$\pi-e$, $\pi+e$, πe and $rac{\pi}{e}$ all are irrational numbers

Amine Oufaska

May 14, 2024

Abstract

It is proved that $\pi - e$, $\pi + e$, πe and $\frac{\pi}{e}$ all are irrational numbers. It is an argument by contradiction.

Notation and reminder

 π : known as Archimedes constant , is the ratio of a circle's circumference to its diameter and 3 < π < 4.

$$e = \sum_{m=0}^{+\infty} \frac{1}{m!}$$
: known as Euler's number and $2 < e < 3$.

 $\mathbb{N}^* := \{1,2,3,4,\dots\}$ the natural numbers .

 $\mathbb{Z} := \{\dots, -4, -3, -2, -1, 0, 1, 2, 3, 4, \dots\}$ the integers and $\mathbb{Z}^* := \mathbb{Z} \setminus \{0\}$.

 $\mathbb{Q} := \{\frac{p}{q} : (p,q) \in \mathbb{Z} \times \mathbb{Z}^* \text{ and } p \land q = 1\}$ the set of rational numbers.

 \mathbb{R} : the set of real numbers.

 $\mathbb{R} \setminus \mathbb{Q} := \{x \in \mathbb{R} \text{ and } x \notin \mathbb{Q} : \mathbb{Q} \subset \mathbb{R}\} \text{ the set of irrational numbers.}$

 $p \land q := \max\{d \in \mathbb{N}^* : d/p \text{ and } d/q\}$ the greatest common divisor of p and q.

 \forall : the universal quantifier and \exists : the existential quantifier.

Introduction

Irrational numbers are the type of real numbers that cannot be expressed in the rational form $\frac{p}{q}$, where p, q are integers and $q \neq 0$. In simple words, all the real numbers that are not rational numbers are irrational. In this paper we show that $\sqrt{3} - \sqrt{2}$ and $\sqrt{3} + \sqrt{2}$, e and π , $\pi - e$, $\pi + e$, πe and $\frac{\pi}{e}$ all are irrational numbers. It is an argument by contradiction.

 $\pi-e$, $\pi+e$, πe and $rac{\pi}{e}$ all are irrational numbers

Theorem 1. $\sqrt{6} \in \mathbb{R} \setminus \mathbb{Q}$. In other words, $\sqrt{6}$ is an irrational number.

Proof. An argument by contradiction. Suppose that $\sqrt{6} \in \mathbb{Q}$, and as $\sqrt{6} > 0$ then $\exists p, q \in \mathbb{N}^*$ such that $\sqrt{6} = \frac{p}{q}$ and $p \land q = 1$, then $(\sqrt{6})^2 = \left(\frac{p}{q}\right)^2$, then $6 = \frac{p^2}{q^2}$ and $6q^2 = p^2 \Rightarrow p^2$ is even and $p \in \mathbb{N}^* \Rightarrow p$ is even or p = 2k: $k \in \mathbb{N}^*$ $\Rightarrow 6q^2 = (2k)^2 = 4k^2 \Rightarrow 3q^2 = 2k^2$ and $3 \land 2 = 1 \Rightarrow 2$ divides q^2 and 2 is prime $\Rightarrow 2$ divides q and $q \in \mathbb{N}^* \Rightarrow q$ is even or q = 2k': $k' \in \mathbb{N}^*$, hence $p \land q \ge 2$, and we get a contradiction because $p \land q = 1$.

Main Theorem 1. $\sqrt{3} - \sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$ and $\sqrt{3} + \sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$. In other words, $\sqrt{3} - \sqrt{2}$ and $\sqrt{3} + \sqrt{2}$ both are irrational numbers.

Proof. An argument by contradiction. Suppose that $\sqrt{3} - \sqrt{2} \in \mathbb{Q}$, then $\exists r \in \mathbb{Q}$ such that $\sqrt{3} - \sqrt{2} = r$ implies that $(\sqrt{3} - \sqrt{2})^2 = r^2 \in \mathbb{Q}$ $\Rightarrow 5 - 2\sqrt{6} = r^2 \in \mathbb{Q} \Rightarrow \sqrt{6} = \frac{5 - r^2}{2} \in \mathbb{Q}$, and we get a contradiction. On the other hand, suppose that $\sqrt{3} + \sqrt{2} \in \mathbb{Q}$, then $\exists r \in \mathbb{Q}$ such that $\sqrt{3} + \sqrt{2} = r$ implies that $(\sqrt{3} + \sqrt{2})^2 = r^2 \in \mathbb{Q} \Rightarrow 5 + 2\sqrt{6} = r^2 \in \mathbb{Q}$ $\Rightarrow \sqrt{6} = \frac{r^2 - 5}{2} \in \mathbb{Q}$, and we get a contradiction.

Main Theorem 2. $e \in \mathbb{R} \setminus \mathbb{Q}$ and $\pi \in \mathbb{R} \setminus \mathbb{Q}$. In other words, e and π both are irrational numbers.

Proof. An argument by contradiction . A simple proof that *e* is irrational presented by Dimitris Koukoulopoulos and was found by Fourier in 1815 is available at [2, **Théorème15.2**]. A simple proof that π is irrational was found by Ivan Niven in 1947 is available at [3].

Properties. The sine function satisfy the following properties :

The sine function (or $sin(\theta)$) is defined, continuous, odd and 2π -periodic on \mathbb{R} .

 $\forall \theta \in \mathbb{R}$ we have $\sin(2k\pi + \theta) = \sin(\theta)$ and $\sin(2k\pi - \theta) = -\sin(\theta) : k \in \mathbb{Z}$.

 $\forall \theta \in \mathbb{R} \text{ we have } \sin(\theta) = 0 \Leftrightarrow \theta \in \{k\pi : k \in \mathbb{Z}\}.$

Let $\{\theta_n\}_{n\in\mathbb{N}^*} \subset \mathbb{R}$ we have $\lim_{n\to+\infty} \sin(\theta_n) = 0 \Leftrightarrow \lim_{n\to+\infty} \theta_n \in \{k\pi : k \in \mathbb{Z}\}$.

According to [Main Theorem 2] we have $\{k\pi : k \in \mathbb{Z}\} \subset \mathbb{R} \setminus \mathbb{Q} \cup \{0\}$.

Lemma. We have $\lim_{n \to +\infty} \sum_{m=n+1}^{+\infty} \frac{n!}{m!} = 0$.

$$\begin{array}{l} \textit{Proof.} \forall n \in \mathbb{N}^*, \ \sum_{m=n+1}^{+\infty} \frac{n!}{m!} = \frac{1}{n+1} + \ \frac{1}{(n+1)(n+2)} + \frac{1}{(n+1)(n+2)(n+3)} + \cdots \\ \\ < \frac{1}{n+1} + \ \frac{1}{(n+1)(n+1)} + \frac{1}{(n+1)(n+1)(n+1)} + \cdots \\ \\ = \sum_{k=1}^{+\infty} \frac{1}{(n+1)^k} = \frac{1}{n} \end{array}$$

 $\text{then } 0 < \sum_{m=n+1}^{+\infty} \frac{n!}{m!} < \frac{1}{n} \text{ and } \lim_{n \to +\infty} \frac{1}{n} = 0 \Rightarrow \lim_{n \to +\infty} \sum_{m=n+1}^{+\infty} \frac{n!}{m!} = 0 \ .$ $\text{Theorem 3. We have} \begin{cases} \lim_{n \to +\infty} \sin\left(n! \left(\pi - e\right) + \sum_{m=0}^{n} \frac{n!}{m!}\right) = 0 \\ \lim_{n \to +\infty} \sin\left(n! \left(\pi + e\right) - \sum_{m=0}^{n} \frac{n!}{m!}\right) = 0 \\ \lim_{n \to +\infty} \sin\left(n! \pi e - \pi \cdot \sum_{m=0}^{n} \frac{n!}{m!}\right) = 0 \end{cases} .$

Proof. First,

$$\lim_{n \to +\infty} \sin\left(n! \left(\pi - e\right) + \sum_{m=0}^{n} \frac{n!}{m!}\right) = \lim_{n \to +\infty} \sin\left(n! \pi - n! e + \sum_{m=0}^{n} \frac{n!}{m!}\right)$$
$$= \lim_{n \to +\infty} \sin\left(n! \pi - \sum_{m=0}^{+\infty} \frac{n!}{m!} + \sum_{m=0}^{n} \frac{n!}{m!}\right)$$
$$= \lim_{n \to +\infty} \sin\left(n! \pi - \sum_{m=n+1}^{+\infty} \frac{n!}{m!}\right)$$
$$= \lim_{n \to +\infty} -\sin\left(\sum_{m=n+1}^{+\infty} \frac{n!}{m!}\right) = -\sin(0) = 0$$

Second,

$$\lim_{n \to +\infty} \sin\left(n! \left(\pi + e\right) - \sum_{m=0}^{n} \frac{n!}{m!}\right) = \lim_{n \to +\infty} \sin\left(n! \pi + n! e - \sum_{m=0}^{n} \frac{n!}{m!}\right)$$
$$= \lim_{n \to +\infty} \sin\left(n! \pi + \sum_{m=0}^{+\infty} \frac{n!}{m!} - \sum_{m=0}^{n} \frac{n!}{m!}\right)$$
$$= \lim_{n \to +\infty} \sin\left(n! \pi + \sum_{m=n+1}^{+\infty} \frac{n!}{m!}\right)$$
$$= \lim_{n \to +\infty} \sin\left(\sum_{m=n+1}^{+\infty} \frac{n!}{m!}\right) = \sin(0) = 0.$$

$$\pi - e$$
 , $\pi + e$, πe and $\frac{\pi}{e}$ all are irrational numbers

Third,

$$\lim_{n \to +\infty} \sin\left(n! \pi e - \pi \sum_{m=0}^{n} \frac{n!}{m!}\right) = \lim_{n \to +\infty} \sin\left(\pi \sum_{m=0}^{+\infty} \frac{n!}{m!} - \pi \sum_{m=0}^{n} \frac{n!}{m!}\right)$$
$$= \lim_{n \to +\infty} \sin\left(\pi \sum_{m=n+1}^{+\infty} \frac{n!}{m!}\right) = \sin(0) = 0.$$

Fourth, let $p \in \mathbb{N}^*$ we have

$$\lim_{n \to +\infty} \sin\left(n! \, pe - p \cdot \sum_{m=0}^{n} \frac{n!}{m!}\right) = \lim_{n \to +\infty} \sin\left(p \cdot \sum_{m=0}^{+\infty} \frac{n!}{m!} - p \cdot \sum_{m=0}^{n} \frac{n!}{m!}\right)$$
$$= \lim_{n \to +\infty} \sin\left(p \cdot \sum_{m=n+1}^{+\infty} \frac{n!}{m!}\right) = \sin(0) = 0.$$

Main Theorem 3. $\pi - e \in \mathbb{R} \setminus \mathbb{Q}$ and $\pi + e \in \mathbb{R} \setminus \mathbb{Q}$ and $\pi e \in \mathbb{R} \setminus \mathbb{Q}$ and $\frac{\pi}{e} \in \mathbb{R} \setminus \mathbb{Q}$. In other words, $\pi - e$, $\pi + e$, πe and $\frac{\pi}{e}$ all are irrational numbers.

Proof. An argument by contradiction. First, suppose that $\pi - e \in \mathbb{Q}$, and as $\pi - e > 0$, then $\exists p, q \in \mathbb{N}^*$ such that $\pi - e = \frac{p}{q}$ and $p \land q = 1$. We recall that, $\forall n \in \mathbb{N}^*$ we have $n! (\pi - e) + \sum_{m=0}^n \frac{n!}{m!} > 0$. Then, $\lim_{n \to +\infty} \sin\left(n! (\pi - e) + \sum_{m=0}^n \frac{n!}{m!}\right) = \lim_{n \to +\infty} \sin\left(n! \frac{p}{q} + \sum_{m=0}^n \frac{n!}{m!}\right)$. We put $a_n = n! \frac{p}{q} + \sum_{m=0}^n \frac{n!}{m!} : n \in \mathbb{N}^*$, and it is clear that a_n is strictly increasing and $\{a_n : n \ge q\} \subset \mathbb{N}^*$, then $\lim_{n \to +\infty} a_n \notin \{k\pi : k \in \mathbb{Z}\}$, this implies that $\lim_{n \to +\infty} \sin(a_n) \neq 0$, and we get a contradiction according to [**Theorem 3**].

Second, suppose that $\pi + e \in \mathbb{Q}$, and as $\pi + e > 0$, then $\exists p, q \in \mathbb{N}^*$ such that $\pi + e = \frac{p}{q}$ and $p \land q = 1$.

We recall that, $\forall n \in \mathbb{N}^*$ we have $n! (\pi + e) - \sum_{m=0}^n \frac{n!}{m!} > 0$. Then, $\lim_{n \to +\infty} \sin\left(n! (\pi + e) - \sum_{m=0}^n \frac{n!}{m!}\right) = \lim_{n \to +\infty} \sin\left(n! \frac{p}{q} - \sum_{m=0}^n \frac{n!}{m!}\right)$. We put $a_n = n! \frac{p}{q} - \sum_{m=0}^n \frac{n!}{m!} : n \in \mathbb{N}^*$, and it is clear that a_n is strictly

increasing and $\{a_n : n \ge q\} \subset \mathbb{N}^*$, then $\lim_{n \to +\infty} a_n \notin \{k\pi : k \in \mathbb{Z}\}$, this implies that $\lim_{n \to +\infty} \sin(a_n) \neq 0$, and we get a contradiction according to [**Theorem 3**].

Third, suppose that $\pi e \in \mathbb{Q}$, and as $\pi e > 0$, then $\exists p, q \in \mathbb{N}^*$ such that $\pi e = \frac{p}{q}$ and $p \wedge q = 1$.

Then,
$$\lim_{n \to +\infty} \sin\left(n! \pi e - \pi \sum_{m=0}^{n} \frac{n!}{m!}\right) = \lim_{n \to +\infty} \sin\left(n! \frac{p}{q} - \pi \sum_{m=0}^{n} \frac{n!}{m!}\right)$$
$$= \lim_{n \to +\infty} (-1)^{n+1} \sin\left(n! \frac{p}{q}\right)$$

We put $a_n = n! \frac{p}{q} : n \in \mathbb{N}^*$, and it is clear that a_n is strictly increasing and $\{a_n : n \ge q\} \subset \mathbb{N}^*$, then $\lim_{n \to +\infty} a_n \notin \{k\pi : k \in \mathbb{Z}\}$, this implies that $\lim_{n \to +\infty} \sin(a_n) \neq 0$ and $\lim_{n \to +\infty} (-1)^{n+1} \cdot \sin(a_n) \neq 0$, and we get a contradiction according to [**Theorem 3**].

Fourth, suppose that $\frac{\pi}{e} \in \mathbb{Q}$, and as $\frac{\pi}{e} > 0$, then $\exists p, q \in \mathbb{N}^*$ such that $\frac{\pi}{e} = \frac{p}{q}$ and $p \land q = 1$ implies that $pe = q\pi$. Then, $\lim_{n \to +\infty} \sin\left(n! \, pe - p \cdot \sum_{m=0}^{n} \frac{n!}{m!}\right) = \lim_{n \to +\infty} \sin\left(n! \, q\pi - p \cdot \sum_{m=0}^{n} \frac{n!}{m!}\right)$ $= \lim_{n \to +\infty} -\sin\left(p \cdot \sum_{m=0}^{n} \frac{n!}{m!}\right)$.

We put $a_n = p \cdot \sum_{m=0}^n \frac{n!}{m!} : n \in \mathbb{N}^*$, and it is clear that a_n is strictly increasing and $\{a_n : n \in \mathbb{N}^*\} \subset \mathbb{N}^*$, then $\lim_{n \to +\infty} a_n \notin \{k\pi : k \in \mathbb{Z}\}$, this implies that $\lim_{n \to +\infty} \sin(a_n) \neq 0$ and $\lim_{n \to +\infty} -\sin(a_n) \neq 0$, and we get a contradiction according to [**Theorem 3**].

Thus , we conclude that $\pi - e$, $\pi + e$, πe and $\frac{\pi}{e}$ all are irrational numbers.

Acknowledgments

The author is grateful to the referees for carefully reading the manuscript and making useful suggestions.

References

[1] Ivan Niven. Irrational Numbers . University of Oregon , July 1956 .

[**2**] Dimitris Koukoulopoulos . Introduction à la théorie des nombres . Université de Montréal , 10 Octobre 2022 .

[**3**] Ivan Niven . A simple proof that π is irrational . Bulletin of the American Mathematical Society, Vol. 53 (6), p. 509, 1947.

E-mail address : ao.oufaska@gmail.com