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Abstract. In this work, we continue the complex circle of partition develop-

ment that was started in our foundational study [3]. With regard to a cCoP
and its embedding circle, we define interior and exterior points. On this foun-

dation, we expand the concept of point density, established in [2], to include

complex circles of partition. We propose the idea of a quotient complex circle
of partition and investigate some of its features in analogy to the quotient

group in group theory. With this notion we can prove an asymptotic version

of the Binary Goldbach Conjecture.

1. Introduction and Preliminaries

The Goldbach conjecture was born in 1742 through a correspondence between the
German mathematician Christian Goldbach and the Swiss mathematician Leonard
Euler. There are two known versions of the problem: the binary case and the
ternary situation. The binary version ask whether every even number greater than
6 can be represented as the sum of two primes, whereas the ternary version ask
whether every odd number greater than 7 can be expressed as the sum of three
primes. The ternary version, however, was very recently solved in the preprint [4]
that compiled and build on several chain of works. Although the binary problem
has not been solved yet, significant strides have been made on its variations. The
first significant step in this direction can be found in (see [7]), which demonstrates
that every even number can be expressed as the sum of at most C primes, where
C is a practically computable constant. In the early twentieth century, G.H Hardy
and J.E Littlewood assuming the Generalized Riemann hypothesis (see [9]), showed
that the number of even numbers ≤ X and violating the binary Goldbach conjec-
ture is much less than X

1
2+c, where c is a small positive constant. Using sieve

theory techniques, Jing-run Chen [5] showed that every even number can either be
written as a sum of two prime numbers or a prime number and a number which
is a product of two primes. It is well known that almost all even numbers can
be expressed as the sum of two prime numbers, with the density of even numbers
representable in this fashion being one [8], [1]. It is also known that there exists a
constant K such that any even number can be expressed as the sum of two prime
numbers and a maximum of K powers of two, where K = 13 [6].

We devised a method that we believe could be a useful tool and a recipe for
analyzing issues pertaining to the partition of numbers in designated subsets of N
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in our work [2], which was partially inspired by the binary Goldbach conjecture
and its variants. The technique is fairly simple, and it is similar to how the points
on a geometric circle can be arranged. In [3], we have improved this strategy by
switching from integer base sets to special complex number subsets. As a result, the
complex circle of partition structure was defined (cCoP). The interior and exterior
points of cCoPs as well as various applications are now introduced as we continue
this work.

In an effort to make our work more self-contained, we have chosen to provide a
little background of the method of circles of partition in the following sequel

Definition 1.1. Let n ∈ N and M ⊆ N. We denote with

C(n,M) = {[x] | x, y ∈M, n = x+ y}
the Circle of Partition generated by n with respect to the subset M. We will
abbreviate this in the further text as CoP. We call members of C(n,M) as points
and denote them by [x]. For the special case M = N we denote the CoP shortly as
C(n). We denote with ‖[x]‖ := x the weight of the point [x] and correspondingly
the weight set of points in the CoP C(n,M) as ‖C(n,M)‖. Obviously holds

‖C(n)‖ = {1, 2, . . . , n− 1}.

Definition 1.2. We denote the line L[x],[y] joining the point [x] and [y] as an axis
of the CoP C(n,M) if and only if x + y = n. We say the axis point [y] is an axis
partner of the axis point [x] and vice versa. We do not distinguish between L[x],[y]

and L[y],[x], since it is essentially the the same axis. The point [x] ∈ C(n,M) such
that 2x = n is the center of the CoP. If it exists then we call it as a degenerated
axis L[x] in comparison to the real axes L[x],[y]. We denote the assignment of an
axis L[x],[y] to a CoP C(n,M) as

L[x],[y] ∈̂ C(n,M) which means [x], [y] ∈ C(n,M) with x+ y = n.

In the following we consider only real axes. Therefore we abstain from the
attribute real in the sequel.

Proposition 1.3. Each axis is uniquely determined by points [x] ∈ C(n,M).

Proof. Let L[x],[y] be an axis of the CoP C(n,M). Suppose as well that L[x],[z] is
also an axis with z 6= y. Then it follows by Definition 1.2 that we must have
n = x + y = x + z and therefore y = z. This cannot be and the claim follows
immediately. �

Corollary 1.4. Each point of a CoP C(n,M) except its center has exactly one axis
partner.

Proof. Let [x] ∈ C(n,M) be a point without an axis partner being not the center
of the CoP. Then holds for every point [y] 6= [x] except the center

x+ y 6= n.

This is a contradiction to the Definition 1.1. Due to Proposition 1.3 the case of
more than one axis partners is impossible. This completes the proof. �
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Notation. We denote by

Nn = {m ∈ N | m ≤ n} (1.1)

the sequence of the first n natural numbers. We denote the assignment of an axis
L[x],[y] resp. L[x] to a CoP C(n,M) as

L[x],[y] ∈̂ C(n,M) which means [x], [y] ∈ C(n,M) and x+ y = n resp.

L[x] ∈̂ C(n,M) which means [x] ∈ C(n,M) and 2x = n

and the number of real axes of a CoP as

ν(n,M) := #{L[x],[y] ∈̂ C(n,M) | x < y}.
Obviously holds

ν(n,M) =

⌊
k

2

⌋
, if |C(n,M)| = k.

For any f, g : N −→ N, we write f(n) ∼ g(n) if and only if lim
n−→∞

f(n)
g(n) = 1. We also

write f(n) = o(1) if and only if lim
n−→∞

f(n) = 0.

The complex circle of partition approach is an extension of the method of circle
of partition which is based on the following definition.

Definition 1.5. Let M ⊆ N and

CM := {z = x+ iy | x ∈M, y ∈ R} ⊂ C
be a subset of the complex numbers where the real part is from M ⊆ N. Then a
CoP with a special requirement

Co(n,CM) = {[z] | z, n− z ∈ CM ,=(z)2 = <(z) (n−<(z))}
will be denoted as a complex Circle of Partition, abbreviated as cCoP. The
special requirement will be called as the circle condition.

The components x and y we will call as real weight resp. imaginary weight. The
CoP C(n,M) will be called as the source CoP.

In order to distinguish between points [z] of cCoPs and points z in the complex
plane C we denote the latter as complex points.

In the sequel we give a short outline about the basic properties of complex circles
of partition.

The most important property is that all members of a cCoP are located on a
circle in the complex plane C that has its center on the real axis at n

2 and has a
diameter n. This is at once the length of each axis of Co(n,CM).

To each axis of a cCoP there exists a conjugate axis. For axis partners holds

=(z) = −=(n− z). (1.2)

The circle in the complex plane with center on the real axis at n
2 and diameter

n is called as the embedding circle Cn of the cCop Co(n,CM). Any two, as well as
all, embedding circles have only the origin as common point. Therefore any two
cCoPs have no common point.

The length of a chord between any two points [z1] = [x1+iy1] and [z2] = [x2+iy2]
of a cCoP Co(n,CM) is given by

|L[z1],[z2]| = Γ([z1], [z2]) = |
√
x1(n− x2)±

√
x2(n− x1)|, (1.3)
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whereby ′′−′′ will be taken if sign(y1) = sign(y2) and ′′+′′ else. The chord turns
into an axis with length n if [z1], [z2] are axis partners.

If Co(n,CM) is a non-empty cCoP and In resp. Xn all complex points inside
resp. outside of the embedding circle Cn, then for all complex points of In ∩ CM
holds that their distances to each point of Co(n,CM) is less than n

|z − w| < n for all z ∈ ||Co(n,CM)|| and all w ∈ In ∩ CM. (1.4)

And vice versa holds also

|z − w| > n for some z ∈ ||Co(n,CM)|| and all w ∈ Xn ∩ CM. (1.5)

2. Interior and Exterior Points of Complex Circles of Partition

In this section we introduce and develop the notion of interior and exterior
points of complex circles of partition.

Definition 2.1. Since In,Xn are defined in Definition 2.8 in [3] as all complex
points inside resp. outside of the embedding circle Cn, we call the points z ∈
In ∩CM as interior points with respect to Cn and denote the set of all such points
as Int[Cn].

Correspondingly, we call the complex points z ∈ Xn ∩ CM as exterior points
with respect to Cn and denote the set of all these points as Ext[Cn].

Obviously holds

Int[Cn] = In ∩ CM and Ext[Cn] = Xn ∩ CM.

Definition 2.2. Let Co(n,CM) be a non-empty cCoP and Cn its embedding circle.
Then we call the complex points z ∈ Int[Cn] as interior points with respect to the
cCoP Co(n,CM) and denote the set of all these points as Int[Co(n,CM)] if and only
if for all points [w] ∈ Co(n,CM) holds |z − w| < n1.

Correspondingly, we call the complex points z ∈ Ext[Cn] as exterior points with
respect to Co(n,CM) and denote the set of all these points as Ext[Co(n,CM)] if and
only if for some points [w] ∈ Co(n,CM) holds |z − w| > n.

Let no ∈ N be the least generator for all cCoPs. If n > no and Co(n,CM) is an
empty cCoP, then Int[Co(n,CM)] and Ext[Co(n,CM)] are empty too.

Theorem 2.3. If Co(n,CM) is a non-empty cCoP then holds

Int[Co(n,CM)] = Int[Cn] = In ∩ CM

and (2.1)

Ext[Co(n,CM)] = Ext[Cn] = Xn ∩ CM.

Proof. It suffices to prove that the distances of all complex points z of In ∩ CM
to all points [w] ∈ Co(n,CM) are less than n resp. of Xn ∩ CM to some points
[w] ∈ Co(n,CM) are greater than n. But this has already been proven in Theorem
3.3 in [3] for In resp. Xn instead of In ∩ CM resp. Xn ∩ CM. Hence the claim is
proved. �

1|.| means the usual distance between the points z and w in the complex plane C.
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Corollary 2.4. If Int[Co(n,CM)] 6= ∅ then Co(n,CM) is non-empty too since there
is at least an axis L[w],[n−w] ∈̂ Co(n,CM) such that the distances from both axis
points to all complex points of Int[Cn] are less than n.

Proposition 2.5. Let Co(m,CM) and Co(n,CM) be two non-empty cCoPs. If and
only if m < n holds

Int[Co(m,CM)] ⊂ Int[Co(n,CM)] and Ext[Co(n,CM)] ⊂ Ext[Co(m,CM)].

Proof. Let m < n, then since (2.1) holds

Int[Co(m,CM)] = Im ∩ CM and since (2.4) in [3]

⊂ In ∩ CM = Int[Co(n,CM)].

Vice versa holds

Ext[Co(n,CM)] = Xn ∩ CM and since (2.4) in [3]

⊂ Xm ∩ CM = Ext[Co(m,CM)].

On the other hand from Int[Co(m,CM)] ⊂ Int[Co(n,CM)] follows Im∩CM ⊂ In∩CM,
which is only with m < n solvable. Analogously follows from Ext[Co(n,CM)] ⊂
Ext[Co(m,CM)] also m < n. �

Proposition 2.6. Let Co(m,CM) and Co(n,CM) be two non-empty cCoPs. If and
only if m < n holds

||Co(m,CM)|| ⊂ Int[Co(n,CM)] and ||Co(n,CM)|| ⊂ Ext[Co(m,CM)].

Proof. Let m < n, then since (2.4) in [3] and ||Co(m,CM)|| ⊂ CM holds

||Co(m,CM)|| ⊂ Cm ∩ CM

⊂ (Cm ∩ CM) ∪ Im

⊂ (Cm ∪ In) ∩ CM and since Cm ⊂ In

= In ∩ CM and because of (2.1)

= Int[Co(n,CM)].

In a similar manner ||Co(n,CM)|| ⊂ Ext[Co(m,CM)] can be proved.
On the other hand, the embedding ||Co(m,CM)|| ⊂ Int[Co(n,CM)] implies Im ∩

CM ⊂ In ∩ CM, which is only with m < n solvable. Analogously follows from
Ext[Co(n,CM)] ⊂ Ext[Co(m,CM)] also m < n. �

Definition 2.7. Let Co(n,CM) be a non-empty cCoP and [z1], [z2] ∈ Int[Co(n,CM)].
Then we say the line L[z1],[z2] ∈ Int[Co(n,CM)] if and only if it joins the points
[z1], [z2] ∈ Int[Co(n,CM)].

Next we show that we can use information about the length of an axis of a cCoP
and an interior point to determine an exterior point. We summarize this criterion
in the following proposition.

Proposition 2.8. Let Co(n,CM) 6= ∅. If [z1], [z2] are axis partners of the cCoP
Co(m,CM) and |L[z1],[z2]| = m > n, then z2 ∈ Ext[Co(n,CM)].
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Proof. From the requirement L[z1],[z2] ∈̂ Co(m,CM) with m > n and Proposition
2.5, it follows that

||Co(m,CM)|| ⊂ Ext[Co(n,CM)] and therefore

z2 ∈ Ext[Co(n,CM)].

�

An important feature that governs the landscape of the complex circles of par-
tition is the interplay between the points on the cCoP and their corresponding
interior and exterior points. It is always plausible to find an interior with respect
to a cCoP that is non-empty. In fact the interior with respect to a non-empty
cCoP constitute the entire space bounded by the cCoP. On the other hand, if the
interior (resp. exterior) is empty then the cCoP by itself is empty.

Proposition 2.9. Let Co(m,CM) 6= ∅. If Int[Co(m,CM)] ⊂ Int[Co(n,CM)], then
Co(n,CM) 6= ∅.

Proof. The conditions above with Definition 2.1 implies that Int[Co(m,CM)] 6= ∅
and Int[Co(n,CM)] ⊃ ∅, and hence Co(n,CM) 6= ∅. �

We state a sort of converse of the above result in the following theorem.

Theorem 2.10. Let Co(m,CM), Co(n,CM) 6= ∅. If m < n, then there exists a chord
L[z1],[z2] ∈̂ Co(n,CM) such that the complex points z1, z2 6∈ Int[Co(m,CM)].

Proof. By virtue of Definition 2.8 in [3] holds Cn ∩ In = ∅ and ||Co(n,CM)|| ⊂ Cn,
it follows easily that In ∩ ||Co(n,CM)|| = ∅. Since L[z1],[z2] ∈̂ Co(n,CM), we have
z1, z2 6∈ In and because of m < n holds Im ⊂ In and hence

z1, z2 6∈ In ⊃ Im ⊃ Im ∩ CM = Int[Co(m,CM)].

�

3. Quotient Complex Circles of Partition

In this section we introduce and develop the notion of the quotient complex
circles of partition. This notion is akin to and parallels the notion of quotient
groups in group theory.

Definition 3.1. Let Co(m,CM), Co(n,CM) 6= ∅ with Int[Co(m,CM)] ⊂ Int[Co(n,CM)].
Then by the quotient cCoP Co(n,CM)/zCo(m,CM) induced by [z] ∈ Co(n,CM), we
mean the collection of all cCoPs

Co(n,CM)/zCo(m,CM) := {Co(nj ,CM) | j = 1, . . . , k}

determined by the generators

nj = <(z) + uj | uj ∈ ||C(m,M)||, j = 1, . . . , k

with C(m,M) as the source CoP of Co(m,CM) and k = |C(m,M)|.
We call the total number of all distinct cCoPs belonging to the quotient cCoP

Co(n,CM)/zCo(m,CM) induced by the point [z] ∈ Co(n,CM) the index of the
Co(m,CM) in Co(n,CM) induced by [z]

Indz[Co(n,CM) : Co(m,CM)].
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We call the union

Co(n,CM)/Co(m,CM) :=
⋃

[<(z)]∈C(n,M)

Co(n,CM)/zCo(m,CM)

a complete quotient cCoP. We call the total number of all distinct cCoPs in
Co(n,CM)/Co(m,CM) the index of the cCoP Co(m,CM) in Co(n,CM)

Ind[Co(n,CM) : Co(m,CM)].

Obviously each member of the collection {Co(nj ,CM) | j = 1, . . . , k} has an axis

L[z],[wj ] ∈̂ C
o(nj ,CM) with wj = uj + i=(wj) ∈ ||Co(nj ,CM)||.

Lemma 3.2 (The squeeze principle). Let Co(m,CB), Co(m+ t,CB) 6= ∅ with

Int[Co(m,CM)] ⊂ Int[Co(m+ t,CM)]

for t ≥ 4. If m < s < m + t such that s,m, t are of the same parity and B ⊂ M
with

{u ∈ ||C(m,M)|| | u ∈ B} ⊆ {u ∈ ||C(m+ t,M)|| | u ∈ B}
and

||C(m,M)|| ⊂ ||C(m+ t,M)||

and there exists L[x],[y] ∈̂ C(m+ t,M) with x ∈ B and x < y such that

y > w = max{u ∈ ||C(m,M)|| | u ∈ B} (3.1)

and x > m− w, then there exists

Co(s,CM) ∈ Co(m+ t,CM)/Co(m,CM)

such that

Int[Co(m,CM)] ⊂ Int[Co(s,CM)] ⊂ Int[Co(m+ t,CM)].

Proof. In virtue of (3.1) holds w ∈ B. As required the axis L[x],[y] ∈̂ C(m + t,M)
exists with x ∈ B such that m− w < x < y. Then under the requirement

{u ∈ ||C(m,M)|| | u ∈ B} ⊆ {u ∈ ||C(m+ t,M)|| | u ∈ B}
and

{u ∈ ||C(m,M)||} ⊂ {u ∈ ||C(m+ t,M)||}
we have the inequality

m = w + (m− w) < w + x = w + (m+ t− y) = m+ t+ (w − y)

< m+ t, since y > w (3.2)

and m − w < x = m + t − y holds y − w < t. With w + x = s there is an axis
L[x],[w] ∈̂ C(s,B) and it follows that C(s,B) 6= ∅ and hence Co(s,CB) 6= ∅ with

Co(s,CM) ∈ Co(m+ t,CM)/Co(m,CM)

by virtue of our construction and

Int[Co(m,CM)] ⊂ Int[Co(s,CM)] ⊂ Int[Co(m+ t,CM)]

since Co(s,CB) ⊂ Co(s,CM) and Proposition 2.6. This completes the proof. �
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Lemma 3.2 can be viewed as a basic tool-box for studying the possibility of
partitioning numbers of a particular parity with components belonging to a special
subset of the integers. It works by choosing two non-empty cCoPs with the same
base set and finding further non-empty cCoPs with generators trapped in between
these two generators. This principle can be used in an ingenious manner to study
the broader question concerning the feasibility of partitioning numbers with each
summand belonging to the same subset of the positive integers. We launch the
following proposition as an outgrowth of Lemma 3.2.

Proposition 3.3 (The interval binary Goldbach partition detector). Let P be the
set of all prime numbers and Co(m,CP), Co(m+t,CP) 6= ∅ by t ≥ 4. If m < s < m+t
such that s,m, t ≡ 0 (mod 2) and there exists L[x],[y] ∈̂ C(m+ t,N) with x ∈ P and
x < y such that

y > w = max{u ∈ ||C(m,N)|| | u ∈ P} (3.3)

and x > m− w then there must exists m < s < m+ t such that Co(s,CP) 6= ∅.

Proof. This is a consequence of Lemma 3.2 by taking M = N and B = P since its
requirements are satisfied with

{u ∈ ||C(m,N)|| | u ∈ P} = {u ∈ P | 3 ≤ u ≤ m− 1}
⊆ {u ∈ P | 3 ≤ u ≤ m+ t− 1}
= {u ∈ ||C(m+ t,N)|| | u ∈ P}

and

||C(m,N)|| = {1, 2, . . . ,m− 1} ⊂ ||C(m+ t,N)|| = {1, 2, . . . ,m− 1 + t}.

And in virtue of Proposition 2.6 due to m < m+ t holds also

Int[Co(m,CP)] ⊂ Int[Co(m+ t,CP)].

�

Proposition 3.4 (Interval Goldbach partition). Let P be the set of all prime num-
bers and Co(m,CP), Co(m+ t,CP) 6= ∅ for t ≥ 4. If m− 1 ∈ P then there exist some
s ≡ 0 (mod 2) with m < s < m+ t such that C(s,P) 6= ∅.

Proof. Under the requirements Co(m,CP), Co(m + t,CP) 6= ∅ for t ≥ 4 and with w
in virtue of (3.3), we choose L[3],[y] ∈̂ C(m + t,N) so that w = m − 1 and y > w
since y = m+ t− 3 > m for t ≥ 4 and m− 1 ∈ P. The inequality holds

y − w = y − (m− 1) ≤ (m+ t− 3)− (m− 1) < t

and the conditions in Proposition 3.3 are satisfied, so that there exists some s ≡
0 (mod 2) with m < s < m + t such that C(s,P) 6= ∅, f.i. s = 3 + m − 1 = m + 2
with L[3],[m−1] ∈̂ C(m+ 2,P). �

Theorem 3.5. Let P be the set of all prime numbers and Co(m,CP), Co(m+t,CP) 6=
∅ for t ≥ 4 such that m− 1 ∈ P. Then there are finitely many s ≡ 0 (mod 2) with
m < s < m+ t such that C(s,P) 6= ∅.

Proof. The result is obtained by iterating repeatedly on the generators s ≡ 0
(mod 2) with m < s < m+ t such that C(s,P) 6= ∅. �
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Theorem 3.6 (Conditional Goldbach). Let P be the set of all prime numbers and
m ∈ 2N such that C(m,P) 6= ∅ for m sufficiently large. If for all t ≥ 4 there exists
L[x],[y] ∈̂ C(m+ t,N) with x ∈ P and x < y such that

y > w = max{u ∈ ||C(m,N)|| | u ∈ P}

and m−w < x, then there are CoPs C(s,P) 6= ∅ for all (sufficiently large) s ∈ 2N |
s > m.

Proof. It is known that there are infinitely many even numbers that can be written
as the sum of two primes, so that for m ∈ 2N sufficiently large with C(m,P) 6= ∅
then t ≥ 4 can be chosen arbitrarily large such that C(m + t,P) 6= ∅. Under the
requirements and appealing to Proposition 3.3 there must exist some s ≡ 0 (mod 2)
with m < s < m+ t such that C(s,P) 6= ∅. Now we continue our arguments on the
intervals of generators [m, s] and [s, s+ r]. If there exist some u, v ∈ 2N such that
m < u < s and s < v < s+ r, then we repeat the argument under the requirements
(for arbitrary t) to deduce that C(u,P) 6= ∅ and C(v,P) 6= ∅. We can iterate the
process repeatedly so long as there exists some even generators trapped in the
following sub-intervals of generators [m,u], [u, s], [s, v], [v, v+r] where v+r = m+ t
for t ≥ 4. Since t can be chosen arbitrarily so that C(m + t,P) 6= ∅, the assertion
follows immediately. �

To this end and in reference to Theorem 3.5, questions arise pertaining to the best
possible strategy to adopt to cover all even numbers in the interval m < s < m+ t
so that their corresponding CoPs for which they are generators are non-empty.
Since there must always exist an even number (many) such that m − 1 is prime,
the strategy above can be used in a fairly ingenious manner to cover all generators,
which one would consider to be a full justification of the binary Goldbach conjecture.
In the following sequel, we study possible ways of covering even generators that may
not be covered in the interval (m,m+ t) for t ≥ 4.

4. Application to the binary Goldbach conjecture

In this section we apply the notion of the quotient complex circles of partition
and the squeeze principle to study the binary Goldbach conjecture in the very large.
Despite Estermann’s 1938 proof (see [1]) that the binary Goldbach conjecture is true
for nearly all positive integers, we can use our tool to independently establish the
binary Goldbach conjecture in an asymptotical sense. We lay down the following
elementary results which will feature prominently in our arguments.

Lemma 4.1 (The prime number theorem). Let π(m) denotes the number of prime
numbers less than or equal to m and pπ(m) denotes the π(m)th prime number. Then
we have the asymptotic

pπ(m) ∼ m
(

1− log logm

logm

)
.

Proof. This is an easy consequence by combining the two versions of the prime
number theorem

π(m) ∼ m

logm
and pk ∼ k log k
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where pk denotes the kth prime number. Since with k = π(m) we get

pk = pπ(m) ∼
m

logm
log

(
m

logm

)
=

m

logm
(logm− log logm)

= m

(
1− log logm

logm

)
.

�

Obviously holds with the variable denotations from the previous section

w = max{u ∈ ||C(m,N) | u ∈ P} = pπ(m). (4.1)

Lemma 4.2 (Bertrand’s postulate). There exists a prime number in the interval
(k, 2k) for all k > 1.

The formula in Lemma 4.1 obviously suggests that the π(m)th prime number
satisfies and implies the asymptotic relation pπ(m) ∼ m. While this is valid in
practice, it does not actually help in measuring the asymptotic of the discrepancy
between the maximum prime number less than m and m. It gives the misleading
impression that this discrepancy has absolute difference tending to zero in the very
large. We reconcile this potentially nudging flaw by doing things slightly differently.

Lemma 4.3 (The little lemma). Let P be the set of all prime numbers and m ∈
N be sufficiently large such that C(m,P) 6= ∅. Then for all x ∈ P satisfying
m log logm

logm
< x <

m log(logm)2

logm
the asymptotic and inequalities

m− w ∼ m log logm

logm

and

0 . |w − (m+ t− x)| . t

hold for t ≥ 4.

Proof. Appealing to the prime number theorem, we obtain with (4.1) the asymp-
totic inequalities

m− w = m− pπ(m)

∼ m−m(1− log logm

logm
)

=
m log logm

logm
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for all sufficiently large m ∈ 2N and

m+ t− x > m+ t− m log(logm)2

logm

= m(1− log(logm)2

logm
) + t

∼ m+ t > pπ(m) = w

and

|w − (m+ t− x)| = |m+ t− x− pπ(m)|

< |m+ t− m log logm

logm
− pπ(m)|

∼ |m+ t− m log logm

logm
−m(1− log logm

logm
)|

= t

for t ≥ 4. �

We are now ready to prove the binary Goldbach conjecture for all sufficiently
large even numbers. The following result is a culmination and - to a larger extent
- a mishmash of ideas espoused in this paper.

Theorem 4.4 (Asymptotic Goldbach theorem). Every sufficiently large even
number can be written as the sum of two prime numbers.

Proof. The claim is equivalent to the statement:

For every sufficiently large even number n holds C(n,P) 6= ∅.

It is known that there are infinitely many even numbers m > 0 with C(m,P) 6= ∅.
Let us choose m ∈ 2N sufficiently large such that C(m,P) 6= ∅ and choose t ≥ 4

such that C(m+ t,P) 6= ∅. Let us choose a prime number x <
m log(logm)2

logm
such

that x >
m log logm

logm
, since by Bertrand’s postulate (Lemma 4.2) there exists a

prime number x such that x ∈ (k, 2k) for every k > 1. Then we get for the axis
partner [y] of the axis point [x] of L[x],[y] ∈̂ C(m+ t,N) the inequality

y = m+ t− x > m+ t− m log(logm)2

logm

= m(1− log(logm)2

logm
) + t

∼ m+ t > pπ(m) = w

for t ≥ 4 and by appealing to Lemma 4.3 also the following asymptotic inequalities

m− w ∼ m log logm

logm
< x

and

|y − w| = |(m+ t− x)− w| = |m− w + t− x| . |x+ t− x| = t.

Then the requirements in Theorem 3.6 are fulfilled asymptotically with

y & w and x & m− w and 0 . |y − w| . t
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and the result follows by arbitrarily choosing t ≥ 4 so that C(m + t,P) 6= ∅ and
adapting the proof in Theorem 3.6. �

Theorem 4.4 is equivalent to the statement: there must exist some positive
constantN such that for allm ≥ N , then it is always possible to partition every even
number m as a sum of two prime numbers. This result - albeit constructive to some
extent - looses it’s constructive flavour so that we cannot carry out this construction
to cover all even numbers, since we are unable to obtain any quantitative (lower)
bound for the threshold N . At least, we are able to get a handle on the conjecture
asymptotically.
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