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Abstract. We generalize the massless Dirac equation and Weyl equa-
tion to give particles with internal symmetry of the Standard Model
fermions. The 2x2 or 4x4 complex matrices are matrix rings R and can
be generalized by a group G to a group algebra G[R]. For a group of
size N, this creates N times as many Pauli spin or gamma matrices and
generalizes the wave equations. We consider point group symmetries for
G and show that using the full octahedral group and the 2x2 complex
matrices gives a group algebra which generalizes the Weyl equation to
the Standard Model fermions plus a dark matter particle. An alterna-
tive is to use the chiral octahedral group and the 4x4 complex matrices
to generalize the massless Dirac equation. The method leaves a dark
matter particle and its antiparticle. We describe the symmetry of dark
matter.
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We will write the Weyl equation for a single massless fermion as

J“@Hw:IQ%iam%iay%iaz%ZO, (0.1)
where the plus signs are for the left handed Standard Model fermions and
the minus signs are for the right handed fermions. In the above, the Pauli
algebra has a basis of four 2x2 complex matrices {o#} = {I3,0,,0,,0.} each
of which has two nonzero complex elements. And 1 is a 1x2 vector so the
Weyl equation consists of two coupled differential equations with four terms
in each.

Changing the signs of the Pauli spin matrices, as seen above in the left
and right handed Weyl equations, can be thought of as a symmetry operation.
The symmetry group has two elements, it is the point group symmetry that
Hestenes and Holt[1] call 22. We will label the point group symmetries we
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use with their notation and to avoid confusion with numerals will prepend
them with “Geo” as in Geo22. The groups explored in this paper are the full
octahedral group Geo43 and some of its subgroups. An element of Geo43 can
be described by its effect on the Pauli spin matrices. In general, the three
matrices can be permuted and can be independently permuted. Together,
these give the 3! x 23 = 48 elements of Geo43.

In the Weyl representation of the gamma matrices, the Dirac equation
consists of two Weyl equations, one left handed the other right handed, which
are coupled by the mass term. Setting the mass to zero gives the massless
Dirac equation and the two Weyl equations are uncoupled. If we let g €
Geo22, we can write these two uncoupled equations as

o199, W9 =0, (0.2)

where a sum over p is implied: o9 is I, +0,, 0, and +o0,, and the signs
are according to the element g in Geo22.

In the above equation we assumed that the U9 depends on the group
element g the same way as the g of the generalized Pauli spin matrices c#9. An
alternative interpretation, the one adopted by this paper, is that the g of the
Pauli spin matrices and the h of the wave function ¥ are mixed by the point
group symmetry operation so that ¢9..0" is a product whose point group
symmetry membership is gh. Then the wave equation which corresponds to
the group element g is

or9/hg, W =0, (0.3)
where a sum over A in the point group symmetry is implied and (g/h) h = g.
The result is a set of coupled Weyl equations whose number is given by
the size of the point group. For Geo43, there are 48 group elements so the
resulting 96 differential equations each has 4 x 48 = 192 terms for a total
of 96 x 192 = 18,432 terms. The subject of this paper will largely be the
uncoupling of these equations into 48 Weyl equations, each with 4 x 2 = 8
terms. The Standard Model fermion symmetry arises from this decoupling.

It may be useful to explicitly show how elements of Geo43 modify the
Weyl equation. We can use X, Y and Z to signify the three Pauli matrices and
give a permutation by listing these three letters. For example, the identity is
XY Z and a swap of o, and o, will be designated XZY . And we can specify
which Pauli spin matrices are negated by putting a bar over them. So X ZY is
a right angle rotation about the x axis. This rotation modifies the left-handed

Weyl operator to
P Y )
Yot "o oy TVor
In the above, the partial derivatives no longer match the Pauli spin matrices.
We can fix that by having the Pauli spin matrices depend on the group

element XZY as in

(0.4)

v 0 - 0 v 0 v 0
xzv 9 xzy 9 xzy 9 xzy 9 0.5
N T A AR (0.5)
where 0 X2Y = —0,, etc.

Y
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This paper makes the assumption that different particles use physically
different Pauli algebra bases and that their wave states are different physical
degrees of freedom. For example, writing the left handed electron “eL”, and
left handed neutrino “vL”, their Weyl equations are:

ot 0, =0, and ¥ 00" =0. (0.6)

Each of these Weyl equations are two coupled differential equations with
the four terms shown above in Equation 0.1. These two Weyl equations are
uncoupled. In this paper we will be writing generalized Weyl equations with as
many as 96 coupled differential equations and then algebraically manipulating
them into an equivalent set of uncoupled Weyl equations. We assume that
these uncoupled Weyl equations correspond to different particles.

We will illustrate this generalization in three steps. The first step will use
the “Geo22” point group with two elements, the identity and the inversion,
and is the subject of Section 1.0. We write the generalized Weyl equations
which are four coupled partial differential equations, and decouple them into
two Weyl equations corresponding to two particles. The decoupling is equiva-
lent to putting the group algebra 22[¢*] into block diagonal form. A short cut
to diagonalizing a group algebra is to use the finite group’s character table.
In general, an Abelian group of size n has a character table of size n x n,
and an Abelian group generated by a single element has a character table
whose entries are the same as the discrete Fourier transform. In the following
section we generalize the character tables of non Abelian symmetries to also
be of size n x n. This is a generalization of the discrete Fourier transform to
non Abelian symmetries.

The second step will use the point group Geo3 that corresponds to the
six permutations on the three Pauli spin matrices and is discussed in Section
2.0. The group’s generalized Weyl equation has twelve coupled differential
equations with 24 terms each. We will use the character table for Geo3 to
assist in rewriting the equations. The group is is small enough that writing
down the decoupled Weyl equations is manageable. Since Geo3 is not Abelian,
block diagonalizing 3[c*] leaves a 2x2 block on the diagonal. While the group
size of Geo3 is 6, the character table has only 3 columns and 3 rows but we
show how to expand it to a 6 x 6 table that can be interpreted as a general-
ization of the discrete Fourier transform to the non Abelian Geo3 symmetry.
The expanded character table defines an internal symmetry that is an SU(2)
analog of the color SU(3) internal symmetry of quarks. Note that the ma-
trices of the Weyl and Dirac wave equations transform the way that density
matrices transform rather than state vectors. This is significant because our
generalized discrete Fourier transform is a state vector type transform on
an object that transforms as a density matrix which is more general than a
density matrix transform of a density matrix object. We discuss the thermo-
dynamics of internal symmetries.

In Section 3.0 we discuss the full octahedral group Geo43. Manipulating
the 18,432 terms would be exhausting so we use the character table methods
shown in the previous section to read off the result of uncoupling. We find
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four Standard Model first generation leptons, i.e. electron, positron, neutrino
and anti-neutrino, four Standard model first generation quarks and a set
of Weyl equations with internal SU(2) symmetry left over for dark matter
and anti-dark matter. Thinking of our transformation as a discrete Fourier
transform, we can reverse the process and act on the electric charge, weak
hypercharge and weak isospin to find what elements of 43[c*] transform to
these operators. The result is compatible with the observation that Fourier
transforms are useful for simplifying complicated structures in physics.

In Section 4.0 we discuss the dark matter doublet found in the previous
section and the implications for dark matter. The internal SU(2) symmetry is
assumed to act similarly to the internal SU(3) color symmetry so we call them
“dark quarks” or “duarks”. Corresponding to the quark color force boson the
gluon, dark quarks are bound by a dark color force boson called the “duon”.
We assume duarks combine similarly to the usual quarks so we have dark
matter composed of “daryons” and “desons”. Instead of colors that sum to
white, the dark quarks do not interact with photons so their colors must sum
to black. Since they are SU(2) instead of SU(3), we need only two dark colors
to form a basis set for their state vectors and we call the two dark colors
“doom” and “gloom”.

The conclusion, Section 5.0 discusses the outstanding lack of this paper,
a theory of the gauge bosons. There are some hints as to what is going on.
This is followed with a short aknowledgement.

1. 22[c*], Generalized Weyl Equations and Decoupling

The group Geo22 is equivalent to Sy, the group of permmutations of two
elements. There are only two permutations on two elements. Either they are
swapped S = (12) which alters the Pauli spin matrices to XY Z, or they are
not £ = () leaving the Pauli spin matrices in their default condition XY Z.
The multiplication table is:

Sy|E S
E|E S (1.1)
E|S E

The four basis elements of the Pauli algebra are {I3,0,,0,,0,}; The Geo22
group has two elements so the group algebra 22[c*]| will have two basis el-
ements for each of thebe correbponding to the two group elements F and
S: {IF oF o 5, oB 15 0% O’ ,05}. These eight elements are a basis for the
22[c*] algebra so that an arbltrary element « of the algebra can be defined
as

o= Oé[EIQE + amEof + ayEUf + azEJf + alsIQS + axsaf +ay505 + azsaf

(1.2)
where the a,, are eight complex numbers. Thus the 22[c*] vector space is
eight dimensional.
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Addition is the usual for a complex vector space, as is multiplication
by a complex number. We will discuss statistical mechanics of group algebra
quantum states in the next section; that will be our only use of multiplication
of two group algebra elements so we define it here. Multiplication is term by
term with products of basis elements given by the group product and the
usual Pauli algebra rules. So for example:

(1+42i)of (2-3i)oy, = (2+4i—3i+6) iof> = (=1+8i)o?,
I a = olf = q
(02)(0F + o)) = IF +ioZ,
(1.3)

where we’ve used the usual Pauli algebra multiplication o0, = i0., 0,0, =
I> and the Sy group multiplication rules SS = E,SE = ES = S. These rules
reduce any product to the 22[c*] basis.

The Weyl equation for 22[c#] is

or9/hg,wh = 0, (1.4)

where h is summed over Geo22 = {F, S}. There are two equations, one for
g = E, the other for g = S. Writing out the sums over h gives:

P, WE 4 ghPSY, w8 = o,

O'/LSSaH\I/S—FU“SEaM\PE — 0, (15)

where we’ve used the fact that h~! = h for this group. The group products
FE=E ES=5,55=F and SE = S simplifies the generalized Pauli spin
matrices to give

O“E@L\IJE + U“Sau\lls = 0,

U“Eaullls—&—a“S@u\PE = 0, (1.6)

and we see we have two coupled Weyl equations.
To uncouple these two equations, consider the character table for the
Sy group:

Class: | {E} {S}

Size: 1 1
A 1 1 (1.7)
B 1 -1

The group is Abelian so the two elements are each their own classes. There
are two irreducible representations consisting of the sum and difference of the
FE part and S part. Taking this as a hint for how to decouple the two Weyl
equations, we compute the sum and differences of Equation 1.6 and indeed
obtain two decoupled Weyl equations:

(" 4+ 015) /2 0, (Y7 +4%) 0,
(o1F — o$) /2 9,(F —vS) = 0.

(1.8)

The normalization factor of 1/2 is included so that the new Pauli basis ele-
ments o#* = (o"F £ o#9) /2 satisfy the equation (0#)? = I.



6 Carl Brannen

We can also illustrate the method using a matrix representation of the
finite group Ss. Using

Ez(é?)Sz(?é) (1.9)

as a representation, note that the representation satisfies the group multipli-
cation and that they are linearly independent matrix ( considered as a vector
space) elements. The eight basis elements of the 22[c#| group algebra are de-
fined by eight 4x4 complex matrices. The basis elements of the Pauli algebra
are four 2x2 complex matrices that are linearly independent. In an abuse of
notation, we can write these familiar matrices as a single 2x2 complex matrix:

ol — < Iy +o0, o0, —i0y ), (1.10)

Oy +ioy Iy—o,

that defines the four 2x2 complex matrices. The same abuse of notation allows
us to write the eight basis elements of 22[¢#] in a single 4x4 matrix:
I£+0§E U%—MEE I§+0% J%fiasgj
5ol 1] — oy +io Iy —o, o240 I3 — o}
22[0"] IQS —&-05 S _ g8 IQE +J§ af — ok - (111
oS+ iaf I —o ol + iaf 1Y — ok

Note that in the above, the E and S subscripts follow the Ss group represen-
tation of Equation 1.9 while the Pauli algebra basis appears in the four 2x2
blocks. For example, the above indicates that

0

&

(1.12)

o= O O
o O = O
[ el

0
0
1

and similarly for the other seven basis elements of 22[c*].

The four Pauli basis elements {12701;,%,02} are Hermitian, one for
each real degree of freedom in the 2x2 complex Hermitian matrices. The 4x4
complex Hermitian matrices have sixteen real degrees of freedom but 22[c*]
is only of dimension eight.

Given a matrix U and its inverse U ! we can transform an algebra by
a — o =UaU~!. Choosing

1 I I
_rr—1 _ 2 2
povn LB 8 w19

conveniently puts the 22[c#] group algebra into block diagonal form. This
corresponds to a transformation on our representation of Se. Using the usual
abuse of notation, in an even more confusing way, that is, to show two equa-

tions in one:
E S 4 1/ E4+S 0
U(S E>U —2< 0 E—S)' (1.14)
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Applied to the 22[c#] basis, (E +.5)/2 corresponds to the Pauli spin matrices
of Equation 1.9 or
(E+58)/2 = (o"F + 015)/2, (1.15)

so the block diagonalizing U transformation is what is needed to decouple the
Weyl equations. In the next two sections we will be decoupling Weyl equations
for more complicated finite groups; we will approach those problems as a
matter of block diagonalization.

The two coupled Weyl equations of Equation 1.8 differ in the wave
function: 1 £ 9. This fact can be extracted from the block diagonal form
of 22[c#] given in Equation 1.14 by considering it as the symmetry of a
density matrix. The UaU ~! transformation of the algebra is also how density
matrices are traditionally transformed. This follows from the fact that the
Weyl equations are matrix equations and so transform as matrices.

2. 3[0"], Nonabelian Group Algebras and Internal Symmetry

The Geo3 point group has six elements. They permute the Pauli spin ma-
trices. The group is equivalent to the permutation group on three elements
S3 and we will use S3 notation for the group elements. The conversion of S3
group element names to the Pauli spin matrix octahedral point group are:

() XYz,  (123) YZX,  (132) ZXY,
(12) YXZ, (13) ZY X, (23) XZY.

(2.1)

The three element permutations (123) and (132) correspond to 120 degree
rotations about the (1,1, 1) axis. The swaps (12), (13) and (23) are the three
mirror planes with perpendiculars (1,—1,0), (—=1,0,1) and (0,1,—1) that
intersect in the (1,1, 1) direction. Since the Pauli algebra has a basis of four
elements, The basis for the 3[c#] algebra has 4 x 6 = 24 elements and we will
designate them as {I; ), 12(123), ey 0,(323)}.

In the previous section we were able to completely diagonalize the Geo22
part of the 22[c#] algebra. This was possible only because Geo22 is Abelian.
This section discusses Geo3 which is non Abelian so we will be unable to
completely diagonalize the Geo3 part. As with the previous section, the Pauli
algebra is non Abelian so that part of the group algebra cannot be diagonal-
ized.

The mathematics literature on group algebras frequently does not spec-
ify the “field” or “ring” and instead consider the general subject of a group
algebra over an unspecified field that satisfies a few easy requirements. Here
we are using the Pauli algebra as the ring. A convenient choice for the field is
the complex number. The group algebra over the field of complex numbers is
discussed at length in Hammermesh’s book “Group Theory and its Applica-
tions to Physical Problems” Section 3-17 [2] where he uses the group algebra
as a way of defining all the irreducible representations of a finite symmetry.
Here we will be doing the same diagonalization but with the objective of
uncoupling the generalized Weyl equations.
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The diagonalization method given by Hammermesh is identical to how
one block diagonalizes a group algebra over the Pauli algebra and we refer the
reader to his book. The overall result is that each line of the character table
of the finite group corresponds to a diagonal block. The size of the block
is defined by the character of the identity ( ). Our Geo22 example of the
previous section was Abelian so all the representations have character 1 for
the identity and the block diagonalized group algebra had only 1x1 blocks.

The character table for Geo3 has three irreducible representations, two,
A and B, with character 1 for the identity, and the third C' with character 2
for the identity:

Clas: | ()} {29} {12)

Size: 1 3
A 1 +1 +1 (2.2)
B 1 +1 -1
C 2 -1 0

This corresponds to two 1x1 diagonal blocks for the A and B irreps, and one
2x2 diagonal block for the C irrep. The size of the Geo3 group is 6, so that
the sizes of the three classes sum to 1 + 2 + 3 = 6. Diagonalizing preserves
the degrees of freedom so our diagonalization amounts to writing 6 as a sum
of the squares of the sizes of the diagonal blocks:

6=1%+17 + 22 (2.3)

This shows how the 6 dimensions of 3[c*] as a vector space over the Pauli
algebra appear in block diagonalized form. The previous example 22[c*] had
two elements in the finite group so its sum of squares was 2 = 12 4 12,

Since the size of Geo3 is six, the 22[c#] algebra has enough degrees of
freedom for six Weyl equations. Two equations are given by the A and B
irreps. We can read them off of the A and B horizontal lines of the character
table. The A irrep has character 1 for all the classes so all 6 group elements
contribute equally and its Pauli spin algebra basis is given by the four 22[c#]
elements:

oAt = (o) 4 gr(128) 4 Gr(132) 4 Gr(12) 4 Gr(13) 4 51(23)) /6. (2.4)

The division by 6 is a normalization so that these elements square to their
2x2 identity 0% = I3'. The B irrep has —1 for the {(12)} class so its Pauli
spin algebra basis is

oBr — (Uu() 4 or(123) 4 ;u(132) _ ;u(12) _ ;u(13) _ o”(23))/6. (2.5)

Since the A and B Pauli spin algebra bases are in different diagonal blocks,
they must annihilate each other. For example 049 03 = I5! 8 = 0. This is
in contrast to the original basis where all the products are nonzero.

The 2x2 diagonal block will give four Weyl equations. It would be
natural to label them according to their position in the 2x2 block. With
this method, the four uncoupled Weyl equations would carry superscripts of
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11, 12,21, 22 and would fit into the 2x2 block as follows:
Cllp C12p
C a a
ot = ( oC2ln ;022 ) . (2.6)
However, we’ll be considering SU(2) transformations on these equations (which
correspond to SU(2) transformations on the internal symmetries of the corre-
sponding particles) and our transformations will be simpler if we manipulate

these four uncoupled Weyl equations into four new uncoupled Weyl equations
according to

JCllu JC12;L B JCI/,L 4 O_Czp, O.CIH 4 iO_Cyp, o7
0021;4 0022# O.Ca:u _ Z'O_Cyu, 0C’1,u, _ O_Czp, . ( . )
So that, for example, 0“1 = (c@1H 4 gC221)/2 and ¢“** = (cC1F —

aC221) /2.

The four equations {ocC, 0@ gC¥1 5CZ1) can be manipulated by a

transformation

o = ¢ = U P Ut (2.8)
where U is in SU(2), to another equivalent set of four decoupled Weyl equa-
tions.

As an example of this internal SU(2) symmetry of the uncoupled Weyl
equations, given an angle 6/2, note that (0/2)o, is in su(2) so that U =
exp(i(/2)o,) is in SU(2). This U leaves ¢“* and 0“* unchanged but ro-
tates the other two according to

= cos()ocCY" + sin(0)o
o' = cos(0)oCH — sin(0)oCur,

oC'um

(2.9)

so that, as expected, U rotates the y and z components of ¢“# by an angle
0. This simplifies our understanding of these four Weyl equations as an in-
ternal SU(2) symmetry so rather than using the natural matrix description
of the four equations shown in Equation 2.6, we will use the Pauli algebra
description of these four degrees of freedom which we can abbreviate as:

O.CVM B ( O.Cly + O.Czu,o.Cz;L _ io.Cyu )

O,Cac;t + iO’Cy”,O'Cl'“ _ O.CZ[L (2'10)

where v =€ {1,z,y, z} is the index for the Pauli algebra of the internal SU(2)
symmetry, while p is the usual index for the Pauli spin-1/2.

Our next task is to write out ¢“# in terms of the algebra. The first,
is easiest; similar to c# and oP# defined in equations (2.4) and (2.5),
it’s given by the third line of the character table “C'| 2 — 1 0” and is:

O_Cl;t — 2(20.,u( ) 0-#(123) _ 0#(132))/6. (211)

The overall multiplication by 2 is needed for normalization and comes from
the fact that this irrep has a character of 2 for the identity.

To find the remaining three degrees of freedom, i.e. {o™*, g¥# o*+}, let
us first reexamine the character table Equation (2.2). The three columns
correspond to the three classes. These three degrees of freedom are rewritten
as the three irreducbile representations {4, B, C'’}. The three classes include

0.Cl/t
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all six of the group elements so we can rewrite this table from 3x3 to 6x3
if we replace the classes with their elements. For example, the second class
{(123)} has two elements (123) and (132). The 6x3 character table is:

Elements: | () (123) (132) (12) (13) (23)

A 1 +1 +1 +1  +1 +1
B 1 +1 +1 -1 -1 -1 (2.12)
C 2 -1 -1 0 0 0

In terms of rewriting the degrees of freedom of the algebra, we are missing
three lines that would fit under the irreducible representations. These three
will be orthogonal to the three irreps and will correspond to multiples of ¢€##,
oC¥ and o©#*. From the table we can see that the missing three degrees of
freedom can be written as (123) — (132), (12) — (13) and (12) — (23). But
these are not normalized and do not satisfy the commutation relations of the
Pauli spin matrices. However, since they span the Pauli spin matrices, we can
write them using the Pauli spin matrices as the bases for a complex vector
space:

(123) — (132) = ao, + foy + 02, (2.13)
where «, 8 and y are three complex numbers. Squaring both sides gives
[(123) - (132)]2 = [OZUI + Bay + ’70-2]27
(132) + (123) = 2() = (a®+ B2 +92)o1 = (a® + B2 ++?)o“11,

(2.14)
But the left hand side is the negative of the C irrep line. And since a? +
% 4+ 42 is just a complex number, we can take its square root and use it as
a normalization factor on (123) — (132) to give us 0“®#. After doing this, we
can square the next degree of freedom (12) — (13) to give the normalization
for 0€¥*. We then define 0“** by io, = 0,0y. Taking all this into account,
and including the normalization factors in the character table converts it into
a 6x6 table that shows how the degrees of freedom of the algebra are written
in terms of irreducible representations and their internal symmetries:

Elements: | () (123) (132) (12) (13) (23)
or 1/6 +1/6  +1/6 +1/6 +1/6 +1/6
oBr  |1/6 +1/6  +1/6 —1/6 —1/6 —1/6

o 12/3 —-1/3  -1/3 0 0 0 . (2.15)
oCon 0 i/1/3 —i/1/3 0 0 0
oCyr 0 0 0 /3 —\/1/3 0
oz 0 0 0 1/3 /3 —2/3

This is a general result that does not depend on the choice of field used
in this paper so the u is unneeded. The squared magnitude of each line is
the same as the coefficient for the identity, i.e 1/6 for A and B and 2/3
for the four components of C'. Each line of this table defines four equations
depending on the choice of u. For example, the fourth equation of the last
line is 0¢%* = (122 /3 4 ¢(13)2 /3 — 25(23)2 /3,
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Our new table upgrades the character table to a transformation on all
the basis elements of the group algebra, and therefore, it is also a trans-
formation on the group algebra itself. For Abelian groups of the form G =
{a*|0 < k < n} for some a € G, the character table is of size nxn and is
a discrete Fourier transform. Thus our new table is a generalization of the
discrete Fourier transform to a non Abelian symmetry group.

In 2010 this author published a paper that rewrote the Koide equa-
tion for the masses of the charged leptons as the result of Feynman paths
taken over spin in the z, y and z directions. [3] Given a path of n steps, the
n + 1 step will either be in the same direction, clockwise or counterclockwise
around the (1,1,1) direction. Three of the elements of Geo3 correspond to
these choices: () = XY Z, (123) = YZX and (132) = ZXY. They form the
point group Geo3 which is an Abelian subgroup of Geo3 of size three so they
imply a discrete Fourier transform on three objects as was pointed out by
Marni Sheppeard in 2009. She asked “Is there a noncommutative transform
that extends this analysis to nonclassical underlying spaces?”[4] This paper
suggests that there is and that it will help understand the masses and symme-
tries of the Standard Model fermions. Rewriting the Koide equation allowed
it to be extended to the neutrinos and, for the charged leptons, revealed an-
other mass coincidence, a phase factor of 2/9. In 2012 Zenczykowski extended
the 2/9 coincidence to the up and down quarks which take 1/3 and 2/3 of
the charged lepton value.[5] This paper is another step in fully understanding
the Standard Model fermions both symmetry and generation structure.

A Weyl equation is a matrix equation, so when we transform it according
to its spin-1/2 SU(2) symmetry, we transform it the way we would a density
matrix. That is, it transforms as p/ = U p U~! rather than ¢’ = U 1.
Our treatment of the internal SU(2) symmetry of the C irreps as shown in
Equation (2.8), uses the density matrix type transformation. Density matrices
are convenient for calculations in quantum statistical mechanics so we briefly
discuss them here.

The Gibbs form for the density matrix of an ensemble is

p(T) x e T, (2.16)

where the Hamiltonian H specifies the energy of the possible states, T is

the temperature, the Boltzmann constant is unity, and we've left off the

normalization factor that gives p(T) a trace of 1. Squaring both sides gives
H

PAT) x e T =e 777, (2.17)
so squaring such a density matrix gives a density matrix that is proportional
to one with half the temperature. Repeating the procedure of squaring and
dividing by the trace allows one to find a density matrix for a temperature
close to zero. If the Hamiltonian depends on the state, this low temperature
limit will be the pure density matrix corresponding to the state with the
lowest energy.

The high temperature limit for a density matrix is given by letting
T — oo and is proportional to the unit matrix. The proportionality constant
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T="T, T =To/2

T ="Ty/4

T =Ty/64

FIGURE 1. Beginning with 3000 random density matrices
near the high temperature limit T' = T, we square the den-
sity matrix six times to show the states beginning to converge
to the two singletons A and B, and the internal SU(2) dou-
blet C. Of the six degrees of freedom in the 3[o*] algebra, we
choose the x and y axes so as to spread A, B and C apart,
and to show the Bloch sphere for C'. Continuing the cooling
process, the final image T' ~ 0 shows the cold temperature
limit (pure states).

is the trace so the high temperature limit for 3[o* is

p(T = 50) = ()/6, (2.18)
as the trace of the identity of a group algebra is the size of the group (and
the other elements of the group algebra have zero trace). Density matrices
have to be Hermitian and the same principle applies to a group algebra. The
generalization of “Hermiticity” from a matrix to a group algebra is covered
in introductory graduate math texts or the reader can work backwards from
the Hermiticity requirement for the matrix form of the algebra.

If we choose a small random Hermitian element of the group algebra
we can add it to the high temperature limit to get a Hermitian element that
is a valid state near the high temperature limit. Cooling this state down to
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a nearly pure state gives us a random pure state. For 3[c#] there are three
possible pure states, A, B and C. Figure (1) shows the result of this cooling
for a few thousand random high temperature states. The A and B irreps
appear as two dots on the right side of the images while the internal SU(2) C
state appears as a Bloch sphere on the left. The algebra has six group degrees
of freedom and the images are two dimensional so four degrees of freedom
are not graphed. The degrees of freedom that are graphed have been selected
to separate the A, B and C states and to spread the C states with o©*# in
the x-direction and ¢“¥# in the y-direction so the Bloch sphere appears as
an x-ray of a sphere. If you assign a graduate student to read and understand
this paper, a suitable task is to reproduce this graph for this or other point
group symmetries.

In this paper the field we use is the Pauli algebra but the figure does not
depend on the field so when writing a computer program to plot the cooling
process it is more convenient to use the complex numbers as the field. Then an
element of the group algebra 3[C] consists of six complex numbers. Addition is
simply vector addition. To multiply algebra elements the computer program
uses the Geo3 group multiplication rules. Repeatedly squaring and dividing
by the trace creates a path that is then graphed.

In 2014, Steven Weinberg showed that density matrices can have more
interesting symmetries than those that are available to state vectors.[6] These
last few paragraphs have shown that the group algebra on the Pauli algebra
implies a symmetry on the density matrices of 3[c#]. This is a symmetry of
the Weinberg type; a symmetry that is more interesting than those available
when considering state vectors only. That is, the 4x4 density matrices that
follow the symmetry of Equation 1.11 can be put into block diagonal form:

A A
A A
B B (2.19)

B B

where A and B are two uncoupled Weyl equations and so correspond to
two density matrices. The remaining entries have been left blank as they
are always zero. This is a packing of density matrices into a density matrix.
Weinberg’s example places state vectors in a density matrix. His example is:

al bg b;
P = b§ a9 b1 (2.20)
b2 b; as

“... where under SU(3), the real diagonal elements a,, transform as singlets,
with a; 4+ as + a3 = 1, and the triplet (by,bs,bs) transforms as the repre-
sentation 3. This SU(3) transformation of p cannot be put into the form
p — UpUT required in ordinary quantum mechanics...” [6]

Our transformation of the Weyl equations is of the Weinberg form, that
is, the objects being transformed o*, transform by spin SU(2) in the usual
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density matrix form p’ — UpU~!, but we are transforming it with a single-
sided transformation matrix, i.e. a generalization of the discrete Fourier trans-
form. Thus the transformations we use in this paper cannot be accomplished
on state vectors. This could be the reason these transformations appear to
have previously escaped notice.

3. 43[c*] and the Standard Model

In this section we will be discussing a single generation of the Standard
Model, i.e. the electron, neutrino, up quark and down quark. In the usual
quantum mechanical description of these particles, each is modeled using
bispinors and the Dirac equation. Bispinors have four complex components.
For example the electron bispinor basis can be chosen to be the four states
“spin-up electron”, “spin-down electron”, “spin-up positron” and “spin-down
positron”. An alternative natural to the Weyl basis would be “spin-up left”,
“spin-down left”, “spin-up right” and “spin-down right”. We cannot define a
basis of elements that mix handedness with charge, i.e. “spin-up left electron”
because charge and handedness do not commute.

We will avoid the mass interaction in this section. In the massless limit
(relativistic or high energy) the Dirac equation splits into two uncoupled Weyl
equations, left handed and right handed. Each of these equations is a mix of
particle and antiparticle. The other way of eliminating mass from the Dirac
equation is to take the infinite mass limit (non relativistic or low energy). In
this limit the Dirac equation also splits into two Weyl type equations, but
one is for particles the other for antiparticles. The 43[c*] algebra includes
both left handed and right handed coupled Weyl equations, but the irre-
ducible representations will mix these leaving particles and antiparticles. So
our uncoupled Weyl equations will have a basis of “spin-up electron”, “spin-
down electron”, “spin-up positron” and “spin-down positron”. This makes it
easy to find the operator for electric charge. By looking at the left and right
handed parts of the algebra, we can pick out the left and right handed parts
of the particles and therefore we can derive operators for weak hypercharge
and weak isospin.

An alternative to our calculation would be to write a generalized mass-
less Dirac equation using the handed octahedral point group Geo43, which
has 24 elements and is the subgroup consisting of Geo43’s proper rotations.
Then the algebra would be 43[y#]. The reason we’ve chosen 43[c*] instead is
that it makes the projection operators for handedness part of the point group
symmetry. With 43[y*], the handedness projection operators are (1 4=~°)/2
which would mean our particle identities would be split between the point
group symmetry and the gamma matrices.

Half of the 24 elements of the Geo43 point group are proper rotations
and leave the Pauli spin matrices left handed. The other 24 elements change
the handedness of the Pauli spin matrices to right handed. The irreducible
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representations exist in two types. Half have the same signs for the left-
handed and right handed elements, the other have opposite signs. The usual
convention is that particles take the representations with the same signs while
the antiparticles use the representations with opposite signs. In addition to
the difference in handedness, the elements of Geo43 can also be classified
as “even” and “odd”. The proper rotations which can be obtained as an
even number of right angle rotations, and the improper rotations which are
a proper even rotation times the inversion ¢ are the “even” elements, the
rest are “odd”. For the left handed particles, weak hypercharge depends on
left handed even elements while weak isospin depends on left handed odd
elements. This is natural in that the Pauli spin matrices are odd for the
spatial components o, oy and o, while the identity 15 is even.

It’s clear that the lepton irreps will correspond to 1 x 1 blocks on the
diagonal while the quarks will be 3 x 3. With these assumptions, it remains to
distinguish between the two leptons, i.e. electron and neutrino, and between
the two quarks. Until we have a more complete theory that includes the gauge
bosons, we will make an arbitrary choice for these. Labeling the irreps of the
character table with the particles and antiparticles we have two irreps left
over that we assign to dark matter D and its antiparticle D:

O E 302 803 602 604 7 30’},, 8S6 654 60’d
Hand: L L L L L R R R R R
Ev/Od: | E E E | O O | E E E| O O

Size: 1 3 8 6 6 1 3 8 6 6
ot XYZXYZYZX |YXZ XZY||XYZXYZYZX|YXZ XZY

v 1 1 1 1 1 1 1 1 1 1

v 1 1 1 1 1 -1 -1 -1 -1 -1

e 1 1 1 —1 —1 1 1 1 -1 -1

e 1 1 1 -1 -1 -1 -1 -1 1 1

d 3 -1 0 1 -1 3 -1 0 1 -1

d 3 -1 0 1 -1 -3 1 0 -1 1

U 3 -1 0 -1 1 3 -1 0 -1 1

u 3 -1 0 —1 1 -3 1 0 1 -1

D 2 2 -1 0 0 2 2 -1 0 0

D 2 2 -1 0 0 -2 =2 1 0 0

GB.1)

In the above table, the five columns on the left are the left handed or proper
rotations, and the five columns on the right are the right handed or improper
rotations. Each of these five columns are split into three even and two odd
columns.

We can write the operator for electric charge @ in terms of the classes of
the Geo43 group. That is, Q is a diagonal operator in 43[c*] that commutes
with all the irreps and so can be written as a sum

Q = quj-[j (32)
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where g; is the electric charge of the jth particle, and I; is the identity for the
corresponding block on the diagonal. The blocks on the diagonal correspond
to the irreps of the original character table and so each I; can be written as
a sum of products of the group classes. These can be read off of the character
table as shown in the previous section. As always occurs with character tables,
the number of irreps is the same as the number of classes (columns) so there is
only one choice for the electric charge operator when writing it as an element
of 43[c*].

Since particles and anti particles have opposite electric charge, exam-
ining the table shows that the ) operator can be composed only of right
handed elements. The left (right) handed particles will be composed only of
left (right) handed elements so their weak isospin and weak hypercharge will
depend only on left (right) handed group elements. Weak hypercharge for
right handed particles is the same as electric charge which we already know
is made only of right handed elements. This reduces the algebra needed to
define the charges to be a 5x5 transformation instead of 10x10. Writing the
left and right handed elements of the particles in the same columns we have:

L: || E 3Cy 8C3|6Cy 6C,
R: i 30 85|65y 604
Hand: |L/R L/R L/R|L/R L/R
Ev/Od:| E E E | O O Charge
Size: || 1 3 8|6 6| Y/2 + Iz = Q -
v 1 1 1)1 1|3t Lo 0 (3:3)
e 1 1 1 |-1 =-1|35/-1 F/0 -1
d 3. -1 0|1 —-1|¢/5 F/0 3t
u 3. -1 0 |-1 1] ¢/3 /0 2
D 2 2 110 0| 0/0 0/0 0.

When the classes in the above table are expanded to the elements the five
columns will increase to 14+3+ 8+ 646 = 24 and the operators are obtained
by dividing by 24. We will do the algebra without this division and insert it
at the end. Also, in the above table there is a subtlety on the scaling. The
projection operators for the quark identities 13 is three times the amount
shown. This would require us to multiply those rows by three, but these
projection operators apply to three colors of quarks while the experimentally
measured charges are for a single quark so we also need to divide by three.

Right weak isospin is always zero, and charge is the same as right weak
hypercharge leaving us three equations to solve: left and right weak hyper-
charge, and left weak isospin. Left weak hypercharge depends only on the
even left components giving three equations in three unknowns:

1Y/28 +1Y/23¢2 4+ 1Y/28¢3 = —1/2,
3Y/2F —1Y/23¢2 1 0Y/28¢3 = 1/6, (3.4)
2Y/2F +2Y/23¢2 —1Yy/28¢3 = 0.
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Left weak isospin depends only on the odd left components so there are two
equations in two unknowns:

11§92 + 11894 = 1/2,

3.5
1I§9% -1 1§9% = —1/2. (3:5)

Electric charge and right weak hypercharge use all five right components
giving five equations:

1Y/20+1Y/2%h +1Y/2856 4 1Y/20654 4 1Y/20600 = 0,
1Y/20+1Y/237h +1Y)/2896 — 1y 2654 — 1y 2600 = 1,
3Y/20 —1Y/23°h 4 0Y/2856 4 1Y/2054 —1Y/269a = —1/3, (3.6)
3Y/20 —1Y/23°h 4 0Y /2856 —1Y/2054 4 1Y/209a = 2/3,
2Y/20 +2Y/23°h —1Y/2856 1 0Y/2054 y 0 Y/207a = 0.

Solving these linear equations for the operator coefficients defines the opera-
tors as

I; = 0 0 0 0 +12(6Cy), Left
Y/2 = 0 —4(3Cy) —8(8C) 0 0 Left 37)
0 —4(30,) -8(85) 0 +12(604), Right :
Q = 0 —4(30;) -8(8%) 0 +12(604), Right

where the terms have been arranged according to their symmetry and there
left and right elements are labeled to the right side. The coefficients are for
the class; we could have divided by the size of each class and obtained charges
per group element of —4/3 for (3C%) and (30},), —1 for (8C3) and (8Ss), and
+2 for (6C4) and (604).

In mapping the irreps to the particles we had freedom in that we could
independently swap the leptons and swap the quarks. This would change
some of the signs in the —4 and —8 columns as well as swapping (6Cy) for
(6C2) and (6S4) for (604).

Since charge does not commute with handedness, the equation Y/2 +
I3 = @ requires an assumption not obvious in the above: it follows when
one uses ) as the charge of a Dirac bispinor so that the particle portion has
charge Q while the antiparticle portion has charge —@Q.

For low temperatures, a heat bath is typically conceived as an object
that can exchange electric field gauge bosons (i.e. heat photons) with the
system under study. However, when we model such a system with density
matrices the gauge bosons do not appear explicitly; their effect is implicit.
The gauge boson for the weak force is the W=. As the temperature rises above
the amount needed to create W= gauge bosons, it becomes possible for the
heat bath to convert between electrons and neutrinos, and to convert between
up quarks and down quarks. In the temperature flow shown in Figure (1),
we can see that the cooling states clump together into curving arcs. These
occur because certain degrees of freedom cool faster than others. We can
imagine that these correspond to a cascade of symmetry breaking from the
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high temperature limit where all states are approximately identical. Then the
weak symmetry breaking is the coolest of these.

4. Dark Matter Nomenclature

The extra “dark matter” irreps, D and D in the 43[oc#] character table of
Equation (3.1) have zero electric charge, weak hypercharge and weak isospin
and so do not participate in the electric or weak forces. In the Standard
Model, the color force is determined by quark SU(3) internal symmetries.
In this model, the quark SU(3) operators are internal to the quark irreps
in that they correspond to 8 of the 32 = 9 degrees of freedom in the 3x3
quark blocks one obtains when diagonalizing the 43[c*] grouop algebra. The
remaining degree of freedom are the 3 x 3 unit matrices which are defined as
three times the quark irreps of the character table. These quark SU(3) color
degrees of freedom are restricted to the corresponding quark 3 x 3 blocks so
they annihilate between different quarks. Examining the character table we
see that the quarks differ in the signs of their odd elements, (6C5), (6Cy),
(654) and (604) therefore the gluons must be associated with changes in these
elements. But the dark matter irreps are zero in those columns so they cannot
participate in the strong force. Thus the dark matter irreps are indeed dark.

As with the leptons and quarks, dark matter comes in particle D and
antiparticle D form. These differ in sign between the left and right handed
parts of the particles as do the leptons and quarks so we expect that dark
matter will also have mass.

The dark matter irreps have an internal SU(2) symmetry that is oth-
erwise similar to the quark’s internal SU(3) symmetry. By analogy with the
quarks, we will label the dark matter SU(2) internal symmetry as colors. As
the dark matter particles that correspond to quarks, we will call them “dark
quarks” or “duarks”. Since these have only an SU(2) symmetry, there are
only two dark colors needed as a basis for dark color. Where the colors for
quarks are expressive of their participation in electromagnetic photon inter-
actions, the duarks are dark so in contrast to the quark colors of red, green
and blue, we will use dark colors of “doom” and “gloom”. These are also
appropriate for this paper which is being written under the looming threat
of the Covid19 pandemic.

We assume that there is a force boson similar to the gluon between
them, call it the “duon”, that will follow an SU(2) triplet symmetry. Where
the eight gluons are often described using a basis of the eight Gell-Mann
matrices, the three duons can use the three Pauli matrices to define the dark
matter triplet:

(dg + gd)/ V2,
—i(dg - gd)/ V2. (4.1)
(dd - gg)/v2

where d and g stand for the doom and gloom dark colors.
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A quark and an antiquark can combine to form a meson; we expect
that a duark and an antiduark similarly combine to form a “deson”. While
the mesons decay by electroweak processes, the desons do not participate so
we may suppose that they are stable. Similarly, three quarks can combine
to form a baryon so two duarks of different dark colors, combine to form a
“daryon”.

5. Conclusion

We’ve shown that the relationship between particle and antiparticle in the
Dirac equation, i.e. changing the signs of the Pauli spin matrices so as to
convert them from being left handed to right handed, can be generalized by
right angle rotations and the inversion, that permute the Pauli spin matrices
and change their signs. The resulting generalized Pauli spin matrices can be
used to define a set of Weyl equations that are coupled. Uncoupling these
Weyl equations by algebraic manipulation leads to a set of uncoupled Weyl
equations that have the symmetry of the Standard Model fermions.

The method shown here is incomplete in that it does not include a
description of the gauge bosons or the mass interaction or Higgs boson. The
strong force corresponds to changes to the internal symmetry of the quarks.
In this model, these internal symmetries are exact; they are the result of
the mathematical freedom to choose the off diagonal elements when block
diagonalizing the group algebra. This suggests that the gluons correspond
to changes in the quarks that preserve energy exactly. Hence the gluons are
massless.

The weak force corresponds to sign changes in the left handed odd
elements of the group algebra, i.e. (6C3) and (6Cy). These changes do not
correspond to a Lie algebra type symmetry. That is, with the strong force, we
can change the color of a quark by infinitesimal changes in the group algebra.
But there are no infinitesimal stable particle states between an up quark and
a down quark. On the other hand, the fact that the mass of the weak gauge
bosons is so small compared to the Planck mass that we can conclude that
sign changes to the group algebra has only very small changes to the energy
of a particle.

The mass interaction converts between left and right handed particles.
These differ by the signs of the right handed group elements. This implies
that the Higgs mass, like the W* mass, is very small compared to the Planck
mass as the energy of the particles differ little on change of sign. And as with
the weak force, the conversion between left and right handed particles is not
an infinitesimal or Lie algebra conversion.

The photon does not convert between particles in this model. It might
convert an electron from spin-up to spin-down but these are related by a Lie
algebra (in the Pauli spin algebra part of the group algebra). The fact that
the photon and gluon are both massless appears to be related to the fact that
they can modify particles by an infinitesimal Lie algebra type transformation
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and these transformations are exact. For the strong force the transformation
is exact as it is due to an arbitrary choice of representation of the off diagonal
elements when block diagonalizing the coupled Weyl equations. The photon
transformation is exact as space has no preferred directions and the Pauli
spin matrices are an exact SU(2) symmetry.

Dark matter appears to experience only the mass interaction between
left and right handed particles, and the proposed dark color interaction that
will change a particle’s dark color in their internal SU(2) symmetry. As with
the quark’s internal SU(3) symmetry, the symmetry is exact so we expect the
dark quark gauge boson, the duon, to be massless.
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