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Abstract

This paper shows how an application of zeta function regularisa-
tion to a physical model of quantum measurement yields a solution
to the problem of wavefunction collapse. A realistic measurement
ontology is introduced which is based on particle distinguishability
being imposed by the measurement process entering into the classical
regime. Based on this, an outcome function is introduced. An out-
come counting argument is presented. It is shown how regularisation of
this outcome function leads to apparent collapse of the wavefunction.
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1 Introduction and Contents of this Paper

This paper begins with some definitions which may serve as a reference for
the reader. Section 2 is a background to the measurement problem. Section
3 is a brief overview of the literature of the problem. Section 4 talks about
the proposed measurement process ontology. Section 5 develops the deriva-
tion of the collapse in mathematical terms. Section 5.1 looks in detail at our
maximum outcome function and Hilbert spaces. Section 5.2 is an illustrative
discussion of outcomes of a single particle. Section 5.3 is an illustrative dis-
cussion of outcomes in m particles. Section 5.4 is an illustrative discussion of
many systems of varying complexity. Section 5.5 introduces a realistic outcome
function based on a counting function. Section 5.6 derives the expected num-
ber of systems of size n across the measurement process. Section 6 shows how
regularisation is key to our derivation of collapse. Section 7 shows how our
derivation maps onto the measurement operator formalism. Section 8 aims to
show how this theory might be experimentally validated. Section 8.1 gives an
overview of recent collapse emission experiments. Section 8.2 is an overview of
some approaches to show where the theory described in this paper differs from
other collapse approaches. Section 9 gives an overview of results. Section 9.1
gives an overview of the measurement process in a general example, according
to the theory outlined in this paper. Section 10 is a discussion of some open
questions, problems and points of interest.
In the Appendices are discussion of items which are useful but perhaps not
necessary to the approach described in this paper. Appendix A describes the
formalism of collapsed and uncollapsed wavefunctions. Appendix B contains
some figures to help the reader understand the conceptual basis of the pro-
posed approach. Appendix C gives an overview of an alternative approach to
interpret the mathematical framework developed in this paper; Fock spaces
are introduced. Appendix D discusses the physical reality of some of the basis
states that we are counting. Appendix E briefly describes the infinite Hilbert
spaces this theory is based upon. Finally, Appendix F discusses the cn function
in further detail.
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Definitions

In this section we will define the key terms and objects which we will be using,
in the order they will introduced in the text. These can then act as a reference.
In the text, we may reiterate these definitions as we give them additional con-
text. In general, we move between quantum representations (wave or matrix)
to most simply express our ideas.

Definition 1 Ψ is an arbitrary total wavefunction of a system. ϕ is used to represent
an eigenfunction onto which the wavefunction can collapse, whereas ψ is used to
represent an uncollapsed wavefunction that could be in a superposition of the possible
ϕ’s.

Definition 2 λ is an eigenvalue.

Definition 3 H is a general Hilbert space. HΨ is the Hilbert space of an arbitrary
total wavefunction of a system, here typcially referring to the total wavefunction
of the many objects invovled in the measruement process. Hd,m is a truncated, or
finite, Hilbert space of m particles each with finite dimension, d. d = ∞ in the most
general Hilbert space.

Definition 4 d is the number of possible states following measurement of an isolated
quantum particle, or its dimension, or number of single-particle basis states. For the
most general Hilbert space, d = ∞.

Definition 5 m is the total number of interacting particles across the measurement
process.

Definition 6 p and q are arbitrary numbers which respectively count a number, q,
of size p-particle system in an illustrative example.

Definition 7 n is an index which counts the number of particles in each composite
system which interact in the measurement process. This index runs from 1 to k.

Definition 8 cn is the number of many particle systems of size n across the
measurement process.

Definition 9 C is the total number of n-particle systems.

Definition 10 k is the size of the largest system involved in the measurement
process.
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Definition 11 Ωc is number of micro-states available for the distribution of the
counting function, cn.

Definition 12 F (H) is a general Fock space, while F ′(Hm) is a Fock space for a
given number of particles, m.

2 Brief Overview of Background to the
Measurement Problem

The reader may use [1] [2], or any other of a number of undergraduate or ele-
mentary texts, for a basic treatment of the quantum measurement problem.
However, for clarity, we will give a very brief overview of the measurement
problem in order to be clear about the problem this paper aims to approach.
In terms of [3]’s characterisation of the problem, this paper aims to tackle the
‘problem of definite outcomes’.

Quantum theory is meant to be a universal theory to explain all phys-
ical phenomenon. However, there appears to be two distinct time evolution
phenomenon in quantum mechanics. Firstly, evolution of the wavefunc-
tion between measurements, as governed by the time-dependent Schrodinger
equation.

iℏ
∂Ψ

∂t
= ĤΨ (1)

And secondly, quantum mechanics under quantum measurement. Under quan-
tum measurement, the wavefunction appears to evolve non-linearly; that is,
the total wavefunction will suddenly appear to collapse into a single eigenstate,
with corresponding eigenfunction ϕ. To take a simple example, an observable
is being measured by the action of an arbitrary Hermitian, linear operator Ô.
The eigenvalues associated with Ô are λa and λb, and respective eigenfunc-
tions are ϕa and ϕb. Take a quantum system, Ψ0, before measurement that is
in the state:

Ψ0 =
1√
2
(ϕa + ϕb) (2)

For clarity of exposition, we define the basic postulates and nomenclature of
our wavefunction formalism in Appendix A. Notably, we rely on the fact that Ψ
is decomposed into a set of orthonormal eigenstates {λi |ϕi⟩} (with observable
λ) via the expansion postulate, and after measurement will be in one of these
eigenstates. Furthermore, the total measurement system is represented as Ψ,
and is clarified in section 9.1, which will involve a plethora of superpositions of
states with, for example, the system in equation 2 and the measuring system.

In the example above, in equation 2, after measurement, the quantum
system evolves and is projected into either state ϕa or state ϕb depending on
whether the measurement yields the eigenvalue λa or λb. This is known as the
‘collapse postulate’.
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These two time evolution phenomena appear to be irreconcilable. The dis-
tinction between time evolution dynamics of the two types described above
remains to be made out in quantum mechanical terms. In fact this difficulty in
reconciliation, the measurement problem, has been described as probably the
‘most difficult and controversial conceptual problem’ in quantum mechanics
[1].

A number of different “interpretations” have been proposed, which aim to
help explain this measurement problem, the first of which was the Copenhagen
Interpretation [4]. Other popular interpretations include the Many Worlds
interpretation [5], hidden variable interpretations [6] and objective collapse
interpretations [7] [8].

3 Discussion of the literature

This paper will not offer an exhaustive review of the literature. There are a
number of thorough overviews of the various interpretations, for example see
[9] [10] for recent overviews of the most popular attempts for solving the mea-
surement problem. [11] gives an up-to-date overview of the problem with a
particular focus on collapse model interpretations. Despite the number of exist-
ing interpretations, this paper proceeds with the understanding that ‘there is
no interpretation of (QM) that does not have serious flaws’, a view given by
[12].
Identifying which broad category of solution this paper describes might be use-
ful, however. Bearing this in mind, this paper outlines an objective collapse
theory. Unlike objective collapse theories such as GRW [7] and the CSL model
[8], the Schrodinger equation is not explicitly altered. For the quantum formal-
ism used in this paper, please refer to [13] [14] [15] or any of the many other
suitable standard texts.

4 Measurement Ontology and Collapse

The measurement ontology, described as a mechanism, is as follows: through
measurement, a quantum system interacts with a large number of other quan-
tum systems, of varying sizes and complexity, from the very small and simple,
to the large and complex. As these quantum systems interact, the number of
possible outcomes from that measurement increases, as the number of superpo-
sitions increase. Taking a statistical mechanical model of the number of likely
outcomes; as the complexity and size of the interactions increase towards the
macro-scale, we approach an infinite number of possible outcomes from a mea-
surement. We also take into account how the particles may be described as
distinguishable, since the measurement process spans quantum and classical
physics. However, regularisation mediates the divergent infinity of outcomes
and, in effect, ‘produces’ the wave-function collapse phenomenon by reduc-
ing the maximum number of possible outcome states to just one. This agrees
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with apparent real-world observations of physics in the classical and quan-
tum regimes. In Appendix B we provide some diagrams which help clarify the
conceptual, mechanistic basis of the proposed measurement model.

4.1 Distinguishable Particles Model

In our derivation we take the principle that classical mechanics requires distin-
guishable particles. With this principle, and with the understanding that the
measurement problem spans both quantum and classical regimes, we examine
a measurement process through the standard quantum mechanical formalism
but with the principle that particles can be considered distinguishable. Due
to this, we use general Hilbert spaces and distinguishable-particle statistical
models. In other words, the classical world imposes the principle of distinguish-
able particles onto the mathematical structure of quantum mechanics, and we
show how this leads to apparent collapse.

5 Derivation of the Collapse

In this section we will build up our idea of the outcome function that is crit-
ical to our theory. We first examine the relevant Hilbert spaces necessary for
our calculations (and briefly discuss Fock spaces in Appendix C. While exam-
ination of the Fock space might not be required for the approach described in
this paper, we detail these spaces so that some illustrative physical examples
can be developed). We will first examine the function quantum mechanically
for the most simple case of just one particle. We will then examine the more
complex case of multiple, interacting particles. We then, finally, introduce a
realistic outcome function based on a counting argument, which counts the
number of interacting systems of particles of varying complexity which includes
a classical component.

5.1 An Outcome Counting Function and Dimensionality
of Hilbert Spaces

5.1.1 dimHΨ

We define a function, dimHΨ which counts the maximum number of measure-
ment outcomes following a quantum experiment. Quantum mechanically, this
function is related to the dimension, or number of basis functions, of the mea-
surement of a many-body system. Importantly for our derivation, since the
measurement process is across the quantum and classical regimes, this out-
come function includes a classical contribution. This classical contribution is
due to the additional number of outcomes due to being able to label individ-
ual particles and is apparent in the later discussions around distinguishable
particle statistics.
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5.1.2 Hilbert Space

More broadly, we interpret the dimension of a Hilbert space, dimH, of a system
as the total possible number of basis states of a system. In principle, quan-
tum mechanics allows experiment to distinguish between these states. Possible
outcomes, in other words. For a basic composite system the Hilbert space is
defined as:

HAB = HA ⊗HB (3)

and:
dim(HAB) = dim(HA)× dim(HB) (4)

For a many body system of m particles the Hilbert space is as follows:

H⊗m (5)

with dimension:
dim(H⊗m) = dm (6)

We generally consider the most general Hilbert space, which is required to have
infinite dimension, d = ∞; but also consider finite, or truncated Hilbert spaces,
for illustrative purposes. This most general, infinite dimensional Hilbert space
is defined for a given number of particles, H∞,m. See Appendix E for a brief
discussion.

5.2 The Maximum Number of Outcomes for a Single
Particle

The maximum number of outcomes for a single particle is simple. As a
reminder, d is the maximum number of states that may follow a measurement
of an isolated single-particle, and we assume this is equal to the number of
basis states of the particle. We restrict d to describing fundamental particles,
which can include an isolated proton or neutron.

We briefly look at the dimensionality of the truncated Hilbert space (and
also in this case the Fock space, see Appendix C for a brief discussion of Fock
spaces), since this determines dimHΨ for quantum systems.
For a fermionic (spin= 1

2 ) particle (such as an isolated electron), there will be
two degenerate states due to the fermion’s intrinsic angular momentum, also
referred to as spin (s).

dimHΨ = dim(F ′(H2,1)) = 2s+ 1 = 21 = dim(H2,1) (7)

A physical example of this system under measurement is a Stern-Gerlach
like setup, where the intrinsic spin is measured as the magnetic spin projection
on a single cartesian axis, by lifting the degeneracy of the two states via the
application of an external magnetic field.
Adding an additional fermion to the quantum system will produce either a
fermionic or bosonic total wavefunction, which is discussed in Appendix D.
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5.3 The Maximum Number of Outcomes for m-particle
Systems

For many systems, the maximum number of outcomes is determined by both
the maximum value of d for a particle (max d) and by the number of particles
that many-particle system comprises. For m-particle systems, it is clear that
the maximum number of outcomes is:

dimHΨ = (max d)m (8)

To expand on our initial example, a finite, d = 2 Hilbert space of 2 particles,

dim(H2,2) = 22 = 4 (9)

5.4 Example: The Maximum Number of Outcomes for
Many Systems, of Varying Complexity

In a realistic model of measurement, a quantum system will interact with
objects of varying complexity, themselves which will have already interacted
with quantum systems. Thus, take for example a complex system comprising
a number, q, of size p-particle systems. In this case, it is clear that:

dimHΨ = (max d)pq (10)

since m = pq, with max d = ∞ in the most general case.

The arbitrary variables p and q (different from the ones in section 5.3) are
affixed via a process of maximum likelihood in the next section.

For a physical example, take the example of ten uncharged Helium
molecules interacting in a vacuum, with each Helium molecule itself made up
of six particles (two neutrons, two protons and two electrons). In this example,
q = 10 and p = 6.

5.5 A Realistic Outcome Function

We introduce the idea of a counting function, cn, which will count the expected
number of complex systems of size n, all of which interact through the mea-
surement process. We will then multiply through these expected values in order
to find the total number of outcomes. Since each system of size n particles
contributes towards the multiplicity of the number of outcomes according to
d, we may therefore state:

dimHΨ =

k∏
n=1

dncn (11)

with k as the largest n size system involved in the measurement process.
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5.6 A n-particle System Counting Function

In order to derive a more accurate representation of cn, we use some principles
from statistical mechanics.

5.6.1 The Approach for Deriving cn

The goal of this subsection can be simply summarised as being an attempt
to find the distribution for cn (i.e. the number of n-particle systems, for
each n, which all interact during the proposed measurement process) which
best represents the current state of knowledge about a system, which is the
distribution with the maximum entropy. For an example of the mathematical
approach we will use, see [16] or a number of other elementary statistical
mechanics texts, in which distributions which count occupancy of particles
based on a number of physical assumptions and constraints are derived.
Figure 2 helps to clarify this proposed physical model of additional outcomes.
In terms of Figure 2, we are aiming to further understand the expected num-
ber of n-particle systems in each bracket for each n.
We must also account for the additional number of ways that each n-particle
system can interact with the total measurement system, Ψ in a classical,
distinguishable particle way.

Quite simply, we can see that there are n ways for each n-particle system to
interact with the total measurement system. Figure 3 helps to clarify the pro-
posed model of multiplicities of outcomes due to the additional outcomes. This
is because since there are n particles, only one of which must interact before
that n-particle system interacts with the wider system. We must therefore also
count these when counting the number of possible outcomes.

5.6.2 Derivation of cn

Similar to a statistical mechanics derivation of an expected occupancy dis-
tribution, we want to maximise the entropy of this unknown distribution in
question within the constraints given. We do this by maximising the number
of micro-states available (therefore maximising the entropy) to find the most
likely distribution.
Ωc (given similarities to statistical mechanical Ω) is the total number of micro-
states available for the distribution of the counting function, cn. Physically, Ωc

is the number of possible arrangements of n-particle systems across n layers.
We want to find cn such that Ωc is maximised.

We are interested in systems of n-particles that can be thought of as dis-
tinguishable. We consider n-particle systems from n = 1 through to n being
very large, here described as n from 1 through to k, where k is a large number.
We define cn as the number of of n-particle systems for each n. We assume a
fixed number of n-particle systems and we define this number, C, as:
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k∑
n=1

cn = C (12)

We then define the number of ways of arranging the C n-particle systems
as, Ωc. Since we are interested in placing C distinct objects into k bins, it
is clear that the combinatorial function which describes the total number of
arrangements (neglecting, for now, to account for the n ways each particle
interacts with the total system) is the multinomial coefficient.

Then, also needing to account for the n ways that each n size particle can
interact with the wider Ψ, we are introducing a ‘degenerate multiplicity’ of
adding n sub-boxes to each cn to account for ways to count these 1.

This ‘degenerate multiplicity’ term is clearly ncn . With this understanding,
we can define Ω as:

Ωc =
ncnC!

c1!c2!...ck!
(13)

We want to maximize Ω with respect to cn. We take logarithms since
max log(f) = max f , and this simplifies calculations.

So we have:

ln(Ωc) =

k∑
n

cn ln(n) + ln(C!)− ln(cn!) (14)

We also use Stirling’s approximation, ln(x!) = x ln(x)− x.
Therefore:

k∑
n

cn ln(n) + ln(C!)− cn ln(cn) + cn (15)

We use the method of Lagranian multipliers, with the constraint that∑
cn = C, therefore adding the α(C−

∑
cn) term. Since we are going to opti-

mize, we may also ignore the ln(C!) term since it is a constant. We therefore
now have a function f which is to be maximised:

k∑
n

(
cn ln(n)− cn ln(cn) + cn

)
+ α(C −

k∑
n

cn) (16)

Bringing all the summed terms together:

k∑
n

(
cn ln(n)− cn ln(cn) + cn − αcn

)
+ αC (17)

1In physical terms we are accounting for the fact that, in principle, there is a difference between
each of the n particles of an n-particle system interacting with the total system, Ψ. Concretely, a
physical example is that given the classical mechanics imposed by the measurement process (under
the assumptions distinguishability is imposed), it should be possible to determine which of the six
fundamental particles (two electrons, two neutrons and two protons) that make up an uncharged
helium atom should be the particle to interact with the total system of the measurement process,
Ψ.
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We now take the partial derivative in order to find the function cn which
maximises Ωc. Note we also use the fact that each n index in the sum is acted
upon only by the corresponding n index in the partial derivative. Different
indexed sum terms disappear since they are constants with respect to that n
index derivative. We therefore have:

∂f

∂cn
= ln(n)− ln(cn)− 1 + 1− α = 0 (18)

it is clear using the second derivative test that this is a maximum. So:

cn =
n

eα
(19)

Bringing this cn into Equation 11, we therefore have:

dimHΨ =

k∏
n=1

dn
2e−α

(20)

6 Regularisation of the Outcome function

Using the counting function from equation 20 we can then examine what we
would expect to happen under conditions of measurement. Under these condi-
tions, we want to increase k such that the size of the objects are large enough
to be perceptible by measuring apparatus and scientists, and perhaps wider,
with the environment and universe itself. In the scale dealt with in quantum
mechanics this can be represented as k → ∞. We therefore have the following
for the maximum number of possible outcomes following measurement:

dimHΨ =

k→∞∏
n=1

dn
2e−α

(21)

Taking logarithms of both sides:

log dimHΨ = e−α log d

∞∑
n=1

n2 (22)

Using Zeta function regularization to assign a value to the divergent sum,∑∞
n=1 n

2 = 0 [17], we find that:

log dimHΨ = 0 (23)

and so

dimHΨ = 1 (24)

Therefore the maximum number of possible outcomes from a quantum
measurement following interaction with the environment is one. This is a
model of wavefunction collapse as it shows how the non-linear projection into
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a measured, and single, state might occur. This will be further examined
below in terms of measurement operators.

7 Measurement Operators and Selection
Criteria

7.1 Single Eigenstate Selection

Finally, it may prove useful to examine this process using the measurement
operator approach. We have an arbitrary linear Hermitian measurement oper-
ator, Ô acting on our total system, Ψ. Since, by definition, the eigenstates of
the operator acting on the system form a complete set of basis states of the
system, it is clear that

Ô |Ψ⟩ =
dimHΨ∑

i

ai(Ô |ϕi⟩) =
dimHΨ∑

i

ai(λi |ϕi⟩) (25)

Upon collapse, however, the cardinality of the set of possible eigenstates
must reduce to

card({λi |ϕi⟩}) = dimH = 1 (26)

So clearly upon collapse there is only one eigenfunction and eigenvalue.
A brief note around the simultaneity of what we propose: we interpret this

measurement operator acting upon the Hilbert space as being simultaneous
with k → ∞. That is the number of eigenstates the Hilbert space is projected
into increases as the total system interacts with more objects through the
measurement process. However, as the dimensions of the spaces are reduced
through regularisation, as we have shown above, then dimH = 1. The collapse
occurs as described above and a single eigenstate is selected.

7.2 Born Rule

This single eigenstate is selected from the possible set of eigenstates and this
outcome is selected with a probability defined by the Born rule. In bra-ket
notation, using our completeness relation defined in appendix A, the proba-
bility of measuring an eigenvalue, λi, that corresponds to an outcome relating
to an isolated system is:

|⟨ϕi|Ψ⟩|2 = |ai|2 (27)

The laws of quantum physics dictate the probabilities associated with the
outcomes, and the possible eigenstates, and so the selection process, through
the Born rule and the measurement operators, is physically realistic.
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8 Approaches to Experiments

[18] gives an overview of some possible experimental tests of some popular
collapse models. These experimental methods may be suitably altered to allow
for a test of the approach described here.

8.1 Emission Experiments: the Dioso-Penrose Approach
and Direct Validation

A recent experimental test has ruled out a parameter-free version of the
gravity-collapse, Diosi-Penrose model [19] [20] [21] [22], testing for emissions
based on a proposed random diffusion process [23]. This emission process has
been derived from the fluctuations the Dioso-Penrose model would predict. The
model suggested in this paper does not explicitly involve a random emission
process (although we do recognise that neither did the Dioso-Penrose model).
It would be interesting to understand how the theorem described in [24] should
apply to our model. This theorem proves that given certain assumptions, all
collapse theories should induce a diffusion. Understanding the specifics of this
theorem, and its application to the regularisation model presented in this
paper, might provide a direct route to validation of this approach. Performing
the calculations involved in determining the diffusion radiation that might be
observed at collapse based on this model, given the complexity of the process
described, is beyond the scope of this paper.

8.2 Differentiating Tests Against the GRW Model

An approach to potentially differentially validate this model of measurement
against other proposed collapse models would be to highlight key differences
between models, that would or would not predict collapse, and where these
differences might be experimentally testable. The GRW model is a well known
collapse model and is a suitable model for this differential validation.
The GRW model has two parameters: the collapse strength, τcollapse, and the
spatial correlation collapse function, rc.
Fist, let us look at the τcollapse parameter. τcollapse gives the collapse
rate and is measured in collapses per second. Numerically, GRW sug-
gested τcollapse,GRW = 10−16s−1, [7], while Adler later suggested a value of
τcollapse,Adler = 10−8s−1 [25]. The model proposed in this paper does not
explicitly have any time parameters associated with the principle theory, and
so a differentiating test for our model against the GRW model might be to test
for whether collapse is associated with time, or whether, as our model sug-
gests, it is determined solely by the sequence of interacting particle systems,
and complexity of those systems. For example, this model would suggest that
a small number of particles, kept sufficiently isolated, will not undergo collapse
without further interaction. The GRW approach suggests otherwise, however.
Another potential route for differential validation is to look at the spatial cor-
relation function rc parameter. A proposed value for rc, according to GRW
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was rc = 10−7m [7]. This is the scale at which collapses become apparent.
For distances < rc collapses are not apparent, for distances > rc collapses
are apparent. This paper does not explicitly suggest that collapse should be
dependent on length scales. Collapses would be apparent over all length scales,
so long as the criteria for complexity of systems interacting and sequence of
interactions are met.

9 Overview of Results

The theory in this paper shows how a quantum system, under measurement,
is projected into a single state at measurement and “collapses”. As a quan-
tum system undergoes interaction with larger and more complex systems,
and as these systems approach the classical scales, the total number of pos-
sible outcomes from an experiment increases. This increase in number of
possible outcomes is due to the increasing dimensionality of the space which
describes the whole system, and greater number of possible particles which
may interact. The number of outcomes from an experiment can be described
as dimHΨ =

∏k
n=1 d

n2

. However, as k → ∞, which is, at the quantum scale,
as k approaches classic size, and as this system takes some classical proper-
ties, zeta-function regularisation makes collapse apparent. Rather than have
an infinite number of outcomes from measurement, this regularisation shows
how we observe just one outcome, which is the result of the measurement,
selected by the Born rule.

9.1 A Toy Measurement Process

In this section we briefly sketch the the proposed process of measurement using
a toy model, which should illustrate the general approach. We examine this
toy process at three points in time.
We take a simple example of a Stern-Gerlach type experiment: a single elec-
tron is having its spin measured in the z axis. As the electron is accelerated
through the magnetic field, the electron interacts with a number of similar
sized quantum objects. These quantum objects are n-particle systems and
might be environmental photons, electrons and single nuclei. As we saw due
to the principle of maximum entropy in subsection 5.6, it is likely there will
be cn, of each of these n-particle systems.
At this point in time (t = 1), the electron has not undergone wavefunction
collapse, and the wavefunction of the total system would be something similar
to:

Ψ = ψ⊗cn
1 ⊗ ψ⊗cn

2 ⊗ ψ⊗cn
3 ⊗ ψ⊗cn

4 ...⊗ ψ⊗cn
k (28)

where the ψ subscript counts the size of the n-particle system and cn =
ne−α.
The total wavefunction then will interact with motes of dust and more complex
atmospheric molecules and droplets of larger sizes as it begins to interact with
the high complexity of the laboratory environment. The wavefunction, Ψ, is as
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just described, but with k much larger at t = 2 than at t = 1. Similar to t = 1,
there are cn of each of these n-particle systems of dust motes, and atmospheric
molecules and droplets.
Finally, at t = 3 the total wavefunction then interacts with macroscopic objects
and k → ∞. Particles become distinguishable and the process described in
this paper leads to apparent wavefunction collapse according to the framework
above. Ψ is projected into a single eigenfunction associated with the relevant
measurement operator acting on that Ψ.

10 Discussion

In this section we highlight some open questions and points of interest.

10.1 Avoiding Problems of Other Interpretations

The approach described, does not create any obvious conflicts with the
existing mathematical framework, or require a conscious observer. This new
interpretation of quantum mechanical measurement therefore avoids some of
the problems associated with other interpretations, which have been widely
discussed.

10.2 No Clear Line is Drawn

An important thing to note is that this formulation suggests that it is unclear
where the line between quantum and classical worlds may lie, exactly. We
have found that it is in the limit, k → ∞, where k is the size of the largest
k-particle system involved in measurement, that this formulation produces a
physically interesting result. However, it is unclear how to interpret this when
trying to understand how large objects might be before they collapse. Perhaps
this suggests that so long as there are a finite number of quantum particles
in a system then wave-function collapse will not occur? It is also unclear how
large k is for k → ∞ in the context outlined in this theory. We are assuming
that k → ∞ when larger than the number of particles in an atomic nucleus,
but smaller thanthe number of particles in the universe. We have assumed that
k → ∞ on the scale of a human person.

10.3 Quantum and Classical Physics Are Mixed

10.3.1 Classical Collapse

Another thing to note is that this formulation includes both quantum (count-
ing the dimensionality of a many-body Hilbert space and resulting outcomes),
statistical-mechanical (counting the number of ways for systems of particles
to interact with other systems of particles) claims and classical claims, all of
which are needed for the regularisation to take place. This approach suggests
that the number of quantum outcomes, at measurement, collapses to just one,
but also that the number of ways that the classical system of particles can
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interact collapses to just one. Although this is not unphysical, and it should
not be controversial that in a deterministic universe there should only be one
possible outcome for the number of ways that systems of classical particles
interact, this is a mixing of quantum and classical regimes. This mixing of
regimes subtly alters the traditional scope of the quantum measurement prob-
lem. One interpretation of this might be that this zeta-function regularisation
mediated wave function ‘collapse’ of the number of classical mechanical possi-
bilities is actually a useful thing, since it shows how a deterministic world might
appear from a more fundamental quantum, statistical and classical mechanical
description. We will not explore the impacts on the classical reduction further
but believe this to be an area of interest for further research.

10.3.2 Distinguishable and Indistinguishable Particles

Our argument relies on distinguishable particle statistics. We have worked
on the assumption that since the measurement process spans classical and
quantum worlds, then this distinguishable property is imposed, and so relevant
in calculations. It is possible that this might be seen as a controversial claim,
and acknowledge that more work can be done to examine the distinguishable
property in physical terms. This is an open area of research, see [26], for
example. One argument worthy of note, with regards to exchange of particles,
one cannot interchange particles on a different scale (for example, a proton
is not interchangable with a large molecule) and so distinguishability across
scales is trivial. This supports our argument of the ingressing of the classical
property of distinguishability into the collapse mechanism.

10.4 Controversy of Regularisation

This work might also highlight the importance of regularisation, and help us
better understand the physical intuition to regularisation in physics, which
has historically been controversial. For example, Dirac famously found the
(related) renormalization approach to dealing with infinities ‘illogical’ and
claimed its empirical success a ‘fluke’ [27]. Putting regularisation at the centre
of a quantum theory of measurement might help highlight its importance and
confirm its centrality to physics. On the other hand, it might be argued that
the approach described in this paper simply hides the mystery of the measure-
ment problem inside the mystery of regularisation, and reveals nothing about
either.

10.5 Investigations at Other Scales

Finally, it would be interesting to investigate the theory of the scale changes in
physical terms at different scales. For example, taking a simplified but realistic
physical model at the quantum, atomic and larger levels, then examining these
through the lens of the theory discussed.
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10.6 What Particles Are Fundamental in this Approach?

We have not been clear on what constitutes a fundamental particle in the
context of example given above. A concrete example, we have talked about
neutrons as fundamental particles. We are not clear whether we should consider
neutrons or quarks as the fundamental particles relevant for this approach.
Whether this theory describes a quark or a neutron as fundamental is still an
open question but do not consider this particularly important for the general
theory. What is clear is that a fundamental particle in this approach is one
which is both indivisible, and can exist on its own; the latter a property not
exhibited by quarks.

10.7 Further Work: Experiment

In future, we would like to further develop this work to be able to validate or
invalidate its theory, whether through direct experiment or through examina-
tion to understand if this theory is incompatible with existing quantum theory
and experiments. It would be interesting to calculate the radiation emissions
from random diffusion, which is predicted by [24] to directly test the model
proposed here. It would also be interested to validate this model against the
GRW model by looking at differences in predictions in regards to wavefunction
collapse, with time components and length components being particularly of
interest.

10.8 Further Work: Theory

We would also like to understand how this theory might work in the broader
context of quantum field-theory, which has only been touched upon. In terms
of theoretical validation, it would also be useful to understand the role that
quantum decoherence might play, given its important role in the foundations
of quantum physics. It would also be interesting to examine whether some
of the ideas presented in this paper, such as the measurement ontology; out-
come counting argument and regularisation approach to mediate wave-function
collapse, might be usefully deployed in the frameworks outlined by other inter-
pretations. For example, might the regularisation approach be useful as a
potential mechanism in other objective collapse interpretations? It may be
interesting to further understand the cn function. For example, looking at how
α varies with k may be of theoretical interest.

A Appendix: Formalism Used to Represent the
Collapsed and Uncollapsed Wavefunctions

Below we note some key points on the formalism used to describe collapsed
and uncollapsed wavefunctions. See [15], [1] and [13].
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A.1 Ket Spaces Contain All Information About a State

We use the following postulate of quantum mechanics: A ket space contains all
physical information about a state. Due to this we can say |Ψ⟩ =

∑
i ai |ϕi⟩.

That is, all the information contained in the uncollapsed wavefunction is the
sum of the information physically defined in the possible collapsed wavefunc-
tions.
This necessitates a completeness relation:

∑
i|ai|2= 1.

A.2 Superpositions Do Not Appear After Measurement

Superpositions occur before and during the measurement process, but not
after. The set of eigenstates that are possible after measurement {|ϕi⟩} are
not in a superposition and do not contain superpositions in the set. As such,
the total wavefunction is seen to be normalised via the completeness relation
above, involving only collapsed eigenstates.

A.3 Eigenstates

The number of eigenstates is equal to the number of eigenvalues. The eigenstate
contains all the information (following collapse) about a physical state: λi |ϕi⟩
is a collapsed eigenstate with eigenvalue λi and eigenfunction ϕi. To sustain the
completeness we say that |Ψ⟩ contains a set of possible |ϕ⟩ represented as {|ϕ⟩}.
Note that |ai|2 represents the probability of observing an eigenvalue, yet does
not yield any information about the eigenvalue itself, as this would depend on
the operator and physical basis used to formulate the eigenfunction. We avoid
a physical formulation of ϕ throughout this text as this would distract from
the objectives and outcome of the work itself, yet we maintain the standard
rigour of quantum mechanics in its representation.

A.4 Bra Spaces

A bra space is used to represent the complex conjugate of a ket space. Since
we do not define the structure of operators, only the number of outcomes
(represented as the number of eigenstates), we only need to define eigenstates
in this text: λ |ϕ⟩, except to complement our completeness relation with a
closure rule: ai = ⟨ϕi|Ψ⟩. This definition is central to the Born rule used in
section 7.2.

B Appendix: Clarification of the Conceptual
Basis of the Measurement Model

In this section we further clarify the conceptual basis of the measurement
mechanism of the proposed solution.
In Figure 1, we clarify the measurement process by examining the scale of the
objects involved. Our conception of quantum measurement is the interaction
of quantum objects with larger objects, until those objects are of the scale that
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they might be thought of as classical. To the left of the diagram are micro-
scopic objects comprised of a small number of n particles. These are quantum
objects. To the right are macroscopic objects comprised of a large number of
distinguishable particles. These are classical objects. Measurement is simply
the interaction of small, simple objects with increasingly complex objects.
In Figure 2, we clarify the ways in which objects of similar complexities inter-
act, and how these interact across ‘layers’ with those objects of increasing
complexity. The number of objects in each n-layer is a constant according to
the calculations above. While for illustrative purposes the n-particle objects
are represented as being structured and with each particle joined, in reality
these particles may be unstructured with the particles dispersed over space.
In Figure 3, we clarify the added number of outcomes due to the n possible
ways that an n size object might be able to interact with another object, or
in this case the total system, Ψ.

Fig. 1 Diagram showing the scale of interaction in the proposed measurement model

Fig. 2 Diagram showing the proposed number of outcomes due to superpositions across
n-layers and inside n-layers
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Fig. 3 Diagram showing the additional outcomes due to the additional classical component
equal to n

C Appendix: An Alternative Approach with
Indistinguishable Particles

While we have dealt with the assumption that the measurement process
imposes the property of particles distinguishability onto the particles involved,
quantum mechanics is usually formulated with the assumption that particles
are indistinguishable. In this Appendix, we briefly discuss how to understand
indistinguishable particles in the framework of the theory described.

C.1 Two Models Approach

While in this paper we use a single mathematical framework, we propose two
different models to help explain the collapse. These two models involve intro-
ducing different ways of thinking about some of the mathematical objects that
we will work with. We will briefly expand on these the second of those models
and clarify how the assumptions in that model may differ from the approach
in the main body of the text. We describe these models because even if the
mathematical framework and derivation is similar across both models, either
model can help us understand the physical assumptions in play. This requires
clarity around the distinguishable or indistinguishable nature of the particles,
which is why these two models have been proposed. These sections might be
skipped by readers more interested in the mathematical content.

C.1.1 Size of Spaces Model

In this alternative model, we work on the principle that physically measurable
spaces are the most important feature of the theory, and so work with these
physical spaces as the primary object. We also assume that spaces and sub-
spaces are physically dependent. We deal with this principle below in section
C.1.3, assuming that these spaces might impose themselves on one another.
That is, with the most general space, the space with its dimension counted by
the outcome counting function, dimHΨ, imposes restrictions on the Hilbert
sub-space, which then imposes restrictions on the Fock states sub-space. In
particular, we suppose that these more general spaces, when they have their
dimensionality reduced, reduce the dimensionality of their associated sub-
spaces. It is important to note that according to our derivation, in this model
there is still the classical regime ingressing upon the quantum world in terms
of imposing distinguishability. However, the distinguishbility is apparent in a
qualitatively different way.
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C.1.2 Fock Space

Fock spaces, F (H) are Hilbert spaces restricted to fermionic and bosonic
allowed states across a number of particles. That is, the states which the
relevant symmetry laws allow.

F (H) =

∞⊕
n=0

SγH⊗n (29)

with Sγ as the operator which symmetrizes or antisymmetrizes a tensor
depending on if the Hilbert space is bosonic or fermionic and n counts the
number of particles. We, again, interpret the dimension of this Fock space as
containing the states which can, in principle, be differentiated by experiment.
For the purposes of this paper we will use a related idea, which accounts for
the symmetry of bosons and fermions but is defined only for a given number
of particles. That is, there is no sum through the zero, one, two, three etc. par-
ticle states, but is defined for m particles. This reduced Fock state is defined
as follows:

F ′(Hm) = S+H⊗p ⊕ S−H⊗q (30)

with S+ the symmetrizer operator acting on a bosonic space, and S− the
antisymmetrizer operator acting on the fermonic space, and p+ q = m.
The relationship between the more general Hilbert space and the Fock space
is clear. The Hilbert decomposes into two subspaces, this Fock space F ′(Hm)
and an additional subspace containing states that do not posses any symmetry.
This Fock state its-self decomposes into symmetric and anti-symmetric states.

C.1.3 Dimension of Spaces Principle

Given that symmetry restrictions reduce the dimensionality of a Hilbert space
to a Fock state, and given that our outcome counting function includes both
quantum and a classical component in addition to the quantum Hilbert con-
tributions, we may state the following as a principle, for a given d and
m:

dimHΨ ≥ dim(H∞,m) ≥ dim(Hd,m) ≥ dim(F ′(Hd,m)) (31)

This is because in general:

dim(A⊕B) = dimA+ dimB (32)

and for bosonic spaces

dim(S+H⊗m) =
(m+ d− 1)!

m!(d− 1)!
(33)
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and for fermionic spaces

dim(S−H⊗m) =
d!

m!(d−m)!
(34)

See footnote 2 for a heuristic proof of inequality 31.
Our outcome counting function for a general quantum system ofm particles

is larger than or equal to the dimensionality of the (infinite and finite) Hilbert
spaces for that same system, which itself is larger than or equal to the Fock
state for that same system.

C.2 Interpretation of Collapse Using the ‘Sizes of
Spaces’ Model

We may map the collapse process described in the main body of the text back
onto more familiar, less general, quantum spaces, by recalling our principle:

dimHΨ ≥ dim(H∞,m) ≥ dim(Hd,m) ≥ dim(F ′(Hd,m)) (37)

see that the reduction in this largest of dimensions, the dimension of our
outcome function, dimHΨ (counting quantum outcomes of the most general
Hilbert and classical contributions) could be seen to leading to a ‘squashing’
of the smaller dimensions of the general Hilbert, truncated Hilbert and Fock
state spaces.

maxO = 1 ≥ dim(H) ≥ dim(F (H)) (38)

The smaller dimension objects have their dimensions consequently reduced.
The approach taken in Section 7 then applies.

D Appendix: Are We Counting Unphysical
Basis States?

In this section we briefly discuss an interpretation of the outcome count-
ing function in the context of Hilbert and Fock spaces, which might prove
instructive, given discussions in Appendix C. In particular, we show how the
redundancy of the Hilbert space with respect to the Fock subspace impacts our

2

The latter part of the inequality in this principle can easily be seen. Firstly, by inspection, for a
given d:

(m + d − 1)!

m!(d − 1)!
≥

d!

m!(d − m)!
(35)

So to maximize dim(S+H⊗p⊕S−H⊗q) we only look at the S+ contribution. That is, with p+q =
m, then p = m.
Then, by inspection,

d
m ≥

(m + d − 1)!

m!(d − 1)!
(36)

So it is clear that dim(H) ≥ dim(F ′(Hm)) Since we know that ∞ ≥ d, then dim(H∞,m) ≥
dim(Hd,m) follows.
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counting argument. The key argument of note is that the probabilities of mea-
suring certain outcomes may be 0, however, these outcomes are still counted
as outcomes in our outcome counting function, even if they are unphysical.

D.1 Example: Pauli Exclusion Principle

Take for example, the case of an electron, ψA, that might be measured with
eignvalue λa,1 or λa,2 and so d = 2. Introducing another electron, ψB , which
might be measured with eignvalue λb,1 or λa,2, and following interaction of
ψA and ψB , according to our counting function we should have in principle,
dm = 22 = 4 outcomes. However, due to the Pauli exclusion principle, it is
clear that if these electrons were to share other quantum numbers, and also
were confined to a distance comparable to their deBroglie (wave)length, then
the antisymetric (fermionic) state would be disallowed, and so the number of
possible outcomes should be only those which are symmetric

dim(S+H⊗2) =
(m+ d− 1)!

m!(d− 1)!
=

(2 + 2− 1)!

2!(2− 1)!
= 3 (39)

However, below we will show how the number of outcomes is solely deter-
mined by d and m, even if the probabilities associated with some of those
outcomes might be very close to 0. We also count unphysical states which
have probability 0 in larger systems than the one considered in this example,
i.e. states that are not in the Fock space, but are in the Hilbert space, are still
counted.

D.2 Spin Statistics Theorem and Outcome Counting

According to the Spin Statistics Theorem (see [28] for example), which derives
the Pauli Exclusion principle, we see that it is the antisymmetric nature of
fermions which disallow shared states. The two particle wavefunctions are
described by a bosonic (symmetric) two-particle wavefunction :

Ψ(A,B) = ψAψB (40)

According to the Spin Statistics Theorem, for fermions for identical
particles, with α as a normalisation factor, we have

Ψ(A,B) = α
(
ψAψB − ψAψB

)
= 0 (41)

So according to the Born rule selection process above, in bra-ket notation, we
have the probability of finding a wavefunction in a Pauli excluded state as:

|⟨ϕi|Ψ(A,B)⟩|2 = 0 (42)
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We interpret these Pauli excluded states not as outcomes that cannot be
counted and included into our counting argument, but we interpret the iden-
tical particle fermion excluded states as reduced probability states due to a
cancelling action. To reiterate, these low probability wavefunctions represent,
in principle, the possibility of outcomes of experiment, and so a contribution
towards our counting argument: it just happens that these have probability of
occurrence of close to 0 due to the laws of physics. In actual fact the antisym-
metric states, for this particular example, will never have exactly 0 probability
since we can never have the full physical extent of two wavepackets in exactly
the same place, they will repel each other before this can happen.

E Appendix: Infinite Hilbert Spaces

We now briefly discuss the most general infinite dimension Hilbert space for a
given number of particles, H∞,m. In some cases it is clear that for calculations
we can define d, such as in the case of magnetic spin projection directly mea-
sured on a single cartesian axis, where d = 2. This is a truncated, or finite,
Hilbert space. However, Hilbert spaces of infinite dimension are necessary in
quantum mechanics [14] [13]. We treat the finite dimensional Hilbert space as
good approximations to the calculations for the more general, infinite, case.
We use these finite examples to help illustrate the theory. However, as above,
the infinite dimension of the more general Hilbert space is the quantity used
in deriving our counting arguments.
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F Appendix: cn without n multiplicity

It may also be useful to examine the cn function without the additional degen-
erate multiplicity due to n ways for the particles to interact with Ψ. We shall
call this c′n

We may find c′n through the following optimization problem (in this
approach examining only the multinomial):

max C!
c1!c2!...ck!

s.t. c′n > 0∑k
n=1 c

′
n = C

(43)

Since C! is constant, we can invert this optimization. The above maxi-
mization equation is clearly equivalent to the minimization of with the same
constraints above:

min c′1!c
′
2!...c

′
k! (44)

To solve this, we can note that for each unequal pair of c′n, represented
here by

(c′n + δ)

and (c′n − δ):

(c′n + δ)!(c′n − δ)! ≥ c′n! (45)

We notice that in order to minimimze the left hand side of the above,
we must have equal pairs of c′ns. Therefore, the c

′
n function which maximises

equation 43 must be:
c′1 = c′2 = c′n = c′ (46)

So we have c’ is the number of n-particle systems for each n which interact in
the proposed measurement model. Also noting that we have k contiguous bins
in our derivation, it is clear that:

c′ =
C

k
(47)

For a simple, but less instructive, proof of this, observe that the maximum
entropy distribution with no constraints on the expected value is this uniform
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distribution (c′n = c′). See, for example, [29]. See footnotes 3 4 for a brief
discussion of c′.

3In order to better understand this quantity c′, we also know that the total number of particles,
m, is the number of n-particle systems, c′, multiplied by n, as in equation (10).

k∑
n=1

nc
′
= m (48)

where k is the number of particles of the largest n-particle system. Using the sum of natural
numbers:

k2 + k

2
c
′
= m (49)

So therefore,

c
′
=

2m

k2 + k
(50)

4There is also a natural argument for the uniform c′n distribution. In nature there are generally
a fairly constant number of particles that constitute a composite particle. For example, we see
that 12 nucleons constitute 12C, yet also it is highly common to observe around the same number
of atoms in a molecule, and furthermore the same number of molecules that constitute lipids
and proteins and a similar number of these that constitute a small speck of dust. Matter gathers
together in a generally consistent way. Although the c′n may vary vastly between scale changes,
it may also be seen to reduce back to the uniform pattern periodically and therefore average at a
fairly constant value.
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