝑗
∞
𝑗=0  we see that the 1st order contribution is the Hartree-Exchange term and all 

higher orders 𝑗 ≥ 2 correspond to the correlation energy. The correlation energy in GLPT is different 

from the expression we give for the Pauli KEDF in a GAC theorem.  

VI. OUTLOOK 

It would be groundbreaking, if the GAC theorem could be in the future brought into an ACFD-like form 

as 

𝑇𝑃
𝐺𝐴𝐶𝐹𝐷[𝜚]

?
⇔𝐶∫ 𝑑𝛽∫ 𝑑𝜔

∞

0

∬𝑑𝑟𝑑𝑟′ 𝑓𝑃(𝑟, 𝑟
′, 𝜔)[𝜒𝑆(𝑖𝜔, 𝑟, 𝑟

′) − 𝜒𝐵(𝑖𝜔, 𝑟, 𝑟
′)]

0

1

 (27) 

Because that would mean, that the exact Kinetic energy 𝑇[𝜚] = ⟨Ψ|�̂�|Ψ⟩ could be calculated as a sole 

functional of density, if we consider in Time-dependent orbital-free density functional theory 

(TDOFDFT) in the linear response (LR) regime with the Pauli kernel 𝑓𝑃(𝑟, 𝑟
′𝜔) =

𝛿𝑣𝑃[𝜚](𝑟,𝜔)

𝛿𝜚(𝑟′,𝜔)
, which 

might in the simplest case be approximated with the TF kernel 𝑓𝑇𝐹(𝑟, 𝑟
′) =

𝛿𝑣𝑇𝐹[𝜚](𝑟)

𝛿𝜚(𝑟′)
=
10

9
𝛿(𝑟 −

𝑟′)𝜚−
1

3(𝑟)  or the more complicated vW kernel  𝑓𝑊(𝑟, 𝑟
′) =

𝛿𝑣𝑊[𝜚](𝑟)

𝛿𝜚(𝑟′)
, the following Dyson equation 

[20] 

𝜒𝑆(𝑖𝜔, 𝑟, 𝑟
′) = 𝜒𝐵(𝑖𝜔, 𝑟, 𝑟

′) +∬𝑑𝑟′′𝑑𝑟′′′′ 𝜒𝐵(𝑖𝜔, 𝑟, 𝑟
′)𝛽𝑓𝑃(𝑟, 𝑟

′𝜔)𝜒𝑆(𝑖𝜔, 𝑟, 𝑟
′) (28) 

For linking the KS Response function 𝜒𝑆(𝑖𝜔, 𝑟, 𝑟
′) =

𝛿𝜚[𝑣𝑆](𝑟,𝜔)

𝛿𝑣𝑆(𝑟′,𝜔)
 to the bosonic response function 

𝜒𝐵(𝑖𝜔, 𝑟, 𝑟
′) =

𝛿𝜚[𝑣𝐵](𝑟,𝜔)

𝛿𝑣𝐵(𝑟′,𝜔)
=
𝛿𝜚[𝑣𝑊](𝑟,𝜔)

𝛿𝑣𝑊(𝑟′,𝜔)
. This stays in contrast to higher order gradient-expansions of 

the density [3] 

𝑇[𝜚] = 𝑇𝑇𝐹[𝜚] + 𝑇𝑊[𝜚, ∇𝜚, ∆𝜚]

+ 𝐶2∫𝑑𝑟 𝜚
1
3(𝑟) [(

∆𝜚(𝑟)

𝜚(𝑟)
)

2

−
9

8
(
∆𝜚(𝑟)

𝜚(𝑟)
) (
∆𝜚(𝑟)

𝜚(𝑟)
)

2

+
1

3
(
∇𝜚(𝑟)

𝜚(𝑟)
)

4

] + ⋯ 
(29) 
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