Periodic sequences of a certain kind of progressions

Y.Mieno

Abstract. A few progressions and their periodic sequences.

Keywords. periodic sequence, progression, prime nubmer, Fermat's little theorem

0. Introduction.

We define some progressions , and study their periodic sequences to find the rule related to them.

1. Periodicity of a progression(1).

Now we define a progression as follows.

Let k and n be also a positive integer more than 1, then

$$a_{n,k} = 1$$
 (when n = 1)
= $(a_{n-1,k}+n)^{k-1}$ (mod k) (when n > 1)

One by one we survey the shortest periods of the progressions of this kind, for some cases of k.

(e.q.) When k=2, then $\{a_{n,2}\}=\{1,1,0,0,1,1,0,0,1,1,\ldots\}$. This progression seems periodic and its shortest period is assumed 4. When k=3, then $\{a_{n,3}\}=\{1,0,0,1,0,0,1,0,0,1,\ldots\}$. This progression seems periodic and its shortest period is assumed 3. When k=4, then $\{a_{n,4}\}=\{1,3,0,0,1,3,0,0,1,3,0,\ldots\}$. This progression seems periodic and its shortest period is assumed 4. Periodicity of progressions is easily found for now (See Table 1).

Table 1: (A.S.P. means the assumed shortest period.)

k /	n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	A.S.P.
2		1	1	0	0	1	1	0	0	1	1	0	0	1	1	4
3		1	0	0	1	0	0	1	0	0	1	0	0	1	0	3
4		1	3	0	0	1	3	0	0	1	3	0	0	1	3	4
5		1	1	1	0	0	1	1	1	0	0	1	1	1	0	5
6		1	3	0	4	3	3	4	0	3	1	0	0	6	1	12
7		1	1	1	1	1	0	0	1	1	1	1	1	0	0	7
8		1	3	0	0	5	3	0	0	1	3	0	0	5	3	8
9		1	0	0	7	0	0	4	0	0	1	0	0	7	0	9

Theorem 1

Let l be a positive integer. If $a_{n,k}=a_{n+l,k}$ and k|l (i.e. l is divisible by k.) for the above-mentioned progression $\{a_{n,k}\}$, then $\{a_{n,k}\}$ has a period equal to l.

Proof.

We will prove deductively, that if $a_{n+m,k}=a_{n+m+l,k}$ then $a_{n+m+1,k}=a_{n+m+l+1,k}$ where m is a non-negative integer.

When m=0 evidently $a_{n,k}=a_{n+l,k}$.

Furthermore if $a_{n+m,k}=a_{n+m+l,k}$ then $a_{n+m+1,k}\equiv (a_{n+m,k}+n+m+1)^{k-1} \pmod{k} \equiv (a_{n+m+l,k}+n+m+l+1)^{k-1} \pmod{k} = a_{n+m+l+1,k}$, for $l\equiv 0 \pmod{k}$.

This completes Theorem 1.

Theorem 2

Suppose k is a prime number larger than 2.

If $n\equiv 0$ or $n\equiv k-1 \pmod{k}$ then $a_{n,k}=0$, otherwise $a_{n,k}=1$.

Proof.

When k=3 then $a_{1,3}=1$, $a_{2,3}=(a_{1,3}+2)^2 \pmod{3}=0$, $a_{3,3}=(a_{2,3}+3)^2 \pmod{3}=9 \pmod{3}=0$, $a_{4,3}=(a_{3,3}+4)^2 \pmod{3}=1 \pmod{3}=1$.

Therefore $a_{1,3}=1=a_{4,3}$, so 3 is a period of this progression.

This completes Theorem 2 for k=3.

When k is larger than 3 then, applying Fermat's little theorem[1], $a_{1,k}=1$, $a_{2,k}=(a_{1,k}+2)^{k-1} \pmod{k}=3^{k-1} \pmod{k}=1$, $a_{3,k}=(a_{2,k}+3)^{k-1} \pmod{k}=4^{k-1} \pmod{k}=1$, ..., $a_{k-1,k}=(a_{k-2,k}+k-1)^2 \pmod{k}=0 \pmod{k}=0$, ..., $a_{k,k}=(a_{k-1,k}+k)^2 \pmod{k}=0 \pmod{k}=0$.

Also $a_{k+1,k}=(a_{k,k}+k+1)^2 \pmod k=1 \pmod k=1$, so k is a period of this progression.

This completes Theorem 2 for k is larger than 3.

2. Periodicity of a progression(2).

Now we define another progression as follows.

Let k and n be also a positive integer more than 1, then

$$b_{n,k} = 1$$
 (when n = 1)
= $(b_{n-1,k}-n)^{k-1}$ (mod k) (when n > 1)

Periodicity of progressions is easily found for now (See Table 2).

Table 2: (A.S.P. means the assumed shortest period.)

k/n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	A.S.P.
2	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	4
3	1	1	1	0	1	1	0	1	1	0	1	1	0	1	1	3(*)
4	1	3	0	0	3	1	0	0	3	1	0	0	3	1	0	4(*)
5	1	1	1	1	1	0	1	1	1	1	0	1	1	1	1	5(*)
6	1	5	2	4	5	5	4	2	5	1	2	2	1	5	2	12
7	1	1	1	1	1	1	1	0	1	1	1	1	1	1	0	7(*)

Theorem 3

Let l be a positive integer. If $b_{n,k}=b_{n+l,k}$ and k|l (i.e. l is divisible by k.) for the above-mentioned progression $\{b_{n,k}\}$, then $\{b_{n,k}\}$ has a period equal to l.

Proof.

We will prove deductively, that if $b_{n+m,k}=b_{n+m+l,k}$ then $b_{n+m+1,k}=b_{n+m+l+1,k}$ where m is a non-negative integer.

When m=0 evidently $b_{n,k}=b_{n+l,k}$.

Furthermore if $b_{n+m,k} = b_{n+m+l,k}$ then $b_{n+m+1,k} \equiv (b_{n+m,k} - n - m - 1)^{k-1} \pmod{k} \equiv (b_{n+m+l,k} - n - m - l + 1)^{k-1} \pmod{k} = b_{n+m+l+1,k}$, for $l \equiv 0 \pmod{k}$.

This completes Theorem 3 similarly as Theorem 1.

${\it references}$

[1] Patrick St-Amant, International Journal of Algebra, Vol. 4, 2010, no. 17-20, 959-994