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Abstract

Here we review Michelson-Morley’s original analysis of their interferometer
experiment and discuss its interpretation of optical distance. We derive a for-
mula for transverse Doppler shift from geometric considerations, apply this to
the Michelson-Morley interferometer, and present a phase analysis for the ex-
periment. Furthermore, we present an equation for Doppler shift at a general
angle (arguing that the classical equation in common use is an approximation of
the general form) and use this to derive the null phase shift result for round-trip
interferometer paths at any arbitrary angle.

1 Introduction

The Michelson-Morley experiment [1], conducted multiple times throughout 1887, was
devised as an attempt to measure the absolute motion of the Earth through a hypoth-
esized light-carrying-medium permeating space, known as the aether. It was believed
that the speed of light is constant in all directions in the stationary frame of the aether
(similar to how sound waves are constant in all directions in relation to a stationary
observer on Earth’s surface), but only in that frame. The failure of the Michelson-
Morley interferometer to detect any effect attributable to the aether played a major
role in the motivations for the development and acceptance of Einstein’s theory of
special relativity, proposed in 1905 [2].

In the Michelson-Morley interferometer, shown in figure (10), a collimated light
source is directed toward a beam-splitter, which directs the beam toward two separate
mirrors along two perpendicular paths each with length d. The light is reflected from
each mirror, travels back, recombines, and is sent toward a detector for observation.
The collimated light source contains at least two different frequencies of light, so that
an interference pattern is formed consisting of multiple ”fringes” appearing as rings of
higher and lower intensity.

Michelson and Morley hypothesized that if their laboratory was moving at some
velocity with respect to the aether’s stationary frame, they would observe a visual
interference pattern in the form of additional fringes—a separation between areas of
intensity. If the aether caused a phase difference between light along the two paths,
each full wavelength of phase shift would result in an additional fringe observed. A
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fringe shift was therefore considered to be the number of wavelengths along which the
phase was shifted.

2 Historical Background

2.1 Absolute Reference Frames

The concept of an absolute universal frame of reference dates back to ancient Greek
philosophers such as Plato, Aristotle, and Ptolemy, who developed a layered model
of celestial spheres [3] based on the observation that the positions of celestial objects
such as the sun, moon, and planets appeared to change position rapidly in relation
to one another, while the stars remained relatively fixed. This led the Greeks to
envision layers of celestial spheres, thought to be embedded in an aethereal elemental
substance referred to as quintessence, with each celestial sphere rotating independently
with respect to its neighbors.

Although the Earth was placed at the center of the universe (incorrectly, as we now
understand), the ancient model had its successes. For example, Mercury, Venus, Mars,
Jupiter, and Saturn were all placed in their correct ordinal positions. The observation
that planets occasionally exhibited retrograde motion (appearing to move backward
in relation to their usual direction of travel) led to Ptolemy adding epicycles to his
geocentric model to more accurately track these planetary movements. The Ptolemaic
system lasted well over 1000 years, but eventually complexity of the epicycles required
to maintain the consistency of the model became burdensome, and the Ptolemaic
system gave way to the Copernican model [4], published in 1543, which replaced the
Earth with the sun as its center.

The ancient Greeks were somewhat divided on the nature of light and vision. One
theory, known as the ”tactile” theory, postulated that sight originated from the eyes
themselves, which sent out very fine, invisible probes to ”feel” objects too distant to
physically reach. The competing hypothesis, known as ”emission” theory, advanced
that light was emitted from bright objects1, traveling from there to enter the eyes,
producing vision [5]. There was no clear consensus yet on whether the speed of light
was finite or infinite.

2.2 The Speed of Light

In 1677, the Danish astronomer Ole Roemer used the timings of eclipses of Jupiter’s
moon Io, which occur roughly every 42.5 hours, to estimate the velocity of light [6].
Roemer’s observations are important to understand, because the observation of the
eclipses of Io is analogous to the beam path to mirror 1 in the Michelson-Morley ex-
periment, shown in figure (10). As the Earth and Jupiter orbit the sun, they transition
from receding away from the sun to moving toward it. At the beginning and end of this
transition period, the relative distance between the planets is unchanged, as shown in
figure (1).

Despite the fact that the distance between the planets remains the same, the period
between eclipses does not. The period is shorter while the Earth is receding from the
sun, and longer while the Earth is moving toward the sun. Roemer understood this

1We understand this today to be the correct theory, of course.
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Figure 1: The Earth-Jupiter system during Roemer’s observations

to mean that even though the relative distance between the two planets is equal in
both cases, light leaving Io would reach the Earth sooner in the first case, since the
Earth-Jupiter system was moving toward the light during its period of transit, and
would reach the Earth later in the second case, while the Earth-Jupiter system was
moving away from the light. Roemer was able to express the observed eclipse period
in the first case as

T↑ = T0

(
1− v

c

)
(1)

where T↑ is the observed period while the Earth is receding, T0 is the absolute
period, v is the Earth’s orbital velocity, and c is the speed of light. In the second case,
the period is expressed as

T↓ = T0

(
1 +

v

c

)
(2)

From these two equations, the speed of light can be expressed as2

c =
v(T↓ + T↑)

T↓ − T↑
(3)

Critically, Roemer was able to correctly interpret his observations by assuming that
the speed of light is constant only with respect to an absolute reference frame (that of
the sun, in this case), while in the Earth’s frame the observed speed of light could be
greater or less than its absolute speed. Interestingly, Michelson and Morley mentioned
observations of the eclipses of Jupiter in their original paper as a potential means of

2To calculate the speed of light with greater accuracy, Roemer would have had to account for the
absolute velocity of the solar system, but it is possible to use his data to determine the correct value
for the solar system’s velocity as well.
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determining the absolute aethereal motion of the Earth. It is unclear whether they
were aware of Roemer’s work two centuries prior.

In 1728, the English astronomer James Bradley applied Roemer’s technique to
starlight in order to distinguish the true position of stars from their apparent positions
at different points in the Earth’s orbit [6]. He was attempting to gauge the distance
to a star using parallax, but instead he found that the position of the star varied
depending on the relative velocity of the Earth to the star rather than its position.
This was an unusual discovery; as it turned out, the parallax he was attempting to
measure was too minute for him to detect, but in the process he discovered another
effect varying the star’s apparent position, which is now known as Bradley stellar
aberration. The aberration caused an effect similar to parallax, except that the star’s
observed position was ahead of its expected position with parallax.

Again, this discovery required interpreting the observed speed of light from the
vantage point of an observer on Earth as being alternately faster or slower (depending
on the direction of the Earth’s velocity) than the absolute speed of light as emitted
from the stars. Thus we see that astronomers several centuries ago were able to
successfully account for astronomical observations using purely geometrical arguments
that assumed an absolute reference frame for the speed of light, outside of which the
observed speed of light could be faster or slower.

2.3 The Aether

From the observation that light refracted and diffracted around surfaces as a wave,
and that waves propagate through mediums, Christopher Huygens presented a wave
theory of light in his 1690 book, Treatise of Light [6], which posited an aether, similar
to air, as a medium for light to propagate. Light was understood to propagate at
speeds much faster than sound (for example, from the observation that lightning is
seen before thunder), so the aether was hypothesized to be a very sparse yet rigid
elastic medium permeating the universe. Using these assumptions, and positing that
light’s velocity was slowed in materials so that v = c/n where v is the velocity of
light through a material, and n is some refractive index for the material such that
n > 1, Huygens was able to use his model to derive the known laws of reflection and
refraction.

Huygens’ model was successful in many ways, however, there were a number of
observations his model did not account for, such as the fact that light did not appear
to diffract into shadows3, and the fact that light could be polarized by different ma-
terials, which was incompatible with existing observations of wave behavior. These
inconsistencies led Newton to formulate a competing corpuscular model of light [7],
which proposed that light consisted of particles of varying sizes and shapes to account
for their varying reflectivity and polarization when interacting with materials.

In this paper we will asssume a model of photons similar to that envisioned by
Newton: as solid, massy, hard, impenetrable, moveable particles, that exist in a single
position at any given time, and have a physical radius and a physical, spinning surface.
We will further assume that the energy of a photon is determined entirely by the
frequency of its spin, and not by its velocity.

3If the light was very close to the edge of the object, however, it would bend into shadows to some
degree, as Newton noted in his observation of diffraction around the edge of a knife.
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Newton’s model of light does not explicitly require an aether, since in his model
particles travel directly from one location to another rather than inducing vibrations in
an aether medium; however, we will nevertheless postulate the existence of an aether
(similar to that envisioned by Le Sage, comprised of ”ultramundane corpuscles”) as
well as an absolute reference frame in which the aether is stationary. There is a deep,
fundamental connection between the aether and the force of gravity, which we will
explore in separate work.

2.4 Action at a Distance

When light encounters a new medium, some portion of the light is reflected, while an-
other portion is refracted toward the line normal to the surface. From the observation
that polished surfaces reflect light coherently despite the fact that on a microscopic
scale, these surfaces must have many imperfections, Newton posited that light must be
interacting with surfaces at a distance before making contact, over an area larger than
that of the imperfections, rather than interacting with the surfaces directly. Likewise,
his laws of gravitation required instantaneous action at a distance to account for the
orbital motions of planets. Despite the ”corrections” to these orbits required by gen-
eral relativity4, it is well-understood that the speed of gravitational attraction must
exceed the speed of light by many orders of magnitude to correctly compute planetary
orbits5, despite the recent detection by LIGO of ”gravitational waves”6.

From his observation that light reflected off surfaces at equal angles, Newton hy-
pothesized that surfaces must exert a force against light at a normal angle to reflect
them away. During refraction, on the other hand, light bent into surfaces toward the
normal, as if an opposite normal force was pulling light into the surface. By consid-
ering momentum to be conserved along the direction parallel to the surface, Newton
established the formula p sinα = p′ sin β, where p and α are light’s momentum and an-
gle (relative to the normal) entering a new medium, and p′ and β are light’s momentum
and angle within the new medium, so that

p′

p
=

sinα

sin β
> 1 (4)

Newton understandably concluded that light must have a greater velocity within
the material [6] (as one would expect with a force pulling light into the material).
However, the velocity of light is measurably slower in materials, indicative of an inverse
relationship between momentum and speed. We can find this relation from our modern

4These corrections essentially amount to a post-hoc justification for an extremely small ”anoma-
lous” precession in Mercury’s orbit (amounting to 42 arcseconds per century), which was not accu-
rately computed to begin with (Le Verrier’s estimation of Mercury’s mass was off by a factor of 2,
for example [8]), and is already accounted for in large part by classical Newtonian effects.

5There are a variety of observations that easily support this, such as the Poynting-Robertson effect,
which could not exist unless there was an aberration between radiation pressure and gravitational
force, as well as the fact that introducing an eight-minute time delay (roughly the delay of light from
the sun to the Earth) to numerical orbit calculations causes the Earth to roughly double its orbital
distance around the sun in a mere 1200 years [9].

6If we are to be charitable, we may accept that these experiments are detecting authentic fluctu-
ations in the aethereal wind, but these fluctuations cannot be representative of the ordinary gravita-
tional forces that maintain the orbits of planets and stars.
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formulation of light’s momentum given by de Broglie’s formula

p =
h

λ
=
hf

c
=
E

c
∝ 1

c
(5)

Using this inverse relationship, we can express the ratio between momentums as

p′

p
=
c

v
= n > 1 (6)

where c is the velocity of light in a vacuum, v is the velocity of light in the material,
and n is considered the refractive index of the material. This in turn correctly yields
Snell’s law for light moving from a vacuum into a new medium: sinα = n sin β.

We observe light to refract in an analogous manner around celestial bodies. As
light is drawn toward a gravitational source, its wavelength is blue-shifted, indicating
an increase in momentum, while its trajectory is refracted toward the gravitational
source, indicating a decrease in velocity. We deduce that in both cases (the refraction
of light into a medium and the refraction of light around celestial bodies) that light
is traveling from a region in which the aether is more dense to a region in which the
aether is less dense7. This attraction to regions of lower density is consistent with the
principle that Nature takes the path of least resistance. The bending of light rays also
remains consistent with Fermat’s principle of least time, that ”Nature always acts by
the shortest course”.

The decrease in the velocity of light associated with a corresponding increase in
momentum seems paradoxical compared to classical physics. However, it is likely
consistent with the behavior of an incompressible fluid moving against a drag force,
creating an effect similar to that observed in water flowing through a pipe with varying
diameter sections. An increase in diameter causes a decrease in velocity, while a
decrease in diameter causes an increase in velocity. This effect is counter-intuitive to
many, yet it is entirely classical.

In any case, action at a distance appears to reliably describe the motions of celestial
objects under gravitational attraction, the deflections of light around gravitational
sources, and the refraction of light through various mediums. In the absence of a
relativistic theory of light, one might profitably deduce that—similar to other observed
particles—particles of light carry mass. Furthermore, these particles must interact at
highly superluminal velocities.

2.5 Emission Theories

Following the relativistic experiments of Michelson-Morley, Fizeau, Sagnac, Hafale-
Keating, and others, we are left with three possible options for emission theories of
light. Either the velocity of light is: dependent on both the source and the observer8,
dependent on the observer but not the source9, or is dependent on neither the source
nor the observer10.

7This is consistent with the mechanism of Le Sage gravity, for example.
8We may refer to this as ballistic theory, Newtonian theory, or alternatively Ritzian theory, after

the physicist Walther Ritz who developed a version of ballistic theory compatible with Maxwell’s
equations.

9This is the aether theory, although it does not necessarily require the aether to be a medium
distinct from light itself, as we have previously noted.

10This is, of course, the theory of relativity.
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The ballistic theory is Newtonian and easily explains the results of Michelson and
Morley. However, it is clearly violated by the Sagnac experiment11 (since it would
predict no observable interference), as well as variety of other observations including
Bradley’s stellar aberration as discussed earlier. Thus, it must be discounted.

Relativity certainly explains the results of Michelson and Morley, although it is less
unambiguously clear whether the results of Sagnac and Hafele-Keating really support
the theory as relativists claim12. Furthermore, relativity encounters serious issues in
dealing with scenarios such as the twin paradox in its attempts to remove absolute
frames of reference from physics.

The general theory of relativity, which is invoked to resolve many of these para-
doxes, suffers from its own deficiencies, including the creation of ”singularities” within
black holes, violations of the equivalence principle for charged particles (which are
predicted to radiate in one frame but not another), and requiring an infinite amount
of energy to assemble an electron, which in turn predicts an infinite electron mass, due
to its assumption of mass-energy equivalence.

The aether theory, as we will see, not only fits early observations of light such as
the timings of eclipses and Bradley stellar aberration, but can also simply account for
”relativistic” observations such as the Michelson-Morley experiment.

3 Doppler Shift and Frequency Invariance

Here we examine several scenarios involving a wave-emitting source and a receiver,
and gradually derive the equations for Doppler shift at a general angle, which will be
helpful for analyzing the Michelson-Morley experiment. We show that in general, for
a source moving at velocity vS and a receiver moving at velocity vR, if vS = vR then
the frequency observed by the receiver will be the same as the case when the source
and receiver are both stationary; that is, vS = vR implies f ′ = f . This frequency
invariance holds for motion at any arbitrary angle.

3.1 Stationary Source and Stationary Receiver

In figure (2) we have a stationary source at S and a stationary receiver at R. The
source emits waves, which move at speed c regardless of the velocity of the source vS.

We consider a wavefront to be the locus of all points where the wave’s phase is
equal to some initial value (which we can consider to be zero for convenience). The
distance d between S and R is then given by d = ct.

11A rapidly rotating variation of the Michelson-Morley experiment.
12Relativistic experiments such as the Hafele-Keating experiment can be interpreted as a type of

Sagnac interferometer using planes and clocks. The clocks in this scenario perform a function similar
to light clocks as envisioned by Max Born—since they rely on an electromagnetic mechanism, the
difference in synchronization is an optomechanical effect rather than a dilation of time itself. The
Hafele-Keating experiment is, if anything, evidence against the theory of relativity since—all reference
frames being equal—each plane travels the same distance, therefore one should be able to argue that
one plane’s clock should run ahead as easily as the other. Or, one might expect both clocks to remain
synchronized since each travels the same distance at the same speed, and should experience the same
amount of time dilation. The fact that this is not observed is evidence that the planes are traveling in
opposing directions within a frame (the Earth’s) that is rotating with respect to a separate frame of
reference. Nevertheless, these experiments are commonly interpreted as evidence for relativity rather
than against.
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Figure 2: A stationary source S and stationary receiver R

The source emits wavefronts moving at speed c every T seconds with frequency

f =
1

T
. At time zero, the source emits a wavefront. Let t be the time at which the

wavefront emitted at time zero reaches the receiver, and let λ be the distance between
any two wavefronts.

In figure (2), we have

n =
d

λ
=
ct

λ
(7)

where n is the number of wavefronts between the source and the receiver. If we
consider this to be the situation at time zero, then we will have n wavefronts pass the
receiver within time t, so the frequency of wavefronts observed by the receiver is given
by

f ′ =
n

t′
(8)

where we are using an apostrophe to distinguish between emitted frequency and
observed frequency. The source and the receiver will always agree on the time taken
for the initial wavefront to reach the receiver, so we will have t′ = t. Thus,

f ′ =
n

t′
=
n

t
= f (9)

and we see that the observed frequency is the same as the emitted frequency, and
thus it is invariant. Similarly, we find that since the source and receiver also agree on
distance and time, speed c is invariant:

c′ =
d

t′
=
d

t
=
ct

t
= c (10)

We can rearrange equation (7) and substitute (8) to obtain the velocity of the
wavefronts to obtain the familiar equation:

c =
nλ

t
= fλ (11)
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From our previous discussion, we also have:

f ′ = f (12)

c′ = f ′λ′ = c (13)

λ′ =
c′

f ′ =
c

f
= λ (14)

The invariance of speed, frequency, and wavelength in the case of a stationary
source and receiver should not be surprising, but this analysis is helpful in laying the
groundwork for further discussion.

3.2 Longitudinally Moving Source and Stationary Receiver

Figure 3: A longitudinally moving source and a stationary receiver

Let us consider a source at S moving directly (longitudinally) toward a stationary
receiver at R with a velocity vS < c. The source will move a distance vSt in time t,
which will cause the wavefronts ahead of the source to appear compressed, as shown
in figure (3). At time t, the initial wavefront from S reaches R and the number of
wavefronts between the source (now at S ′) and the receiver is then given by

n =
ct− vSt
λ′

=
ct
(

1− vS
c

)
λ′

(15)
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Rearranging for λ′ and substituting equation (7), we have

λ′ =
ct
(

1− vS
c

)
n

= λ
(

1− vS
c

) (16)

The time required for the initial wavefront released at S at time zero to reach R is
still t regardless of vS, so t′ = t and

c′ =
d

t′

=
d

t
= c

(17)

so the observed speed of the wavefront is invariant. Thus,

f ′ =
c′

λ′

=
c

λ′

=
c

λ
(

1− vS
c

)
=

f

1− vS
c

(18)

3.3 Stationary Source and Longitudinally Moving Receiver

Let us consider a receiver at R moving longitudinally away from a stationary source
at S with velocity vR < c. Here, the initial wavefront emitted at time zero catches
up to the receiver at R′ after time t′. During this time, the receiver travels a distance
vRt

′ so that the total distance the initial wavefront travels is given by ct′ = ct + vRt
′.

Rearranging for t′, we have

t′ =
ct

c− vR
=

t

1− vR
c

(19)

so that the observed time t′ for the initial wavefront to reach the observer is longer
than it would be in the stationary case.

Since the receiver is moving at less than c, it does not pass any wavefronts ahead of
it, but it is passed by the n wavefronts between S and R within time t′. The frequency
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Figure 4: A stationary source and a longitudinally moving receiver

observed by the receiver then is given by:

f ′ =
n

t′

=
n
(

1− vR
c

)
t

= f
(

1− vR
c

) (20)

Since the source is not moving, the receiver still measures the distance between
successive wavefronts to be the same as in the stationary case, so that

λ′ = λ (21)

The observed speed c′ of the wavefront by the receiver is then given by

c′ = f ′λ′

= f ′λ

= f
(

1− vR
c

)
λ

= c
(

1− vR
c

) (22)

3.4 Longitudinally Moving Source and Receiver

We can now combine our work from the previous two sections to obtain the more gen-
eral longitudinal formulas for a moving source and receiver. The wavelength observed
is dependent only on the motion of the source, so

λ′ = λ
(

1− vS
c

)
(23)
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On the other hand, the observed frequency is dependent on both the motion of the
source and the receiver as previously shown. Combining equations (20) and (18), we
have

f ′ = f

1− vR
c

1− vS
c

 (24)

Thus, the observed speed is given by

c′ = f ′λ′

= c
(

1− vR
c

) (25)

To summarize, for a longitudinally moving source and receiver, the observed wave-
length is only dependent on the velocity of the source, the observed frequency is
dependent on both the velocity of the source and receiver, and the observed speed is
dependent only on the velocity of the receiver. Furthermore, from equation (24) we
see that when vR = vS, we have f ′ = f .

3.5 Source and Receiver Moving at Same Speed and Angle

Figure 5: A stationary source and a receiver moving at an arbitrary angle

We do not consider the case of a receiver moving at an arbitrary angle away from
a stationary source (see figure (5) or a source moving at an arbitrary angle toward
a stationary receiver here (as shown in figure (6)), because the observed values of
frequency, wavelength, and speed change continuously with time due to the variance

12



Figure 6: A source moving at an arbitrary angle toward a stationary receiver

of the angle 6 SS ′R or 6 SR′R as the source or receiver moves (respectively), thus they
do not have a fixed value and must be parameterized by time.

Instead, let us consider the case of a source and receiver at S and R respectively,
both moving with velocity v in the same direction, as shown in figure (7). As usual,
we consider t′ to be the time taken for a wavefront emitted at S to reach the receiver;
this event occurs at R′. Here we define t to be the time for the initial wavefront from
S to reach R′ in the case when the source is stationary13, so we have t = t′, and both
source and receiver move a distance vt′ = vt during this time.

Now, let us examine how many wavefronts the receiver crosses as it moves from
R to R′. From the figure, we see that the outermost wavefront around S ′ at time t
coincides with the wavefront from S that was released at time zero (which reaches
R′ at time t by our definition of t). We can also see by geometric translation that
the number of wavefronts between S ′ and R′ at time t (shown in black) is the same
as the number of wavefronts between S and R at time zero (shown in red). Thus,
the number of wavefronts crossed by the receiver is exactly equal to the number of
wavefronts (shown in red) between R and S at time zero.

In other words, at time zero, S emits a new wavefront; at time t this initial wave-
front reaches R′ and in the time interval during which the receiver moves from R to
R′, all of the red wavefronts between S and R (no more and no less) must pass the
receiver.

So, the number of wavefronts n crossed by the receiver in time t when the source
and receiver are both moving with the same velocity v is the same as the number
crossed in the case when the source and receiver are both stationary14. Thus, in the

13Note that this is not the same as the time taken when both S and R are stationary.
14Note that the source and receiver can be placed anywhere in the stationary case without changing

any observed values, for example, they could be placed at S and R or at S and R′ and the frequency
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Figure 7: A source and receiver moving at the same speed and angle

case of a source and receiver both moving at the same speed and angle, we have
frequency invariance; i.e., the frequency observed in the case when both the source
and receiver are moving in concert is the same as when they are both stationary.
This principle holds in the case of a Michelson-Morley interferometer experiment, for
example, because the interferometer is a rigid object in which the sources and receivers
(e.g., the beam splitter and mirrors) all move together.

Thus, while we can assume frequency invariance, as we can see from figure (7) we
clearly will not have wavelength invariance, so we will also not have speed invariance.
The observed speed will be given by c′ = fλ′.

We can use apply the Pythagorean theorem to the smaller right triangle in figure
(7) to determine the wavelength shift:

(nλ)2 = (nλ′ cos θ − vt)2 + (nλ′ sin θ)2 (26)

Since nλ = ct, we can substitute t =
nλ

c
into equation (26) and divide both sides

observed by the receiver remains unchanged.
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by n2 to obtain:

λ2 =

(
λ′ cos θ − vλ

c

)2

+ (λ′ sin θ)2

= (λ′ cos θ)2 − 2λλ′
(
v cos θ

c

)
+

(
vλ

c

)2

+ (λ′ sin θ)2

= λ′2 − 2λλ′
(
v cos θ

c

)
+

(
vλ

c

)2

=

(
λ′ −

(
vλ cos θ

c

))2

+

(
vλ

c

)2

−
(
vλ cos θ

c

)2

=

(
λ′ −

(
vλ cos θ

c

))2

+

(
vλ

c

)2 (
1− cos2 θ

)
=

(
λ′ −

(
vλ cos θ

c

))2

+

(
vλ sin θ

c

)2

(27)

Thus,

(
λ′ −

(
vλ cos θ

c

))2

= λ2 −
(
vλ sin θ

c

)2

= λ2

(
1−

(
v sin θ

c

)2
) (28)

Taking the square root of both sides,

λ′ −
(
vλ cos θ

c

)
= λ

√
1−

(
v sin θ

c

)2

(29)

and factoring out λ we have the result15:

λ′ = λ

v cos θ

c
+

√
1−

(
v sin θ

c

)2
 (30)

Note that for θ = 0 and θ = π, equation (30) reduces to the familiar form for
longitudinal Doppler shift,

λ′ = λ
(

1± v

c

)
(31)

and for θ =
π

2
, this becomes

λ′ = λ

√
1−

(v
c

)2
=
λ

γ
(32)

where γ =
1√

1−
(v
c

)2 is the familiar Lorentz factor. Equations (31) and (32)

play an important role in the analysis of the Michelson-Morley experiment.

15Klinaku [10] also derives this formula using a similar method.
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Since f ′ = f and c′ = f ′λ′ = fλ′, from equation (30) we also have

c′ = c

v cos θ

c
+

√
1−

(
v sin θ

c

)2
 (33)

We can further simplify this to

c′ = v cos θ +
c

γθ
(34)

with γθ defined as

γθ =
1√

1−
(
v sin θ

c

)2
(35)

and we will see that this is the same as equation (65) as derived from the Michelson-
Morley interferometer tilted at an arbitrary angle with respect to the aether wind.

3.6 General Classical Doppler Shift

In figure (8) we have the commonly accepted depiction of classical Doppler shift for
a source moving at an angle. Aside from the fact, as we have noted with figure (6),
that a moving source and a stationary receiver will not produce a constant Doppler
shift, this figure is also shown without wavefronts, which makes it easier to misjudge
the resulting wavelengths.

Figure 8: Doppler shift for a moving source

The commonly accepted formulation of Doppler shift in this scenario simply mod-
ifies the equation for longitudinal Doppler shift by taking the component of the veloc-
ity along the vector from the observer to the source, so the equation for longitudinal
Doppler shift,

λ′ = λ
(

1 +
v

c

)
(36)

becomes:

λ′ = λ

(
1 +

v cos θ

c

)
(37)

Equation (37), however, is not the correct formula for Doppler shift at a general

angle. We know that it must not be correct, since for θ =
π

2
, equation (37) predicts
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zero Doppler shift, but as we have previously established by equation (30), there is a
measurable wavelength contraction due to Doppler shift at 90 degrees.

We can see this contraction clearly in figure (9), which shows two sets of n wave-
fronts, one moving (shown in black) and one stationary (shown in red). Here, C1 and
C2 are the respective centers of the outermost wavefront in each set, while S is the
location of the moving source, given that it emitted its initial wavefront at C2. From
the geometry of the figure we can see that nλ′ < nλ, so we must have λ′ < λ for an
observer at a 90 degree angle to the velocity of a moving source.

Figure 9: Transverse Doppler shift for a moving source

For v � c, there is very little practical difference between equation (37) and the
correct general equation, given by (30). However, when v becomes a non-negligible
portion of c (as may be the case in particles traveling in particle accelerators or stars
moving around galaxies, for example), the difference between the two equations be-
comes significant.

4 The Michelson-Morley Experiment

4.1 Michelson-Morley’s Fringe Shift Analysis

Here we will review the original derivation [1] of Michelson-Morley’s fringe shift cal-
culation. Michelson-Morley’s experimental apparatus could be rotated in different
orientations with respect to the hypothesized aether, however, to simplify our analysis
we will consider the case in which the laboratory is moving in parallel along the path
to mirror 1 with respect to the aether, as shown in figure (10).
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Figure 10: Michelson-Morley experimental setup

The time for light to traverse the round trip path to mirror 1 is given by

t′1 =
d

c− v
+

d

c+ v

=
2dc

c2 − v2

=
2d

c
· 1

1− v2

c2

=
2d

c
· γ2

= tγ2

(38)

where γ is the Lorentz factor given by γ =
1√

1− v2

c2

, and t is the expected

round trip time in the stationary aether frame (i.e., in an apparatus with no aethereal
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”wind”). We are using variables with apostrophes to indicate variables observed in
the laboratory frame, so for example, t′ is the observed time in the laboratory frame.

Since c2 = (c′)2 + v2 by the Pythagorean theorem, the observed speed of light from
the laboratory frame in the mirror 2 path is slower than the speed of light in the
stationary aether frame and is given by c′ =

√
c2 − v2. This holds for both directions

and is due to the fact that the actual path the speed of light is taking is longer than
the observed path in the laboratory frame.

The time for light to traverse the round trip path to mirror 2 is given by

t′2 =
2d√
c2 − v2

=
2d

c
· 1√

1− v2

c2

=
2d

c
· γ

= tγ

(39)

It is important to note that in neither case is the speed of light c actually changing.
Light is emitted at speed c with respect to the stationary aether frame regardless of the
laboratory’s velocity v. However, because the laboratory is moving, the light appears
to travel faster or slower from the laboratory perspective depending on its direction.
The situation for light in this scenario is analogous to the way sound waves travel in
Earth’s atmosphere. Regardless of our velocity within the Earth’s atmosphere, sound
waves always travel at the same speed with respect to the frame of a stationary observer
on the ground. However, in a fast-moving vehicle, a jet for example, the sound waves
generated by the jet traveling in the same direction of the jet appear to be moving
more slowly, from the jet’s perspective, while sound waves moving away from the jet
in the generation of the exhaust appear to be moving more quickly.

Because the speed of light is constant with respect to the stationary aether frame
in both scenarios, according to Michelson and Morley the optical path difference for
the light is given by ct′2 − ct′1, and the fringe shift is given by16

δn =
ct′1 − ct′2

λd
=

2d

λd
(γ2 − γ) > 0 (40)

where λd is the distance between fringes. Michelson and Morley did not observe
any fringe shift during the course of their experiments17, and this null result was taken
as evidence against the aether hypothesis.

16In the original Michelson-Morley analysis, this fringe shift was multiplied by 2 since by rotating
the interferometer 90 degrees after measurement, Michelson and Morley were able to double their
fringe displacement. However, for the purposes of our analysis we do not need to introduce this extra
factor.

17In fact, this statement is not entirely correct. They did not observe any fringe shift that they
were able to attribute to motion of the aether, although they did consistently observe fringe shifts.
We will discuss this more in depth later on.

19



4.2 Optical Distance

Michelson-Morley’s fringe shift calculation is unusual. Generally, the method for com-
paring phase differences for a single frequency of light traveling through materials with
different indices is to compute the optical path length for each material as δD = ηx,
where δD is the optical path length, η is the material’s index of refraction, and x is
the distance traveled. Then, the phase difference is given by

∆φn =
δD1 − δD2

λ
=
η1x1 − η2x2

λ
(41)

where ∆φn is the change in phase (measured in cycles, not radians) and λ is the
wavelength of light in a vacuum. Note that we are assuming that in all three cases–
vacuum, the first material, and the second material–that we are examining a ray of
light emitted at a single frequency, which is the same for all three.

In the Michelson-Morley experiment, light only travels through one material, air–
although we will not consider the effect of air’s index of refraction in this analysis, so
we will assume a vacuum instead. In any case, it was the motion of the laboratory,
rather than motion through different materials, which was expected to cause a phase
difference. Because of this, Michelson and Morley could not simply apply equation (41)
in its present state to their experiment. Instead, we hypothesize that they converted
the optical path length into a usable form for their analysis as follows:

δD = ηx =
( c
c′

)
x = c

(x
c′

)
= ct′ (42)

Then, they divided by λ to obtain their fringe shift formula as expressed in equation
(40). Superficially, their conversion seems to be logical and reasonable. However, it
overlooks the reason why equation (41) actually works. Consider a single frequency of
light traveling through two different materials with different indices of refraction, as
shown in figure (11):

Figure 11: A standing wave in materials with different indices of refraction

The phase of a moving wave (measured in cycles) with frequency f after traveling
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a distance x is given by:

φ = ft′ − x

λ′
(43)

where t′ is the measured time and λ′ is the measured wavelength.
We can multiply both sides by λ so that

λφ = λft′ − λx

λ′

= λft′ − fλx

fλ′

= λft′ − cx

c′

= λft′ − ηx

(44)

And dividing back by λ again, we have:

φ = ft′ − ηx

λ
(45)

When we compare materials of different refractions, we are making the comparison
simultaneously at time t′ for each material. Thus, when we apply this result to compute
the phase shift, the time variables are eliminated:

∆φn = φ2 − φ1

=
(
ft′ − η2x2

λ

)
−
(
ft′ − η1x1

λ

)
=
η1x1 − η2x2

λ

(46)

This is the reason equation (41) works without considering time. However, notice
what happens if we start with equation (43) and attempt to put it into the form of
equation (41) for the Michelson-Morley experiment:

∆φn = φ2 − φ1

=

(
ft′2 −

x

λ′2

)
−
(
ft′1 −

x

λ′1

)
= f(t′2 − t′1)−

(
x

λ′2
− x

λ′1

) (47)

We are immediately faced with a problem. The observed times for each path are
different, thus the time variables do not cancel. We will examine the rest of the
phase shift calculation shortly, but here we’ve demonstrated the crux of the prob-
lem: Michelson-Morley’s definition of optical distance simply does not apply to an
interferometer in which the path differences are not caused by refraction.

Michelson and Morley expected that a difference in the travel times of the two
beams of light would create an interference pattern. However, an interferometer does
not measure differences in propagation times; rather, it measures differences in phase,
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and a difference in propagation time does not necessarily correspond to a difference in
phase if the wavelength of light cannot be assumed to remain constant throughout.

In fact, the wavelength of light cannot be assumed constant throughout the ex-
periment, because in order to have a difference in propagation time, there must be
a corresponding change in the observed speed of light down each path. A change
in wavelength then necessarily follows from our previously discussed principle of fre-
quency invariance, which requires c′ = fλ′.

By taking the speed of light to be the same along both optical paths, Michelson
and Morley mistakenly assumed their conclusion (technically speaking, Einstein’s con-
clusion), which is that the speed of light is constant. This is reasoning from a false
premise. Simply put, equation (40) is meaningless; it does not compute the phase
shift.

Thus, we cannot simply calculate fringe shift using the absolute speed of light—we
must calculate the observed speed of light along each direction of travel, which affects
the apparent wavelength of light along each direction of travel. Both travel time and
wavelength shift must be accounted for in the phase shift calculation.

It can be difficult to imagine that two beams of light may arrive at the same
position18 at different times (in the laboratory frame), yet still not produce any inter-
ference. However, it is well-known that in the case of a beam of light traveling through
glass, and a parallel beam traveling along the same path through air, the two beams
will arrive out-of-phase at a detector19 and produce interference. This is observed
despite the fact that their geometric paths were the same, because their optical paths
were not.

Similarly, we can imagine that two beams may arrive in-phase despite having taken
different geometrical paths. From the view of the stationary aether frame, the two
beams in the interferometer were traveling at the same speed but arrived at different
times (and different places) due to a difference in their geometric paths. Nevertheless,
as we will see, due to the effect of Doppler shift they arrived in-phase.

4.3 Longitudinal and Transverse Doppler Shift

The observed round-trip time down either path can be expressed as

t′ =
d

c′↑
+
d

c′↓
(48)

where c↑ represents the forward trip and c↓ represents the return trip for either
beam.

Since c′ =
2d

t′
, this implies

1

c′
=

1

2

(
1

c′↑
+

1

c′↓

)
(49)

Since c′ = fλ′ due the principle of frequency invariance discussed earlier, this

18We can consider this position to be the location of the beam-splitter along the return trip.
19We assume that the source of light is at the same location for both beams, and that the detector

is placed at the location where the first beam exits the glass.
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implies

1

λ′
=

1

2

(
1

λ′↑
+

1

λ′↓

)
(50)

To understand the effect of longitudinal Doppler shift in the interferometer, let
us analyze the mirror 1 path. Using equation (31) to substitute for λ↑ and λ↓, we
calculate the observed wavelength adjusted for longitudinal Doppler shift:

1

λ′1
=

1

2λ

 1

1− v

c

+
1

1 +
v

c


=

1

2λ

 1 +
v

c

1−
(v
c

)2 +
1− v

c

1−
(v
c

)2


=
1

λ

 1

1−
(v
c

)2


=
γ2

λ

(51)

Thus,

λ′1 =
λ

γ2
(52)

The observed distance traveled along the mirror 1 path is then given by:

c′1t
′
1 = (fλ′1)t

′
1

= f

(
λ

γ2

)
(tγ2)

= (fλ)t

= ct

(53)

For t =
2d

c
, we have c′1t

′
1 = 2d. This is an important, if somewhat obvious result:

The observed distance traveled along the mirror 1 path is the same as the distance
traveled in the stationary case without any aethereal motion.

Next, we can calculate the effect of transverse Doppler shift along the mirror 2
path. From the previous section, the observed time for a beam of light traveling along
the mirror 2 path is given by:

t′2 = tγ (54)

To calculate the observed wavelength, consider figure (12). At time zero, a source
at S traveling at speed v emits a wavefront (shown in red) traveling with speed c,
and at time t this wavefront reaches a stationary receiver at R. During this time,
the source emits n wavefronts and moves from S to S ′. Since S resides at the center
of the outermost red wavefront, the distance from S to R is equal to n stationary
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Figure 12: Transverse Doppler shift for a moving source

wavelengths, nλ, and since these wavefronts travel at speed c, the travel time can be

expressed as t =
nλ

c
. The distance from S ′ to R is equal to n observed wavelengths,

nλ′. Using the Pythagorean theorem, we can express the relation betwen distances as

(nλ)2 = (nλ′)2 + (vt)2

= (nλ′)2 +

(
v

(
nλ

c

))2 (55)

Canceling the n’s and rearranging, we have

λ′2 = λ2 −
(
vλ

c

)2

= λ2
(

1−
(v
c

)2) (56)

and taking the square root of both sides, we obtain:

λ′ = λ

√
1−

(v
c

)2
=
λ

γ
(57)

This wavelength contraction, given by equation (57), is mathematically equivalent
to the Lorentz contraction in special relativity; however, the nature of this contraction
is classical, not relativistic: The beam’s wavelength is contracting in the transverse
direction along mirror 2 (rather than the arm of the apparatus contracting longitudi-
nally along mirror 1, as the theory of relativity holds), and this wavelength contraction
is derived purely from geometric considerations.
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For the mirror 2 path,

1

λ′
=

1

2

(
1

λ′↑
+

1

λ′↓

)

=
1

2λ

 2√
1−

(v
c

)2


=
γ

λ

(58)

in which we have made use of our equation for transverse Doppler shift to express

λ′↑ = λ′↓ = λ

√
1−

(v
c

)2
. Thus,

λ′2 =
λ

γ
(59)

The observed distance traveled along the mirror 2 path is then given by:

c′2t
′
2 = (fλ′2)t

′
2

= f

(
λ

γ

)
(tγ)

= (fλ)t

= ct

(60)

While it is obvious from the experimental setup that both observed distances are
equal, it is nevertheless worthwhile to see how the calculation is performed.

4.4 Corrected Phase Analysis

Here we calculate the phase shift along each path. Phase can be expressed as

φ(x, t) = ωt− kx (61)

for a wave traveling a distance x in time t, where k =
2π

λ
is the wave number and

ω = 2πf is the angular frequency.
We can compute the phase difference for a round trip (starting from φ(0, 0) = 0)

by substituting x = 2d, t = t′, ω = 2πf , and k =
2π

λ′
into φ(x, t). For path 1:

∆φ1 = 2π

(
ft′1 −

x

λ′1

)
= 2π

(
f(tγ2)− 2d

(
γ2

λ

))
=

2π

λ

(
(fλ)(tγ2)− 2dγ2

)
=

2π

λ
(ctγ2 − 2dγ2)

=
2π

λ
(2dγ2 − 2dγ2)

= 0

(62)
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keeping in mind c = fλ and ct = 2d. The calculation for path 2 is similar:

∆φ2 = 2π

(
ft′2 −

x

λ′2

)
= 2π

(
f(tγ)− 2d

(γ
λ

))
=

2π

λ
((fλ)(tγ)− 2dγ)

=
2π

λ
(ctγ − 2dγ)

=
2π

λ
(2dγ − 2dγ)

= 0

(63)

At this point it should be clear that whenever the wavelength and travel time
are scaled by factors that are multiplicative inverses of each other, phase will remain
invariant. Thus, the expected phase shift for a roundtrip route is zero for each path
in the interferometer.

4.5 Phase Analysis For General Roundtrip Paths

Figure 13: Real and apparent velocities at arbitrary interferometer angle

Phase analysis using Doppler shift can also be applied to variations of the Michelson-
Morley experiment using different length paths at arbitrary (not necessarily perpen-
dicular) angles, such as the Kennedy-Thorndike experiment, by adjusting one path to
rest at an angle of θ from horizontal and analyzing the resulting geometry.

In figure (13), a beam of light is directed along a path that is angle θ from horizontal,
and travels with an observed velocity of c′ in the laboratory frame while traveling
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through the aether with velocity v. Meanwhile, in the stationary aether frame the beam
travels at velocity c. From the geometry of the figure, we can use the Pythagorean
theorem to express the relation between these variables:

c2 = (c′ cos θ − v)2 + (c′ sin θ)2

= (c′ cos θ)2 − 2c′v cos θ + v2 + (c′ sin θ)2

= c′2 − 2c′v cos θ + v2

= (c′ − v cos θ)2 − (v cos θ)2 + v2

= (c′ − v cos θ)2 + v2(1− cos2 θ)

= (c′ − v cos θ)2 + (v sin θ)2

(64)

Rearranging to solve for c′, we have

c′ = v cos θ + c

√
1−

(
v sin θ

c

)2

= v cos θ +
c

γθ

(65)

in which we have defined γθ as:

γθ =
1√

1−
(
v sin θ

c

)2
(66)

Using the identity cos(θ+ π) = − cos θ, we can calculate the observed time t′ for a
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round trip:

t′ =
d

c

γθ
+ v cos θ

+
d

c

γθ
− v cos θ

= d


c

γθ
− v cos θ(

c

γθ

)2

− (v cos θ)2
+

c

γθ
+ v cos θ(

c

γθ

)2

− (v cos θ)2


=

2dc

γθ


1(

c

γθ

)2

− (v cos θ)2


=

2d

cγθ


1

1−
(
v sin θ

c

)2

−
(
v cos θ

c

)2


=

2d

cγθ

 1

1−
(v
c

)2


=
2d

c

(
γ2

γθ

)

(67)

Thus, for observed time we have the result:

t′ = t

(
γ2

γθ

)
(68)

From our previous discussion of the equation for general Doppler shift, we can
express the observed wavelength for the foward trip as:

λ′↑ = λ

v
c

cos θ +

√
1−

(
v sin θ

c

)2


= λ

(
v

c
cos θ +

1

γθ

) (69)

Likewise, the observed wavelength for the return trip is given by:

λ′↓ = λ

(
−v
c

cos θ +
1

γθ

)
(70)

From our previous discussion of observed wavelength, starting with equation (50)
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we have:

1

λ′
=

1

2

(
1

λ′↑
+

1

λ′↓

)

=
1

2λ


1

1

γθ
+
v

c
cos θ

+
1

1

γθ
− v

c
cos θ


=

1

2λ


1

γθ
− v

c
cos θ

1

γ2θ
−
(v
c

cos θ
)2 +

1

γθ
+
v

c
cos θ

1

γ2θ
−
(v
c

cos θ
)2


=
1

λγθ


1

1

γ2θ
−
(v
c

cos θ
)2


=
1

λγθ

 1

1−
(v
c

sin θ
)2
−
(v
c

cos θ
)2


=
1

λγθ

 1

1−
(v
c

)2


=
1

λ

(
γ2

γθ

)

(71)

Thus, for observed wavelength we have the result:

λ′ = λ

(
γθ
γ2

)
(72)

Using equations (72) and (68), we can show that the observed distance traveled in
the laboratory frame is equal to the observed distance without any aethereal motion
at all:

c′t′ = (fλ′)t′

= f

(
λ

(
γθ
γ2

))(
t

(
γ2

γθ

))
= (fλ) t

= ct

(73)

And since t =
2d

c
, we also see that the observed distance is c′t′ = 2d as expected.

Next, we apply these results to phase shift. Phase shift can be expressed as:

φ(x, t) = ωt− kx (74)
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for a wave traveling a distance x in time t, where k =
2π

λ
is the wave number and

ω = 2πf is the frequency.
We can compute the phase difference for a round trip (starting from φ(0, 0) = 0)

by substituting t = t′ and k =
2π

λ′
into φ(x, t). For x = 2d,

∆φ = 2π
(
ft′ − x

λ′

)
= 2π

(
f

(
2d

c

)
γ2

γθ
−
(

2d

λ

)
γ2

γθ

)
= 2π

((
2d

λ

)
γ2

γθ
−
(

2d

λ

)
γ2

γθ

)
= 0

(75)

keeping in mind c = fλ. Thus, the expected phase shift for a round-trip route
along any arbitrary angle is always zero.

5 Experimental Evidence

The possibility that the Michelson-Morley null result might be explained by Doppler
shift was originally proposed by the German physicist Woldemar Voigt in 1887, al-
though Voigt was not able to provide the correct analysis of the experiment at the
time and later withdrew his objections after discussion with Lorentz. In 1983, J.P.
Wesley published a paper hypothesizing that the Michelson-Morley result could be
explained by a Voigt-Doppler effect, which differed slightly from the classical Doppler
effect [11]. In 2006, after studying Feist’s experiment, Wesley amended his argument
and concluded that the Michelson-Morley result is satisfactorily explained by the clas-
sical Doppler effect [6]. In 2016, Klinaku published the formula presented in this paper
for Doppler shift at an arbitrary angle [10].

Interestingly, it is a common misconception that Michelson and Morley failed to
observe any fringe shifts associated with the Earth’s sidereal motion; in fact, the
original Michelson-Morley paper contains an entire table full of fringe shifts containing
evidence of absolute aethereal motion [1]. However, because the fringe shifts only
corresponded to a nominal speed of roughly 8 km/s, which is significantly less than
the Earth’s known orbital velocity of 30 km/s, these shifts were nevertheless considered
a null result.

In light of the foregoing analysis however, it is interesting that any fringe shift at
all could be detected, less experimental error. As it turns out, this fringe shift can be
attributed to the fact that the experiment was not conducted in a vacuum, and that
the refractive index of air is slightly greater than that of a vacuum. If the analysis of
the experiment is expanded to include Fresnel drag (as experimentally determined by
D.C. Miller in 1933), then the observed fringe shifts actually correspond to an absolute
aethereal motion of greater than 300 km/s [12].

Michelson and Morley seem to have suspected unforeseen effects in trying to infer
the one-way velocity of light from round-trip measurements, and proposed several
variations of the experiment in their original paper that would have directly measured
the one-way velocity of light. We have not yet found any literature on whether these
proposed experiments were conducted.
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Between the 1960’s and 1970’s, Conklin, Henry, and Smoot measured absolute
aethereal motion from the anisotropy of cosmic background radiation from the ground,
from balloons, and from airplanes [6].

In the 1970’s and 1980’s, the Belgian physicist Stefan Marinov conducted a variety
of coupled-mirror and toothed-wheel experiments to measure the one-way anisotropy
of light, and measured an absolute aethereal motion of roughly 300 km/s [13].

In 1991, Roland De Witte (a telecom engineer) measured variations in the one-way
travel time of RF signals through a 1.5 km coaxial cable over 178 days, and confirmed
that the variations clearly tracked the Earth’s sidereal time [14]. A similar experiment
was conducted by Torr and Kolen in 1984 [12].

In 1996, Monstein and Wesley measured the aethereal motion from the anisotropy
of muon flux [6] (an effect often cited as evidence of relativistic time dilation).

In 2001, Norbert Feist conducted an experiment [15] duplicating the Michelson-
Morley null result for sound, using a high-frequency sound generator along with a
reflecting surface mounted on the roof of an automobile. He made a series of runs at
speeds varying from 0 to 120 km/hr at a variety of angles between 0 and 90 degrees,
and generated a series of curves validating Klinaku’s formula, indicating that the
round-trip phase shift for sound is also zero degrees.

In 2013, Randy Wayne at Cornell conducted a reproduction of the Fizeau exper-
iment in which he demonstrated that the interference pattern was more accurately
predicted by classical Doppler theory than by Newtonian (Galilean) theory or special
relativity [16].
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