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Using Special Relativity (SR) as a starting point, then noting a few empirical 4-Vector facts,
one can instead *derive* the Principles that are normally considered to be
the Axioms of Quantum Mechanics (QM). Hence, [SR—QM]

Since many of the QM Axioms are rather obscure, this seems a far more logical and
understandable paradigm than QM as a separate theory from SR, and sheds light on the
origin and meaning of the QM Principles. For instance, the properties of SR <Events>/can
be “quantized by the Metric”, while SpaceTime & the Metric are not themselves “quantized”,
in agreement with all known experiments and observations to-date.

The SRQM or [SR—QM] Interpretation of Quantum Mechanics
A Tensor Study of Physical 4-Vectors

or. Why General Relativity (GR) is *NOT* wrong
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SR — QM 4-Vector SRQM Interpretation

+  Special Relativity — Quantum Mechanics
24, The SRQM Interpretation of Quantum Mechanics__

John B. Wilson

A Tensor Study of Physical 4-Vectors ciReam@sol com

of Physical 4-Vectors http: //smrealm org/SRQM pdf

4-Vectors = 4D (1,0)-Tensors are a fantastic language/tool for describing the physics of both relativistic and quantum phenomena.
They easily show many interesting properties and relations of our Universe, and do so in a simple and concise mathematical way.
Due to their tensorial nature, these 4-Vectors are automatically coordinate-frame invariant, and can be used
to generate *ALL* of the physical Lorentz Scalar (0,0)-Tensors and higher-rank Tensors of Special Relativity (SR).
Let me repeat: You can mathematically build *ALL* the SR Lorentz Scalars and larger SR Tensors from empirical SR 4-Vectors.

SR 4-Vectors are likewise easily shown to be related to the standard vectors {3-vectors = 3D (1,0)-tensors} that are used in
Newtonian classical mechanics (CM), Maxwellian classical electromagnetism (EM), and standard quantum theory (QM)

Each SR 4-Vector also fundamentally connects a special relativistically-related to a
ex. time (t) & 3-position  (r)—(x, v, 7) as SR 4-Position R = (ct,r) @
ex. energy (£) & 3-momentum (p)—(p:,0%,p’) as SR 4-Momentum P = (E/c,p) @ ="" >

Why 4-Vectors and Tensors as opposed to some of the more abstract mathematical approaches to Quantum Mechanics?
Because the components of 4-Vectors and 4-Tensors are physical properties that can actually be empirically measured.
Experiment is the ultimate arbiter of which theories actually correspond to reality. If your quantum logics and
string theories give no testable/measurable predictions, then they are basically useless for real, actual, empirical physics.

In this treatise, | will first extensively demonstrate how 4-Vectors are used in the context of Special Relativity (SR),
and then show that their use in Relativistic Quantum Mechanics (RQM) is really not fundamentally different.
Quantum Principles, without need of QM Axioms, then emerge in a natural and elegant way.

| also introduce the SRQM Diagramming Method: an instructive, graphical charting-method, which visually shows how
the SRQM 4-Vectors, Lorentz 4-Scalars, and higher rank 4-Tensors are all related to each other.
This symbolic representation clarifies a lot of physics and is a great tool for teaching and understanding.

SR 4-Tensor

SR 4-Vector
2,0)-Tensor T+ 1,0)-T V=V SR 4-Scalar - :
{, 1()-TgnsorT”v or T, (SRZI CoVector OneF(Zm‘l? SRQM: A treatise of SR—QM by John B. Wilson
o 5 orentz Scala
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SR — QM A S R Q M 4-Vector SRQM Interpre;?tiQo'\;ll
A; Some Physics:Mathematics
s Abbreviations & Notation

GR = General Relativity t, = 1 = Proper Time (Invariant Rest Time) =t/y : «Time Dilation— t=1t

SR = Special Relativity L, = Proper Length (Invariant Rest Length) = yL : —Length Contraction— L = Lo/y

CM = Classical Mechanics B = Relativistic Beta = v/c = u/c = {0..1}A ; v = u = 3-velocity = {0..c}A; v=|v| = u = |u]
EM = ElectroMagnetism/ElectroMagnetics vy = Relativistic Gamma = y, = 1/\[1-B-B] = 1/N[1-|B|]] = 1/N[1-]u/c|?] = dt/dt = {1..}

QM = Quantum Mechanics D = Relativistic Doppler = 1/[y(1-|B|cos[O])]

RQM = RelatiViStiC Quantum MeChaniCS /\p’v = LorentZ (SpaceTime) TranSform: prime (‘) specifies alt. reference frame, {boosts, rotations, reflections, identity}
NRQM = Non-Relativistic Quantum Mechanics = (standard QM) 1, = 3D Identity Matrix = Diag[1,1,1] ; I = 4D ldentity Matrix = Diag[1,1,1,1]

QFT = Quantum Field Theory = (mUItlple partiCle QM) 6“ = 8ij = 6ij = 1(3) = {'] if i:j, else 0} = D|ag[1 ,1 ’1] 3D Kronecker delta

QED = Quantum ElectroDynamics = QFT for (e")’'s & photons 8= 8%= 8,,= Iy = {1 if u=v, else 0} = Diag[1,1,1,1] 4D Kronecker Delta nique rank-2 isotropic tensor)
RWE/QWE = Relativistic/Quantum Wave Equation . g = {even:+1, odd:-1, else:0} 3D Levi-Civita anti-symmetric permutation nique rank-3 isotropic tensor)
KG = Klein-Gordon (Relativistic Quantum) Equation/Relation g™, = {even:+1, odd:-1, else:0} 4D Levi-Civita Anti-symmetric Permutation (one of a few...)

PDE = Partial Differential Equatlon {other upper:lower index combinations possible for Levi-Civita symbol, but always anti-symmetric}

MCRF = Momentarily Co-Moving Reference:Rest Frame N —nw—Diagl1, -1 lreat « V" + H™ = 1 Minkowski “SR:Flat SpaceTime” Metric

EoS = Equation of State (Scalar Invariant) = w = p, / Peo b= SH o= )i o = Al , ; ; ;
= : i _ n" = &% = Diag[1, 5] = I4) = " f@sotueincry (1,1)-Tensor Identity Mixed-Metric
P = 4-TotalMomentum = (H/c,pr) = X [P ] = Z[All &-Momenta]  yyu = qu= Temporal “(V)ertical” Projection Tensor, also \V*, and V/,, =
H = The Hamiltonian = y(PrU) (energy” used in advance cm, (ke + PE) for v <<} H'™ = 1 - THTY = Spatial “(H)orizontal” Projection Tensor, also H", and H,, X‘ He
L = The Lagrangian = -(PtU)/y  energy” used in advanced CM, (KE - PE) for [v] << ¢} Light-Cone

V =V = 3-gradient (\V)—ectanguiar basis) (9,9,,9,) = (%/ox, 2y, 2z) Tensor-Index & 4-Vector Notation:

o = dloR, = @ = dr = 4-Gradient (¢") = (9,/c,-V), a (1,0)-Tensor A= a=(a)) = (a',a’,a’)= (a): 3-vector [Latin index {1..3}, space-only]
9, = 9/6R" = Gradient One-Form (3,) = (3,/c,V), a (0,1)-Tensor ~ A*=A=(a’) = (ao,a%a2,aa)v= (a",a): 4-Vector [Greek index {0..3}, TimeSpace]
S = Sadion = The 4-Scalar Action ( 4-TotalMomentum Py = -9[S] ) A'B, = AB’=AB = A'n,B" Einstein Sum : Dot Product : Inner Product

® = Pprase = The 4-Scalar Phase ( 4-TotalWaveVector Kr = -3[®] ) A:B: = ’63@“3_: 'I'[tuenao_r Product : Outer Product - :
T = Sum of Range = multi (+) ; T = Product of Range = multi (x) A'B' - A'B" = A*B" = A*B: Wedge Product : Exterior Product : Anti-Symmetric Product

A = Difference : d = Differential : @ = Partial {Calculus functions} A'B'-A"B"=0": (2,0)-Zero Tensor — : —
[v| << c: speed (v = |v|) approx.: much Iess{than LightSpeed (g) A'B" - B'A" = [A",B'] = [A,B]: Commutation Temporal object: blue, Spatial object: red
- C: - mu : nit A'BY - BFAY = 2727 Mixed TimeSpace object: purple
(1+X) ~ (1 + nx + O[X2]), for |X| << 1: Classical limit approx. e The mnemonic being blue and red mixed make purple
SRQM = The [SR—QM] Interpretation of Quantum Mechanics, by John B. Wilson SpaceTime: | often write it as “TimeSpace”
actually [GR—>SR—RQM—QM—(CM & EM)] just to match this ordering convention of
4-Vector (temporal, spatial) components
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SR — QM 4-Vector SRQM Interpretation

AA Special Relativity —> Quantum Mechanics of M
— The SRQM Interpretation: Links

A Tensor Study SciRealm@aol.com
of Physical 4-Vectors http://scirealm.org/SRQM.pdf

See also:

nttp://scirealm.org/SRQM.html (it discussion)
nttp://scirealm.org/SRQM-RoadMap.html (main sram website)
nttp://scirealm.org/4Vectors.html (-vector study)
nttp://scirealm.org/SRQM-Tensors.html rensor & 4-vector Calculator)
nttp://scirealm.org/SciCalculator.html (complex-capable RPN Calculator)

or Google “SRQM”

http://SCireaIm.Org/S RQM pdf (this document: most current ver. at SciRealm.org)

SR 4-Tensor SR 4-Vector T
2,0)-T T 1,0)-Te W=V = (V0 -Scalar : .
(1,1()-Tgnsec?rS$”rv or T, 'SR 4-Covector:OneForm: SRQM: A treatise of SR—QM by John B. Wilson
. . orentz Scala

,1)-Tensor V, = (vo,-v
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SR — QM 4-Vector SRQM Interpretation

SRQM Study: Physical / Mathematical Tensors -
(+)) 4D Tensor Types: 4-Scalar, 4-Vector, 4-Tensor

SciRealm.org

s, GOMpPonent Types: : , e

http://scirealm.org/SRQM.pdf

of Physical 4-Vectors

: = _ : SR:Minkowski Metric
Matrix Format SRQM Diagram Format Each 4D index = {0,1..3} = Tensor Dim 4 3R] = R = N = V¥ + HY
Temporal + © Spatial Diag[1,-1,-1,-1] = Diag[1,-1;3)] = Dia 1 -0
SR 4—Scalar_S - S SpaceTime Dimensions g{En Carte3|an fo]rm} Partgh[a Phyé?():l Con -- 71
a “number’: magnitude SR 4-Scalar SRQM Diagram Elll_gse. M = 100 : 0.’ = 5,"
S (0,0)-Tensor S ofenasS 4-Scalars, 0 index = rank 0 : pu ‘N

4*0=0 in di (m,n)-Tensor has:
Lorentz Scalar 40 — (1 ) Zo'll'n(:ec:;gonfr?tram (m) # upper-indices ﬁ A 4-G radient ap
(n) # lower-indices a = 3/3Rp = (3t /C,'V)

SR 4-Vector V¥
an “arrow”: magnitude and 1 direction SR 4-Vector SRQM Diagram Rectangle: SR 4-CoVector = “Dual” 4-Vector

— 5 3 4D (1,0)-Tensor V 4-Vectors, 1 index = rank 1 4D (0,1)-Tensor aka. One-Form
V. IRV W= (V) = (V) = (V0,v) 271_? 4+°‘)’T3ri;%df,?;ﬁg Cy = NwC’ = (cu) = (Co, C) — (C, Cx, Cy, C2)
— (VLV5 VY, VF) it 3 = (c,-c) = (c°,-¢') — (c',-¢*,-C",~C?)

4-Position R*

R = (ctr) =

SpaceTime
oR=0,R"=4
Dimension

SR 4-Tensor T" = Trow:column

SR 4-Tensor

a “matrix or dyad”: magnitude and 2 directions SR SR SR S )
4D (2,0)-Tensor T : : : . |
S 02 0 e SRQM Diagram Octagon: Mixed 4-Tensor § Mixed 4-Tensor § Lowered 4-Tensor -
T T T T TV = 4-Tensors, 2 index = rank 2

4D (1,1)-Tensor§4D (1,1)-Tensor
Ty =Ny T TH =N TH

4D (0,2)-Tensor

_ Tensor Property:
T = NN T°°

[ T00 TOk] 4*2 = 8 corners in diagram

TO T | T? | TR [T° T+] 4% = (1+6+9) = 16 components

T20 T21 T22 T23

Rank = # of indices

— . 0 - 0 {0 = a Scalar}
T30 | T3 T2 T38 [Ttt T TV th] [ TO(:)aTOK ] [ T_ O,T_k ] [ Too ,TOk ] {1 =a Vecto_r} .
o for 2-index tensor components: [T?,T] [ To,Tk] [ Tio,Tik] gc— a Dyad:Matrix}

t A .
Temporal region: [ 15 5 1] 6 Anti-Symmetric (Skew)

[ +TOO, _TOk]

X ; Yt TYX TYY TVZ +10 Symmetric - 3 i ion =
Spatial region: ULl ! [+T%,+T%] B [+T% -] “TH]
Mixed TimeSpace region: purplc \MMMKMMMEY 16 General components [ -T°,-T*] [+T°, -T%] [-TP°, +T"] s
The mnemonic being and mixed make purple {4D:SR Tensors=4}

SR 4-Tensor SR 4-Vector . . « ] » V] — Wo— TH —
(2,0)-Tensor T (1.0)-Tensor V¥ = V = (V°.v) SR 4-Scalar Technically, a{{ these ob,{ects are “SR 4-Tensors’, but we usually reserve Trace[T"] =N T" =T =T
the name “4-Tensor” for objects with 2 (or more) indices, and use V:V = Vi, VY = [(v°)2 -vv] = (VO )2
uv (]

K M 0,0)-Tensor S or S, . . ) .
(1,1)-Tensor T, or T," § SR 4-CoVector:OneForm ( Z)rentz Scala the “(m,n)-Tensor” notation to specify all the objects more precisely. = Lorentz Scalar
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CM 3-Vectors & SR 4-Vectors
*2 Dot Product, Lorentz Scalar Product __
wese . Einstein Summation Convention .,..sness

P 3D Classical:Euclidean Metric
VIr] = Vi[r] = Kronecker Delta 8 = § f = 8% = &

In Classical Mechanics (CM), the magnitude of a 3-vector is the length of a 3-displacement Ar = (r, - r ).
Examine 3-positionr, — r = ( ), which is a 3-displacement with the base at the origin r,— 0= )
The 3D Dot Product of r: { r'r = risjkr" =r r<=rl L= (XX +y'y +277) = (x* + y? + z%) = (r)* } is the Pythagorean Theorem.
It uses the Euclidean Metric Ejk which is equivalent to the 3D Kronecker Delta Sjk = Diag[ ] =1g = Ejk'

The 3D magnitude? is r-r. The |magnitude| is V[r-r] = V[r?] = |r|. 3D magnitudes are always positive(+).

scalar 1-time
S0 =0 g '

Galilean Invariant

Svector | 3-pOSItioN I (r.p = rig r* = (x)+(y)>+(z)? = (r)’ Ver=Vigurt=Vir<=3
Sren s 0o tyg) length = I+ laly]+ll2]) = (1+1+1)

- Dimension

= <time>

The magnitude of a 4-Vector is very similar to the magnitude of a 3-vector, but there are some interesting differences.

One uses the Lorentz Scalar Product, a 4D Dot Product, which includes a time component, and is based on the 4D SR:Minkowski Metric
SR:Minkowski Metric Tensor. | typically use the “Particle Physics” convention of the Minkowski Metric (+,-,-,-) ﬁ 3[R] = ap[RV] = npv - = VW + HY
n, — Diag[+1, ] {Cartesian form}, with the other entries zero. Note the difference in signs. Di 1.-1.-1-11 = Di 1“" - Di 1 -5k
It is only equivalent to the Kronecker Delta in mixed (1,1)-Tensor form. The 4D Kronecker Delta Sw = Diag[1, ] = 1a). 'ag[ EI; C,a'rtes’i;n f]or;} ”Piﬁige[ Pt:;inE:?;)’]CvaenltSr?[ ;=0 ]
AWA = AA= A A= AA=AA =5 Jaal=(aa’+aal +aa’ +a’) =% [a'a] {Nu} = 14N} : n," = 8,' = Diag[1,1,1,1]
= (a’a’- a'a' - a’a’- a%a’) = (aa’ - a-a) = (a%)? 5
using the Einstein Summation Convention where upper-lower paired indices are summed over, Lorentz Invariant Tr[n“v]=n0°+r]11+r]22+r|33=1 +1+1+1=4
RR=Rn R’ =(ct)® - rr = (c1)’

R = 2_ e 2 _ (y2 2 2\ — 2 = 2 -
]% rR:t-P(ngti 0; R =((Ct) )(X Ty +ZY) = (o) = (cr) 4-\/ector 4-POSItI0n R Interval ct “
4D magnitude? can be: =R'= (r“) = (r°,r’) = (ct,r) — (ct,x,y,z Time (t) is NOT an SR invariant [_‘,
negative(-), zero:null(0), positive(+) = <Event> = <time>&<location> scalar, just a 4-Vector component. > 4L Space :

ProperTime (z) is a 4D invariant. IR p » IR /
The 4-Vector version has the Pythagorean element in the spatial components, the temporal component is of opposite sign. P 3 3 P
This gives a “causality condition”, with SpaceTime intervals (in the [+,-,-,-] SR:Minkowski Metric) that can be: ¢ 0 ¢ d
(cAt)? (+) {causal = 1D temporally-ordered, spatially relative} ° X 5 °
AR-AR = [(cAt)? - Ar-Ar] = (0)  Light-like:Null:Photonic (0) {causal & topological, maximum signal speed (|Ar/At|=c)} N
c U

(—) {temporally relative, topological = 3D spatially-ordered}

3-Tensor 3D
(2,0)-Tensor Tk

SR 4-Tensor SR 4-Vector

Trace[T"] =n, " =TH, =T
V-V = Vi VY = [(VO)? - vev] = (V)
= Lorentz Scalar

SR 4-Scalar

3-vector
(0,0)-Tensor S or S, )

not Lorentz 3D (0,0)-Tensor
Invariant S

(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v)
(1,1)-Tensor T*, or T,' § SR 4-CoVector: OneForm

Classical (scalar
3D Galilean

(1,1)-Tensor T or Tk

Invariant
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SR —- QM

4-Vector SRQM Interpretation

SRQM Study: SR Minkowski SpaceTime of QM

(+)) 2z

A Tensor Study
of Physical 4-Vectors

4-Vectors are tensorial entities of Minkowski SpaceTime which maintain covariance for inertial observers, meaning
that they may have different relativistic components for different observers, but describe the same physical object.
(like viewing a sculpture from different angles — snapshot pictures look different, but it's actually the same object)
There are also 4-CoVectors, aka. One-Forms=4D (0,1)-Tensors and dual to 4-Vectors=4D (1,0)-Tensors

Both GR and SR use a metric tensor ( g"* ) to describe measurements in SpaceTime (TimeSpace).

SR uses the “flat” Minkowski Metric g* — n™' = n,— Diag[1,-1;] = Diag[1,

] = Diag[1,

] {Cartesian form}, which is

the {curvature ~ 0 limit = low-mass limit} of the GR metric g"*. SR is valid everywhere except extreme gravity, like near BH’s.

4-Vectors = 4D (1,0)-Tensors
A=A'=n"A = (") = (a"a) = (a,a) = (&, )— (@,
B=B"=n"B,=(b") = (b°b) = (b°b) = (1", )= ()

4-CoVectors = 4D (0,1)-Tensors

A =0, A= (@)= (a,2)=(a,2) = (@, ) = (a,
= (a,2) = (%) = (@, )~ (@,

B,=n,B'=(b)=(b,b)=(b,b)= (b, ) — (b,
= (b,b) = (b°,-b) = (b, ) (b,

A'B'=AB= A“r]wBV =AB'= A"Bp =z JJab1=% _ .

Index Raising & Lowering with
SR:Minkowski Metric Tensor
n"orn  (both = Diag[1,-Is)])

This Metric is also used with other

SR 4-Tensors to create raised,

lowered, and mixed tensors

ex. Tuv = r]“aT ,

n"n,=n’, =8 =4=Trn"]

[a'b ] = (a°b° - a-b) = (@b’ - a'b’ - a’b?® - a’b?) = (a’b’)

using the Einstein Summation Convention where upper-lower-paired indices are summed over

Proof of invariance ( using Tensor gymnastics and the properties of the Minkowski Metric n & Lorentz Transforms A ):

A"B' = A¥n,,B =

(AoA) Nue(A'6BP) = (Nanuw\'s) ABP = (Aval\'s) ABF = (Noa/\*v\'s) A"BP = (Napd’s) A'BF = (as) A'BF =

A’(nes)B° = A-B

Lorentz Scalar Product of 4-Vectors — Lorentz Invariant Scalar = Same measured value for all inertial observers

Lorentz Invariant Scalars are also tensorial entities: (0,0)-Tensors, which have the same value in all reference-frames.

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector
(1,0)-Tensor V¥ = V = (V°,v)

(1,1)-Tensor T*, or T,' il SR 4-CoVector:OneForm

SR 4-Scalar
(0,0)-Tensor S or S,

SR:Minkowski Metric [ n ] Operations
Invariant Lorentz Scalar Product &
Tensor Index Raising & Lowering

SciRealm.org

John B. Wilson
SciRealm@aol.com
http://scirealm.org/SRQM.pdf

Index Raising
4-\ector
4D (1,0)-Tensor

4-CoVector
4D (0,1)-Tensor

A:A“:(a“):nUVAV

4-Vector
A=A"'=(a’a)

Invariant Lorentz
Scalar Product
(0,0)-Tensor
A-B=AB'=A"n,B'=A"'B,=A’-B’

A=(an)=nuA"
=(a0’ai)=(+ao"a)

Index Lowering

4-Vector

B=B'=(b",

=(a’b’ - a-b)=(a’%b"%)

4-\ector 4-\ector
A=A"=A\" A"=(a” a’) B B’=B"=A\"B'=(b",b’)

MAY J={-..+}

W =Lorentz Transform Type

Einstein & Lorentz “saw” the physics of SR,

Minkowski & Poincaré “saw” the mathematics of SR.
We are indebted to all of them for the simplicity, beauty,
and power of how SR and 4-vectors work...

Trace[T"] = nuT" =T =T
V-V =V, VY = [(V)? - vev] = (Vo)
= Lorentz Scalar
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SR — QM 4-Vector SRQM Interpretation

() /! Special Relativity — Quantum Mechanics |
N SRQM Diagramming Method e

ATensqr Study SciRealm@aol.com
of Physical 4-Vectors http://scirealm.org/SRQM.pdf

The SRQM Diagramming Method shows the properties and relationships of various SRQM Diagramming Method
physical objects in a graphical way. This “flowchart” method aids understanding. ﬁ

u \% uv
Representation: 4-Scalars bycellipses; 4-Vectors by rectangles; 4-Tensors by octagons! D 31[R‘} 81 [lj ] [r)] 1.-5
Physical/mathematical equations and descriptions inside each shape/object. —Diag| 1=Diag[1,-5"]
Sometimes there will be additional clarifying descriptions around a shape/object. MmKOWSk' Metric o—e
4-Tensor
NPVREIEIEN  4-Displacement

AR=(cAt,Ar)
dR=(cdt.d

Relationships: Lorentz Scalar Products or tensor compositions of different 4-Vectors are on RaGESlET
simple lines(—) between related 4-Vectors. Lorentz Scalar Products of a single 4-Vector, or 0= (8 Ic,-V)
Invariants of Tensors, are next to that object and often highlighted in a different color. =0/0R,

4-Vector
4D (1,0)-Tensor

r
4-Position R"
4-Scalar R=(ct,r)=<Event>
4D (0,0)-Tensor z

Flow: Objects that are some function of a Lorentz 4-Scalar with another 4-Vector or
4-Tensor are on lines with arrows(—) indicating the direction of flow. (ex. multiplication) &

aceTime
Properties: Some objects will also have a symbol representing its properties nearby, and E¥I=QIEFI=U Y o %_3 Ru 4 U-ar..]
sometimes there will be color highlighting within the object to emphasize temporal-spatial Transform : vd/dt[..]
properties. | will use & — . @ = d/d[
Alternate ways of writing 4-Vector expressions in physics: Bgﬁgt—:—\"':e
(A-B) is a 4-Vector style, which uses vector-notation (ex. inner product "dot=-" or exterior
product "wedge=A"), and is typically more compact, always using bold UPPERCASE to @®----Pp
represent the 4-Vector, ex. (A-B) = (A" n. B"), and bold lowercase to represent 3-vectors, Einstein’s 4-Velocity U*
ex. (a-b) = (a'dxb*). Most 3-vector rules have analogues in 4-Vector mathematics. ‘ ----- | 2 E = mc? = ymoc? = yE, U=y(c,u)

& dR/dt

Rest 4-Scalar

(A"n.B") is a Ricci Calculus style, which uses tensor-index-notation and is useful for more
complicated expressions, especially to clarify those expressions involving tensors with
more than one index, such as the Faraday EM Tensor F* = (¢"A" - 8'A") = (2 * A)

SR 4-Tensor
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v)
(1,1)-Tensor T*, or T,' § SR 4-CoVector: OneForm

SR 4-Vector

SR 4-Scalar Trace[T"] = nuwT" =TH =T
(0,0)-Tensor S or S, Relativistic Gammay = 1\[1-B-B 1, B = ulc V-V =V, VY = [(V)? - vev] = (Vo)
orentz Scala = Lorentz Scalar
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SR — QM 4-\ector SRQM Interpretation

. Special Relativity — Quantum Mechanics

SciRealm.org

LY SRQM Tensor Invariants |
s INherent SpaceTime Properties  ....iessss

One of the extremely important properties of Tensor Mathematics is the fact that there are numerous SRQM Diagramming Method
ways to generate Tensor Invariants. These Invariants lead to Physical Properties that are fundamental ﬁ
in our Universe. They are totally independent of the coordinate systems used to measure them.

Trace Tensor Invariant
SpaceTime Dimension

Thus, they represent symmetry properties that are inherent in the fabric of SpaceTime (TimeSpace). J[R]=0"[R"]=n" _ from Tr[..] of Minkowski
See the Cayley-Hamilton Theorem, esp. for the Anti-Symmetric Tensor Products. —Diag[1,-1,-1,-1]=Diag[1,-5"]

A Minkowski Metric
Trace Tensor Invariant: Tr[T"] = n,T" = T", = T, = T, = X[ EigenValues A, ] for T#, o—e

4-Tensor
4-Gradient ¢" ZDIPROREIEE  4-Displacement

for 4D anti-symmetric a=(at /C,‘V) AR=(CAt,Ar)
_ 4-Vector dR=(cdt d
Inner Product Tensor Invariant: IP[T*] = T*T,, = Tp : IP[T¥] = LSP[T*, TY] = T"nuT" = T*T, = T-T =0/oR, PRI

Determinant Tensor Invariant: Det[T"'] = I1[ EigenValues A, ] for T, — (Pfaffian[T*'])?

=(c r
4-Position R¥
4-Scalar =(ct,r)=<Event>

4-Divergence Tensor Invariant: 4-Div[T"] = 9,T" = 9T*/X" = &-T : 4-Div[T*] = 3, T = aT"/oX" = S &
4D (0,0)-Tensor

Lorentz Scalar Product Tensor Invariant: LSP[T",S"] = T"n,,S' = T"S, = T,S' = T-S = t%s%-t:s = 19,8, Lorentz i o E
Ual..]

_ A,[R"]=0R"/o0R=NA",
Phase Space Tensor Invariant: PS[T"] = ( d® /1% ) = ( dt' dt? dt* / t° ) for (T-T) = constant

Transform 7 yd/dt[..]
The Ratio of 4-Vector Magnitudes (Ratio of Rest Value 4-Scalars): T-T / S-S = (% / s%)? ‘mwgggffﬁygﬁam ]—v. 7 d/dt([..
Determinant Inner Product SpaceTime Dimension ProperTime
Tensor EigenValues A, = { A1, A2, As, As }: coud also be indexed 0.3 Ter}sor Invariant ~ Tensor I_nvarlant from 4-Divergence of Derivative
Affine Transform  SpaceTime 4-Position
. ] . (Anti-)Unitary from Dimemsion from @-- 5
The various Anti-Symmetric Tensor Products, etc.: Det[..] of Lorentz  IPJ..] of Lorentz . . "
°, = Trace = 3[ EigenValues A, ] for (1,1)-Tensors Einstein’s 4-Velocity U
T%T%; = Asymm Bi-Product — Inner Product Q- > B =me U=y(c,u)

T%aT?T",; = Asymm Tri-Product — ?Name? & dR/dt
Rest 4-Scalar | orentz Scalar Tensor Invariant

These invariants are not all always independent, some invariants are functions of other invariants. @ Phase Space Tensor Invariant Speed of Light (c) from
4-Momentum Phase Space LSP[..] of 4-Velocity

SR 4-Tensor SR 4-Vector Weighting Factor T W e —
(2,0)-Tensor T+ §(1,0)-Tensor V¥ = V = (v*,v) P SR 4-Scalar — Trace[T] = T S
(1,1)-Tensor T* or T, § SR 4-CoVector:OneForm K(0,0)-Tensor S or S, Relativistic Gammay = 1N[1-B-B ], B = ulc V-V = Vi, Vo = [(V) - vev] = (V)
orentz Scala = Lorentz Scalar
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SR - QM 4-Vector SRQM Interpretation

» SRQM Study: Physical/Mathematical Tensors -
Z4. Tensor Types: 4-Scalar, 4-Vector, 4-Tensor

SciRealm.org
John B. Wilson

s Physical Examples — Venn Diagram..,...sreneseen

Physical 4-Tensors: Objects of Reality which have Inva 4D SpaceTime

c=\[U-U ProperTime

SR 4-Scalai~-Speed-of-Light ( paceTime

U-=d/dr=yd/dt
(EM Charge (Q:desx (0,0)-TenSOI‘S #dimensionless RestMass (mo A : 8-R=8MR“=4
- - Derivative OiEaen

Lorentz Scalar ST Car e n

d*X=cdt-dx-dy-dz

SR 4-Vector 4-Position 4-Velocity 4-Momentum SR 4-CoVector = “Dual” 4-Vector Gradient One-Form
4D (1,0)-Tensors | R=R¢=(ct,r)=<Event> || U=U"=y(c,u) | |P=P*=(mc,p)=m,U|" 4D (0,1)-Tensors aka. One-Forms 9,=(9,/c,V)=nw 9’
V=V = (V“) _>(Ct’ 1) ) =dR/dt :(E/C, )=(E0/C2)U Cp = r]ngOO = (C“) =0 (C?,Ci) —’t(Ct;Cx,Cy,sz) =0/0R" —>(6t/c, ,a , )
= (VO,v) = (VO,V)) — (V, V', VY, V%) =(c’,-¢) =(c’,-¢c) — (c,-¢’,-¢’,-¢Y) =(9cat,% ox,% 3y,% az)

2 index-count Tenso: - Projection (Mixed) Tensors P",
inkowski P -
) R e Tonsor (Temporal Projection P¥, — VV*,) SR Lowered 4-Tensor

= RI=A(RIZV : —
SR 4-Tensor Metric 4D (1,1)-Tensors (Spatial Projection P*, — H*,) #D (_th)nTe.lrj‘f,ors(Lowered M|nkowsk|>
pv = Nuplvo

4D (2,0)-Tensors TH = N TH =

R =nw=(-)=LSP

™ = Faraday EM 4-Tensor = Lorentz Lorentz Boost _T T Metric
[ Too’ -|-0k] F® =9°AF - BA =g A A [ '|'00,-|-ok ] aV[Ru‘] =AY, N, — BY, { Too ,TOK]] Projection Tensors Py,
o, o, T Transform - 10 Tk Temporal Proj. Py, — V,
[T, T7] Perfect Fluid 4-Tensor [ To,Tk] T Lorentz Paritylnverse C p . ). Py »
T = (Peo) V' + (-Po) A nd GU Y (Spatial Proj. P,, — H,, )
Higher index-count Tensors: Riemann Curvature Tensor Weyl (Conformal) Curvature Tensor
RPouv = 9y Pus - Ao + TPMe — TPl — 0%, for SR “Flat” Minkowski SpaceTime CPsu = Traceless part of Riemann [R%,]

SR 4-Vector

(1,0)-Tensor V* =V = (V°,v)

SR 4-CoVector:OneForm
(0,1)-Tensor V, = (Vo,-V)

SR 4-Tensor
(2,0)-Tensor T+
(1,1)-Tensor T, or T,
(0,2)-Tensor T,

Trace[T"] =N, T" =T, =T
V-V = Vi, VY = [(VO) - vev] = (V!
= Lorentz Scalar

SR 4-Scalar
(0,0)-Tensor S or S,
| orentz Scalar,

Ricci Decomposition of Riemann Tensor
Rp = Sp (scalar part)+ Ep (semi-traceless part)+ Cp (traceless part)
opv OV opv opv
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SR - QM SRQM StUdy: 4-Vector SRQM Interpre;?tiQo'\;ll
; SRQM 4-Vectors = 4D (1,0)-Tensors
—4é SRQM 4-Tensors = 4D (2,0)-Tensors {orhigherindex#} ——

John B. Wilson
ATensor Study * i * SciRealm@aol.com
of Physical 4-Vectors M a d e fro m 4 -Ve Cto r re I atl o n s http://scirealm.org/SRQM.pdf
4-Vector = 4D (1,0)-Tensor S| Dimensional Units Temporal : Spatial ] components
4-Position R =R" = (ct,r) = X = X* {ait notation) [m] [Time (t): Space/length/extent ( r )]
4-Velocity U = U" = y(c,u) = (yc,yu) [m/s] [Temporal “velocity” factor (y) : Spatial “velocity” factor (yu), Spatial 3-velocity (u)]
4-UnitTemporal T =T" = y(1,5) = (v,7B) [dimensioniess] [Temporal “velocity” factor (y) : Spatial normalized “velocity” factor (y), Spatial 3-beta ()]
4-UnitSpatial S = S* = ya(B-A,1) = (y4:B-A,yp0) [gimensiontess] [Temporal “velocity” factor (ys:8-1) : Spatial normalized “velocity” factor (y;:f), Spatial 3-beta (B-1)A]
4-Momentum P = P* = (mc = E/c,p) [kg-m/s] [mass (m) : energy (E) : 3-momentum (p)] with E = mc? = ym.c? = yE,
4-TotalMomentum Py = Py* = (E-/c = H/c,p:) = Sa[Pa]  [kg-m/s] [total-energy (Er) = Hamiltonian (H) : 3-total-momentum (p+)]
4-Acceleration A = A" = y(cy',/ u+ya) [m/s?] [relativistic Temporal acceleration (") : relativistic 3-acceleration (y'u+ya), 3-acceleration (a = 0)]
4-Force F = F* = y(E/c,f = p) = (yE/c,/f = vp) [N = kg-m/s?] [relativistic power (YE), power (E) : relativistic 3-force (yf), 3-force (f = p)]
4-WaveVector K = K¥ = (w/c = 1/cT,k = wilV,...) [rad/m] [angular-frequency (w = 21v = 211/T) : 3-angular-wave-number (k = 2TTA/A = 2TTVA/NV e = WA/Vpas0)]
4-TotalWaveVector Kr = Kr* = (w/c,kr) = Za[Ka] [rad/m] [total-angular-frequency (wr) : 3-total-angular-wave-number (k)]
4-CurrentDensity=4-ChargeFlux J = J* = (pc, | ) [C/m?s = C-m/s-1/m3]  [charge-density (p) : 3-current-density = 3-charge-flux ( j )]
4-VectorPotential A = A" = (¢/c,a) — Agm [T-m =kg-m/C-s] [scalar-potential = voltage (©) : 3-vector-potential (a)], typically the EM versions (©cw) : (2em)
4-PotentialMomentum Q = Q" - gA = (V/c = q/c,qa) [kg-m/s] [potential-energy (V = qo) : 3-potential-momentum (g = ga)], EM ver (Veu = q®en) @ (Gem = qaem)
4-Gradient 9 = d = 8 = & = IR, = AIAX, = (4./c ’-V) [1/m] [Temporal differential (o;) : Spatial 3-gradient=spatial differentials( \V = o, = (4,9,,9.) )]
4-NumberFlux N = N* = n(c,u) = (l;m,nu) * ' [#/m*s =#m/s-1/m°]  [Temporal number-density (n) : Spatial 3-number-flux (n = nu)]
4-Spin § =S = (s = s°B = s-u/cC,3) [J's =N-'m's =kg-m?s] [Temporal spin (s° = s-B = s-u/c) : Spatial 3-spin (s)] {because S+ T « (ST =0)=1y(s’-sB)}
4-Tensor = 4D (2.0)-Tensor Temporal-Temporal : Temporal-Spatial : Spatial-Spatial ] components
Faraday EM Tensor F*" = [ 0 , -e/c] [T =kg/C-s] [(0): 3-electric-field (e = €' = € ) : 3-magnetic-field (b = b")] F¥ = 9AA = AV - O'AY

[+e°/c, -€l b]

4-Angular Momentum M* = [ 0 , -cn’ [J:'s=N-m-s=kg-m?s] [(0):3-mass-moment (n =n'=n"):3-angular-momentum (| = )] M*" = XAP = X"P" - X'"P*

Tensor [+cn®, - 1]
Minkowski Metric n* = \V*"+H"" — Diag[1,-5"] [dimensioniess] [1:0: I =-0"] N = ¢[R] = V¥ + H»
Temporal Projection Tensor V*¥ — Diag[1, 0] | [1:0: 0=0%] VA = THT
Spatial Projection Tensor  H"' — Diag[0,-5"] [aimensiontess] [0:0: 14 =-5"] HY = e - THT
Perfect-Fluid Stress-Energy T" — Diag[p.,p.p,p] [J/m* = N/m? = kg/m-s?] [pe:0:pls= pd] T = (PeotPo) T'TY - (Po)"[R'] = (Peo) V" + (-po)H""

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T (1,0)-Tensor V* =V = (V°,v)

4-Tensors can be constructed from the Tensor Products of 4-Vectors. Technically, 4-Tensors

SR 4-Scalar
(0,0)-Tensor S or S,
| orentz Scalar,

refer to all SR objects (4-Scalars, 4-Vectors, etc), but typically reserve the name 4-Tensor for
SR Tensors of 2 or more indices. Use (m,n)-Tensor notation to specify types more precisely.

(1,1)-Tensor T, or T, § SR 4-CoVector:OneForm
(0,2)-Tensor T, (0,1)-Tensor V, = (Vo,-V)
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A Tensor Study
of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SRQM Study:

4-Scalars = 4D (0,0)-Tensors = Lorentz Scalars
= 4D SR Invariants — Physical Constants
*Made from 4-Vector relations*

SciRealm.org

John B. Wilson
SciRealm@aol.com
http://scirealm.org/SRQM.pdf

4-Scalar = 4D (0,0)-Tensor = SR Invariant

RestTime:ProperTime (t, = 1)
RestTime:ProperTime Differential (dt, = dr)
ProperTimeDerivative (d/dt, = d/dr)
Speed-of-Light (c)

RestMass (m, = E,/c?)
RestEnergy (E. = moc? = hw,)
RestAngFrequency (w, = E/h)
RestChargeDensity (po)
RestScalarPotential (¢,)
RestNumberDensity (n,)

SR Phase ((Dphase)

SR Action (S_, )

Planck Constant (h = h*21T)cyc
Planck-Reduced:Dirac Constant (h = h/21T)aq
SpaceTime Dimension (4)

Electric Constant (&)

Magnetic Constant (uo)

EM Charge (q)

EM Charge (Q) *alt method*

Particle # (N)

Rest Volume (V,)

Rest(MCRF) EnergyDensity (peo = NoEo)
Rest(MCRF) Pressure (po)

Faraday EM InnerProduct Invariant 2(b-b-e-e/c?) [T? = kg’/C?:s]

Faraday EM Determinant Invariant (e-b/c)?

Sl Dimensional Units 4-Scalar = 4D (0,0)-Tensor {generally composed of 4-Vector combinations with LSP}

[s] (r) = [R-U)/[U-U] = [R-R)/[R-U] **Time as measured in the at-rest frame**
[s] (dt) = [dR-UJ/[U-U] **Differential Time as measured in the at-rest frame**
[1/s] (d/dt) = [U-0] = y(d/dt) **Note that the 4-Gradient operator is to the right of 4-Velocity**

[m/s] (c) = Sart[U-U] = [T-U] with 4-UnitTemporal T = y(1,8) & [T-T] = +1 = “Unit”

[ka] (mo) = [P-U]/[U-U] = [P-R]/[U-R] (mo—m¢) as Electron RestMass

[J = kg-m?/s?] (Eo) = [P-U]

[rad/s] (w,) = [K-U]

[C/m’] (o) = [J-U)/[U-U] = (q)[N-U}/[U-U] = (q)(n,)

[V =J/IC =kg-m%C-s?] (¢o) =[A-U] (Po—@,,0) as the EM version RestScalarPotential
[#/m’] (no) = [N-UJ/[U-U]

[rad]angle (q)phase,free) = -[KR] = (kr - (JJt) : (q)phase) = '[KTR] = (kT'r = th) **Units [Angle] = [WaveVec.]-[Length] = [Freq.]-[Time]**
[J.S]action ( acﬁon’free) = -[PR] = (pr - Et) : (Saction) = '[PTR] = (pT'r = ETt) **Units [Action] = [Momentum]-[Length] = [Energy]-[Time]**

[J's = N'm-s = kg-m?%s]
[J-s = N-m-'s = kg-m?/s]
[dimensionless]

[F/m = C?-s?/kg-m’]
[H/m = kg-m/C?¥

(h) = [P-U)[KeyeU] = [P-RJ/[KeyeR] : Keoye = K/(2TT)
(h) = [P-UJ[K-U] = [PRUKR]  : K= (2mMKeye
(4) =[0'R] = Tr[n**] = AL /A* SR Dim = 4, InnerProduct[any Lorentz Transf{cont.,discrete}] = 4
9-F® = (uo)J = (1/£,6%)J Maxwell EM Eqgn. w/ source Moo = 1/¢?
9-F® = (uo)J = (1/£,6%)J Maxwell EM Eqgn. w/ source Ho€o = 1/c?
[C=As] U-F*® = (1/q)F Lorentz Force Eqn. (q— -e) as Electron Charge
[C=As] (Q) = Jp(dxdydz) = Jpd®x = [peyd®x = [(po)(dA)(ydr) Integration of volume charge density
[#] (N) = In(dxdydz) = [nd®x = [neyd®x = [(no)(dA)(ydr) Integration of volume number density
[m’] (Vo) = Jy(dxdydz) = Jyd®x = J(dA)(ydr) Integration of volume elements (Riemannian Volume Form)
[J/m® = N/m? = kgim-s?] (p,,) = Vg T = Temporal “(V)ertical” Projection of PerfectFluid Stress-Energy Tensor
[V/m® = N/m? = kg/m-s®] (p,) = (-1/3)Hs T = Spatial “(H)orizontal” Projection of PerfectFluid Stress-Energy Tensor

2(b-b-e-e/c?) = IP[F*¥] = F**F
(e-b/c)? = Det[F**] — (Pfaffian[F**])2, since F* is (2n x 2n) square anti-symmetric

[T* = kg*/C*s]

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector

(1,1)-Tensor T*, or T.¥
(0,2)-Tensor T,

(0,1)-Tensor V, = (Vo,-V)

(1,0)-Tensor V* =V = (V°,v)
SR 4-CoVector:OneForm

SR 4-Scalar
(0,0)-Tensor S or S,
| orentz Scalar,

Lorentz Scalars = (0,0)-Tensors can be constructed from the Lorentz
Scalar Products (LSP) of 4-Vectors: (A-B)=Lorentz Scalar
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4-Gradient

9=dr=0x=0"=(d Ic,-V) (AT

=(9/cot,~%l 9x,~%l ay,~%1 9z)

4-Displacement
AR=AR"=(cAt,Ar)=R;-R1 finite}
dR=dR"=(cdt,dr)

{infintesimal}

4-Position
R=R"=(ct,r)=<Event>

Lorentz Invariant,

Poincaré Invariant

—(ct,x,y,2)
alt. notation X=X*

4-UnitTemporal| 4-Velocity
T=T'=y(1,8) | U=U=y(c,u)

=y(1,u/c)=U/c | =dR/dt=cT
4-Acceleration
=dU/dt=d’R/dt?

4-UnitSpatial
S=8¥=y, (B-A,f)

(depends on direction n)

 {y'=dy/dt}

4-Spin
Sspinzsspinp

SR 4-Vector
(1, O)-Tensor VH = V (v°,v)

SR 4-Tensor
(2 0)-Tensor T+

Gradient 4-Vector [operator]

0/c.-V)
=a/aRp H(at/C,_aX’_ay’-az) au = (8‘/C,V) A

Gradient One-Form [operator]

but not o

=(s’=B-s,s)=S.S

4- Momentum

4-WaveVector

K=K?=(w/c=2mvic k)=(wd/c?)u=-a[] [T EEEES

=(w/c,wNn/Vonase )=(1/cF,A/A)=(wo/Cc)T

4-(EM)VectorPotential

A=A"=(p/c,a)=(p./c*)U
Aev=Aen'=(Pem/C,aEm)

4-(EM)VectorPotentialMomentum
Q Q“-(q<p/c qa)= (V/c q)

4-ChargeFlux : 4-CurrentDensity

J=J"=(pc,j)=p(c,u)=poy(c,u)=p.U
=qn.U=gN

4-(Dust)NumberFlux
N=N'=(nc,n)=n(c,u)=nyy(c,u)=n.U

4-ThermalVector
4-InverseTemperatureMomentum
G) ©"=(8°,0)= (c/kBT U/kBT) (8./c)U

4-Vector SRQM Interpretation
of QM

SRQM Study: Physical 4-Vectors
Some SR 4-Vectors and Symbols

SciRealm.org

John B. Wilson
SciRealm@aol.com
http://scirealm.org/SRQM.pdf

.

4-Force

F=F'=y(Elc,f=p) ®
=dP/dr=ydP/dt

4-MassFlux
4-MomentumDensity

G=G"=(p,c.9)=p,(c,u)
=m,N=n,m,U=Q/c? @ - -

4-HeatEnergyFlux
Q=Q"=(p_c,q)=p_(c,u)
=E,N=n,E,U=c?G

4-PureEntropyFlux
Sent_purezsent_pureu
= (Sent_pure0 ) Sent_pure)

=SentN=nOSentU

4-HeatEntropyFlux
S(—)nt_heatzsent_heatu
=(Sent_heat0: Sent_heat)

=S_ N+Q/T,=S_ N+E.N/T,
=no(S, + Eo/To)U

SR 4-Scalar 4-Vector V = V" = (V") = (v',V) = (V',v)
(0,0)-Tensor S or S, I ~J:AV/-YeI o) A A=A VA= ( , )
orentz Scala

v = dv/dt Trace[T"] =N, T =TH =T
V = d2v/dt2 [V = VEng V= [(V0)% = vav] = (V5o)°
= Lorentz Scalar
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SRA—> QM S RQ M Stu dy : 4-Vector SRQM Interpreot?tiQo'\l;l\
s Primary/Primitive/Elemental 4-Vectors: __
sy 4-UnitTemporal T & 4-UnitSpatial S....==res=

4-UnitTemporal, Dimensionless Relativistic Gamma y = 1N[1 - B-B ], B = u/c
Magnitude® = +1 I-T=v(1,8)v(1,8)
"Magnitude” = (+1) =v2(1*1 - B-B) = v4(1 - B-B) . Y :_1/\/[J -B-Bl = 1/_\/[1\] IBI?] ,
Magnitude] = (1) L LightSpeed L U-U=c? Voo = VNI - B8] = 1AL - [B,[7)
. Invariant (c) .
; 4-Un|t;I'emporaI [m/s] . 4-Velocity with B.= (B-f)i = component of
 I=T"=v(1,B) | c iy U = U" = y(c,u) = cy(1,B) vector B along the A-direction
S = v(1,u/c)=Ulc =dR/dt=cT
® “ = In the RestFrame (B=0) of
4-UnitTemporal a Ter_nporil_4-Ve2ctor, [m/s] a massive particle (m, > 0):
: TA (] !}/Iagmt_ude ,,__+(C) 4-Velocity appears totally Temporal &
4-UnitTemporal | y Magnitude” = (£c) 4-Spin appears totally
orthogonal-to (+) ¢ |[Magnitude| = (c)

, , The 4-UnitTemporal T and 4-UnitSpatial S
Dlmerj3|onless S are both dimensionless, which allows them
Magnitude” = 0 to make dimensional 4-Vectors via

Magnitude” = (0) e a“ " 4-Vector, [J-s] | multiplication by a 4-Scalar, as shown here.
[Magnitude| = (0) Magnitude? = -(s,)?
SR LightCone “Magnitude” = (is,) ».

P
o J
1}

‘-

= - |[Magnitude| = (s,)
4-UnitSpatial il
— — oy Sspln - Sspm - Sos
S = 5" =y,,(B-n,n) — 0g) =
o i (S ) (B s S)
(depends on direction n . (B- v (B Spin (s.)

Invariant
[J-s] I-ss,,in = y(1 ,B)-(so,s)
=y(s’- Bs) =
thus {s® = B-s }

, Dimensionless
Magnitude?® = -

"Magnitude” = (i)
|Magnitude| = (1)

SR 4-Tensor SR 4-Vector V] — v — =
(2 0)-Tensor T+ (1, 0)-Tensor V= V (V°,v) SR 4-Scalar TracellyeS ”“VOTZ = TS To 2
(0,0)-Tensor S or S, V-V = Vin V7 = [(V7)° - vev] = (V)
orentz Scala = Lorentz Scalar
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of Physical 4-Vectors

E R-U/U-U =

:toz'[

4-Position
R=R"=(ct,r)=<Event>
—(ct,x,y,2)

Invariant Interval
R-R = (ct)’rr = (ct

nvariant Differentia
dR-dR = (cdt)*-dr-dr = (cdt)?
AR-AR = (cAt)*-Ar-Ar = (cAt)? \
Interval 4-Differential
dR=dRp=(Cdt,dr) {infintesimal}
AR=AR"=(cAt,Ar)=R2-R1 (finite}

Invariant Calculus

Invariant ProperTime
(ct,r)y(c,u)/c? = y(c* - r-u)/c? = (c*,)/c?

4-Vector SRQM Interpretation
of QM

SRQM: Some Basic 4-Vectors
4-Position, 4-Velocity, 4-Differential, 4-Gradient
SR SpaceTime Calculus & Invariants

SciRealm.org

John B. Wilson
SciRealm@aol.com
http://scirealm.org/SRQM.pdf

the (R/U); Sl Units [m/(m/s)] =

Change to frame-reference with v = 0. The scalar result is
R-V/U-V = ctv¥/ycv® = t/y = T = t, = ProperTime = RestTime

Could also use R-V/U-V = 1, with V as any SR 4-Vector. The main idea is
[s], but they need a mediating 4-Vector V to
make them into scalars so that division is possible {vectors don’t divide}.
R-V/U-V = (ct,r)-(v°,v)/y(c,u)-(v°,v) = Invariant Lorentz Scalar.

frame-invariant.

s
4-Velocity
U=U"=y(c,u)
=dR"/dt=(U-9)R

Invariant LightSpeed
U-U = y*(c*u-u) =c?

>

nvariant ProperTime Derivative
U-9 = y(c,u)(9,/c,-V) = y(,+ u-V)
= yd/dt = d/dt

4-Gradient
a:aRzaxzauz(at /C,'V)
=0l0R, —(0, /c,-ax,-ay,-az)

=(3/cat,-3/ax,-3/ay,-3/az) nvariant d’Alembertian

89 = (3/cP-V-V = (dlcdr)?

The 4-Velocity
is interesting
in that it sort
of bootstraps

itself into
existence:

u
=y(c,u)
=dR/dt
=(U-9)R

The bootstrap
is because

M

Wave Equation

d/dt = (U-9)

dR-9 = (cdt,dr)-(9,/c,-V)
dRn(¢") = dR¥(,) = dR¥(8/0R") = (dt 9, + dr-V)
=dt(a/at) + dx(d/ox) + dy(d/dy) + dz(d/9z)
Total Derivative Chain Rule

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v)
(1,1)-Tensor T*, or T,' § SR 4-CoVector: OneForm

Trace[T"] = nuT" =T =T
V-V =V, VY = [(V)? - vev] = (Vo)
= Lorentz Scalar

SR 4-Scalar
(0,0)-Tensor S or S,
orentz Scala

Relativistic Gammay=1~[1-B-B], B = ulc
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- v4
f=f[tx.y.2] Rest Mass:Energy/c 4- Momentum
df = dt(@at) + dx(@ax) + dy(@/ay) + dz(/ar) 4-Position
R=R"=(ct,r)=<Event>
df/dt =
= (9at) + dx/dt (ax) + dy/dt (Fay) + dz/dt (2f/a7) —(ct.x,y,z) Rest Ang. Frequency/c? 4-\WaveVector

alt. notation X=X"

= (flat) + uX(lox) + U¥(¥ay) + UZ(9/az)
= (af/at) + uvf

K=K=(w/o=2mic k)= (wo/cz)U—-a[CD]

- U= . U-al..] Rest EM Potential/c?
A/t = (%at) + uV'= (@ + wV) Yd/dtr. ] SCSALIELIEN 4-(EM)VectorPotential
y(d/dt) = y(&t + u-V) = (d/dt) = (U-) = Invariant d/dt[..] @ A=A"=(p/c,a)=(p./c*)U

U-9 AEM=AEM“=((PEM/C,aEM)
4-Gradient (Cu)(3./c,V) Nl AN CBCINCISIEE 4-(EM)VectorPotentialMomentum
e 4-Velocity /G?=V,/C? Q- Q“-( Jc,qa)=(V/c,q)
9=0r=0x=0"=(9,/c,-V) = y(9+u-V) gqPo 0 qe/c,q ,q

=|J!=
813R, —(2,/68,-0,0) = @lrartardl) B oY)

=(81ct,-01 35,01 3y,-0137) = vd/dt =dR/dt=cT AL 4-ChargeFlux : 4-CurrentDensity

= d/dt . J=J"=(pc,j)=p(c,u)=poy(c,u)=p.U
A ProperTime i U-al..] :_r:gﬁtrggéed = =
o yd/dt [..] Rest Number Density
ze;\li?)trlt\e/re\tz d/dz[..] () 4-(Dust)NumberFlux

Scalar Invariant N=N¥=(nc,n)=n(c,u)=nsy(c,u)=n,

Rest Inv. Thermal Energy 4-ThermalVector
4-InverseTemperatureMomentum
6 ©"=(8°,0)= (c/kBT U/kBT) (6./c)U

4-Acceleration

@

A=A"=y(cy’,y'u+ya)
=dU/dt=d’R/d7* : {y'=dy/dt}

SR 4-Tensor SR 4-Vector V] = vV — =
(2,0)-Tensor T*  §(1,0)-Tensor V* =V = (V°,v) SR 4-Scalar 4-Vector V = V" = (V) = (V’,v) = (V') Tracs[T” 1z ”“VOTZ gL T To 2
(1,1)-Tensor T, or T, § SR 4-CoVector:OneForm UVMEILUEEEY | SR 4-Vector V = V¥ = (scalar * ¢, ) ViV = Vine V' = [(V)" - v-v] = (Vo)
orentz Scala = Lorentz Scalar
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4-Gradient A 4-Position
0=0r=0x=0"=(0, /c,-V) R=R"=(ct,r)=<Event Invariant Interval

9IoR, —(9, /C,-ax,—ay,-az —(ct,X,y,z) R-R = (cty-rr = (ct)” Invariant Acceleration A-A

The tedious algebra...

=(9/cat, 2l w0l 3y, =0l alt. notation X=X" T Ao = (0,00 = o Sl
=y(cy, y(cy,
Invariant Wave Eqn =y*[ (cy')? - (y*)(u-u) - 2(y'y)(u-a) - (v)*(a-a) ]
9-9=(9,/c)’-V-V=(2_Ic)’ d[.. =yz[ (ny)z[ 1 -Y(u-u)/cz] - 2q£y}:y)(u-a) (v)¥(a-a)]

=y7[ (cy')*ly* - 2(y'y)(u-a) - (y)*(a-a) ]
=y?[y'y'c?ly? - 2(y'y)(u-a) - (y)*(a-a) ]
=y?[ y'(y*(u-a)/c?)c?ly? - 2(y'y)(u-a) - (v)*(a-a) ]

Uod g S = Y’(Y(F'a()) -)(Z(Y’“/))(ll('é;)(- (Y;Z](a'a) ]
= : - =y7[ - (y'y)(u-a) - (y)*(a-a
Y(_C’u) (6/c-V) 4-Velocity / Invariant LightSpeed =y - (y¥(u-a)/c®)y(u-a) - (y)*(a-a) ]
=7(@+uV) U=Ur=y(c,u)\ UU = P(cuu) = ¢ =y - (y¥(wa)/c?) - (y)(a-a) ]

= -y%(u-a)?/c? - y4(a-a)
= -y¥[u?a? - (uxa)?]/c? - y*(a-a)
= -y®(u?a?)/c? + y®(uxa)?/c? - y*(a-a)

= v(%at+arlor) M —R/dt=cT
= yd/dt Invariant

= d/dt e '(-;?htSpeed =y%(uxa)?/c? - y*(a-a)[y3(u?)/c? + 1]
ProperTime [-] =y%(uxa)?/c? -y*(a-a)[y*p? + 1]
Derivative yd/dt[..] =y8(uxa)?/c? -y*(a-a)[y? -1 + 1]
is a Lorentz d/dt[..] =y8(uxa)?/c? -y*(a-a)[y?]
(luxa|)2 + (u-a)2 = u2a? Scalar Invariant =y6[(uxa)2/C2 - (a-a)]
sin +cos2=1 | | =rr=" Invariant Acceleration A-A
y = 1N[1-(u-u)/c?] 4-Acceleration = Ac'Ao = (0,3,)+(0,30) = -a0°ao = -[a|”
S (a2 A=A"=y(cy’,y’'u+ya)
=dy/dt = / YACY LY ki .
! (ng)z = ;,2(_[11a) ’ =y%(y?(u-a)/c,y*(u-a)u/c?+a) = -y%(u-a)’/c® - y¥(a-a) — -y¥(a-a) : if (u La)
B=ulc =dU/dt=d’R/d7* : {y'=dy/dt} = y%(uxa)?/c? -y*(a-a) — <y*(a-a) : if (u || a)

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector o " _
(1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar Trace[T*] = r]uv;rz =T = To i
SR 4-CoVector: OneForm (0,0)-Tensor S or S, V-V = Vi, VY= [(V)° - vev] = (Vo)
orentz Scala = Lorentz Scalar

(1,1)-Tensor T*, or T,Y
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4-Gradient : :
9=0r=0x=0"=(3,/c,-V/) Minkowski S
=010R, —(8,/¢,-0,,-6,,-0.) a[R]RAae[tﬁC]‘”
(8/ cat, -9/ Xy -9/ 6y,'a/ az)

A 8-0=(3 Ic)-V'V ﬁ

=(9./c)?
Invariant d’Alembertian Wave Eqgn.

aceTime SRQM Non-Zero Calculus 4-Position:4-Differential
5 %_ 8,R=4 Commutation dR-9=dR"3, R=R"=(ct,r)=<Event>
[0.R] = [¢",R"] Total Derivative, —(ct,x,y,z)
= ¢"R"-R'¢" = n* Chain Rule dR=dR"=(cdt,dr)

ProperTime
Derivative

Yy u-o
= 0/t
= d/dt

=P

Phase (®) & Action (S)
Lorentz Scalars

Faraday EM Tensor _
Fo = GoAD - SPAT 2 9 A A I IEK

0]
+e%c

4-\WaveVector
K=K"=(w/c=2T11v/c,K)=(w./c*)U=-9[D] SR

-e%c

Conservation of EM (Vector)Potential

4-Velocity

' Lorenz Gauge 4-(EM)VectorPotential
U:UU:y(C,u) 4_|If_)hStokes 2A=0 (EM. F t
—dR/dT=cT B I (A) = 0 A=A'=(¢lc,a)=(@,/c2)U

4D Div = 4D Surface Flow

Aen=Acen'=(Pem/C,aEm)

J,dX(8,¥) o §,,dS(V*N,) Sgnervation of Charge 4-_CrErgel-:IEx : 4-C_urrentDe_nsity
=j0d4x(a.v) =§_dS(V-N) @ J=J"=(pc,j)=p(c,u)=psy(c,u)=p.U
Conservation of Particle #
Q = 4D Minkowski Region, dQ = it's 3D boundary N = _
d*X = 4D Volume Element, V = V¥ = Arbitrary 4-Vector Field @3 NiSlE 4-(Dust)NumberFlux
dS = 3D Surface Element, N = N* = Surface Normal

N=N"=(nc,n)=n(c,u)=nyy(c,u)=

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v)

SR 4-Scalar 4-Vector V = V¥ = (V") = (V",V)) = (V",v) Trace[T"] =N, T =T =T
(1,1)-Tensor T*, or T,' § SR 4-CoVector: OneForm

(0,0)-Tensor S or S, I =F. RV 1) A A Vi ( , ) V:V = Vi, VY = [(v0)2 -vv] = (V0°)2
orentz Scala = Lorentz Scalar



mailto:SciRealm@aol.com

SR - QM 4-Vector SRQM Interpretation

SRQM Study: Physical 4-Tensors
s ©0ME SR 4-Tensors and Symbols . .-

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

«—Discrete Continuous—
SR:Lorentz
Transforms

_ -YBi _
-¥B" (v-1)B'Bi/(B-B)+9)

P— t x y z SR:Minkowski Metric
s |11 0 8 81 | AR . .
Transform x[0 10 O]l o (Ca%esi;n/rectangu.arbgsis)’ cos[6] -sin[6] 0' (&'-n'n; )cos(B)-( £5n* )sin(B)+n'n;
ATV, = y{ 8 8 (1) (1)} sin[6] cos|[f]
z

SpaceTime Lorentz Transform 4,[R¥]=/\",
A= 0 A0 _ .
Particle Physics” Convention . Avauv_4_Avapv [ N 0,/\ i ] tempOFa| mixed
4-Tensor Dimension %, Dimension ] components
Symmetric, Spatial Isotropic

Perfect Fluid Faraday EM 7 ) 4-AngularMomentum
T = (Peo) V" + (-po) Fo® = g°AP- PA =9 A A Me® = X9PB - XPPa = X A P

—>D|ag [pe, ]{rectangular basis{MCRF} 0 -cn”
0 -elc
+e'/c -V*a

t X ¥y z
t[ 0 -eYc -e'lc -e*lc]
x[+elc 0 -b* +b’]
y[+e’lc +b* 0 -b*]
z [+e?/c -b¥ +Db” 0]

4-Tensor 4-Tensor

t X ¥y z

t[ 0 -cn* -cn’ -cn?]
x[+ten* 0+ V]
y[+cen” -0 +7]
z [+cn® 4 - 0]
4-Tensor

+cn® gl 16

0 -cn

Symmetric, Spatial Isotropic Anti-symmetric (skew) Anti-symmetric (skew)
SR 4-Tensor SR 4-Vector Note that all the Lorentz Transforms and the | | w = Rapidity = Ln[ y(1+B)] B
(2,0)-Tensor T (1,0)-Tensor V¥ = V = (v°,v) SR 4-Scalar Minkowski Metric are unit dimensionless [1]. ¥ = cosh(w) = TN 1-B2] Trace[T"] = n,
(1,1)-Tensor T*, or T," | SR 4-CoVector:OneForm K(0.0)-Tensor S or S, The Perfect Fluid has units of ) BB_=tas?r?r%|)/)_ (vlc) V-V = Vi, V7= [(
(0,2)-Tensor T, (0,1)-Tensor V,, = (Vo,-v) Lorentz Scalar. [energy density = pressure = J/m® = N/m? = kg/m-s?]| | ¥ =
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y 4-ForceDensity V- Perfect Fluid Stress-Energy “g=3 (Cold) Matter-Dust
T=T"=y(1,B) Faen = Foen’ = -0, T"'= -0-T" T — (Peo)V*" + (-po) —{MCRF} \ T — P"N'=moU*nU"=(peo) V" —mcrey
=y(1,u/c)=Ulc {=0" if conserved}

4-UnitTemporal

Temporal “(V)ertical” Sbr2 Asd s A — 0 - = oo
Projection (2,0)-Tensor @ 0° g o° 0!
PP — V¥ = THTY = UPUY/? -

".Diagl1, o neggive pressure s 2227 V CEoSITw=0 3
4Tensor o TW by <=
=2 O
or o

SR:Minkowski Metric Symmetric, S Stress-Eneray 4-Tens
Jd[R] =d"R"=n"=V" + Spatial Isotropic Tr[T"]=Peo-3Pg 9y

% mmetric, Spatial Isotropic, Pressureless \
—Diag[1,-L]=Diag[1,-5] 5558 Null-Dust=Photon Gas Lambda Vacuum N
{Cartesian/rectangular basis} 20305089 SN (peo)vuv + ('peo/3) > MCRF?) T“V SN (peo)r]pv = (/\)I']W — 5 (MCRF)

4-Tensor ' : Dark Energy?

Symmetric 0 o ZO] = QU \ ;0 ] = o
Spatial Isotropic 0° ( /3)6” = )
O ] pe OIO _pe8|1

Particle Physics™ Convention pe/S 0 ]

4-Tensor 0 p/3] —

Spatial “(H)orizontal” Stress-Energy 4-Tensor Stress-Energy 4-Teng
Projection (2,0)-Tensor Symmetric, Spatial Isotro Symmetric, Spatial Isotrop

PY — H"=n"-T'T" Faraday EM Tensor Zero:Nothing Vacuum ‘
—>Diag[0, ]=Diag[0, ](MCRF} FP=0"A°-PA* =9~ A ™ — 0" —{MCRF}

X y z 0 -e%c X y z y z 00
t[0 -ec -e'lc -e’lc]f§+elc -€b" s¥c sYlc s¥c] 0 0] 00 0

x[refc 0 b )] % 0% 0% ] 0 0]

) -e
: o%c -
S liec o0 0 I o 0% 0" -0 | 0 0] RITE
4'Tens°r Z[+eZ/C 'by +b>< +e - a 'OZX -OZV 'OZZ ] 0 0] :undeﬁne
Symmetric 4-Tensor @ 4-Tensor Stress-Energy 4-Te(Tr[T"']=0)

patial Isotropic Anti-symmetri Symmetric Symmetric, Isotropic

SR 4-Tensor SR 4-Vector Note that the Projection Tensors & . W — wo— T
(2,0)-Tensor T+ (1,0)-Tensor V* =V = (V°,v) SR 4-Scalar the Minkowski Metric are unit dimensionless. [ 1] Eq“?ﬁ"’_” of_State Tiacpe[T ] i nuv;rz 7
(1,1)-Tensor T* or T," | SR 4-CoVector:OneForm [(0.0)-Tensor S or S, J o s L ATt T F A N St B PR L PR SR ERTER N[ V-V = Vi, V' = [(V)" - vV,
(0,2)-Tensor T, (0,1)-Tensor V, = (Vo,-V) Lorentz Scalat dimensional measurement units. [J/m® = N/m? = kg/m-s?] 4-Scalar = Lorentz Scalar
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Temporal “(V)ertical”
Projection (2,0)-Tensor
PY — V¥ = THTY
—Diag[1," Jmcrs

4-Tensor
Symmetric,Spatial Isotropic

Spatial “(H)orizontal”
Projection (2,0)-Tensor
PY — H¥Y = v - THTY
—Diag|[O0,

4-Tensor
Symmetric,Spatial Isotropic,

SR 4-Tensor
(2,0)-Tensor T+

(0,2)-Tensor T,

]=Diag|0,-6"Tmcrr

Temporal “(V)ertical”
Projection (1,1)-Tensor
P, — V¥, =T"'T,
—Diag[1," Jmcre

4-Tensor
Symmetric,Spatial Isotropic

Spatial “(H)orizontal”
Projection (1,1)-Tensor
va - Huv = r]”v - TMTV
—Diag[0,1:]=Diag[0,5 Jmcre

Symmetric,Spatial Isotropic

SR 4-Vector
(1,0)-Tensor V* =V = (V°,v)
(1,1)-Tensor T, or T, § SR 4-CoVector:OneForm
(0,1)-Tensor V, = (Vo,-V)

SR 4-Scalar

| orentz Scalar,

(0,0)-Tensor S or S,

Temporal “(V)ertical”
Projection (0,2)-Tensor
Pw— V=TT,
—Diag[1," Jmcre

4-Tensor
Symmetric,Spatial Isotropic

Spatial “(H)orizontal”
Projection (0,2)-Tensor
Pw — Hy =nw - T, Ty
—Diag|O0,

4-Tensor
Symmetric,Spatial Isotropic,

SR Perfect Fluid

“(V)ertical” Stress-Energy 4-Tensor

Ve Toerfectﬂuiduv = (Oeo)vpv + ('DO)
/

_ 0j
— Hw Spatial o 0‘..
“(H)orizontal” 0]

—>{MCRF}

Light-Cone
CEoS[T"]=w=po /Peg
P*, = P*ngy
P.., = P®n.uNey Units of Symmetric
g e [EnergyDensity=Pressure] TrT*]1=peo-3pg

The projection tensors can work on 4-Vectors to
on 4-Tensors to give either a 4-Scalar component

]=Diag[0,-6;]mcrr

4-UnitTemporal T = y(1,B) 4-UnitTemporal
CREI LU NENCREIENCRERERERE T=T"=y(1,8)
=y(1,u/c)=U/c

4-UnitSpatial
$=8=ya(B-1,N)

VWA= (1-a’+0-a'+0-a’+0-a°, )
(O'ao+0‘a1+0'82+0'33, _>(1 ao){RestFrame} H(O,n)(RestF,ame)

0-a°+0-a'+0-a%+0-a°, ‘m. ‘EO) @’
0-a’+0-a'+0-a*+0-a*) = (a°,0,0,0) = (2°,0): Temporal Projection
H* Av= (O a0+0 a1_'_0 a2+0 a3 Minkowski
v = . . . a, =MRV=nHV=\/H'4+
OSSN =0l OIR]= R
0-a’+0-a'+1-a%+0-a°,
0-a’+0-a'+0-a’+1-a% = (0,a',a”,a°) = (0,a): Spatial Projection

Vid T Vi [(Peo) V! + (-Po) T = (Peo) Vi VY +(0)= (Peo) = (Peo) = Vi T
H = Hul(Peo)V* + (-po)H*T = (0)+(-po) i H™ = (-3Po) : (Po) = (-1/3)H,, T

VET™= VE[(Peo) V™ + (-po) HT = (Peo) V¥6V*'+(0*) = (peo) V" —Diag[p:,0,0,0]
HET™= HYG[(Peo) V' + (-Po)H™T = (O%)+(-po) HeH™ = (-po)H™ —Diag[0,p,p,p]

Note that the Projection Tensors are unit dimensionless:
the object projected retains its own dimensional measurement units
Also note that the (2,0)- & (0,2)- Spatial Projectors have opposite signs
from the (1,1)- Spatial due to the (+

,--»-) Metric Signature convention

Trace[T"] = N
V-V = V', VY = [(V°
= Lorentz
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£4; Special Relativity — Quantum Mechanics __,
sy RoadMap of SR—QM g

*START HE%E*: 4-Position=Location of SR <Events>in SpaceTime

4-Gradient=Alteration of SR <Events>
SR SpaceTime Dimension=4

SR SpaceTime “Flat” 4D Metric VAR , , 4-Position R¥ . .
SR Lorentz Transforms o A[RYI=NAY, R=(ct.r)=<E . h i 4-Velocity=Motion
SR Action — 4-Momentum S Lorentz 2LV Sl e e oL SShl
SR Phase — 4-WaveVector M'&Z‘i;’,\’:k' R-R=(ct)*-rr It?oipsgft-ilc-:lg: gswaves
. N ,
e e DY
8-8=(9,/c)>-V-V 4-Gradient ¢" ProperTime 4-Velocity U*
= {(Moc/N)? = ~(Wy/C)? 33=3@Ru « U-a=d/dr=yd/dt T U=1(c,)=dR/dt
o o - G = -i . . * =
= (81/(:)2 ( : ) Derlvatlve -K.R=¢phase,free -P-R=Saction,free \éjg;q Al"flhgat;a:: UIU:YZ(CZ-u.u)

SR d’Alembertian & '3[]=K @ RANRIEEE SR Action . = (C)Z

Klein-Gordon Relativistic 4-WaveVect Hamilton-Jacobi Phase & Action

Quantum Wave Relation C?)\r/:péi o Py = -9[S] Lorentz Scalars Einstein

Schrodinger QWE is . Plane-Waves @ E = mc? = ymqc? = yE,

Rest Mass mq:Rest Energy E,

{Iv]<<c} limit of KG QWE | Kr = 6[¢]
**[ SR — QM |** ('» @
e

4-\WWaveVector=Substantiation

of SR Wave <Events> 4-WaveVector K"

4-Momentum=Substantiation

oscillations proportional to K=(w/c,k)=(w/c,wn/Vpnas) 4-Momentum P* of SR Particle <Events>
mass:energy & 3-momentum =(1/cF,A/x)=(wo/c?)U=P/h SR - e e i P=(mc,p)=(E/c,p)=m, mass:energy & 3-momentum
Dirac:Planck Constant h=h/2m
K-K=(w/c)*-k-k P =K G, P-P=(E/c)-p-p

= (moc/h)? = (wo/c)? = (1/cT,)? % = (m.c)’ = (E./c)?
1/h

SR 4-Tensor SR 4-Vector
— . —_r Trace[T"] =N T" =T =T
(2,0)-Tensor T+ (1,0)-Tensor V* = V = (\°,v) SR 4-Scalar _ N ol
(1,1)-Tensor T or T, | SR 4-CoVector: OneForm (0,0)-Tensor S or S, sditlne RRUIeS V-V = Vi, VY = [(V)F - vev] = (V)2
, 1) p orentz Scala ( QM Principles ) = Lorentz Scalar
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Vi SRQM Chart:
£, Special Relativity — Quantum Mechanics .
s SR—QM Interpretation Simplified ...coonesen

SRQM: The [SR—QM] Interpretation of Quantum Mechanics

Special Relativity (SR) Axioms: Invariant Interval + LightSpeed (c) as Universal Physical Constant lead to SR,
although technically SR is itself the Minkowski-SpaceTime low-curvature:“flat” limiting-case of GR.

{c,7,m,,h,i} = {c:SpeedOfLight, t:ProperTime, m,:RestMass, h:Dirac/PlanckReducedConstant(h=h/21r), i:lmaginaryNumber\[-1]}:
are all Empirically Measured SR Lorentz Invariant Physical Constants and/or Mathematical Constants

Standard SR 4-Vectors: Related by these SR Lorentz Invariants:

4-Position R = (ct,r) = (R'R) = (CT)

4-\elocity U = y(c,u) = (U-9)R=("/4)R=dR/dt (U-U) = (c)?

4-Momentum P = (E/c,p) =m,U (P-P) = (m.c)®

4-WaveVector K= (w/c,k) = P/h (K-K) = (moc/h)? KG Equation: vl<<c
4-Gradient d=(d/c,-V) = -iK (9-9) = (-imoc/h)* = -(m,c/h)? = QM Relation —- RQM — QM

SR + Empirically Measured Physical Constants lead to RQM via the Klein-Gordon Quantum Eqn, and thence to QM
via the low-velocity limit { |[v| << ¢}, giving the Schrodinger Egn. This fundamental KG Relation also leads to the other

Quantum Wave Equations: RQM (massiess) RQM QM

{lv|]=c:m,=0} {0<=|v|]<c:m,>0} {0<=|v|]<<c:m,>0}
spin=0 boson field = 4-Scalar: Free Scalar Wave (Higgs) Klein-Gordon Schrodinger (regular QM)
spin=1/2 fermion field = 4-Spinor: Weyl Dirac (w/ EM charge) Pauli (w/ EM charge)
spin=1 boson field = 4-Vector: Maxwell (EM photonic) Proca

SR 4-Tensor SR 4-Vector

2,0)-Tensor T+ 1,0)-T V=V SR 4-Scalar ) :
R ] e ARLAY (Esai ol | SO A treatise of SR—QM by John B. Wilson
u orentz Scala

,1)-Tensor V, = (vo,-v
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4-Vector SRQM Interpretation
of QM

SciRealm.org

! SRQM 4-Vector Topic Index
SR & QM via 4-Vector Diagrams &

http://scirealm.org/SRQM.pdf

A Tensor Study
of Physical 4-Vectors

Mostly SR Stuff
4-Vector Basics, SR 4-Vectors = Physical 4D (1,0)-Tensors

Paradigm Assumptions: Right & Wrong
Minkowski:SR SpaceTime, TimeSpace, <Events>, WorldLines, 4D Minkowski Metric
SR {4-Scalars, 4-Vectors, 4-Tensors} & Tensor Invariants, Cayley-Hamilton Theorem
SR Lorentz Transforms, CPT Symmetry, Trace Identification, Antimatter, Feynman-Stueckelberg
Fundamental Physical Constants = Lorentz Scalar Invariants = SR 4-Scalars = (0,0)-Tensors
Projection Tensors: Temporal “(V)ertical” & “(H)orizontal”: (V),(H) refer to Light-Cone
Stress-Energy Tensors, Perfect Fluids, Special Cases (Dust, Radiation, EM, DarkEnergy, etc)
Invariant Intervals, Measurement
SpaceTime Kinematics & Dynamics, ProperTime Derivative
Einstein’s E = mc” = ym,c® = yE,, Rest Mass:Rest Energy, Invariants
SpaceTime Orthogonality: Time-like 4-Velocity, 4-Acceleration
Relativity of Simultaneity:Stationarity ; Invariance/Absolutes of Causality:Topology
Relativity: Time Dilation («| clock moving |—), ( )
Invariants: Proper Time ( |clock atrest| ) ,
Temporal Ordering: (Time-like) Causality is Absolute; (

: (Time-like) Stationarity is Relative ; (
SR Motion * Lorentz Scalar = Interesting Physical 4-Vector
SR Conservation Laws & Local Continuity Equations, Symmetries
Relativistic Doppler Effect, Relativistic Aberration Effect
SR Wave-Particle Relation, Invariant d’Alembertian Wave Eqn, SR Waves, 4-WaveVector
SpaceTime is 4D = (1+3)D: 8-R=9,R"=4, A, ,A"'=4, Tr[n"]=4, A = A" = (a") = (a°,
Minimal Coupling = Interaction with a (Vector)Potential
Conservation of 4-TotalMomentum (TotalEnergy=Hamiltonian & )
SR Hamiltonian:Lagrangian Connection
Lagrangian, Lagrangian Density
Hamilton-Jacobi Equation (differential), Relativistic Action (integral)
Euler-Lagrange Equations
Noether’s Theorem, Continuous Symmetries, Conservation Laws, Continuity Equations
Relativistic Equations of Motion, Lorentz Force Equation
¢? Invariant Relations, The Speed-of-Light (c)
Thermodynamic 4-Vectors, Unruh-Hawking Radiation, Particle Distributions

) Simultaneity is Relative
) Topology is Absolute

) =4 comps

Mostly QM & SRQM Stuff

Advanced SRQM 4-Vectors

Where is Quantum Gravity?

Relativistic Quantum Wave Equations

Klein-Gordon Equation/ Fundamental Quantum Relation

RoadMap from SR to QM: SR—QM, SRQM 4-Vector Connections

QM Schrédinger Relation

QM Axioms? - No, (QM Principles derived from SR) = SRQM

Relativistic Wave Equations: based on mass & spin & relative velocity:energy
RWE'’s: Klein-Gordon, Dirac, Proca, Maxwell, Weyl, Pauli, Schrédinger, etc.
Classical Limits: SR’s { |[v| << c }; QM's { h|V-p| << (p'p) }

Photon Polarization

Linear PDE’s—{Principle of Superposition, Hilbert Space, <Bra|,|Ket> Notation}
Canonical QM Commutation Relations < derived from SR

Heisenberg Uncertainty Principle (due to non-zero commutation)

Pauli Exclusion Principle (Fermion), Bose Aggregation Principle (Boson)
Complex 4-Vectors, Quantum Probability, Imaginary values

CPT Theorem, Lorentz Invariance, Poincaré Invariance, Isometry

Hermitian Generators, Unitarity:Anti-Unitarity

QM — Classical Correspondence Principle, similar to SR — Classical Low Velocity
The Compton Effect = Photon:Electron Interaction (neglecting Spin Effects)
Photon Diffraction, Crystal-Electron Diffraction, The Kapitza-Dirac Effect

The (h) Relation, Einstein-de Broglie, Planck:Dirac, Wave-Particle

The Aharonov-Bohm Effect ( integral | ), The Josephson Junction Effect ( differential 8 )
Dimensionless Quantities

SRQM Symmetries:

Hamilton-Jacobi vs. Relativistic Action

Differential (4-Vector) vs. Integral (4-Scalar)

Schradinger Relations vs. Cyclic Imaginary Time < Inverse Temperature
4-Velocity:4-Position vs. Euler-Lagrange Equations

Matter-AntiMatter: Trace Identification of Lorentz Transforms, CPT

Quantum Relativity: GR is *“NOT* wrong, *Never bet against Einstein* :)
Quantum Mechanics is Derivable from Special Relativity, SR—QM: SRQM

SRQM = The [SR—QM] Interpretation of Quantum Mechanics
= Special Relativity — Quantum Mechanics

SRQM: A treatise of SR—QM by John B. Wilson (SciRealm@aol.com)
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ere are some paraaigm assumptions tnat neea to be ciearec

Relativistic Physics **IS NOT** the generalization of Classical or Quantum Physics.
Classical & Quantum Physics **ARE** the low-velocity { |v| << c } limiting-case approximation of Relativistic Physics.

This includes (Newtonian) Classical Mechanics and Classical QM (NRQM: meaning the non-relativistic Schrédinger QM Equation — it is not fundame
The rules of standard QM are just the low-velocity approx. of RQM rules. Classical EM is for the most part already compatible with Special Relativit
However, Classical EM doesn't include intrinsic spin, even though spin is a result of SR Poincaré Invariance, not QM.

So far, in all of my research, if there was a way to get a result classically,
then there was usually a much simpler way to get the result using tensorial 4-Vectors and SRQM relativistic thinking.
Likewise, a lot of QM results make much more sense when approached from SRQM (ex: Temporal vs. Spatial relations).
4-Vector formulations are all extremely easy to derive in SRQM and are all relativistically covariant and give invariant results.

Einstein Energy:Mass Eqn: P = m,U — { E = mc” = ym.c” = yE, : } Einstein-de Broglie Relation: P = hK — { E = hw : }
Complex Plane-Wave Relation: K=id — { w = id: : }
Hamiltonian: H = ’Y(PTU) { Relativistic} — (T + V) = (Ekinetic + Epotential) { Classical-limit only, [u] << ¢} SChr('idinger Relations: P = ihd — { E =iho : }

Lagrangian: L= '(PTU)/'Y { Relativistic} —™ (T = V) = (Ekinetic - Epotential) { Classical-limit only, |u] << c}
Canonical QM Commutation Relations inc. QM Time-Energy:

{differential 4-Vector formats} [PP,XV] = ihr]“v — { [Xo,po] = [t,E] = -ih : . }
SR/QM Wave Eqn {inv of Phase Eqn}- KT = —3[CDphase] = PT/h — { Wt = -8t[CD] . } [8“,X"] = n”v — { [Xo,ao] = [t,at] =-1;: [XJ,ak] = +5Jk }
Hamilton'JaCObi Eqn {inv of Action Eqn}: I':’T = ‘a[saction] = hKT - { ET = 'at[s] . }

{integral 4-Scalar formats} Total Momentum: Pr=P +qgA > {E-=E +qo: }
SR Action EQn gy of 1y Eqn)- ASaction = '.‘.pathPT -dX = '.[path(PT ‘U)dt = .[pathl- dt Minimal Coupling: P=Pr-gA—>{E=Er-qo : }
SR/QM Phase Eqn {inv of Wave Eqn}- Achhase = 'IpathKT -dX = '.[path(KT U)dT = ASacion/N {Physical Inverse Effects}

{advanced mechanics} . JOSGphSOH-JunCtion (differential 4-Vector format)- A= '(h/Q)a[Aquot]
Euler-Lagrange Equation: (U = (d/dt)R) — (dr = (d/d1)du) (e easy derivaiion} Aharonov-Bohm (integral 4-scalar format). ADpot = ~(Q/R)parnA-dX
Hamilton’s Equations: (d/dt)[X] = (d/dP+)[H,] & (d/dt)[P+] = (6/0X)[H,]

{SR wave mechanics — requires a 4-WaveVector K as solution} Compton Scatte ring:

d’Alembertian Wave Equation: 99 = (8:/c) - V-V, with solutions ~ Z, (A.) e**" ™ Kjein-Gordon Relativistic Quantum Wave Eqn: 80 = -(m.c/h)?
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There are some paradigm assumptions that need to be cleared up:

Minkowskian:SR 4D Physical 4-Vectors *ARE NOT* generalizations of Classical/Quantum 3D Physical 3-vectors.
While a “mathematical” Euclidean (n+1)D-vector is the generalization of a Euclidean (n)D-vector,
the “Physical/Physics” analogy ends there.

Minkowskian:SR 4D Physical 4-Vectors *ARE* the primitive elements of 4D Minkowski:SR SpaceTime.
Classical/Quantum Physical 3-vectors are just the components of SR Physical 4-Vectors = 4D (1,0)-Tensors.
There is also a fundamentally-related Classical/Quantum Physical scalar related to each 3-vector,
which is just the temporal component scalar of a given SR Physical SpaceTime 4-Vector.

4-Position R = RY = (") = (10,r) = (ct,r) — (ct,x,v.2) @
4-Momentum P = P* = (p*) = (pY, P)

)= ( — (Elc=p'lc, ) @
These Classical/Quantum { H{ } are the dual { H{ } components
of a single SR TlmeSoace 4-Vector = ( )

with SR LightSpeed factor (c*') to give correct overall dlmen3|onal measurement units.

While different observers may see different relative "values" of the
Classical/Quantum components (v°,v',v*,v°) from their point-of-view/frame-of-reference in SpaceTime,
each will see the same actual SR 4-Vector V and its magnitude? = V-V = [(V%) - v-v] at a given <Event> in SpaceTime.
Magnitudes? can be {+/0/-} in Special Relativity, due to the Lorentzian=pseudo-Riemannian metric (non-positive-definite)

SR 4-Tensor SR 4-Vector e
2,0)-Tensor T+ 1,0)-Te V=V calar . .
(1,1()_Te’nsom or T,y (. )yTensor i = OneF(Z,,,‘:,) SRQM: A treatise of SR—QM by John B. Wilson
o orentz Scala

-Tensor V, = (Vo,-
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There are some paradigm assumptions that need to be cleared up:

We will **NOT** be employing the commonly-(mis)used Newtonian classical limits {c—«} and {h—0}.
Neither of these is a valid physical assumption, for the following reasons:
[1]
Both (c) and (h=h/21T) are unchanging Universal Physical Constants and Lorentz Scalar Invariants.
Taking a limit where these change is non-physical. They are CONSTANT.

Many, many experiments verify that these physical constants have not changed over the lifetime of the universe.
This is one reason for the 2019 Redefinition of S| Base Units on Fundamental Constants {c,h,e,ks,Na,Kcp,Aves}.
[2]

Photons/waves have energy (E): via momentum (E=pc) & frequency (E=hw): (W = 2TTV); angular [rad/s], circularicyclels] , 21 rad = 1 cycle }
Let E = pc. If c>«, then E—~. Then Classical EM light rays/waves have infinite energy.

Let E = hw = hv. If h—0, then E—0. Then Classical EM light rays/waves have zero energy.

Obviously neither of these is true in the Newtonian/Classical limit.
In Classical EM and Classical Mechanics, LightSpeed (c) remains a large but finite constant.
Likewise, Dirac’s (Planck-reduced) Constant (h=h/21T) remains very small but never becomes zero.

The correct way to take the limits is via:
The low-velocity non-relativistic limit { |v| << ¢ }, which is a physically-occurring situation.
The Hamilton-Jacobi non-quantum limit { h|V-p| << (p-p) } or { [V-k| << (k-k)}, which is a physically-occurring situation.

SR 4-Tensor SR 4-Vector SR
2,0)-Tensor T+ 1,0)-Te V=V calar . .
(1,1()_%”30”% or T,y () e b = =05 SRQM: A treatise of SR—QM by John B. Wilson
o ” orentz Scala

,1)-Tensor V, = (vo,-v
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There are some paradigm assumptions that need to be cleared up:

We will *NOT* be implementing the common {—lazy and extremely misguided} convention of setting physical constants to

the value of (dimensionless) unity, often called “Natural Units”, to hide them from equations; nor using mass (m) instead of (m,) as the RestMass.

Likewise for other components vs Lorentz Scalars with naughts (,), like energy (E) vs (E,) as the RestEnergy.

One sees this very often in the literature. The usual excuse cited is “For the sake of brevity”.
Well, the “sake of brevity” forsakes “clarity”. There is nothing physically “natural” about “natural units”.

The *ONLY™ situations in which setting constants to unity (1) is practical or advisable is in numerical simulation or mathematical analysis.
When teaching physics, or trying to understand physics: it helps when equations are dimensionally correct.
In other words, the physics technique of dimensional analysis is a powerful tool that should not be disdained.

i.e. Brevity only aids speed of computation, Clarity aids understanding.

The situation of using “naught = ,” for rest-values, such as (m,) for RestMass and (E,) for RestEnergy:
Is intrinsic to SR, is a very good idea, absolutely adds clarity, identifies Lorentz Scalar Invariants, and will be explained in more detail later.
Essentially, the relativistic gamma (y) pairs with an invariant (Lorentz scalar:rest value ,) to make a relativistic component: { m = ym, ; E = yE; }
Note the multiple equivalent ways that one can write 4-Vectors of SpaceTime|(TimeSpace) using these rules:

4-Momentum P = P* = (p*) = (p%,p) = (mc=E/c,p) = -0 Sactionsree ]
= moU = mgy(c,u) = yme(c,u) = (c ) = (mc,mu) = (mc,p)= mc(1,8)= (m.c)T
= (Eo/c®)U = (Eo/c?)y(c,u) = y(Eo/c?)(c,u) = (E/c?)(c,u) = (E/c, ) = (E/c,p) = (Elc)(1,B) = (EJ/C)T

This notation makes clear what is { relativistically-varying=(frame-dependent) vs. Invariant=(frame-independent) } and { Temporal vs. }

BTW, | prefer the “Particle Physics” Metric-Signature-Convention (+,-,-,-). {Makes rest values positive, fewer minus signs to deal with}
Show the physical constants and rest naughts () in the work. They deserve the respect and you will benefit.
You can always set constants to unity later, when you are doing your numerical simulations.

SR 4-Tensor

SR 4-Vector
2,0)-Tensor T+ 1,0)-Te V=V SR 4-Scalar - :
a §)_Te’nsom or T,y (. )yTensor i = OneF(Z,,,‘:,) SRQM: A treatise of SR—QM by John B. Wilson
orentz Scala
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There are some paradigm assumptions that need to be cleared up:

Some physics books say that the Electric field E and the Magnetic field B are the “real” 4-Gradient
physical objects, and that the EM scalar-potential ¢ and the EM 3-vector-potential “A” are just 0=0"=0/0R,=(0,/c,-V) Faraday EM
“calculational/mathematical” artifacts. Tensor
H(at/c,-ax,-ay,-az) Fb = AP - BPAC
Neither of these statements is relativistically correct. —oAA
All of these physical EM properties: {E,B,¢,“A”} are actually just the components of SR tensors, -
and as such, their values will relativistically vary in different observers’ reference-frames. [F* F* FY F%]
xt XX XYy [EXZ

Given this SR knowledge, to match 4-Vector notation, we demote the physical property . [Eyt :zyx :zyy :zyZ]
symbols, (the tensor components) to their lower-case equivalents {e,b,,a}. Lorenz Gauge: [ e ZZ]
see Wolfgang Rindler Conservation of [F* F= F¥ F~]

EM (Vector)Potential =
The truly SR invariant physical objects are: . _ 9-A=(0,/c)(¢/c)--V-a [ 0 -e¥c -e¥/c -e%c]
The 4-Gradient 0, the 4-VectorPotential A, their combination via the exterior (wedge=*) product =(0.p/c?)+V-a=0 [+e*c 0 -b? +b’]
into the Faraday EM 4-Tensor F*® = 9°AP - 6PA° = (9 A A), and their combination via t , . .
the inner (dot=") product into the Lorenz Gauge 4-Scalar (8- A) =0 [+e’/lc +b* O -b*]

[+ec -b' +b* 0]
- components of 4-Tensor F°: electric 3-vector field e = e' = e, =
- components of 4-Tensor F°: [ 0 ,-e%c]

component of 4-Vector A: . - "H_H i i0 i Wk
components of 4-Vector A: L [+e"/c, -€' b*]

Note that the Speed-of-Light (c) plays a prominent role in the component definitions. 4-(EM)VectorPotential [ 0, -elc]
Also, QM requires the 4-VectorPotential A as explanation of the Aharonov-Bohm Effect. — A=A"=(p/c,a) [ +eT /C’ Av Aa]
The physical measurability of the AB Effect proves the reality of the 4-VectorPotential A. :

= E=
Again, all the lower and higher-rank SR tensors can be built from fundamental 4-Vectors. Acu=Aen =(Qe/C,aeu)
SR 4-Tensor SR 4-Vector R
2,0)-Tensor T+ 1,0)-Tensor V¥ =V = (V°,v -Scalar . .
(1,1()_Tg,nsor T, or T, (SR L_COVector:o,,e,ﬁorm) (OBIEEd | SRQM: A treatise of SR—QM by John B. Wilson

orentz Scala
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There are some paradigm assumptions that need to be cleared up:

A number of QM philosophies make the assertion that particle “properties” do not “exist” until measured.
The assertion is based on the QM Heisenberg Uncertainty Principle, and more specifically on quantum non-zero commutation,
in which a measurement on one property of a particle alters a different non-commuting property of the same particle.

That is an incorrect analysis. Properties define particles: what they do & how they interact with other particles. Particles and their properties “exist”
as <events> independently of human intervention or observation. The correct way to analyze this is to understand what a measurement is: the arrangement of
some number of fundamental particles in a particular manner as to allow an observer to get information about one or more of the subject particle’s properties.
Typically this involves “counting” spacetime <events> and using SR invariant intervals as a basis-of-measurement.

Some properties are indeed non-commuting. This simply means that it is not possible to arrange a set of particles in such a way as to measure
(ie. obtain “complete” information about) both of the “subject particle’s” non-commuting properties at the same spacetime <event=.
The measurement arrangement <events> can be done at best sequentially, and the temporal order of these <events> makes a difference in observed results.
EPR-Bell, however, allows one to “infer” (due to conservation:continuity laws) properties on a “distant” subject particle by making a measurement
on a different “local” {space-like-separated but entangled} particle. This does *not* imply FTL signaling nor non-locality.

The measurement just updates local partial-information one already has about particles that interacted/entangled then separated.

So, a better way to think about it is this: The “measurement—updated information” of a property does not “exist” until a physical setup <event> is arranged.
Non-commuting properties require different physical arrangements in order for the properties to be measured, and the temporally-first measurement alters
that particle’s properties in a minimum sort of way, which affects the latter measurement. All observers agree on Causality, the time-order of
temporally-separated spacetime <events>. However, individual observers may have different sets of partial information about the same particle(s).

This makes way more sense than the subjective belief that a particle’s property doesn’t exist until it is observed,
which is about as unscientific and laughable a statement as | can imagine.

**Relativity is the System-of-Measurement that QM has been looking for**

SR 4-Tensor SR 4-Vector e
2,0)-Tensor T+ 1,0)-Te V=V -Scalar . .
(1,§)_Te’nsom or T,y (. )yTensor i = 0ne|=(¥m‘f1) SRQM: A treatise of SR—QM by John B. Wilson
orentz Scala
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There are some paradigm assumptions that need to be cleared up:

**Correct Notation is critical for understanding physics**

Unfortunately, there are a number of “sloppy” notations seen in relativistic and quantum physics.

Incorrect: Using T' as a Trace of tensor T?, or T as a Trace of tensor T""
T'"is actually just the diagonal part of 3-tensor T!, the components: T" = Diag[T"",T%*, T*]
The Trace operation requires a paired upper-lower index combination, which then gets summed over.
Ti is the Trace of 3-tensor T': T\ = T,'+T,%+T5® = 3-trace[T"] = §;T" = +T""+T#*+T* in the Euclidean Metric E" = &

T" is actually just the diagonal part of 4-Tensor T"', the components: T* = Diag[T*°, T",T%, T
The Trace operation requires a paired upper-lower index combination, which then gets summed over. |
T," is the Trace of 4-Tensor T*: T, = T+ T, '+ T2+ T3® = 4-Trace[T"] = N, T* = +T°-T"-T?>-T* in the Minkowskian Metric n** = Diag[+1,-5"]

Incorrect: Hiding factors of LightSpeed (c) in relativistic equations, ex. E = m
The use of “natural units” leads to a lot of ambiguity, and one loses the ability to do dimensional analysis.
Wrong: E=m: Energy [J = kg-m?/s?] is *not* identical to mass [kg], not in dimensional units nor in reality.
Correct: E=mc®: Energy is related to mass via the Speed-of-Light (c), ie. mass is a type of concentrated energy.

Incorrect: Using m instead of m, for rest mass; Using E instead of E, for rest energy
Correct: E = mc? = ymoc® = yE,
E & m are relativistic internal components of 4-Momentum P=(mc,p)=(E/c,p) which vary in different reference-frames.
E. & m, are Lorentz Scalar Invariants, the rest values, which are the same, even in different reference-frames: P=m,U=(E./c*)U

SR 4-Tensor

SR 4-Vector
2,0)-Tensor T+ 1,0)-Te V=V SR 4-Scalar - :
{, 1()-TgnsorTuv or T, (SRZI CoVector: OneF(zrr‘:l) SRQM: A treatise of SR—QM by John B. Wilson
o 5 orentz Scala
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There are some paradigm assumptions that need to be cleared up:

Incorrect: Using the same symbol for a tensor-index and a component Wrong: [X,p'] = ihd"
The biggest offender in many books for this one is quantum commutation. :  [vi KT = RS K
: . e ; Right: [X,p"] = ihd
Unclear because ( i ) means two different things in the same equation. IOl VT ey
Correct way: (i = V[-1] ) is the imaginary unit : { j,k } are tensor-indicies | Better: [P",X"] =ihn
In general, any equation which uses complex-number math should reserve (i) for the imaginary, not as a tensor-index.

Incorrect: Using the 4-Gradient:Gradient One-Form notation incorrectly
The 4-Gradient is a 4-Vector, a (1,0)-Tensor, which uses an upper index, and has a negative spatial component (-V) in SR.
The Gradient One-Form, its natural tensor form, a (0,1)-Tensor, uses a lower index in SR.
4-Gradient: 9=9"=(9,/c,-V)=(9,/c,-\V) Gradient One-Form: d,=(d,/c,V)=(¢ /c,V)

Incorrect: Mixing styles in 4-Vector naming conventions
There is pretty much universal agreement on the 4-Momentum P=P"=(p")=(p° p')=(E/c,p)=(mc,p)=(E/c,»)=(mc,»)
Do not in the same document use 4-Potential A=(@,A): This is wrong on many levels, inc. dimensional units.
The correct form is 4-VectorPotential A=A"=(a")=(a%a')=(¢/c,a)=(v/c,=), with (¢)=the scalar-potential & (a)=the 3-vector-potential

For all SR 4-Vectors, one should use a consistent notation:
The UPPER-CASE SpaceTime (TimeSpace) 4-Vector Names match the lower-case 3-vector names
There is a LightSpeed (c) factor in the component to give overall matching dimensional units for the entire 4-Vector
4-Vector components are typically lower-case with a few exceptions, mainly energy (E) vs. energy-density (e),(pPe),(Pe)

SR 4-Tensor SR 4-Vector e
2,0)-Tensor T+ 1,0)-Te Ve =V = (0, -Scalar ; -
(1,1( )-Tgnsor T or T, (SR Z.Sﬂ\sl‘éltor:c,nep‘ln? SRQM: A treatise of SR—QM by John B. Wilson
o orentz Scala

,1)-Tensor V, = (vo,-v
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SR — QM 4-Vector SRQM Interpretation

@ Old Paradigm: QM (as | was taught...)

Idea

e OR ANd QM as separate theories v

) SciRealm@aol.com
of Physical 4-Vectors http://scirealm.org/SRQM.pdf

Simple GR Axioms:
Principle of Equivalence Quantum
Invariant Interval Measure Gravity 2?7
Tensors describe Physics
SpaceTime Metric g*"
¢,G = physical constants

GR limiting-case: g"* — n*"
Minkowski “Flat” SpaceTime
Metric = (Curvature ~ 0)

Multiple
Particles

Obscure QM Axioms:
Wave-Particle Duality
Unitary Evolution

Operator Formalism

Hilbert Space Representation
Principle of Superposition SR limiting-case:
Canonical Commutation Relation
Heisenberg Uncertainty Principle

Pauli Exclusion Principle (FD-statistics)
Bose Aggregation Principle (BE-statistics)
Hermitian Generators

Correspondence Principle to CM QM limiting-case:
Born Probability Interpretation # particles N >> 1
h,h = physical constants

This was the QM paradigm that | was taught while in Grad School: everyone trying for Quantum Gravity
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4 O RQ pretatio
. ) = o o . = & o - of Q
Old
»
.._ s o 0 . C - 0re C - -0 -
enso d . . - C . C - . . ' R .. o=.o o.
P al 4 O D ea org/SRQM.pd
Simple GR Axioms:
Principle of Equivalence 7‘ Quantum
Invariant Interval Measure - GR| - - = = e e e e Gravity ??7?
Tensors describe Physics GR :
SFé?EeTLme. Mletric g” ./ Yet another
¢,G = physical constants QFT “would be”
/ fortuitous

GR limiting-case: g"' — n* : : merging???

Minkowski “Flat” SpaceTime Another fortuitous Lutliple

Metric = (Curvature ~ 0) ging -« 50+ years

searching for

Obscure QM Axioms: RQM QG with
Wave-Particle Duality NO SUCCESS...

Unitary Evolution

Operator Formalism

Hilbert Space Representation

Principle of Superposition

Canonical Commutation Relation
Heisenberg Uncertainty Principle

Pauli Exclusion Principle (FD-statistics)

Bose Aggregation Principle (BE-statistics) —>

Hermitian Generators
Correspondence Principle to CM
Born Probability Interpretation
h,h = physical constants
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SR limiting-case:
lv| <<c

QM-limiting case:
hIV-p| << (p-p)
or y—Re[y]
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A fortuitous

merging?

= CM

It is known that QM + SR “join nicely” together to form RQM, but problems with RQM + GR...
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SRQM Stu dy: 4-Vector SRQM Interprefation
Physical Theories as Venn Diagram

of QM

SciRealm.org

John B. Wilson

.. Which regions are empirically real?....snese

GR:
General Relativity

QM:
Quantum Mechanics

Quantum

. H 2
SR cravity’ Many-Worlds Interpretations
SpeCial Relat|v|ty Non-local interactions

L o e A . Instantaneous QM entangled connections
GR limiting-case: g"* — n" Minkowski “Flat” SpaceTime = (Curvature ~ 0) Instantaneous Physical Wavefunction Collapse

CM Spacetime Dimensions >4
QM physicists think these areas, ) ) ) Hidden:Alternate Dimensions
anything outside of QM, doesn’t exist... ClaSSICal MeChaI’]ICS Super-Symmetry
SR limiting-case: |v| << ¢ String Theory _ _
Hence the attempt to Quantize Gravity: QM limiting-case: h|V-p| << (p-p) Alternate Gravity Theories
Unsuccessful for 50+ years... Slews of hypothetical new particles
etc.

RQM: o
Sy rong
Relativistic e Idea

Basically lots of stuff for which there is
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SR — QM 4-Vector SRQM Interpretation
A SRQM Study:
A .

: Physical Limit-Cases as Venn Diagram

Which limit-regions use which physics? ..reue

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

Instead of taking the Physical Theories as set, examine
Physical Reality and then apply various limiting-conditions.

Reality

GR limit-case: g"' — n" :
QM limit-case: h|V-p| << (p-p) Minkowski “Flat” SpaceTime What do we then call the various regions?
or y—Re[y] or [V-k| << (k'k = (Curvature ~ 0)

has negligible effect ~ SR—QM (SRQM) : As we move inwards from any region on the diagram, we
L e Special Relativity — Relativistic QM are adding more stringent conditions which give physical
Classical SR limiting-cases of “larger, more encompassing” theories.

Classical GR Classical (non-QM) RQM
Classical (non-QM) Special Relativity Relativistic QM If one is in Classical GR, one can get Classical SR by

(Rl ALY CM moving toward the Minkowski SpaceTime limit.
Classical

'\(A,fg:ac?,{ﬁ)s QM If one is in RQM, one can get Classical SR by moving

(non-SR) Non-relativistic toward the Hamilton-Jacobi non-QM limit, or to standard

‘étigﬁirﬂ’ QM by moving toward the SR low-velocity limit.

Mechanics . ! . ;
Looking at it this way, | can define SRQM to be equivalent

to Minkowski SpaceTime, which contains RQM, and leads
to Classical SR, or QM, or CM by taking additional limits.

My assertion:

' There is no “Quantized Gravity”
SR limit-case; |y} < Actual GR contains SRQM and Classical GR.
Nonsrelativistic velociti ’

, Perhaps “Gravitizing QM”...

/

SR 4-Tensor SR 4-Vector e
2,0)-Tensor T+ 1,0)-Te V=V = (V°, -Scalar ; -
(1,1( )-Tgnsor T or T, (SR L-ggzzzztor:OneF(Zn\Q SRQM: A treatise of SR—QM by John B. Wilson
| orentz Scalar

(0,2)-Tensor Ty, (0,1)-Tensor V, = (Vo,-V)
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SR — QM 4-Vector SRQM Interpretation

' Special Relativity — Quantum Mechanics

o—@ B k d . P P h - SciRealm.org
A Tensor Study a c g ro u n " rove n ys I cs SciRégmgé\cl)\ll.llzsoonq
of Physical 4-Vectors http://scirealm.org/SRQM.pdf

Both General Relativity (GR) and Special Relativity (SR) have passed very stringent tests of multiple varieties.
Likewise, Relativistic Quantum Mechanics (RQM) and standard Quantum Mechanics (QM) have passed all tests within their realms of validity:
{ generally micro-scale systems: ex. Single particles, ions, atoms, molecules, electric circuits, atomic-force microscopes, etc.,
but a few special macro-scale systems: ex. Bose-Einstein condensates, super-currents, super-fluids, long-distance entanglement, etc.}.

To-date, however, there is no observational/experimental indication that quantum effects "alter" the fundamentals of either SR or GR.
Likewise, there are no known violations, QM or otherwise, of Local Lorentz Invariance (LLI) nor of Local Position/Poincaré Invariance (LPI).
In fact, in all known experiments where both SR/GR and QM are present, QM respects the principles of SR/GR, whereas SR/GR modify the results of QM.
All tested quantum-level particles, atoms, isotopes, super-positions, spin-states, etc. obey GR's Universality of Free-Fall & Equivalence Principle and SR's
{ E = mc? } and speed-of-light (c) communication/signaling limit. Meanwhile, quantum-level atomic clocks are used to measure gravitational red:blue-shift effects.
i.e. GR gravitational frequency-shift (gravitational time-dilation) alters atomic=quantum-level timing. Think about that for a moment...

Some might argue that QM modifies the results of SR, such as via non-commuting measurements. However, that is an alteration of CM expectations,
not SR expectations. In fact, there is a basic non-zero commutation relation fully within SR:( [¢",X"] = n** ) which will be derived from purely SR Principles
in this treatise. The actual commutation part ( Commutator [a,b] ) is not about ( i ) or (i ), which are just invariant Lorentz Scalar multipliers.

On the other hand, GR Gravity *does™ induce changes in quantum interference patterns and hence modifies QM:
See the COW gravity-induced neutron QM interference experiments, the LIGO & VIRGO & KAGRA gravitational-wave detections via QM interferometry,
and now also QM atomic matter-wave gravimeters via QM interferometry.
Likewise, SR induces fine-structure splitting of spectral lines of atoms, “quantum” spin, spin magnetic moments, spin-statistics (fermions & bosons), antimatter, QED,
Lamb shift, relativistic heavy-atom effects (liquid mercury, yellowish color of gold, lead batteries having higher voltage than classically predicted, heavy noble-gas
interactions, relativistic chemistry...), etc. - essentially requiring QM to be RQM to be valid. QM is instead seen to be the limiting-case of RQM for { |v| << c }.

Some QM scientists say that quantum entanglement is "non-local”, but you still can't send any real messages/signals/information/particles faster than
SR's speed-of-light (c). The only “non-local” aspect is the alteration of probability-distributions based on knowledge-changes obtained via measurement.
A local measurement can only alter the “partial information” already-known about the probability-distribution of a distant (entangled) system.

There is no FTL-communication-with nor alteration-of the distant particle. Getting a Stern-Gerlach “up” here doesn'’t cause the distant entangled particle to
suddenly start moving “down” there. One only knows “now” that it “would” go down “if* the distant experimenter actually performs the measurement.

QM respects the principles of SR/GR, whereas SR/GR modify the results of QM
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SR — QM 4-Vector SRQM Interpretation

Aé Special Relativity — Quantum Mechanics
' BaCkground: GR PrinCipIes SciReaIm.org
ATensor Study Known PhySics <> Empirically TeSted http://scirsgliﬁ_é:izr;é%\,%cﬁ

of Physical 4-Vectors

Principles/Axioms and Mathematical Consequences of General Relativity (GR):

Equivalence Principle: Inertial Motion = Geodesic Motion, Universality of Free-Fall, Mass Equivalency (MasSinertial = MasSgavitational)

Relativity Principle: SpaceTime (M) has a Lorentzian=pseudo-Riemannian Metric (g""), SR:Minkowski Space rules apply locally (g"*—n"")
General Covariance Principle: Tensors describe Physics, General Laws of Physics are independent of arbitrary, chosen Coordinate-System
Invariance Principle: Invariant Interval Measure comes from Tensor Invariance Properties, 4D SpaceTime from Invariant Trace[g"]=4
Causality Principle: Minkowski Diagram/Light-Cone give { , Light-Like(Null=0), } Measures and Causality Conditions

Einstein:Riemann’s |deas about Matter & Curvature:
Riemann(g) has 20 independent components — too many
Ricci(g) has 10 independent components = enough to describe/specify a gravitational field

_ SR:Minkowski Space is the
{c,G} are Fundamental Physical Constants GR limiting-case: g" — n*

Minkowski “Flat” SpaceTime

To-date, there are no known violations of any of these GR Principles Metric = (Curvature ~ 0)

GR has passed EVERY observational test to-date, in both weak and strong field regimes.

It is vitally important to keep the mathematics grounded in known physics.

There are too many instances of trying to apply theoretical-only mathematics to physics

(ex. String Theory, SuperSymmetry: no physical evidence to-date; SuperGravity: physically disproven).

Progress in science doesn’t work that way: Nature itself is the arbiter of what math works with physics. Tensor mathematics applies well to known
physics {SR and GR}, which have been empirically extremely well-tested in a huge variety of physical situations. Tensors describe physics.

All known experiments to date comply with all of these Principles, including QM and RQM
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Simple GR Axioms:
Principle of Equivalence

Invariant Interval Measure
Tensors describe Physics

GR

SpaceTime Metric g*"
¢,G = physical constants

GR limiting-case: g"* — n*"
Minkowski “Flat” SpaceTime
Metric = (Curvature ~ 0)

Obscure QM Axioms:

Wave-Particle Duality

Unitary Evolution

Operator Formalism

Hilbert Space Representation

Principle of Superposition

Canonical Commutation Relation
Heisenberg Uncertainty Principle

Pauli Exclusion Principle (FD-statistics)
Bose Aggregation Principle (BE-statistics)
Hermitian Generators

Correspondence Principle to CM

Born Probability Interpretation

h,h = physical constants

Another fortuitous
merging??

RQM
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Quantum
Gravity ?77?

FT
/Q

Multiple
Particles

Yet another
“‘would be”
fortuitous
merging???

50+ years
searching for
QG with

NO SUCCESS...

SR limiting-case:
lv| <<c
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QM limiting-case:
hIV-p| << (p-p)

or y—Re[y] or [V'K| << (k-k)

A fortuitous
merging?

3333 » CM

It is known that QM + SR “join nicely” together to form RQM, but problems with RQM + GR...
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4-Vector SRQM Interpretation

. *New Paradigm: SRQM or [SR—-QM]*
4 QM derived from SR + a few empirical facts __ _
e Simple and fits the data T

Simple GR Axioms: (properties) (relations)
Principle of Equivalence SR 4-vector: SR 4-vector.

. R=(ct,r) R=<Event>
Invariant Interval Measure = _
X . U=y(c,u) U=dR/dt
Tensors describe Physics P=(E/c,p) P=(m,)U
SpaceTime Metric g*" K=(w/c,k)

¢,G = physical constants a=(a/c,-V) o=(-i)K

FT
/Q

Multiple
Particles

GR limiting-case: g"* — n*"
Minkowski “Flat” SpaceTime
Metric = (Curvature ~ 0)

SR limiting-case:
v <<c

Derived RQM **Principles**:
Wave-Particle Duality
Unitary Evolution
Operator Formalism QM
Hilbert Space Representation
Principle of Superposition
Canonical Commutation Relation
Heisenberg Uncertainty Principle : . U :
Pauli Exclusion Principle (FD-statistics) Derived QM **Principles**: {Crllll\/lvl.m;l’grlg(c:as)?.or{ SRe[y]} or
Bose Aggregation Principle (BE-statistics) gorregpogdg_?fel PtFmClP|te tt'o CM { |V'k7 - (k?kr))} v v
iti orn Probability Interpretation

E%rrltlﬁnsigrig?\tst?nts Change by a few quanta has

’ pny negligible effect on overall state

This new paradigm explains why RQM “miraculously fits” SR, but not necessarily GR
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Simple GR Axioms:
Principle of Equivalence:

Invariant Interval Measure
Tensors describe Physics

SpaceTime Metric g*"
¢,G = physical constants

GR limiting-case: g"* — n*"
Minkowski “Flat” SpaceTime
Metric = (Curvature ~ 0)

Derived RQM **Principles**:
Wave-Particle Duality

Unitary Evolution

Operator Formalism

Hilbert Space Representation

Principle of Superposition

Canonical Commutation Relation
Heisenberg Uncertainty Principle

Pauli Exclusion Principle (FD-statistics)
Bose Aggregation Principle (BE-statistics)
Hermitian Generators

h,h = physical constants

4 RQ pre O
[ » 0
araqlio ® e
1€ = U 0
» - = _ O B O
o 0 o o selinnieeleldee
o a org/SRQM.pd
(properties) (relations)
SR 4-vector & EM tensor: SR 4-vector & EM tensor: u
R=(ctr)  A=(gp/c,a) R=<Event> A=(¢./c*)U
GR U=y(c,u)  J=(cp.)) U=dR/dt  J=(p,)U=(q)N Y L
P=(E/C,p) ‘ P=(mo)U K= 'a[(Dphase]
K=(w/c,k) F®=[ 0 ,-e%c] FoB=g0AB-gPAC
0=(ak/c,-V) [+e°/c,-€/b'] o=(-)K  U-F*®*=(1/q)F
F=y(E/c.f) F=dPldr  9-F*=(,)J QFT
N=n(c,u) N=(n)U 38-J=0
\ / Multiple
q=0 Particles
Yer > [rRaW _
N SRQM .| QE SR limiting-case:
\ ______ lv| <<c
_______ q,A%0
-------- Qwm =0
‘ '''''' -
__________ EM w/ spin |a.A%0
- — _ AN
Derived QM **Principles**: QM limiting-case:
Correspondence Principle to CM {nV:p| << (p-p)} or {w—Re[y]} or CM lg=0
Born Probability Interpretation {IV'k| << (k'k}}
Change by a few quanta has EM
i~ q,A#0
negligible effect on overall state

This new paradigm explains why RQM “miraculously fits” SR, but not necessarily GR
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4-Vector SRQM Interpretation

CIaSSicaI SR WI EM Paradigm (for comparison) o
CM & EM derived from
M sty SR + a few empirical facts rpraSSnenET

; ; . (properties) (relations)
p :
Sl el SR 4-vector & EM tensor: SR 4-vector & EM tensor:

Princ_iple of Equivalence R=(ct.r A=(9/C,a R=<Event> A=((./c?)U
vaarlant Interyal Meas.ure U=§((c,3) ng::pp,j) ) U=dR/dt J:(E)(E)U:)(q)N
ensors describe Physics P=(E/c,p) P=(m)U K= -3[ynass]
SpaceTime Metric g* K=(w/c,k) F®*=[ 0 ,-e%c] ﬁ FoP=g°AP-gPA°
¢,G = physical constants 0=(a/c,-V) [+e"%/c,-€ib"] o=(-)K U-F®=(1/q)F
F=y(E/c,f) F=dP/dt  3-F**=(p,)J

N=n(c,u) N=(n,)U 9-J=0

GR limiting-case: g"* — n*"
Minkowski “Flat” SpaceTime

Metric = (Curvature ~ 0) q=0

EM SR limiting-case:
The entire classical SR—EM,CM structure is based on the lv| <<c
limiting-case of quantum effects being negligible.

Notice that only the SR 4-Vector relation: [l -
is missing from the Classical Interpretation... Background Inherent Assumption

All of the SR 4-Vectors, including (K & 9), QM limiting-case:
are still present in the Classical setting. {h|V'p| << (p-p) } or {w—Re[w]}

K is used in the Relativistic Doppler Effect and EM waves. or { [V-k| << (k'k) }(doesn’t depend on h)

d is used in the SR Conservation/Continuity Equations, Hamilton-Jacobi non-quantum limit
Maxwell Equations, Hamilton-Jacobi, Lorenz Gauge, etc. Change by a few quanta has
0=(-i)K may be somewhat controversial, but it is the equation for .

complex plane-waves, which are still used in classical EM. neg“glble effect on overall state

This (Classical=non-QM) SR—{EM,CM} approx. paradigm has been working successfully for decades...
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SR—»QMA SRQM = New Paradigm: 4-Vector SRQM Interpreot?tiQo,\l;ll
Ai SRQM View as Venn Diagram

(@ S—
John B. Wilson

| |
A Tensor Study Ra n es Of Va I I d It SciRealm@aol.com
of Physical 4-Vectors http://scirealm.org/SRQM.pdf

The SRQM view:
Each level (range of validity)
is a subset of the larger level.

GR
General Relativity

SRQM
Special Relativity — Relativistic QM

GR limiting-case: g"" — n"' Minkowski “Flat” SpaceTime = (Curvature ~ 0)

QM
Non-relativistic Quantum Mechanics

SRQM limiting-case: |v| << ¢

CM
Classical Mechanics

QM limiting-case: h|V-p| << (p-p)
or y—Re[y] or |V-k| << (k-k)
Change by a few quanta has negligible
effect on overall state

SR 4-Tensor SR 4-Vector e
2,0)-Tensor T+ 1,0)-Te Ve =V = (0, -Scalar ; -
(1,1( )-Tgnsor T or T, (SR Z.Sﬂ\sl‘éltor:c,nep‘ln? SRQM: A treatise of SR—QM by John B. Wilson
o ” orentz Scala

,1)-Tensor V, = (vo,-v
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SR—»QMA SRQM = New Paradigm: 4-Vector SRQM Interpreot?tiQo,\l;ll
Ai SRQM w/ EM View as Venn Diagram

(@ S—
John B. Wilson

|| |
A Tensor Study Ra n es Of Va I I d It SciRealm@aol.com
of Physical 4-Vectors http://scirealm.org/SRQM.pdf

The SRQM view:
Each level (range of validity)
is a subset of the larger level.

GR
General Relativity

SRQM
Special Relativity — Relativistic QM

GR limiting-case: g"" — n"' Minkowski “Flat” SpaceTime = (Curvature ~ 0)

Qm

CM

Classical Mechanics
QM limiting-case: h|V-p| << (p-p)
or y—Re[y] or [V-k| << (k-k)
Change by a few quanta has negligible
effect on overall state EM charge

A = 4-EMVectorPotential

SR 4-Tensor SR 4-Vector

(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v) ] . .
(1.1)-Tensor T or T, | SR 4-CoVector:OneForm SRQM: A treatise of SR—QM by John B. Wilson
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SR — QM A S RQ M : 4-Vector SRQM lnterpre;?tiQo'\;ll
Ai SR language beautifully expressed

o

= = John B. Wilson
A Tensor Study t h P h S cal 4 Ve cto rS SciRealm@aol.com
of Physical 4-Vectors WI I - http://scirealm.org/SRQM.pdf

Newton's laws of classical physics are greatly simplified by the use of physical 3-vector notation, which converts 3 separate space components,
which may be different (relative) in various coordinate systems, into a single invariant object: a vector, with an invariant 3D magnitude.
The basis-values of these components can differ in certain {relativistic} ways, via Galilean transforms, yet still refer to the same overall 3-vector object.

3-vector = 3D (1,0)-tensor [EECHCREPNCEI CHENCELIEIgKIDNERE | style classical 3D objects this way
= (3) = (a — (a',a°,a%) Polar/Cylindrical 3D basis (by a triangle/wedge A) to emphasize
_, (a',a° a“’) Spherical 3D basis that they are actually just the

separated components of

.a=g k=(a")2+(a%)?+(a%)*=|al? The scalar products of either type: {3D,4D} are basis-independent.
a-a aSjka (@) +(@)+(@)=al P ype: { } P SR 4-Vectors.

However, unlike the 3D magnitude? (only +)=Riemannian=positive-definite,
A—=AH Ve (50\2 a.a—(30 )2 the 4D magnitude? can be (+/0/-)=pseudo-Riemannian—CausalConditions

A-A=A I’]WA =(a”)*-a-a=(a") ( / a%) Cartesian/Rect arap The triangle/wedge A (3 sides)

_ — (a,a",a’,a”) Cartesian/Rectangular aslis represents splitting the components

4-Vector = 4D (1,0)-Tensor — (a',a",a% a”) Polar/Cylindrical 4D basis into a scalar and 3-vector.

A=A'=(a") = (a"a) = (a"a) = (a’,a',a’,a") . (a',a",a% a®) Spherical 4D basis

Lorentz

SR is able to expand the concept of mathematical vectors into the Physical 4-Vector, Classical scalar (1D)  4-Scalar ®
which combines both ( ) and ( ) components into a single (TimeSpace) object: 1-time t [m/s] -
These 4-Vectors are elements of Minkowski 4D SR SpaceTime. They have Lorentzian is] Q) e 4-Position R
(relative) components but invariant 4D Magnitudes. There is a Speed-of-Light factor (c) = <time> R = (") = (ct,r)
in the temporal component to make the dimensional units match. - @ = (ro,ri) = (r°,r1,r2,r3) [m]
ex. R = (ct,r): overall dimensional units of [length] = SI Unit [m] ~ 3-position r = <Event>
This also allows the 4-Vector name to match up with the 3-vector name. [m] r'=(r')—(x,y,z) (ctx.y,z)

= <location> ——
In this presentation: ) Classical 3-vector (3D) SR 4-Vector (4D)

| use the +Time (+,-,-,-) metric signature, giving A-A = A"n, A" = [(a°)% - a-a] = (a%)
4-Vectors will use Upper-Case Letters, ex. A; 3-vectors will use lower-case letters, ex. a; | always put the (c) dimensional factor in the temporal component.
Vectors of both types will be in bold font; components and scalars in normal font and usually lower-case. 4-Vector name will match with 3-vector name.
Tensor form will usually be normal font with tensor indicies: { Greek TimeSpace index (0,71..3): ex. A = A" } or { Latin SpaceOnly index (' ): ex.a=a"}

SR 4-Tensor SR 4-Vector - ] = W TH =
(2,0)-Tensor T*  §(1,0)-Tensor V* =V = (v*,v) . SR 4-Scalar Classical (scalar j 3-vector) y VTﬁa\‘;f[TV]V = Nw T TS
(1,1)-Tensor T*, or T,* | SR 4-CoVector:OneForm K(0.0)-Tensor S or S Bl Gaiilean Not Lorentz V= Vi Vo= [(V)7 - vev] = (Vo)
orentz Scala Invariant Invariant = Lorentz Scalar
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SR — QM 4-Vector SRQM Interpretation

A SR 4-Vectors & Lorentz Scalars
A Frame-Invariant Equations
sy SRQM Diagramming Method  .,.==ess

4-Vectors are 4D (1,0)-Tensors, Lorentz 4-Scalars are 4D (0,0)-Tensors, 4-CoVectors are 4D (0,1)-Tensors,
(m,n)-Tensors have (m) ***P*""%** and (N) 4 ower-incices V¥, 8, C,, TePrnee e
Any equation which employs only Tensors, such as those with only 4-Vectors and Lorentz 4-Scalars, (ex. P = P* = m,U = m,U") is
automatically Frame-Invariant, or coordinate-frame-independent. One’s frame-of-reference plays no role in the form of the overall equations.
This is also known as being “Manifestly-Invariant” when no inner components are used. This is exactly what Einstein meant by his postulate:
“The laws of physics should have the same form for all inertial observers”. Use of the RestFrame-naught (,) helps show this.

It is seen when the spatial part (a) of a magnitude can be set to zero (= at-rest). Then the part (2") would equal the rest value (a%).

4-Vector = 4D (1,0)-Tensor

A=A"= (a“) = (ao,ai) = (ao,a) = (30,81,32,33) - (at,axaayaaz){rectangular basis}
- (aoo;o){rest-frame basis, becomes purely temporal}
The components (2”,a’,a”,a°) of the 4-Vector A can relativistically vary depending on the observer and their choice of coordinate system,

but the 4-Vector A = A" itself is invariant. Equations using only 4-Tensors, 4-Vectors, and Lorentz 4-Scalars are true for all inertial observers.
The SRQM Diagramming Method makes this easy to see in a visual format, and will be used throughout this treatise.

The following examples are SR TimeSpace frame-invariant equations:

o fr @D g

The SRQM Diagram Form has all of the

U-U = (c)y? info of the Equation Form, but shows 4-Velocity 4-Momentum
U = y(c,u) overall relationships and symmetries U=y(c,u) P=(mc,p)=(E/c,p)
= — — - 2 among the 4-Vectors much more clearly.

P B (mc,p) _(E/c,p) =m.U _(EO/C )ZU ( U-U=c’ J @ 4-WaveVector

K = (w/ck) = (we,whlv )= (wo/c*)U v K=(wl/c,k)=(w/c,wilv )

P-U=E - :

° Equatlon Form Purple: Mixed TimeSpace components SRQM D|agram Form NV\- -=-Pp
SR 4-Ti SR 4-Vect V] — v — —
(2,0)- Tensor T (1,0)-Tensor VoV = (".v)P. SR 4-Scalar TracelT"] = Mu TS SN

(1,1)-Tensor T* or T," | SR 4-CoVector: OneForm (0,0)-Tensor S or S, V-V = ViV = [(V)” - vev] = (Vo)

orentz Scala = Lorentz Scalar
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SR — QM 4-Vector SRQM Interpretation
A of QM

Ag SR 4-Vectors are primitive elements of
N Minkowski SpaceTime 4D«—(1+3)D o

ATensqr Study SciRealm@aol.com
of Physical 4-Vectors http://scirealm.org/SRQM.pdf

We want to be clear, however, that SR 4-Vectors are NOT generalizations of Classical or Quantum 3-vectors.

SR 4-Vectors are the primitive elements of Minkowski SpaceTime (TimeSpace) = 4D«—(1+3)D, which incorporate both:

a{ }and a{ } as components. and are metrically distinct, but can mix in SR.
4-Vector A=A¥ = (a") = (a",a',a%,a”) = (a’, ) — (a',a",a’,a”) with component scalar (2°) — (a') & component 3-vector ( ) — (a%,a’,a%)

It is the {Classical (Newtonian) or Quantum} 3-vector (a) which is a limiting-case approximation of the spatial part of SR 4-Vector (A) for { |[v| << c }.

i.e. The energy (E) and 3-momentum (p) as “separate” entities occurs only in the low-velocity limit { |[v| << c } of the Lorentz Boost Transform.

They are actually part of a single 4D entity: the 4-Momentum P = (E/c,p); with the components: (E), (P)s
dependent on a frame-of-reference, while the overall 4-Vector P is invariant. Likewise with (1), (r)iin the 4-Position R=(ct,r).
SR is 4D Minkowskian; obeys Lorentz/Poincaré Invariance. | CM is 3D Euclidean; obeys Galilean Invariance.
""" : ner
(E) can intermix with (p) o > : : ‘ [kg-m?/s?]
via a Lorentz Boost 4-Momentum JeEE Sy 4-Momentum @ ©)is oty
Transformation [kg'm/s] P=(E/c,p) v|<<c P_=E/ch p) (A independent of (p)
N, —B¥, 2 : cMm only classically 3-momentum
' : p = p'—(p*,p’,p%) [kg-m/s]
S92 1il| BOMm U IS CLl Minkowski Lorentz Euclidean Galilean  spatial components can
intermix via a Lorentz Rotation . . . . . ; . h .
Transform AY.—R" (1+3)D — 4D [TimeSpace] Invariant ; [Time] + 3D [Space] Invariant intermix via a Galilean (space-only) Rotation
V v ° : Transform R'x time [s]
t intermix with " " -Positi .
siLC:té?eirgléxst r [m] 4-Position Classical limiting-case 4 POSItlonCM o @ (t) is totally t
Transformation R=(ct,r) [v] <<c 1 R =(Ct r) independent of (r) -
A —BY, . CcM only classically 3__pos|t|on
r=r'—(xy,z) [m]
SR 4-Tensor SR 4-Vector V] = v — —
(2,0)-Tensor T+ (1,0)-Tensor V* = V = (v",v) " SR 4-Scalar Classical (scalar fA 3-vector) Trace[T"] = n, T =T+, =T

— - 0\2 — 0 \2
(1,1)-Tensor T*, or T," | SR 4-CoVector:OneForm K(0.0)-Tensor S or S, Bl Gaiilean Not Lorentz V-V = Vi, Vo= [(V)7 - vev] = (V)
orentz Scala Invariant Invariant = Lorentz Scalar
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A-A = (3%’ - a-a) = (a%)?, where (a%) is the rest-value, the value of the temporal coordinate when the spatial coordinate is zero (a=0).
The “rest-values” of several physical properties are all Lorentz scalars.

4-Vector A¥ 4-Vector B*
P = (mc,p) K = (w/c, A=(a’a)=(a’,a',a%a’) mm e B=(b°,b)=(b°b",b* b
= 2 = 2

P-P = (mc) - p-p K-K = (w/c)” - kk . : ) —)(aoo,o) {in spatial rest frame} —’(boo,o) {in spatial rest frame}
(P-P) and (K-K) are Lorentz Scalars. We can choose a frame that may simplify the expressions. 'R =

Notation: RS CX) B-B=(b")
Choose a frame in which the spatial component is zero. “o” for rest values { naughts, “(o)bserver value” }
This is known as the “rest-frame” of the 4-Vector. It is not moving spatially. “0” for temporal components { 0" index }
P-P = (mc)? - p-p = (M,C)? K-K = (w/c)? - k'k = (w,/c)?

4-UnitTemporal

T=y(1,8) P=(m,c=(E/c)
@ P-P=(m.c)*=(E./c

<« 4-Momentum
P=(mc,p)=(E/c,p)

The resulting simpler expressions then give the “rest values”, indicated by (. ).
RestMass (m,) and RestAngularFrequency (wo)
They are Invariant Lorentz Scalars by construction.

This leads to simple relations between 4-Vectors.
P = (m,)U = (E./c’)U K = (w./c?)U

4-Ve|ocity
And gives nice Scalar Product relations between 4-Vectors as well.

P-U = (m,)U-U = (m,)c® = (E,) K-U = (Wo/c)U-U = (Wo/cH)C® = (Wo) = @--eme=m-

4-WaveVector
P-K = (Mowo) — P = (MsC?wo)K = (Eo/wo)K — P = (const)K K=(w/c,k)=(w/c,wdlv_ )
? ’ phase
This property of SR equations is a very good reason to use the “naught” convention for specifying the difference between
relativistic component values which can vary, like (m), versus Rest Value Invariant Scalars, like (m,), which do not vary.
They are usually related via a Lorentz Factor: { m = ym, ; E = yE; ; w = yw, }, as seen in the relations of P, K, U, and T.

P=(mc,p) =(mo)U = (mo)y(c,u) = (ymoc,ymou) =(me,mu) =(mc,p) = (Mec)T = (meC)y(1,B) = (mc)(1,5)
P = (E/c,p) = (Eo/c*)U = (Eo/c*)y(c,u) = (vE/C, ) = (Elc, ) = (E/c,p) = (Eo/C)T = (Eo/c)y(1,B) = (E/c)(1,F)

SR 4-Tensor SR 4-Vector V] — v — —
(2,0)-Tensor T+ (1,0)-Tensor V* = V = (\°,v) SR 4-Scalar Vv VTIa\(;f [Tl;,]v i n”v;rl; T 0 To 2
(1,1)-Tensor T* or T,* | SR 4-CoVector:OneForm K(0.0)-Tensor S or S, V=V V= [(V0) - vev] = (Vo)
orentz Scala = Lorentz Scalar
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A; Manifest Invariance
wess  Invariant SR 4-Vector Relations .. e

Relations among 4-Vectors and Lorentz 4-Scalars are Manifestly Invariant, meaning that they are true in all inertial reference frames.
Consider a particle at a SpaceTime (TimeSpace) <Event>/that has properties described by 4-Vectors A and B:

One possible relationship is that the two 4-Vectors are related by a Lorentz 4-Scalar (S): ex. B = (S) A.
How can one determine this? Answer: Make an experiment that empirically measures the tensor invariant [ B-C / A-C ].
If B=(S) Athen B-C = (S) A-C, giving (S)=[B-C/A-C]

- —R. ) : : . 4-Vector @ 4-Vector
if C=A, then (S) = [ B-A / A-A ] This basically a standard vector projection. B=(b’,b)=(S)A=(S)(a",a

if C=other, Invariant result mediated by another 4-Vector C, always possible.

Run the experiment many times. If you always get the same result for (S), then it is likely that the relationship is true, and thus invariant.

Example: Measure (Sp) = [ P-U / U-U ] for a given particle type. & P-P=(m.c)’=(E./c)’
Repeated measurement always give (Sg) = m, 4 Momentum
This makes sense because we know [ P-U ] =y(E - pru)=E,and [U-U] = c? =(mc,p)=(E/c,p)
Thus, 4-Momentum P = (E,/c?)U = (m,)U = (m,)*4-Velocity U
4-Velocity . @ b=
Example: Measure (Sk) = [ K-U / U-U ] for a given particle type. U=y(c,u) &” hint hintl® ‘m
Repeated measurement always give (Sk) = (wo/c® N o
This makes sense because we know [ K:U ] = y(w - k-u) = w,and [U-U]=¢?
Thus, 4-WaveVector K = (w,/c®)U = (w./c?)*4-Velocity U 4-WaveVector

K=(w/c,k)=(w/c,wﬁ/vphase

Since P and K are both related to U, this would also mean that the
4-Momentum P is related to the 4-WaveVector K in a particular Lorentz Invariant manner for each given particle type... a major hint for later...

SR 4-Tensor
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v)
(1,1)-Tensor T*, or T,' § SR 4-CoVector: OneForm

SR 4-Vector

SR 4-Scalar Trace i n”v;rl;v =T%= To 2
(0,0)-Tensor S or S, V-V = Vin V7 = [(V7)° - vev] = (V)
orentz Scala = Lorentz Scalar
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—*  Definitions, Approximations, Misc. _ &
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B vic; B =|Bl: dimensionless Velocity Beta Factor { B=(0..1); rest at (B=0); speed-of-light (c) at (3=1) }
= 1/\/[1 B = 1[1-BB: dimensionless Lorentz Relativistic Gamma Factor { y=(1..«); rest at (y=1); speed-of-light (c) at (y==) }

(1+x)" ~ (1 + nx + O[x¥) for { [x] << 1 } Approximation used for SR—Classical limiting-cases
Lorentz Transformation A¥, = aX*/0X" = 9,[X"]: a relativistic frame-shift, such as a rotation or velocity boost.

It transforms a 4-Vector in the following way: X* = A*, X" : with Einstein summation over the paired indices, and the (‘) indicating an alternate frame.
A typical Lorentz Boost Transformation A", — B¥, for a linear-velocity frame-shift (x,t)-Boost in the X-direction:

SR:Minkowski Metric

Lorentz t x y z t X y z  General Time-Space Boost JR] =" [R]=n"=V"+ H" -
XBOOSERS t [/ By 0 0] BBt [ sinh[w] 0 0] ﬁ Diag[1,-1,-1,-1] = Diag[1,-1»] = Diag[1,-5"
Tr,anSform x[-By 0 0] & x[-sinh[w] cosh 0 0]Fs B /B g{I|:n Gartesian fo:nl'm} Partlgk[: Phy3|c]s Co -. ]
AVSBSY= y[0 O 0] y[ O 0 1 0] / i N} = 140™ 1, = 8,
z[0O 0 0 1] z[ O 0 0 ] Symmetric Mixed 4-Tensor L i
SR:Lorentz Transform
o [R"] = dR"/ORY = NV,
H = YH - A NG — AH = SH
Original A’ = (a, a*, &', a’) {for X-boost Lorentz Transform} el )VNj ;\\V"A 6= M =9y
Boosted A = (@, a, a, a’)' = AAY — BYAY = ( , _«{Ba‘ +ya’, a’, a%) Nuv/\a = Nag
Sl g it~
2 ,ab1=%_ [a'b]=(a’b,+a'b, +a’b, +a’,) : SpaceTime
= (a°b0 -ab) = (a%° - a'b’ - a%b? — a’b®) = (a’%b%) " R =9,R" =4
using the Einstein Summation Convention where upper:lower paired-indices are summed over. -

Dimension

d[X] = 9"[X"] = (d:/c,-V)(ct,x) = Diag[ , ] = Diag[1,-1;)] = Diag[1, ] =n" Minkowski “Flat” SpaceTime Metric

SR 4-Tensor
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v)
(1,1)-Tensor T*, or T,' § SR 4-CoVector: OneForm

SR 4-Vector

SR 4-Scalar Trace[T"] =n, " =T =T
(0,0)-Tensor S or S, V-V = Vi, VY = [(VO)? - vev] = (V0)?
orentz Scala = Lorentz Scalar
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Space-Like Ordering

Timo-Like Separated <Events> Time Like Invarant Interva Time-Like Separated <Events>

R-AR=(cAt)? - Ar-Ar — +(cAz)

: Invariant = Absolute Temporal Order (A—B—C)
{ ProperTime (t, = t) for | clock at-rest | }
{ Time Dilation (t =yt, = yt) for ...<— moving clock — }
All observers agree on temporal order of time-separated events, _
although temporal event separation may be

: Relative — Relativity of Stationarity (A«—?—B)
Stationarity: (only if in reference-frame with Same-Place occurrence)
“no motion” for stationary particle/worldline, “motion” in all other frames
Any 2 time-separated events may occur in any spatial order = frame-dependent

iqht-l i . Light-Like Invariant Interval @ aht- .
Light-Like (Null) Separated AR-AR=(CA()? - Ar-Ar - 0 Light-Like (Null) Separated

: Invariant = Absolute Temporal Order A—»B—»C : Invariant = Absolute Spatial Order (A—B—C)
All observers agree on temporal order of light- separated events, All observers agree on spatial order/topology of Ilght separated events,
and on the invariant TimeSpace <Event> interval measurement. and on the invariant TimeSpace <Event> interval measurement.
All observers measure invariant LightSpeed (c) in their own frames. All observers measure invariant LightSpeed (c) in their own frames.

Null
[ﬂ}

Space-Lice Invarant Imerval Space-Like Separated <Events>

R-AR= CAt - Ar-Ar — (lAI' (co-linear)

"""""""" NP e : Invariant = Absolute Spatial Order (A—B—C) or (C—B—A)
: Relative — Relativity of Simultaneity (A<—?—B) { ProperLength (Lo) for | ruler at-rest | } by rotation

(“no wait” for simultaneous events, “wait” in all other reference frames)

i Simultaneity: (only if in reference-frame with Same-Time occurrence) { Length Contraction (L = L/y) for ...— moving ruler < }
E temporal order = frame-dependent :

All observers agree on spatial order/topology of space-separated events,
although spatial event separation may be JEsRelaleligROIelpligTeic=TeRTl.

SR 4-Tensor

(2,0)-Tensor T+
(1,1)-Tensor T*, or T,Y
(0,2)-Tensor T,

SR 4-Vector

(1,0)-Tensor V* =V = (V°,v)

SR 4-CoVector:OneForm
(0,1)-Tensor V, = (Vo,-V)

4-Displacement (between <events>)
AR=AR"=(cAt,Ar)=R2-R1 fnite}
dR=dR"=(cdt,dr)

SR 4-Scalar
(0,0)-Tensor S or S,
| orentz Scalar,

{infintesimal}
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4 SRQM Diagram: of QM

| The Basis of Classical SR Physics
Special Relativity via 4-Vectors Screningacon

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

Focus on a few of the main SR Physical 4-Vectors: ——8 A

4-Displacement ST : <Event> 4-Gradient
AR=(cAtAr)  [WRYTY SRQM Diagram WEEI  9=(9 /c,-V)=dlR,

4-Position —(d,/c,-0,,-0,,-0,)
Note that these main 4-Vectors are all =(d/cat,-9/0x,-0/dy,-0/9z)
R=(ct,r ; X J J 2
mathematical functions of the
4-Position R = R":

4-Position

R=R¥=(r")=(r’,r)=(ct,r)=<Event> ® <Event> Location dR=(cdt,dr)
=(r%,r',r,r¥)—(ct,x,y,2)

4-Velocity

U=U"=dR"/dt=(u")=(u’,u)=y(c,u) [ B oNaeay VItiTols
,u°)—>y(c,u,u,u?)

4-Displacement dR = d[R"]
4-Gradient d=00R,: R, =nu.R"
4-Velocity U = d/dt[R"] = dR"/dr

4-Gradient
a=aR=a“=a/aRp=(a~)=(a°,ai)=(at /c,-V) A

<Event> Alteration

=(8°,0",8%,8°)—(9, lc,-0,,-0,,-0,)

<Event>

These 4-Vectors give some of the main classical results of Special Relativity, Motion

including 4D SR:Minkowski Space concepts like:
The Minkowski Metric, SpaceTime (TimeSpace) Dimension = 4, Lorentz Transformations,

<Events>, Invariant Interval Measure, Minkowski Diagrams, Light Cone, etc. 4-Velocity
U=vy(c Music is to time as
Relativity: Time Dilation (<| clock moving |—), ( ) artwork is to space
Invariants: Proper Time ( |clock atrest| ), ( ) 4-Creativity
= ( ; )
Temporal 1D Ordering of:{ (Time-like event separations)=Causality is Absolute , ( )y—Simultaneity is Relative }
{ (Time-like event separations)— is Relative , ( )= is Absolute } SR is a theory about the
rglations between
Use of the Lorentz Scalar Product to make Lorentz Invariants, Continuity Equations, etc. ?EE) %ﬁgﬁﬁﬁ;?ﬁ;fg
The Invariant Speed-of-Light (c), Invariant Proper Measurements (Time & ) " “measured”
Invariant SR Wave Equations, via the d’Alembertian (Lorentz Scalar Product of 4-Gradient with itself), leads to a 4-WaveVector K solution.
SR 4-Tensor SR 4-Vector V] = v — —
(2,0)-Tensor T+ (1,0)-Tensor V* = V = (\°,v) SR 4-Scalar Tiacf [T i n”VoTZ T 0 To 2
(1,1)-Tensor T* or T,* | SR 4-CoVector:OneForm K(0.0)-Tensor S or S, V-V = Vi VY= [(V)7 - vev] = (Vo)

orentz Scala = Lorentz Scalar
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The Basis of most all Classical SR Physics is in the SR Minkowski Metric : - J[R]=0"R'=n" RV A

of “Flat” SpaceTime n* = &[R"] = J[R], which is generated from the 4-Displacement —Diag[1,-1,-1,-1] 9 JR"] 4-Gradient

4-Gradient @ = &" and 4-Position R = R' and and determines the AR=(cAt,Ar) - =Diagi1 _’6jk]’ =0R"/OR'=N\", 3=(3,/c,-V)=3IdR,

i i i .R=R* v ’

invariant measurement interval R-R = R"n,,R" between <Events>. Minkowski Ttsgggfm —>(3t/C,—8x,—3y,—8Z)

This Minkowski Metric n*" provides the relations between the 4-Vectors =(ct.r Metri paceTlme D|m =(dlcaot,-dlox,-0l0y,-0/0z)

of SR: 4-Position R = RY, 4-Gradient 2 = ¢, 4-Velocity U = U* Invariant Interval Invariant
R-R=(ct)*-r-r=(ct)? d’Alembertian

The Tensor Invariants of these 4- Vectors give the: _ 2 _ 2 -

Invariant Interval Measures — , from R-R AR-AR=(cAt)’-Ar-Ar= (CAT) dl.. Wave Equation

Invariant Magnitude LightSpeed (c), from U-U dR-dR=(cdt)*dr-dr=(cd1)Z . PrEREr e DEmEfye .az(atlc)z-v.v
Invariant d’Alembertian Wave Equation & 4-WaveVector K, from 2-0

The relation between 4-Gradient @ and 4-Position R

gives the Dimension of SpaceTime = (4), " Relativity of ™
the Minkowski Metric n®", and the Lorentz Transformations A",. Simultaneity: Stationarity

U-AR = y(c,u)-(cAt,Ar)
The relation between 4-Gradient @ and 4-Velocity U = y(c’At - u-Ar) 4-Velocity Flow
gives the invariant ProperTime Derivative d/dt. = c?At, = ¢®At a-uU=0
Rearranging gives the invariant ProperTime Differential dr, SRQM Diagram
which gives relativistic &

4-Velocity

The ProperTime Derivative d/dz: o U=y(c,u) Music is to time as
acting on 4-Position R gives 4-Velocity U =dR/dt artwork is to space

acting on the SpaceTime Dimension Lorentz Scalar

gives the Continuity of 4-Velocity Flow. nvariant Magnitude e 4-Creativity )
The relation between 4- Dlsplacement AR and 4-Velocity U L'%ﬁ’f;ed SR s a theory about the

gives Relativity of relations between

4D TimeSpace <Events>,

One of the most important properties is the Tensor Invariant : : i A ie. how their intervals are
Lorentz Scalar Product ( dot = - ), provided by the From here’ eaCh ObJeCt WI” be examlned In turn"' “measured”
lowered- index form of the Minkowski Metric n,.

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v)

Trace[T"] =n, " =TH, =T
V-V = Vi VY = [(VO)? - vev] = (V)
= Lorentz Scalar

SR 4-Scalar

(1,1)-Tensor T*, or T, | SR 4-CoVector: OneForm (0,0)-Tensor S or S,
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¢—’— i v a[R]zauRv:np 3 [R“] A
4-Displacement —Diag[1,-1,-1,-1] y 4-Gradient

(et = =Diag[1,-5] | =ORIGR'=N, 9=(8,/c,-V)=aldR,
dR=(cdt,dr) Mi i Lorentz
— inkowski Transf —(d,/c,-0,,-0,,-0,)
_ Metri = Drans O VB - (5/c2t -010x -013y,-0162)

The 4-Position R = (ct,r) {alt. notation = X} is essentially one of [T Invariant
the most fundamental 4-Vectors of SR. e X, =4 =N\, , _
It is the SpaceTime location of an <Event>, R-R=(ct)*-rr=(ci)’ d’Alembertian
the basic element of Minkowski SpaceTime: AR-AR=(cAt)*-Ar- AI"(CAT)2 AT, _ — Wave Equation
a time (t) & a place (r) — ( , )= (ct,r) = () = R. dR-dR=(cdt)*-dr-dr=(cdt)Z B ProperTime Derivative 9-0=(0,/c)*-V-V.
Technically, the 4-Position is just one of the possible properties of

an <Event>, which may also have a 4-Velocity, 4-Momentum, 4-Spin, etc. P =y(9,+(dx/dt)d, +(dy/dt)d +(dz/dt)d,)
But | write the 4-Position R as “=” to an <Event> since that is its most basic property. = vd/dt = d/d
Y T
The 4-Position R = (ct,r) relates to via the fundamental i ity:Stationari ‘ i roperTime Differentia
physical constant (c): the Speed-of-Light = “(c)elerity ; (c)eleritas”, ‘AR = . Continuity o dt =(1/y)dt

which is used to give consistent dimensional units across all SR 4-Vectors. . 4-Velocity Flow =Time Dilatio
a-U=0

The 4-Position is a specific type of 4-Displacement,

for which one of the endpoints is the <Origin>, or 4-Zero Z, or 4-Origin O.

SRQM Diagram

4-Velocity
H U=y(c,u) Music is to time as
=dR/dt artwork is to space

R:—R, Ri—Z 4-Zero Z, 4-Origin O
AR=R;-Ri—>R-Z=R =(0,0"=(0,0)=(0,0,0,0)=(c*now,here)=(0")=<Origin>

As such, any “defined” 4-Position, like the 4-Zero, is Lorentz Invariant (point rotations and boosts), iant M itud 4-Creativity

but not Poincaré Invariant (Lorentz + time & space translations), since translations can move it. nva”_an agnituae = ( ; )
LightSpeed

The more general 4-Displacement and 4-Differential(Displacement) are invariant under both U-U=c? SR s a theory about the

Lorentz and Poincaré transformations, since neither of their endpoints are “pinned” this way. relations between

4D TimeSpace <Events>,
ie. how their intervals are

The 4-Differential(Displacement) is just the infinitesimal version of the finite 4-Displacement, “measured”

and is used in the calculus of SR. U=dR/dt : dR=Udt i
4-Position R=R"=(ct,r)=(r")=<Event>

SR 4-Tensor SR 4-Vector

(2,0)-Tensor T+ (1,0)-Tensor V* = V = (\°,v) SR 4-Scalar Tiacf [ B n“VoTZV L 3 To 2

(1,1)-Tensor T* or T, § SR 4-CoVector:OneForm (0,0)-Tensor S or S, V-V = Vi VY= [(V)7 - vev] = (Vo)
orentz Scala = Lorentz Scalar

R = |dR = JUdt = Jy(c,u)dt = [(c,u)ydt = [(c,u)dt = (ct,r)
R = ZAR = ZUAt = Zy(c,u)At = 2(c,u)yAt = Z(c,u)At = (ct,r)



mailto:SciRealm@aol.com

SR—»QMI , SRQM Diagram: 4-Vector SRQM Interpre;?tiQo,\;l\
The Basis of Classical SR Physics
Invariant Intervals, TimeSpace ScReaim.org

John B. Wilson
ﬁf-ll;?t?;soizzgltz(-j\}/lectors C a u S a I Ity (tl m e) y L I g h tS pee d ) http://scirggllﬁécfrg;g?a&l\'/ﬁgm
o—@ A

, J[R]=¢"R"=n" '
4-Displacement AR“ AR=(cAt, Ar) UA‘E—Rz-R1 (cto-cty,ro-r+): {finite} 4-Displacement —>D[ia]g[1 1-? -1] R’ 4-Gradient
4-Diff i I

AR=(cAtAN ' ~Diag[1,-"] =oR*IOR"=/\", 8=(8,/c,-V)=alaR,
sledial | Minkowski Lorentz —(8,/c,-8 ,-8.,-3.)
4 Fosition Metri Transform 4R 3/cot,-alox.-01dy,-9122)
The Invariant Interval is the Lorentz Scalar Product of . . gL e,
the {4-Position, 4-Displacement, 4-Differential} with itself, . Invarlan;[ Interval M=4=A, , Invarlant_
giving a magnitude-squared, which may be (+/0/-) / R-R=(ct)*-rr=(ct)’ d'Alembertian
W AR-AR=(cAt)*-Ar- Ar-(cAr)2 Tl . Wave Equation
RR= (ctf - rr =(ct)’ =(ctf =-(r) PR dR=(cdt)*-dr-dr=(cdt)2 ProperT|me Der|vat|ve 0-3=(0,/c)*-V-\
AR-AR = (cAt)* - Ar-Ar = (cAt,)? = (cAt)? = -(Ar,)?
dRdR = (cdt)’ - drdr = (cdt.)’ = (cdu)?=-(dro} ~ TTrmeeeeTT
time-like interval (+) ; i o
light-like:null:photonic interval (0) roperTime Differentia
At | \ dt =(1/y)dt
|Ar|/At=c . - i =Time Dilatio

_ The 4D SpaceTime Intervals are Invariant:

future meaning that all observers must agree on their magnitudes,

SRQM Diagram

e regardless of differing reference frames. This leads to the idea Absolute/lnvariant:
Space'A“ke interval () of ProperTime (At = At,), which is the time-displacement Causallty is to Time-like event separation as
elsewhere r measured by a clock at-rest, and (Lo = |AX,]|), which Topology is to
) is the space-displacement measured by a ruler at-rest. Relativistic/E: D dent-
This also leads to the various Causality Conditions of SR, and the ; - . claivisticirame-Lependent
: e : X i nvariant Magnitude Simultaneity is to
concept of the (Minkowski Diagram) Light Cone. The differential form Li as Stationary is to Time-lik ¢ ti
i . K . |ghtSpeed VAL Ime-like event separation
dR-dR is apparently also still true in the curved spacetime of GR. U-U=c?
past
1y (cAt)? (+) {causal = 1D temporally-ordered, spatially relative}
- - >< AR-AR = [(cAt)? - Ar-Ar] = (0)  Light-like:Null:Photonic (0) {causal & topological, maximum signal speed (|Ar/At|=c)}
LightCone — -(Ar,)? () {temporally relative, topological = 3D spatially-ordered}
SR 4-Tensor SR 4-Vector W = W TH —
(2,0)-Tensor T+ §(1,0)-Tensor V* =V = (V°,v) SR 4-Scalar Absolute/Invariant (Ordering of Events) V_VT;a\(;E [TV!, - r[](”\;;l;z ) v-_rvij - ;\r/o )2
(1,1)-Tensor T* or T, § SR 4-CoVector:OneForm (0,0)-Tensor S or S, Causality is temporal Topology : Topology is Causality Moy o
orentz Scala = Lorentz Scalar
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SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:
The Basis of Classical SR Physics

SciRealm.org

A Torsor Sy SpaceTime Dimension = 4D <_( I )D SciReaim@aolcom

of Physical 4-Vectors

http://scirealm.org/SRQM.pdf

o—@
4-Gradient ¢" 4-Position R* 4-Displacement J[R]=¢"R"=n" 3 [R"] " Gd_ t
0=0/0R,=(9,/c,-V)=(" H - Diag[1,-1,-1,-1 Y : -Gradien
=00V 0) RS- o Time LR =(CLD=(1)=<Event> AR=(cAt,Ar) R= - :IDiga[gH -5 TN =orior=n, [l o310 VyaloR,
I 0-R=0"n,,R'=0,R'=4 Il dR=(cdt,dr) k ime [} R owski Lorentz o8 5 -
— X . Minkowski —(a./c,-0_,-0 ,-0.)
Dimension . WDimensiong Metri Transform —(3/cot ‘a/a " 515y.-5/0
9'R = 4 : The 4-Divergence SpaceTime Dimension Relation = W ! paceTime D|m =(0/cdt,-0/0x,-919y,-0/0z)
= (d,/c,-V)(ct,r) Invariant Interval 7 @ M =4 = A, Invariant
N v R-R=(ct)*-r-r=(ct)? d’Alembertian
=[(@,/c)*(ct) - (-V)+(r)] AR-AR=(cAt)*Ar- Ar—(cAr)2 U-a[.] _ g Wave Equation
= (9[t] + V'r) JR-dR=(cdt)’-dr-dr=(cdr)’ Ut ProperTime Derivative 3-9=(9/c)-V-V/
= (3[t] +2,[x] +0,[y] +0,[2]) E/dr[ - B Ua=y(c,u)(9,/c,-V)=v(9urV)
= (Q[t)/et +a[x]/ax +d[y]/dy +0[z)/oz) y =y(0,+(dx/dt)d, +(dy/dt)d, +(dz/dt)d,)
= (1+1+1+1) e , = yd/dt = d/de
il y of & : : :
:‘\It Serval Simultaneity:Stationarity " roperTime Differentia
. Derivation: ‘AR = - Continuity o dt =(1/y)dt
(@R) = (0"RP) = (9R") = Nap(0"RP) = Nep(n™®) = g’ = ne” = 8a° - 4-Velocity Flow =Time Dilatio
= (87481 +5,°+85°) = (1+1+1+1) = 4 = = 2-U=0

SRQM Diagram

This Tensor Invariant Lorentz Scalar relation gives the dimension of SpaceTime.

The only way there can more dimensions is if there is another SpaceTime direction 4-Velocity

available. 4-Divergence (&-[ ]) is also used in SR Conservation Laws, ex. (8-J) = 0 : U:jyé(/;d?
All empirical evidence to-date indicates that there are only the 4 known dimensions: s . .
1 temporal (t): measured in Sl units = [s], with (ct): measured in S| units [m] ‘ nvaE%r;;ttg/lsggc;tude
3 spatial (x, vy, z) : measured in Sl units = [m] = U-U=c?

] SR : Minkowski
These are the 4 components that appearin:. [ | | —1J | AT /1" The Tesseract, TimeSpace is 4D
- 5 *
R=(ct,r)—(ct,x,y,z 5 measured |n SI unItS [m] 0D () 1D (x) 2D (x,y) 3D (x,y,2) 4D (ct,x,y,z) 4D SpaceTime ( + )D =4D

SR 4-Tensor SR 4-Vector s W= TH =

(2,0)-Tensor T+ (1,0)-Tensor V* = V = (\°,v) SR 4-Scalar & = 8" = 8,y = Iy = {1 if p=v, else 0} = Diag[1, ] V.VTIa\(;S [Tv]v B r]”VoTz T 1= To 2

(1,1)-Tensor T, or T, § SR 4-CoVector:OneForm (0,0)-Tensor S or S, 4D Kronecker Delta = 4D Identity = Vi = (V') - v-v] Sl
orentz Scala = Lorentz Scalar
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SR —- QM

SRQM Diag ram: 4-Vector SRQM Interpre;?tiQo,\;l\
> The Basis of Classical SR Physics |

s, 1NE Minkowski Metric (n"Y), Measurement ..ongus

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

O—e@ — " s ’ A
_ _ _ 4-Displacement M e 0 [RY] 3 :
0=0/0R,=(9,/c,-V)=(d" = =()= ~1,-1,- v , 4-Gradient
s — %Ei(cﬁtt’g 4 ' =Diag[1,-3/] =OR"/OR™=N", 3=(3,/c,-V)=3I3R,
SR:Minkowski Metric ~{(cdt,dr) . Minkowski  J _Lorentz —(8,/c,-9,-0,-0)

J[R] = &R’ = N = V¥ + H» _» _ Metri pabeTlm egﬁ;‘SfOrm =(8/cat,-010x,-01dy,-0/07)
Diag[1,-1,-1,-1] = Dlag[1 -la)] = Dlag[1 -] Invariant Interval @ Invariant

{in CarteS|an form} “Particle PhyS|cs Conven R- R—((;t)2 r-(cT) d’Alembertian
{Nu} = 14N"} i ' =8, i“mzb AR-AR=(cAt)*-Ar- Ar-(cAr)2 T _ - Wave Equation
dR-dR=(cdt)*-dr-dr=(cdt)z yd/dt[..] _ 0-9=(3,/c)-V-\,
SR:Temporal Projection ¥+)’  SR:Spatial Projection d/de([..
"Vertical" V" = T'T" — "Horizontal" H" = n™-T"T" —
Diag[1,0,0,0] = Diag[1,0"] Diag[0,-1,-1,-1] = Diag[0,-5"] Relativity of

4-Gradient 0" 4-Position R”

2 \\ roperTime Differentia

(@ Ml 4-UnitTemporal ‘AR = : Continuity o dr =(1/y)dt

9EYUld The component representation of i 4-Velocity Flow =Time Dilatio
4-Vectors and the Minkowski Metric n** ’
will differ with the chosen basis,

Derivation:
J[R] = ¢"R"
=(,/c,-V)(ct,r)]

=[9/c*ct, -Vet] SRQM Diagram

[6/c*r, -Vr ] A=A">(aa",a’,a®) n"—Diag[1,-1,-1,-1]: Cartesian/Rectangular basis “\Vertical”
- 1 W_,Diag[1 ] : Polar/Cylindrical basis (V)ertica
A=A'—(a'a'a%a’) n"—Diag[1,-1,-1/r",-1]: y Vv
=[at, 0] A=A"—(a'a’,a’ a®) n"“—Diag[1,-1,-1/r, ]1: Spherical basis )
0,-Vr . . 4
[ ] Generally, components [n*] = 1/[n,] and n,’ = §,” nvan_ant Magnitude >< Huv
= Diag[+1,-5'] = n* L|ghtSpezed ﬁ PANT
Alt. Derivation: 8X’ = N"@,X" = N*(81aX°)X* = NP(8XY/aX°) = n*(5.") = N U-U=c
The SR:Minkowski Metric n* is the fundamental SR (2,0)-Tensor, which shows how intervals are “measured” in SR TimeSpace. . The SR : Minkowski Metric n™ is the
It is itself the low-mass = (Curvature ~ 0) limiting-case of the more general GR metric g*". It can be divided into temporal and parts. Flat SpaceTime” low-curvature limiting-case
The Minkowski Metric can be used to raise/lower indices on other SR tensors, inc. 4-Vectors. The GR Metric is used in strong gravity. of the more general GR Metric g™
SR 4-Tensor SR 4-Vector e W= TH =
(2,0)-Tensor T*  §(1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar 3 = 8% = 8,y = Iy = {1 if p=v, else 0} = Diag[1, ] V_VTIa\(;f [TV]V B n”VoTz T ol To 2
(1,1)-Tensor T* or T, § SR 4-CoVector:OneForm (0,0)-Tensor S or S, 4D Kronecker Delta = 4D Identity = Vi Ve = [(V)7 - vev] = (Vo)
orentz Scala = Lorentz Scalar
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SRQM Diagram: 4-Vector SRQM Interpreot]?tiQo'\;ll
The Basis of Classical SR Physics

e The Lorentz Transform o,[R"]=0R"/dR"=AY, _ smsiic:
of Physical 4-Vectors http://scirealm.org/SRQM.pdf

: o=@ == S
4-Gradient & \ 74 SAPEIeN) R 4-Displacement —oR = a[R"] 4 Gd' t
=] =] - =(o" = = = - i -1 -1 - \ -Gradien
9=0/0R,=(9,/c,-V)=(8") ).\ R=(ct,r)=(r")=<Event> AR=(cALAN) i -1,-1, —IRVIIRV=AY,

_ =Diag[1,-5"] 9=(8,/c,-V)=aldR,
; dR—(Cdt,dr) q . Lorentz
Tensorial Lorentz Transform A, _Posifi - Minkowski —(8,/¢,-9,,-9,,-,)
; . \ Transform _
{ acting on 4-Vector [ R¥ = ¥, R'1} AT O =(3/cat,-010x,-01dy,-/07)
a[R"] = (9/0R")[R*] = (9/9R")[\"a R Invariant Interval 0 W = 4 = A Invariant
'm = \g (AIRY)[R] = A¥an®, = A, R-R=(ct)2-r-r=(ct)? d’Alembertian
TrA"]={-e0..+} AR- AR-(cAt)i—Ar Ar-(cAr)2 Tl ProperTime Derivative W;lv(e(z9 Ifq)lzje%icg
=| orentz Transform Type dR-dR=(cdt)*-dr- dl’_(Cd‘L' d/dt[..] _ _ g-0=(0,/C)- V"
General Lorentz Boost Transform (symmetric.continuous): Yd/dr [ o Ua=y(cu)(9,/c,-V)=y(9+u-V)
for a linear-velocity time-space-mixing frame-shift (Boost) =y(9,+(dx/dt)d, +(dy/dt)d +(dz/dt)d,)
i =B=(BR" B2 B3)-di ion: \' > B = = =
in the v/c=B=(B",B",B")-direction: \¥ — B* Relativity of \ yd/dt = d/dt . . :
-vBi Simultaneity: Stationarity roperTime Differentia

B ‘AR = . Contin.uity (o] dt =(1/_y)d_t

: 4-Velocity Flow =Time Dilatio
General Lorentz Rotation Transform (non-symmetric,continuous): U=

for an angular-displacement spatial-only frame-shift (Rotation)

SRQM Diagram

angle 6 about the A=(n",n*,n°)-direction: A\*, — R” = Lorentz Transform Properties: 4-Velocity
0 A= (N, | U=y(c,u)
OI /\uq/\uv B npv = 6HV =
i A ; Aw/\" = 4 : SpaceTime Dimension SR:Lorentz Transform

Gengral Lorentz D|§crete Transforms (§ymmetrlc,d|screte). u/\“ A = P nvariant Magnitude A[RY] = IRVIAR' = N
Identity I, Time-Reverse Parity ComboPT  N/VNg TN JightSpsad MR’ ) v
N S =8 A STV N SPY AN S (PT)Y Det[AY] = £1 : (+)=Linearity; (-)=Anti-Linearity U-U=c? Ay = (N NGNS = by = 65,

v \ Y v v v \ v \ - M \
= Diag[1,0] = Diag[-1,0]  =Diag[1,-9] = Diag[-1,-0] N"o\'g_ = D

**The Trace Invariant of the various Lorentz Transforms

0 0 0 0 leads to very interesting results: CPT Symmetry and Antimatter** THA]={-wo. +o0)
0 0 0 0 Invariant Tr[ AY ] s =| orentz Transform Type
v

SR 4-Tensor SR 4-Vector =l e 1) v = Vo TH =
(2,0)-Tensor T f(1,0)-Tensor V* =V = (v*,v) . SR 4-Scalar Trace identifies CPT Symmetry Tﬁa\‘;f[T‘;/]v = N 5= T
(1,1)-Tensor T*, or T.¥ | SR 4-CoVector: OneForm (0,0)-Tensor S or S, in the Lorentz Transform V-V = M V™ = [(v')" - v-v] = (V7o)
orentz Scala = Lorentz Scalar
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A Tensor Study
of Physical 4-Vectors

The Lorentz transformation can also be derived empirically.
In order to achieve this, it's necessary to write down coordinate transformations
that include experimentally testable parameters.

For instance, let there be given a single "preferred” inertial frame (¢, )

in which the speed of light is constant, isotropic, and independent of the velocity
of the source.

It is also assumed that Einstein synchronization

and synchronization by slow clock transport are equivalent

in this frame. Then assume another frame (i, y=(t, )
in relative motion, in which clocks and rods have

the same internal constitution as in the preferred frame.

The following relations, however, are left undefined:

R-R=(ct)>r

a(v) differences in time measurements,

b(v) differences in measured longitudinal lengths,
d(v) differences in measured transverse lengths,
€(v) depends on the clock synchronization procedure in the moving frame,

then the transformation formula (assumed to be linear) between those frames are given by:

—~
)

(v) (t+g(v)x) Lorentz X

X =b(v) (x = vt) . 4-’P‘o§iti0’n R _ x-Boost t[v -By %)
y'=d(v)y R'=(ct',r)=(ct'\x.y’.z)= 1 Transform .0
zZ=d(v)z (th . YBX!_YBCt W YX,y,Z) P | o (Lo X [ -BY
(yct - yxv/c,-yvt + yx,y,2) AVSBS y[0 0
- . z[0O 0 O

€(v) depends on the synchronization convention and is not determined experimentally,
it obtains the value (-v/c?) by using Einstein synchronization in both frames.

The ratio between b(v) and d(v) is determined by the Michelson—Morley experiment.
The ratio between a(v) and b(v) is determined by the Kennedy—Thorndike experiment.
a(v) alone is determined by the Ives—Stilwell experiment.

In this way, they have been determined with great precision to { a(v) = b(v) =y and d(v) =

which converts the above transformation into the Lorentz transformation.

SRQM Diagram:
The Basis of Classical SR Physics
The Lorentz Transform 0,[R"]=0R"/0R'=AV",

4-Displacement
AR=(cAt,Ar)
dR=(cdt,dr)

Invariant Interval

r-r=(ct)?

AR-AR=(cAt)*-Ar- Ar-(cAr)2
dR-dR=(cdt)*-dr-dr=(cdt)Z

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson
SciRealm@aol.com

http://scirealm.org/SRQM.pdf

J[R]=¢"R"=n"
—Diag[1,-1,-1,-1]
=Diag[1,-6"]
Minkowski

6V[R“']
=0RY/OR'=N\",
Lorentz
Transform
paceTime Dim
=4 =/,

4-Gradient
9=(9,/c,-V)=0loR,
—(9, /c,-ax,-ay,-az)
=(dlcat,-0l0x,-dldy,-dldz)
Invariant
d’Alembertian
Wave Equation

3-9=(8,Ic)-V'V/

=y(0,+(dx/dt)d, +(dy/dt)d, +(dz/dt)d,)
= yd/dt = d/dt
roperTime Differentia
dt =(1/y)dt
=Time Dilatio

Continuity o
4-Velocity Flow
2-U=0
SRQM Diagram

SR 4-Tensor
(2,0)-Tensor T+

(1,1)-Tensor T*, or T,Y

SR 4-Vector
(1,0)-Tensor V¥ = V = (V°,v)
SR 4-CoVector: OneForm

SR 4-Scalar
(0,0)-Tensor S or S,

z
0] 4-\elocity
0] 1 U=y(c.u)
0] =dR/dt
] SR:Lorentz Transform
nvariant Magnitude a[RY] = OR"IORY = ¥,
4-Position R¥ L'Ql’j’_tgffzed Ny = (N D NGNS, =y = B
R=(ct,r)=(ct,x,y,z) VAN
e[\ =D AN =4= /N AT

1}, Tr[A"]={-0..+ =}

=Lorentz Transform Type

The value of LightSpeed (c) was
empirically measured by Ole Rgmer
to be finite using the timing of
Jovian moon eclipses.

Trace[T"] =n, " =TH, =T
V-V = Vi VY = [(VO)? - vev] = (V)
= Lorentz Scalar
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SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:
S The Basis of Classical SR Physics
ATensorStu(;y Timespace DimenSion = 4D (—( + )D SciRéglhnqgé\cl)\ll.iLsoonq

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

OR = TN = WP, = 4 BIRIme’R'=n» " A
The SpaceTime Dimension Relations 4-Displacement —Diag[1,-1,-1,-1] IR 4-Gradient
: AR=(cAt,Ar : e Ta ik =9R"/OR'=A\", - V)=
Tensor Invariants include: {Trace, InnerProduct, Determinant, etc.} dRz(((;dt,dr)) —D_|ag[1,-olf] Lorentz 9=(9,/c,-V)=0loR,
4-Divergence[4-Position] , Trace[Minkowski Metric] , and -Posili i AIREEEY Aoy Fali —1{9,/¢,-0,-0,,-0,)
the InnerProduct[any of the Lorentz Transforms] — ' i ' =(0/cat,-9/0x,-919y,-0/0z)

give the Dimension of SR SpaceTime = 4D. Invariant Interval Invariant

R-R=(ct)?-r-r=(ct)? AR ———— d’Alembertian
Minkowski Metric 4-Divergence Lorentz Transform 4§ AR‘(CAt)E-AI' Al"(CAT)2 9[.. ProperTime Derivative Wave quzjanon
Trace Invariant  of 4-Position  Inner Prod Invariant " GeelSCRYRGIEEl(Eel)> S U-a:y(cpu)-(a Io.-V)=(@-+u-V) 0-9=(9,/c)-V'V,
\% = ? tt t
Tracelp]  OR o mNMNemnm s =105+ (0H/A02, 40y 03, (021002,
= Tr[n"] N Nu/\o/\'g = Nag = vyd/dt = d/dz
= Nwln*"] = 3“nuvRZ N®A"NWA's = Nen " Relativity of ™ - N
= ﬂp” = nuvaiR (naB/\uq)(nw/\vB) = nuBnaB Simultaneity:Stationarity Continuity . ropeI‘cj;T?1lyl)dTren 1a
=3 H = v ug = ap = o -
3, L N®Np = NegN™ = Tr[n"] 4-Velocity Flow =Time Dilatio
= (1+1+1+1) = Tr[n"] NN =4 . 2-U=0
=4 =4 =4 Minkowski

Trace Invariant

SRQM Diagram

General Tensor
Trace Invariant 1r[n"=n"=(1) - (-1) - (-1) - (-1)=
THTWI=T =(To+ Ty T2+ T5) kS
=(TO-T-TT%)=T Metric n* Conservation:Non-Divergence _ :

— of Minkowksi Metric nvariant Magnitude

4-\elocity
1 U=v(c,u)
=dR/dt

4-Tensor ” ;
W — 700 701 702 103 [+1,0,0,0] on" nghtSE)ezed
T _[l 1T ;T ,T ] 0 1 00 = %" U-U=c
[T1O,T“,T12,T13] %0’6 ’1 ’O} ; aor]r] n" = 8 Nou™ SRZ MinkOYVSki
[TZO,T21,T22,T23] s _, _ aung\r{l _ acr]z\rj TimeSpace is 4D
[T30,T31’T32’T33 — acéav (1+3)D =4D
=0 =0
SR 4-Tensor SR 4-Vector V] = v — —
(2,0)-Tensor T+ (1,0)-Tensor V* = V = (\°,v) SR 4-Scalar Tfacf [T __n“VoTZ T 0 To 2
(1,1)-Tensor T* or T, § SR 4-CoVector:OneForm (0,0)-Tensor S or S, V-V = Vi VY= [(V)7 - vev] = (Vo)

orentz Scala = Lorentz Scalar
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SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:
= The Basis of Classical SR Physics
Lorentz Scalar (Dot) Product (n. = -) Screan@an con

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

The Tensor Invariant Lorentz Scalar Product (LSP) is the SR 4D (Dot=-) Product. : J[R]=0"R"=n" 3 [R] A
It is used to make Invariant Lorentz Scalars from two 4-Vectors. 4-Displacement —Diag[1,-1,-1,-1] v ‘ 4-Gradient
A-B = A"B' = A'n,,B' = AB' = A'B, = (a°b° - a-b) = (a%b%) AR=(cAt,Ar) . —Diag[1,-5'] =0R"/OR'=A\V, 0=(9,/c,-V)=0loR,
AA=AMA = AMLAT = AR = A, = (2%° - aa) = (%) dR=(cdt,dr) Minkowski LIS —(8,/c,-3 ,-0.,-3.)
-Positi i Transform YR
Metri = - - -
. - baceTime D|m (dlcat,-dlox,-0ldy,-0/0z)
—Diag[+1,-1,-1,-1];caresian) Invariant Interval 0 . M =4=A, Invariant
with e:land ev“as basis vectors R-R=(ct)?-rr=(ct)? Y K d’Alembertian
A = A'8, — A" (Cartesian) AR- AR-(cAt)i—Ar Ar-(cAr)Z T ProperTime Derivative Wave quzjation
(nw ) is itself just the lowered-index form of the gR-dR=(cdt)*-dr-dr=(cduz yd/dt[..] S Ua=y(c,u)(9,/c,-V)=y(8 V) QO~(6/c)V s
SR Minkowski Metric ( n* ), with individual components d/dr[.. ’ ! !

=y(2:+(dx/dt)d +(dy/dt),+(dz/dt)3,)

. = yd/dt = d/dt
The LSP is used in just about every relation between any two interesting 4-Vectors. _ Rel‘?t”_/’ty of ™ > Time Diff i
It also gives the Invariant Magnitude of a single 4-Vector. If the 4-Vector is temporal, SRS EUEE T T— roper 'ime Litierentia
then the spatial component can be set to zero, giving the rest-frame invariant value, Contln.UIty © 0_“ _(1/}')d_t
or the (o)bserver rest value (“naught” = ,). : 4-Velocity Flow =Time Dilatio

[Nuw]=1/n*], else 0. In Cartesian basis, this gives { N, = N* % cartesian}-

SRQM Diagram
4-Momentum
P=(mc,p)=(E/c,p)

4-\elocit : T
@ Y €7 hint hintl® nvariant Magnitude
: LightSpeed

U-U=c?

4-WaveVector
K=(ou/c,k)=(u)/c:,u)r“1/vphase

a’ ora,: (0)" = temporal component (can relativistically vary)
a,. (0)bserver’s rest-frame “naught” Invariant value (does not vary)

SR 4-Tensor SR 4-Vector V] = v — —
(2,0)-Tensor T+ (1,0)-Tensor V* = V = (\°,v) SR 4-Scalar Tiacf [ i n”VoTZ L ) To 2
(1,1)-Tensor T* or T, § SR 4-CoVector:OneForm (0,0)-Tensor S or S, V-V = Vi VY= [(V)7 - vev] = (Vo)
orentz Scala = Lorentz Scalar
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SR — QM 4-Vector SRQM Interpretation

é SRQM Diagram: of QM
The Basis of Classical SR Physics
s, 4=Velocity U, SpaceTime <Event> Motion  ..anes

of Physical 4-Vectors http://scirealm.org/SRQM.pdf
4-Velocity U=y(c,u)=(yc,yu)=(U-0)R=y(3+u-V)R=(d/dt)R= A
. . " — JHRV=H ,

=dR/dr=(dt/dt)(dR/dt)=(dt/dz)(dR/dt)=y(dR/dt)=y(ct,/)=y(c,u)=U A Beplesernat _%g]g[ﬁ ?1 i . 2 [R"] 4-Gradient
4-Velocity U is the ProperTime Derivative (d/dt) AR=(cAt,Ar) . =Diagi1 ,_’5ka =0R"/OR'=/\", 0=(9,/c,-V)=aloR,
of the 4-Position R or of the 4-Displacement AR. dR=(cdt,dr) _ Minkowski Tlr_aorl;gfnotrzm —(9,/6,-0,,-9,-9)

- Metri = - -9/dv.-

It is the SR 4-Vector that describes : = paceTime D|m (6fcct, 0o, .a/ay, )
the motion of through SpaceTime. Invarlan;[ Interval @ W =4=A, , Invariant
(a) For an un-accelerated observer, the 4-Velocity U AR ATRR(_(XBZ Af}CT)( A )2 V?/ Alenébertltgn
is a constant along the WorldLine at all points. =(CAL)-Ar-Ar=(CAt a[.. ' . ave e£quaton
(b) For an accelerated observer, dR-dR=(cdt)’-dr-dr=(cdu)z yd/dt[..] ProperTime Derivative 0-9=(6,/c)*-V"\,

\ U-d=y(c,u)-(9,/c,-V)=y(d+u-V)
=y(0,+(dx/dt)d, +(dy/dt)d, +(dz/dt)d,)
= yd/dt = d/dt

the 4-Velocity U is still tangent to the WorldLine at each point, d/dt[..
but changes direction as the WorldLine bends thru SpaceTime.

The 4-UnitTemporal T & 4-Velocity U are unlike most of the other SR 4-Vectors. ) @)

. Simultaneity:Stationarity ‘ roperTime Differentia
They have 3 independent components, whereas the others usually have 4. AR = . Continuity o dr =(1/y)dt
This is due to the constraints placed by the LSP Tensor Invariants. T-T = +1 & . 4-Velocity Flow =Time Dilatio
U-U = c? have constant magnitudes, giving the Speed-of-Light (c) in SpaceTime. - = a-U=0

A =1’ =R”is normal

Components: NN |

3 independent + 0 independent — 3 independent + 1 independent = 4 independent _to_V\{otId 1

4-UnitTemporal S Y 4-Velocity 4-Momentum | 4-Velocity g ‘ (AsISRElER
T=y(1,6) U=y(c,u) P=(mc,p)=(E/c,p)=m. e i (U-A = 0)c:U LA

P-P=(m.c)’=(E./c)?
P = m,U = (E./c?)U

nvariant Magnitude U=Risaagel

They also usually have the Relativistic Gamma factor (y) exposed The temporal componants give LightSpeed f,°i;NT‘;r,',‘f;§,’}§.)
in component form, whereas most of the other temporal 4-Vectors have it U-U=c?
absorbed into the Lorentz 4-Scalar factor that goes into their components. The spatial components give SRQM Di WorldLine
4-UnitTemporal T = T* = y(1,2) = (y,7) = Ulc lagram L o |
4-Velocity U = U® =y(c,u) = (yc,yu) = cT s -0
4-Momentum P = P® = (mc,p) = moU = ymy(c,u) = m(c,u) = (mc,nu) = (E/c,0) | E, & m,: Invariant Lorentz Scalars
SR 4-Tensor SR 4-Vector V] = v — —

(2,0)-Tensor T+ (1,0)-Tensor V* = V = (\°,v) SR 4-Scalar — Tiacf [T i n”VoTZ T 0 To 2

(1,1)-Tensor T* or T,* | SR 4-CoVector: OneForm (0,0)-Tensor S or S, Relativistic Gammay = 1\[ 1-B:B], B = u/c V-V = Vi, Vo= [(V)7 - vev] = (V)

orentz Scala = Lorentz Scalar
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B SRQM Diagram:

The Basis of Classical SR Physics
4-Velocity |[Magnitude| = Invariant Speed-of-Light (c)

A Tensor Study
of Physical 4-Vectors

4-Velocity U=y(c,u)=(yc,yu)=(U-0)R=y(3+u-V)R=(d/dt)R= oO—@

J[R]=9R'=n"

=dR/dt=(dt/dt)(dR/dt)=(dt/dt)(dR/dt)=y(dR/dt)=y(ct,i)=y(c,u)=U"
The Lorentz Scalar Product of the 4-Velocity leads to the Invariant |[Magnitude|
Speed-of-Light (c), one the main fundamental SR physical constants of physics.

4-Displacement
AR=(cAt,Ar)

=Di LS
dR=(cdt,dr) Diag[1,-6"]

Minkowski
Metri

Alt Derivation?:
u-u TRV

= y(c,u)y(c,u) = ¥*(c? - u-u) = dR/dr-dR/dt
=[1/(1 - B-B)I(c® - u-u) = [1/(1 - B-B)Ic*(1 - B-B)| = (dR-dR)/(dr)?

Invariant Interval °
- U ) , . - R-R=(ct)*-r-r=(ct)?
=c% | t [Magnitude| Speed-of-Light = (cdr)?/(dr)?
c’: Invariant |Magnitude| Speed-of-Light (c) Z oy AR-AR=(cAt)>-Ar-Ar=(cAc)?
(c) is the unique maximum speed of SR causality, dR-dR=(cdt)*dr-dr=(cd)3
which all massless particles (RestMass m,=0), ex. the photon,

travel at temporally & spatially. Massive particles can travel at (c) only temporally.

P = (E/c,p) = (Eo/c®)U = (Eo/c?)y(c,u) = (Elc,

P-P = (m.c)? = (E/c)’ - p-p = (E/c)* - (E/c)*(u-u/c?) = (E/c)’[1-B?]

From this eqn:

(IB|=1) < (Jul]=c) « (m,=0): Massless objects always spatially-move at speed (c)

This fundamental constant Lorentz Invariant (c) provides an extra constraint on the
components of 4-Velocity U, making it have only 3 independent components (u).
This allows one to make new 4-Vectors related to 4-\elocity
4-Velocity by multiplying by other Lorentz Scalars.

1 U=y(c,u
(Lorentz Scalar)*(4-Velocity) = (New 4-Vector) P-P (moC)z_(Eo/C § :dyé/dr)

Components: 3 independent @
P = (E/c.p) = (EJc*)U 4-Velocity P=(mc,p)=(E/c,p) ;

— +1 independent = 4 independent R
U=y(c,u)

4-WaveVector
@ K=(wl/c, k)=(w/c,our“1/vphase

LightSpeed
U-U=c?

K = (w/c,k) = (wa/c?)U

The newly made 4-Vectors thus have
{3 + 1 =4} independent components.

SR 4-Vector
(1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar
(1,1)-Tensor T* or T,* | SR 4-CoVector:OneForm K(0.0)-Tensor S or S,
orentz Scala

o KK=(wo/C) g

SR 4-Tensor
(2,0)-Tensor T+

Relativistic Gammay=1~[1-B-B ], B = ulc

—Diagl 111 B o warv=nr

Lorentz a9 a9
Transform —16,/6.-9,76,-9,)

paceTime Dim
W = 4 = Ay AR Invariant

ProperTime Derivative

Continuity o
4-Velocity Flow
o-U=0

4-Vector SRQM Interpretation
of QM

SciRealm.org

John B. Wilson
SciRealm@aol.com
http://scirealm.org/SRQM.pdf

A

4-Gradient
0=(0, Ic,-V)=0loR,

3 [R¥]

=(0lcat,-0lox,-01dy,-0l0z)

d’Alembertian
Wave Equation

3-9=(8,Ic)-V'V/

roperTime Differentia
dt =(1/y)dt
=Time Dilatio

SRQM Diagram

An interesting thing to note is that all
move at the Speed-of-Light
(c) in 4D SpaceTime. Massive at-rest
particles simply travel at (c) temporally
as U, = (c,0), while massless photons
move at (c) spatially also (in vacuum)
as U, ~ (c,ci). Magnitude V[U-U] = (c)

If (c) was not a constant, but varied somehow, then all 4-Vectors made from the
4-Velocity would have more than 4 independent components, which is not observed.
It seems a strong, compelling argument against variable light-speed theories.

Trace[T"] = nuT" =T =T
V-V =V, VY = [(V)? - vev] = (Vo)
= Lorentz Scalar
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SRQM Diagram:

The Basis of Classical SR Physics
Relativity of Simultaneity:Time-Delay

A Tensor Study
of Physical 4-Vectors

(Simultaneity < Same-Time Occurrence — At=0)
(Time-Delay — Diff-Time Occurrence < At#0)

4-Vector SRQM Interpretation
of QM

SciRealm.org

John B. Wilson
SciRealm@aol.com
http://scirealm.org/SRQM.pdf

Relativity of Simultaneity:Time-Delay
U-AX = y(c,u)-(cAt,Ax) = y(c?At - u-Ax)
= c?At, = ¢°At

If Lorentz Scalar (U-AX = 0 = ¢?Ar),

then the ProperTime displacement (Ar) is zero,

and the s separation (AX = X, - X,) is orthogonal

to the worldline at U. AR-
‘s X, and X, are therefore simultaneous (At = 0)

for the observer on this worldline at U.

Examining the equation we get y(c?At - u-Ax) = 0
The coordinate time difference between the events is (At = u-Ax/c?)
The condition for simultaneity in an alternate reference frame
(moving at 3-velocity u wrt. the worldline U) is At = 0,

dR-dR=(cdt)*-dr-dr=(cdt)Z

O[R]=¢"R"=n""
—Diag[1,-1,-1,-1]
=Diag[1,-6"]
Minkowski

4-Displacement
AR=(cAt,Ar)
dR=(cdt,dr)

4-Position

J-R=4
SpaceTlme

Invariant Interval
R-R=(ct)?-r-r=(ct)?
AR=(cAt)*-Ar- Ar-(cAr)2

6V[R”']
=9R"/o0R'=N\"
Lorentz
Transform

Metri
paceTlme D|m

ProperTime Derivative
U-d=y(c,u)(d,/c,-V)=y(8+u-V)

4-Gradient
9=(9,/c,-V)=0loR,
—(9, /c,-ax,-ay,-az)
=(dlcat,-0l0x,-dldy,-dldz)
Invariant
d’Alembertian
Wave Equation

3-9=(8,Ic)-V'V/

=y(0,+(dx/dt)d, +(dy/dt)d, +(dz/dt)d,)
= yd/dt = d/dt

JU-AR = y(c,u)-(cAt,Ar)})
= y(c?At - u-Ar)

which implies (u-Ax) = 0. Rest-Frame Lorentz J
( ) ProperTime Boost-Frame *<$S c?At, = ¢?At pe a:U=0
This condition can be met by: t=¢r t  TEe-a--

(lu] = 0), the alternate observer is not moving wrt. the events,
i.e. is on worldline U or on a worldline parallel to U.

(|Ax| = 0), the events are at the same spatial location (co-local).
(u-Ax = 0 =|u||Ax|cos[6]), the alternate observer's motion is
perpendicular (orthogonal, 8=90°) to the spatial separation Ax
of the events in that frame. AP =0

. ) Simultaneous in {t’,x’}
If none of these conditions is met,

then the events will not be simultaneous At#0
in the alternate reference-frame. Not Simultaneous in {t,x}
Time-Delay

This can be shown on a Minkowski Diagram.

U

nvariant Magnitude

Continuity of
4-Velocity Flow

ProperTime Differentia
dr =(1/y)dt
=Time Dilation

SRQM Diagram

Realizing that Simultaneity (no-delay)
is not an invariant concept was a
breakthrough that lead Einstein to
Special Relativity (SR).

.
O"
.
.
.
8

LightSpeed
U-U=c?

Temporal Ordering:

Simultaneity (=same time occurrence) is Relative
Separated Events:
Can appear in any temporal order,

depending on one’s reference frame. (Boost)

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector
(1,0)-Tensor V* =V = (V°,v)
SR 4-CoVector:OneForm

(0,1)-Tensor V, = (Vo,-V)

SR 4-Scalar

(1,1)-Tensor T*, or T,
(0,2)-Tensor Ty,

(0,0)-Tensor S or S,
| orentz Scalar,

Causality is Absolute — Invariant Proper Time
Time-like Separated Events:

All observers agree on 1D causal ordering.
Causality is an invariant concept.

Stationarity (=same place occurrence) is Relative

Time-like Separated Events:
Can appear in any spatial order,
depending on one’s reference frame. (Boost) -

Topology is Absolute — Invariant Proper Length

All observers agree on topology=3D spatial ordering.
Topology/topological-extension is an invariant concept.

Separated Events:



mailto:SciRealm@aol.com

4-Vector SRQM Interpretation
of QM

SRQM Diagram:
The Basis of Classmal SR Physics
Relativity of
(Stationarity — Same-Place Occurrence — Ax=0)
(Space-Motion — Diff-Place Occurrence «— Ax#0)

SciRealm.org

John B. Wilson
SciRealm@aol.com
http://scirealm.org/SRQM.pdf

A Tensor Study
of Physical 4-Vectors

a[R]:a“szn“V—
—Diag[1,-1,-1,-1]
=Diag[1,-6"

lag[1,-o'] Lorentz

Minkowski
Metri Transform
paceTlme D|m
o -4 A\,

ProperTime Derivative
U-d=y(c,u)(d,/c,-V)=y(8+u-V)

Relativity of :
U-AX = y(c,u)-(cAt,Ax) = y(c?At - u-Ax)
= c?At, = ¢?At

Let ‘s X, and X, be local (Ax’ = 0)
for the observer on worldline at U.

3 [R¥]
=0RV/OR'=/\"

4-Displacement
AR=(cAt,Ar)
dR=(cdt,dr)

4-Position

4-Gradient
9=(9,/c,-V)=0loR,
—(9, /c,-ax,-ay,-az)
=(dlcat,-0l0x,-dldy,-dldz)
Invariant
d’Alembertian

Wave Equation
9-0=(0,/c)*-V-V.

J-R=4
SpaceTlme

Invariant Interval
R-R=(ct)?-r-r=(ct)?
AR-AR=(cAt)*-Ar- Ar-(cAr)2
dR-dR=(cdt)*-dr-dr=(cdt)Z

This has equation (U-AX) = y(c?At - u-Ax) = y’(c?At’ - u-Ax’).

To be stationary/motionless in the Rest-Frame is Ax’ = 0.

This gives:

y(c®At - u-Ax) = y°(c?At")
To be stationary/motionless in the Boosted Frame is Ax = 0.

y(c®At) = y’(c*At)
Y(At) = y°(At')
There are combinations of the Relativistic Gamma factor

determined by boosts which allow for this, but many more
which do not...

t’

If this condition is not met,
then the events will not be stationary

in the alternate reference-frame. L=t

Stationary in {t’,x’}

This can be shown on a Minkowski Diagram. AX # 0

Not Stationary in {t,x}
Space-Motion

Rest-
ProperTime

=y(2:+(dx/dt)d +(dy/dt),+(dz/dt)3,)

JU-AR = y(c,u)-(cAt,Ar)})
= y(c?At - u-Ar)
= G2At, = C?Ar ¢

.

Lorentz
Boost-Frame *<

t e

Frame

=T

U

nvariant Magnitude

LightSpeed
U-U=c?

Continuity of
4-Velocity Flow
2-U=0

= yd/dt = d/dt

ProperTime Differentia
dr =(1/y)dt
=Time Dilation

SRQM Diagram

Realizing that Stationarity (no-motion)
is not an invariant concept leads to a
duality of Time and Space, via SR
Lorentz TimeSpace Boosts.

Temporal Ordering:

Simultaneity (=same time occurrence) is Relative
Separated Events:
Can appear in any temporal order,

depending on one’s reference frame. (Boost)

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector
(1,0)-Tensor V¥ =V =

(V°,v) SR 4-Scalar
SR 4-CoVector:OneForm

(0,1)-Tensor V, = (Vo,-V)

(1,1)-Tensor T*, or T,
(0,2)-Tensor Ty,

(0,0)-Tensor S or S,
| orentz Scalar,

Causality is Absolute — Invariant Proper Time
Time-like Separated Events:

All observers agree on 1D causal ordering.
Causality is an invariant concept.

Stationarity (=same place occurrence) is Relative

Time-like Separated Events:
Can appear in any spatial order,
depending on one’s reference frame. (Boost) -

Topology is Absolute — Invariant Proper Length
Separated Events:

All observers agree on topology=3D spatial ordering.

Topology/topological-extension is an invariant concept.
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SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:
The Basis of Classical SR Physics

SciRealm.org

The ProperTime Derivative (d/dt) Screningacon

of Physical 4-Vectors

http://scirealm.org/SRQM.pdf

J[R]=0"R"=n" A

4-Veelocity U* braelen o 4-Displacement j 8 [R¥] ,
= = = Diag[1,-1,-1,-1 v , 4-Gradient
U=dR/dr=y(c,u)=(u") R e VIRE AR=(cAt,Ar) : - :IS?a[gh 5] M =orvior=rv, B 9=610-v)20i3R,
ProperTime Derivative —Positi i M'pﬂg}"’Sk' Transform . a/_’a(tat /a C/aaxaféaé)/a
Ura=ric up(8,/e,-V)=r(0u V) = paceTime D|m Jlorcot” i 2
=/(3;+(dx/dt)3 +dy/dt)d +(dz/dt)a,) Invariant Interval @ gy “Invariant
RS oo Ty bty
cAt)>-Ar-Ar=(c . .-
The derivation shows that the ProperTime Derivative dR-dR=(cdt)*-dr- dl"(CdTT yd/dt [._-_] U= onpe)r'(r(lan}ls %G;”V(aat':/_?j v -0=(0,/c)*-V-\,
(d/dz) is an Invariant Lorentz Scalar. Therefore, all d/dr[.. \ SIGH

observers must agree on its magnitude, regardless of QUCA +(dxldt)3 +(dy/dt)8 +(dz/dt)a,

their frame-of-reference. (d/dt) is used to derive some

. ) ) ; Relativity of S
of the physical 4-Vectors: 4-Velocity, 4-Acceleration, Simultaneity:Stationarity \ /// """"" ProperTime Differentia
4-Force, 4-Torque, etc. AR = : : inui dt =(1/y)dt
[ @ ------ . & ------ . - [ =Time Dilatio
4-Position 4-Velocity N 4-Acceleration U=
R=(ct,r) U=y(c,u) A=y(cy’,y'u+va)

4-\elocity

=y(c,u)
=dR/dt

4-Torque . . The ProperTime Derivative can be used to
T8 UVENEINRERRIOEY make new tensors from existing tensors, as it
sFB_RPFC =R A F LightSpeed is taking the derivative of an existing
U-U=c? | tensor by a Lorentz Scalar: the ProperTime .
=d/dt [M*]

0 -cr
+cn'

f=f[tx,y.z]

4-Tensor P 4-Tensor df = dt(@fzr) + dx(&ax) + dy(¥lay) + dz(¥/az)

Anti-symmetric

df/dt = (3ar) + dx/dt (/ax) + dy/dt (/ay) + dz/dt (3/a7)
SR 4-Tensor SR 4-Vector df/dt = (&) + ux(@ax) + uy(ay) + u(9az)
(2,0)-Tensor T*  §(1,0)-Tensor V* =V = (V°,v) SR 4-Scalar — df/dt = (%ar) + u-VI
(1,1)-Tensor T, or T, § SR 4-CoVector:OneForm (0,0)-Tensor S or S, Relativistic Gammay=1~[1-B-B], B = ulc
orentz Scala d/dt = (9at) + u-V
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SR — QM SRQM Diagram: 4-Vector SRQM Interpre;]?tiQo'\;ll
The Basis of Classical SR Physics

ProperTime Derivative in SR: SoResimors
ATensor Study SciRealm@aol.
of Physical 4-Vectors 4'Te NSors y 4'Ve CtO rs y an d 4'S ca I ars http://scireallm.org;T/]SRaQOM(fgcrE
The ProperTime Derivative - - J[R]=8"R'=n RV A
U-3 =y(c, )3, /c,-\ )=y(3+u-V)) = yd/dt = dick 4-Displacement Diag[1,-1.-1-1] IR 4-Gradient
e— ‘ AR=(cAt Ar) ' “Dingit. o N =orRIer=n, B a=(q /0 V)=aleR,
4-Vectors & 4-Tensors (acted on by ProperTime Derivative): dR=(cdt,dr) gil, ¢

Minkowski Lorentz —(9,/¢,-9,-0,-9,)

4-Position R = ® -Positi [ Transform B
4—Ve|ocity U = dR/dz Thooos _» = Metri paceTlme D|m —(alcat,-a/ax,-3/3y,-8/32)
4-Acceleration A=dU/dt @ - = - - Invariant Interval W =4 = A, Invariant
RR=(cty’-rr=(cty’  \\u d’Alembertian
4-MomentumP =mU @----- I AR-AR=(cAt)*-Ar- Ar-(CAr)2 S 0ar = Time Derivat Wave Equation
4-Force F = dP/dt . dR-dR=(cdt)*-dr-dr=(cd Mol ez 9-9=(9,/c)*-V-V.

{ > > (cdt) (cdr)} . U-a=y(c,u)(8,/c,-V)=y(3+u-V) (8,/c)

4-AngularMomentum Me® = R A P = R%PP_R*P° e = =y(8:+(dx/dt)3, +(dy/dt)3, +(dz/d)a,)
4-Torque T% = R A F = R°F*-RPF° = dM */dr = yd/dt = d/dr

roperTime Differentia
Continuity o dt =(1/y)dt
4-Velocity Flow =Time Dilatio

As one can see from the list, the ProperTime Derivative gives the tensors
that are the change in status of the tensor that ProperTime Derivative acts
on. It can also act on Scalar Values to give deep SR results.
A =U’=R”is normal
0-R = 4: SpaceTime Dimension is 4 , o Worrd iR
d/dt(o-R) = d/dt(4) =0 N - 4-Velocity 7 (Ais Spatial)
d/dt(0-R) = d/dt[d]'R + a:U =0 _ 4 U=y(c,u) '

=(9,/c,- < (U-A = 0)-U-LA

5:U = 0: Conservation of the SR 4-Velocity Flow

U =R’ is tangent
to WorldLine
U is Temporal)

...... a1 = = nvariant Magnitude

AJ = 2- i _ : 7
g/c:Jt[U-CUj leg/?jiiclgvj r(l)ant s ey 4-Velocity P vd/dt[..] 4-Acceleration L'Q{?ff;ed
d/de{U-U] = d/de[U]-U + U-d/ckU] = 2(U-A) =0 IiuamtASstl) dfde[..] U’ = A=y(cy',y'u+ya)

U-A = U-U’ = 0: The 4-Velocity U is SpaceTime

WorldLine
. ) @ SRQM Diagram o
orthogonal (1) to it's own 4-Acceleration A=U’ R moves along
@ Worldline
SR 4-Tensor SR 4-Vector

(2,0)-Tensor T+ (1,0)-Tensor V* = V = (\°,v) SR 4-Scalar Tiacf [ B n“VoTZV L 3 To 2
(1,1)-Tensor T*, or T,' | SR 4-CoVector: OneForm (0,0)-Tensor S or S, V-V = Vi V= [(V) - vev] = (Vo)
orentz Scala = Lorentz Scalar
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SR — QM v SRQM Diagram: 4-Vector SRQM Interpre;]?tiQo'\;ll
The Basis of Classical SR Physics

-
ProperTime Differential (dt) — SciReaimorg
R John B. Wilson
A Tensor Study m & SciRealm@aol.com
of Physical 4-Vectors S http://scirealm.org/SRQM.pdf
Cc—@
There are several ways to derive Time Dilation. : J[R]=¢"R"=n" 9 [R A
4-Displacement : J[R'] 4-Gradient
The ProperTime Derivative AR=(cAt, A . —Diag[1,-1,-1,-1] & _ W/9RV=AH racien
=(cAt A =Diag[t,/5"] = || ORIR=N W 3=(3 /. V)=aIoR,

U9 =y(c,u1) =y(@+u-V) = yddt = d/d -
V(G (6 e =GV = : dR=(cdt,dr) Minkowski Lorentz —(9,/c,-3,,-0,-3.)
Metri ransiorm

R= =(8/cdt,-019x,-010y,-019z
ProperTime Differential (Lorentz 4-Scalar): dt =(1/y)dt . paceTime D|m ( - Y )
Invariant Interval W =4 = A, Invariant
dR-dR= cdr) CB @ R-R=(ct)*r-r=(ct)’ d’Alembertian
(cd) AR-AR=(cAt)*-Ar- Ar-(cAr) . Wave Equation
-3=(3,/c)>-V-

4-Differential 4-Velocity dR-dR=(cdt)>-dr-dr=(cdt)2 N ProperTime Derivative
dR=(cdt,dr) @ U=y(c,u)=dR/dt Yd%it[["] 2 U-o=y(cu)(9/c,-V)=v(9+u'V)

Take the temporal component of the 4-Vector relation. : =y(9,+(dx/dt)d, +(dy/dt)9, +(dz/dt)d,)

dt = vdt = vdt SRQM Diagram o - " gar - ANTRS
Y Ydb Relativity of )

At = yAc = yAL - Simultaneity:Stationarity

The coordinate time At measured by an observer is
“dilated”, compared to the ProperTime as measured by a
clock moving with the object. This has the effect that
moving objects appear to age more slowly than at-rest
objects. The effect is reciprocal as well. Since velocity is
relative, each observer will see the other as ageing more
slowly, similarly to the effect that each will appear smaller
to the other when seen at a distance.

nvariant Magnitude

Now multiply both sides by the moving-frame speed v=|v| B — LightSpezed
i = U-U=c
VAt = distance L, the moving clock travels wrt. frame, . [ [~
which is a proper (fixed-to-frame) displacement length. Red and Blue lengths equal in the moving
Lo =7yL ol = - - - frame, ruler moves with it; blue appears

L=(1/y)L,: {in v direction} B ' contracted in the ProperTime frame

SR 4-Tensor SR 4-Vector PR
(2,0)-Tensor T# (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar Relativity. ( ) ( )

(1,1)-Tensor T* or T, | SR 4-CoVector: OneForm (0,0)-Tensor S or S, MUNENENTEH ( ) ( )
orentz Scala
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SR — QM S RQ M D i ag ram : 4-Vector SRQM Interpre;]?tiQo,\;ll
The Basis of Classical SR Physics |
A Tensor Study 4-G rad ient a, SR 4'V6Ctor Fu nCtion : Ope rator SciRégmgé\cl)\ll.iisoonq

of Physical 4-Vectors http://scirealm.org/SRQM.pdf
: : O—. a[R]=auRv=np K "o' A =2
4-Gradient Gradient One-Form 4-Displacement Diag[-1-1.-1] 0 [R"] 4-Gradient
3=8”=8/8Rp=(8“)=(8t/C,-V) 3p=8/3R“=(8u)=(6t/C,+V) AR:(CAt,Ar) . _ g ? "‘.k’ =6Ru’/aRv=/\u'v a=(3./ _v =3/6R
— =Diag[1,-6"] (9,/c,-V) "
—(9,/¢,-0,,-9,,-3,) —(8,/¢,0,,0,,9,) dR=(cdt,dr) . Minkowski Lorentz —(8./c,-0.,-0,,-0))
=(d/cat, -alox, -aldy, -0/0z) =(alcat, dlox, aldy, 9loz) Metri Transform _ PP
- . : - - baceTime Dim -(/Cat, 0/0x,-010y,-010z7)
The 4-Gradient (6")=(d,/c,-V)=(n"'é,) is the index-raised version Invariant Interval W =4 = A A Invariant <
of the SR Gradient One-Form (9,)=(2./c,V). R-R=(Ct)2—r-r=(C1:)2 “ d’Alembertian
It is the 4D version of the partial derivative function of calculus, T ZEN S (IN) R\ I\ (A9 R ; Wave Equation

one partial for each dimensional direction, just as the Del (V) % R-dR=(cdt)*-dr-dr=(cdz)3 - ProperTime Derivative -3=(6I/C)Z-V'V
is the 3D version of the partial derivative function. -

The 4-Gradient is a 4-Vector function that can act on other
4-Scalars, 4-Vectors, or 4-Tensors. The 4-Gradient tells how

things change wrt. ( , )=4D (TimeSpace). \ roperTime Differentia
It is instrumental in creating the ProperTime Derivative -AR = . Continuity o dt =(1/y)dt

U-0 = yd/dt = d/dt. 4-Velocity Flow =Time Dilatio

The 4-Gradient plays a major role in advanced
physics, showing how SR waves are formed,
creating the Hamilton-Jacobi equations, the

Euler-Lagrange equations, Conservation 4-TotalMomentum

Equations (3-[..]=0), Maxwell's Equations, P.=(E./c,p,)=(H/c,p, 4-Gradient
the Lorenz Gauge, the d’Alembertian, etc. = -9[Saction] a=(3,/c,-V)
It gives the Dimension of SpaceTime, the v
Minkowski Metric,and the Lorentz Transformations. [-] nvariant Magnitude
caligan LightSpeed
In QM, it provides the Schrodinger relations. LG U-U=c? The 4-Gradient is a 4D
P = (E/c,p) = ihd = ih(d./c,-V) Scalar vector-valued function

4-TotalWaveVector
K,=(w./ck,)

which can act on other
SR objects: 4-scalars,
4-vectors, 4-tensors

argument

The 4-Gradient is fundamental
in connecting SR to QM.

SR 4-Tensor SR 4-Vector Hamilton-Jacobi Equation: Pt = -9[Saction] Trace[T"] = N T =T =T

2,0)-Tensor T* 1,0)-Tensor V¥ = V = (V%,v SR 4-Scalar . ion: =_
a 1()_Tgnsor s (s d L_co\,ectonone I:(orm) (0.0).Tensor S or S, SR Plane-Wave Equation: Kr = -9[®phase] VAV = VWY = (V) - vev] = (Vo)

orentz Scala = Lorentz Scalar



mailto:SciRealm@aol.com

SR — QM A SRQM Diagram: 4-Vector SRQM Interpre;]?tiQo,\;ll
5 The Basis of Classical SR Physics
e INvariant d’Alembertian Wave Equation (0-9) _ oz

SciRealm@aol.com
of Physical 4-Vectors http://scirealm.org/SRQM.pdf

The Lorentz Scalar Product Invariant of the 4-Gradient gives the

J[R]=¢"R"=n" P [R“']
Invariant d’Alembertian Wave Equation, describing SR wave motion. Y

44AD§PIaZ?2ent —Diag[1,-1,-1,-1] sl 4-Gradient
It is seen, for example, in the SR Maxwell Equation for EM light waves. dR;E?:dt’d:)) =Diag[1,-5"] -3F|3_ 1OR"=N\", 0=(9,/c,-V)=aloR,
dt Minkowski orentz —(8,/c,-8,,-8,,-3,)

2-9=(0, Ic)-V-V Lorenz Gauge= Metri Transform

Conservation of = =(0d/caot,-0/9x,-9/0y,-0/0z)
: . : paceTlme D|m —
d Alembertian_~5.5)a_3(3-A)=y1,J “EM Potential: #A=0® Invariant Interval @ invariant
Maxwell EM Wave Eqn R-R=(ct)’-r-r=(ct)’ d’Alembertian

4-(EM)VectorPotential 4-CurrentDensity AR-AR=(cAt)*-Ar- Ar-(cAr) T i Wave Equation

A=A"=(¢/c,a)=(p./c?)U J=J"=(pc,j)=p(c,u)=p,U IDR-dR=(cdt)*dr-dr=(cdt)2 yd/dt[..]

Aen=Aen"=(Pen/C,aEm) =qn,U=gN d/dz[..
Importantly, the d’Alembertian is fully from basic SR rules,
with no quantum axioms required. However, Relativity of
it will be seen again in the Klein-Gordon RQM wave equation. 3
Its solution provides for the introduction of SR 4-WaveVector K ‘AR = : Continuity o dt =(1/y)dt
which can also be given by the negative Gradient of a Lorentz Scalar Phase . . 4-Velocity Flow =Time Dilatio

-
-------

4-WaveVector K = (wo/c*)U = (w/c,k) = -9[Dphase] = I[K'R]

The usual mathematical (complex) plane-wave solutions apply in SR:
f = (a)*e”[zi(K-R)], with (a)mplitude possibly {4-Scalar S, 4-Vector V", 4-Tensor T"}
Invariant Phase {KG wave, EM wave , Grav wave}

K-R = (w/c,k)-(ct,r)

U-U=c’ SR is the “natural” 4D
4-WaveVector 4-Gradient arena for the description
= 9=(d,/c,-V of waves, using the
K ((.U/C,k) ( : ) d’Alembertian

L K-K=(woc)’ g 9-0=(0,Ic)-VV 89 = (3,/c)-V-V
SR 4-Tensor SR 4-Vector

(2,0)-Tensor T+ (1,0)-Tensor V* = V = (\°,v) SR 4-Scalar Tiacf [ B n“VoTZV L 3 To 2
(1,1)-Tensor T*, or T,' | SR 4-CoVector: OneForm (0,0)-Tensor S or S, V-V = Vi V= [(V) - vev] = (Vo)
orentz Scala = Lorentz Scalar

nvariant Magnitude

P LightSpeed
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4-Vector SRQM Interpretation

SRQM Diagram:
The Basis of Classical SR Physics
ot Continuity of 4-Velocity Flow (0:U=0)  ..snae

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

Continuity of 4-Velocity Flow 9-U=0 : J[R]=¢"R"=n" 3 [RY] A
This leads to all the SR Conservation Laws. 4‘55‘_"""‘&629“ : —Diag[1,-1,-1- 11§ ot 4-Gradient
dRZ(Cdt’d X =Diag[1,-5"] =0R*/OR"=N", 8=(9,/c,-V)=alaR,

R =4 =(cdt,dr) Minkowski Trfrf?f"éfm —(9,/¢,-9,-0,-9,)
d/dt(e-R) = d/dt(4) = 0 _ Metri =(d/cot,-0/9x,-010y,-019z
el = el = Pl = 0 Invariant Interval ( Invarianty )
d/dt(8-R) = d/d[d]'R + &-U = 0 i e =4=/\ , :
a-U = -didda]R R-R=(ct)?r-r=(ct)? d’Alembertian

= _(U-9)[9]R AR-AR=(cAt)*-Ar- Ar-(cAr) .. 5 —_—- Wave Equation

— v dR-dR=(cdt)*-dr-dr=(cd roperiime Lerivative 9-0=(0,/c)*-V-V.
U et L] B Uamour(a/o. Ve V) N

— TN CH = =y(d+ + +
o-U = -U,0,0'R": | believe this is legit, partials commute V(¢ (dx/dt)o, (dy/dt)ay (dz/dt)o,)
o-U =-U.a.n" Relativity of , . .
a-U =-U, (09 Simultaneity:Stationarity pmmmmmm=—a roperTime Differentia
#U=0 AR = y(c,u) nul iz =(yer
Conservation of the 4-Velocity Flow . , =Time Dilatio

(4-Velocity Flow-Field) Z
SRQM Diagram
All of the Physical Conservation Laws are in the form of 4-Velodit .
a 4-Divergence (& ..] = 0), which is a Lorentz -Velocity The Conservation Laws of SR
Invariant Scalar equation, a continuity equation | U=ricu) quantities are all in the form
) y : =dR/dt of Continuity Equations

. . a,0-U — 9-a,U = 0-A
nvariant Magnitude = (g,a° + V-a) =

LightSpeed with A = (a%a) = a U

U-U=c’

These are local continuity equations which basically
say that the temporal change of a quantity is balanced
by the flow of that quantity in-to or out-of a local region.

Conservation of

Conservation of Charge, continuity eqn: o'R=4 U-oal.. Continuity o :
(4-Vector A=a U)

Po0-U=3-pU=0-J=(9,p+V+j)=0 SpaceTime yd/dt..] 4-Velocity Flow
Dimensiog d/dt[.. o-U=0

> Any Lorentz
E Scalar:Rest Value

N 8-A=d-a U=a 8-U=0

o

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T*  §(1,0)-Tensor V¥ =V = (\°,v) ¢, SR 4-Scalar Trace[T"] = n, T" =T =T

= - 0\2 — 0 \2
(1,1)-Tensor T* or T, § SR 4-CoVector:OneForm (0,0)-Tensor S or S, V-V = Vi VY= [(V)7 - vev] = (Vo)
orentz Scala = Lorentz Scalar
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SR — QM 4-Vector SRQM Interpretation

A SRQM Diagram:
5 The Basis of Classical SR Physics

o0—@ SciRealm.org
= = John B. Wilson
<Event> Substantiation SoReaim@aolcom
of Physical 4-Vectors http://scirealm.org/SRQM.pdf
Now focus on a few more of the main SR 4-Vectors. : - . A
4-Displacement [I=VENIE SRQM Diagram <Event> 4-Gradient
4-Position R* . AR=(cAt,Ar) BRLeE) Alteration = V)=
_ " [ ] <Event> Location , ocation 9=(9,/c,-V)=0loR,
R=(ct,r)=<Event> dR=(cdt,dr)
e Sonc Ao
4-Ve|ocit U+ = =(0d/cot,-0l0x,-0/0y,-31dz)
y ® ----P» <Event> Motion R=(ct.r

U=dR/dt=y(c,u)

4-Gradient 0"
9=0/0R,=(3,/c,-V) <Event> Alteration

Lorentz Scalar Sl =

<Event>
Substantiation

4-Momentum P
P=(E/c,p)=(mc,p)=(mc,mu) <Event> Substantiation
=(E./c?)U=(m,)U (particle:mass)

_ 4-WaveVector K* <Event> Substantiation |
K=(w/e k)=(wlc,whlv, ) (wave:phase oscillation);
=(1/cT, AN)=(wo/c2)U :

orentz Scalar

<Event>
Motion

<Event> Substantiation

y ity W
4-CurrentDensity:ChargeFlux J (charge Q or q)

J=(pc,j)=L§pc,pU)L=j(po)vrgc,U) ---»
() ' <Event> Substantiation
4-(Dust)NumberFlux N* = (dust:number N or no)

4-Velocity

U=y(c,u)

N=(nc,n)=(nc,nu)=(n,)y(c,u)

(no)U T -, ------ ,- Ce T - ------ - Motion of various Lorentz Scalars leads to the
These 4-Vectors give more of the main classical results of Special Relativity, “Substantiation” of the various physical SR 4-Vectors.
including SR concepts like:
SR Particles and Waves, Matter-Wave Dispersion Lorentz 4-Scalar a,
Einstein’s , Rest Mass, Rest Energy 4-Vector A = A¥ = (a%a) = a U = a y(c,u) = a(c,u) = (ac,au)
Conservation of Charge (Q), Conservation of Particle Number (N), Continuity Equations

SR 4-Tensor SR 4-Vector

(2,0)-Tensor T+ (1,0)-Tensor V* = V = (\°,v) SR 4-Scalar Tfacf [ B n“VoTZV L 3 To 2
(1,1)-Tensor T* or T, § SR 4-CoVector:OneForm (0,0)-Tensor S or S, V-V = Vi VY= [(V)7 - vev] = (Vo)
orentz Scala = Lorentz Scalar
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SR - QM 4-Vector SRQM Interpretation

SRQM Diagram:
| S The Basis of Classical SR Physics
ATensor Study 4-Momentum, EinStEin’S E — ch SciReam@aol com

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

o—@ =
4-P03|t_|on R=(ct, ) 4-Displacement f SRQM Diagram 4-Gradient
4-Gradient 9=(7/c, ) AR=(cAt,Ar) 8=(9,/c,-V)=dlaR,
4-Velocity U = y(c, ) e Postion —(6/0:0,:8,3)
T PRI =(dlcat,-0/ox,-01y,-010z)

o meyd/dt[..] _.f[P-dR] (mo) = (Eo/c?)
~\..[-S = [P-U]/[U-U] = E./c?
= [P-RJ/[U-R] = -Sac/c’t

4-MomentumP =( , )=mU=ymo(, )=m(, )

action,free]

Temporal part:

{energy} 4-M ¢ which }natches:
3 A \ -Momentum - 2
+ A Sact = -ImoC” dt
(rest) + (kinetic) \ P=(E/c,p)=(mc,p)=m.U s
. for a free patrticle
Spatial part: p = Eu/c? = yE,u/c? = ymou = mu

Sact = '.[(rﬂoo2 + V)d’C
Sact = -J(Eo + V)dt
in a potential

{3-momentum}

4'M°mentum P = ( ’ ) = 'a[Saction,free] 5 '( ’ )[Saction,free] \ E2
4-TotalMomentum Pr = ( ,107) = 0[Saction] = -(" ', ) Saction] ' 4&!‘;2203)3’ = |p[Pc*+E2

) = m2|u|202+E02

= E2|B[2+E,2
Temporal part: - — = Ezo}j(zlﬁlﬁlz)
ek (P-P) = (E/c)~(p ) = (mqC)’ I
- : E? = (Iplc)” + (moc®)’ =~

Spatial part: °
{3Fim°mpentum} E? = (|p|c)? + (E.)* : Einstein Mass:Ene

Relativistic Energy(E):Mass(m) vs Invariant Rest Energy(E,):Mass(

SR 4-Tensor SR 4-Vector — — 2 — 2 . B
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar E= YEO_ YMoC™ = MC Tracgff““] = r]uv;l";" ="
(1,1)-Tensor T or T," | SR 4-CoVector:OneForm [ (0.0)-Tensor S or S, V-V = ViV =[(v) - vev
| orentz Scalar = Lorentz Scalar

(0,2)-Tensor T, (0,1)-Tensor V, = (Vo,-V)
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SR — QM 4-Vector SRQM Interpretation

SRQM Diagram:
et The Basis of Classical SR Physics
ATensor Study 4-Wa\leve ctor ] SciReam@sol.com

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

= = A
4-P05|t_|on R=(ct, ) 4-Displacement SRQM Diagram 4-Gradient
4-Gradient o=(7/c, ) AR=(cAt,Ar)

8=(d,/c,-V)=a/éR,

4-Velocity U = y( g ) dR4(_(|;:(£['SCiit:()m Wave Phase Equation —(9,/c,-6,,-0,,-9,)
= _ =(olcat,-0/ox,-010y,-010z)
4-WaveVector K = (1, ) = (wo/c?)U = y(wo/c?)( , ) (Wo/c2yd/dt[ ] ik (Wc?)

=( , ) o/Cc?)d/dt I- ) = [K-U]/[U-U] = wo/c? 2
ProperTime Derlvatlye = [K'RJ/[U-R] = -@pnase/C1
Temporal part: U-9=yd/dt=d/dr.

4-WaveVector
{ang ular freq uency} K=(w/c=2mv/c,k)=(w/c,wi/v

which matches:

q)phase = 'on dT
for a free particle

phase

(1/cF, AN)=2T1(1/cT, A/N)=(ws/c2)

~

-
-

Spatial part: . U ) ! Wave VEREE : Dgrase = -J(wo + V/M)dT
{3-Wavevect°r} |U Vphasel =C = |Vgr0up Vphasel |l Vgroup* phass= 2 : na potentla/

' RestAngular - w?
4-WaveVector K = ( : ) = 'a[cbphase,free] = '( ) )[q)phase,free] ", Frequency @ R ," = |k|2c2+w,2
4-T0talwavevect0r KT = ( y ) = 'a[q)phase] = '( ) )[q)phase] 4L_l\_/eIOC|ty "' = w2|u|2/02+w02

) = w|B+wd
\ —dR/dT "O = wOZ/(1-|B|2)
Temporal part: = Y202

P part. W = -0|Wpnasefree] - WT = 0| Pphase] Y
{angular frequency} (KK) = ((U/C)z-(kk) = (wo/C)Z W = YW,

: . w? = (|k|c)® + (w,)? : Matter-Wave Dispersion Relation
Eltiapart: Relativistic AngF Invariant Rest AngF
{3-wavevector} elativistic AngFreq(w) vs Invariant Rest AngFreq(w,)

SR 4-Tensor SR 4-Vector V] = v — =
(2,0)-Tensor T*  (1,0)-Tensor V* =V = (\°,v) 0 OS$ 4-ScaSIar S Vpnase = W/[K| = w/k = E/p = mc?/mu = ¢?/u = c/B V.VT;a\(;S [Ti/]"_:?(u\;;r)l; -_v--rvuiJ - ;\r/0 )
(11)-Tensor T or T, SR 4-CoVector:OneForm . Z;reenrgosrcal(;r y Vgroup = OW/I|K| = dw/dk = E/dp = pc?/E = |u| = u = cB rlwl_orentz Scalar O
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SR —- QM

SRQM Diagram: 4-Vector SRQM Interpre;?tiQo'\;ll
> The Basis of Classical SR Physics .
s, 4=CUrrentDensity, Charge Conservation  ...reoe

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

o o—e A
4-POSIt_|On R=(ct, ) 4-Displacement SRQM Diagram 4-Gradient
4-Gradient 0=(¢ /c, ) AR=(cAt.Ar) 0=(9,/c,-V)=0loR,

. dR=(cdt,dr)
4-Velocity U = y(c, ) 4-Position Conservation of Charge —(9,/¢,-9,,-9,,-9,)
3J=0 =(d/cdt,-0/0x,-01dy,-019z)
4-CurrentDensity J=(, ) =pU=7po(, )=p(, )
4-ChargeFlux J - F
Temporal part: 4-Cu_rentDensity
{charge-density} J=(pC.j)=(pC,pu)=pU
Spatial part:

{3-current-density}

- -
S m -

]
1
1
L]
1
- po
1
1
A}

*-- -

Conservation of Charge (Q) Q = Jpd®x = [ypod® = Jydr podA 41]\—/elocny 22|j|2,02+p02
=y(c,u) % = 02lul2/c2+0.2

— poVo ’ _ p2|u|2/C 2p0

8d = (0/0,V)(pe,)) = (9p + Vi) = 0 N — - olBlees

Continuity Equation:Noether’s Theorem JdT-J = -cQ/V, J-d) = (oclofiei) = . = 7P,

The temporal change in charge density is balanced by ( )2—_(p'C) 'g-l )= (QOC) _

the spatial change in current density. . p = (lil/e)” + (po) b= 1P :

Charge is neither created nor destroyed Relativistic ChargeDensity(p) vs Invariant Rest ChargeDensity(p.)

It just moves around as charge currents...

SR 4-Tensor

(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v)

1,1)-Tensor T or T,' § SR 4-CoVector:OneForm
0,2)-Tensor T, 0,1)-Tensor V, = (vo,-V

SR 4-Vector

Rest Volume
V, = Jyd® = [ydr dA

emphasizing linear contraction along direction dr

SR 4-Scalar
(0,0)-Tensor S or S,
orentz Scala

Trace[T"] = nuT" =T =T
V-V = Vi VY = [(VO)? - vev] = (V)
= Lorentz Scalar
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SR — QM SRQM Diagram: 4-Vector SRQM Interpre;?tiQo'\;ll
- The Basis of Classical SR Physics |
e, A=(Dust)NumberFlux, Particle # Conservation . sz

SciRealm@aol.com

of Physical 4-Vectors http://scirealm.org/SRQM.pdf
o —e A
4-POSIt-IOI‘I R=(ct, ) 4-Displacement SRQM Diagram 4-Gradient
4-Gradient 0=(0 /c, ) ggﬂ(cﬁ:gr)) 9=(3,/c,-V)=aloR,
=(cdt,dr
4-Velocity U = y(c, ) 4-Position Conservation of Particle # —(6,/¢,-0,,-9,,-9,)
=(olcat,-0/ox,-010y,-010z)

4-NumberFlux N=( ", )=nU=yn,(, )=n(, )
Temporal part: 4-NumberFlux
{number-density} N=(nc,n)=(nc,nu)=n,U

Spatial part:
{3-number-flux}

- -
S m -

]
1
1
L]
1
- N,
1
1
A}

o---p ; .

Conservation of Particle # (N) N = [nd® = [ynod®x= Jydr n,dA 4-Velocity . In[2/c2+n,2
—n,Ve o) = neluffcng?

ON = (/0 Vy(100) = (@00 + Von) =0 e — - (18
Continuity Equation:Noether’s Theorem w _ 5 B . = y2n;?
The temporal change in number density is balanced by (N N)Z—_(nC) '(? n) = (2n°C) n=yn
the spatial change in number-flux. . n-= (In]/c)” + (no) —
Particle # is neither created nor destroyed Relativistic NumberDensity(n) vs Invariant Rest NumberDensity(n,)

It just moves around as number currents...

SR 4-Tensor
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v)

1,1)-Tensor T or T,' § SR 4-CoVector:OneForm
0,2)-Tensor T, 0,1)-Tensor V, = (vo,-V

SR 4-Vector

Rest Volume
V, = [yd® = [ydr dA

emphasizing linear contraction along direction dr

SR 4-Scalar
(0,0)-Tensor S or S,
orentz Scala

Trace[T"] = nuT" =T =T
V-V = Vi VY = [(VO)? - vev] = (V)
= Lorentz Scalar
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4-Vector SRQM Interpretation

Lorentz Transforms A", = 0,[X"]
/. (Continuous) vs (Discrete)
(Proper Det=+1) vs (Improper Det=-1) cerne

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

The main idea that makes a generic 4-Vector into an SR 4-Vector is that it must transform correctly according to an SR Lorentz Transformation { A", = aX*/oX" = 8,[X"]},

which is basically any linear, unitary or antiunitary, transform (Determinant[A"\] = 1) which leaves the Invariant Interval unchanged SR:Lorentz Transform

The SR continuous transforms (variable with some parameter) have {Det = +1, Proper} and include: P [Ru'] = JR"/OR' = \*
“Rotation” {a mixing of space-space coordinates} and “(Velocity) Boost” {a mixing of time-space coordinates}. 1 A 0o Al QG e . "

The SR discrete transforms can be {Det = +1, Proper} or {Det = -1, Improper} and include: Ny = (AW NG = by = 8%

“Space Parity-Inversion” {reversal of the all space coordinates} , “Time-Reversal’ {reversal of the temporal coordinate} , Nuw/\"\'s_= N

“Identity” {no change}, various single dimension “Flips”, “Fixed Rotations”, and combinations of all of these discrete transforms. qm w

=L orentz Transform Type

Continuous: Boost depends on variable parameter 8, with y=1/\/[1-[32]
Typical Lorentz Boost Transformation,
for a linear-velocity frame-shift X-Boost:

X-Boosted 4-Vector
A'= (a, a*, a’, a%) = A=A"=\" A" —B" A'=(a”,a’)
A = ( y —(ya' - yBa*, -ypa’ +ya*, @, a’)

C B AY Det[B*,]= +1, Proper _ e :
By 4 | g 4—Vect(3r Proper: preserves orientation of basis
A=A"=(a",a)

—(a), a*, a’, a%)

Discrete: Parity has no variable parameters

Det[P",]= -1, Improper

A'=(a, a, @, a) E:;ﬁ;tz ([ o b o ] (-1)°=-1 Parity-Inversed 4-Vector
: - ) P ’ ’ —(~_0 o7
AY =(a, a', @, a) Transform X[ O 0 0] a A=A" —/\uthv—>F)u A'=(a™,a’)
=P"AY N —PY, = Y [0 O 0] —>(a , -a", -a’, -az)
y z[0O O O ]
=(a, -a, -2, &) Improper: reverses orientation of basis
SR 4-Tensor SR 4-Vector V] = v — —
(2,0)-Tensor T+ (1,0)-Tensor V* = V = (\°,v) SR 4-Scalar Tfacf [ i n”VoTZ L ) To 2
(1,1)-Tensor T, or T, § SR 4-CoVector:OneForm (0,0)-Tensor S or S, VIV = VNV = (V)" - vev] = (Vo)

orentz Scala = Lorentz Scalar
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4-Vector SRQM Interpretation

Lorentz Transforms A", = 9,[X"]
Proper Lorentz Transforms (Det=+1):
st Continuous: (Boost) vs (Rotation) ...

B = v/c: dimensionless Velocity Beta Factor { =(0..1), with speed-of-light (c) at (B=1) } 4-\/ector
y = 1~[1-p?% = 1N[1-B-B]: dimensionless Lorentz Relativistic Gamma Factor { y=(1..«) } A=A'=(a’a

Lorentz Transforms: Space-Space Time-Space
Typical Lorentz Boost Transform (symmetric): Lambda ( A\) for Lorentz Lorentz Rotation

for a linear-velocity frame-shift (x,t)-Boost in the X-direction: B (B ) for Boost Transform . 0 4 (B J= {4 Infinity)
N\ — B, [7] = eM(gK) = * TR NESRE Doytijit Det[B* ]=+1
By 0 O -sinh[] 0 O (10100 ProperTransforms
-By 0 0[f-sinh[ ] 0 oFe*¢1 000 ) Determinant=+1 .
0 0 0 0 0 of (100009 {cos? + sin?=#+1] Rotated 4-Vector : Boosted 4-Vector
0 00 0 0 0 (jp00o00}) Circularly-Rotated 8 Hyperbolically-Rotated
A= (&, o, ', &) e e A=p=RA=(2’,a') S A'=A"=B"\A'=(a’.a’)
A = (a\, a, a’, a”) = B A = ( : , @, @)

¢ = rapidity = hyperbolic angle
y = cosh[ {]= 1N[1-B’]
By =sinh[ (]

= tanh
Typical Lorentz Rotation Transform (non-symmetric): P g
for an angular-displacement frame-shift (x,y)-Rotation about the z-direction:
A, — RY, [0] = eMN0-J) =

SR:Lorentz Transform

o 0 01 eAﬁe 0 a[R¥] = dRVIGR" = A¥,
8 8 ( ‘ 0] N = (/\-1 W AN =t =8
0 0 0 ( [o N\l =
Ri=(a, &, 2,
A = (@, &, &,

(zs c'?)“T'eTrTé';"Truv a, o)—re?:of\‘ffft?f ()PP SR 4-Scalar The Lorentz Rotation R", is a 4D rotation matrix Trace[T"] =N, 7" = T4, =T

(0,0)-Tensor S or S, It simply adds the time component, which remains V-V = VEn VY = [(VO)? - vev] = (V0)?
orentz Scala unchanged (1), to the standard 3D rotation matrix. = Lorentz Scalar
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4-Vector SRQM Interpretation

Lorentz Transforms A", = 9,[X"]
Proper Lorentz Transforms (Det=+1):
s (Boost) vs (Rotation) vs (Identity) ..o

4-\/ector
A=A'=(a’a
Space-Space Time-Space
Lorentz Rotation

) 0 0.
Y -vB; [ A%, A% ] Trin.J=4 ) Trau’ns_fo:m Transform ~7.v -0 4} r[B*,]={4..Infinity}
-vB j Detln*,]=+1 g A"v—N"y = 8", = 1 A"\ —RY, \_ Det[R",]=+1 Det[B* ]=+1

General L orentz Rotation Transform (non-symmetric.continuous):
for an angular-displacement frame-shift (Rotation)

General Lorentz Boost Transform (symmetric.continuous):
for a linear-velocity frame-shift (Boost)
in the v/c= B (B",p?,8%)-direction:

N, — BV, = A,

Lorentz Identlty

angle 8 about the Ai=(n',n?n?)-direction: dentical 4-Vector Rotated 4-Vector : Boosted 4-Vector
A, RV, = o ' Un-Rotated Circularly-Rotated . Hyperbolically-Rotated
0 A=A"=n" A'=(a°,a’)=A A=A"=RY A'=(a",a’) ; A=A"=B" A'=(a’,a’)
0 j The Lorentz Identity Transform is :

the limit of both the Rotation and

. ) . ) Boost Transfoms when the '

Lorentz Identity Transform (symmetric,”discrete:continuous”): '
for a non-frame-shift (Identity) ]

respective “rotation angle” is 0

in any direction SR:Lorentz Transform
N, — ¥, = &, = Diag[1,8] = Iy = o [R“] OR"/ORY = NV,

0, A = (N AN =, =Y
0 THA]={-e0. +e0} '

=Lorentz Transform Type
B = v/c: dimensionless Velocity Beta Factor { B=(0..1), with speed-of-light (c) at (B=1) }
y = 1~[1-B% = 1\[1-B-B]: dimensionless Lorentz Relativistic Gamma Factor { y=(1..) }
Identity transformation for zero relative motion:boost/rotation: B[0] = R[0] = 14
Proper Transformation = positive unit determinant: det[B] = det[R] = det[n] = +1. '
Inverses: B(v)™" = B(-v) (relative motion in the opposite direction), and R(8)™" = R(-8) (rotation in the opposite sense about the same axis)
Matrix symmetry: B is symmetric (equals transpose, B=B"), while R is nonsymmetric but orthogonal (transpose equals inverse, R" = R™")

20) Tonsor T 11,01 Tersor vt = v = () P SR 4-Scalar The Lorentz Rotation R ( Tr=(0.4} ) mees Trace[T"] = T = T, = T

_ ¥, (Tr={4..0} ) at V-V = VP VY = [(VO)2 - vev] = (V0. )2
1,1)-Tensor T*, or T, | SR 4-CoVector: OneForm (0,0)-Tensor S or S, the Lorentz. Boost B* ( Nuv (V') - v=v] = (V7o)
U “ i the 4D Identity I = &, ( Tr={4} ) 2 Lorentz Scalar
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Lorentz Transforms A", = 0,[X"] “=""

Discrete (non-continuous)
(Parity-Inversion) vs (Time-Reversal) vs (Identity)_ e

ATensqr Study SciRealm@aol.com
of Physical 4-Vectors http://scirealm.org/SRQM.pdf

4-\ector
General Lorentz Parity-Inversion (Space-Reversal) Transform: A=A"=(a’a)

/_\u'v — P¥, (Improper,symmetric,discrete) No mixing Time

|10 Lorentz ﬁm @ m

0 Identity

@ Transform
General Lorentz Time-Reversal Transform: ’

N\—n\=8"=1
N, — T, (Improper,symmetric,discrete)

TimeSpace

Parity-Inversion
Transform

=|-1 Oj j _1_ Oj
General Lorentz Identity Transform: Identical 4-Vector JTime-Reversed 4-Vector §Parity-Inverted 4-Vectorf Combo PT'd 4-Vector
N, — r]ulv =§", = 14 (Proper,symmetric) A’:Apvzn”’VA"z(aov,a’) A’:AU'zTP'VA":(aO',a’) A’:AU':PP'VAV=(a0"a’) A!=Ap'=(PT)p'VAv=(aO',aa)

=(a’,a)=A

=(-a’,a) =(a’,-a) =(-a’-a)

SR:Lorentz Transform
a[R"] = OR"/ORY = A\, P
— -1 . a — —
M= (N N =y = 8 dently
Transform

/\uvv_’np‘v=8“’v

Lorentz
Parity-Inversion

Transform
/\p v_’l:,H v

TrAM]={-c0..+}

=L orentz Transform Type

Both the Parity-Inversion (P) and Time-Reversal (T) have a Determinant of -1, which is an improper transform.
However, combinations (PP), (TT), (PT) have overall Determinant of +1, which is proper.

Classical SR Time Reversal neglects spin and charge. When included, there is also a Charge-Conjugation(C) transform. RS IUEIRQVErely
Then one gets (CC),(PP),(TT),{PTKPT}), & permutations of (CPT) transforms all leading back to the Identity (Iu)). A=A"=(a°,a)

SR 4-Tensor SR 4-Vector

Note that the Trace of Discrete Lorentz Transforms goes in Trace[T"] =N, TV=TH, =T
2,0)-Tensor T+ 1,0)-Tensor V¥ =V = (V°,v SR 4-Scalar . ; R X MNuv b
(1 1()-Tgnsor T orTy (SR )4-CoVector:0neF(orm) (0,0)-Tensor S or S, steps from {-4,-2,2,4}. As we will see in a bit, this is a major | EVEVE= Vi WA= (V)5 = vev] =H(Ve)e
’ orentz Scala hint for SR antimatter and CPT Symmetry. = Lorentz Scalar
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4-Vector SRQM Interpretation

SRQM Lorentz Transforms A", = 9,[X"]

Discrete & Fixed Rotation — Particle Exchange sy

John B. Wilson
A Tensor Study

of Physical 4-Vectors L orentz C (o]0 rd i hate- F I i p Tran SfO rms http://scirggliﬁ?;gs@??a&'\'/ﬁgcrﬂ‘

Tr[R",]=2+2cos[8]={0..4}

SR:Lorentz Transform

& TifFt)= 2 Det[R" J=cos[6}? + sin[o}2= +1

Lorentz t B a[R"] = 6R¥/OR" = \¥

' t X Det[Ft",]= -1 t X y z e -
_'I:_"p'tf t[-1 0 t 0 ) 0] N = (W) NN =ty = 8
N X0 x[0 cos[e] -sin[e] 0] =
T |%1o o ¥[0 sinfé] cosfe] 0] Nul\"=4=N AT
=T z[ 0O O z[0 O 0 11 Tr[A%]={-o0..+ 0}

=Lorentz Transform Type

TrFx"\]= 2
Det[Fx",]= -1 . i i i i i
[ ] Tr[Fxy*\]=2+2cos[r] = 0 /1An)|/_| single Lorel_'ltz. Flip Tratl;\.sfotlfm is Implgoper, W|t.r:ha Dgt?rmlr.\antt
e 2 4 o 2= +1 . However, pairwise combinations are Proper, with a Determinan
Det[Fxy" ]J=cos[m]* + sin[m] +1. All single flips have Trace of 2.
The combination of any two Spatial Flips is the equivalent of a Spatial
Rotation by (1) about the associated rotational axis.
sin(tr) = 0, cos(m)= -1
Since this is a Proper transform, it is also the equivalent of a particle
location exchange.

The combination of all three Spatial Flips, Flip-xyz, gives the Lorentz
Parity Transform, which is again Improper, with Trace of -2

Tr[prvy]: 2 The Flip-t is the standard Lorentz Time-Reversal, Improper.
Det[Fy*\]= -1

Tr[Fz".]= 2 Lorentz Transform 4,[R"]=A", :
Det[FZu'v]= 1 [ A%,/ ] temporal-spatial-mixed InnerProd[A“]
’ "o i ] components All Lorentz Trans.

ApNV=4=NP N,

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T (1,0)-Tensor V* =V = (V°,v)

Trace[T"] =N, T" =T, =T
V-V = Vi VY = [(V)7 - vev] = (Vo)
= Lorentz Scalar

SR 4-Scalar
(0,0)-Tensor S or S,

1,1)-Tensor T, or T, § SR 4-CoVector:OneForm
H
| orentz Scalar,

(0,2)-Tensor Ty, (0,1)-Tensor V, = (Vo,-V)
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4-Vector SRQM Interpretation

SRQM Lorentz Transforms A*, = 8,[X*]
Lorentz Transform Connection Map s

SciRealm@aol.com
http://scirealm.org/SRQM.pdf

A Tensor Study
of Physical 4-Vectors

Boost (any Axis) Other Axis : SR:Lorentz Transform
N, — B, Rotations & - 2 3V[R”'] = dRY/OR" = N\,

izei577 |7 Ny 2 R S TR (1/2)]=2 Ay = (NI AN, =t = 8%,
r[BY.]={4..Infinity} A r[R"\]={0..4} AuRotalggn- /2 Det[]=+1 v v _v
\\ : T '> v V[Tr ] <‘ i I o
Continuous '~ ,*° Xy s e TrAY]={-..+=}
a . \‘ Variogs : 'o Continuous Discrete Continuous \‘ FIips = orentz Transform Type
Vgrri]ctJIS: o “\ AL CE . [Roizis Particle Exchange=Flip-xy ~Rotatez Det[ Proper | = +1
Boosts % E : Det[ Improper ] = -1
‘ Flip-x '
Discrete o | A¥y — Fx¥, Discrete Flip-xy * Rot-z[8] = Rot-z[6+T]
Flip-x X — -X Elity : Parity-Inversion Particle Exchange
unitary .- Rotation-z Discrete AF L, pY
Ny — R4 | Flip-z v v Flip-ij * Rot-k[6] = Rot-k[8+T]
freesns Discrete = FIip-)gy <1 F s Particle Ex?hsnge
: D Flip-xy = Fxy¥, . (orthogonal ijk)
: " space parity
: i : Y - _ unitary
F“p-t Tr[R“V(21T)]=4 Discrete /\l-"v — Fyu'v Discrete : Det[]=+1 Discrete
Det[n".]=+1 Flip-y y— -y Flip-x : Flip-t
o ) 5 unitary .
el\ ' _
Tim V;Sricorﬁs 0 i : y Neg Identity -1
e-reversal : + Continuous Continuous,’ 5 oy DIl
N, —TH Flips "+ Rotate-z Rotate-z , N v S -0 Flip-charge
R Rotation-z Lo’ —ETcorREo
-t* e, Tt N, - RU3T2] o .-~ — -
ot s Other Axis - NV RUBTIZ] o ‘ all flipped
time parity rr.]= Flips rR",(311/2)]=2 unita
anti-unitary No{LLMETS N, — PG Xy Det[]=+1 ry
4 4 By CPT Symmetry,Sthis should

be equivalent to the
Discrete Space-Parity=Flip-xyz quiy

CPT Symmetric Equivalent Feynman-Stueckelberg
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4-Vector SRQM Interpretation

A SRQM Lorentz Transforms A", = 9,[X"] of QM
. Lorentz Transform Connection Map — Discrete Transforms

AT Std CPT, Big-Bang, Iﬂﬂ_, Arrow(s)-of-Time . sl e e
ensor Study

. ciRealm@aol.com
of Physical 4-Vectors http://scirealm.org/SRQM.pdf

xamine all possible combinations of Discrete Lorentz Transformations which are Linear (Determinant of + SR:Lorentz Transform
A lot of the standard SR texts only mention (P)arity-Inverse and (T)ime-Reversal. However, there are many others, i d.[R¥] = OR*/OR" = \¥,
(F)lips and (R)otations of a fixed amount. However, the (T)imeReversal and Combo(P)arity(T)ime take one into a sepa AY = (N ARG =, = 8%
of the chart. Taking into account all possible discrete Lorentz Transformations fills in the rest of the chart. The resulting Nu/\'o\'s =
interpretation is that there is CPT Symmetry (Charge:Parity:Time) and Dual TimeSpace (with reversed timeflow). In other m.
one can go from the Identity Transform (all +1) to the Negative Identity Transform (all -1) by doing a Combo PT Lorentz Trans o

or by Negating the Charge (Matter—Antimatter). The Feynman-Stueckelberg CPT Interpretation (AntiMatter moving spacetime Tr[/\ V={-e0.. 40}
backward = NormalMatter moving spacetime-forward) aligns with this as a Dual-Universe “AntiMatter” Side. =AU ST

This is similar to Dirac’s prediction of AntiMatter, but without the formal need of Quantum Mechanics, or Spin. In fact, it is more
general than Dirac’s work, which was about the electron. This is from general Lorentz Transforms for any kind of particle:event.

Discrete NormalMatter (NM) Lorentz Transform Type
Minkowski-Identity :

Flip-z

Flip-y
Flip-yz=Rotate-yz(1)
Flip-x
Flip-xz=Rotate-xz(1T)
Flip-xy=Rotate-xy()
Flip-xyz=Paritylnverse :

Flip-t=TimeReversal

Matter
Dual balance along Temporal
Binary Spatial states

for 3 units:dimensions NormalMatter

Flip-txyz=ComboPT
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4-Vector SRQM Interpretation

SRQM Lorentz Transforms A", = 9,[X"] of QM
Lorentz Transform Connection Map — Trace Identification

“—¢  CPT, Big-Bang, [[EL.{ SO ARtIMALEr), Arrow(s)-of-Time .S

A Tensor Study SciRealm@aol.com
of Physical 4-Vectors http://scirealm.org/SRQM.pdf

All Lorentz Transforms have Tensor Invariants: Determinant = £1 and InnerProdu

However, one can use the Tensor Invariant Trace to Identify CPT Symmetry & Antilv i NormalMatter
Boosts
Tr[ NM-Rotate ] = { } Tr[NM-Identity] Tr[NM-Boost] = { -
NormalMatter :
Identity

NormalMatter

R [ErL_Flies

Discrete NormalMatter (NM) Lorentz Transform Type \ O

Minkowski-ldentity :
# NormalMatter ™,

Flip-t=TimeReversal, Flip-x, Flip-y, Flip-z !  Rotations

Flip-xy=Rotate-xy(1r), Flip-xz=Rotate-xz(1r), Flip-yz=Rotate-yz(1)

Flip-xyz=Paritylnverse

Flip-txyz=ComboPT

SR:Lorentz Transform Two interesting properties of (1,1)-Tensors, of which the Lorentz Transform is an example:
P [Ru'] = ORY/ORY = A\¥ Trace = Sum (X) of EigenValues : Determinant = Product (IT) of EigenValues
" _" N A G e (0 V_ 1 ¢ As 4D Tensors, each Lorentz Transform has 4 EigenValues (EV’s).
N, = (/\ )v WARANTES n.v= o'y Create an Anti-Transform which has all EigenValue Tensor Invariants negated.

NN\ = i 3[-(EV’s)] = -Z[EV’s]: The Anti-Transform has negative Trace of the Transform. :

r] pvit o AN . .

AA=4= AP NV LA M[-(EV’s)] = (-1)*TI[EV’s] = IT[EV’s]: The Anti-Transform has equal Determinant. y v
U\ i V.

={-c0__ 400} =Lorentz Transform Type The Trace Invariant identifies a “Dual” Negative-Side for all Lorentz Transforms.
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SR*QMA SRQM Lorentz Transforms A", = g,[X"]  #Vecorsram et
. Lorentz Transform Connection Map - Interpretations

~~—¢ CPT, Big-Bang, [[[ElL] SoARGMEALer), Arrow(s)-of-Time swanos

ATensqr Study SciRealm@aol.com
of Physical 4-Vectors http://scirealm.org/SRQM.pdf

SR:Lorentz Transform
a,[R"] = OR"/ORY = A\,
A% = (A DAY =0t =8

Based on the Lorentz Transform properties of the last few pages, here is interesting observation about Lorentz Transforms:
They all have Determinant of {+1}, and Inner Product of {+4}, but the Trace varies depending on the particular Transform.

The Trace of the Identity is at {+4}. Assume this applies to normal matter particles.

The Trace of normal matter particle Rotations varies continuously from {0..+4}

The Trace of the normal matter particle Boosts varies continuously from {+4..+Infinity (+=)}

So, one can think of Trace = {+4} being the connection point between normal matter Rotations and Boosts.

Now, various Flip Transforms (inc. the Time Reversal and Parity Transforms, and their combination as PT transform),
take the Trace in discrete steps from {-4,-2,0,+2,+4}. Applying a bit of symmetry:

The Trace of the Negative Identity is at {-4}. Assume this applies to anti-matter particles. 0

The Trace of anti-matter particle Rotations varies continuously from {0..-4} Y

The Trace of the anti-matter particle Boosts varies continuously from {-4..-Infinity (-)} »

So, one can think of Trace = {-4} being the connection point between anti-matter Rotations and Boosts. Pair-Production |
in This side |

This observation would be in agreement with the CPT Theorem:(Feynman-Stueckelberg) idea that (normal/anti)-matter particles

moving backward in SpaceTime are CPT symmetrically equivalent to (anti/normal)-matter particles moving forward in SpaceTime. |

©

Now, scale this up to Universe size: The Baryon Asymmetry problem (aka. The Matter-AntiMatter Asymmetry Problem).
If the Universe was created as a huge chunk of energy, and matter-creating energy is always transformed into matter-antimatter
mirrored pairs, then where is all the antimatter? Turns out this is directly related to the Arrow-of-Time Problem as well.

Answer: It is temporally on the “Other/Dual-Side” of the Big-Bang! The antimatter created at the Big-Bang is travelling in the i : |
negative-time (-t) direction from the Big-Bang creation point, and the normal matter is travelling in the positive-time direction (+t). " air-Production |

Universal CPT Symmetry. So, what happened “before” the Big-Bang? It “is” the AntiMatter Dual to our normal matter universe! n DL::I .-

Pair-production is creation of AM-NM mirrored pairs within SpaceTime. The Big-Bang is the creation of SpaceTime itself. oA +
AM

This also resolves the Arrow-of-Time Problem. If all known physical microscopic processes are time-symmetric, why is the flow of -t

Time experienced as uni-directional??? {see Wikipedia “CPT Symmetry”,“CP Violation”,”Andrei Sakharov” ; .
P ¢ P Yt ) Dual-Side of Universe

Answer: Time flow on This-Side of the Universe is (+t) direction, while time flow on the Dual-Side of the Universe is (-t) direction. AntiMatter

The math all works out. Time flow is bi-directional, but on opposite sides of the Big-Bang! Universal CPT Symmetry.

This gives total CPT Symmetry to all of the possible Lorentz Transforms (AM=AntiMatter , ) This solves the:
Trace Various (AM_Flips) : Trace Various ( ) Baryon ( -AntiMatter) Asymmetry Problem
-Infinity...(AM_Boosts)...(AM_ldentity=-4)...(AM_Rotations)...0...( )-(+4= )eue( )-..*+Infinity & Arrow(s)-of-Time Problem ( /-t)


mailto:SciRealm@aol.com
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Lorentz Transform Connection Map — Interpretations 2
e A i EEL [ Matter , Arrow(s)-of-Time screamos

John B. Wilson
A Tensor Study B I k H I SciRealm@aol.com
of Physical 4-Vectors ac 0 es http://scirealm.org/SRQM.pdf

SR:Lorentz Transform
A[R] = aRVIGR" = NV,
Consider the well-known “balloon” analogy of the universe expansion. The “spatial” coordinates are on the surface of the balloon, S N, = (/\ ) Ay /\a =n" ="

and the expansion is in the (+t) direction. There is symmetry in the (+/-) directions of the spatial coordinates, but the time flow is
always uni-directional, (+t), as the balloon gets bigger—inflates.

This idea of Universal CPT Symmetry also gives a Universal Dimensional Symmetry as well.

By allowing a “Dual-Side”, it provides a universal dimensional symmetry. One now has (+/-) symmetry for the temporal directions.

The “center” of the Universe is, literally, the Big Bang Singularity. It is the “center = zero” point of both time and space directions.

The expansion gives time-flow always AWAY FROM the Big Bang singularity in both the Normal-Side (+t) and the Dual-Side (-t).
All spatial coordinates expand in both the (+/-) directions on both temporal sides of the singularity.

Q)

Note that this gives an unusual interpretation of what came “before” the Big Bang. » i *

The “past” on either side extends only to the BB singularity, not beyond. Time flow is always away from this creation singularity. Pair-Production |
in This side |

This is also in accord with known black hole physics, in that all matter entering a BH event horizon ends at the BH singularity.

Time and space coordinates both come to a stop at either type of singularity, from the point of view of an observer that is in the |

spacetime but not at one of these singularities.

So, the Big Bang is a “starting” singularity, and black holes are “ending” singularities. This also provides for idea of “white holes” ()

actually just being black holes on the Dual-Side. White hole = time-reversed black hole. Always confusion about stuff coming out.

This way, the mass is still attractive. Time-flow is simply reversed on the alternate side so stuff still goes INTO the hole... |

which makes way more sense than stuff that can only come out of the “massive=attractive” white-hole. ] _
Pair-Production |

So, Universal CPT Symmetry = Universal Dimensional Symmetry. It Dlﬁ' S
+) [ !

And, going even further, | suspect this is the reason there is a duality in Metric conventions. ,&,& White Hole
In other words, physicists have wondered why one can use Metric signature {+,-,-,-} or {-, }. -t .
| submit that one of these metrics applies to the Normal Matter side, while the other complementarily applies to the Dual side. . .
This would allow correct causality conditions to apply on either side. Dua|'8|de_ of Universe
Again, this is similar to the Dirac prediction of antimatter based on a duality of possible solutions. AntiMatter
This gives total CPT Symmetry to all of the possible Lorentz Transforms (AM=AntiMatter , ) This solves the:

Trace Various (AM_Flips) : Trace Various ( ) Baryon ( -AntiMatter) Asymmetry Problem

-Infinity...(AM_Boosts)...(AM_ldentity=-4)...(AM_Rotations)...0...( )-..(+4= )eee( )-..+Infinity & Arrow(s)-of-Time Problem ( /-t)
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A Tensor Study
of Physical 4-Vectors

Model

SpaceTimes A Klein geometry is a pair (G,H) where G is a Lie group and H is a closed

Klein Geometry G/H Lie subgroup of G such that the (left) coset space X:=G/H is connected.

Anti de Sitter G acts transitively on the homogeneous space X.

S0(3,2)/S0(3,1)

De Sitter
S0(4,1)/SO(3,1)

Minkowski
ISO(3,1)/SO(3,1)
ds? = (cdt)? - dx-dx

Lorentzian

pseudo-Riemannian
We may think of H>G as the stabilizer subgroup of a point in X.

Euclidean
ISO(4)/SO(4)
ds? = (cdt)? + dx-dx

Riemannian Hyperbolic

SO(4,1)/SO(4)

Spherical
SO(5)/SO(4)

Geometric Context

Differential
geometry

Gauge Group

Lie group/algebraic group
G

Stabilizer Subgroup

subgroup
(monomorphism)
H>G

Local Model Space

quotient (“coset space”)
G/H

Local
Geometry

Klein
geometry

Global Geometry

Cartan geometry

Differential
Cohomology

Cartan
connection

First Order
Formulation
of Gravity

Examples:

*reekkk*Fits known
observational data

Euclidean group
Iso(d)

Poincaré group
Iso(d-1,1)

anti de Sitter group
0(d-1,2)

de Sitter group
O(d,1)

linear algebraic group

conformal group
O(d,t+1)

rotation group
O(d)

Lorentz group
0O(d-1,1)

0(d-1,1)

0(d-1,1)

parabolic subgroup/
Borel subgroup

conformal parabolic
subgroup

Cartesian space
IR ¢

Minkowski spacetime
|R d-1,1

anti de Sitter spacetime
AdS¢

de Sitter spacetime
ds¢

flag variety

Maobius space
Sd,t

Euclidean
geometry

Lorentzian
geometry

Parabolic
geometry

Riemannian
geometry

Pseudo-Riemannian
geometry

Conformal
geometry

Affine
connection

Spin
connection

Conformal
connection

Euclidean
gravity

Einstein
gravity

AdS
gravity

de Sitter
gravity

Conformal
gravity
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SR - QM 4-Vector SRQM Interpretation

Ag Classical Transforms: Venn Diagram

Full Galilean = Galilean + Translations

o—@ SciRealm.org
John B. Wilson
A Tensor Study SciRealm@aol.com
of Physical 4-Vectors http://scirealm.org/SRQM.pdf
- : : : Lie Groups
Galilean Transformation Group aka. Inhomogeneous Galilean Transformation
Lie group of all affine isometries of Classical:Euclidean Time + Space (preserve quadratic form &;) de Sitter Group SO(1,4)
General Linear,Affine Transform with Det[ ]= %1 de Sitter invariant relativity
(?maybe?)
Galilean Transform Translation Transform
4-Tensor {mixed type-(1,1)} 4-Vector Poincaré Group I1SO(1,3)
. , r <<r__ = de Sitter Radius
Discrete Continuous Discrete Continuous { _dS\/ —— J
Time-reversal s = VIB/IAL = L/N[QA]
. SpatialFlipCombos SR & GR Physics
=t (** currently thought correct **)
time parity T |
anti-unita o empora ‘ '
o {X|V|Zjnitar§lX|Y|Z} Rotation N, — B, =
Parity-Inversion 4-Zero At Boost
Identity 1) Xy | xz|yz
r—-r ti Spatial
space parity ) prere] Galilei Group
i no mixin
unltary unitaryg Motion:Shear Ax | Ay | Az { |V| S5 C} .
Classical Physics
tx |ty |tz
/\p'v - Sp‘v =
. — Motion:Shear
Isotropy Homogeneity

{same all directions} {same all points}
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SRQM Transforms: Venn Diagram
Poincaré = Lorentz + Translations

SciRealm.org

John B. Wilson
A Tensor Study SciRealm@aol.com

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

Poincaré Transformation Group aka. Inhomogeneous Lorentz Transformation

Lie group of all affine isometries of SR:Minkowski D (preserve quadratic form ny)
General Linear,Affine Transform X" = A¥, X" + AX" with Det[A"\] = +1
(6+4=10)
Lorentz Transform Translation Transform -AngularMomentum M* = X* A P¥ = X¥PY - X'P*
4-Tensor {mixed type-(1,1)} 4-Vector enerator of Lorentz Transformations (6)
- . I-rv_’RI-llv + /\p’v_’Bp'v
Discrete Continuous Discrete Continuous
Time-reversal 4-LinearMomentum P*
= Generator of Translation Transformations (4)
D SpatialFlipCombos ={ AX"—(cAL0) + AX*—(0,Ax%)
_) -
time parity Det[N‘:v] = +1 for Proper Lorentz Transforms
anti-unitary Xlylz} — -{xly|2} = otation Temporal Det[A",] = -1 for Improper Lorentz Transform
it
Parity-Inversion a4 P Lorentz Matrices can be generated by a matri
: At with Tr[M]=0 which gives:
Identity Isy x| x:z | y:z {A=e"M=e"(+6-J-TK)}
r—-r - Spatial (A= "M)'=erM"}
spac:parity ) eanelon WYY SR YRY SR:Lorentz Transform
unitary e kAl Boost d[R"] = dR"/OR" = N\,
unitary = Ax| Ay | Az M=+ - TK A% = (NP AAS, = Y, = 8%,
B[q] = e*(-0'K '
harge-Conjugation R[[zel] = eA((fe.J)) N'o\'g = Nog
tx |ty |tz A=erM=eA (+0-J - TK 1@’@

R R* CPT Symmetry

> R,9—>-q {Charge} Rotations J; = -€mM™/2, Boosts Ki = Mi

charge parity : .

SCh {Partiy} Isotropy Homogeneity
anti-unitary {Time}  |{same all directions} {same all points} R— -R*) ] o & bly q— -0
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SR — QM 4-Vector SRQM Interpretation

A Review of SR Transforms
Al 10 Poincaré Symmetries, 10 Conservation Laws
10 Generators : Noether’s Theorem saiRun 8 Wilson

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

o—e . = Minkowski

: Lagrange “Shift Operator” version of Taylor’'s Theorem: e*@® f(x)=f(x+a)

Tava% Hv )

4-5)|(Sp(lagege)nt SpaceTlme 3[X] N?e[[);c] n Bloch Theorem:Translation Operator: e®®y(X) = w(X+R), with K as reciprocal lattice
=(cAt,Ax

ATime Transform AX¥—( ,0)
Generated by energy E = ¢cp°

Conservation of
elativistic 3-mass-moment
(temporal-spatiall)

-YB;
1)B'Bi/(B-B)+3]

Conservation of scalar Energy (temporal)

.
B (v-

Translation Transform Conservation of 4-Momentum
Generated AX¥(t,x) = exp[X-P/Al* NEREIOEENS Conservation of
4-AngularMomentum

Conservation of linear Lorentz Transform &,[X”Y] = XM IOXY = N\, (3 +3) =(6) Laws
S-momentum (spatial) Generated \¥,(Z,8) = exp[1/2 WM, = exp[T-K + 8-J], !

1 0
Generator 0" ( &'-n'n; )cos(B)-( €xn* )sin(B)+n'n;

M
Conservation of angular
4-AngMomentum 3-momentum ( )

Tensor Poincaré Transformation Group aka. Inhomogeneous Lorentz Transformation

MY = X'PY - X'PHY=X AP The group of all isometries of SR:Minkowski Spacetime (6 + 4 = 10)
s, (preserve quadratic form)
i i M= AM XV M Wi 1=
4-Velocity [0 -cn* -cn’ -cnf A General Linear,Affine Transform X" = A*, X" + AX" with Det[A",] = +1
X z Y
=y(c,u) [+Cny OZ * lx] WETERI | 4-AngularMomentum M™ = X A P = X*P" - X'P¥ 0 -cn
=dX/dt [tcn” -l 0 +] a=3/c,-V) | of Lorentz Transformations (6) = 5
, [fen® + 0] : S VR Hy vl } on” 1=x"p
Geng:ator [ 0 __an ] 4-LinearMomentum P* = P E/c=p°
N ; i |k = of Translation Transformations (4) :
o - [+cn', 0] = { AX"(cA1,0) + AX¥(0,/%) y (P=P
. Angular M+ LinsaiiEe Jacobi’'s Formula for Complex Square Matrix A: Det(Exp[A])=Exp(Tr{A])
“AUOMAN O Det(A)io = ((tr A - 6 tr(A2)(tr A)? + 3(tr(A%))? + 8 tr(A°) tr A - 6 tr(A%))/24

= 10 Symmetries = 10 Generators = 10 Conservation Laws: Noether’s Theorem
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SR — QM 4-Vector SRQM Interpretation

A Review of SR Transforms
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L Poincaré Algebra & Generators _
e . Casimir Invariants A

The (10) one-parameter groups can be expressed directly as exponentials of the generators: Poincaré Algebra is the Lie Algebra of the Poincaré Group.

U[l, (a°,0)] = e”(ia®-H) = e*(ia’-p°): (1) M= -cn' | M%=-cn?2 | M%= -cn® po

Ull, (0,A8)] = e”(-iAa-p): (3)

UIA(INGT2), O] = e/(iA8%j): ©) M"=cn' M= M= -2 P!

U[A(A@T2), 0] = e’r(iA@~k): (3) Lorentz Boost k

The Poincaré Algebra is the Lie Algebra of the Poincaré Group: M#=cn? | M#=-P M==1' P2

Total of (1+3+3+3 = (1+3)+(3+3) = 4+6 = 10) Invariances from Poincaré Symmetry M= cné M3'= |2 M= |1 ps

Covariant form: 0 cn S o
H A . = C = C =

Thuesev e :twe commutators of the the Poincaré Algebra : M"Y = X A P = XFPY - XVP* . P

[X*, X7 =0 pPr=p cn” [ I=x"p p=p

[P¥, P'] = -ihq(F") if interacting with EM field; otherwise = 0" for free particles

M = (X"P" - X'P¥) = ih(X"9" — X*0") M = Generator of Lorentz Transformations (6) = + }

[M™, PPl = ih( n*'P" — n°*PY) P = Generator of Translation Transformations (4) = { + }

[M“V Mpu] = ih(r]V‘JM‘“’ + nuUMvp + I’]UVMP“ + npuMGV)
Rotations Ji = -€mM™/2, Boosts Ki = Mi
Component form: Rotations J; = -&»,»M™/2, Boosts K = M;
X PD] — e P oo Y The set of all Lorentz Generators V = {¢:K + 0-J} forms a vector space over the real numbers.
b L The generators {Jx, Jy , J. , K«, K, , K} form a basis set of V. The components of the axis-angle

[Jm,Po] =_0 R vector and rapidity vector {6, 6y, 6, , {, (,, (;} are the coordinates of a Lorentz generator wrt.
%ijgk::ll = lr)gP this basis.
j,o] = I

Very importantly, the Poincaré group has Casimir Invariant Eigenvalues ={ Mass m, Spin j },

=.f k
R hence Mass *and* Spin are purely SR phenomena, no QM axioms required!

[Jm,Kn] = i€mnkK®
[Km, K] = -iemnd*, @ Wigner Rotation resulting from consecutive boosts

o+ Koo - K] = 0 This Representation of the Poincaré Group or Representation of the Lorentz Group

is known as Wigner's Classification in Representation Theory of Particle Physics

Poincaré Algebra has 2 Casimir Invariants = Operators that commute with all of the Poincaré Generators
These are {P? = P'P, = (m.c)?, W? = W*W, = -(m,c)3(j + 1) }, with W* = (-1/2)e"*°J,,P, as the Pauli-Lubanski Pseudovector

[P?,P°] = [P?,P] = [P?,J] = [P?K] = 0: Hence the 4-Momentum Magnitude squared commutes with all Poincaré Generators
[W2,P%] = [W2,P] = [W?,J]] = [W? K] = 0: Hence the 4-SpinMomentum Magnitude squared commutes with all Poincaré Generators
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A

A Tensor Study
of Physical 4-Vectors

d’Alembertian Invariant Wave Equation: 8-@ = (d/c)? - V-V = (d./c)?

Time Translation:

Let Xt = ( ,%), then a[X+] = (d/c,-V)( ,x) = Diag[1,-1] = 9[X] = n*

so d[X1] = 9[X] and J[K] = [[0]]

(0-9)[K-X+] = 9-(9[K-X1]) = I[K]-X++K-9[X1] = 0+K-9[X] = 9[K]-X+K-9[X] = 0-(9[K-X]) = (0-9)[K-X]:
Space Translation:

Let Xs = (ct, ), then 9[Xs] = (d/c,-V)(ct, ) = Diag[1,-1] = 9[X] = n*

so d[Xs] = 9[X] and J[K] = [[0]]

(0-9)[K-Xs] = 2-(d[K-Xs]) = J[K]-Xs+K-0[Xs] = 0+K-9[X] = 9[K]-X+K-9[X] = 2-(d[K-X]) = (2-2)[K-X]:
Lorentz Space-Space Rotation:

Let Xr = (ct, ), then 9[Xg] = (di/c,-V)(ct, ) = Diag[1,-1] = 9[X] = n*

so d[Xgr] = 9[X] and J[K] = [[0]]

(0-9)[K-Xg] = 9-(0[K-XRr]) = 9[K]-Xr+K-9[Xgr] = 0+K-9[X] = J[K]-X+K-9[X] = 9-(d[K-X]) = (0-9)[K-X]:
Lorentz Time-Space Boost:

Let Xs = vy( ), then 9[Xg] = (d/c,-V)y( ) = [Iv,-vyBL[-YB,yIl = A

J[K-Xg] = 9[K]-Xs+K-9[Xs] = A*K = K; = a Lorentz Boosted K, as expected

0Kz = 3-AK = A (3:K) = A¥(0)
(0-9)[K-Xz] = 0-(9[K-Xe])

= 0 = 9-K = Divergence of K = 0, as expected
= 0-K; = 9-K = 9-(9[K-X]) = (2-9)[K-X]:

SR Waves:
Let W = aeM-i(K-X), W1 = ae-i(K-X7), Ws = ae’-i(K-Xs), Wr = ae?-i(K-Xgr), Ws = ae’-i(K-Xzg)
(9-0)[K-X1] = (9-9)[K-Xs] = (0-0)[K-Xr] = (0-9)[K-Xg] =

Total of (1+3+3+3 = 10) Invariances from Poincaré Symmetry
SR 4-Vector

SR 4-Tensor
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v)
(1,1)-Tensor T*, or T,' § SR 4-CoVector: OneForm

SR 4-Scalar
(0,0)-Tensor S or S,
orentz Scala

SRQM Study:
10 Poincaré Symmetry Invariances
“—* Noether’s Theorem: 10 SR Conservation Laws

4-Vector SRQM Interpretation
of QM

SciRealm.org

John B. Wilson
SciRealm@aol.com
http://scirealm.org/SRQM.pdf

4-Gradient
9=0"=(0,¢c,-V)=0loR,

Invariant
d’Alembertian
Wave Equation

3-9=(3,Ic)-V'V/

=(9,/c,-0,,-0,,-0,)
=(d/cat,-0lox,-dldy,-0l0z)
Time Translation Invariance (1)
Conservation of Energy = (Temporal) 1-momentum ( )

_part of P¥ = (“/c,p) Hic = Elc = p°

p=p

Space Translation Invariances (3)
Conservation of Linear (Spatial) 3-momentum (1)
part of P¥ = (E/c,p)

Lorentz Space-Space Rotation Invariances (3)
Conservation of Angular (Spatial) 3-momentum (1)
part of M = XAP

0] -cn

cn’

I=x*p

Lorentz Time-Space Boost Invariances (3)

Conservation of Relativistic 3-mass-moment ()
part of M = XAP

see Wikipedia: Relativistic Angular Momentum

(0-9)[K-X]: Wave Equation Invariant under all Poincaré transforms

Trace[T"] =N T" =T =T
V-V = Vi VY = [(VO)? - vev] = (V)
= Lorentz Scalar
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", SRQM Study: 4-Vector Operations “ "5
Ai Lorentz Scalar Product A-B = A B*

John B. Wilson

s o EXtErior Product AAB = A'BY-AYBY .....crenemscon

| 0
A 4-Gradient Minkowski Lor’entz’ i 4-Position
0=(9,/c,-V)=0loR, JR]="[R"]=n"]] o[R"]=N", | o il R=(ct,r)
Metric Transfor [ i
9-9=(3,/c)-V-V
R-P = 'Saction,free
Action Scalar

There are at least three 4-Vector relations which use the Exterior (Wedge=*) Product.

U-ol..]

yd/dt[..]
d/dt[..]

4-Velocity INA=G'AY - §'A¥

U=y(c,u)=dR/dtl} EM Faraday
4-Tensor

OrA = M M AY = OPA-0'AF = F* : the Faraday EM 4-Tensor M =
RAP = R* A P' = RP-R'P* = M"' : the 4-Angular-Momentum RAP=R"P" - R'P"
RAF = R¥ A F' = R'F'-R'F* =T : the 4-(Angular-)Torque 4-Angzl_e_lrrel\ﬂgcr:1rentum @ 4-EMVectorPotential

: A=(¢/c,a
This gives the components of each remarkably similar properties. Energy:Mass (¢/c,2)

Likewise, each of these has a physical (Dot=") Product relation as well. | & e (6-0)A - 0(3-A)=poJ
4-Momentum Maxwell EM Wave Eqn

d-A = 9,A" = 0 : the Lorenz Gauge, a conservation of 4-EMVectorPotential P=(mc,p)=(E/c,p)

R-P = R,P" = -Syioniee : the Action Scalar -

R:F = R,F" = 7?77 . probably something important 4-ChargeFlux @

4-CurrentDensity o "
— \— ectric:iviagnetic
J (pC’j) p(C’u) 1/(£0u0) = (_';2

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar Tiacs[T”V] =_ n”v;rl;v =T f To 2
1,1)-Tensor T*, or T,* | SR 4-CoVector:OneForm [ (0.0)-Tensor S or S, VV = Vi V' = [(V)" - vev] = (Vo)
= orentz Scala = Lorentz Scalar

0,2)-Tensor T, 0,1)-Tensor V, = (vo,-V
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SR - QM A ‘- N S RQ M St u d y : 4-Vector SRQM Interpre;?t(igoh;
A; - 4-Momentum — 4-Force
wese . 4=AngularMomentum — 4-Torque .,.cness

e 4 paceTime Minkowski Lorentz :
. - " v v ) , 4-Grad t
Linear: @y - - X=0,X'=4 g d[X]=¢"[X]=n" &2 3 [X*]=A\", & 3=(5?C |_evn) A
4-Force Is the o > Dimensio Transfor, -

ProperTime Derivative of 4-Momentum.

-
( > X=(c,x

]
Angular: \g* o

4-Torque is the @’ )
ProperTime Derivative of 4-AngularMomentum. -

p g yd/dt[..] 4 Angrhe/lr(])g?ntum Tensor

d/dt[.. M™ = X“PY - X'P* = X A P M=XF-XF'=XAF
- =

d/dtff M ] =d/di[ X * P ] . [0 -cn* -cn’ -cn dM*'/dt
= d/d‘L’[ X'PY — XVPH ] 4l]YG|OCIty [+Cnx 0 +P -|y]
= [ U"PY + X*FY — U'P" — X'F* ] =y(c,u) [+cn? -F 0 +1]

=[U’moU” + X*F — U'moU" — X'F¥] [+cn® + - 0]
= [UPmoU’ — U'moU + X*FY — X ] =

= [ mo(U"UY — U"UY) + X¥FY — X'F¥ ] [0 ,-cn']

= [ mo(0™) + X'F' — X'F" ] [+cn', €6 ]

= [ X*FY — X'F¥ ]

4-Momentum

-
didgf MW =T = [ XF = X'F*]=XAF P = P=(mc,p)=(E/c,p) 4-Force e o
F=y(E/c,f=p)
=dP/dt
SR 4-Tensor SR 4-Vector W] = W TH —
2 0)-T Twv g W=V = (VO SR 4-Scalar Trace[T"] = nuT" =T =T
1,'I()-,'(Igtgnseonrs'(l?“rV or T, gé)Zngg\slzrchr:(;;eF(\é;;\) (0,0)-Tensor S or S, VAV = Vi, V= (V)7 - vev] = (Vo)

0,2 -Tensor T, v 0,1 -Tensor V, = Vo,-V orentz Scala = LOI'entZ Scalar
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N SR 4-Vectors & 4-Tensors 7w
A; Lorentz Scalar Product & Tensor Trace ___
sy Invariants: Similarities B

All {4-Vectors:4-Tensors} have an associated {Lorentz Scalar Product:Trace} Lorentz Scalar Invariant
V-V=VAV=(vVY - vev)=(V0)

Each 4-Vector has a “magnitude” given by taking the Lorentz Scalar Product of itself. IVecior

V-V = Vi VY = VRV, = VWY = (Vv + viv! + vov? + vav®) = (VOVO - vev) = (V0)?

The absolute magnitude of V is V[|V-V]]

Trace Tensor Invariant

Each 4-Tensor has a “magnitude” given by taking the Tensor Trace of itself. TrT*]=TH=(T2-TH-T2-T%)=T

Trace[T"] =TrT"] =N T =T, =T = (T + T + T2+ T3) = (TP -T"-T>2-T¥) =T ~_4-Tensor
Note that the Trace runs down the diagonal of the 4-Tensor. ™= Eﬁiﬁ:ﬁﬁ%
Notice the similarities. In both cases there is a tensor contraction with [T20,72, T2 7%

30 T31 T32 133
[T, T, 15T

the Minkowski Metric Tensor n,, — Diag[+1, |icantssine et

P-P=(m,c)’=(E./c)

ex. P-P = (E/c)? - p'p = (EJ/c)* = (M,C)® 4-Momentum
which says that the “magnitude” of the 4-Momentum is the RestEnergy/c = RestMass*c

- 11[N"]=4_2

Minkowski Metric

ex. Trace[n™]1=(N"-n"-n*?-n®¥)=1-(-1) -(-1) -(-1) = 1+1+1+1 =4
which says that the “magnitude” of the Minkowski Metric = SpaceTime Dimension = 4

d[R]=n""—Diag[1,-1,-1,-1

SR 4-Tensor SR 4-Vector - - —
(2,0)-Tensor T+ (1,0)-Tensor V* = V = (\°,v) SR 4-Scalar Vv VTIa\(;f [Ti;]v i n“v;rl;v T 0 To 2
(1,1)-Tensor T* or T,* | SR 4-CoVector:OneForm K(0.0)-Tensor S or S, V=V V= [(V0) - vev] = (Vo)
. 0,1)-Tensor V, = (Vo,-v orentz Scala = Lorentz Scalar
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! SR 4-Vectors & 4-Tensors

S More 4-Vector-based Invariants

A Tensor Study SciRealm@aol.com
of Physical 4-Vectors http://scirealm.org/SRQM.pdf

Some other SR Invariants include:

Lorentz Scalar Invariant

V-V=VHY,=(vOV0 - vev)=(V) P-P=(m.c)?=(E./c)? Particle # EM Charge
(M) =(Eoc N = (-Vo/c)/dT-N >

(0]

4-Vector 4-Momentum = fnd’x = s Q = (-Vo/c)[dT-J
= [nd®x = Jyn,d®x — [Py = 3
V=V = (Vo) - noJo Ipd: > {}(pod X

0 — A3y /\/0
dv/v® = d°viv if V-V=(constant

Phase Space Invariant

ot Volumav. =~ oy
S VTN =-c =(ydr)-(dA)

= yd®x

d’p d*x
= dp* dp’ dp* dx dy d
3 43
= (dw/c) dk* dk’ dk? d’k d°x
= dk* dk’ dk* dx dy dz
SR 4-Tensor SR 4-Vector V] = v — =
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar Trac;a[T“ = r]uv;l"; = TS TO i
1,1)-Tensor T* or T," | SR 4-CoVector:OneForm K(0.0)-Tensor S or S, V-V = ViV = [(V)” - vev] = (Vo)
= orentz Scala = Lorentz Scalar

0,2)-Tensor T, 0,1)-Tensor V, = (vo,-V
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Ai More 4-Vector-based Invariants
Ny Phase Space Integration

Some 4-Vectors have an alternate form of Tensor Invariant: ( dv’/v® = dv/V°) or ( d3v'/V® = d3v/V°)
in addition to the standard Lorentz Invariant V-V = V¥V, = (v’ - v-v) = (v )?

Lorentz Scalar Invariant

V-V=V*V, =(VV° - v-v)=(V°)

(0]

hence (V-dV) = 0 = V°dv° - v-dv
dv® = v-dv/\° dv/v® — d*v/V° if V-V=(constant

If V-V = (constant):, with V = (v",v) 4-Vector
then d(V-V) = 2*(V-dV) = d(constant) = 0

. Ph S | iant
Generally:, with A = A", = Lorentz Boost Transform in the B-direction -

V’ = AV : from which the temporal component v% = (yv° - yB-v)
dV’ = AdV : from which the spatial component dv’ = (ydv - yBdv®)

Combining:

dv’ = (ydv - yB(v-dv/V°))

dv’ = (1V°)*(yvPdv - yB(v-dv))
dv’ = (1V°)*(yv°- yB-v)dv

dv’ = (yv°- yB-v)*(1/v°)*dv

dv’ = (V*/v°)dv . An alternate approach is:
dv’/v¥ = dv/V® = Invariant of V = (\°,v) for V-V = (constant) Jd*p 8[p-(MeC)] P-P=(m,c)*=(E./c)’
_ = Jd'p (1/2]m.c]) (3[p+m.c] + 3[p-m.c]) 4-Momentum
I§OP fi)r(r(;xca;])r?‘I((e(-:onstant) ~cd'p/2E P=(mc,p)=(E/c,p
=Ly = = Invariant m

Thus, dp’/(E’/c) = dp/(E/c) = Invariant
Or: dp’/E’ = dp/E — d°p/E = dp*dp’dp?/E = Invariant, usually seen as | F(various invariants)*d°p/E = Invariant

SR 4-Tensor

SR 4-Vector

(2,0)-Tensor T (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar TIaCS[TuV] =_ n”v;rl;v =T f To 2
1,1)-Tensor T*, or T," || SR 4-CoVector:OneForm K (0.0)-Tensor S or S, VV = Vi, Ve =[(V)7 - vev] = (Vo)
0,2 -Tensor T, v 0,1 -Tensor V, = Vo,-V orentz Scala = LOI'entZ Scalar
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Invariant d*X = -(V,)dT-dX = -(dV,)T-dX = cdt d°x = cdt-dx-dy-dz
The 4D Position coords that are integrated to give a 4D volume: S| units [m*]

4-UnitTemporalDifferential 4-Differential
4-Differential dX = (cdt,cx); dR = (cdt,dr); dT=(d[y].d[yB]) dR=dR"=(cdt,dr)
4-UnitTemporal T = y(1,8) = (v,78)
4-UnitTemporalDifferential dT = d[(y, )] = (d[y], )

V = [dV = [dx [dy Jdz = [[[dx dy dz = [d®x

V = V,/y = 3D Spatial Volume: S| units [m?]
dV = d°x = 3D Spatial Volume Element
= VoV

dy = -(Vo/V2)dV

-(Vo)dT-dX = Invariant, because (Rest Scalar * Lorentz Scalar Product) = Invariant Phase Space

= -(Vo)(dIy], )-(cdt,dx) Tensor Invariant
= -(Vo)(d[y]cdt - d[yB]-dx) = cdt-dx-dy-dz
-(Vo)(-(Vo/V?)dVedt - d[yR]-dx)

-(Vo)(-(Vo/Vo2)dVedt - d[(1)(0)]-dx) by taking the usual rest-case
-(Vo)(-(Vo/Vo?)dVedt)

-(Vo)(-(1/Vo)dVedt)

dVcdt

= cdtdVv

= cdt ' [Flvarious Invariants]d‘X U
= d*X = Invariant =ydx-dy-dz

And, this makes sense. =(Ydr)'(dA)
T is a temporal 4-Vector with fixed magnitude: T-T = 1. d(T-T) =d(1) = 0 = 2(dT-T) = 'Yd3x
Since (dT-T)=0, dT must orthogonal to T and thus must be a spatial 4-Vector

If dX is also spatial, then the Lorentz scalar product { (dT-dX) = -magnitude } will be negative with this choice of Minkowski Metric.
Thus, multiplying by -(V,) gives a positive volume element{ cdt dx dy dz = d*X}

It is sort of quirky though, that the temporal (cdt) comes from the dX part, and the spatial (d°x) comes from the dT part.

= cydt-dx-dy-d

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v)

Trace[T"] = nuT" =T =T
V-V = Vi, VY = [(V)F - vev] = (V)2
= Lorentz Scalar

SR 4-Scalar

(1,1)-Tensor T* or T,* | SR 4-CoVector:OneForm K(0.0)-Tensor S or S,
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p d° = p' d*" = (-V,/c)dT-J = Lorentz Scalar Invariant
n d®x = n' d®' = (-V,/c)dT-N = Lorentz Scalar Invariant

4-CurrentDensity J = (pc,])

4-NumberFlux N = (nc,n)

4-UnitTemporal T = y(1,8) = (v,78)
4-UnitTemporalDifferential dT = d[(y,/8)] = (d[y], )

V = Vly
= -(Vo/VA)dV

(-Vo/c)dT-J = Invariant, because (Rest Scalar * Lorentz Scalar Product) = Invariant
= (-Vo/c)(d[y], *(pc,j)

= (-Vo/c)(d[y]pc - d[yB]- J)

= (-Vole)(-(Vo NZ)(dV)(pC) d[yBIj)

= (-Vole)(-(Vo/Vo?)(dV)(pc) - d[(1)0]))

= (-Vo/e)(-(Vo/Vo?)(dV)(pc))

= (dV/c)(pc)

= (pc)(dV/c)

= (p)(dV)

=p d®

Total Charge Q = Jyp, d°x = [p d° = Lorentz Scalar Invariant
Total Particle # N = [yn, d® = |n d°x = Lorentz Scalar Invariant
Total RestVolume V, = [yd®x = Lorentz Scalar Invariant

This also gives an alternate way to define the RestVolume Invariant V..
(-Vo/c)dT:N = nd®x

N = [nd*x = [(-Vo/c)dT:N

cN/V, = -[dT-N

V, = -cN/[dT-N

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T (1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar

-Tensor T, or T,V § SR 4- F 0,0)-Tensor S or S
) v u ri
( ) CoVector One orm ( ) ) o
orentz Scala

4-(Dust)NumberFlux

N=N"=(cn,nu)=

LU-U=c’

4-\elocity

[, U=U*=y(c,u) (o,
4-UnitTemporalDifferential 4-ChargeFlux
dT=(d[y],d[yB]) 4-CurrentDensity

J=J"=(cp,j)=p(c,u)
L -Vo/c ] =p.U=gn,U=gN

n(c,u)

Phase Space
@ Tensor Invariants @

N = (-VJ/c)[dT-N Q = (-Vo/c)/dT-
= [nd® = Jyn.d®x = [pd®x = Jyp.d®x
— noVo — poVo
Total # Particles N is a Total EM Charge Q is a
Lorentz Scalar Invariant Lorentz Scalar Invariant

Trace[T"] =n, " =TH, =T
V-V = Vi VY = [(VO)? - vev] = (V)
= Lorentz Scalar
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Ny Phase Space Integration e e

gjz = %""iﬂ?ﬂi = ((zE/;:))cgsr;( = (((ij//c))ddp; ciljpkyy%pkz 4-UnitTemporalDifferential 4-MomentumbDifferential
= (Vio)dT-dK = (dw/c) d’k = (dw/c) dk* 3 = =dPH=

The 4D Momentum coords that are integrated to give a 4D Momentum Volume: S| Units [(kg-m/s)‘] dT (d[y],d[yB]) dP=dP _(dE/C’dp)
The 4D WaveVector coords that are integrated to give a 4D WaveVector Volume: Sl Units [(1/m)*]

4-DifferentialMomentum dP = ( ,dp)
4-DifferentialWWaveVector dK = ( ,dk)
4-UnitTemporal T = y(1,8) = (v,78)
4-UnitTemporalDifferential dT = d[(y,y£)] = (d[y], )

Ve = [dVe = [dpXdpY[dp? = [[[dp* dp dp? = [d°p

Ve = 7(Veo) = 3D Volume in Momentum Space: S| Units [(kg-m/s)’]

dVp = dy(Ve,) = 3D Volume Element in Momentum Space d‘P

¥ = (Ve)(Veo)

dy = (dVe)/(Veo) = (dE/c) dp* dp’ dp?
= (dE/c) d®

(Veo)dT-dP = Invariant, because Rest Scalar * Lorentz Scalar Product Phase Space

= (Vro))(d[y], )+ ( ,dp) Tensor Invariant

= (Veo)(d[y]dE/c - d[yB]-dp)

(Vro)((dVe/Veo)dE/c - d[yB]-dp)

(Vro))((dVe/Veo)dE/c - d[(1)(0)]-dp) by taking the usual rest-case

(Vro))((dVe/Ve,)dE/C)

(dVe) (dE/c)

d’p (dE/c)

= (dE/c) d°p

= (dE/c) dp* dp* dp?

= d*P = Invariant

[F[various Invariants]d‘P

Likewise, d’K = Invariant [F[various Invariants]d*‘K

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v)

Trace[T"] =N T" =T =T
V-V = Vi, VY = [(V)F - vev] = (V)2
= Lorentz Scalar

SR 4-Scalar

(1,1)-Tensor T* or T,* | SR 4-CoVector:OneForm K(0.0)-Tensor S or S,
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Ny Phase Space Integration

4-UnitTemporalDifferential § 4-UnitTemporalDifferential

dT=(d[y],d[vBI) dT=(d[y].d[vBI)

d°p X = (Veo)dT+(-Vo)dT = (-Vo)(Veo)dT-dT @ ”
4%k 0% = (Vi)dT+(Vo)dT = (Vo)(Vio)dT-dT

4-UnitTemporal T =y(1,B) = (v,7B) @
4-UnitTemporalDifferential dT = d[(y,7£)] = (d[y], )

(Vpo)dT-(-Vo)dT = Invariant
= (Veo)(dly], )*(-Vo)(dly], ) d’p d*x
= (Vro)(-Vo)(d[yId[y] - d[yB]-d[vB]) X z
= (Vo) (Vo) (-(Va/V2)V(@Ve/(Veo)) - dlyBI-dfyB]) > dp” dp” dp” dx dy d
= (Voo)(Vo)(-(VolVe)dV(dVe/(Vro) - d(1)01-d[(1)0]) or
= (Veo) (Vo) ((Vo/Vo?)dV(AVe/(Veo)) Tonsor Ve
= (Vpo)dV(dVe/(Veo))

=dV dVp

=dVp dV

= d’p d°x = Invariant
F[various Invariants]dp d*x
Likewise, d*k d*x = Invariant '[ [ ] P

[F[various Invariants]d®k dx

SR 4-Tensor

SR 4-Vector

(2,0)-Tensor T (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar TIaCS[TuV] =_ n”v;rl;v =T f To 2
1,1)-Tensor T*, or T," || SR 4-CoVector:OneForm K (0.0)-Tensor S or S, VV = Vi, Ve =[(V)7 - vev] = (Vo)
0,2 -Tensor T, v 0,1 -Tensor V, = Vo,-V orentz Scala = LOI'entZ Scalar
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o SRQM Study: SR 4-Tensor Properties
—  General - Symmetric & Anti-Symmetric_

ciRealm@aol.com
of Physical 4-Vectors http://scirealm.org/SRQM.pdf

Any SR Tensor T* = (S* + A*') can be decomposed into parts: Importantly, the Contraction of any
Symmetric SH = (TW+T™)/2 with S* = +S" Symmetric tensor with any

Anti-Svmmetric AW = (TW-T™)/2 with AW = AW Anti-Symmetric tensor on the same index is
Y always 0.

SH+ AN = (TW+TW)2+(TH-T™)/2 = T2 + T2 + T2 - T2 =T + 0 = T *Note* These don’t have to be composed from a

single general tensor.

Independent components: {4°=16=10+6} S™AL=0
Max 16 possible Max 10 possible Max 6 possible -
roor:
Symmetric Anti-Symmetric S* AW

General
4-Tensor
T =
[TOO’TO1 ,TOZ’TOB]
[T10,T11,T12,T13]
[TZO,T21 ,T22,T23]
[TSO,T31 ,T32,T33]

4-Tensor
S =
[800,801 ,802,803]
[810,811 ,812,813]
[820,821 ,822,823]
[830,831 ,832,833]

4-Tensor
A¥ =
[AOO A01 A02 A03]
[A10’A11 ’A12’A13]
[AZO,A21 ,A22,A23]

[A30 A31 A32 A33]

= 8" A,.: because we can switch dummy indices
= (+S")A,,: because of symmetry

= S"(-A.): because of anti-symmetry

=-S" A

= 0: because the only solution of {c = -c} is 0

Physically, the anti-symmetric part contains
rotational information and the symmetric part

01 02 AO3 contains information about isotropic scaling and
[ 0’01A A - A 13] anisotropic shear.
[-A”, 0, A” A"
[_AO2’_A12, 0, A23]
[-A03,-A13,-A23, 0]

[SOO, 801, 802, 803]
[+SO1, 811, 812, 813]
[+SOZ,+S12, 822, 823]
+SO3,+S13,+823,S33

aka
Skew-Symmetric

SR 4-Tensor SR 4-Vector e " _

(2,0)-Tensor T+ (1,0)-Tensor V* = V = (\°,v) SR 4-Scalar Vv VTIa\(;S [Ti,]v i n“v;rl; T 0 To 2

(1,1)-Tensor T* or T,* | SR 4-CoVector:OneForm K(0.0)-Tensor S or S, V=V V= [(V0) - vev] = (Vo)
orentz Scala = Lorentz Scalar
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=5 SRQM Study: SR 4-Tensor Properties
Symmetric - Isotropic & Anisotropic _ v

ATensqr Study SciRealm@aol.com
of Physical 4-Vectors http://scirealm.org/SRQM.pdf
Any Symmetric SR Tensor S = (T_* + T__ ") can be decomposed into parts: Importantly, the GanirSCASNIEIE

iso aniso Symmetric tensor with any
Isotropic TiSONV = (1/4)Trace[SPV] n" = (T) n* Anti-Symmetric tensor on the same index is always 0.
Anisotropic T_ " =8"-T_" *Note* These don’t have to be composed from a

single general tensor.

The Anisotropic part is Traceless by construction, and the Isotropic part has the same Trace asthe gwpa -9
original Symmetric Tensor. The Minkowski Metric is a symmetric, isotropic 4-tensor with T=1.

Proof:
Independent components: SW A,
Max 10 possible Max 1 possible Max 9 possible =S" A, because we can switch dummy indices
. = (+S")A,: because of symmetry
. . Symmetric = S*(-Aw): because of anti-symmetry
y
Symmetric Symmetric Anisotropic = S% A

4-Tensor Isotropic T = 0: because the only solution of {c = -c} is 0

M = =
S 4-Tensor W = Physically, the isotropic part represents a direction

[SOO,SO1 ,802,303] TiSO”V = [SOO-T,ag?)C;,SOZ,SOS] independent transformation (e.g., a uniform scaling or

[810’811,812,813] [T, 0’0’0]

uniform pressure); the deviatoric part represents the

[810,811"'-'-,812,813] distortion
[SZO 821 SZ2+T 823]
[830’831 ,832 83’3+T]

[820,821,822,823] [0,-T,0,0]
[830,831,832,833] [0’0’_1—,0]
= [0,0,0,-T]

An Isotropic Tensor has the same components in all
possible coordinate-frames.

[SOO, 801, 802, 803] [SOO-T go1 go2 803] Rank 0: All Scalars are isotropic
[+S°%', 8", S™ S with T= T Rank 1: There are no non-zero isotropic vectors

02 12 Q22 Q23 Hv ["'S , S"+T, S, S ] Rank 2: Most general isotropic 2™ rank tensor must
[+S™,+S7, 8%, 87 (1/4)Trace[S"] 02 ;a2 Q22 23 -

03 13 23 @33 [+S%5,+S'9, S“+T, S~ equal to A8", = An*, for some scalar A.
[+S ,+57,+5%,8 ] 03 +g13 +G23 G334 T aka Rank 3: Most general isotropic 3" rank tensor must
W ’ ’ ’ Deviatoric equal to Ae’* for some scalar A.
TI’[Taniso ]‘0 Rank 4: Most general isotropic 4" rank tensor must
equal to a6 + bs*5v8 + cd**8" for scalars {a,b,c).

Trace[T"] = nuT" =T =T
V-V = Vi, VY = [(V)F - vev] = (V)2
= Lorentz Scalar

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v)
(1,1)-Tensor T*, or T,' il SR 4-CoVector:OneForm

SR 4-Scalar
(0,0)-Tensor S or S,
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SRQM Study: SR 4-Tensors
4-Tensor Decomposition

SciRealm@aol.com
http://scirealm.org/SRQM.pdf

General (rank=2) 4-Tensor T"

Symmetric 4-Tensor T___ "
= (T +T™)/2

=T M+ T

Isotropic Symm
4-Tensor

T M =(Tr[T

symm

") 0

max DoF = 1

SR 4-Tensor
(2,0)-Tensor T+

(1,1)-Tensor T*, or T,Y

Ty = +T

symm symm
max DoF = 10

SR 4-Vector
(1,0)-Tensor V¥ = V = (V°,v)
SR 4-CoVector:OneForm

symm

=T BV 4 pv

symm anti-symm

Anti-Symmetric 4-Tensor T w
= (T™ -T")/2

anti-symm

Anisotropic Symm
4-Tensor

V=T BV _
aniso symm

Tr[Taniso“V]=0

max DoF =9
BV — vu

anti-symm anti-symm
vy

max DoF =6

max DoF = (dim)”(rank) = 42 = 4x4 =16 = (10+6)

Maximum Degrees of Freedom (DoF)
= # of possible independent components

SR 4-Scalar

orentz Scala

(Tensor dimension)*(Tensor rank) Trace[T"] =N, T =T =T
(0,0)-Tensor S or S, V-V = Vi, VY = [(VO)? - vev] = (V0)?

= Lorentz Scalar
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SR Tensor Invariants
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of Physical 4-Vectors http://scirealm.org/SRQM.pdf
(g,O_i—Telzfn_Sﬂr = L_oretntz Scalar S: Has either (0) or (1) Tensor Invariant, depending on exact meaning Tensc;l;'r?:\?ariant
itself is Invarian
( ) Tr TpV]=Tvv=(TOO_T11_T22_T33)=
. Set of 4 4-Tensor
(1,0)-Tensor = 4-Vector V*: Has (1) Tensor Invariant = The Lorentz Scalar Product igenValues[T,” T = [T T T2, 7%
V-V =Vin, VY = N VPV = TriVEPV] = VY = (VoW + vav! + vov? + vav®) = (VVO - vev) = (V)2 J b [T0T" 72T
Eigenvalues Tensor o1 00
V=V”=(V”)=(VO,V1,V2,V3) V-V = (VOV -vv) = (V 0)2 Invariant3® [$§z’$z’-::§:’$zj]
(2,0)-Tensor = 4-Tensor T*: Has (4+) Tensor Invariants (though not all independent) fwell 1. @'
a) T% = Trace = Sum of EigenValues for (1,1)-Tensors (mixed) T('a”n’;%rr'mgﬁg;t Determinant
b) T%T? = Asymm Bi-Product — Inner Product Asymm Tri-Product Tensor Invariant
c) T%TPTY,; = Asymm Tri-Product — ?Name? Tensor Invariant
d) T TP TY, T% = Asymm Quad-Product — 4D Determinant = Product of EigenValues for (1,1)-Tensors owered 4-Tenso
eg. T T = TT% - ToT% = (TY)? - T5TP{1} = (T%)2 - T%T°{(%4)n,en*} The lowerad-indicesyEUsER Tov = Moo T™
and, bending tensor rules slightly: = (T%,)? - T%TP{(%)Nesn™} = (TY%)? - T%(N™) TPu(nes){(4)} = (T%)? - T Tsaf(V4)} .tensor just negativizes the =
and, since linear combinations of invariants are invariant: (time-space) and (space-time) [Too ,Tor ,Toz , Tos]
Examine just the (T%Ts,) part, which for symm|asymm is (+)(T®Ts) ie. the InnerProduct Invariant sections of the upper-indices 0y DAl 5 0k o L0
tensor [T10 ,T11 ,T12 ,T13]
@) Traco[T) = THT] = T2/ = T = T = (T Ty T T4 = (12 T T2 T9= (1) s somtime soena WF gllon ol ol
for anti-symmetric: = 0 | _ ) | _ “ 1 = (1)TA(T™)] [Ts0,T31,Ts2, T3]
b): InnerProduct T, T* = ToeT® + TioT® + T T% + TyT' = (T®)? - LT - Z[TP + [T ) = (1/2)Tr[(T*Y] -
for symmetric | anti-symmetric: = (T®)? - 25 [T + Z [T = £, [T"]? - 25 [T + 255[ T 2 = (1/3)Tr(T™Y] [+T%, -T™ ,-T% -T%]
c): Antisymmetric Triple Product ToWTPTY, = Tr[T] - 3(Tr[TH])(T%TR) + ToTR, TV + T4, TR TV f = (UA)THT)] [-T@ ATV +T2 4T
for anti-symmetric: = 0 I I got all the math right... ! [T +T?" +T%2 +T%)

d): Determinant Det[T"] =?= -(1/2)€qps T T"
for anti-symmetric: Det[T*'] = Pfaffian[T"]? (The Pfaffian is a special polynomial of the matrix entries)
SR 4-Tensor

(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v)
(1,1)-Tensor T*, or T,' § SR 4-CoVector: OneForm

[_TBO ,+T31 ,+T32 ,+T33]

SR 4-Vector

SR 4-Scalar Det[T%,] = IL[AJ; with {A} = Set of Eigenvalues Trace[T*] = Il

0,0)-Tensor S or S, P i ) _ V-V = Vi, VY = [(VO)? - vev] = (V0)?
( Z)rentz Scala Characteristic Eqns: Det[T% - Ad4)]=0 = Lorentz SCarE
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sy Tensor Gymnastics g

Some Tensor Gymnastics: a = Tr[A]
Matrix A = Tensor A", A% A% = A% A% - A% A, = (Tr{A])? - Tr{A?]
with rows denoted by “r’, columns by “c”

Aa[a Abb Acc]
+ Aaa Abb Acc - Aaa Abc ACb + Aab Abc Aca = Aab Aba Acc + Aac Aba Acb - Aac Abb Aca
+(Aaa Abb Acc) n (Aaa Abc Acb + Aab Aba Acc + Aac Abb Aca) + (Aab Abc Aca + Aac Aba Acb)
+(Aaa Abb Acc) - (Aaa Abc Acb + Acc Aab Aba + Abb Aac Aca) + (Aab Abc Aca + Aac Acb Aba)
+(Tr{A])’ - 3*(Tr[A])(Tr[A?]) + 2*(Tr[A%])

Example with dim=4: r,c={0..3}
Matrix A =

[Ar=0C=O A\r=0c=1 Af:Oc:Z Ar=00=3]
[Ar=1c:O p\r=1c:1 Ar=1c=2 Ar=10:3]
[Ar=20=0 p\r=2C:1 A\r=2c:2 Ar=zc:3]
[Ar=30=0 Ar=3c=1 Ar=3c=2 Ar=30=3]

An A% A Add] =
M=Ax B = A% B, = M, AP A P ATAY G -AT AP AGAT -ATAP A A% AT AP ATAY, +ATAAGAY A% AN AAY,
,with the rows of A multiplied by the columns of B AT A A A FATLA A GA S HATAPA A -ATAAA S -ABA A%AY HATAY A A
due to the summation over index “c” +A2 AP AS AY -AZ AP ASAY A2 AP AC AL +A AP ACAY +ATAPACAY -AZAPAGAY,

-APAP ACAY +ATARACAY, +ACAPAC AT -ATARACAY, -APAPASAY, +AZAPAGAC,
If we have sums over both indices: =
A%, BdC = dd =“Tf’ace[M] +AaaAbbACoAdd
AP AP AGAY -AT A ADLAY -A%AP A A% -ATA A A Y -APAA%AY G -ATA A A

The sum over “c” gives the matrix multiplication and then the sum
over “d” gives the Trace of the resulting matrix M
g g +AaaAbcACdAdb +AaaAbdACbAdc +AabAbcAcaAdd +AabAbdAccAda +AacAbaAchdd +AacAbbAchda +AadAbaAccAdb +AadAbbAcaAdc

A% A% = (AxA)%s = (NY% = Trace[N] = Trace[A?] = Tr[A?] +HALAATGAY HATAA%AY +ATAYAGA
A% A% = (NEAS)AL = NP(A%A%) = Ne(N%) = 82 (N%) = TN = TrA?]  -APAATGA% -A%A GA%A" -A%APA%GA Y, -A%A GA%A Y -A%A%A A -ATAA%A,
A Ay = A% A - A A% = (TrA]) - Tr[A?] +(Tr[A])*
,with brackets [..] around the indices indicating anti-symmetric -6*(Tr[A])2(Tr[A2])
T +8*(Tr[A])(Tr[A°])

* 21\2
The Trace formula’s are independent of tensor dimension. +3 (Tr[P; )

-6*(Tr{A"])

+(Tr{A])* -6*(Tr{A])*(Tr[A%]) +8*(Tr[A])(Tr{A%]) +3*(Tr[A%]) -6*(Tr[A"])

SR 4-Tensor SR 4-Vector : .
(2,0)-Tensor T~ §(1,0)-Tensor V* =V = (v*,v) . SR 4-Scalar Det[T,] = II[A]; with {\} = Eigenvalues

(1,1)-Tensor T, or T,/ § SR 4-CoVector:OneForm R0.0)-Tensor S or S, Characteristic Eqns: Det[T - Ad]=0

Trace[T"] = nuT" =T =T
V-V = Vi, VY = [(V)F - vev] = (V)2
= Lorentz Scalar
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N Cayley-Hamilton Theorem . . soess

General Cayley-Hamilton Theorem
A%+Cy AT+, +CoA%= 0y, With A = square matrix, d = dimension, A° = Identity(d) = L
Characteristic Polynomial: p(A) = Det[A - Al )]

lo = Z[Unique Eigenvalue Naughts] = 1 (1)
The following are the Principle Tensor Invariants for dimensions 1..4 I; = £[Unique Eigenvalue Singles] = Ay + Ay + A3 + A 4)
I, = 2[Unique Eigenvalue Doubles] = Az + AMAs + AAs + AoAs + AAs + AsAs (6)
dim =1: A'+c)A°=0 : A-1;1,=0 Is = [Unique Eigenvalue Triples] = AAzAs + AAzAs + AAshg + AzAshs (4)
1, = tr[A] = Detp[A] = A 1, = Z[Unique Eigenvalue Quadruples] = AAzAzAs (1)
dim = 2: A+ A'™+cA’=0 : A%- ;A" + ;15 =0 Each dimension gives the number of elements
I; = tr[A] = X[Eigenvalues] = A + A, from it's row in Pascal’s Triangle :)

I, = (tr[A]? - tr[A?] )/2 = Detx[A] = IN[Eigenvalues] = A

dim = 3: A3+C2A2+C1A1+C0AO =0 : A3- 14 A? + I, Al - I3 Ig) = 0]

I, = tr[A] = 2[Eigenvalues] = A1 + Az + A3

I, = ( tr[A]2 = tr[Az] )/2 = MA2 + MAs + AoAs

Is=[ (tr A)® - 3 tr(A%)(tr A) + 2 tr(A®) ]/6 = Detsp[A] = II[Eigenvalues] = AA2A;

dim = 4: A4+C3A3+02A2+C1A1+COAO =0 : A4 = I1 A3 + 12 A2 = I3 A1 + /4 1(4) =0

I, = tr[A] = Z[Eigenvalues] = A + Ay + A3 + Ay

Iz = ( tr[A]2 = tr[Az] )/2 = )\1)\2 + )\1)\3 + )\1)\4 + )\2)\3 + )\2)\4 + )\3)\4

Is= [ (tr A)? - 3 tr(A2)(tr A) + 2 tr(A%) 1/6 = AAoAs + MAohs + Ahshs + Ashahs

Iy = ((tr A)* - 6 tr(A%)(tr A)® + 3(tr(A%))* + 8 tr(A%) tr A - 6 tr(A*))/24 = Detp[A] = II[Eigenvalues] = AAsAsAs

SR 4-Tensor
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v)

1,1)-Tensor T or T,' § SR 4-CoVector:OneForm
0,2)-Tensor T, 0,1)-Tensor V, = (vo,-V

SR 4-Vector

SR 4-Scalar Det[T%] = ITJAJ; with {A} = Eigenvalues Trace[T™] = M TESeuE

0,0)-Tensor S or S, o A 3 _ V-V = Vi, VY = [(VO)? - vev] = (V0)?
( ())rentz Scala Characteristic Eqns: Det[T% - Adl4)]=0 = Lorentz SCarE
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SRQM Study: SR 4-Tensors

SR Tensor Invariants

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

Cayley-Hamilton Theorem
of Physical 4-Vectors http://scirealm.org/SRQM.pdf
General Cayley-Hamilton Theorem Dim =1 Dim =2 Dim=3 Euclidean Dim=4 Minkowski
AMCy A%+, +CoA'= 0, With A = square matrix, 3-Space SpaceTime

d = dimension, A’ = Identity(d) = I A=[ a ] A=[ a b ] A=[ a b c ] A=[ a b c d ]
LA -1, A+ LA*- A"+ [,A° =0 : for 4D [ cd] [ de £ ] [ e £fgh]
Characteristic Polynomial: p(A) = Det[A — Aly)] [ ghi] [ 13 k1]
[ mnop ]
Tensor Invariants /, = A - j,k={1} = A, :j,k={1,2} = A 1 j,k={1,2,3} =AY : u,v={0,1,2,3}
lh=1/0!=1 (1) (1) (1) (1)
=1 =1 =1 =1
I, = tr[A}J/1! (1) (2) (3) (4)
=)\1 =)\1+)\2 =)\1+)\2+)\3 =)\1+)\2+)\3+)\4
=A% = (a) =(a+d) =(ateti) =(a+f+k+p)

= X[Unique Eigenvalue Singles]

Y[Eigenvalues]
Detm[A]
= TI[Eigenvalues]

= Y[Eigenvalues]

= 2[Eigenvalues]

= 2[Eigenvalues]

I, = ( tr[A]? - tr[A?] )/2! =0 (1) (3) (6)
= )\1)\2 = )\1)\2 + )\1)\3 + )\2)\3 = )\1)\2 + )\1)\3 + )\1)\4 + )\2)\3 + )\2)\4 + )\3)\4
= A% A%/ 2 = (ad - bc) = (ae - bd)+(ai - cg)+(ei - fh) = (af - be) + (ak - ci) + (ap - dm)
= Deto[A] +(fk - gj) + (fp - hn) + (kp - lo)
= X[Unique Eigenvalue Doubles] = II[Eigenvalues]
I = (tr A)® - 3 tr(A%)(tr A) + 2 tr(A®) /3! =0 =0 (1) (4)
= )\1)\2)\3 = )\1)\2)\3 + )\1)\2)\4 + )\1)\3)\4 + )\2)\3)\4
= A% Af A,/ 6 = a(ei-th)-b(di-fg)+c(dh-eg) = ..
= Det3D[A]
= X[Unique Eigenvalue Triples] = TI[Eigenvalues]
I, = ((tr A)* - 6 tr(A%)(tr A)? + 3(tr(A%))? + 8 tr(A®) tr A - 6 tr(A%))/4! | =0 =0 =0 (1)

= Aq[u ABp Avv A65] [ 24

= X[Unique Eigenvalue Quadruples]

= )\1)\2)\3)\4
=a( f( kp-lo)) + ...
= Det4D[A]
= II[Eigenvalues]
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for Faraday EM Tensor
of Physical 4-Vectors http://scirealm.org/SRQM.pdf
The Faraday EM Tensor F%® = 8°A° - 3°A° = 3 A A is an anti-symmetric tensor 4-Gradient Fa;?day 24 %
that contains the Electric and Magnetic Fields, defined by the Exterior “Wedge” Product (*). a:apz(at/c’_V) ensor

Fof = AP - PAT=9 A A
—
[ Ftt th Fty FtZ]
[Fxt | =y =3 Fx2]
[Fyf Y Fw Fyz]
[th sz Fzy FZZ]

The 3-electric components (e = €') are in the temporal-spatial sections.
The 3-magnetic components (b = b¥) are in the only-spatial section.

(2.0)-Tensor = 4-Tensor T*: Has (4+) Tensor Invariants (though not all independent
a) T°% = Trace = Sum of EigenValues for (1,1)-Tensors (mixed)

b) T% TP = Asymm Bi-Product — Inner Product

) T% TP TY; = Asymm Tri-Product — ?Name? FL P _
d) T%TP:TY T% = Asymm Quad-Product — 4D Determinant = Product of EigenValues for (1,1)-Tensors =2{(b-bu)—(e-e/02 [ O d’a’-9'a’ Pa*-%a’ °a’-9°a’)

[0'a’-¢%" 0 9d'a*>-d%a' d9'a*-d’a’]

Tensor Invariant

a): Faraday Trace[F*] = F,’ = (F®-F"-F?-F%)= (0-0 -0-0) = 0 Inner Product 000 Palglg? 2.3 A3
b): Faraday Inner Product F,,F" = &, [F™]? - 2Z[F°P + 2Z,[F']? = (0) - 2(e-e/c?)+ 2(b-b) = 2{(b-b)-(e-e/c?)} Tensor Invariant [ 330' 033 333 1'3133 , 9 - d“a’-d’a’]
c): Faraday AsymmTri[F*] = THF*]* - 3(Tr{F*])(F%F®.) + FoFPFY, + FoFSFYs = 0-3(0)+FFP, FYot(-Fo)(-F%,)(-F%) = 0 [0’a’-da” da-da’ dga-ga 0 ]

d): Faraday Det[anti-symmetric F*'] = Pfaffian[F*']? = [(-e*/c)(-b*) - (-e¥/c)(bY) + (-e%/c)(-b?)]? = [(e*b¥/c) + (e¥b¥/c) + (e?b?/c)]? = {(e-b)/c}? =

[ 0 (da+Vo)c (da+Vo)c (da*+V)ic]
[(_Vx(p_ataxlc) 0 _any+Vyax _anz+VzaX]
Importantly, the Faraday EM Tensor has only (2) linearly-independent invariants: [(-Ve-da¥lc) -Va+Va’ 0 Va+Vaa']

b) 2{(bb)-(99/C2)} \/Zn_Ataz _\/zax XnaZ _\/ZqY Y aZ
) {(b-e)/c}? m Vo da‘/c) V?a +Va= Vza'+V'a 0 ]
a) & c¢) give 0=0, and do not provide additional constraints [0

. -e*/c -e’lc -€7/c]
Asymm Tri-Product [+e’c 0 -b? +b’]

The 4-Gradient and 4-EMVectorPotential have (4) independent components each, for total of (8). Tensor Invariant
Subtract the (2) invariants which provide constraints to get a total of (6) independent components [+e’lc +b* 0 -b*]
= (6) independent components of a 4x4 anti-symmetric tensor Det[F"] [te*/c -b¥ +b* 0]
= (3) 3-electric e + (3) 3-magnetic b = (6) independent EM field components ={(e-b)/c z =

J
Note: It is possible to have non-zero e and b, yet still have zeroes in the Tensor Invariants. ||H-|- } - Determinant [[+e(i)/c ’_Slgk%
If e is orthogonal to b, then Det[F**] = {(b-e)/c}? = 0. Tensor Invariant Tk
If (b-b)=(e-e/c?), then InnerProd[F**] = 2{(b-b)-(e-e/c?)} = 0. 4-(EM)VectorPotential | =
These conditions lead to the properties of EM waves = photons = null 4-vectors, A=A"=(p/c.a [ O ,-elc ]
which have fields |b| = |e|/c and b orthogonal to e, travelling at velocity c. WG, [+e/c, -V A a]

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v)

Fundamental EM Invariants: Trace[T"] = N T = T%, = T
P = (1/2)F“VFIJV = (—1/2)*FHV*FPV = {(b'b)-(e'e/C2)} \VAVAS Vunuvvv = [(L:;O)Z _ V'V:T = (v0°)2
Q= (1/4)FUV*FHV = (1/8)EGBV6FGBFV§ = {(eb)/C} = Lorentz Scalar

SR 4-Scalar
(0,0)-Tensor S or S,

(1,1)-Tensor T*, or T,' il SR 4-CoVector:OneForm
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for 4-AngularMomentum Tensor ....smess
of Physical 4-Vectors http://scirealm.org/SRQM.pdf
4-Positi 4-AngularMomentum
The 4-AngularMomentum Tensor M*® = X°P? - XPP* = X"P is an anti-symmetric tensor -Position Tensor ' H
The 3-mass-moment components (n = n') are in the temporal-spatial sections. X=X"=(ct,x M = X°PP - XPPa = X A P
The 3-angular-momentum components (I = I¥) are in the only-spatial section. —

. [ Mtt Mtx Mty MtZ]
(2.0)-Tensor = 4-Tensor T*; Has (4+) Tensor Invariants (though not all independent [Mxt M= M M)

a) T% = Trace = Sum of EigenValues for (1,1)-Tensors (mixed) M VP MY MY
b) T TP = Asymm Bi-Product — Inner Product Tenscl-rr?r?\(/eariant {MZ’ N MZZ}
c) T°uTPTY,; = Asymm Tri-Product — ?Name? !

d) T%T%TY, T%; = Asymm Quad-Product — 4D Determinant = Product of EigenValues for (1,1)-Tensors -

[ 0 X°p'-x'p® x%p2x%p° X°pi-xp°]

a): 4-AngMom Trace[M™] = M,* = (M®-M"-M2-M*)= (0 -0 -0 -0) = 0 [X'p%-x°p’ 0 x'px*p' x'p’x’p']
b): 4-AngMom Inner Product M, M** = . [MP] - 25[M°F + 25, [M° = (0) - 2(c’n-n)+ 2(Il) = 2{(Il)-(c’n-n)} Inner Product Xp%xp? x’p'x'p? 0 x*p’-x’p?
c): 4-AngMom AsymmTri[M*] = Tr[M"* - 3(Tr[M*])(MsM®5) + MsMP®, MY, + M°,M®Mg = 0 Tensor Invariant Cp®-xp® x°p'x'p® x’p’-xp® 0

d): 4-AngMom Det[anti-symmetric M*'] = Pfaffian[M"]* = [(-cn®)(+I¥) - (-cn¥)(-IY) + (-cn?)(+I%)]? = [-(cn*I¥) - (cn¥P) - (cn??)]? = {c(n-1)}? =
[ O ctpxElc ctp’-yE/c ctp*zE/c]

Importantly, the 4-AngularMomentum Tensor has only (2) linearly-independent invariants: [XE/c-ctp” 0 Xp'-yp*  xp?-zp*]
(tj); {2(5((::2;]&02n-n)}: see Wikipedia Laplace—Runge—Lenz_vector, sec. Casimir Invariants [YE/c-ctp! yp-xp’ 0 ypi-zp']

[zE/c-ctp* zp*-xp* zp’-yp* 0 ]

a) & c¢) give 0=0, and do not provide additional constraints
Asymm Tri-Product =

The 4-Position and 4-Momentum have (4) independent components each, for total of (8). Tensor Invariant [ 0 c(tp*xm) c(tp’-ym) c(tp*-zm)]
Subtract the (2) invariants which provide constraints to get a total of (6) independent components [c(xm-tp¥) 0 Xp’-yp* xp*-zp*]
= (6) independent components of a 4x4 anti-symmetric tensor [c(ym-tp¥) yp*-xp’ 0 yp*-zp’]

= (3) 3-mass-moment n + (3) 3-angular-momentum | = (6) independent 4-AngularMomentum components [c(zm-tp?) zp*-xp® zp’-yp* 0 ]
Determinant =

3-massmoment n = xm - tp = m(x - tu) = m(r - tu) = m(r - t(w x r)) : Tangential velocity ur = (w x r) Tensor Invariant [0 _en* -cn? -cn]

(-k/r)n = -mk(F - t(w x F)) = mkt(w x F) - mkf = t * d/dt(p) x L - mk# : d/dt(p) x L = mk(w x F) [+cn* O+ -F]
n is related to the LRL = Laplace-Runge-Lenz 3-vector: A = p x L — mkf [tcn” -0 +]
which is another classical conserved vector. The invariance is shown here to be relativistic in origin. [+cn® +P - 0]
Wikipedia article: Laplace-Runge-Lenz vector shows these as Casimir Invariants. =

See Also: Relativistic Angular Momentum. [0 ,-cn']
[ +cn, € 1]
Trace[T"] =N T =T, =T =
V-V = Vi VY = (V)2 - vev] = (Veo)? [ 0 ,-cn ]
= Lorentz Scalar [+cn™, x A p]

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v)

SR 4-Scalar

(1,1)-Tensor T* or T,* | SR 4-CoVector:OneForm K(0.0)-Tensor S or S,
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Ny for Minkowski Metric Tensor  ...ssmese

Trace Tensor Invariant
A Trn*] = (1) -(1) -(1) 1) = 4
(2,0)-Tensor = 4-Tensor T* Has (4+) Tensor Invariants (though not all independent 4-Gradient Nun™ = N = 8 = 1+1+1+1
a) T% = Trace = Sum of EigenValues for (1,1)-Tensors (mixed — V — v
! d L - 9=0=(3/c,-V) oIR] = R’ = "

b) T%T? = Asymm Bi-Product — Inner Product
c) T% T TY,; = Asymm Tri-Product — ?Name?

The Minkowksi Metric Tensor n™ is the tensor all SR 4-Vectors are measured by.

—

d) T%T%TY,T% = Asymm Quad-Product — 4D Determinant = Product of EigenValues for (1,1)-Tensors DiaDQ“ ’['11 "]1 ’]'1]
: : 1agll,-1)
. . y GR Trace Tensor Invariant i W . oi
a): Minkowksi Trace[n"] = 4 4D SpaceTime Elggg}[ﬁll;ef[?} J Diag[1,-6"]
b): Minkowksi Inner Product n,n" = 4 1 =

c): Minkowksi AsymmTri[n*] = 24 = 41 In GR Eigenvalues T N Inner Product

d): Minkowksi Det[n"] = -1 Tr[g"] = gwg™ = g%, = &%, O aran [ 51 10 8 8 ] Tensor Invariant
= 1414141 = 4 [O0- ]

a) Tug = TF[A] = 4 Slgnature[npv] = (+’-’_’- [ 0 0 -1 O ]

b) T TP = (Tr[A])? - Tr[A%] =42-4 =12
C) TTPTY, = +(Tr[A])® - 3*(TrA(Tr[A]) + 2*(Tr[A%]) = 4° - 3*4*4 + 2*4 = 64 - 48 + 8 = 24

d) TaTPTY T = +(Tr[A])* -6*(Tr[A])*(Tr[A%]) +8*(Tr[A])(Tr[A®]) +3*(Tr[A%])* -6*(Tr[A"]) = Signature Tensor

4% - 6*4%*4 + 8*4*4 + 3*42 - 6*4 = 256 - 384 + 128 + 48 - 24 = 24 Invariant [Nl = 1/[n*] : n* = 8" ((Det[n*] = -1
-Mi i i Det[n"] = +1

A°APn =n a) T /M1 =4/1=4 SR:Minkowski Metric [n*]

b v aB

™ "Particle Physics” Conventio ;
Hv b) Tu[qTBB] /21=12/2 =6 4-Position | Y Determlnant
Tensor Invariant

[000-1]

{in Cartesian form}

= {1,3,0} = (1-3)= -2

c) TTPsTY,; /3! = 24/6= 4
Det(Exp[A])=Exp(Tr[A]) d) T TPT T /41 = 24/24 = 1 -
Asymm Tri-Product
Detyo(A)=((tr A)* - 6 tr(A2)(tr A)? + 3(tr(A%))? + 8 tr(A%) tr A - 6 tr(A*))/24 Tensor Invariant

EigenValues not defined for the standard Minkowski Metric Tensor since it is a type (2,0)-Tensor, all upper indices. However, they are defined for the mixed form (1,1)-Tensor
EigenValues are defined for the Lorentz Transforms since they are type (1,1)-Tensors, mixed indices

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector v = vV — =
(10 Tensor v* = v = (V) Jf1/ SR &-Scalar Det[T<] = IL{AJ; with {\} = EigenValues y VT[a\jfrETillv-_ f[l(uJOT)“z _VT\:]” 5 (Tvo v
SR 4-CoVector:OneF ,0)-Tensor S or S, L. . ) _ WV = = -v-v] = (V%
, ovector:onerorm gl " rentz Scala Characteristic Eqns: Det[T% - Ad)]=0 21 orehteie i

(1,1)-Tensor T*, or T,Y
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SR — QM 4-Vector SRQM Interpretation

A SRQM Study: SR 4-Tensors

N :
-\ SR Tensor Invariants

for Perfect Fluid Stress-Energy Tensor _srnexic:

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

Trace Tensor Invariant
The Perfect Fluid Stress-EnergyTensor T is the tensor of a relativistic fluid. TIT™] = (Peo) =(Po) ~(Po) =(Po) =

N T = T = Peo-3Po

(2,0)-Tensor = 4-Tensor T*: Has (4+) Tensor Invariants (though not all independent
a) T°% = Trace = Sum of EigenValues for (1,1)-Tensors (mixed)
b) T%T? = Asymm Bi-Product — Inner Product
c) T% T TY,; = Asymm Tri-Product — ?Name? "
d) T°TPsTY, T% = Asymm Quad-Product — 4D Determinant = Product of EigenValues for (1,1)-Tensors Tperfectfuia
EigenValues[T"/] . T (MCRF)
Diag[pe,p,p,p]
Dia ,pI
Di g[pe p(fk)] Inner Product
iag[Pe,pd"] Tensor Invariant

a): PerfectFluid Trace[T"] = peo-3Po
b): PerfectFluid Inner Product T, T*' = (Peo)?+3(Po)? =Set{Deo,~Po,Po,Po
c): PerfectFluid AsymmTri[T"'] =

d): PerfectFluid Det[T"'] = peo(po)®

Eigenvalues Tensor
Invariants

Signature[T"] = (+,+,+,+ [Pe000]

: SR Perfect Fluid 4-Tensor
4-ForceDensity Fgensi = = =
-0 T = Fiie)rllsitys v Tpertectiid = (Peo) V" + (-po)H" — — {4’0’0} - (4-0)_ 4 [ 0 p 00 ]
SR Conservation of Signature Tensor [00pO] o — 3
Invariant [000p] Det[T*] = Peo(Po)

StressEnergy T* {in Cartesian form}  \Det[T"] = -Peo(Po)°

if Faensiyy” = O" .
Equation of State
a AB = 0 V]= = W=y/= Determinant
NNNG=N, : . OSIT™]=w=p./bg EoS[T™]=W=po/peg : Tensor Invariant
Units of Symmetric ! i AsymmTri[T"]=
- [EnergyDensity=Pressure] quation or sta J
Det(ExplAD=Exp(TrIA]) Jr1T"]=Peo 3p Tensor Invariant not yet calcd

Asymm Tri-Product
Detyp(A)=((tr A)* - 6 tr(A?)(tr A)? + 3(tr(A?))* + 8 tr(A%) tr A - 6 tr(A*))/24 Tensor Invariant

EigenValues not defined for the standard Perfect Fluid Tensor since it is a type (2,0)-Tensor, all upper indices. However, they are defined for the mixed form (1,1)-Tensor
EigenValues are defined for the Lorentz Transforms since they are type (1,1)-Tensors, mixed indices

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector V] = v — —
(1.0)Tensor v* =V = (vv) 0?'; d-Scalar 2 Det[T%,] = IL{AJ; with {A} = EigenValues y VTIa\(;‘?rETi/]V_— r[l(quT)'; _vT\:]” 5 (T/o v
SR 4-CoVector:OneF ,0)-Tensor S or S, o | ) - AVS WV = -vv] = (VY

’ ovector:onerorm gl " rentz Scala Characteristic Eqns: Det[T% - Ad)]=0 21 orehteie i

(1,1)-Tensor T*, or T,Y
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A Tensor Study
of Physical 4-Vectors

Rotation(0)

Identity

Lorentz SR
Identity
Tensor A*,—n",
=R",[0] = B*\[0]

The Lorentz Transform Tensor { A¥ = dx*/ox" = 9 [X"] } is the tensor all SR 4-Vectors must transform by. Boost(0)

Inner Product Lorentz SR Lorentz SR

Boost
Tensor A\¥,—B",

(2,0)-Tensor = 4-Tensor T*: Has (4+) Tensor Invariants (though not all independent)

a) T = Trace = Sum of EigenValues for (1,1)-Tensors (mixed) TensoriEIER Rotation
b) T TP = Asymm Bi-Product — Inner Product

@ Tensor A¥,—RY,
c) T%T%TY,; = Asymm Tri-Product — ?Name? =

d) T% TP T", T% = Asymm Quad-Product — 4D Determinant = Product of EigenValues for (1,1)-Tensors [1 0 g 0]
[0 cos[B] -sin[6] O]
[0 sin[B] cos[O] 0]

m
v

a): Lorentz Trace[A"] = {0..4..Infinity} Lorentz Boost meets Rotation at Identity of 4 .
b): Lorentz Inner Product A,AY =4 from {n,/\"a/\'s = Nee} and {n.n" = 4} A%?Srgrmvzrﬁ:#td [0 0 0 11
c): Lorentz AsymmTri[A"] =

d): Lorentz Det[A\"] = +1 for Proper Transforms, Continuous Transforms Proper (e AUl
Not yet calc...

0 [
0 [-By
0 [
1 [

= Minkowski
Delta

Ap even more ge_neral version would bg EigenValues[A¥.]
with a & b as arbitrary complex values: (g N
=Set{e®,e®,e"e

could be 2 boosts, 2 rotations,
or a boost:rotation combo ¢

THA"]={-o..+}
=L orentz Transform Type
SR:Lorentz Transform
a,[R"] = dR"/ORY = \¥,
AV = (N D AGAS =Y = 8%

Sum of
EigenValues[A"\]
=Tr[A"\J=AY,,
={ea+e-a+eb+e—b}
=2(cosh[a]+cosh[b])
={-4..Infinity}

Product o
EigenValues[/\",]
=Det[A\"|]
={ea_e-a_eb_e-b}

SR 4-Tensor
(2,0)-Tensor T+
(1,1)-Tensor T*, or T,Y

SR 4-Vector
(1,0)-Tensor V¥ = V = (V°,v)
SR 4-CoVector:OneForm

SR 4-Scalar
(0,0)-Tensor S or S,
orentz Scala

Trace Tensor Invariant

Tr[Cont. A*\]={0..4..Infinity}
Depends on “rotation”

amount

Determinant Tensor Invariant

Det[Proper A¥,]=+
Proper Transform

always +1

EigenValues[R"\]
=Set{1,e°,e™,1}

Sum of
EigenValues[R"]
=Tr[R",]=R¥,
=1+e%+e™+1
=2+2cos[0]
={0..4}

Product of
EigenValues[R"]
=Det[R")]
=1-¢%e%1
= +1

Proper

Det[T%] = IT([A]; with {A} = EigenValues
Characteristic Eqns: Det[T% - Ad4)]=0

EigenValues[n"\]
=Set{1,1,1,1}

Sum of
EigenValues[n*.]
=Tr{n"J=n",
=1+1+1+1

Product of
EigenValues[n“\]
=Det[n"\]
=1-1-11
= +1

Proper

EigenValues[B"\]
=Set{e®,e?,1,1}

Sum of
EigenValues[B"\]
=Tr[B",]=B",
=e®+e+1+1

EigenValues[B"\]
=Det[B"]
=e%e®11

= +1

Proper

Trace[T"] = nuT" =T =T
V-V =V, VY = [(V)? - vev] = (Vo)
= Lorentz Scalar
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SR Tensor Invariants for
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Discrete Lorentz Transform Tensors SoReain@aoLcon

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

SR:L:?rfntzuTra?s_fo:m Inner Product Lorentz SR Lorentz SR Lorentz SR Lorentz SR
o,[R"] = dRY/OR" =\, LIS vy TPcombo Parity-Inversion Flip-xy-Combo Time-Reversal

A= (N T ARG = = 8%, @ Tensor \V\—TP¥, Tensor \*,—P", B Tensor AY,—Fxy*, Tensor A*,—T¥,

Asymm Tri-Product
Tensor Invariant
Tr[A"]={-..+ =}

=Lorentz Transform Type

] ]
] ]
] ]
-1] ]

EigenValues[TP*\] EigenValues[P",] W EigenValues[Fxy"\] EigenValues[T",] EigenValues[n"\]

The Trace of =Set{-1,-1,-1,-1} =Set{1,-1,-1,-1} =Set{1,-1,-1,1} =Set{-1,1,1,1} =Set{1,1,1,1}

various discrete Trace Tensor Invariant

Lorentz transforms _ , _ : _ , : : : ,

varies in steps from Tr[Discrete A\]={-4,-2,0,2,4} Y/ ='¢ vest el e ues(Fxy ElgenVel\J!ugﬂu,T”v] Elg_enVeJ!UfSEn“v]

(4,-2.0.2.4) Sspaibenitenarn )\ S A idhy @ty o

=4

This includes Mirror Determinant Tensor Invariant

Flips, Time g _ , _ | _ ' _ : ~ Product of ™
) Det[A"\]=+1 EigenValues[TP"\] EigenValues[P"\] g EigenValues[T"\] EigenValues[n“\]

Re\{ersaL and Proper Transform = +1 =Det[TP",] =Det[P"\] = ' =Det[T"\] =Det[n"\]

Parity Inverse — mproper Transform = -1 = 1--1--1--1 = 1--1--1--1 q-q- =-1-1-11 =111-1

essentially taking all
combinations of +1

on the diagonal of Proper Improper Proper Improper Proper
the transform.

= +1 =9 = = +1

SR 4-Tensor SR 4-Vector - . Trace[TuV] = TV=T =T

(2,0)-Tensor T+ §(1,0)-Tensor V¥ =V = (\°,v) 4 o?$ 4-ScaSIar S Det[T%] = TL[A]; with {A} = EigenValues VAV = ViV _r[‘(U\;O)Z vviJ— e
1,1)-Tensor T or T, § SR 4-CoVector:OneF ,0)-Tensor S or S, ioti : e - V= Vi, V= - vev] = (Vs
(1,1)-Tensor T* or T, ovector:OneForm @ < ety Scala Characteristic Eqns: Det[T° - Ad(4)]=0 21 orehteie i
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SR:Lorentz Transform
o [R"] =
/\uv = (/\-1)vu

Lorentz SR Lorentz SR
11-Rotation-z
Tensor A¥,—RY,

0 0]
[0 cos[tm] -sin[m] 0]
[0 sin[mr] cos[m] 0]
[0 0 1]

Lorentz SR
Flip-x
Tensor N\¥,—Fx",

Lorentz SR
Flip- xy-Combo
Tensor /\“ V—»ny

Lorentz SR
Flip-y
Tensor A\¥,—Fy*,

IRVIOR" = NV,
NGNS, =y = 8

Tr[A"]={-..+0}

=Lorentz Transform Type

0
-1

0
0

The Flip-xy-Combo is the

equivalent of a 1-Rotation-z. _ \

EigenValues[Fxy"\]
=Set{1,-1,-1,1}

igenValues[Fy",
=Set{1,1,-1,1)

EigenValues[Fx"\]
=Set{1,-1,1,1}

EigenValues[R"\]
=Set{1,e™,e™ 1}

| suspect that this may be
related to exchange symmetry

and the Spin-Statistics idea Sum of Sum of

that a particle-exchange
is the equivalent of
a spin-rotation.

A single Flip would not be an
exchange because it leaves a
mirror-inversion of <right-|-left>.

But the extra Flip along an
orthogonal axis corrects the
mirror-inversion, and would be
an overall exchange because
the particle is in a different
location.

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector
(1,0)-Tensor V¥ = V = (V°,v)
(1,1)-Tensor T*, or T, | SR 4-CoVector: OneForm (0,0)-Tensor S or S,

: Lorentz SR
O—Rotatllon-z ' Identity
Tensor A“ —R% " Tensor Ny

[1 O 0 0] 0 0
[0 cos[0] -sin[0] O] 0
[0 sin[0] cos[0] O] 0
0 0 1] 1
= Minkowski
EigenValues[R"\] EigenValues[n“\]
=Set{1,e",e",1} =Set{1,1,1,1}
EigenValues[R"\]
=Tr[R"\]=R",
=1+e"+e™'+1 = 1+1+1+1
=2+2cos|0] =2+2cos|[0]
=4 =4
Product of Product of )
EigenValues[R"] EigenValues[n"\]
=Det[R"\] =Det[n"\]
:1.ei0.e‘i0.1 =] 1-1-1.1
= +1 = +1
Proper Proper
SR 4-Scalar

orentz Scala

igenValues[Fx",
=Tr[Fx"\]=Fx",

EigenValues[Fx"\]
=Det[Fx"\]
=1-111

=1

Improper Improper

Det[T%] = IT([A]; with {A} = EigenValues
Characteristic Eqns: Det[T% - Ad4)]=0

EigenValues[Fxy*\]
=Tr[Fxy"\]=Fxy*,
=1-1-1+1
=2+2cos[1T]

Trace[T"] = N T" =
V-V = V*n, V"

EigenValues[R"\]
=Tr[R*,]=R¥,
=1+e'"+e"+1

=2+2cos[1T]
=0

Product of
EigenValues[R"\]
=Det[R"\]
=1-eme "1
= +1

Proper

=T

= (V) - vv] = (Voo)*

= Lorentz Scalar
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L2 Elegantly join many dual physical

SciRealm.org
John B. Wilson

A Tensor Study = - SciRealm@aol.com

properties and relations
SR 4-Scalars, 4-Vectors, and 4-Tensors beautifully and elegantly display the relations between lots of different physical properties and relations.

4-Tensor T*

Their notation makes navigation through the physics very simple.

They also devolve very nicely into the limiting/approximate Newtonian cases of { |v| << c }
by letting{y — 1and y’ = dy/dt — 0 }.

SR tells us that several different physical properties are actually dual aspects of the same thing, @
with the only real difference being one's point of view, or reference frame.

[Ttt Ttx Tty TtZ]
[Txt Txx Txy TXZ]
[Tyt T TYW TyZ]
[th sz sz TZZ]
[temporal,mixed]
[ mixed ,spatial]

SR 4-Vector V = V©
Examples of 4-Vectors = (1,0)-Tensors include: =(V,V)=(V}, V5, V", V)

E : )s ( : : (), ( : b \ ), =(temporal * ¢c*',spatial)

( : ) ( : ), etc.

One can also examine 4-Tensors, which are type (2,0)-Tensors.
The Faraday EM Tensor similarly combines EM fields:

Electric { e = €' = (e*,e",e”) } and Magnetic { } Faraday EBM
. ® ---- > Tensor F
Feb = -e'lc - =
+e'lc S @ P_4(r$]/lco m)e_r(lltEu/Ln ) [0 -e'c -e'lc -e*/c]
4-Velocity i LL7] o L] [+e*c 0 -b* +b']

Also, things are even more related than that. U=y(c,u)
The 4-Momentum is just a constant times 4-Velocity.
The 4-WaveVector is just a constant times 4-Velocity.

[+e'lc +b* 0 -b*]
[+e®lc -b¥ +b* 0]

4-WaveVector

K=(w/c,k)=(w/c,wni/v
M- - [ 0 ,-€lc]

phase

In addition, the very important conservation/continuity equations seem to just fall out of the notation.
The universe apparently has some simple laws which can be easy to write down by using a little math and a super notation.

[+e'lc, -€l b¥]

SR 4-Tensor
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v)
(1,1)-Tensor T*, or T,' § SR 4-CoVector: OneForm

SR 4-Vector

SR 4-Scalar Trace[T"] =n, " =T =T
(0,0)-Tensor S or S, V-V = Vi, VY = [(VO)? - vev] = (V0)?
orentz Scala = Lorentz Scalar
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Heart of SR J0'R=4 Minkowski Lorentz

O—@ 4-Acceleration

4-Displacement SpaceTime A=y(cy',y'u+ya) 4-Polarization
AR= (cAt Ar) E=(¢°€)=(e-B.€)

d dt.d

Soul of SR |

O[RI='[R=n"§ A[R"]=N", A 4-Gradient

Metric _ ] LK 0=(9/c,-V)

paceTime Dim
M=4= “ pv

- Conservation of Complex  Hamilton-
Polarization - 4-TotalWaveVector Plane-Waves Jacobi
PV veriont ntomva is Rest Spatial Sum of Plane-Waves K, =-0[P] P, =-9[S]
vari
R-R=(Cty-rr = (Ct) @ 4-WaveVector @ 4-Total\WaveVector
-2 K=(w/c,k)=(w/c,wn/vphase) K,=(w./c.k,)

4-UnitTemporal
T=y(1,0
Time:Space @

Orthogonal

L T-S=0

4-UnitSpatial
.B’n‘)J.

Wave Velocity (4,20} « {K-U=0} < {K is nul} =-0[Dphase]

*,
group  phase

Rest AngF
A-Valocity est AngFrequency @
U=y(c,u)

- F=y(E/c,f=p
=dR/d1: h @ o >N a8 l(dP/dr P) P4—TEt?IMome|[|1;tum
=mc? - =] C, = C,
Rest Energy:Mass 4-Momentum ProperTime r=(E+/C,Pr)=( P)
Rest Number Rest Charge P=(mc,p)=(E/c,p)

Speed e
of Light

S=ypq(

Derivative =-0[Saction]
Density .
@ Dens'ty@ v (D {m,=0} > {P-U=0} > {P is null} LonesniaEi 5 1]
-

Rest Scalar Sum of Momenta
JiH->
-» >
SAVRIEI  4-ChargeFlux

Potential
4-NumberFlux
N=(nc,n)=n(c,u) 0

Minimal [+ 4-MomentumlncField
4-EMVectorPotential EM Charge  SOUPling

A=(p/c,a) e

P=(E/c,p,)=P+Q=P+gA
4-CurrentDensity

J=(pc.,j)=p(c,u) {9,=0} > {A-U=0} < {A is null} 0 4-EMPotentialMomentum SESIale]YEsiErTEN
: : Q=(U/c,q)=qA

SR 4-Tensor
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v)
(1,1)-Tensor T*, or T,' § SR 4-CoVector: OneForm

SR 4-Vector

SR 4-Scalar Trace[T"] =n, " =T =T
(0,0)-Tensor S or S, V-V = Vi, VY = [(VO)? - vev] = (V0)?
orentz Scala = Lorentz Scalar
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f 9.R=4 : Minkowski & Lorentz s |
Hoarlof SR - 8 paceTime 4-Acceleration 4-Polarization SN J[R]=0"[R]=n""} A[R"]=A", BT~ A 4-Gradient
4-Displacement A=y(cy',y'utya) E=(e°€)=(e"B.€) tudl Metric ansformg’

AR=(cAt,Ar)
dR=(cdt.d

J=(d/c,-
an outcome of k- ( t V)
Poincaré Invariance, V1 =4= bV .. UtV
s’.s)=(s'B,s) ¥V adeti® P

Conservation of Complex Hamilton-
= = ol.. : . Polarization:Spin ---.p A-TotalWaveVector Plane-Waves Jacobi
> e i N =it h is Rest Spatial Sum of Plane-Waves K. =-9[®.K=id P, =-9[S]

nvariant Interva
RR=(CtY-r- = (Cr) . @ 4-WaveVector @ 4-Total\WaveVector
. - K=(w/c,k)=(w/c,wn/vphase) K,=(w,/c,k,)

4-UnitTemporal
T=y(1,0

Wave Velocity {y,=0} < {K-U=0} < {K is null} =-0[Dphase)
*V =

Speed e group phas;
Time:Space @ of Light 4-Velocity RestAng requehcy : Einstein
Orthogonal Us(o,0) Einstein®( 1 ) de Broglie @)
E =y(c, i —

Rest Number

B aBt @ Pk I F=y(E/c, f=p) R o mant
' . . ] | Bl d/dT] .. =dP/dt -TotalMomentum
4-UnitSpati > e 4-M t _ o ol PT=(ET/C,pT)=(H/C,pT)
- patial Rest Energy:Mass omentum ProperTime o L as
S=yn(-B,N), Ppropo = X*\p Rest Charge P=(mc,p)=(E/c,p) Derivative . — =-0[Saction]
=1 Porm De”S'ty@ » (Me=0} > {(P-U=0) > (P is nuil} A TolalMoTIER (3,113
‘ - - - g Probability Rule - @

Rest Scalar ”H | } Sum of Momenta
AN bor| Rest Prob Density .’.‘ - Potential > Minimal 0 4-Momentum|ncFieId
-NumberFlux v . i n .
4-EMVectorPotential Coupling E/c,p.)=P+Q=P+gA
N=(nc,n)=n(c,u SYREIl  4-ChargeFlux EM Charge P=(E/c.p) q

_ P+Q
4-ProbCurrDensity a 4-CurrentDensity A=(¢/c,a)

4-ProbabilityFlux

. _ o _ {9.=0} & {A-U=0} & {A is null} Q 4-EMPotentialMomentum SE=le]Y] Diagram
J=(pc,j)=p(c,u)
J = ) Q=(U/c,q)=gA
pro ’

SR 4-Vector

SR 4-Tensor

. g W] = W — TH —
(2,0)-Tensor T*  §(1,0)-Tensor V¥ =V = (\°,v) . SR 4-Scalar Existing SR Rules V_VTIa\(;f [TV]V ~ i T”_ TS
(1, 1())£enTsor % ;)rTv 3% 1 C_F)Vecto\; :OneForm O,Ogrzenrliostci or Ss Quantum Principles = Vi Ve = [(V)7 - vev] = (Vo)
,£2)-1ensor ,1)-1ensor = (Vo,-V

= Lorentz Scalar
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A SRQM Study:
Ai SR Gradient 4-Vectors = (1,0)-Tensors

o—@ - SciRealm.org
SR Gradient One-Forms = (0,1)-Tensors ...

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

4-Vector = Type (1,0)-Tensor [ = ] components

4-Position R = R" = (ct,r) [Time (t) : Space (r)]

4-Gradient dr = 9 = 0" = 9/0R,, = (d/c,- V) [Time Differential (;) : Spatial Gradient(V)]

Standard 4-Vector Related Gradient 4-Vector (from index-raised Gradient One-Form)
4-Position R = R" = (ct,r) 4-PositionGradient dr = dr* = 9d/0R, = ( , )=0=0"=4-Gradient
4-Velocity U = U" = y(c,u) 4-VelocityGradient dy = du* = d/ldU, = ( ~V,)

4-Momentum P = P* = (E/c,p) 4-MomentumGradient dp = 9% = 9/dP,, = ( ~V.)

4-WaveVector K = K" = (w/c,k) 4-WaveGradient ok = ok* = dloK, = ( -V.)

In each case, the (Whichever)Gradient 4-Vector is derived from an SR One-Form or 4-CoVector,
which is a type (0,1)-Tensor
ex. One-Form PositionGradient d., = 9d/dR" = ( V5)

The (Whichever)Gradient 4-Vector is the index-raised version of the SR One-Form (Whichever)Gradient
ex. 4-PositionGradient d.* = 9/0R,, = ( ~V5.) =N, = n™aloRY = n™( , ) = n"(One-Form PositionGradient),

This is why the 4-Gradient is commonly seen with a minus sign in the spatial component,
unlike the other regular 4-Vectors, which have all positive components.

4-Tensors can be constructed from the Tensor Outer Product of 4-Vectors
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SR —- QM

Classical
| At time-like interval Mechanics

@ Xrtne displacement ‘

3-displacement
Ar = Ar'—(Ax,Ay,Az)

Note the separate dimensional units: (time + 3D space)
At is [time], |Ar|is [length]

future e

S U IS LCAICIUEII 1 _Displacement
CM
AR =(cAt & Ar)

S

},

“Stack of Motion Picture Photos”

S .
fut At time-like i I ' SpeC|aI
Lille - t time-like interval (+) 4-Displacement Relativity
Event light-like interval (0) = null S e,
| ) / c light-like interval (0) = nu A-Position
elsewnere —
LI Ar space-like interval (-) R=(ctr) (cAt)* Time-Like ()
AR-AR = [(cAt)> — Ar-Ar] =0 Light-like:Null (0)
. _ : , _ -(Ar,)? Space-like ()
past Note the matching dimensional units: (4D SpaceTime)
- (cAt) is [length/time]*[time] = [length], |Ar]| is [length], |AR| is [length]
: -C T is the Proper Time = “rest-time”, time as measured by something not moving spatially
LightCone The Minkowski Diagram provides a great visual representation of SpaceTime
SR 4-Tensor SR 4-Vector U] — W — TH —
SR 4-Scalar Classical (scalar j 3-vector) Trace[T"] = N TSN,

(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v)
1,1)-Tensor T", or T, |l SR 4-CoVector:OneForm
0,2)-Tensor T, 0,1)-Tensor V, = (vo,-V

(0,0)-Tensor S or S, Galilean Not Lorentz V-V = Vi, VY = [(V)F - vev] = (V)2
orentz Scala Invariant Invariant = Lorentz Scalar
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AA Some Basic 4-Vectors

. Minkowski SpaceTime Diagram, WorldLines, _

A Tensor Study L i g h tS pe e d to th e F u t u re ! SciRégm(gé\cl)\ll.ilzsoonq

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

The 4-Position is a particular

At | time-like interval (+) / 4-Displacement ; ,
. . B - ype of 4-Displacement, for
o : light-like interval (0) = null AR=(cAt.Ar) which the vector base is at the
at-rest inertial motion 4-Position origin (0, ) = 4-Zero.

WorldLine (u=0) WorldLine (O<u<c) R=(ct,r)=<Event>

4-Position is Lorentz Invariant,
O C but not Poincareé Invariant.
Ar I A standard 4-Displacement is
% future space-like interval () both.
(cAt)* for time-like (+)

An Event (*) is a point in SpaceTime ARr.aAR = [(CAt) - Ar-Ar] = 0 for light-like (0)

elsewhere The 4-Position points to an Event. -(Ar,)? for space-like ( )

4-Velocity

~ A WorldLine is a series of connected | 4('V3')‘"jg/d 4'Vel'J°°'Iy(r85t.frame) e
Events which trace out a path in i S o \C o L
SpaceTime, such as the track of a a=> s> (U=
moving particle. U-u= 3((10/,\1/1)1'3((0/,11)2= Y21(/C\7-1U'U); (c®)
= - u C -_ -
past Y [1-(u/c)] [1-(B)’]
Massive particles move temporally into future
O -C ‘/ at the speed-of-light (c) in their own rest-frame.
LightCone Massless particles (photonic) move nully into the future

at the speed-of-light (c), and have no rest-frame.

SR 4-Tensor

SR 4-Vector

(2,0)-Tensor T (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar TIaCS[TuV] =_ n”v;rl;v =T f To 2
1,1)-Tensor T*, or T," || SR 4-CoVector:OneForm K (0.0)-Tensor S or S, VV = Vi, Ve =[(V)7 - vev] = (Vo)
0,2 -Tensor T, v 0,1 -Tensor V, = Vo,-V orentz Scala = LOI'entZ Scalar
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Minkowski Diagram:Lorentz Transform ...

John B. Wilson
) SciRealm@aol.com
of Physical 4-Vectors http://scirealm.org/SRQM.pdf

SR:Lorentz Transform SR:Minkowski Metric
8[R"] = ORVIOR" = NV, 9[R] = &"R" =" = V" + H" —

Since the SpaceTime magnitude of U is a constant (c), B o— (AT H - A AQ — H — sH . M A ik
changes in the componer?ts of U are like rotating thé z)l—Vector N = (NS NN = nfy = 85 Diag[1,-1,-1,-1] = Diag[1,-I;] = Diag[1,-6"]
without changing its length. It keeps the same magnitude. {in Carteian formp}u P_amcl,e_PhyS'\,cs Convantio
Rotations, purely spatial changes, {eg. along x,y} result in circular displacements. {Nu} = 1An™} 1 n," = 3,
Boosts, or temporal-spatial changes, {eg. along x,t} result in hyperbolic displacements.
The interval between the origin and a given topograph-line is a Lorentz Invariant Constant.

U-U = y(c,u)y(c,u) = y*(c*>u-u) = (c?) Rotation (x,y): Purely Spatial Boost (x,t): Spatial-Temporal

The Light Cone / Minkowski Diagram provides a great visual representation of SpaceTime
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4-Vector SRQM Interpretation
of QM

SR Invariant Intervals
Minkowski Diagram

ATensqr Study SciRealm@aol.com
of Physical 4-Vectors http://scirealm.org/SRQM.pdf

SR:Minkowski Metric
JR]=0"R" =n"=V"+ H" —

Since the SpaceTime magnitude of U is a constant (c), changes in the components of U are
like rotating the 4-Vector without changing its length. It keeps the same magnitude (c).
Rotations, purely spatial changes, {eg. along x,y} result in circular displacements.

Boosts, or temporal-spatial changes, {eg. along x,t} result in hyperbolic displacements.

The interval between the origin and a given topograph-line is a Lorentz Invariant Constant.

Diag[1,-1,-1,-1] = Diag[1,-+] = Diag[1,-5"]

{in Cartesian form} "Particle Physics” Col io

{Nut = /{N"™} - ny" =98,

(cAt)? (+) {causal = 1D temporally-ordered, spatially relative}
AR-AR = [(cAt)’ - Ar-Ar] = (0)  Light-like:Null:Photonic (0) {causal & topological, maximum signal speed (|Ar/At|=c)}
-(Ar,)? (-) {temporally relative, topological = 3D spatially-ordered}

Disconnected

SOOI

L S SSNNKNK X A AL 7oA R -::5*4-“'/

s XS XA RS ALLES
" - I il

Future

T ‘%\
RIS
XN\

Space-Like (-) Light-Like:Null (0)
The Minkowski Diagram provides a great visual representation of SpaceTime
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4-Vector SRQM Interpretation

R SRQM: Some Basic 4-Vectors
Ai‘ """ > 4 Position, 4-Velocity, 4-Acceleration

®---- John B. Wilson

ﬁf-ll;?ﬁjsoiz:asltz(-j\}/lectors S p ac eT I m e K I n e m at I c S http://scirsgllri.ec‘;arlgn/]g?%)ll\'/ﬁgm

roperTime Derivative
-9=y(c,u)(9,/c,-V)=y(d,+ u-V)=yd/dt

ProperTime

R-U/U-U=(ct,r)-y(c,u)/c*=y(c?t - r-u)/c®=(c*,)/c? 4-Gradient

—t,=1 3=(8,/c,-V)—(8,/c,-0,,-6,,-9,)

. o

Speu_a! 4-Position AARD 4-Velocity U-or..] 4-Acceleration %

Relativity R=(ct.r) yd/dt[..] U=y(c,u) yd/dt[..] A=y(cy',yu+ya) U = dR/d

|V|:|u|:{0<—>c} ‘ d/dt[] ‘ d/dT[.] =n/2(~/2 u-a /C, 2 u-a u/C2+a e T

y = 1A[1-(v/c)] y{(y(u-ajic,y(u-a) ) A =dU/dt

! Newtonian/CIassicaI Limit |

Classical A

VY Az oIl 4-Position @ 4 Veloc:|ty @ 4-Acceleration

[v|] = |ul << ¢ R_=(ctr) —(C A =0 Aaa)

y—1+0[(vicy] - =

vy —0 Since time:space don’t mix in CM, Since temporal velocity (c) always constant in CM Since temporal acceleration (0) always constant in CM,

Typically use time t & 3-position r separately Typically use just 3-velocity u Typically use just 3-acceleration a scac
‘ 3-position ~ 3-velocity 3-acceleration t=
r=(r')—(x,y,z) u = (u')—(u*,u’,u?) a=(a)—(a"a",a’) M

The relativistic Gamma factor y = 1/\[1-(v/c)?] u = dr/dt
The 1*' order Newtonian Limit gives y ~ 1 + O[(v/c)?] a = du/dt
The 2™ order Newtonian Limit gives y ~ 1 + (v/c)?/2 + O[(v/c)’] For historical reasons, velocity can be represented by either (v) or (u)

SR 4-Tensor SR 4-Vector . Trace[TuV] = TV=T" =T

(2,0)-Tensor T §(1,0)-Tensor V* =V = (v*,v) ¢ SR 4-Scalar Classical (scalar j 3-vector) v = dy/dt = y3(u-a)/c? e T BT
(1,1)-Tensor T*, or T,¥ | SR 4-CoVector: OneForm (0,0)-Tensor S or S, MM Galilean Not Lorentz V-V = Vi VY= [(v0) - vevl = (Vi)
orentz Scala Invariant Invariant = Lorentz Scalar
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4-Vector SRQM Interpretation

SRQM: Some Basic 4-Vectors of QM

A® ®
Ag. ----- » @o----» 4-Position, 4-Velocity, 4-Acceleration,

—%¢.-..-»9 ---» (RestMass), 4-Momentum, 4-Force
SpaceTime Dynamics

A Tensor Study
of Physical 4-Vectors

ProperTime
R-U/U-U=(ct,r)-y(c,u)/c?

=y(c* - r-u)/c®=(c*,)/c?
=t,=7T

*----»

4-Velocity
U=y(c,u)=dR/dt

Special o
Relativity

[v| = u| ={0 < c}
y = 1A[1-(v/c)?]

This group of 4-Vectors are the main ones that are

connected by the ProperTime Derivative.

U-0 = d/dt = yd/dt = y(cat/c+u-V) =y(0, + u-V)

The classical part of it, the convective derivative,
(6, + u-V), is known by many different names:

The convective derivative is a derivative taken with
respect to a moving coordinate system. It is also called
the advective derivative, derivative following the motion,
hydrodynamic derivative, Lagrangian derivative, material
derivative, particle derivative, substantial derivative,
substantive derivative, Stokes derivative, or total
derivative

4-Momentum
P=(E/c,p)=(mc,p)=m,U

SR 4-Vector

SR 4-Tensor

(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v)

1,1)-Tensor T or T,' § SR 4-CoVector:OneForm
0,1)-Tensor V, = (vo,-V

SR 4-Scalar
(0,0)-Tensor S or S,
orentz Scala

E ProperTime Derivative
U-0=y(c,u):(9,/c,-V)
=y(9,+ u-V)=yd/dt

SciRealm.org

John B. Wilson
SciRealm@aol.com
http://scirealm.org/SRQM.pdf

4-Gradient
9=(9, c,-V)=d/oR, A

.. .........
4-Vectors:
4-Acceleration R =
A='Y(C'Y’,'Y’u+va)=dU/dT U = dR/dT
A =dU/dt
2lel 4-Force P=m\U

yd/dt[..]

d/dtl.] F=y(E/c,f=p)=dP/dt F = dP/dt

Trace[T"] =N T" =T =T
V-V = Vi VY = [(VO)? - vev] = (V)
= Lorentz Scalar
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SR — QM 4-Vector SRQM Interpretation

o SRQM: Some Basic 4-Vectors

(@ — 4 V - SciRealm.org
-Veloci -Momentum
A Tensor Study ) | 3 SciRealm@aol.com
of Physical 4-Vectors http://scirealm.org/SRQM.pdf

FW—I. g=(V( u)

*----p ,P) = MoU = ym,(c,u) = m(c,u)

Special 4-Velocity 4-Momentum

Relativity U-Y(C u) @ P=(E/c,p)=(mc,p) Temporal part:  E = mc* = YmoC;= YE, , N
= e RestE = ~ ener = moC® + (y-1)M,C

vl =ul={0 &) S PP = (E,/c) = (M) el = i +((1; -1))Eo

(rest) + (kinetic)

Spatial part:
| Newtonian/Classical Limit | {momentum} p =ymou = mu
Classical 4-\Velocit )
- y 4-Momentum 1+ 2
- = v/c)/2)mq(c,u
MeChanICS P =(E/C p)=(mC ) ( ( ) ) 0( )
[v| =|u| <<c Classmal CM
VEES (A Temporal part: E ~ (1+(v/c)*/2)m.C* = MoC? + mMoV?/2
{energy} E, +|pl*/2m,
‘ 3-momentum (rest) + (kinetic)
Since time:space don’t mix in CM, p_)(px py pZ)
Typically use energy E & 3-momentum p separately A Y

Spatial part:

The relativistic Gamma factor y = 1/[1-(v/c)] {momentum} p ~ (1)Mol = MoU — Mu
o o o

The 1% order Newtonian Limit gives y ~ 1 + O[(v/c)]

n : PR N 4
The 2 order Newtonian Limit gives y ~ 1 + (v/c)/2 + O[(v/c)] For historical reasons, velocity can be represented by either (v) or (u)

SR 4-Tensor

SR 4-Vector W — Wo— TH —
(2,0)-Tensor T (1,0)-Tensor V* =V = (v,v) . SR 4-Scalar Classical (scalar jA 3-vector) VIVTﬁa\‘;f[Tvl =Ml =TW=T
(1,1)-Tensor T*, or T,¥ | SR 4-CoVector: OneForm (0,0)-Tensor S or S, MM Galilean Not Lorentz = ViV = [(V) - vevl = (Vo)
, o orentz Scala Invariant Invariant = Lorentz Scalar
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R SRQM: Some Basic 4-Vectors
Ai 4-Velocity, 4-Acceleration,
A e SpaceTime Orthogonality
A 4-Gradient
P 9=(9,/c.-V)—(8,/c,-0,-0,,-0,)

roperTime Derivative
U-9=y(c,u)(0,/c,-V)=y(d,+ u-V)=yd/dt

= d/dT

Jo'R=4 J[R]=n""—Diag[1,-1,-1,-1]
SpaceTime Minkowski Metric

4-Acceleration
A=y(cy',y'u+ya)

4-Velocity

yd/dt[..]
d/dt[..]

yd/dt[..]
d/dt[..]

4-Position
R=(ct,r)

4-Vectors
U-A=U-U’=0 R = (ct,r)
The Lorentz Scalar Product can be used to show < ULA U= dR,/dr =R’
SpaceTime orthogonality when the result is zero. SoaceTIme GrieTAUN A = dU/dr = U’

U=y(c,u)

U-U =¢c? 4-Velocity U (a Temporal 4-Vector)

d/dT[U'U] . d/dT[Cz] =0 4-Acceleration A = U’ (a Spatial 4-Vector)

is orthogonal to its own -

4-Vector SRQM Interpretation
of QM

SciRealm.org

John B. Wilson
SciRealm@aol.com
http://scirealm.org/SRQM.pdf

A =U =R”is normal
to WorldLine
(Ais Spatlal)

ProperTime ProperTime
Derivative Derivative
Thoooood > @ = e >
U-a[..] U-a[..] .

U =R’ is tangent
¢ to WorldLine
(U is Temporal)

d/dt[U-U] = d/dT[U]-U + U-d/dT[U] = AU + U-A=2(U-A)=0 WorldLine

U-A = U-U’ = 0: The 4-Velocity is SpaceTime orthogonal to it's 4-Acceleration.

4-Velocity is the direction along a WorldLine.
4-Acceleration is the thing which causes a WorldLine to bend/curve.

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V* = V = (V°,v) SR 4-Scalar
(1,1)-Tensor T* or T," | SR 4-CoVector: OneForm (0,0)-Tensor S or S,
,2)- , o orentz Scala

R moves along
Worldline

Trace[T"] =N T" =T =T
V-V = Vi VY = [(VO)? - vev] = (V)
= Lorentz Scalar
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SR —- QM

\ SRQM: Some Basic 4-Vectors
A 4-Displacement, 4-Velocity,

SciRealm.org
John B. Wilson

ﬁf-EQ;;L;tz?\zectors R e I at I v I ty Of S I m u Itan e Ity http://scirsgliri.ec?rg]g?%)ll\'/ﬁgm

- X=4 A[X¥]=0X"1oX'=N\", B o[X]=n""—Diag[1,-1,-1,-1] A 4-Gradient
SpaceTime Lorentz Transform Minkowski Metric 0=(d/c,-V)

Rest-Frame Lorentz
ProperTime Boost-Frame
4-Displacement .. ) =T t c
AX=(cAt,Ax) yd/dtr..] g
d/dt[..

Dimensio

4-Acceleration u

ot e UGB
X=(ct,x) o
® -AX = y(c,u):(cAt,Ax) = y(c*At - u-Ax Simultaneous in {t’,x’}
= c?At, = c*At Atz 00 %) IV y

Not Simultaneous in {t,x
If Lorentz Scalar (U-AX = 0 = ¢?At), then the ProperTime displacement (A1) is zero,
and the event separation (AX = X, - X,) is orthogonal to the worldline U.

X, and X, are therefore simultaneous for the observer on this worldline U.

Examining the equation we get y(c?At - u-Ax) = 0. The coordinate time difference between the events is (At = u-Ax/c?)
The condition for simultaneity in an alternate frame (moving at 3-velocity u wrt. the worldline U) is At = 0, which implies (u-Ax) =0

This can be met by:

(lu] = 0), the alternate observer is not moving wrt. the events, i.e. is on worldline U or on a worldline parallel to U.
(|Ax| = 0), the events are at the same spatial location (co-local).

(u-Ax = 0), the alternate observer's motion is perpendicular (orthogonal) to the spatial separation Ax of the events in that frame.

If none of these conditions is met, then the events will not be simultaneous in the alternate reference frame.
This is the mathematics behind the concept of Relativity of Simultaneity.

SR 4-Scalar Trace[T"] =n, " =T =T
(0,0)-Tensor S or S, V-V = Vi, VY = [(VO)? - vev] = (V0)?
orentz Scala = Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v)
(1,1)-Tensor T*, or T,' § SR 4-CoVector: OneForm

SR 4-Vector
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P SR Diagram:
"~ SR Motion * Lorentz Scalar
Aty = Interesting Physical 4-Vector

o-R=4 J[R]=n""—Diag[1,-1,-1,-1] A 4-Gradient

4-Vector SRQM Interpretation
of QM

SciRealm.org

John B. Wilson
SciRealm@aol.com
http://scirealm.org/SRQM.pdf

Interesting note:

S i EEEEEE— . : . —
‘i’;’;fs'i’:e Minkowski Metric E 9=(d/c,-V)
4-Displacement d[.. OI.. e - -

AR=(cAt,Ar) 4-Acceleration
ProperTime ~71C,
Derivatilve @

A=y(cy',y'utya)

ProperTime

Derivative
[
Rest Charge Rest Scalar Rest Rest Angular
Rest Number Density Density Potential Mass:Energy Frequency
E=mc?
@ Wave Velocny @
—=n2
group phase
AA (Po /c)2 ”H | } P-P=(m,c)’=(E./c

4-ChargeFlux o E=me torPotential 4-Momentum
4-CurrentDensity

i =(Q/C, P=m(c,u)=(mc,p)=(E/c,
J=(pc,j)=p(c,u) [ . _ ) _ p)=(E/c.p)
{9.=0} & {A-UH0} & {Ais null}  {m,=0} <> {P-U=0} « {P is null}

4-NumberFlux
N=(nc,n)=n(c,u)

Most 4-Vectors have
4 independent components.

( , )

The 4-Velocity has only the 3
spatial however, due to its
invariant magnitude? U-U=c?.

This fact allows one to multiply
it by a Lorentz Scalar to make
a new 4-Vector with 4
independent components, as
shown in the diagram.

Proof of non-varying (c).

M-

4-WaveVector

=(w/c,k)=(wlc, wn/v )

{w,=0} > {K-U=0} < {K is nuII}

EIectric:Magnetict% (8-0)A-8(3-A)=poJ

1/(EoMo )=C?

Maxwell EM Wave Egn

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector
A o (1,0)-Tensor V¥ = V = (V°,v)
,1)-Tensor T*, or T,

Trace[T"] = nuTW =TH, =T

SR 4-CoVector: OneForm V-V = Vi VY = [(VO) - vev] = (Vo)

= Lorentz Scalar
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SRQM Diagram:

Y
4 m”. SRQM Motion * Lorentz Scalar

of Physical 4-Vectors

= Interesting Physical 4-Vector
4-Gradient

2-R=4

SpaceTime

J[R]=n""—Diag[1,-1,-1,-1]

4-Vector SRQM Interpretation
of QM

SciRealm.org

John B. Wilson
SciRealm@aol.com
http://scirealm.org/SRQM.pdf

Interesting note:

Minkowski Metric

Dimensiol
4-Displacement
AR=(cAt,Ar)

V a=(3t/C,-V)
. @ - — .. R >

4-Acceleration

A=y(cy',y'utya)

4-Position ProperTime

— Derivative ProperTime
R=(ct,r) Derr)ivative
[
Rest Number Density
Rest Probabilty Density
Rest Charge Rest Scalar Rest Rest Angular
Density Potential Mass:Energy Frequency
Born pprobo = E=mc’
Rule | X|‘V | @ EM @ Wave Velocity @

*,
group  phase

=

Most 4-Vectors have
4 independent components.

( )

The 4-Velocity has only the 3
spatial however, due to its
invariant magnitude? U-U=c?.

This fact allows one to multiply
it by a Lorentz Scalar to make
a new 4-Vector with 4
independent components, as
shown in the diagram.

Proof of non-varying (c)

. - Einstein
4-NumberFlux CfM @ AA (@ /c)2 ”H | } Q- > ge I?\:gglle K-K=(wJ/c) W"">
- = arge
NEE ) n(c,u) 4 %Srrrlgrrw?SZLus)?t 4-EMVectorPotential 4- Momentum 4-WaveVector
4‘-lPFr)0bt<)3ubrr|Dan|S'ty I2(pc )= y A=(p/c,a) P=m(c,u)=(mc,p)=(E/c,p) LA K=(w/c,k)=(wlc,wilv
- rc:)( ability U); {9.=0} & {A-UH0} & {Ais null}  {m,=0} « {P-U=0} < {P is null} (0,=0} © {K-U=0} & {K is null}
e ’ Electric: Magnetlct (0-0)A-0(3-A)=pioJ
1/(€oMo )= Maxwell EM Wave Egn
SR 4-Tensor SR 4-Vector V] — v — —
(2,0)-Tensor T*  §(1,0)-Tensor V¥ = V = (v°,v) 4 0?? 4-ScaSIar S Existing SR Rules y vTia\(;SrETil]v ‘_ r[‘(“VOT; ‘VT\:T N X/O .
X u v ,0)-Tensor S or S, * - V= W= -vv] = (Vo
(1,1)-Tensor T*, or T,' § SR 4-CoVector: OneForm (i S Quantum Principles =uLorentz Scalar
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SR —»QM - 4-Vector SRQM Interpretation
SRQM Diagram:
e ProperTime Derivative

g .
= John B. Wilson
O Very Fundamental Results
A
3=(3/c,-V)

Continuity of
4-Velocity Flow: 0-U=0

------ ProperTime

4-Veloci ty Derivative
U=y(c,u . Acceleration of Event

d-R=4 d[R]=n"—Diag[1,-1,-1,-1]
SpaceTlme Minkowski Metric

ProperTime Derivative
U-9=y(c,u)(6,/c,-V)=y(d,+ u-V)

=yd/dt=d/dT

4-Displacement gfef;ﬁ;g\i/f:e yd/dt[..]
AR—(cAt Ar)

4-Acceleration
A=y(cy',y’'u+ya)

4-Position is perpendicular to
R=(ct,r) Event WorldLine
o i : ProperTime »
. . . Derivative .
2R = 4: SpaceTime Dimension is 4 ‘
U-U = ¢% Tensor Invariant of 4-Velocity
4-Momentum 4-Force

d/dt(2-R) = d/dt(4)
(4

0
(U-0)(0'R) = (U-0)(4) =

d/dU-U] = d/d[c?] = 0 P=(E/c,p)=(mc,p)

F=y(E/c,f=p)
(U-9)[U-U] = (U-9)[c]] = 0

4)=0
d/dw(@-R) = d/dt(d)-R + d-d/dt(R) = 0

d/dt(é-R) = d/dt[d]R + :U =0 d/dt[U-U] = d/dt[U]-U + U-d/d7[U] = A-U + U-A =2(U-A) =0
.U-=- . U-A = U-U’ = 0: The 4-Velocity is S Ti th | to it's 4-Acceleration.

33 L%dg[)?‘]g]RR e 4-Velocity is SpaceTime orthogonal to it's 4-Acceleration 4-Vectors:
a-U = -(U.,8")[3,]R" 4-Velocity is the direction of an Event along a WorldLine. R=<Event>
o-U =-Ud"9,R" 4-Acceleration of an Event is the thing which causes a WorldLine to bend. U = dR/dt
U =-Ud,0R" A =dU/dt
o-uU =-U,g,n"*
o-U =-U,(0 —
2-U = 0: Conservation of the 4-Velocity Flow (4-Velocity Flow-Field) P =m,U

F = dP/dt

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V* = V = (\°,v) SR 4-Scalar Tiacf [ B n“VoTZV L 3 To 2
(1,1)-Tensor T* or T, § SR 4-CoVector:OneForm (0,0)- Tentsosr S Ior S, VV = Vi, Ve =[(V)7 - vev] = (Vo)
orentz Scala

= Lorentz Scalar
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S R Q M D iag ram : 4-Vector SRQM Interpre;?t(izol\r/l’n

R

=

A Tensor Study
of Physical 4-Vectors

4-Displacement
AR—(cAt Ar)

4-Position
R=(ct,r)
o

aR=4

o0-R=4
SpaceTlme

ProperTime 'Yd/dt [..]

Derivative

d/de(@-R) = d/dt(4) = 0

d/de(@-R) = d/dt(d)-R + d-d/dt(R) = 0
d/dt(d-R) = d/dt[d]-R + &-U =

a-U = -d/dt[d]'R
a-U = -(U-9)[9]-R
aU = -(U,8")[3,]R"
a-U = -U,'9,R¥

a-U = -U,0,0'R": | believe this is legit, partials commute

a-U = -U,g,n"
a-U = -U,(0")
aU=0

Conservation of the 4-Velocity Flow
(4-Velocity Flow-Field)

SR 4-Tensor
(2,0)-Tensor T+

(1,1)-Tensor T*, or T,Y

SR 4-Vector
(1,0)-Tensor V¥ = V = (V°,v)
SR 4-CoVector: OneForm

J[R]=n""—Diag[1,-1,-1,-1]

Minkowski Metric

Local Continuity of 4-Velocity leads to
all of the Conservation Laws

A 4-Gradient
a=(at/c,-V)

Continuity of
4-Velocity Flow: -U=0

4-Velocity

U=y(c,u)

orUu=0

d-(Lorentz Scalar)U = O(Lorentz Scalar)
0+(Lorentz Scalar)U =0

J-(Interesting 4-Vector) = 0

Example:

9-(po)U =0

oJ=0

(0/c pc + V+j) =
©Op+Vi)=

= Conservation of Charge
= A Continuity Equation

SR 4-Scalar
(0,0)-Tensor S or S,
orentz Scala

ProperTime Derivative
U-9=y(c,u)(6,/c,-V)=y(d,+ u-V)

=yd/dt=d/dT

4-Acceleration
A=y(cy',y'u+ya)

Conservation L aws:

All of the Physical
Conservation Laws are in the
form of a 4-Divergence, which
is a Lorentz Invariant Scalar
equation.

These are local continuity
equations which basically say
that the temporal change in a
quantity is balanced by the
flow of that quantity into or out
of a local spatial region.

Conservation of Charge:
od=0p+Vij=0

Trace[T"] = nuTW =TH, =T

V-V = Vi VY = (V)7 - vev] = (Vo)

= Lorentz Scalar

SciRealm.org

John B. Wilson
SciRealm@aol.com
http://scirealm.org/SRQM.pdf
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4-Vector SRQM Interpretation

SRQM Diagram:
SRQM Motion * Lorentz Scalar
A Tesor Sudy Conservation Laws, Continuity Eqns SoReaim@zol com

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

SR —- QM

PO
R
" g

0-R=4 =n*""—Diag[1,-1,-1,-1] VEEr-l-15\d Conservation Laws:
SpaceTime Minkowski Metric 0=(9/c,-V) .
Continuity All of the Physical
_Di ) of 4-Velocity Flow: Conservation Laws are in the
“ApleEameEry B a.uz% ——————— P> form of a 4-Divergence, which
AR=(cAt,Ar) - : 4-Acceleration BEEECHEANEERIRSCED

5 o equation.
A=y(cy,yu+ya) [R&

ProperTime § These are local continuity

Defjialyg equations which basically say
® Rest Number Density that the t.emporal change in a
Rest Probabilty Density Rest Charge quantity is balanqed_by the
Density@ Rest Scalar Rest Rest Angular flow of that quantity into or out
EM Potential Mass:Energy Frequency of a local spatial region.

Born E=mc’
@ Rule “probo J N @ @ Wave Veloc'ty @ Conservation of Charge:
1w < D . = 8 =(6,p+V)=0

group phase
Charge 4-ChargeFlux
4-CurrentDensity

Einstein
N de Broglie 550
J=(pc,j)=p(c,u) ”H” S 0> LS M-

4-NumberFqu

N=(nc,n)=n(c,u)

4-ProbCurrDensity, o (RS @8- - - - - 4-EMVectorPotential 4-Momentum ‘m 4-WaveVector
4-ProbabilityFlux @ . A=(¢/c,a) P=m(c,u)=(mc,p)=(E/c,p) L4 K=(wic k)=(wic,wilv )

phase

Jprob_( ) ) Rest
Mass:Energ

Conservation of Lorenz Gauge

Particle #: :-N=0 Conservation of i Conservation of

Mass: 0-G=0 W E M Potential: 3-A=0.

{p,=0} « {A-U40} < {A is null} {m.=0} & {P-U30} < {P is null} 0} o {K is null}

Conservation of
4-Momentum: 9-P=0Q

Conservation of
4-\WaveVector: 9-K=0.

These are Individual Particle/Wave/Delta-function Conservation/Continuity Laws

Existing SR Rules
Quantum Principles

SR 4-Tensor SR 4-Vector Trace[TuV] = I.]W-I-uv = Tuu =T
V-V = Vi VY = (V)2 - vev] = (Vo)?
= Lorentz Scalar

(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v)
(1,1)-Tensor T*, or T,' § SR 4-CoVector: OneForm
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SR — QM 4-Vector SRQM Interpretation

A‘ SRQM: Some Basic 4-Vectors
—*  4-Velocity, 4-Gradient, Time Dilation _ i

ATensqr Study SciRealm@aol.com
of Physical 4-Vectors http://scirealm.org/SRQM.pdf

. B Ti . U = . = ~2(c2-u- = 2
\(Nor(l)ciline U, \(/éorldlin)e U =(d/c.-V) Derivative U=y(C.u) y = 1N[1-(u/c)] = 1N[1-pF
u= <u<c
fully temporal trades some time for space roperTime 4-Velocity Everything moves into future (+t)
dt=(1/y)dt U.= 66"“*3“ at the speed-of-light (c)
[ : -=(c,0) W its own spatial rest-frame

S “““‘====%’ G The Minkowski Diagram provides
X ~uu . 'ﬂgf-;-‘“’" a great visual representation Since the SpaceTime magnitude of U is a constant,
of SpaceTime changes in the components of U are like “rotating”
the 4-Vector without changing its length. However,
as U gains some spatial velocity, it loses some
“relative” temporal velocity. Objects that move in
some reference frame “age” more slowly relative to

those at rest in the same reference frame.

Time Dilation! At = yAt = yAt,
dt =vydt
d/dt = yd/dt

Each observer will see the other as aging more
slowly; similarly to two people moving oppositely
along a train track, seeing the other as appearing
smaller in the distance.

SR 4-Tensor

SR 4-Vector V] — - —
(2,0)-Tensor T (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar Tiacpe[T” ]v__ nw;rl;v =T 3 To 2
1,1)-Tensor T*, or T," || SR 4-CoVector:OneForm K (0.0)-Tensor S or S, VV = Vi, Ve =[(V)7 - vev] = (Vo)
0,2 -Tensor T 0,1 -Tensor V, = Vo,-V orentz Scala = LorentZ Scalar

(
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SR —- QM

4 SRQM : Some Basic 4-VeCto rs 4-Vector SRQM Interpre;?gol\r/l*n
L4 W SR 4-WaveVector K

SciRealm.org
John B. Wilson

e SOlUtiONn to d’Alembertian (0:0)  wsisnesss

4-WaveVector, aka. Wave 4-Vector: {solution of d’Alembertian Wave Eqn. 9-9}

K = (wo/c’)U = (w/c,k) = (w/c,wnlv__ )= (w/c,wu/c?) = (w/c?)(c,u) = (w/c)(1,B) = (1/cF,i/k) = -0

There are multiple ways of writing out the components of the 4-WaveVector,
with each one giving an interesting take on what the 4-WaveVector means.

Wn(X) = A, e”-i(Ka-X): Explicit form of an SR plane wave
W(X) = Z.[ wa(X) ]: Complete wave is a

. superposition of multiple plane waves.

nvariant Phase Al W(X) 1= 9] Ae-i(K-X) ] = -iK [ Ae-i(K-X) ] = -IK[ p(X) ]

An SR wave Y is actually composed of two tensors:

: - K . ea K-R d = -iK as the condition for a complex-valued plane wave.
(1) 4-Vector propagation part = K* (the engine), in e*(-iK®X,) L\ -
(2) Variable amplitude part = A (the load), depends on what is waving... = (Ozlc’k).(cg,r) ol wX) 1= (HENEK-KIwX) 1= (KK w(X)]
=(wt - k-r

4-Scalar A: ¥ = A e(-iK"Xq) =(tF — A-r/X) A

ex. KG Quantum Wave ([ ] = -, hase plane

B s 4-WaveVector K - i

4-Vector A*: W¥ = A¥ eM(-iK*Xq) 4-Position =(w/c,k) .

ex. Maxwell Photon Wave R=(ct,r) : =(w/c,wﬁ/vphase)
4-Tensor A¥: WH' = AW gA([iKX,) nvariant Interva 4-\£elo<:|ty - =(w/c,wu/c?)

ex. Gravitational Wave Approx. R-R=(ct)*rr =y(c,u) =(w/c?)(c,u)

=(cr)’

1 ’B) =(w/C)(1 ,B) =(3t/C;)2-V'V
=(cto)

=(1/C:F,ﬁ/7\) =(a /C)Z
to

=(3/cat,)?
=(0lcor)?

The W tensor-type will match the
A tensor-type, as the propagation
part e (-iK®X,) is overall dimensionless.

=7*2(U)2-U)02)
— 22,42
- 7\ W (for photon)

One comparison | find very interesting is:
R-R = (ct,)* = (c1)?

= (1/cFo)?
90 = (dlcat,)? = (dlcar)?

— \2,,2
- )\ v (for photon)

| believe the last one is correct: (9-9)[R] = 0 = (8/cat)’[R] = A./c® = 0: The 4-Acceleration seen in the ProperTime Frame = RestFrame = 0
Normally (d/dt)’[R] = A, which could be non-zero. But that is for the total derivative, not the partial derivative.

SR 4-Tensor SR 4-Vector V] = v — —
(2,0)-Tensor T+ (1,0)-Tensor V* = V = (\°,v) SR 4-Scalar Tiacf [ i n”VoTZ L ) To 2
(1,1)-Tensor T* or T, § SR 4-CoVector:OneForm (0,0)-Tensor S or S, V-V = Vi VY= [(V)7 - vev] = (Vo)
, , orentz Scala = Lorentz Scalar
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SR — QM 4-Vector SRQM Interpretation

A SRQM: Some Basic 4-Vectors
Ai M= 4-Velocity, 4-WaveVector

SciRealm.org
John B. Wil
sy WNAVE Properties, Relativistic Doppler Effect ...ozc0
of Physical 4-Vectors http://scirealm. org/SRQM pdf
o ST ML Relativistic SR Doppler Effect
o >I W | W - ( ) here is the unit-directional 3-vector of the photon
4-\elocit 4-WaveVector
U=y(c llj)y @ (SRS (AWM Choose an observer frame for which:
: SRR s Bl K = (w/c, ), with k,A pointing toward observer
(U= (9 KK = (w02 Uan = 1) KUgps = (0/0, 1(01 ) = W= W
K = (wic,k) = (wle, ) = (WolcA)U Uemit = (¢, 1) KUemie = (0/0,0)7( 1) = (W - keu) = W0
= & 2 , = / 2 , = ,
((JJ e )Y( ) ((J.) ¢ )( ) ( ) K'Uobs /K'Uemit = wobs"/wemlto = (U/[Y(w e k‘U)]
(wlc, ) = (wlc, ) For photons, K is null - K-K =0 — k = (w/c)i
Taking just the spatial components of the 4-WaveVector: W el Wy 0 = W/Y(W - (w/e)A-u)] = 1/[y(1 - A-B)] = 1/[v(1 - |B|cos[6,,.])]
— 2 — —
wn/vphase - (U.)/C )U wobs/wemit = ywobso/(ywemito) . wobso/wemito
AN = (u/c?)
Wps = Wo/[y(1 - AB)] = w, AV1+BI*V[1-|BII/(1 - A-B)
UMY e = € with y = 1N[1-8%] = 1/(N[1+[B[1*V[1-IBI1)
group ) phase = CZ’ Wlth 4= Vgroup
For motion of emitter B: (in observer frame of reference)

Wave Group velocity (v_ ) is mathematically the same as Particle velocity (u). Away from obs, (AB) = -B, w,, =w,_ N1-IBIIN( +|Bl) =
Wave Phase velocity (v ) is the speed of an individual plane-wave, also the Toward obs,  (A-B) =+, w,,, = W, VBN - |Bl) =
speed of signal synchronicity, the speed of the wave of coordinated flashes. Transverse, (A:B)=0, w, . =w_./y=Transverse Doppler Shift

The Phase Velocity of a Photon {vphase = c} equals the Particle Velocity of a Photon {u = c}
The Phase Velocity of a Massive Particle {vphase > c} is greater than the Velocity of a Massive Particle {u < c}

SR 4-Scalar Trace i n”v;rl;v =T%= To 2
(0,0)-Tensor S or S, V-V = Vin V7 = [(V7)° - vev] = (V)
orentz Scala = Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v)
(1,1)-Tensor T*, or T,' § SR 4-CoVector: OneForm

SR 4-Vector
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SR — QM A S RQM : Som e Bas i c 4_Ve cto rs 4-Vector SRQM Interpre;?gol\r/l’n
As M- 4-Velocity, 4-WaveVector -
s WNAVE Properties, Relativistic Aberration  ..one.as

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

W _____ > Relativistic SR Aberration Effect
| ( ) here is the unit-directional 3-vector of the photon

4-Velocit 4-WaveVector A
Umrio) a PRSI ... = ... /(1 - 4Bl = /(1 - [Blcos(e,, ]
@ RestAngularFrequency
Change reference frames with {obs—emit} & B — -B }
K= lwiok) = (wiowhly,,,) = (o W, = W (1 + B = W, [lv(1 + [Blcos(S, )]
= (UJo/CZ)Y( , ) = ((JJ/CZ)( , ) = ( , ) emit obs Jf obs emit
(wlc, ) = (wlc, ) (Wape) (W) =(w, /Iv(T - [Bleos[B,, DI)*(w,,/[v(1 + |Blcos[6,,,.])])
Taking just the spatial components of the 4-WaveVector:
wniv. = (wichu 1= (1[Y(1 - IBlcos[8,, )*(1/ix(1 + [Blcos[E,,, )
Al = (ulc?) 1= (y(1 - |Blcos[B,,.1)*(v(1 + |Blcos[6, 1))
) = v*(1 - |Blcos[8,,.])*(1 + |B|cos[®,,])

o Vo = G Wi U=V Solve for |Blcos[,,,] and use {(-1) = B}

Wave Group velocity (v ) is mathematically the same as Particle velocity (u). cos[ el = (Cos[eemlt] +|B))/(1+ |B|COS[eem|t])
Wave Phase velocity (vp ase) is the speed of an individual plane-wave, also the
speed of signal synchronicity, the speed of the wave of coordinated flashes.

The Phase Velocity of a Photon {vphase = c} equals the Particle Velocity of a Photon {u = c}

The Phase Velocity of a Massive Particle {vphase > c} is greater than the Velocity of a Massive Particle {u < c}

SR 4-Scalar Trace[T"] = r]p\,;l";v =TH = T0 )
(0,0)-Tensor S or S, V-V = Vi VY= [(V)° - vev] = (Vo)
orentz Scala = Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v)
(1,1)-Tensor T*, or T,' § SR 4-CoVector: OneForm

SR 4-Vector
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A . ------- g SRQM: Some BaSic 4.Vectors 4-\ector SRQM Interpre;?gol\r/l’n
M- 4-Momentum, 4-WaveVector, |
s 4-Position, 4-Velocity, 4-Gradient, Wave-Particle _ oz

SciRealm@aol.com
of Physical 4-Vectors http://scirealm.org/SRQM.pdf

P-P = (m.c)’= (Ed/C

4-Momentum Treating motion like a particle @
- i P=(mc,p)=(E/c,p) Moving particles have a 4-Velocity

P= _ : : N , :
IP-dR = S Rest Mass:Energy o agtion.free 4-Momentum is the negative 4-Gradient of the SR AC|on (S)
: Elnstel ilton- i SpaceTime

n Hamilton-Jacobi
/ E"YE _YmoC =mc @ P= -a[Saction.free] A & a. R=4
Y (socos action,free ."l Dimension
R=(ct,r) U—v(c u 8=(8/c,-V)—(8/c,-3,,-0,,-0,) L~ Minkowski Metric
d’Alembertian T
. =] 2 = " =] "\
\ Wave VeIOC|ty P ano 2 = (6,/C)° V'V = (0.1  U-9=d/dT=yd/dt

K= _a[cpphase plane] Derivative
WaveVector Gradient

vV *v  =c?
K,d R - _¢ group  phase
phase,plane RestAngFrequency

4-\WaveVector

A\ | K=(w/c,k)=(w/c,wh/v Treating motion like a wave W _____ >
phase q .
K=-9[® ] Moving waves have a 4-Velocity
bhase plane 4-WaveVector is the negative 4-Gradient of the SR Phase (®)
See Hamilton-Jacobi Formulation of Mechanics See SR Wave Definition
for info on the Lorentz Scalar Invariant SR Action. for info on the Lorentz Scalar Invariant SR WavePhase.
{P = (E/c,p) =-9[S] = (-d/cat[S], )} {K = (w/c,k) = -9[D] = (-d/cat[D], )}
{temporal component} E = -0/dt[S] = -9[S] = | {temporal component} w = -9/dt[®] = -3 [D]
{ component} { component}
**Note** This is the Action (Sacion) for a free particle. **Note** This is the Phase (®) for a single free plane-wave.
Generally Action is for the 4-TotalMomentum P+ of a system. Generally WavePhase is for the 4-TotalWaveVector K; of a system.

SR 4-Tensor SR 4-Vector

(2,0)-Tensor T+ (1,0)-Tensor V* = V = (v",v) Existing SR Rules Trace[T*1 =Nl "= T =T "
(1,1)-Tensor T% or T, | SR 4-CoVector: OneForm Quantum Principles V-V = Vi VY= [(V)° - vev] = (Vo)

= Lorentz Scalar
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SR — QM 4-Vector SRQM Interpretation

Aé Some Cool Minkowski Metric Tensor Tricks
=| 4-Gradient, 4-P93|t|9n, 4-Velocity |
ATensor Study SpaCETlme IS 4D sCuRégm(ga\cl)Yll;Soonq

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

SciRealm.org

roperTime Derivative 4-Gradient /
U-9=y(c,u)(d,/c,-V)=y(d,+ u-V) a=(at/c,-V)a(at/c,-ax,-ay,-az)
= d/dt = yd/dt

Tr[n*]=n,"=4
SpaceTime
Dimension

JR] =n" 0-R=4
—Diag[1,-1,-1,-1] SpaceT|me
Minkowski Metric '

JR] = n™
—Diag[1,-1,-1,-1]
Index-Raised
Minkowski Metric

4-Velocity 4-Position
=y(c,u) R=(ct,r) . n.’ 5V
o b ° —Dizg[1.1.1.1] ~Diagl’1.1,1]
: o =¥ ndex-Mixe N
"lﬁB(HVB) =’ = Diag[1, ]*Diag[1, ] = Diag[1, ] Minkowski Metric Kronecker Delta
thus
Single Index-Lowering the Minkowski Metric (n**) gives the Kronecker Delta N
Index . v

(BR) - (R) = (o) = 1R ) 17 =54 Pl
;I;]rﬁge[Mlnkowskl Metric] = Tr[n*] = Nes[N™] = Na” = 0" = 4 Minkowski Metric

The Divergence of 4-Position (8-R) = “Magnitude” of the Minkowski Metric Tr[n®] = the Dimension of SpaceTime (4)

(U2)[R] = (U*2*)[R'] = (Unesd?)IR = (Usd®)[R'] = (Up)*[R'] = (Upn™ = UY = U = (d/dr)[R] >

thus
Lorentz Scalar Product (U-9) = Derivative wrt. ProperTime (d/dt) = Relativistic Factor * Derivative wrt. CoordinateTime y(d/dt):

SR 4-Tensor SR 4-Vector o v _

(2,0)-Tensor T*  §(1,0)-Tensor V¥ =V = (\,v) . SR 4-Scalar VTIa\(;f [Ti,]v‘_”“voTZ ~ Tusie

(1,1)-Tensor T* or T, § SR 4-CoVector:OneForm (0,0)-Tensor S or S, V-V = Vi VY= [(V)7 - vev] = (Vo)
, 1)- - orentz Scala = Lorentz Scalar
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SR —- QM

o—@

A Tensor Study
of Physical 4-Vectors

4-Acceleration 4-Polarization:
4-Displacement E=(c%€)=(e-B,€)
AR=(cAt,Ar)

dR=(cdt,dr)

‘u+
B s's)=(s-B,s

4-Position
R=(ct,r

4-UnitTemporal
T=y(1.B)

4-Velocity
U=y(c,u)

4-UnitSpatial
S=ypa(1-B, 1)

4-NumberFlux
N=(nc,n)=n(c,u)
4-ProbCurrDensity

4-ProbabilityFlux

4-ChargeFlux
4- CurrentDenS|ty

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v)

(1,1)-Tensor T*, or T,' § SR 4-CoVector: OneForm

g SRQM+EM Diagram:

4-\/ectors

4-TotalWaveVector
4-WaveVector K.=(w/ck,)
K=(w/c,k)

4-Force
F=y(E/c,f=p)

4-MassFIlux
4-MomentumDensit

4-Momentum
P=(mc,p)=(E/c,p)

Existing SR Rules
Quantum Principles

4-Vector SRQM Interpretation
of QM

SciRealm.org

John B. Wilson
SciRealm@aol.com
http://scirealm.org/SRQM.pdf

4-Gradient
9=(d/c,-V)

4-TotalMomentum
P.=(E/c,p,;)=(H/c,p,)

4-ForceDensity
Faen=Y(Eden /C,facn)4-MomentumField

Trace[T"] =n, " =TH, =T
V-V = Vi VY = [(VO)? - vev] = (V)
= Lorentz Scalar


mailto:SciRealm@aol.com

SR — QM 4-Vector SRQM Interpretation

of QM

g SRQM+EM Diagram:

— 4-Vectors, 4-Tensors
A Tensor Study SciRealm@aol.com

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

J[R]=n""—Diag[1,-1,-1,-1]

Minkowski Metric

Einstein GR

SR Perfect Fluid
G"=R"-g""R/2

¥=((Peo*Po)/c?)UMU'-(po)n®

4-Polarization:
E=(¢%¢€)=(e"B,€)
s's)=(s'B.s

4-Acceleration
4-Tensor

4-Displacement
AR=(cAt,Ar)
dR=(cdt,dr)

T=(Pao)V*"+(-po) H”
StressEnergy 4-Tensor,

4-Total\WaveVector
K.=(w,/c)k,)

FoP=g0AP-gPAC
. =[ 0 ,-€/c]

A=y(cy',y'ut+ya

4-Gradient

9=(d/c,-V)

4-\WWaveVector
K=(w/c,k)

4-Position
R=(ct,r

4-UnitTemporal

4-Velocity
T=y(1,B) U=y(c,u)
4-Momentum

4-UnitSpatial P=(mc,p)=(E/c,p)

S=ypn(1-B, ).

4-NumberFlux
N=(nc,n)=n(c,u)
4-ProbCurrDensity

4-ProbabilityFlux

4-ChargeFIlux

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector
(1,0)-Tensor V¥ = V = (V°,v)

(1,1)-Tensor T*, or T,' il SR 4-CoVector:OneForm

A

Existing SR Rules
Quantum Principles

4-Force
F=y(E/c,f=p)

ViasskFlux

4-MomentumDensit

[+e'lc,-€ib"]
4-Tensor

4-TotalMomentum
P.=(E/c,p;)=(H/c,p,)

4-ForceDensity
Fsen=Y(Eden /C,fuen) 4-MomentumField

P=(E/c,p,)

Trace[T"] = nuT" =T, =T
V-V =V, VY = [(V)? - vev] = (Vo)
= Lorentz Scalar
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4-Vector SRQM Interpretation

o SRQM+EM Diagram:

4-VECtO rs! 4-Tensors SciRealm.org

John B. Wilson

sy LOrentz Scalars | Physical Constants | sreinewicn

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

3.R=4 = O[RI=n""—Diag[1,-1-1,-1]

Minkowski Metric

'a'Tpv=Fden

. (SHV=NH
?r?l%?]girge @ SR Conservation of Ei i R SR gocr?se:vgtion
SR Perfect Fluid 8 StressEnergy if Faen=0" instein G of Einstein Tenso

4-Acceleration 4-Polarization: W=((0oo+Do )/ c2)UMUY-(po)N" G"=R"-g""R/2
-hocelerat E=(c?,£)=(e-B,c) (Pectp)/C JUU - (poin” S g 1yt 3 4-Tensor :
A= ,y'utya 505)=(s'B S TH=(Peo) V*“+(-po)H 4-Gradient
2 StressEnergy 4-Tensor, 9=(d/c,-V)
4-TotalWaveVector
K =(w,/c.k,)

4-Displacement
AR=(cAt,Ar)
dR=(cdt,dr)

4- WaveVector
=(w/c,k)

4-Position
R=(ct,r

d/dr|. ]—yd/dt .

T-AR/c=At ProperT_lme ﬂ |
ProperTime U-9=d/dt=yd/dt (h) . o8 aB_ A AB_ ABAC
Derivative F=0°AP-0°A

=[ 0 ,-e/c]
[+elc,-€lb"]

y~CK
4-Tensor ﬁ

4-UnitTemporal G 4- Velomty
@) 4-TotalMomentum

4-F o
4-Momentum F:y(EO/(';Cfe: o) P.=(E,/c,p,)=(H/c,p,)
@ L9,/C7 P=(mc,p)=(E/c,p) > ’ o)

4-MassFlux
4-MomentumDensit

prrobo \V
4-UnitSpatial —| 1w |2
S=ypn(fi-B,17).

4-ForceDensity
Fen=Y(Eden'/C,fuen) 8 4-MomentumField
P=(E/c,p,)

4-NumberFlux

N=(nc,n)=n(c,u) 4-EMVectorPotential
4-ProbCurrDensity - A=(p/c,a

4-ProbabilityFlux
(8-0)A-9(8-A)=poJ A= .
@ Maxwell EM Wave Eqn Conservation of EMFleId

= | orenz Gaug

Existing SR Rules V-VTLa\(/:“e[Ti;]V Z nuv;l";v_= T“u: T0 2
Quantum Principles NV = [(V°)* - vv] = (V7o)
R = Lorentz Scalar

" Conservation of
Conservation of Charge

Particle # : Probabilt;

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ §(1,0)-Tensor V¥ =V = (V°,v) SR 4-Scalar
(1,1)-Tensor T*, or T,¥ | SR 4-CoVector: OneForm (0,0)-Tensor S or S,
, , , orentz Scala
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4-Vector SRQM Interpretation

R SRQM+EM Diagram:

AL} 4-VVectors, 4-Tensors

John B. Wilson

Lorentz Scalars [ Physical Constants,_ _se:newsicn

of Physical 4-Vectors http://smrealm org/SRQM.pdf

aR=4 @ 9R]=n""—Diag[1,-1,-1,-1] -
SpaceTime Minkowski Metric -0-T =Fd.en e
|men3|o SR Conservation of : - T
(D] SR Perfect Fluid N StressEnergy if Faen=0" Elnsteln GR onservation

4- Acceleratlon 4-Polarization: *=((Peo*Po)/c?)U U-(po)n®* B G'=R"-g"R/2 s
4- Dlsplacement A + E=(e"e)=(e-B.¢) < T"=(Peo) VM +(-po)H*" @ k 4-Tensor 4-Gradient
r ‘utya s’ s)=(s'B,s eO+p0)/(; Peo Po Gravitational Const Complex adie
AR=(cAt,Ar) StressEnergy 4-Tensor, K R Plang Y 9=(9/c-V)
dR=(cdt,dr T
) {,=0} & {K-U=0} < {K'is null} i e [Tpapsyswrss "“e

= =-9[®] K=i
4-Position L=
R=(ct.r - 4- WaveVector b 1.1 K, (w Ic,k,)

d/dt[..]=yd/dt[. w/ k)

. _ ProperTime “- N J[P_-
T-AR/c=At ProperTime gyrepayeey, Wave Veloc U-a-didt= yd/dt »
ProperTime Derivative Derivative r]pv i Vol FP=gAP-0PA”
| group phase Lorentz EM FOFCG Eqn _[ 0 ej/C]
. B = 3 LM
4-UnitTemporal 4-Velocity Einstom { U-F*=(1/qF } = [+eVc.-€ib"]

T=y(1,B) Speed of U=y(c,u) de Broglie F 4-Tensor

@ Light P =hK .
.’ - > 4- Force _ ‘-. 4-'(I'Et71IMo)mf(:':|[|1}um )
oo = xX°v BBorn 4-Momentum F=y(E/c f= ' C.,p; o} o
4-UnitSpatial gy I P Rule o, @ P=(mc,p)=(E/c,p) V( /C.2D) a»
S=yga(A-B, M), {Me=0} < {P-U=0} < {P is nuII} Conservation
@ - > . 4 ForceDensity 4-TotalMomentum
{9.=0} < {A-U=0} <~ {A is null} 0-C.0 0./C.0 Fden (Edenlcyfden 4-MomentumField

4-NumberFlux ¢
N=(nc,n)=n(c,u)

P=(E/c,p,)

4-EMVectorPotential
A=(p/c,a

4-ProbCurrDensity o 4-ChargeFlux =P+Q=P+gA
ﬁ Pro?abulutyFIw)( iy 4-CurrentDensity H{{- » l 4-EMPotentialMomentum ll\:/mgmal Coupling
prob ’ A A= +
2 e g DA Charge % (0-0)A-0(3-A)=piod WP ation of EM Field
= - Maxwell EM Wave Egn = Lorenz Gauge Maxwell EM Eqns: Gauss-Ampeére : Gauss-Faraday

Conservation of { 0FP =pod } 1 { 9o(V26®"°F\5) = 0° }

Conservation of Charge

Particle # :

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar
(1,1)-Tensor T*, or T,' § SR 4-CoVector: OneForm (0,0)-Tensor S or S,
, orentz Scala

Trace[T"] = nuT" =T, =T
V-V = VP, VY = [(V0)? - vev] = (VO,)?
= Lorentz Scalar

Existing SR Rules
Quantum Principles
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SR — QM 4-Vector SRQM Interpretation

»  SRQM+EM Diagram: 4-Vectors, 4-Tensors
LA Lorentz Scalars / Physical Constants
with Tensor Invariants @W

of Physical 4-Vectors

aR=4 <@ OR]=n*""—Diag[1,-1-1.-1 -
RR=(ct)*rr SpaceTime I Minkowski Metric T T"'= Peo-3po -0"T""=F den 3-G™=Q" ’ i
AR-AR=(cAt)*-Ar: A" Dimensio Det[T]= ~(Peo)(Po)’® SR Conservation of : . 0=, Ic)-V-V

dR-dR=(cdt)*- dr A-A= -(ao —— Tr[T"]= Peo-3Pg SR Perfect Fluid StressEnergy if Fde,,O“ EJTStSIn IS;R fREﬁZ?‘;iﬁgtr:gg

variant Interv 4- Accelera on 4-Polarization: o M= ((Poo*Po)/C2)UPUY-(po)n* - G R"-g"R/2
E=(e%¢)=(e- V— % \ 5

4-Displacement A u+va (:0':) (;_%2 T"=(Peo) V" +(-po)H" Grawtahonal Const C Gri6"1= RIM 4_Gradient
AR=(cAt,Ar) Sl StressEnergy 4-Tensor, K R Plc;rr?gl\(j\)l(aves 0=(9/c,-V)
4-Position \ -R= cD T TotaIWaveVector T hase _ Tr[F*]=0
oy 4 Wa"eVeCtor '@ K, (0J fc,k,) T [P -RIWLF P =2{(bb)-(e-e/c?)

t = .

dR=(cdt dr) ®
g/dtl..]=ydidt[.

- ProperTime -" - ’
T-AR/c=At ProperTime @ Wave Veloc U-o-d/dt= Yd/dt 8
ProperTime Derivative / Derivative r]uv ' ol FP=0AP-0PA°

1 group phase Lorentz EM FOFCG Eqn =[ 0 -ej/C]
4-UnitTemporal 4- VeIOC|ty { U-F* =(1/q)F } 1
T=y(1,8 S d f =y(c,u) Sln;telnl . L [+e'/c,-€ib"]
- (1-7-+1 L'Zi? ° @ E-mc2 (h) Pe—h:?g = A - O 4-Tensor
@ < ®-- > W : 4-TotaIMomentum
0,0 = Xv §Born 4- Momentum : c ' =(E./c,p,)=(H/c,p;)
4-UnitSpatial H p_|by|\|, Rule @ @ P=(mc,p)=(E/c,p) @
S=ypn(A-B,N), EM {m,=0} < {P-U=0} < {P is null} Conservation
@ 4- Forceen5| y 4-TotalMomentum
0 {(p0=0} N {AU:O} ™ {A S nuII} . 0. . Fden (Edenlcyfden 4-MomentumField

P=(E/c,p,)

4- EMVectorPotentiaI —
A=(q/ @) Charge

s |

a-A=0
% M‘erveli Eal\(/IaV’\;Aa e anjn i Conservation of EM Field
= Lorenz Gauge Maxwell EM Eqgns: Gauss-Ampére : Gauss-Faraday

{8FP =pod } : { Au(Vee™F ) = 0° }
Existing SR Rules
Quantum Principles

=P+Q=P+0A

4- ProbCuerenS|ty 4-ChargeFlux
4-ProbabilityFlux 4- CurrentDenSIty

-EMPotenUaIMomentum ?:""I';ma' Coupling
+

U Conservation of
Conservation of Charge

Particle # :

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar
(1,1)-Tensor T*, or T,' § SR 4-CoVector: OneForm (0,0)-Tensor S or S,
, orentz Scala

Trace[T"] = nuT" =T, =T
V-V = VP, VY = [(V0)? - vev] = (VO,)?
= Lorentz Scalar
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SR — QM 4-Vector SRQM Interpretation

: SRQM Diagram: |
.. Physical Constants Emphasized . .

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

0-R=4 & 5[R]=n""—Diag[1,-1,-1,-1]
SpaceTime Minkowski Metric
Dimension

-0"T"'=F gen d-G"=0"
SR Conservation of SR Conservation
StressEnergy if Fgen=0" of Einstein Tensor

ProperTime

Notice that all the main “Universal” or “Fundamental” @
Physical Constants are here: G,c,h,&,[o.

Some depend on the actual particle type: q,mo,w,
Some depend on regional conditions: T, Peo,Po;Po;Po, W*W
Some depend on interaction:® S

phase’ — action
Some are mathematical: 0,4,,i,Diag[1,-1,-1,-1],d/dt
Conservation Laws are also a type of “zero” constant in

0 this regard.

The majority of the constants are Lorentz Scalars, but
0-A=0 some are 4-Vector or 4-Tensor, and all are valid for all

Conservation of EM Field inertial observers.
= | orenz Gauge

P @ ©
e
@

Fundamental Physical Constants are SR Lorentz Scalars

a-J=0
Conservation of
Charge

SR 4-Vector The fact that these “tie together” a network of 4-Vectors is

(1,0)-Tensor V* = V = (v°,v) - 0.)?.? 4-ScaS|ar S Existina SR Rules a?ood_ argument for wh;lldth?]ir valu;ahs areI c;_onstﬁ_nt.
SR 4-CoVector:OneForm [} (Y;V)-1€nsor S or o, h - anging even one would change the relationship
orentz Scala Quantum Principles properties among all of the 4-Vectors.

SR 4-Tensor
(2,0)-Tensor T+
(1,1)-Tensor T*, or T,Y
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SR — QM 4-Vector SRQM Interpretation

. SRQM Diagram: Projection Tensors

——. Temporal, Spatial, Null, SpaceTime

of Physical 4-Vectors http://scirealm.org/SRQM.pdf
4-UnitTemporal W a_P(FjO/p;rTi_mij . Projection Tensors act as follows: Timelike
T=y(1,B) e it Generic 4-Vector: Interval (+)
4-Velocity s A= (a,a) = (a%,a",a%,a%) At (VR)
"Vertical’

=2 4-Gradient Tempora ok

4-P_03|t|0n . EREN Y  Temporal Projection: Projeeiey / I(r,:}fvgval o
R=(ct,r) t = nw\/" — Diag[1,0,0,0] "Null”
S[RI=n" A= (000)=(0) A ¢ oo
JR-4 WM —Diag[1,-1,-1-1] - ure

2 Minkowski Metric spatial Frojecions Space-lik

pimensiog SpaceTime Tensor H", = nwH"” — Diag[0,1,1,1] Ar |nr*i:=,a|-c;',e.g.|I(()e
H* A = (0,a',a%a°%) = (0,a) (H)
HTV=\/HV MV_\ JHV— |JHV "Horizontal”
D-'_r 11 \6 00 DU \6 1H1 1 SpaceTime Projection: (nE) Spatial
—Diag[ 9,0, ],, e Ia.g[“ L P ] A + HY, A = nf, AY "SpaceTime”  Projection
Temporal “Vertical Spatial “Horizontal _ su AV TN Projection
Projection Tensor =8 A'=A"=(aa)
+HY =nf = 6%
v BV — N[HV + HY =" e
S/iaé([11/3;)/|; 173"‘ - The Minkowski Metric Tensor is
— p W/ /) I tial
Isotropic Null “Light-Like” the Sum of Ter oS =

g ich c
Projection Tensors, all of whic LightCone

Projection Tensor i i
ojection Tens are dimensionless.

SR 4-Tensor SR 4-Vector - v — -
Trace[T"] = nuT" =T, =T
v - = = 0
(2,0)-Tensor T (1 ,O) Tensor V¥ =V (V ,V) \VAVAS Vun“vvv = [(VO)Z _ V'V] = (VOO)Z

= Lorentz Scalar
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4-Vector SRQM Interpretation

SRQM Diagram: Projection Tensors &

SR —- QM

SciRealm.org
John B. Wilson
SciRealm@aol.com

s Perfect-Fluid Stress-Energy Tensor

of Physical 4-Vectors

ProperTime

http://scirealm.org/SRQM.pdf

Projection Tensors act as follows:

4-UnitTemporal Time-like
T=y(1,B) e U-o=d/dt=yd/dt ' =(a%a) = (a°,a’,a% a°) Interval (+)
. Derivative
4-Velocity A . AT (Vis)
U=y(c,u) = Nw\/'* — Diag[1,0,0,0] Vertical S
iti — 4-Gradient A"=(2,0,0,0) = (27,0) Temporal Light-like
K d 9=(9/c,-V) : (NE)
R=(ct,r) (Tr[n”]=4] L H*, = nw/H* — Diag[0,1,1,1] "Null”
3 JR]=n"" H A= 00" a2 = (0.2) R ¢ Frjecion
‘R=4 Diag[1,-1,-1,-1
SpaceTime _)Minkg\[zvs’ki l\,/letl,'ic] A"+ HV A= A il Space-like
s SpaceTime Tensor ="A" =AY =(a,a) Ar Inr’ierval ()
@ . (H=)
T =V NH-VPY=H . :Ev a r]:v "Horizontal”
Sy . + H"Y = n" (k) Spatial
(®) —>Diag|1 ’P’O’Q]ref‘ D'ag[q:'1 ’T1 "1]2?3‘ The Minkowski Metric Tensor is here "SpaceTime” Projection
Tem_porgl Vertical Spa’glal _Horlzontal the Sum of Temporal & Spatial Projection
rojection Tenso Projection Tensor N ;
_ Projection Tensors, all of which
Perfect-Fluid rest-energy-density  rest-pressure are dimensionless.
StressEnergy 4-Tensor: e
T = ((PeotPo)/c?)UPUY - (po)™ ol 1he rest-energy-density (Peo)
r[T“ 1=Peo-3Dg C(is-gwaﬁgn B is the Temporal Projection. -C
can be written in much Perfect-Fluid StressEnergy
simpler form using StressEnergy 4-Tensor The neg rest-pressure (-po)
Projection Tensors: T est—Diag[Peo,Po,Po,Po is the Spatial Projection. )

T'=(poo) V" +(-po)H,

SR 4-Scalar
(0,0)-Tensor S or S,
orentz Scala

T = (Peo)

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v)
(1,1)-Tensor T*, or T,' il SR 4-CoVector:OneForm

()

PPN = (moU¥)(naU") =
= (Pmo)(C*)(T'T") =

LightCone

T"\vcre — Diag[PeosPo,PosPo]

(Mano)(UFU) = (pmo)(U"UY)
(Peo)(THTY) = (Peo)(V™) = Peo

Trace[T"] = nuw T
V-V = VP, VY = [(VO)? - vev] = (V0)?
= Lorentz Scalar

W=TH =T
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SR — QM 4-Vector SRQM Interpretation

SRQM+EM Diagram:
Projection Tensors & Stress-Energy Tensors: _
oy Special Cases e

http://scirealm.org/SRQM.pdf
ad - @
Fari(gay 4-Un|tTemporaI 4-Velocity (E/c p)
F v(1,B8)
—Y(C U ProperTime

=°AP-PA°

- - 4-Position 9= = . : .
[[+e(i>/c:_£?:/k)<:k]] R(etn) % @ U-o0 éﬂe/rg:tivgd/d 4-Gradient O TW=F,,. A few interesting special cases:

4-ForceDensity
Fden= Eden/C,":den

4-Tensor J[R]=N"=V""+H" 6=(8t/ C,-V) [l sR Conservation of {for Perfect Fluid (no viscosity)}
@ a R=4 StressEnergy T i = (Peo) VH* - (po) H*
- —Diag[1,-1,-1,-1] if Foen=0" Perfectuid LTS L

SpaceTime g . . T pertectriia = ((PeotPo)/C7)UUY - (po)n*

Dimensio Minkowski Metric THT™] = 1(Peo) - 3(Po)

4 Momentum SpaceTime Tensor B

4- VecPotentlaI P=(E/c,p) @ 4 @ @ (Do) = (De0)/3:

A=(9/c, a) VH=THTY H»=nv-ve Lambda-Vacuum {NullDust = PhotonGas = Radiation}

—Diag[1,0,0,0] —Diag[0,-1,-1,-1] SvtressE.nergy 4-Tensor T enotonas = (Deo) V¥ = (Peo/3) H* = (Deo) N
Temporal “Vertical” Spatial “Horizontal” T"ea—Diag[pe,Pe,-Pe,-Pe] T erotonces = (Po)(AVH =) .
() jecti Projection Tensor TH=(Peo)N™ Tr{T"enotences] = 0: Null (Light-Like) Projection

(Ro) = 0:

{Cold Matter Dust (pressureless) }

TuvManerDusl = PUNV = (pmo)Uqu = (peo) VUV

Tr[T"materoust] = (Peo): Temporal Projection
Cold Matter-Dus Perfect-Fluid Null-Dust=Photon-Gas

StressEnergy 4-Tensor StressEnergy 4-Tensor i StressEnergy 4-Tensor (Do) = =(Peo):

T“Vrest—>Diag[pe,0,0,0] Tuvrest_)Diag[pe,p,p,p] Tuvrest—>Diag[pe,pe/3,pe/3,pe/3] %E?V::iii;/:c(%tg\ﬁ?ir?ge}o) H"'= (Peo) N™
il (AW OIS (INY” | | T1[T"..c00,] = 4(0e0): SpaceTime Projection

(Po) = (Peo) = 0:

{ZeroVacuum Energy}

TpVVaccEnergy = Opv

Tr[T"vaccenergy] = 0: Zero Projection

ElectroMagnetic (s, <
StressEnergy 4-Tensor

Special cases of
a Perfect Fluid

SR 4-Tensor SR 4-Vector Tr[ ] = Trace Function = Nuv . Trace[THV] =n vav =T =T
(2,0)-Tensor T+ (1,0)-Tensor V¥ =V = (V V) o, 0?$e4r'1'ssc)$asla;r 5 N = V¥ - (1/3) H* = Null Projection Tensor Equatlon of State V-V = V“r] V¥ = [(uv0)2 _ V'Vij - (V00)2
- HV v F v _, Di H W] = W= \p/= v
(1,1)-Tensor T*, or T,* | SR 4-CoVector: One orm [ At N* — Diag[1,1/3,1/3,1/3] with TrN*] = 0 EoS[T"]=w=po/Peq = Lorentz Seolt
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SR —- QM

A S RQ M D i ag ra m : 4-Vector SRQM Interpre;?gol\r/l’n

WA} 4-Tensors and 4-Scalars
e generated from 4-Vectors

All SR 4-Tensors can be generated from SR 4-Vectors:

Fw = aAA= auAV - aVAH : Faraday EM 4_Tensor (from the 4-Gradient & 4-EMVectorPotential)

MH = XAP = XMPY - X'P¥ : 4-AngularMomentum 4-Tensor (from the 4-Position & 4-Momentum)

n" = d[R] = ¢"[R"] . SR:Minkowski Metric 4-Tensor (from the 4-Gradient & 4-Position)

VW =TT =T"T" . (V)ertical: Temporal Projection 4-Tensor (from the 4-UnitTemporal)

HY = n™ - V¥ . (H)orizontal:Spatial Projection 4-Tensor (fom previously made 4-Tensors above)

TCO|d dUSt — P®N P“NV - (Cold)Dust Stress_Energy 4_Tensor (from the 4-Momentum & 4-DustNumberFlux)

(peo) — TCoId_DustuV va : MCRF EnergyDenSity 4_Sca|ar (from previously made 4-Tensors above)

e s citm:. = (L ) : LambdaVacuum (Dark Energy) Stress-Energy 4-Tensor (from previously made 4-Tensors above)

€0

(po) — (k)(1/3)TLambda7Vacuumuv Hpv c MCRF Pressure 4_Sca|ar (from previously made 4-Tensors above)

with the pressure initially set to the EnergyDensity

and (k) an arbitrary constant which sets pressure level

B P, = (peo)V“V+(-p0)H“V . PerfectFluid Stress-Energy 4-Tensor (from previously made 4-Tensors above)

SR 4-Tensor SR 4-Vector Vi — v — —
(2,0)-Tensor T+ (1,0)-Tensor V¥ =V = (V°,v) 0 0\)9$ 4-Scaslar ) Equation of State v VTIa\(/:SrETu i r['(“\joT; _vTvuij _ 2\-/0 )2
1,1)-Tensor T*, or T,V | SR 4-CoVector: OneForm ensor S or WV=\y= = WV = S Ve
( ), ) , orentz Scala EoS[T"]=w=po/peg = Lorentz Scalar
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SR — QM 4-Vector SRQM Interpretation

A of QM
[
/! SRQM Study:
O—‘I 4 D G b ) T h SciRealm.org
A Tensor Study a u S S e O re m SciRégm(gé\cl)\ll.lLsoonq
of Physical 4-Vectors http://scirealm.org/SRQM.pdf
4-Gradient
Gauss' Theorem in SR: A d=dr=ax=0"=(9/c,-V)
[0d“X (8,V*) = $:0dS (V*N,) —(8/¢,-8,-0,,-))
[0d*X (8-V) = $50dS (V-N) =(8/cot, -0 ox,-lay,-01a7)
where:

V = V¥is a 4-Vector field defined in Q

(9-V) = (6,V") is the 4-Divergence of V

(V-N) = (V¥N,) is the component of V along the N-direction
Q is a 4D simply-connected region of Minkowski SpaceTime
dQ =S is its 3D boundary with its own 3D Volume element dS and outward pointing normal N. IQd“X(apV“) )
N = N" is the outward-pointing normal =] d*X(o-V)

d*X = (c dt)(d’x) = (c dt)(dx dy dz) is the 4D differential volume element

4D Stokes’
Theorem

Integration of

4D Div = 4D Surface Flow

Q = 4D Minkowski Region, dQ = it's 3D boundary
d“X = 4D Volume Element, V = V¥ = Arbitrary 4-Vector Field
dS = 3D Surface Element, N = N* = Surface Normal

In vector calculus, the divergence theorem, also known as Gauss's theorem or Ostrogradsky's theorem,

is a result that relates the flow (that is, flux) of a vector field through a surface to the behavior of the vector field inside the surface.
More precisely, the divergence theorem states that the outward flux of a vector field through a closed surface

is equal to the volume integral of the divergence over the region inside the surface.

Intuitively, it states that the sum of all sources minus the sum of all sinks gives the net flow out of a region.

In vector calculus, and more generally in differential geometry,

the generalized Stokes' theorem is a statement about the integration of differential forms on manifolds,

which both simplifies and generalizes several theorems from vector calculus.

SR 4-Tensor SR 4-Vector

2,0)-T Thv 1,0)-T VE=V = (VO SR 4-Scalar . .
(1,§)_Tgn:0”f$p§ or T,y AN (TN ol | SRQM: A treatise of SR—QM by John B. Wilson

0,1)-Tensor V, = (Vo,-v orentz Scala
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SR — QM 4-Vector SRQM Interpretation

A SRQM Diagram:

Z4: Minimal Coupling = (EM)Potential Interaction
Conservation of 4-TotalMomentum Saeaimiolcom

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

()—QI > O'R=4 & — v . o
SpaceTime J[R]=n""—Diag[1,-1,-1,-1] I

P = (E/c,p): 4-Momentum . =l Minkowski Metric ,
Q = (V/c,q): 4-PotentialMomentum 4-Displacement Dimensio 4-Gradient
A = (¢/c,a): 4-VectorPotential — — k A
P, = (E/c,p): 4-MomentumincPotentialField AR=(cAtAr) d (at/C’ V)
P.=( ,p.) = (H/c,p.): 4-TotalMomentum
-[PyR
P=P,-qA=( , ): Minimal Coupling Relation [P_-dR]
ProperTime I[PT-U]dr
P.=P + Q=P + gA: Conservation of 4-MomentumIncPotentialField Derivative Hamilton-Jacobi f[—I. de
P = -9[S] "_[_S° _
P=P+Q H = -8(S], pr=V/[S] "
f
P=P+dgA Rest
f q ) Mass:Energy
P.=(m, 5 ;
P = (Estoac)U Usycw P=(E,/c,p)=(Hic,p,)
= (Es*age @21 > o>

Conservation of

P, = ((Eo+q@.)/c)y(c,u)
f Rest Scalar 4-Momentum 4-TotalMomentum
P ) @ P=(mc,p)=(E/c,p) 3 @

' {m,=0} & {P-U=0} « {P is null}

4-MomentumincPotentialField has a contribution from E;Mnin}al 4-MomentumincField
a Mass “charge” (m,) ||H_|_ } . P0=l;)p+lgg P =(E/c,p,)=P+Q=P+qA
an EM charge (q) interacting with a potential (¢,) EM Charge f

_ 4-EMVectorPotential 4-EMPotentialMomentum
P, =2 [P,]: Conservation of 4-TotalMomentum A=(g/c,a) 0 Q=(U/c,q)=qA

4-TotalMomentum is the Sum over all such 4-Momenta (0:=0} & {AU=0} 0 {A is nul}

SR 4-Tensor SR 4-Vector V] — v — -
(2,0)-Tensor T §(1,0)-Tensor V* =V = (v’,v) . SR 4-Scalar V.VTLa\(/;;? [T“V]v N r[](uv;r)z __VTVHT - (1\-,0 )2
(1,1)-Tensor T*, or T,' |l SR 4-CoVector:OneForm (010)'Te”tsosr S Ior S, My o
orentz Scala

= Lorentz Scalar
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SR —- QM

A

o—@

A Tensor Study
of Physical 4-Vectors

H+L=(pru)=

4-Momentum P = m,U = (E./c*)U ; 4-VectorPotential A = (¢./c*)U
4-TotalMomentum Py = (P + gA ) = ( : )

P-U=y(E-pu)=E,=mc’; AU=y(¢-au)=q,
Pr-U = (P-U + gA-U) = Eo+ q@o = MC* + Qs

v = 1/Sqrt[1-B-B]: Relativistic Gamma Identity

(vy-1/y)=(yB-B ): Manipulate into this form... still an identity
(v-1/y)P+U)=(yB-B )P+ U): Still covariant with Lorentz Scalar
y(Pr-U) + (PT U)/iy = (vB-B )(P+-U)
Y(Pr-U) + -(Pr-U)ly = (vB-B )(Eo + q9o)

Y(Pr-U) + -(Pr-U)ly = (yu-u )(E i qcpo)/c
v(Pr-U) + (PT U)ly = (y(Eo/c*+ q@o/c?)u-u)
v(Pr-U) + -(Pr-U)/y = ((YEou/c*+ yqoou/c?)-u)
v(Pr-U) + (PT U)/y = ((Eu/c*+ qou/c®)-u)
y(Pr-U) + (PT U)ly = ((p+qa) u)
Y(Pr-U) + -(Pr-U)/y = (pr-u)
{ H }+{ L } = (pr-u): The Hamiltonian/Lagrangian connection
H=y(Pr-U) =vy((P+gA)-U) = The Hamiltonian with minimal coupling
L = -(Pr-U)/y = -(P+qA)-U)/y = The Lagrangian with minimal coupling

SRQM Study:
SRQM Hamiltonian:Lagrangian Connection
y(Pr-U) +

--------------------------------------------------------------------------------------------------------

i H:L Connection in Density Format
i H+L=(pru) =
{ nH + nL = n(pr-u), with number density n = yn, i
P+ L= 5
i momentum density {gr = npr}

i Hamiltonian density {# = nH}

i Lagrangian Density {£ = nL = (yn,)(Lo/y) = NoLo}
Lagrangian Density is Lorentz Scalar

4-Vector SRQM Interpretation
of QM

SciRealm.org

John B. Wilson
SciRealm@aol.com
http://scirealm.org/SRQM.pdf

'(PT'U)/’Y

(gr-u), with

for an EM field (photonic):

= (1/2){e.e-e + b-b/u.}
L = (1/2){e.e-e - b-b/us} = (-1/4u)F  F*"

P J+ L= ¢ee0e = (gru)
lul=c

t |gr| = e.evelc

i Poynting Vector |s| =

lg|c? — ce.ece

L = Loy

4-Vector notation gives a very nice way to find the Hamiltonian/Lagrangian connection:

(H)+(L)=(pru), where H=vy(Pr-U) & L = -(P+-U)/y
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4-Vector SRQM Interpretation

\ SRQM Study:
A SR Lagrangian, Lagrangian Density, ...

- - - - John B. Wilson
A Tensor Study SciRealm@aol.com
of Physical 4-Vectors an d R e I at I V I St I C A Ct I O n (S) http://scirealm.org/SRQM.pdf

Lagrangian {L = (pr-u) - H} is *not* Lorentz Scalar Invariant

SR —- QM

Relativistic Action (S) is Lorentz Scalar Invariant

S=[Ldt= : I Lo /Y)(Yd_f) I(L )(dt) \ B . . Rest Lagrangian {L, = yL = -(P-U)} is Lorentz Scalar Invariant

S = [Ldt = [(£/n)dt = [£/(n)dt = |£(d®x)dt = [(L/c)(dx)(cdt) = [(L/c)(d*x) Lagrangian Density {£ = nL = (yn,)(Lo/y) = n.Lo} is Lorentz Scalar Invariant

Explicitly-Covariant Relativistic Action (S) N = yn, = #/d°x = #/(dx)(dy)(dz) = number density

Particle Form Density Form {= n,*Particle} dt = ydr )

S = [L.dt = -[H.dt S= (1/C)f(noLo)(d4X) = -(1/C)I(noHo)(d4X) ng_: nC}(cd;)‘l(dx)(dy)(dz) = no(d’x)

S = -J(P,-U)dt S = (1/c)l(£)(d*x) ,"(”C)(X)
i f P .dR/d7)d : H:L Connection in Density Format for Photonic System (no rest-frame

Tt :H+L= (pT'U)

= I(P -dR) S= J(,B/c)(d“x) i nH + nL = n(pr-u), with number density n = yn,

P g+ L= (gru), with
{ momentum density {gr = npr}

S= -I(PT.U)dT S = '(1/C)In°(PT'U)(d4X) i Hamiltonian density {# = nH}
S =-J((P + gA)-U)dt S = -(1/c)In.((P + gA)-U)(d*x) i Lagrangian Density {£ = nL = (yn,)(Lo/y) = noLo}
S = I(P U + gA-U)dt S = -(1/C)f(n0P'U + noqA-U)(d“x) : Lagrangian Density is Lorentz Scalar
S=-E+qUANr S =-(1/0)(nE, + neqU-A)(d'X)  for an EMTI AR
: (photonic):
S = -[(E, + q@o)dt S = -(1/c))(pgo + J-A)(d"x) { %= (1/2){e.e-e + b-blj} = noE, = pyo = EM Field Energy Density :
S = -J(E, + V)dt i £ = (1/2){e.ee - b-b/po} = (-1/4,)F,F* = (-1/4y,)*Faraday EM Tensor Inner Product :
S = -J(m.c? + V)dt S = (1/c)j(L)(d*x) P J+ L=eere = (gru) :
S = (1/c)[((1/2){e.e-e — b-b/o})(d*x) };l e
. . _ v 4 H T| = €0€*
with V' = qqo S = (1/C)j(('1/4“°)Fqup )(d*x) Poynting Vector |s| = |g|c* — ce.e-e

for an EM field = no rest frame

€oMo= 1/c* :Electric:Magnetic Constant Eqn

(1,1)-Tensor T*, or T,' § SR 4-CoVector: OneForm

SR 4-Tensor SR 4-Vector TG
(2,0)-Tensor T l(1,0)-Tensor V* = V = (v°,v) The Relativistic Action Equation is seen in many different formats
orentz Scala
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SR — QM 4-Vector SRQM Interpretation

) SRQM Study:
A SR Hamilton-Jacobi Equation

= = = - __John B. Wilson
i Frysen s and Relativistic Action (S)
Lagrangian {L = (pr-u) - H} is *not* a Lorentz Scalar Ia-lasmilto;-élafobi EquanSy
Rest Lagrangian {L, = yL = -(P_-U)} is a Lorentz Scalar [-S]=-0[S] =

Relativistic Action (S) is Lorentz Scalar g ) :{(EE°++qq<;P3}g;

S = [Ldt .

S = [(Lo/y)(ydr) S = -(E, + q@,)(t + const)

S= J(Lo)(df) -S= (Eo + q(Po)(T + const)

Explicitly Covariant 4-Scalars 4-Vectors g{ 2} _gEo I Q(Po;g{(’i? + COURH

Relativistic Action (S) Relativistic Action Equation Relativistic Hamilton-Jacobi Equation Pel 4Qo)olt ,

S = JLodt = -[Hodr Integral Format Differential Format a[-S] =(E, + q@,)d[R-U/c7]

’ ° 9[-S] =((Es + q@o)/c*)9[R-U]

=k 9[-S] =(Eo/c?+ q@o/c?)U

S .[(P dR/dT)dT actlon '[[P dR] a[_S] =(m0 + q(/pé2)u

S =-f( P.-dR) —-I[P -U]dt 4-TotalMomentum 2.1 = t.l +q(po AU

=-[[(H/c,p.)y(c,u)]dt P, = (E,/c=H/c,p,) 5] =mo a(@e/c’)
S = -[(P, U)de [(H/c,p)y(c,u)] J1-S] =P + gA
= ( =-J[y(H-p,uldt L R

S i (P N qA )d’r ='J.[H ]d =(_at/C[SaCﬁ0n],V[Saction]) 3

S = -|(P-U + gA-U)dz i T Verified!

S = -J(E, + q@.)dt =I[Leldt

S=-(E,+V)dt with V= qg, R-U = ¢t : 1= R-U/c?

S = I(moC +V)de . S e ;

SERI(! The Hamilton-Jdacobi Equation is incredibly simple in 4-Vector form

SR 4-Tensor SR 4-Vector

2,0)-T Thv 1.0)-Te Ve =V SR 4-Scalar . .
(1,§)_Tgn:0”f$g or T,y (. y Tensar ' = o,,eF(Z,,,‘Q (IOSENEREY | SRQM: A treatise of SR—QM by John B. Wilson
orentz Scala
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SR—»QMA SRQM Diagram: 4-Vector SRQM Interpre;?gol\r/l’n
Ai Relativistic Hamilton-Jacobi Equation .
A Tensor Study (PT - -a[S]) leferentlal Format 4'V9Ctors SmRégrrggé\cl)\lliLsoonq

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

e =aeu— 0R=4

[R]=n"—Diag[1,-1,-1,-1

4- Displacement ‘i’;‘fnTS‘ir;‘e Relativistic Action (S) is Lorentz Scalar Invariant Minkowski Metric 4-PositionGradient
=(cAt,Ar) S = [Ldt = [(Lofy)(ydr) = [(Lo)(dr) = Lode 4-Gradient
.dt.dr) — ; — ; dr=0=(9/c,-V)
\ SExr)IIchly-C?l\_/'agant Relativistic Action (S): dt=(1/c)V[dR-dR] —(8ldct,-31%,-01dy,-3157)
@ = 0 0 = - fo) T
R= (Ct 2= S = -[(P,-U)de v
R g o
Invanant Interval S = J'(p -dR)
S =-J(P;-U)dr :
(mlb S = -J( (P +qA)-U)dt EmperTT ° Pr=-3[S
ProperTime S=-J(P-U+ gA-U)drt U.a_D(i{s;;;Z o/t H= 'ar[[S]], pr=VI[S]
Derivative FIPHSS S= I(E + q@,)dt Hamilton-Jacobi Equation
e S =-J(E, + V)dt with V = qo, Proper Time
Proper Time S = -[(moc” + V)dt dt 4-TotalMomentum

t=(1/c)V[dR-dR] B e P.=(E./c,p,)=(H/c,p,)
Differential Invariant Rest Hamiltonian Conservation
= -Invariant Rest Lagrangian 4-TotalMomentum

4-Force
@.} F=y(E/c,f= 5, (-1

4-MomentumlIncField

4-Momentum

P=(mc,p)=(E/c,p)

I P=(E/c,p,)=((E+U)/c,p+qa)
: ||H'H"> i | I Minimal Coupling
4-NumberFlux 0 4-EMPotentialMomentum
N=(nc,n)=n(c,u) A=(p/c,a) Q=(U/c,q)=qA

SR 4-Tensor
(2,0)-Tensor T+

Trace[T"] = nuT* =T%, =T

V-V = Vi, VY = [(VO)? - vev] = (V0)?
M v M
(1,1)-Tensor T* or T, SR 4- CoVector OneForm = Lorentz Scalar
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SR — QM 4-Vector SRQM Interpretation

) SRQM Diagram:
Ai Relativistic Action Equation
s (S = -J(P,-dR)) Integral Format : 4-Scalars e

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

e e=———— (R=4 d[R]=n""—Diag[1,-1,-1,-1] |

4-Displacement ?;ZenTsiirge Minkowski Metric e 4-PositionGradient
AR=(cAt,Ar) : . dt=ydr=ydts 4-Gradient
’ R Relativisti g Lagrangian Density or=0=(9/c,-V)

=nL=(yn,)(Lo/y)=No agrangian

! ' 0 =-(P_-U)/y=L/ o —>(3ldct,-01dx,-01dy,-319z)
@ @ Relajtivistic Action (S)
ProperTime N Q SR S = |Ldt
° Dervative o . Relativisti (X S = [(Loly)(yelr)
5 ’

(+) egendre Factor S = JLodt = [-Hodt

calar}/c Number density p.-u
& 0 T = [(-P_-
@ 9 H+L=(p S = [(-P-U)dt
‘ ot Lo=

OT'”) S = J(-P,-dR/Idr)dr
— X )

H
---------------- \ v = 11[1-B-B]: Relativistic Identity : S = J(-P,-dR)
@elativ{stic (y-1/y)=(yB-B ): Alternate Form am”ton_lan
Coordinate Time (v- 17y )(P+-U) = (yB-B )(P-U)) =y(P-U)=yH, Hamilton-Jacobi

(v +-1/y)(PrU) = (pru) Pr=-9[S]

H+ L=(pru) Proper Time (T H = -adS], pr=VIS]
Py - U-0=d/dt=yd/dt Scalarkc 4-TotalMomentum
' Derivative . PT=(ET/c,pT)=(H/C,pT)
4-Velocity i _ ProperTime Conservation

Derivative 4-Force 4-TotalMomentum

(+) 4-MomentumincField
o - » “H”_> |l'.l”> P=(E/c,p)=((E+U)/c,p+qa)

11 Minimal Coupling

4-NumberFlux : 4-EMVectorPotential 4-EMPotentialMomentum
N=(nc,n)=n(c,u) J= Ce_nt_DenS|ty A=(p/c,a) 0 Q=(U/c,q)=qA

SR 4-Tensor SR 4-Vector a i _
(2,0)-Tensor T*  §(1,0)-Tensor V* =V = (V°,v) SR 4-Scalar R Relativistic Scalar Trac;a[T“V] B ”uv;rzv =T - T -
1,1)-Tensor T*, or T," || SR 4-CoVector:OneForm K (0.0)-Tensor S or S, (not Lorentz Invariant) V-V = Ve VY = [(VO)P - vev] = (Vo)
0,2)-Tensor T = orentz Scala = Lorentz Scalar

o 0,1)-Tensor V, = (Vo,-v

U=y(c,u

Eeme? Invariant Rest Hamiltonian F=v(E/c.f=p
(
@ @ 4-Momentum

P=(mc,p)=(E/c,p)

(
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SR —- QM

AA SRQM Diagram: Relativistic Factors
LA Hamiltonian & Lagrangian
Relativistic Euler-Lagrange Equation

of Physical 4-Vectors

4-Vector SRQM Interpretation
of QM

SciRealm.org

John B. Wilson
SciRealm@aol.com
http://scirealm.org/SRQM.pdf

S s————y 0R-4 = 0[R|=n""—Diag[1,-1,-1,-1]
4-Displacement i ShaceTime Minkowski Metric o
AR—(cAt Ar)

Lagrangian Density

R Relativisti

=nL=(yn,)(Lo/y)=n

3 Lagrangian o
ProperTime o @

Action S = [Ldt

Relativistic

4-PositionGradient
dt=ydt=ydt, A 4-Gradient
dr=0=(9/c,-V)

—(9ldct,-01x,-31dy,-019z)

LW ltemporal Derivative J° Relativistic (X ) EuleréLalgr:/r;geaEqn
scalar}/c Number density = = (d/dT)dy
4 o (1) 4-VelocityGradient
v = 1N[1-B-B]: Relativistic Identity du=(du/c,-Vu)
(y-1/y)=(yBB ): Alternate Form i f —(0ldyc,-0/8yuy,-9ldyuy,-0ldyu;)
(- 1 )PrU) < (/B8 (PrU) Hamiltonian —
Coordinate Time (y+-1ly )(pT U) = (pru) =y(P;-U)=yH, —" Hamilton-Jacobi
H+ L= (pru) . Pr = -9[S]
Note Similarity: (pr T -
: H = -9[S], pr=VIS]
4-Velocity is ProperTime _ _ du[U]=n*—Diag[1,-1,-1,-1 :
Derivative of 4-Position Partlcle Dynamlcs U-o=d/dt=yd/dt g ]M[i]nkowskigk/letric ] SCelailie 4-TotalMomentum

U= (ddoR [mis]=[1sPTm]  \ @ AL P.=(E./c,p,)=(H/c.,p,)
- —H = ProperTime Conservation
Relativistic Euler-Lagrange Eqn =v(H-p.-u)=H,=-L, Pet
Derivative 4-Force .
or = (d/dt)dy [1/m] = [1/s]*[s/m] Invariant Rest Hamiltonian FiE/o fot 4-TotalMomentum

4-Momentum :
P=(mc,p)=(E/c,p)

) E=mc
The differential form just inverses @
the dimensional units @

4-NumberFlux argerux

4- MomentumlncFieId
..... 1 P.=(E/c,p,)=((E+U)/c,p+qa)
‘ 5 I”H}"> ::. |-}- Minimal Coplln o

i c 4- CurrentDenS|ty 4-EMVectorPotential 0 4-EMPotentialMomentum
ST E(ET, A=(¢/c,a) Q=(U/c,q)=qA

SR 4-Tensor
(2 0)-Tensor T+

Trace[T"] =N, T" =T =T
V-V = Vi VY = [(VO)? - vev] = (Veo)?

= Lorentz Scalar
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SR—»QMA SRQM Diagram: 4-Vector SRQM Interpre;at(i}ol\r/l‘n
Ai Relativistic Euler-Lagrange Equation |
o, The Easy Derivation (U=(d/dt)R)—(dr=(d/dt)dy) ..mews

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

Relativistic Dynamics Eqn (4-Vector)

Note Similarity: U = (d/doR
4-Velocity is ProperTime Y Classical limit, spatial component (3-vector) @------- >
Derivative of 4-Position " = ; Natural
U= (did)R [mis] = [1/s]"[m] 4-Position "Orl[..] 4-Vector

i R=(ct,r) yd/dt[..] (1,0)-Tensor
Relativistic Euler-Lagrange Eqgn
or = (d/dt)dy [1/m] = [1/s]*[s/m] R= aU[U]=r]“B—>Diag[’I 4] =) =1l
The differential form just inverses ?;Zi-gil: . Minkowski Metric Proper Time mkiigsgi%rlyztzicgfas its own
the dimensional units, so the A _ Ty ’ ;
placement of the R and U switch. U aREedr{g;fveyd/dt zllrgrlla_r |ré\;de{se reiatiols
That is it: so simple! aR[R]hjlank—)DiigH ’_t1.’_1 1] dt = }}Ildt
Much, much easier than how @O -Ll-Pp INKOWSKI Vietric
| was taught in Grad School. : a

4-VelocityGradient - 4-PositionGradient:4-Gradient [ESSEISRRS
6UB=BU=3/8UB=(8U/C,-VU) . Ox P=0r=0/0Rs=0= (9/c, -V) Form

To complete the process and

create the Equations of Motion, [ IECAAAIRUALSIRAUAIIRUA) —(d/dct,-0/0x,-9/9y,-0/0z) 41-\660_’:_0r

one just applies the base form Relativistic Euler-Lagrange Eqn (1,0)-Tensor
to a Lagrangian. n° Jr = (d/dt)dy nee

This can be: Raise inde d/oR = (d/dr)d/oU Raise inde

a classical Lagrangian d[L])/oR = (d/d7)d[L]/oU PositionGradient One-F

a relativistic Lagrangian e RO h s ull Classical limit, spatial component Osg?er:di(;?] t '8’:16 Fnoer-morm

a Lorentz scalar Lagrangian 0, «=0/0U%=(dy /C,Vu) d[L)/or = (d/dt)d[L]/ou - One:Farm

a quantum Lagrangian v ! a[L]/ax - (d/dt)a[l_]/au 3Rq=8/3R =(3t/C,V) (0,1)-TenSOr

SR 4-Tensor

W = W= TH =
(2 0)-Tensor T Trace[T"] =n, " =TH =T

V-V = Vi, VY = [(V)? - vev] = (Vo)
= Lorentz Scalar
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Aé SRQM Diagram:
=, Relativistic Euler-Lagrange Equation sonsaman
Alternate Forms: Particle vs. Density . srenewicon

of Physical 4-Vectors
KR=0 4-W_aveVector
I ° 2 K=(w/c,k)
4-Position Or[..] '
R=(ct,r) yd/dt[..]

dr'R=4 - ou[U]=n**—Diag[1,-1,-1,-1] K=o [-®
Relativistic 4-Vector Kinematical Eqn el Minkowski Metric _
U= (d/d’[)R Proper Time
— U-dr=d/dt=yd/dt
UK = (d/d’E)RK 9u-U=4 . Derivative
e or[R]=n**—Diag[1,-1,-1,-1]
Minkowski Metric

4-Velocity U is ProperTime Derivative

of 4-Position R. The Euler-Lagrange Eqgn
can be generated by taking the
differential form of the same equation.

Particle Dynamics
U = (d/d7)R

phase]

T SpaceTime
Relativistic Euler-Lagrange Eqns o-A-»

{uses gradient-type 4-Vectors}

. _ ) 4-VelocityGradient d/dt[..] Relativistic 4-PositionGradient:4-Gradient
oo = Gpy arice omat) (R W <o R
a i) o —(81dyc,-01dyuy,-0ldyuy,-d/dyus) : : —(8/3ct,-0/0x,-0/y ,-0/5z)
V _ EU ar)) L= (1/2) 8,[P]-9,[P] - (moc/h)? ®? }: KG Lagrangian Density
o) = R
ggg él‘;; f Eg )a Ra} aa[/é][u Kl Oy L = () denon L: Euler-Lagrange Eqn {density format}
= R 2 — .
010(-P) = (0r) 0/0[Or(-D)] -(moc/h) Cli = (9,) aR[ZCD]
10(®) = (9r) 9/[OR(D)] (0 9L P] = - (Moc/n)” © _
8[¢] = (BR) 8[3R(¢)]: {density format} (aa) ha (m0C/h) : KG Eqn of Motion

Klein-Gordon Relativistic Quantum Wave Eqgn

SR 4-Tensor SR 4-Vector W] = Wo— TH =
(2,0)-Tensor T*  §(1,0)-Tensor V¥ =V = (\,v) . SR 4-Scalar V.VT;a\c/;? [Tl N ?(“\joT)z . V.va - (Tvo ?
(1,1)-Tensor T* or T, § SR 4-CoVector:OneForm (0,0)-Tensor Sor S, Moy °
- orentz Scala = Lorentz Scalar
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4-Vector SRQM Interpretation

A SRQM Diagram:
Ai Relativistic Euler-Lagrange Equation

o—@ SciRealm.org
s, ECQUAtion of Motion (EoM) for EM particle  ...one.is:

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

e Or'R=4 S&=" Or[R]=n""—Diag[1,-1,-1,-1]
. S Ti . B .
4-Displacement [l Drooe o0° Minkowski Metric

AR—(cAt Ar)

4-PositionGradient

4-Gradient
9r=0=(3/c,-V))
—(dlact,-0l0x,-dldy,-0l0z)

L, =-(P+-U)

du[Lo] = -Pr = -(P+qA)

(d/dn)[dy[Lo]] = (d/dr)[-P+] = ~(d/d0)[P+gA] = -(F+q(d/d)[A]) = -(F+qU-0[A]) = -(F+qU.d'[A])
9R[Lo] = Gr[-PrU] = -9r[(P+qA)-U] = (0) + -qdr[A-U] = -qdr[U.A"] = -qU.3r[A']

Relativistic

assuming the 4-Gradient or of the 4-Velocit is zero. Euler-Lagrange Eqgn
ing the 4-Gradient dr of the 4-Velocity U i grange Eq
ProperTime Proper Time or = (d/dt)dy
Derivative @ EuIer-Lagv)rang_e Eqn: (d/(vjr)au = 0r U-6R=d_/dr_=yd/dt 4-VelocityGradient
-(F+qU.d"[A]) = -qU.dr[A"] Derivative _
F = qU.3R[A"] - qU.G'[A] du=(du/c,-Vu)
F = qU.(Gr[A'] - 9'[A]) —(019yc,-01dyuy,-0ldyu,,-0ldyu,)
p— = qUJ@IAT - 21AY) P " Hzmilton-Jacobs
Note Similarity: F¥ = qU,(F*) = (dP¥/dt): EoM for EM particle éu[UI=n"—Diag[1,-1,-1,-1] g

: A= . A : Pr=-9[S]
Lorentz Force Equation SapuaclejTinfl.e — MUTROWSHEYICHIC H = -9(S], pr=VI[S]

// Dimensio i ( ) 4-T0ta||\/|0mentum

...... = (p,u — —

p-U = - ! T P_=(E /c,p,)=(H/c,p,)

-VeI00|ty PP - + Lo =0 I'm'|' - Conseriatay !
c,u

||H_I_}__>InvarlantRestHamiltonian 4-EMPotentialMomentum 4-TotaIMCMEIREY

Q=(U/c,q)=gA Oyl
4-EMVectorPotentiaI :
(p/c a) 0 (+) 4-MomentumincField
M|n|ma| P _(Eflclpf)=((E+U)/C!p+qa)

4-Velocity is ProperTime
Derivative of 4-Position
U = (d/dt)R [m/s] = [1/s]*[m]

Relativistic Euler-Lagrange Eqn
Or = (d/dt)dy [1/m] = [1/s]*[s/m]

The differential form just inverses @
the dimensional units @

‘ ..... > Coupling N
4-NumberFlux 4-Momentum 4-Force o
N=(nc,n)=n(c,u) P=(mc,p)=(E/c,p) @ —y(E/c.=p) I 0 R
[+e/c,-€b]

SR 4-Tensor 4-Tensor

(2 0)-Tensor T+

o1 = T A (dP¥/dr) = F¥ = qU(F™") -
V-VTLa\i‘iETV]V B r[](“\;;r)z ] v-rvij _ ;50 Y Equation of motion 4-Velocity
w o i U=y(c,u

= Lorenticcr el for charged particle
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4-Vector SRQM Interpretation

SRQM Diagram:

A
Ai Relativistic Euler-Lagrange Equation
o——@

SciRealm.org

s, ECQUAtion of Motion (EoM) for EM particle  ...one.is:

of Physical 4-Vectors

v = 1/Sqrt[1-B-B]: Relativistic Gamma Identity

(y-1/y)=(yB-B ): Manipulate into this form... still an identity
y(PrU) + ~(Pr U)/v=(vl3'B)(Pr'U)

y(PrU) + -(Pr-U)/y = (pr-u)

{ H }+{ L } = (pr-u): The Hamiltonian/Lagrangian connection

H =vyH, = y(P+'U) = y((P+gA)-U) = The Hamiltonian with minimal coupling
L = Lo/y = -(P+"U)/y = -(P+gA)-U)/y = The Lagrangian with minimal coupling

H, = (Pr-U) = -L, = (U-P1): Rest Hamiltonian = Total RestEnergy
Lo = -(Pr-U) = -H,

(d/dt)du[Lo] = ErI[L.]
4-Velocity is ProperTime
Derivative of 4-Position

U= (d/dt)R [m/s] = [1/s]*[m]

Relativistic Euler-Lagrange Eqn
Or = (d/dt)dy [1/m] = [1/s]*[s/m]

dI8R = (d/dr)d/oU
A[LJ/4R = (d/dr)d[L]/oU

Classical limit, spatial component
d[L]/or = (d/dt)d[L)/ou
d[L]/ox = (d/dt)J[L]/ou

Fewm = va{ (u-e)/c, (e) + (uxb)}
e=(-Vo-da)and b = [Vx a]

If a~0, then f = -qVo = -VU, the force is neg grad of a potential

SR 4-Tensor
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v)
(1,1)-Tensor T*, or T,' § SR 4-CoVector: OneForm

SR 4-Vector

SR 4-Scalar
(0,0)-Tensor S or S,
orentz Scala

http://scirealm.org/SRQM.pdf

Rest
Lagrangian L, 4-Velocity

4-TotalMomentum
P.=(E./c,p;)=(H/c,p,)

U-9=d/dt=yd/dt
Derivative

Relativistic Rest Lagrangian

- (@oPy 3P
= 7)[-P+ uations of Motion = Or[-P+-
-(d/dt)[P+qA] _ = -9r[(P+qA)-U]
'(F+q(d/dT)[A]) (d/dT)aU[Lo] = aR[Lo] (0) + 'qaR[AU]
-(F+q(U-0)[A]) = -qor[UpA"]
-(Fe+qUpd"[A]) = -qUpd"[A"]

-(F+qUdP[A%]) = -qUpd"[A7]
(F+qUpfA]) = qUad (A aU] = 0"
F* = qUpd[A"] - qUpefA"] a[P] = O™

F* = qUg(8°[A"] - &°[A"))
= qUy(F*)
Lorentz Force Equation

Assumes:

Trace[T"] = N T =TH =T
V-V = Vo, VY = [(V)P - vev] = (Vo)
= Lorentz Scalar
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SR — QM 4-Vector SRQM Interpretation

R SRQM Diagram:
Ai Relativistic Hamilton’s Equations -
s, ECQUAtion of Motion (EoM) for EM particle  ...one.is:

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

v = 1/Sqrt[1-B-B]: Relativistic Gamma Identity Rest
(- 1/) = (1B-B ): Manipulate into this form... still an identity 4-TotalMomentum ==

(Pr-U) + -(Pr-U)ly = (8-B )(Pr-U) P_=(E./c,p.)=(H/c,p.) Hamiltonian H, 4-Velocity
T T Fr M

(Pr-U) + -(Pr-U)ly = (pr-u) _ N — . U=y(c,u

}{ H}+{ L Y}= (pr-u): The Hamiltonian/Lagrangian connection - (PT UI)D_ YAH'ST u) Y( )
= + o

H = yH, = y(P+U) = y((P+gA)-U) = The Hamiltonian with minimal coupling 4-Position - F(’U-? A-U
L = Lo/y = -(Pr-U)/y = -((P+qA)-U)/y = The Lagrangian with minimal coupling X=(Ct X) q (6/821)[H0]
H, = (Pr-U) = -L, = (U-Py): Rest Hamiltonian = Total RestEnergy (d/dt)[X] - ((%//%%T))[[F;T'S]]
e )~ =U=y(c,u) = (3P+/aP)U
dpy[Hol = 8p,[U-P+] = “Pr+ U-3p,[Pr] = 0 + U-3p [P1] = U = d/d[X] = 4-Velocity _ U—_I (_cIu)
Thus: (Q/do)IX] = der[He] = (9/0B1)[H.] = P/mo Relativistic Rest Hamiltonian _ — ¢
x[Ho] = ox[U-P+] = “Pr + U-0x[P1] = 0 + U-3x[P1] = d/d1[P1] — o = 4-Velocit
Thus: (d/dt)[P1] = 3x[Ho] = (3/0X)[Ha] f = (P+-qA)/m, Hamilton’s y

Equations of Motion

Relativistic Hamilton’s Equations (4-Vector): (d/dT)[X] = (a/aET)[HO]
(d/dt)[X] = (8/8P1)[Ho] _
(d/d7)[P+] = (0/0X) [H.]

(d/dt)[P+] = (0/0X)[H,]
(d/dT)[X] = y(d/dt)[X] = (6/OP1)[Ho] = (8/6P1)[(P+-U)] = U (d/dt)[Pq]
(d/dt)[P+] = y(d/dt)[P1] = (8/6X)[H.] = (a/6X)[(P+-U)] = 9[(P+-U)] — (d/dT)[P"’qA]
Taking just the spatial components: = [F + q(d/dt)A]

(d/dt)[x] = (9/dpr)[Hd] = (d/dpr)(H/y) _

1(QId0Ipr] = (@R = @IeR) y ,EF N q(b’ 'gp)i\‘] [F* + q(U,@")A%] = q(e"[A"U,
= a + a

[ q( B ) ] Fo = q(a“[AB]UB - q(UBaB)Acx

= P/m,

(910X)[Ho]
= (8/6X)[P-U+qA-U]

= [0 + q(0A/3X)-U]
= [qd[A]-U]
= go[A]-U
= qo[A"]Ug

]
Take the Classical limit {y—1}

Classical Hamilton’s Equations (3-vector): Fo = q(a“[AB] - aﬁAO‘)U[3 = q(9[A]*(Pr-qA)/m,
(/dt)[x] = (+a/dpr)[H]

(d/dt)[pr] = (-a/ax)[H] F* = q(F**)U 5

Sign-flip difference is interaction of (-8/dpr) with [1/] Lorentz Force Equation

SR 4-Tensor SR 4-Vector W] = Wo— TH =
@01 Tensor T _ J(1.0)Tensor V¥ =V = (vv) " SR #-Scalar 3 VY 2V = O vl = (R
. " v . . ,0)-Tensor S or S, by
(1,1)-Tensor T*, or T,' il SR 4-CoVector:OneForm A = Lorentz ScarE
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SRQM Diagram:

A
Ai Relativistic Hamilton’s Equations

4-Vector SRQM Interpretation
of QM

SciRealm.org

s, ECQUAtion of Motion (EoM) for EM particle  ...one.is:

of Physical 4-Vectors

http://scirealm.org/SRQM.pdf

v = 1/Sqrt[1-B-B]: Relativistic Gamma Identity Rest

(y-1/y)=(yB-B ): Manipulate into this form... still an identity - mentum . . 5 i
y(Pr-U) + -(Pr-U)/y = ( vB-B )(P-U) P4—Tgta"vlo _thU B Hamiltonian H0 4 Ve|OC|ty
y(Pr-U) + -(Pr-U)ly = (pr-u) ~(E//c.p,)=(H/c,p;) U=y(c,u)

{ H }+{ L }=(pru): The Hamiltonian/Lagrangian connection

H=yH, = y(P+-U) = y((P+gA)-U) = The Hamiltonian with minimal coupling 4-Position
L = Lo/y = -(Pr-U)/y = -((P+qA)-U)/y = The Lagrangian with minimal coupling

X=(ct,x)

H, = (Ps-U) = -L, = (U-P-): Rest Hamiltonian = Total RestEnergy (d/dt)[X]
L= )=, = U = y(c,u)
dp,[Ho] = 8p,[U-P4] = “Pr + U-3p,[P7] = 0 + U-8p[P1] = U = d/d[X] = 4-Velocity
Thus: (d/d)[X] = ds,[Ho] = (8/0P1)[He] = P9/m,

Relativistic Rest Hamiltonian
= (P+*-gA%)/m, Hamilton’s

Equations of Motion

(d/dt)[X?] = (9/0P1)[Ho]

(d/ide)[Pr] SARIREICLOS
= (d/dr)[P*+qA°]
[F® + q(d/d)A]

= [F* + q(U-0)A"]
= [F* + q(Upd)AT]

ax[Ho] = ax[UPT] = 'PT + Uax[PT] = + Uax[PT] = d/d‘E[PT]
Thus: (d/dt)[P+] = dx[Ho] = (9/0X)[H,]

Relativistic Hamilton’s Equations (4-Vector):

(d/dt)[X] = (8/8P1)[Ho]
(d/d7)[P+] = (0/0X) [H.]

F* = q(@A’]U, - q(U,°)A°

Fo = q(a°[A"] - 8PA%)U 5
F = q(F*)U 6
Lorentz Force Equation

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar
(1,1)-Tensor T% or T,* § SR 4-CoVector: OneForm (0,0)-Tensor S or S,
,2)- , o orentz Scala

= (PT'U
= (P+qA)-U
= P-U+qA.

[F* + q(U,@")A%] = q(e"[A"U,

({9p}*)[Ho]=(0/0{P1}s)[Ho]

= (0/9{P}s)[P+-U]
= (9lo{Pr}a)[{Pr}sUF]
= (APr}el{P}a)[UP]
= SGBUB
= U = y(c,u)
= 4-Velocity
= P%m,
= (P*-gA%)/m,

O THo]=(8/0X)[Ho]
(910X,)[P-U+qA-U]
[0 + (8/0X.)gAPUg]
[0 + q(OA®/AXo)Ug]
= [qA°[AP]Ug]
= qd"[A*]U;

Trace[T"] = N T =TH =T
V-V = Vi VY = [(V0)? - vev] = (Veo)?

= Lorentz Scalar
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4-Vector SRQM Interpretation

SRHQMA SRQM StUdy _ or G
Ai EM Lorentz Force Eqn—

o—@

o Classical Force = - Grad[Potential] = -V[U] _ i

of Physical 4-Vectors

Lorentz EM Force Equation:
Fe=q(F*)U ;
Fe = q(6°AP - PA%)U 5

Examine just the spatial components of 4-Force F:
F' = q(dA® - PAU 5

F' = q(dA° - 3°AU ot q(oA - a"A‘)Uj

vf = q(-VIe/c] - (d/c)a)(ye) + q(-V[a-u] - -u-V]aly
f = q(-Vlg/c] - (d/c)a)(c) + q(u-V[a]-V[a-u])

f = q(-V[g] - d'a + u-V[a] - V[a-u))

f=q(-V[g] - da +uxb)

Take the limit of {| V[@] | >>|da-uxb |}
~ q(-VI9]) = -V[qe] = -V[U] = -Grad[Potential]

The Classical Force = -Grad[Potential]
when {| V[p] | >>| da-uxb |} or when {a = 0}

The majority of non-gravitational, non-nuclear potentials dealt with in CM

are those mediated by the EM potential.

ex. Spring Potential { U = kx?/2 }, then { f = -V[kx%*/2] = -kx } Hooke’s Law

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V* = V = (V°,v) SR 4-Scalar
(1,1)-Tensor T* or T," | SR 4-CoVector: OneForm (0,0)-Tensor S or S,
,2)- , o orentz Scala

ca
L0o/0” °-
4-Momentum
P=(mc,p)=(E/c,p) I . 4-rorce

SciRealm@aol.com
http://scirealm.org/SRQM.pdf

A

4-Displacement

4-Gradient

o[R]=n""—Diag[1,-1,-1-11 B8  3=¢/0R,
Minkowski Metric (6/0 V)

ProperTime /

AR=(cAt,Ar) 9-R=4
dR=(cdt,dr) |g= SpaceTime Ju
4-Position 2! TSNSIo
R= ct r
U-0=d/dt= yd/dt i ;

ProperT|me Derivative
Derivative
o---- P EM Faraday
4- VeI00|ty
U=dR/dz

Fob=gPAP-PA”

=[ 0 ,-€/c]
[+e'/c,-€ib"]
4-Tensor

-Y(C u)

@Lorentz EM Force Eqn
{U-F*® =(1/q)F }

.
[IH44-»
4-EMVectorPotential
A=(¢p/c,a
(8-0)A-8(3-A)=poJ 0-A=0 L
Maxwell EM Wave Eqn Conservation of EM Field
= | orenz Gauge

Trace[T"] = N T =TH =T
V-V = Ve VY = [(VO)? - vev] = (Vo)
= Lorentz Scalar
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SR —- QM

o—e

A Tensor Study
of Physical 4-Vectors

The Speed-of-Light (c) is THE connection

4-Vector SRQM Interpretation
of QM

! SRQM: The Speed-of-Light (c)
¢’ Invariant Relations (ar 1)

SciRealm.org

John B. Wilson
SciRealm@aol.com
http://scirealm.org/SRQM.pdf

between Time and Space: dR = (cdt,dr)

This physical constant appears in several
seemingly unrelated places. You don’t notice
these cool relations when you set c—1.

2=(3/c,-V)

Also notice that the set of all these relations Invariant 4-Gradient
definitely rules out a variable speed-of-light. Magnitude Schwarzschild g
(c) is an Invariant Lorentz Scalar constant. (8-9) = ~(moc/h)? = -(1/A)? GR Metric
U-U = y*(c*u-u) = c? Speed of all things into the Future M G
(Eo/mo)=(YEo/ym,)=(E/m) = ¢ Mass is concentrated Energy, E = mc? R_s
g @ e 7 . GR Black Hole
* = * — =2 -

[u vphasel—lvgroup Vohasel = € Particle-Wave “Duality” Correlation 2GM/c2 = RS
N(w2-0,2) = NA(f.2) = c? Wavelength-Frequency Relation: Af = ¢ for photons
(1/eopis) = 2 Electric (¢,) and Magnetic (Y,) EM Field Constants 0 ComplEn

Relativistic Quantum Wave Equation ilzaige-Waves

Klein-Gordon (spin 0), Proca (spin 1), Maxwell (spin 1,m,=0)
Factors to Dirac (spin %2)
Classical-limit (Jv|<<c) to Schrédinger

~(A/mM,)%(@-9) = ¢?

(R Moy’ = c? Reduced Compton Wavelength: & = (/mc)

GR Black Hole Equation

4-\WWaveVector
K=(w/c,k)=(w/c,wﬁ/vphase)

_ 0 R, = Schwarzschild Radius .
2GM/RS =€ G = GR GravitationalConst, M = BH Mass =(1/C:F,n/)‘)
Invariant 4-WaveVector
8nG/k = ¢ GR Einstein Curvature Constant: k = 8mG/c?

Magnitude K-K = (w./c)?

(c*' * scalar, 3-vector)
= 4-Vector

Every Physical 4-Vector has a (c) factor to maintain
equivalent dimensional units across the whole 4-Vector

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector

(1,0)-Tensor V¥ = V = (V°,v)
SR 4-CoVector:OneForm K (0.0)-Tensor S or S,

(1,1)-Tensor T*, or T,Y

Minkowski

SR

4-Position

R=(ct,r)

Invariant
4-Velocity
. VECEIEE) U=y(c,u) B EM Faraday
GR Curvature Uu=c¢* @------ 4-Tensor
k = 8mG/c?

@ 4-EMVectorPotential
Energy:Mass A=(¢/c,a)
E = mc?

a

Wave Velocity
*, = 2
group  phase

(0-9)A-9(0-A)=poJ
Maxwell EM Wave Eqgn

4-Momentum
P=(mc,p)=(E/c,p)

(/h)

Einstein . -
de Broglie -
P=hK 4-ChargeFlux

4-CurrentDensity
Electric:Magnetic

/(oo = C?

J=(pc,j)=p(c,u)

Trace[T"] = N T =TH =T
V-V = Vo, VY = [(V)P - vev] = (Vo)
= Lorentz Scalar
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SR —- QM

o—e

A Tensor Study
of Physical 4-Vectors

The Speed-of-Light (c) is THE connection
between Time and Space: dR = (cdt,dr)

#R7=n"

Minkowski
Metric

This physical constant appears in several
seemingly unrelated places. You don’t notice
these cool relations when you set c—1.

Also notice that the set of all these relations
definitely rules out a variable speed-of-light.
(c) is an Invariant Lorentz Scalar constant.

4-\/ector

U-U = y*(c*u-u) = ¢? Speed of all things into the Future

(Eo/mo)=(YEo/ym,)=(E/m) = ¢ Mass is concentrated Energy, E = mc?

lu*v |=|v

phase

*v | =c? Particle-Wave “Duality” Correlation

group phase

N(w2-0,2) = NA(f.2) = c? Wavelength-Frequency Relation: Af = ¢ for photons

(1/eopis) = 2 Electric (¢,) and Magnetic (Y,) EM Field Constants

Relativistic Quantum Wave Equation
Klein-Gordon (spin 0), Proca (spin 1), Maxwell (spin 1,m,=0)
Factors to Dirac (spin %2)

Classical-limit (Jv|<<c) to Schrédinger

-(WIMe)X(@-d) = ¢
(Rix mo)* = c* Reduced Compton Wavelength: & = (/mc)

GR Black Hole Equation

_ 0 R, = Schwarzschild Radius
ZGM/RS ¢ G = GR GravitationalConst, M = BH Mass
= 2 5 q
8mG/k = ¢ GR Einstein Curvature Constant mass densiy form): K = 8TTG/C?
(c*" * scalar, 3-vector) Every Physical 4-Vector has a (c) factor to maintain

= 4-Vector equivalent dimensional units across the whole 4-Vector

SR 4-Vector

SR 4-Tensor
(2,0)-Tensor T+

(1,0)-Tensor V¥ = V = (V°,v)
SR 4-CoVector:OneForm [k (0,0)-Tensor S or S,
orentz Scala

(1,1)-Tensor T*, or T,Y

Scalar Product

4-Vector SRQM Interpretation
of QM

! SRQM: The Speed-of-Light (c)
¢’ Invariant Relations (a 2)

SciRealm.org

John B. Wilson
SciRealm@aol.com
http://scirealm.org/SRQM.pdf

Electric:Magnetic
1/(goMo ) = C°

g D
(e-b)?/Det[F*]
—

Energy:Mass
E =mc?

Invariant 4-Velocity
Magnitude U-U = ¢?

o/My = ho/Mo

= (R/A_M,)?

-0¢/V-a
in Lorenz Gauge

"V asel

\')
group phase

= A?w? (for photon
Waves

000060e

ProperTime SRQM

Differential

-S /(modt)

action,free

 smoix L 2GWR,

Trace[T"] = N T =TH =T
V-V = Ve VY = [(VO)? - vev] = (Vo)
= Lorentz Scalar
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4-Vector SRQM Interpretation

A SRQM 4-Vector Study:
WALS e 4-ThermalVector

John B. Wilson

ﬁf-ll;?l'?;;)iz::ltz(-j\)/lectors R e I at I v I St I c T h e r m 0 d y n a m I C S http://scirsgliri‘.a(frlgn/]S@RaQoll\'/l(fg(rjr}
The 4-ThermalVector is used in Relativistic Thermodynamics. )

My prime motivation for the form of this 4-Vector is A 4- Grad'ent S a.R-=|-4 au.[Rv]_nuv. 4-Position
that the probability distributions calculated by =(d/c, V) IR pace flime Mmkov.VSkl il R=(ct,r)

statistical mechanics ought to be covariant functions
since they are based on counting arguments.

SR —- QM

Rest Inverse
*, - TemperatureEnergy O AY-G' AP =FH
EM Faraday
4-Tensor

F(state) ~ e-(E/ksT) = e*~(BE), with this B = 1/ksT, (not v/c)
4-ThermalVector

A i his is the L lar P
covariant way to get this is the Lorentz Scalar Product 4-InverseTempMomentum

of the 4-Momentum P with the 4-ThermalVector ©.
F(state) ~ e*~(P:©) = e*~(Eo/ksT,)

This also gets Boltzmann’s constant (ks) out there with the Rest Energy:Mass

other Lorentz Scalars like (c) and (h) =(E/c,p)-(c/ksT,0) E= mcz@
4-EMVectorPotential
Rest@ A=(op/c,a)

see (Relativistic) Maxwell-Jittner distribution _(E/kBT_p 6)
AngFrequency

f[P] = No/(2¢(MoC)? Kigs1y2[MoCOo])* (MoCOo/21T) "2 * g (P@)

f[P] = No/(2¢c(mqC)’ Kp[Moc®o])*(MacOo/21r) * &
F[P] = (@No/(4Tic(moc)? Ka[micOs]) * e 4-Momentum

f[P]=cN /(4TrkBT0(moc) Kz[mecO,] )* e®® = = =
FIP] = No/(41rksTomeZo Kpfmec2rksT.] )* &%) P=(mc,p)=(E/C,p)=m.U

(0-9)A-9(0-A)=poJ
Maxwell EM Wave Eqgn

. e
It is possible to find this distribution written in multiple ways because _ L v
many authors don’t show constants, which is quite annoying. (IjEIn;teml_ ‘@)’ 4-WaveVector 4-ChargeFlux
Show the damn constants people! P'e:miog k= K:(w/c,k)z(w/c’wn/vphase 4-CurrentDensity

(ks),(c),(n) deserve at least that much respect.

J=(pc,j)=p(c,u) 'f/'acgigrll/lignetic

(ng) ‘}I'g:snosrqlrw (1.0) TesnI:o‘:-\\;'?Et?Ir o) SR 4-Scalar '?ﬁ care:‘lél n(1)t/ I:o_l_c:onfuse (unfortunate symbol clash): Trace[T"] =n, T =TH, =T

,0)- - ermal B =1/ks £ =\ V = 102 _ vey] = (10 \2

(1,1)-Tensor T*, or T, | SR 4-CoVector: OneForm (0,0)- Tentsosr S |0r S, Relatvisitic B = v/c VAV = Vi [(v')" - v-v] = (Vo)
orentz Scala

These are totally separate uses of () = Lorentz Scalar
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SR — QM 4-Vector SRQM Interpretation

) SRQM 4-Vector Study:
WALE She 4-ThermalVector
e Unruh-Hawking Radiation e

The 4-ThermalVector is used in Relativistic Thermodynamics. .
It can be used in a partial derivation of Unruh-Hawking Radiation (up to a numerical constant). 4'Ve|00|ty

U=y(c,u)

C U-U=(c)* J
6./c
1/kgT,
¥--->

4-ThermalVector

Let a “Unruh-DeWitt thermal detector” be in the Momentarily-Comoving-Rest-Frame (MCRF)
of a constant spatial acceleration (a), in which |u|—0, y—1, y'—0.

4-Accelerationycrr = Amcre = Avcre = (O,a)MCRF

Take the Lorentz Scalar Product with the 4-ThermalVector
Ancre-© = (0,a)mere( , ) = (-a-u/ksT) = Lorentz Scalar Invariant

The (u) here is part of the 4-ThermalVector: the 3-velocity of the thermal radiation. (not from Awcrr)
Let the thermal radiation be photonic:EM in nature, so |u| = c, and in a direction opposing

4-InverseTempMomentum

the acceleration of the “thermal detector”, which removes the minus sign. 0=(0,0)=(c/ksT,u/ksT)=(0,/c)U=(1/ksT,)U

AwcrrOradiation = (ac/ksT) = Invariant Lorentz Scalar A 0 /\ ©-0= (c/ksT,
MCRF

Use Dimensional Analysis to find appropriate Lorentz Scalar Invariant with same units: =(0,a)MCRF'(C/kBT,U/kBT P-©

[Invariant Units] = [m/s’]:[m/s] / [kg-m?/s”] = [1/kg-s] ~ ¢?/h = [m/s]? / [kg:m?/s] =(0*c/keT-a-u/ksT) =(E/c,p)-(c/ksT,0)
=(-a-u/ksT) =(E/ksT-p-0)
=|nvariant(dim of [1/kg-s]) =(Eo/kBTo)

~C2/h =Inva r'iant(dimensionless)
®: ------- Just a number

4-Acceleration

AwcreOradiation =(ac/ksT) = Invariant ~ ¢?/h
Temperature T ~ ha/ksc, {from EM radiation, only from the dir. of acceleration}

Further methods give the constant of proportionality (1/21):
See (Imaginary Time, Euclideanization, Wick Rotation, Matsubara Frequency)

See (Thermal QFT, Bogoliubov transformation =AVl= ' U+ Invariant

( ° ‘ REREE LA, Distribution Function
Tumn = ha/21ksc {due to constant Minkowski-hyperbolic acceleration} =dU/dt=d"R/dt N; = 1/[eMEi/ksT) £ 1]
Thawing = NG/2TTKsC {due to gravitational acceleration a=g} . = 1/[e"(PO) £ 1]
Tsenarzscria et = NCY/BTTGMKs {Temp at BH Event Horizon, g=GM/R¢?, Rs=2GM/c?} 4-Accelerationucrr (-) — Bose-Einstein
Tsr = -h(a-u)/21ksc? {correct version from 4-Vector derivation Amcre:Oradiation = 2T1C%/M} AMCRF=AMCRFH=(O,a)MCRF +) — Fermi-Dirac

SR 4-Tensor SR 4-Vector A-A=-(a)’*= -(a Trace[T"1=n.T™=T" =T
(2,0)-Tensor T+ (1,0)-Tensor V* = V = (\°,v) _ " e - L p[ ]v_”“vo 2 02
(1,1)-Tensor T*, or T." | SR 4-CoVector:OneForm [L(0,0)-Tensor S or S, EENCERERUECE e C A CE R R S LR AT T CRRG T V-V = Vi VY= [(V)7 - vev] = (Vo)

orentz Scala classical use of temperature. = Lorentz Scalar
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SR —- QM

A

s

A Tensor Study
of Physical 4-Vectors

Temperature T ~ ha/kgsc, {from EM radiation, only from the dir. of acceleration}

Further methods give the constant of proportionality (1/21):
See (Imaginary Time, Euclideanization, Wick Rotation, Matsubara Frequency)
See (Thermal QFT, Bogoliubov transformation)

Tumn = ha/21ksc {due to constant Minkowski-hyperbolic acceleration}

Thawking = NG/2TTKsC {due to gravitational acceleration a=g}

Tschwarzschiiagn = Nc®/8TTGMkg {Temp at BH Event Horizon, g=GM/Rs?, Rs=2GM/c?}

Tsr = -h(a-u)/21ksc? {correct version from 4-Vector derivation Awcre*Oragiation = 2TTC%/N}

The 21 factor is interesting

Alternate forms:

There are cases when the dimensional units must match.
see 4-Momentum related to 4-WaveVector:

P =hK — [J-s/m] = [J-s/rad][rad/m]

h =h/2m — [J-s/rad] = [J-s)/[21T rad]

Awcrr O adiation = 2TTC*/M
(1/kTo)AMCRF'U = 2mci/h

.U = 2
(1KTo)AucrsU = 2Twoc/Mw, And other where the 21 factor doesn’t seem to use [rad] units.

see Circles & Spheres:
y— /

4-Acceleration

AMCRF'U = 21T(,UOCZ

C=2mr — [m] = [2m][m]
_ . A= — [m?] = [m][m}?
Aucre = 2m(K-U)c V= @3me o [md = [(43)m]m]°

AMCRF = 21'|'(K)C2

Awcrr = (21c?)K = (21c?/h)P

A=A'=y(cy y utya)

(dP/dt)mcrr* Oradiation = 2TTWo =dU/dt=d’R/dt?

Fucre Oradiation = 2TTW, : {for m, = constant }

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector

A-A= -(a)’= -(a,

(1,0)-Tensor V¥ = V = (V°,v)
SR 4-CoVector:OneForm K (0.0)-Tensor S or S,

(1,1)-Tensor T*, or T,Y

classical use of temperature.

SRQM 4-Vector Study:
4-ThermalVector
Unruh-Hawking Radiation

=(0,a)MCRF-(c/kBT,u/k

4-Accelerationycrr
AMCRF=AMCRFH=(O,a)MCRF

Note that the temperature here is relativistically direction-specific, unlike in the

4-Vector SRQM Interpretation
of QM

SciRealm.org

John B. Wilson
SciRealm@aol.com
http://scirealm.org/SRQM.pdf

4-Velocity
U=y(c,u)

6./c
1/ksT,
M- >

4-ThermalVector

@

4-InverseTempMomentum
0=(6,0)=(c/ksT,u/ksT)=(0,/c)U=(1/ksT,)U

0-0= (clkeTo

P-©
=(E/c,p)-(c/ksT,0)
=(E/ksT-p6)
=(Eo/ksTo)
=Inva riant(dimensionless)

Just a number

Ancre©

=(0*C/kBT-a'U/kBT)
=(-a-u/kgT)
=Invariant(dim of [1/kg-s])
~c?/h

Invariant
Distribution Function
Ni = 1/[eMEi/ksT) £ 1]

= 1/[eMPi-@) £ 1]
(-) — Bose-Einstein
+) — Fermi-Dirac

4-Momentum
P=(mc,p)=(E/c,p)=m,U
P-P=(m.c)’=(E./c
Trace[T"] = N T =TH =T

V-V =V, VY = [(V)? - vev] = (V0P
= Lorentz Scalar
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SR —- QM 4-Vector SRQM Interpretation

R SRQM 4-Vector Study:
WAIIS e 4-ThermalVector
e \WICK ROtations, Matsubara Freqs ...ciusss

The QM/QFT—SM Correspondence, via the Wick Rotation In the Matsubara Formalism, the basic idea (due to Felix Bloch) is that the
expectation values of operators in a canonical ensemble:

The operator which governs how a quantum system evolves in time, the time evolution <A> = Trlexp (-BH)A] /

operator, and the density operator, a time-independent object which describes the , Trexp (-BH)] _ _

statistical state of a many-particle system in an equilibrium state (with temperature T) may be written as expectation values in ordinary quantum field theory (QFT),

can be related via arithmetic substitutions: where the configuration is evolved by an
imaginary timet=-it(0<1<f).

Quantum Statistical

Mechanics Mechanics | | One can therefore switch to a spacetime with Euclidean signature, where the

@) Wick Rotation E/gclid%an I/llf(ﬂ_?_ ~ Inv Temp (SM) || above trace (Tr) leads to the requirement that all bosonic and fermionic fields
i t—-ir 7 —p= be periodic and antiperiodic, respectivel
eA[-I(PT'X)/h] {real} B e"[-(PT-G)] - P p . v P h Y’ . C e
. with respect to the Euclidean time direction with periodicity B =h / (k. T).
=e"[-iSacion/N] eN[-HoTo/M] =eM-BoHo] P P yB=n/(kT)

:e/\[_iHoto/h] math well-behaved =eA[-H0/kT0

Imaginary Time < Inv Temp
(it/he1/kT)

This allows one to perform calculations with the same tools as in ordinary
quantum field theory, such as functional integrals and Feynman diagrams, but
with compact Euclidean time.

where 1, called Euclidean Time (Imaginary Time) is cyclic with period B, (0 < T<+f). Note that the definition of normal ordering has to be altered.
In momentum space, this leads to the replacement of continuous frequencies
In Quantum Mechanics (or Quantum Field Theory), the Hamiltonian H acts as the by discrete imaginary (Matsubara) frequencies:
generator of the Lie group of time translations while in Statistical Mechanics the role of Bosonic w, = (n)(21/B)
the same Hamiltonian H is as the Boltzmann weight in an ensemble. Fermionic w, = (n+1/2)(21/B)

and, through the de Broglie relation E = aw,

Time Evolution Operator to a discretized EM thermal energy spectrum E_ = hw_= n(2mk,T).

Ut)=> _, [e™(Et/h)]|n)(n|=er(iHt/h)

Partition Function (time-independent function of state)
Z=5% [eM(En/ ksT)]=Trace[ eM(iHt/h)]

n=0..

SR 4-Tensor SR 4-Vector

Trace[T"] = N T =TH =T

2,0)-Tensor T+ 1,0)-Tensor V¥ =V = (V°, SR 4-Scalar
“ 1()-Te)nsor T or T.W (SR Zl-CoVector'OneF(orr":l) (CR)RENEIEKIEN Note that the temperature here is relativistically direction-specific, unlike in the V-V = VY = [(VO) - vev] = (Vo)
’ ! y ] Lorentz Scalar. classical use of temperature. = Lorentz Scalar

(0,2)-Tensor T,, (0,1)-Tensor V, = (Vo,-V)
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SR —- QM 4-Vector SRQM Interpretation

) SRQM 4-Vector Study:
WALLS She 4-ThermalVector
Sy Covariant Wick Rotation

The QM/QFT«<SM Correspondence

The operator which governs how a quantum system evolves in time, the time evolution operator, and the density operator, a time-independent object which
describes the statistical state of a many-particle system in an equilibrium state (with temperature T) can be related via arithmetic substitutions:

Quantum Statistical
Mechanics Mechanics

(Q™m) Wick Rotation Euclidean Time ~ Inv Temp (SM)
eA['l(PT'R)/h] t—-iT froal) 7/h — B = 1/kBT eA[_(PT_e)]
=eA[iSaction/h] eA['HQTo/h] =eA[-BOHO]
:e/\[_iHotO/h] math well-behaved =eA[_HO/kTO

Imaginary Time < Inv Temp
(it/he1/kT)

= -[[P,-U]dz = [Ldt

= -{[(H/c,p,yv(c.u)ldt P-0

= Jly(H-p,ulde =(E/c,p)(clksT,0)
=(E/ksT-p-0)

where 1, called Euclidean Time (Imaginary Time) is cyclic with period 3, (0 <1< +3).

In Quantum Mechanics (or Quantum Field Theory), the Hamiltonian H acts as the generator of the Lie group of time translations while in Statistical Mechanics the

4-Position 4-lmaginaryPosition 4-ThermalVector
R=R"=(ct,r)=<Event> eI En Covariant 4-InverseTemperatureMomentum
—(ct,x,y,2) Wick Rotation Rin=Rin"=i(ct,r) Euclidean Time O=®“=(9°,9)=(C/kBT,u/kBT)=(eo/C)U
alt. notation X=X" =(ict,ir)=(cr,ir) N =(1/ksT)(c,u)=(1/keyT)U=(1/ksT,)U

Inv Temp

SR 4-Tensor SR 4-Vector W] = Wo— TH =
(2,0)-Tensor T+ (1,0)-Tensor V* =V = (V°,v) SR 4-Scalar Tracpe[T ) nuv;rz TS
(1,1)-Tensor T*, or T,' il SR 4-CoVector:OneForm (CR)RENEIEKIEN Note that the temperature here is relativistically direction-specific, unlike in the V-V =V, VY = [(V) - vev] = (v
' Lorentz Scalag

classical use of temperature. = Lorentz Scalar

(0,2)-Tensor T,, (0,1)-Tensor V, = (Vo,-V)
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SR — QM SRQM 4_Vector Study: 4-Vector SRQM Interpre;?t(ilol\r/l’n
A‘ Deep Symmetries:

e 2 :
L= Schrodinger Relations & siReamor
ﬁf-ﬁ?}?;g;tf\}/ledors CyCI i c I m ag i n a ry Ti m e < I nV Te m p http://scirggliﬁécfrg;g?a&l\'/ﬁgm

4-Gradient

f}_WaveVector 9=0r=0I0R,=0"=(9/c,-V) =-J[(H/c,p,)v(c,u)ldt
_KeK=(wie k)= (‘*’O/C) —(8/c,-8,-8,-0.) ={[y(H-p,-uldv
=(9/cat,~0/ox,~0/ay,-0/57) =-[[Ho]d<
[1/m]

" | Einstein-de Broglie: P = hK — { : }
Lot Complex Plane-Wave: K = i0 — { : }
Schrédinger Relations: P = ihd — { : }
Wick Rotation: R = -iRim — { : }
CyclicTemp: Rim = hO— { : }
}

4-Position 4-lmaginaryPosition Covariant 4-ThermalVector
R=R"=(ct,r)=<Event> EEEJELEL I peee wee 4-Inverse TemperatureMomentum
—(ct,x,y,2) Wick Rotation Rimn=Rin"=i(ct,r) ~ Inv Temp ©=0"=(0°,0)= (c/kBT u/kBT) (6./c)U
alt. notation X=X" [EASRLEY =(ict,ir)=(cr,ir) Rim = O

Boltzmann Distribution
P-O = (E/c,p)-(c/ksT,0)

= (E/keT-p-8) = (Eo/keT,)

SR 4-Tensor Trace[TpV] - r]va”V = Tup = T

2,0)-Tensor T+
( r Note that the temperature here is relativistically direction-specific, unlike in the V-V =Vin, V' = [(VO)2 -vv] = (Voo)2

classical use of temperature. = Lorentz Scalar
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4-Vector SRQM Interpretation
of QM

SRQM 4-Vector Study:

T Deep Symmetries:

Cyclic Imaginary Time < Inv Temp

A Tensor Study
of Physical 4-Vectors

SciRealm.org
John B. Wilson

Schrodinger Relations &
SciRealm@aol.com

http://scirealm.org/SRQM.pdf

4-Velocity

| U=U"=y(c, u)
=dR/dt=cT

4-Position
R=R"=(ct,r)=<Event>

—(ct,x,y,2)
alt. notation X=X*"

ProperTime
1]
{R",0/0R,} Energy Factors
E ~ hwo, ~ moc? ~ kgTo

L
z Derivative
m] - [1/m] = Dimensionless

paceTime Dimension Y .
R =0o,R" = 4 e
4- Momentum
P=P*"=(mc,p)=(mc,mu)=m,U
=(E/c,p)=(E./c*)U

el R ="
@ Inverses
{P",0%

nverses

Minkowski
Metric
L Einstein !
4-Gradient 4-\WaveVector de Broglle.I kg-m/s]-[s/kg-m] = Dimensionless
9=0r=0/0R,=0"=(9/c,-V) K=K'=(wlc k)= (wo/cz)u P=nK |
—(3/c,-0,,-3,,-0,) ol .'
X z plex L ' . . .
=(8/cot,-0 .01 2y,-0l 37 S & ] : Boltzmann Distribution
= ! ‘ P-O = (E/c,p)-(c/ksT,8)
Schrédinger QM Relation ; Inverses L = (E/ksT-p-0) = (Eo/ksTs)
=iho 1 {Kp,Rimp} g
( p) = ih( V) " 1/m] - [m] = Dimensionles: . :
Covariant ,' ' %’gg;:];_nme N : Co_vgriant Time ~ Inv Temp N
Wick Rotation [ — . .. Inv Temp N F N ')hfm ( ) 4-ThermalVector
4-ImaginaryPosition g R., = hO ’ ’ 4-InverseTemperatureMomentum
@ 0=0"=(8°0)=(c/ksT,u/ksT)=(8,/C)U
=(1/ksT)(c,u)=(1/kgyT)U=(1/ksT,)U

=N I =T, =T

V-V =V, VY = [(V)? - vev] = (V0P
= Lorentz Scalar

Trace[T"]

R = -iRim
0 B R.-R.=ictr)
=(ict,ir)=(cT,ir)

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V* = V = (\°,v) SR 4-Scalar . e -
SR 4-CoVector: OneForm (0,0)-Tensor S or S, Note that the temperature here is relativistically direction-specific, unlike in the
orentz Scala classical use of temperature.

(1,1)-Tensor T*, or T,Y
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4-Vector SRQM Interpretation

" SRQM 4-Vector Study:
A o 4-EntropyFlux

= = = = . John B. Wilson
T e Relativistic Thermodynamics  w..simsass

The 4-EntropyVector is used in Relativistic Thermodynamics.

@
Pure Entropy is a Lorentz Scalar in all frames A 4- Grad|ent R Mink - i 4-Position
=(9/c,-V) [ >Pace ! INKOWSKI =(ct,

Conservatlon

of Particle # O"AV-9'AF=FH

EM Faraday
4-Tensor

[t~

4-EMVectorPotential

4-Pu reEnt_rOpyF|UX Rest Entropy
Sent_pure_sentN = Entropy

=n°SentU

Rest Number

Density @
EM

-

4-HeatEntropyFlux
Sent_heatz(s,s)=SentN+Q/To

sent_heat=(s,S)=SemN+EoN/To © A=((p/C,a)
Sent_heatz(s,s)zno(s t+E0/T°)U Rest Inverse
= Temperature @ S
-3)A-9(3-A)={o
@@ = Rest o Y _ po M Maxwell EM Wave Eqn
4-HeatEnergyFlux Energy EM Charge
Q=(p_c,q)=p.(c,u)=E.N Charge Density  g--- 3
=2 -
nE.U=c G 4-ChargeFlux @

4-CurrentDensity
=(pc,j)=p(c,u)=gN Electric: Magne’uc

1/(Eollo ) = €2
SR 4-Tensor Trace[TpV] - r]vauV = Tup =T
(2 0)-Tensor T+ V-V = VP VY = [(VO)Z -vv] = (Voo)z

= Lorentz Scalar
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SR - QM 4-Vector SRQM Interpretation

) SRQM Interpretation: °
o ** Transition to QM **

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

Up to this point, we have mostly been exploring the SR

It is now time to show how RQM and QM fit into th

This is SRQM, [ SR — QM ]

SR 4-Tensor SR 4-Vector R
2,0)-T Twv 1,0)-Te VE=V = (V°, -Scalar . . s
“ ,f)_Te)nseoan%rv or T,y ORI (TN el | SRQM: A treatise of SR—QM by John B. Wilson (SciRealm@aol.com)

(0,2)-Tensor T,y (0,1)-Tensor V, = (Vo,-v) Lorentz Scalac
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SR—»ALQ‘MA S RQ M D iag ra m : 4-Vector SRQM Interpre;?tiQo,\;l\
£4; Special Relativity — Quantum Mechanics __,
sy RoadMap of SR—QM g

*START HE%E*: 4-Position=Location of SR <Events>in SpaceTime

4-Gradient=Alteration of SR <Events>
SR SpaceTime Dimension=4

SR SpaceTime “Flat” 4D Metric VAR , , 4-Position R¥ . .
SR Lorentz Transforms o A[RYI=NAY, R=(ct.r)=<E . h i 4-Velocity=Motion
SR Action — 4-Momentum S Lorentz 2LV Sl e e oL SShl
SR Phase — 4-WaveVector M'&Z‘i;’,\’:k' R-R=(ct)*-rr It?oipsgft-ilc-:lg: gswaves
. N ,
e e DY
8-8=(9,/c)>-V-V 4-Gradient ¢" ProperTime 4-Velocity U*
= {(Moc/N)? = ~(Wy/C)? 33=3@Ru « U-a=d/dr=yd/dt T U=1(c,)=dR/dt
o o - G = -i . . * =
= (81/(:)2 ( : ) Derlvatlve -K.R=¢phase,free -P-R=Saction,free \éjg;q Al"flhgat;a:: UIU:YZ(CZ-u.u)

SR d’Alembertian & '3[]=K @ RANRIEEE SR Action . = (C)Z

Klein-Gordon Relativistic 4-WaveVect Hamilton-Jacobi Phase & Action

Quantum Wave Relation C?)\r/:péi o Py = -9[S] Lorentz Scalars Einstein

Schrodinger QWE is . Plane-Waves @ E = mc? = ymqc? = yE,

Rest Mass mq:Rest Energy E,

{Iv]<<c} limit of KG QWE | Kr = 6[¢]
**[ SR — QM |** ('» @
e

4-\WWaveVector=Substantiation

of SR Wave <Events> 4-WaveVector K"

4-Momentum=Substantiation

oscillations proportional to K=(w/c,k)=(w/c,wn/Vpnas) 4-Momentum P* of SR Particle <Events>
mass:energy & 3-momentum =(1/cF,A/x)=(wo/c?)U=P/h SR - e e i P=(mc,p)=(E/c,p)=m, mass:energy & 3-momentum
Dirac:Planck Constant h=h/2m
K-K=(w/c)*-k-k P =K G, P-P=(E/c)-p-p

= (moc/h)? = (wo/c)? = (1/cT,)? % = (m.c)’ = (E./c)?
1/h

SR 4-Tensor SR 4-Vector
— . —_r Trace[T"] =N T" =T =T
(2,0)-Tensor T+ (1,0)-Tensor V* = V = (\°,v) SR 4-Scalar _ N ol
(1,1)-Tensor T or T, | SR 4-CoVector: OneForm (0,0)-Tensor S or S, sditlne RRUIeS V-V = Vi, VY = [(V)F - vev] = (V)2
, 1) p orentz Scala ( QM Principles ) = Lorentz Scalar
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SR — QM 4-Vector SRQM Interpretation

) SRQM Basic Idea (a1
" SR - Relativistic Wave Eqn = =0

The basic idea is to show that Special Relativity plus a few empirical facts lead to Relativistic Wave
Equations, and thus RQM, without using any assumptions or axioms from Quantum Mechanics.

Start only with the concepts of SR, no concepts from QM
(1) SR provides the ideas of Invariant Intervals and ( ¢ ) as a Physical Constant, as well as:
Poincaré Invariance, Minkowski 4D SpaceTime, ProperTime, and Physical SR 4-Vectors

Note empirical facts which can relate the SR 4-Vectors from the following:
(2a) Elementary matter particles each have RestMass, ( m, ), a physical constant which can be
measured by experiment: eg. collision, cyclotrons, Compton Scattering, etc.

(2b) There is a physical constant, ( h ), which can be measured by classical experiment — eg. the
Photoelectric Effect, the inverse Photoelectric Effect, LED's=Injection Electroluminescence, Duane-
Hunt Law in Bremsstralung, the Watt/Kibble-Balance, etc. All known particles obey this constant.

(2c) The use of complex numbers ( i ) and differential operators { ¢: and } in wave-type
equations comes from pure mathematics: not necessary to assume any QM Axioms

These few things are enough to derive the RQM Klein-Gordon equation, the most basic of

the relativistic wave equations. Taking the low-velocity limit { |v|<<c }(a standard SR technique)
leads to the Schrédinger Equation.
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SR — QM 4-Vector SRQM Interpretation

! SRQM Basic Idea (ar 2) |
e,  Klein-Gordon RWE implies QM &

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

If one has a Relativistic Wave Equation, such as the Klein-Gordon equation, then
one has RQM, and thence QM via the low-velocity limit { |[v|<<c }.

The physical and mathematical properties of QM, usually regarded as axiomatic,
are inherent in the Klein-Gordon RWE itself.

QM Principles emerge not from { QM Axioms + SR — RQM },
but from { SR + Empirical Facts — RQM }.

The result is a paradigm shift from the idea of { SR and QM as separate theories }
to { QM derived from SR } — leading to a new interpretation of QM:
The SRQM or [SR— QM)] Interpretation.

GR — (low-mass limit = {curvature ~ 0} limit) — SR
SR — (+ a few empirical facts) - RQM
RQM — (low-velocity limit { |v|<<c }) — QM

The results of this analysis will be facilitated by the use of SR 4-Vectors
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SR — QM 4-Vector SRQM Interpretation

Al SRQM 4-Vector Study:

of QM

o—e

- SciRealm.org
A Tensor Study B aS I c 4-Ve Cto rS O n th e pat h to Q M SCiRégrn:gé\éY_iLsoorg
of Physical 4-Vectors http://scirealm.org/SRQM.pdf
SR 4-Vector Dimens. Definition Unites
Units (SI) Component Notation
4-Position [m] R=R"=(")=(r°r)=<Event>  Time, Space
= (ct,r) — (ct,x,y,2) (when,where) = SR location of <Event>
4-Velocity [m/s] U=U"=(u")=@’u)= Temporal velocity, Spatial velocity
= vy(c,u) nothing faster than c
4-Momentum  [kg m/s] P=P'=(p") = (p%p) = Mass:Energy, Momentum
= (E/c,p) = (mc,p) used in 4-Momenta Conservation
2 Pinal = Z Pinia
4-WaveVector [{rad})/m] K=K"=(k")= (k%K) = Ang. Frequency, WaveNumber
= (w/c,k) = (w/c,wﬁ/vphase) used in Relativistic Doppler Shift
wobs=wemit/ [Y(1 - B COS[e])], k=w/C for photons
4-Gradient [1/m] 0=20"= (3" =(0) = Temporal Partial, Spatial Partial

= (d/c,-V) — (ddc,-0x,-0y,-0,) used in SR Continuity Eqns., ProperTime
— (d/act,-0lox,-0ldy,-0/0z) eg. A = 0 means A is conserved

All of these are standard SR 4-Vectors, which can be found and used in a totally

relativistic context, with no mention or need of QM.
| want to emphasize that these objects are ALL relativistic in origin.
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SR — QM 4-Vector SRQM Interpretation

)t SRQM 4-Vector Study:

SR Lorentz Invariants

) SciRealm@aol.com
of Physical 4-Vectors http://scirealm.org/SRQM.pdf

SR 4-Vector Lorentz Invariant What it means in SR...
4-Position RR = (ct)?- rr = (ct,)* = (ct)? SR Invariant Interval

4-Velocity U-U = y*(c*- u-u) = ¢? <Event> Motion Invariant Magnitude (c)
4-Momentum P-P = (E/c)’ - p'p = (EJ/C)? Einstein Invariant Mass:Energy Relation
4-WaveVector  K-K = (w/c)* - k'k = (w./c)’ Wave/Dispersion Invariance Relation
4-Gradient 0-0 = (a/c)’ - V-V = (dJc) The d'Alembert Invariant Operator

All 4-Vectors have invariant magnitudes, found by taking the scalar product of the 4-Vector with
itself. Quite often a simple expression can be found by examining the case when the spatial part is
zero. This is usually found when the 3-velocity is zero. The temporal part is then specified by its
“rest” value.

For example: P-P = (E/c)*p-p = (E./c)* = (M,C)°
E = Sqrt[ (E,)* + p-p ¢? ], from above relation
E=yE , using {y = 1/Sqrt[1-B?] = Sqrt[1+y*B*]} and {B=v/c}

meaning the relativistic energy E is equal to the relative gamma factor y * the rest energy E_
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SR — QM 4-Vector SRQM Interpretation

) SR + A few empirical facts: °
N SRQM Overview

) SciRealm@aol.com
of Physical 4-Vectors http://scirealm.org/SRQM.pdf

SR 4-Vector Empirical Fact What it means in SR...
4-Position R = (ct,r); alt. X = (ct,x) R = <Event>; alt. X Location of 4D Spacetime <Event>
4-Velocity U = y(c,u) U =dR/dt <Events> can move in Spacetime

4-Momentum P = (E/c,p) = (mc,p) P =m,U <Events> described as particles
4-WaveVector K = (w/c,k) K=P/h <Events> described as waves
4-Gradient @ = (6/c,-V) = -iK Alteration of 4D Spacetime <Event>

The Axioms of SR, which is actually a GR limiting-case, lead us to the use of Minkowski SpaceTime
and Physical 4-Vectors, which are elements of Minkowski Space (4D SpaceTime).

Empirical Observation leads us to the transformation relations between the components of these
SR 4-Vectors, and to the chain of relations between the 4-Vectors themselves. These relations all
turn out to be Lorentz Invariant Constants, whose values are measured empirically.

They are manifestly invariant relations, true in all reference frames...

The combination of these SR objects and their relations is enough to derive RQM.
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SR — QM 4-Vector SRQM Interpretation

Aé SRQM Chart:
44, Special Relativity — Quantum Mechanics ., .
s SR—QM Interpretation Simplified ...crenesen

SRQM: The [SR—QM] Interpretation of Quantum Mechanics

Special Relativity (SR) Axioms: Invariant Interval + LightSpeed (c) as Universal Physical Constant lead to SR,
although technically SR is itself the Minkowski-SpaceTime low-curvature:“flat” limiting-case of GR.

{c,7,m,,h,i} = {c:SpeedOfLight, t:ProperTime, m,:RestMass, h:Dirac/PlanckReducedConstant(h=h/21r), i:lmaginaryNumber\[-1]}:
are all Empirically Measured SR Lorentz Invariant Physical Constants and/or Mathematical Constants

Standard SR 4-Vectors: Related by these SR Lorentz Invariants:

4-Position R = (ct,r) = (R'R) = (CT)

4-\elocity U = y(c,u) = (U-9)R=("/4)R=dR/dt (U-U) = (c)?

4-Momentum P = (E/c,p) =m,U (P-P) = (m.c)®

4-WaveVector K= (w/c,k) = P/h (K-K) = (moc/h)? KG Equation: vl<<c
4-Gradient d=(d/c,-V) = -iK (9-9) = (-imoc/h)* = -(m,c/h)? = QM Relation —- RQM — QM

SR + Empirically Measured Physical Constants lead to RQM via the Klein-Gordon Quantum Eqn, and thence to QM
via the low-velocity limit { |[v| << ¢}, giving the Schrodinger Egn. This fundamental KG Relation also leads to the other

Quantum Wave Equations: RQM (massiess) RQM QM

{lv|]=c:m,=0} {0<=|v|]<c:m,>0} {0<=|v|]<<c:m,>0}
spin=0 boson field = 4-Scalar: Free Scalar Wave (Higgs) Klein-Gordon Schrodinger (regular QM)
spin=1/2 fermion field = 4-Spinor: Weyl Dirac (w/ EM charge) Pauli (w/ EM charge)
spin=1 boson field = 4-Vector: Maxwell (EM photonic) Proca

SR 4-Tensor SR 4-Vector

2,0)-Tensor T+ 1,0)-Ta V=V SR 4-Scalar - :
(1,1()-T<insor T, or T, (SRZt CoVector: OneF(zrr‘:l) OEIIEE® | SRQM: A treatise of SR—QM by John B. Wilson

orentz Scala
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SR — QM 4-Vector SRQM Interpretation

: SRQM Diagram:

oo RoadMap of SR (4-Vectors)

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

4-Position

R=(ct,r)
=<Event> ®----- >

A 4-Velocity
4-Gradient
a=(6t/c,-V)

U=y(c,u)

MA-- > o>
4-WaveVector 4-Momentum
K=(w/c,k) P=(mc,p)=(E/c,p)

SR 4-Tensor SR 4-Vector T, . W= TH —
(2,0)-Tensor T (1,0)-Tensor V* = V = (\°,v) 4 0?$ 4-S°aS'ar A V.VT;a\;,?rET ] = ?(p\joT)z . VTVf = (T\,o %
X " v ensor S or by o
(1,1)-Tensor T*, or T,' § SR 4-CoVector: OneForm A = Lorentz ol
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SR —- QM

A

o—@

A Tensor Study
of Physical 4-Vectors

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector

(1,0)-Tensor V¥ = V = (V°,v)
(1,1)-Tensor T*, or T,' § SR 4-CoVector: OneForm

SRQM Diagram:

A [RY]=A",
Lorentz
Transfor

J"[R]=n"
Minkowski

U-0=d/dt=yd/dt
Derivative

actlon free

PIane—Waves
Ky = -0[®] actlon

ML >

]_

4-WaveVector

K=(w/c,k)

SR 4-Scalar
(0,0)-Tensor S or S,
orentz Scala

( ]
4-Position

R=(ct,r)
=<Event>

Hamilton-
Jacobi

P S

o>

4-Momentum
P=(mc,p)=(E/c,p)

RoadMap of SR (Connections)

4-Velocity
U=y(c,u)

Trace[T"] =
V-V = Vi VY = [(v0)? - vev] = (Veo)?

4-Vector SRQM Interpretation
of QM

SciRealm.org

John B. Wilson
SciRealm@aol.com
http://scirealm.org/SRQM.pdf

NwT™ =T =T

= Lorentz Scalar


mailto:SciRealm@aol.com

SR — QM 4-Vector SRQM Interpretation

; SRQM Diagram:

oo RoadMap of SR (Free Particle) .

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

*START HERE*: <Events> have 4-Position=Location in SR SpaceTime
(

4-Gradient=Alteration of SR <Events>
SR SpaceTime Dimension=4

SR SpaceTime 4D Metric ‘ 4-Position

SR Lorentz Transforms 0 [Ru‘]=/\u’ R=(ct,r)

SR Action — 4-Momentum HIRVI=HY ! Y B ’

SR Phase — 4-WaveVector I?/Ii[rﬁ«])v;]ski e =<Event> aidQle - ----- >

SR Proper Time . ProperTime 4-Veloci <Events> have 4-Velocity=Motion
SR & QM Waves Dervatis AV i\ SR SpaceTime as both

U=y(c,u) e R

U-0=d/dt=yd/dt
Derivative

Hamilton- @
Jacobi Elnsteln

Sactlon free P Pr=-0[S] Wave Ve|OCIty E = mc® = ym.c®= yE,
PIane—Waves ]_ v .
Ky = -9[®] actlon gowp “phass
M- o>
4-\WaveVector 4-Momentum

K=(w/c,k) P=(mc,p)=(E/c,p)
SR Wave <Events> have SR Particle <Events> have
4-WaveVector=Substantiation 4-Momentum=Substantiation
oscillations proportional to mass:energy & 3-momentum

mass:energy & 3-momentum

SR 4-Tensor SR 4-Vector V] — v — —
(2,0)-Tensor T §(1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar v-vT;a\c/:ue 4 ]v; ?(“\/OT)u2 -_v-T\:f _ (T/" )
(1,1)-Tensor T% or T,* § SR 4-CoVector: OneForm (0,0)-Tensor S or S, N °
orentz Scala = Lorentz Scalar
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4-Vector SRQM Interpretation

" SRQM Diagram:
ALY RoadMap of SR (Free Particle)

- — John B. Wilson
A Tensor Study SciRealm@aol.com
of Physical 4-Vectors W I a g n I u e S http://scirealm.org/SRQM.pdf

*START HERE*: <Events> have 4-Position=Location in SR SpaceTime

4-Gradient=Alteration of SR <Events>

SR SpaceTime Dimension=4 | { R-R = (ct)%rr
SR SpaceTime 4D Metric A - . 4-Position = (cT)? .
SR Lorentz Transforms A[RY]=AY, R=(ct,r) UU=y (C2 -u-u)
gg’;ﬁ“m - i":,ﬂvome\r}turp ' [R]=n" Lorentz S >= (c)
ase — 4-WaveVector ; D ety S EREEQUilE 9 Bealle ------
SR Proper Time Minkowski ProperTime Ml <Events> have 4-Velocity=Motion
SR & QM Waves A Derivative 4-Velocity frS= SpaceTime as both

| : U=y(c,u) B e RS
4-Gradient U-9=d/dt=yd/dt
0=(d/c,-V) Derivative

00 = (&/c)*-V-V

Hamilton- @
Jacobi Einstein

_ 2 phase,free
= (a‘r/C) 'a[® . -a[SaCtion,free P P; = _a[s] Wave Velocity E=mc2= ,Ym002= 'YEo
Plane-Waves - = v * =c?
d’Alembertian Ky = -0[®] a[SactiOn] PT group ~ phase
Free Particle M- > o >
Wave Equation A-WaveVector Ry ——
K=(w/c,k) P=(mc,p)=(E/c,p)

@ P:-P = (E/C)z-pp

SR Wave <Events> have K-K = (w/c)*-k-k

4-WaveVector=Substantiation SR Particle <Events> have

oscillations proportional to = (Wo/C)>? 4-Momentum=Substantiation = (m.c)* = (E./c)*
mass:energy & 3-momentum mass:energy & 3-momentum

SR 4-Tensor SR 4-Vector T, . W= TH —
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar V_VT;a\c/;pe u 1, i ?(‘33—)2 ) V-rvij _ (-I\—/o %
(1,1)-Tensor T* or T,* | SR 4-CoVector:OneForm K (0.0)-Tensor S or S, rlHV o
orentz Scala = Lorentz Scalar
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SR — QM
A

o—@

A Tensor Study
of Physical 4-Vectors

4-Gradient=Alteration of SR <Event:s

SR SpaceTime Dimension=4
SR SpaceTime 4D Metric
SR Lorentz Transforms

SR Action — 4-Momentum
SR Phase — 4-WaveVector
SR Proper Time

SR & QM Waves

-0 = (a/c)-V-V
= (8-/C)?

d’Alembertian
Particle

Wave Equation
in EM Potential

SR Wave <Events> have

4-WaveVector=SubstantiatidﬁT-(qwO/Eo)A)-(KT-(qwo/Eo)A) SR Particle <Events> have

oscillations proportional to
mass:energy & 3-momentum

SR 4-Tensor
(2,0)-Tensor T+

(1,1)-Tensor T*, or T,Y

SRQM Diagram:

) R-R = (ct)%rr
= (cT)®

4-Position

A [RY]=A",
Lorentz

R=(ct,r)
=<Event>

J"[R"]=n""

Minkowski ,
ProperTime

Derivative

U-0=d/dt=yd/dt
Derivative

Hamilton-
Jacobi
e - s

=P,

Wave Velocity
*, =2
group  phase

o>
4-Momentum

phase,free
0[P ]

PIane—Wéves
KT = -a[(D]

-9[S
9IS

action,free

action

ML >

4-WaveVector

K=(w/c,k)

P-P = (E/c)*p-p
= (P,-qA)(P_-qA)
4-Momentum=Substantiation " = (mc)? = (E./c)?
mass:energy & 3-momentum

K-K = (w/c)-k-k

= (wo/C)?

SR 4-Vector
(1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar
SR 4-CoVector:OneForm [k (0,0)-Tensor S or S,
, , orentz Scala

@ Einstein

E = mc? = ym,c*= yE,

P=(mc,p)=(E/c,p)

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson

RoadMap of SR (EM Potential) ..

http://scirealm.org/SRQM.pdf

*START HERE*: <Events> have 4-Position=Location in SR SpaceTime

EM Faraday
o"AY-0'Ar=F*"
4-Tensor

U-U = y*(c*u-u)
= (c)’

Ml | <Events>fhave 4-V§alocity=Motion
SR ) SR SpaceTime as both
U=y(c,u) FEUT - RECE:

D I

4-EMVectorPotential
A=(¢/c,a)
em @

Charge l_"'_l_}_
el

4-PotentialMomentum
Q=(V/c,q)=q(¢/c,a)
4-TotMom Conservation Minimal Coupling

P_=(P+Q) = (P+gA) P =(P.-qA) = (P,-Q)
4-TotalMomentum

P =(E Jc,p )=((E+qg)/c,p+qa)

Trace[T"] = N T =TH =T
V-V = Vo, VY = [(V)P - vev] = (Vo)
= Lorentz Scalar
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SR —- QM

A SRQM Di a gr am: 4-Vector SRQM Interpre;?go'\r/}
/4, Special Relativity — Quantum Mechanics ___
s RoadMap of SR—QM (in EM Potential),, srows

http://scirealm.org/SRQM.pdf

4-Gradient=Alteration of SR <Events> *START HERE*: 4-Position=Location of SR <Events>/in SpaceTime
SR SpaceTime Dimension=4 R'R = (Ct) -r-r
SR SpaceTime “Flat” 4D Metric
SR Lorentz Transforms

SR Action — 4-Momentum

SR Phase — 4-WaveVector

7 ) ™" 00 = ) EM Faraday

: : ) = -u- UAV VA He UV
2R I=N", —(ct. 7% 0 FA-5'A=F

d"[R]=n" Lorentz = i 4-Tensor

SR Proper Time Derivative Minkowski . 4-Ve|ocity=l§lotion of SR

SR & QM Invariant Waves U4-\(/eIO§:ItleRulij <Events>|iniSpaceTime as
=y(C,u)= ] both particles & waves

SR — RQM Kilein-Gordon IReIEY 133 4o U-a=d/dt=yd/dt R=S

Relativistic Quantum NT\= i R R=D fred Mattfr Wave2 :

Particle in EM Potential Derivative R=D R=S,; Varow Vphase C @ : "H'I- -
d’Alembertian Wave Equation i Rest Angular EM .

Fo= (at/C)Z_v.% Frequengy wo 4-EMVectorPotential A"
= (dr+(ig/h)A)-(o++(ig/h)A) Lorentz Scalars A=(p/c,a)=(p./c?)U
= _(Wo/C)? = ~(Mac/h)? o PR Harilor @ coey
» — g ME: - instein
= (81/0)2 ‘(;')’4 Vgi\r/r?;gtor lP Jacobi E = mc? = ym.c®= yE, =Y o :
Limit: { |v|<<c Plane-Waves ) ]_ P = -9IS] oesg L } -
: - - {

(Ider) ~ [ GO + (Mec?) + (INVr+qa)/(2my) ] K= -a®], K = ia\ /- - o> ol

q - . 9 -
\(,:/Fi‘tiﬂg)otér:/ﬁ; ('thv;ﬁ)(ﬁfgc)’)] 4-WaveVector K 4-Momentum P* 4-PotentialMomentum Q"
=Schrédinger QM Equation (EM potential) K=(w/c,k)=(wJ/c?)U=P/n Einstein, de Broglie P=(mc,p)=(E/c,p)=m,U Q=(V/c,q)=q(p/c,a)=qA
*[ SR — QM |** PRI (+)

i 1/h 4-TotMomentum Conservation Minimal Coupli

4-WaveVector=Substantiation KK = (w/c)-k'k (10h) P-P = (E/c)*-p-p P,= (P+Q)= (P+qA) P = (P-qA)= (P.-Q)
o) Slll? }[{Vave <Evert1_t8> " . (KT-(q/h)Az).(KT-(q/h2)A) 4-Momentum=Substantiation = (PT-qA)-(PT-qA) 4-TotalMomentum PT”
oscillations proportional to = (moc/h)* = (wo/c of SR Particle <Events> = 2 = 2
mass:energy & 3-momentum ( F = Woe) mass:energy & 3-momentum (mec)” = (Bo/C) P_=(E./c,p,)=((E+qe)/c,p+tqa)=P+Q

SR 4-Tensor SR 4-Vector Trace[T"] = N T = T4, =T

V-V =V, VY = [(V)? - vev] = (V0P
= Lorentz Scalar

Existing SR Rules
Quantum Principles

(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar
(1,1)-Tensor T*, or T," | SR 4-CoVector: OneForm (0,0)-Tensor S or S,
, , , orentz Scala
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4-Vector SRQM Interpretation
of QM

SRQM Study:

The Empirical 4-Vector Facts  _ &

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

SR 4-Vector Empirical Fact Discoverer Physics

" _ Newton+ [t&r] Time & Space Dimensions
st R = <Event= Einstein [ R=(ct,r) ] SpaceTime as 4D=(1+3)D
: _ Newton [ v=r=dr/d{] Calculus of motion
4-Velocity U =dR/dr Einstein [ U=y(c,u)=dR/dt] Gamma & Proper Time
_ Newton [ p=mv ] Classical Mechanics
4-Momentum P =m,U Einstein [ P=(E/c,p)=m,U] SR Mechanics
Planck [h] Photon Thermal Distribution
_ Einstein [ E=hv=hw ] Photoelectric Effect (h=h/21)
4-WaveVector | K =P/ de Broglie [ p=hk ] Matter Waves
? [ P=(E/c,p)=hK=h(w/c,k) ] as 4-Vector Math
_ o Schrodinger [ w=id, k=-iV ] (SR) Wave Mechanics
4-Gradient =K [ P=(E/c,p)=ihd=in(3/c,-V) ] (QM) 4-Vecctor

(1) The SR 4-Vectors and their components are related to each other via constants

(2) We have not taken any 4-vector relation as axiomatic, the constants come from experiment.
(3) c, T, m,, h come from physical experiments, (-i) comes from the general mathematics of waves
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4-Vector SRQM Interpretation
of QM

SRQM Study:
4-Vector Relations Explained . &

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

SR 4-Vector Empirical What it means in SRQM... Lorentz
Fact Invariant

4-Position R = (ct,r) R = <Event> SpaceTime as Unified Concept ¢ = LightSpeed
4-Velocity U = y(c,u) U = dR/dt Velocity is ProperTime Derivative T =t, = ProperTime
4-Momentum P = (E/c,p) P =m,U Mass:Energy-Momentum Equivalence m, = RestMass

4-WaveVector K = (w/c,k) K= P/h Wave-Particle Duality h = UniversalAction

4-Gradient @ = (9/c,-V) d=-iK Unitary Evolution, Operator Formalism i = ComplexSpace

Three old-paradigm QM Axioms:

Particle-Wave Duality [(P)=h(K)], Unitary Evolution [0=(-i)K], Operator Formalism [(9)=-iK] are actually just empirically-found constant
relations between known SR 4-Vectors.

Note that these constants are in fact all Lorentz Scalar Invariants.

Minkowski Space and 4-Vectors also lead to idea of Lorentz Invariance. A Lorentz Invariant is a quantity that always has the same value,
independent of the motion of inertial observers.

Lorentz Invariants can typically be derived using the scalar product relation.

U-U=c? U-9=d/dt, P-U=m.? etc.

A very important Lorentz invariant is the Proper Time 1, which is defined as the time displacement between two points on a worldline that is
at rest wrt. an observer. It is used in the relations between 4-Position R, 4-Velocity U = dR/dt, and 4-Acceleration A = dU/dt.
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4-Vector SRQM Interpretation
of QM

) SRQM: The SR Path to RQM

Follow the Invariants...

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

SR 4-Vector Lorentz Invariant What it means in SRQM...

4-Position R-R = (ct) - rr = (ct)? SR Invariant Interval

4-\elocity U-U = v*(c*- u-u) = ¢* Events move into future at magnitude c
4-Momentum P-P = (m,c) Einstein Mass:Energy Relation

4-WaveVector K-K = (m.c/h)* = (w./c) Matter-Wave Dispersion Relation
4-Gradient 99 = (-imoc/h)* = ~( The Klein-Gordon Equation — RQM!

U =dR/dt

Remember, everything after 4-Velocity was just a constant times the last 4-vector,
and the Invariant Magnitude of the 4-Velocity is itself a constant

P =m,U, K=P/h,d=-iK, soe.g. P-P = m,U:m,U = m,°U-U = (m,c)?

The last equation is the Klein-Gordon RQM Equation, which we have just derived without
invoking any QM axioms, only SR plus a few empirical facts
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A . ------- g SRQM: Some BaSic 4.Vectors 4-\ector SRQM Interpre;?gol\r/l’n
M- 4-Momentum, 4-WaveVector, |
s 4-Position, 4-Velocity, 4-Gradient, Wave-Particle _ oz

SciRealm@aol.com
of Physical 4-Vectors http://scirealm.org/SRQM.pdf

P-P = (m.c)’= (Ed/C

4-Momentum Treating motion like a particle @
- i P=(mc,p)=(E/c,p) Moving particles have a 4-Velocity

P= _ : : N , :
IP-dR = S Rest Mass:Energy o agtion.free 4-Momentum is the negative 4-Gradient of the SR AC|on (S)
: Elnstel ilton- i SpaceTime

n Hamilton-Jacobi
/ E"YE _YmoC =mc @ P= -a[Saction.free] A & a. R=4
Y (socos action,free ."l Dimension
R=(ct,r) U—v(c u 8=(8/c,-V)—(8/c,-3,,-0,,-0,) L~ Minkowski Metric
d’Alembertian T
. =] 2 = " =] "\
\ Wave VeIOC|ty P ano 2 = (6,/C)° V'V = (0.1  U-9=d/dT=yd/dt

K= _a[cpphase plane] Derivative
WaveVector Gradient

vV *v  =c?
K,d R - _¢ group  phase
phase,plane RestAngFrequency

4-\WaveVector

A\ | K=(w/c,k)=(w/c,wh/v Treating motion like a wave W _____ >
phase q .
K=-9[® ] Moving waves have a 4-Velocity
bhase plane 4-WaveVector is the negative 4-Gradient of the SR Phase (®)
See Hamilton-Jacobi Formulation of Mechanics See SR Wave Definition
for info on the Lorentz Scalar Invariant SR Action. for info on the Lorentz Scalar Invariant SR WavePhase.
{P = (E/c,p) =-9[S] = (-d/cat[S], )} {K = (w/c,k) = -9[D] = (-d/cat[D], )}
{temporal component} E = -0/dt[S] = -9[S] = | {temporal component} w = -9/dt[®] = -3 [D]
{ component} { component}
**Note** This is the Action (Sacion) for a free particle. **Note** This is the Phase (®) for a single free plane-wave.
Generally Action is for the 4-TotalMomentum P+ of a system. Generally WavePhase is for the 4-TotalWaveVector K; of a system.

SR 4-Tensor SR 4-Vector

(2,0)-Tensor T+ (1,0)-Tensor V* = V = (v",v) Existing SR Rules Trace[T*1 =Nl "= T =T "
(1,1)-Tensor T% or T, | SR 4-CoVector: OneForm Quantum Principles V-V = Vi VY= [(V)° - vev] = (Vo)

= Lorentz Scalar
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SR — QM A S RQ M : 4-Vector SRQM Interpre;?gol\r/l’n
Ai M- Wave-Particle
Diffraction/Interference Types o e

SciRealm@aol.com

of Physical 4-Vectors http://scirealm.org/SRQM.pdf
The 4-Vector Wave-Particle relation is inherent in all particle types: Einstein-de Broglie P = (E/c,p) = hK = h(w/c,k).
P-P = (m.c)*= (E./c
All waves can superpose, interfere, diffract: Water waves, gravitational waves, photonic waves of all frequencies, etc. 4-Momentum
In all cases: experiments using single particles build the diffraction/interference pattern over the course many iterations. P=(mc,p)=(E/c,p)

P=_a[Saction free]

Photon/light Diffraction: Photonic particles diffracted by matter particles. .
Photons of any frequency encounter a translucent “solid=matter” object, grating, or edge.
Most often encountered are diffraction gratings and the famous double-slit experiment

Einstein
de Broglie
Matter Diffraction: Matter particles diffracted by matter particles. P=nK
Electrons, neutrons, atoms, small molecules, buckyballs (fullerenes), macromolecules, etc.
have been shown to diffract through crystals.

Crystals may be solid single pieces or in powder form.

, ) : . . _ _ _ 4-WaveVector
Kapitsa-Dirac Diffraction: Matter particles diffracted by photonic standing waves.

Electrons, atoms, super-sonic atom beams have been diffracted from resonant standing waves of light.

K=(u)/c,k)=(uu/c,uur“l/vphase

K=-9[® ]

phase,plane

Photonic-Photonic Diffraction?: Delbruck scattering & Light-by-light scatterin
Light-by-light scattering/two-photon physics/gamma-gamma physics.
Normally, photons do not interact, but at high enough relative energy, virtual particles can form which allow interaction.

SR 4-Scalar TraCS[T”“]V = nquT”zv =T = To )
(0,0)-Tensor S or S, V-V =V VY = [(V)° - vev] = (Vo)
orentz Scala = Lorentz Scalar

SR 4-Tensor
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v)
(1,1)-Tensor T*, or T,' § SR 4-CoVector: OneForm

SR 4-Vector
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4-Vector SRQM Interpretation

SRQM: of QM
Hold on, aren't you getting the “h”
sy from a QM Axiom? S

http://scirealm.org/SRQM.pdf

SR 4-Vector SR Empirical Fact What it means...
4-WaveVector K = (w/c,k) = (ou/c:,our“!/vpha ) = (W./c*)U Wave-Particle Duality

se

h is actually an empirically measurable quantity, just like e or c. It can be measured classically from the photoelectric effect, the inverse photoelectric effect,
from LED's (injection electroluminescence), from the Duane-Hunt Law in Bremsstrahlung, Electron Diffraction in crystals, the Watt/Kibble-Balance, etc.

For the LED experiment, one uses several different LED's, each with its own characteristic wavelength.

One then makes a chart of wavelength (A) vs threshold voltage (V) needed to make each individual LED emit.

One finds that: {A = h*c/(eV)}, where e=ElectronCharge and c=LightSpeed. h is found by measuring the slope.

Consider this as a blackbox where no assumption about QM is made. However, we know the SR relations {E = eV}, and {Af = c}.
The data force one to conclude that {E = hf = hw)}.

Applying our 4-Vector knowledge, we recognize this as the temporal components of a 4-Vector relation. (E/c,...) = h(w/c,...)

Due to manifest tensor invariance, this means that 4-Momentum P = (E/c,p) = hK = h(w/c,k) = hi*4-WaveVector K.

The spatial component (due to De Broglie) follows naturally from the temporal component (due to Einstein) via to the nature of 4-Vector (tensor) mathematics.

This is also derivable from pure SR 4-Vector (Tensor) arguments: P = m,U = (E,/c?)U and K = (w./c?)U

Since P and K are both Lorentz Scalar proportional to U, then by the rules of tensor mathematics, P must also be Lorentz Scalar proportional to K
i.e. Tensors obey certain mathematical structures:

Transitivity{if a~b and b~c, then a~c} & Euclideaness: {if a~c and b~c, then a~b} **Not to be confused with the Euclidean Metric**

This invariant proportional constant is empirically measured to be (h) for each known particle type, massive (m,>0) or massless (m,=0):
P = m,U = (Eo/c?)U = (Eo/c?)(wo/c?)K = (Eo/wo)K = (YEo/yw,)K = (E/w)K = (h)K

also from standard SR Lorentz 4-Vector Scalar Products: P-U = E; : K-U = w, : P-K = m,w, : P-P = (m.c)% K-K = (w./c)?
(P-U)/(K-U) = EJ/w, — |P|/|K| = Eo/w,

(P-K)/(K-K) = mowo/(wo/c)> — |P|/|K| = Eo/w,

(P-P)/((K-P) = (moc)?/(mowo) — |P|/|K| = Eo/wy,

(P-R)/(K-R) = (-S (- ) — |PJ/|K| = (h) = Eo/wo

action,free phase,plane
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SR 4-Vector SR Empirical Fact What it means...
4-WaveVector K = (w/ck) = (w/c,wilv )= (Wo/c®)U  Wave-Particle Duality

K is a standard SR 4-Vector, used in generating the SR formulae:

Relativistic Doppler Effect:
Wobs = Wemit / ['Y(1 - B COS[e])], k = (U/C for photons

Relativistic Aberration Effect:
cos[O_ ] = (cos[O_ ] + [B])/ (1 + |B|cos[O__.])

The 4-WaveVector K can be derived in terms of periodic motion, where families of
surfaces move through space as time increases, or alternately, as families of
hypersurfaces in SpaceTime, formed by all events passed by the wave surface. The
4-WaveVector is everywhere in the direction of propagation of the wave surfaces.

K=-0® ]
phase
From this structure, one obtains relativistic/wave optics without ever mentioning QM.
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SR 4-Vector SR Empirical Fact What it means...

4-Gradient 2 = (d/c,-V) = -iK Unitary Evolution of States
Operator Formalism

[0 = -iK] gives the sub-equations [d; = -iw] and [V = ik], and is certainly the main equation that
relates QM and SR by allowing Operator Formalism. But, this is a basic equation regarding the
general mathematics of plane-waves; not just quantum-waves, but anything that can be
mathematically described by plane-waves and superpositions of plane-waves...

This includes purely SR waves, an example of which would be EM plane-waves (i.e. photons)...

Y(t,r) = ae’Ni(k-r-wt)]: Standard mathematical plane-wave equation

a[w(t.r)] = afaeNi(k-r-wt)] | = (-iw)[aeri(k-r-wt)] 1= (-iw)y(t,r), or [3; = -iw]
VIw(t.r)] = VlaeMi(k-r-wt)] ] = (ik)[aei(k-r-wt)] ] = (ik)y(tr), or [V = iK]

In the more economical SR notation:
JW(R)] = 9[ae(-iIK-R)] = (-iIK)[ae*(-IK-R)] = (-iIK)y(R), or in 4-Vector shorthand [0 = -iK]

This one is more of a mathematical empirical fact, but regardless, it is not axiomatic.
It can describe purely SR waves, again without any mention of QM.
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SR 4-Vector SR Empirical Fact What it means...
4-Gradient d = (d/c,-V) =-iIK 4D Gradient Operator

[0 = (d/c,-V)] is the SR 4-Vector Gradient Operator. It occurs in a purely relativistic context
without ever mentioning QM.

0-X = (d/c,-V)(ct,x) = (a/c[ct] - (-V-x)) = (&(t] + V'x) (1)+(3) =4
The 4-Divergence of the 4-Position (o-X = a“r]wXV)gives the dimensionality of SpaceTime.

a[X] = (a/c,-V)I(ct,x)] = (d/clct],-VIx]) = Diag[1,-I] = n*
The 4-Gradient acting on the 4-Position (9[X] = ¢"[X"]) gives the Minkowski Metric Tensor

d-J = (a/c,-V)(pc.j) = (d/clpcl- (-V7))) = (@dp] + Vj) =0

The 4-Divergence of the 4-CurrentDensity is equal to O for a conserved current. It can be
rewritten as (dfp] = - V+j), which means that the time change of ChargeDensity is balanced
by the space change or divergence of CurrentDensity. It is a Continuity Equation, giving
local conservation of ChargeDensity. It is related to Noether's Theorem.
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SR 4-Vector SR Empirical Fact What it means...
4-(Position)Gradient dr = 9 = (d/c,-V) =-iIK 4D Gradient Operator

Klein-Gordon Relativistic Quantum Wave Equation
9-9[W] = -(m.c/h) [W]= -(w./c) W]

Relativistic Euler-Lagrange Equations
dr[L] = (d/d1)dy[L]: {particle format}
Ol L] = (r) Fagon[L]: {density format}

[0 = (d/c,-V)] is the SR 4-Vector (Position)Gradient Operator.

It occurs in a purely relativistic context without ever mentioning QM.

There is a long history of using the gradient operator on classical physics functions, in this
case the Lagrangian. And, in fact, it is another area where the same mathematics is used in
both classical and quantum contexts.
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A4 SRQM Diagram:
LA RoadMap of SR—QM

SciRealm.org

AT Stud =m = = . John B. Wilson
Cieieais . QM Schrodinger Relation -

The QM Schrédinger Relation
P =iho

0-R=4

ProperTime d"AY-0"A*=F"
This is derived from the v ) .
combination of: d"[R"]=n* SpaceTl_me

L
4;:=0(§itti:,))n U-0[..] LENENE EM Faraday
Minkowski Dimensio d/dtl[.. 4-Tensor
The Einstein-de Broglie Relation 4-Velocity
g U-d=d/dt U=’Y(C,U)

4-Gradient Proper Time =

Complex Plane-Waves A P

K=io =(d/c,-V) Derivative R=®_ .. @ "H” -
) : R=S %

P = (E/c,p) =ihd =iR(d/c, @ 4-EMVectorPotential

< Wave Velocit @ anCE)

_ ave Velocity
-3[<D . a[Saction,free gmup* phase= / E=mc? EM @

These are the standard QM . Complex ‘a[Saction]=PT Charge |
Schrddinger Relations. -l Elanlg-Waves W N > I h.l : |_ -

=1

q q q 0 =-iK i _ 3
It is this Lorentz Scalar Invariant A-WaveVector . 4-Momentum P_= (P+Q) 4 P(_)tentlall\ﬁomentum
relation (ih) which connects the K=(w/c,k) de Broglie P=(mc,p)=(E/c,p) IiSGECL Q=(V/c,q)=q(p/c,a)
4-Momentum to the 4-Gradient, ’ P=hK Minimal Coupling
making it into a QM operator. K = P/h P=(P,.-qA) e
1/
Note that these 4-Vectors are (z iR E) (v)
already connected in multiple 4-TotalMomentum
ways in standard SR. Schrodi Relati — —
’ Poing P =(E Jo,p,)=((E+q0)/c,p+qa)

Trace[T"] = N T =TH =T
V-V = Vo, VY = [(V)P - vev] = (Vo)
= Lorentz Scalar

Existing SR Rules
Quantum Principles

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (\°,v) SR 4-Scalar
(1,1)-Tensor T*, or T,' il SR 4-CoVector:OneForm (0,0)-Tensor S or S,
, , = (Vo, orentz Scala
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Vi SRQM:

“—+ Review of SR 4-Vector Mathematics s«

John B. Wilson
A Tensor Study SciRealm@aol.com
of Physical 4-Vectors http://scirealm.org/SRQM.pdf
4-Gradient 9 = (d/c,-V) 9-9 = (d/c)* - V-V = -(w./c)?
4-Position X = (ct,x) X-X = ((ct)? - x-x) = (ct,)? = (ct)*: Invariant Interval Measure
4-Velocity U = y(c,u) U-U = y?(c? - u-u) = (c)?

4-Momentum P = (E/c,p) = (Eo./c?)U P-P = (E/c)? - p-p = (EJ/C)?
4-WaveVector K = (w/c,k) = (wo/c>)U KK = (w/c)’ - kk = (w./c)?

o-X = (d/c,-V)(ct,x) = (8/c[ct]-(-Vx)) = 1-(-3) = 4: Dimensionality of SpaceTime

U-0 = y(c,u)(d/c,-V) = y(drtu-V) = y(d/dt) = d/dx: Derivative wrt. ProperTime is Lorentz Scalar
d[X] = (d/c,-V)(ct,x) = (d/c[ct],-V[x]) = Diag[1,-1] = n*:  The Minkowski Metric

K] = (d/c,-V)(w/c,k) = (a/clw/c],-VIK]) = [[0]]

K-X = (w/c,k)(ct,x) = (wt - k-x) = @: Phase of SR Wave

d[K-X] = 9[K]-X+K-9[X] = K = -9[¢]: Neg 4-Gradient of Phase gives 4-WaveVector
(0-9)[K-X] = ((8/c)? - V-V)(wt - kx) = 0

(0-9)[K-X] = 0-(9[K-X]) = 9-K = O: Wave Continuity Equation, No sources or sinks
let f = ae’*b(K-X): Standard mathematical plane-waves if { b = -i }
then d[f] = (-iIK)ae?-i(K-X) = (-iIK)f: (9 = -iK): Unitary Evolution, Operator Formalism

and 9-9[f] = (-)*(K-K)f = -(w./c)f:

(0-9) = (8/c)?* - V-V = -(w./c)*: The Klein-Gordon Equation — RQM

Note that no QM Axioms are assumed: This is all just pure SR 4-vector (tensor) manipulation


mailto:SciRealm@aol.com

SR — QM 4-Vector SRQM Interpretation

Vi SRQM:

~“—¢ Review of SR 4-Vector Mathematics s«

A Tensor Study SciRealm@aol.com
of Physical 4-Vectors http://scirealm.org/SRQM.pdf

Klein-Gordon Equation: 8:9 = (d/c)* - V-V = -(m.c/h)* = -(w./c)* = -(1/Ac)

Let Xt = ( %), then 9[X+] = (d/c,- V' )( ,) = Diag[1,-I;3)] = 9[X] = n*
so d[X:] = 9[X] and 9[K] = [[0]]

let f = ae™-i(K-Xy), the time translated version
(0-0)If]

a-(a[f])

o-(d[e™-i(K-X1)])

o0-(e™-i(K-Xr)d[-i(K-Xr1)])

-id-(fo[K-X1])

-ig[flo[K-X+])+¥(2-9)[K-Xq])

(-i)f(O[K-X1])* + O

(-i)2F(O[K]-Xr + K-3[X+])?

(-i)*f(0+K-a[X])*

(-i)*f(K)’

-(K-K)f

-(wo/c)*f

SR 4-Tensor SR 4-Vector

2,0)-Ti Thv 1.0)-Te V=V SR 4-Scalar ; -
(1,1()_Tgn:;f%: or T,y (. y Tensar ' = o.qu(Zm‘Q (URSIEEEY | SRQM: A treatise of SR—QM by John B. Wilson

orentz Scala
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Y SRQM:

4, What does the Klein-Gordon Equation give us? __ .
Atorsuy A lot of RQM! o SeamE

Relativistic Quantum Wave Equation: -9 = (8/c)? - V-V = -(m.c/h)? = (im.c/h)? = -(w./C)?

The Klein-Gordon Eqn is itself the Relativistic Quantum Equation for spin=0 particles (4-Scalars)
Factoring the KG Eqgn leads to the RQM Dirac Equation for spin=1/2 particles (4-Spinors)
Applying the KG Eqgn to a 4-Vector field leads to the RQM Proca Equation for spin=1 particles (4-Vectors)

Taking the low-velocity-limit of the KG leads to the standard QM non-relativistic Schrodinger Eqgn, for spin=0
Taking the low-velocity-limit of the Dirac leads to the standard QM non-relativistic Pauli Eqn, for spin=1/2

Setting RestMass {m, — 0} leads to the RQM Free Wave Eqn., Weyl Eqgn., and Free Maxwell ( Standard EM) Eqn.

In all of these cases, the equations can be modified to work with various potentials by using more
SR 4-Vectors, and more empirically found relations between them, e.g. the Minimal Coupling Relations:
4-TotalMomentum P _ = P + gA, where P is the particle 4-Momentum, (q) is a charge, and A is a 4-VectorPotential,

typically the 4-EMVectorPotential.

Also note that generating QM from RQM (via a low-energy limit) is much more natural than attempting to “relativize or
generalize” a given NRQM equation. Facts assumed from a non-relativistic equation may or may not be applicable to
a relativistic one, whereas the relativistic facts are still true in the low-velocity limiting-cases. This leads to the idea
that QM is an approximation only of a more general RQM, just as SR is an approximation only of GR.

SR 4-Tensor SR 4-Vector TG
2,0)-Tensor T+ 1,0)-Te V=V calar . .
(1,1()-TgnsorT~V or T, SR 4-Covestor: OneF(Zm‘Q SRQM: A treatise of SR—QM by John B. Wilson
. . 1)- - orentz Scala
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- RElativistic Quantum Wave Eqns. ..&

of Physical 4-Vectors http://scirealm.org/SRQM.pdf
Spin-(Statistics) Relativistic Light-like Relativistic Matter-like Non-Relativistic Limit (|v|<<c) Field
Bose-Einstein=n Mass =0 Mass >0 Mass >0 Representation

Fermi-Dirac=n/2

0-(Boson) Free Wave Klein-Gordon Schrodinger Scalar
N-G Bosons Higgs Bosons, maybe Axions Common NRQM Systems (0-Tensor)
Y = YIK.X"]
(@9)\W=0 (98- + (moc/h)? )W = [9,+imc/h][d"-im,c/M]W =0 (iheF+[M?VZ2mo-V)W = 0 = Y]
with minimal coupling with minimal coupling
((ihd; -q@)* -(Moc?)? - *(-iNV -qa) )W = 0 (ihd: — q@ -[(p-ga)?i2m,)¥ =0

?Axions? are KG with EM invariant src term
(8- + (Mao)? )W = -ke-b = -kcSqrt[Det[F"]]

L = (-h*/m,)0"¥*9, W-m,c?P*W

1/2-(Fermion) Weyl Dirac Pauli Spinor
Idealized Matter Neutinos Matter Leptons/Quarks Common NRQM Systems w Spin ¥ = WK,X"
= Y[o]
(o-9)W=0 (iy-9 - mec/h)¥Y =0 (ihd — [(o-p)?)/2m,)¥ = 0
factored to (y-9 +imec/R)P =0 with minimal coupling
Right & Left Spinors (ihd: - g — [(o(p-qa))’l/2m,)¥ = 0
(0-0)Wr=0, (0-0)¥W.=0 with minimal coupling

- (iy-(9+igA) - mc/)¥ = 0
L= quTRO'“ap‘pR , L= i‘PTLo“ap‘PL o o
L = ihc®y*a,¥- m.c2PY

1-(Boson) Maxwell Proca 4-Vector
Photons/Gluons Force Bosons (1-Tensor)
A = A" = A[K XY
(0-90)A =0 free (0-9 + (moc/hy* )A=0 = A'[P]
where 0-A =0

(0-9)A = uoJ w current src
where 8-A =0 (' A-"AM)+(moc/h) A =0

(3-9A = uePV'Y QED
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Klein-Gordon Equation: 8@ = (d/c)? - V-V = -(m.c/h)?

Since the 4-vectors are related by constants, we can go back to the 4-Momentum description/representation:
(@dc)*- V-V = -(mec/h)?

(E/c)* pp = (Moc)’

E% c?prp - (M,c?)? =0

Factoring: [E-cap-B(M,c)][E +cap+B(m,c)]=0

E & p are quantum operators,

a & B are matrices which must obey a = -Ba, aa = -aa, a’=p*=1

The left hand term can be set to 0 by itself, giving...

[E-cap-B(m.c?) ] =0, which is the momentum-representation form of the Dirac equation

Remember: P* = (p°p) = (E/c,p) and o* = (a°,a) where a° = I
[E-cap-B(mc’)]=[ca’’-cap-B(mc’)]=[ca’P,-B(mc’)]=0
[ a*Py - B(moC) ] = [ih "0, - B(moc) ] =0

a"d, = - B(im.c/h)

Transforming from Pauli Spinor (2 component) to Dirac Spinor (4 component) form:
Dirac Equation: (y"d,)[w] = -(im.c/h)y

Thus, the Dirac Eqn is guaranteed by construction to be one solution of the KG Eqn

The KG Equation is at the heart of all the various relativistic wave equations, which differ based on mass and spin values,

but all of them respect E*- c?p-p - (m.c?)? =0
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Relativistic Quantum Wave Equation: 9-9 = (d/c)? - V-V = -(m.c/h)? = (imoc/h)? = -(wo/C)?
9-9 = -(Myc/h)?

The Klein-Gordon Eqn is itself the Relativistic Quantum Equation for spin=0 particles {Higgs} (4-Scalars)
Factoring the KG Eqn (“square root method”) leads to the RQM Dirac Equation for spin=1/2 particles (4-Spinors)
Applying the KG Egn to a SR 4-Vector field leads to the RQM Proca Equation for spin=1 particles (4-Vectors)

Setting RestMass {m, — 0} leads to the:

RQM Free Wave (4-Scalar massless)

RQM Weyl (4-Spinor massless)

Free Maxwell Eqns (4-Vector massless) = Standard EM

So, the same Relativistic Quantum Wave Equation is simply applied to different SR Tensorial Quantum Fields
See Mathematical _formulation_of the Standard Model at Wikipedia:

4-Scalar (massive) Higgs Field ¢ [0-0 = -(m.c/h)?]p Free Field Eqn—Klein-Gordon Egn 2-9[@] = -(M.c/h)’@
4-Vector (massive) Weak Field Z*,W* [8-9 = -(m.c/h)*]Z" Free Field Eqn—Proca Eqgn 9-9[Z"]= -(m.c/h)’Z"
4-Vector (massless m,=0) Photon Field A" [0-0 = O]A*" Free Field Eqn—EM Wave Eqgn d-d[A¥]= 0"

4-Spinor (massive) Fermion Field w [y-@ = -im.c/h]W¥Y Free Field Eqn—Dirac Eqn y-o[¥]= -(im.c/h)¥

*The Fermion Field is a special case, the Dirac Gamma Matrices y* and 4-Spinor field ¥ work together to preserve Lorentz Invariance.

SR 4-Tensor SR 4-Vector

2,0)-T Thv 1,0)-T VE=V = (VO SR 4-Scalar . .
(1,1()_Tgnf§f%rv or T,y AN (TN ol | SRQM: A treatise of SR—QM by John B. Wilson

0,1)-Tensor V, = (Vo,-V orentz Scala
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Relativistic Quantum Wave Equation: 9-@ = (8/c)* - V-V = -(mc/h)? = (im.c/h)? = -(w./c)?
99 = -(mc/h)?

(6-9)AY = 0v: The Free Classical Maxwell EM Equation {no source, no spin effects}
(9-9)A' = p_J': The Classical Maxwell EM Equation {with 4-Current J source, no spin effects}
(0-9)A' = q(y v g): The QED Maxwell EM Spin-1 Equation {with QED source, including spin effects}

So, the same Relativistic Quantum Wave Equation is simply applied to different SR Tensorial Quantum Fields
See Mathematical_formulation_of the Standard Model at Wikipedia:

4-Scalar (massive) Higgs Field @ [0-0 = -(m.c/h)?]p Free Field Eqn—Klein-Gordon Eqgn 2-9[¢] = -(m.c/h)?p
4-Vector (massive) Weak Field Z*,W*  [9-d = -(m.c/h)?]Z" Free Field Eqn—Proca Eqn 2-9[Z"]= -(m.c/h)?Z"
4-Vector (massless m,=0) Photon Field A" [0-2@ = O]A* Free Field EQqn—EM Wave Eqgn d-d[A"]= 0"

4-Spinor (massive) Fermion Field y [y-@ = -im.c/h]W¥ Free Field Eqn—Dirac Eqn y-o[¥]= -(im.c/h)¥Y

*The Fermion Field is a special case, the Dirac Gamma Matrices y* and 4-Spinor field W work together to preserve Lorentz Invariance.
We can also do the same physics using Lagrangian Densities.

Proca Lagrangian Density L = -(1/2)(8,B*,-0,B*,)(6"B"-0"B*)+(m.c/h)’B*,B" : with B = (¢/c,a)[(ct,r)] is a generalized complex 4-(Vector)Potential
KG Lagrangian Density L = -n*(3,p*-0,y)-(moc/M)*w*y : with w = w[(ct,r)]

Dirac Lagrangian Density L = g(y,P" - m.c/h)y : with y = a spinor y[(ct,r)]

QED Lagrangian Density L = y(ihy,D* - m.c)y-(1/4)F . F* : with D" = ¢ + igA* + iqB* and A*=EM field of the e-, B* = external source EM field

SR 4-Tensor

SR 4-Vector

SR 4-Scalar ) .
OEIIEE® | SRQM: A treatise of SR—QM by John B. Wilson

orentz Scala

(2,0)-Tensor T (1,0)-Tensor V¥ = V = (V°,v)
(1,1)-Tensor T", or T, il SR 4-CoVector:OneForm

0,2)-Tensor T, 0,1)-Tensor V, = (Vo,-V
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In relativistic quantum mechanics and quantum field theory, the Bargmann—Wigner equations describe free particles of arbitrary spin j, an
integer for bosons (j = 1, 2, 3 ...) or half-integer for fermions (j = %, %, % ...). The solutions to the equations are wavefunctions,
mathematically in the form of multi-component spinor fields.

Bargmann-Wigner equations: (-y*P, + mc)m,r Wat. or.azj = 0

In relativistic quantum mechanics and quantum field theory, the Joos—Weinberg equation is a relativistic wave equations applicable to free
particles of arbitrary spin j, an integer for bosons (j = 1, 2, 3 ...) or half-integer for fermions (j = %, %, 72 ...). The solutions to the equations
are wavefunctions, mathematically in the form of multi-component spinor fields. The spin quantum number is usually denoted by s in
quantum mechanics, however in this context j is more typical in the literature.

Joos—-Weinberg equation: [y""*%-*3 P, Py, ... Py + (mc)A] W =0

The primary difference appears to be the expansion in either the wavefunctions for (BW) or the Dirac Gamma’s for (JW)

For both of these: A state or quantum field in such a representation would satisfy no field equation except the Klein-Gordon equation.
Yet another form is the Duffin-Kemmer-Petiau Equation vs Dirac Equation

DKP Eqgn {spin 0 or 1}: (ihp°d4 - m,c)¥ = 0, with B° as the DKP matrices
Dirac Eqgn (spin 72}: (ihy°dq - mec)W = 0, with y* as the Dirac Gamma matrices

SR 4-Tensor

SR 4-Vector

2,0)-Tensor T+ 1,0)-Te W=V = (V° SR 4-Scalar ) :
PR TE e SNSRI (ISEME P, | SRQM: A treatise of SR—QM by John B. Wilson
0,2)-Tensor T, 0,1)-Tensor V, = (Vo,-v orentz Scala
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A few more SR 4-Vectors

of Physical 4-Vectors http://scirealm.org/SRQM pdf
SR 4-Vector Definition Unites
4-Position R = (ct,r); alt. X = (ct,x) Time, Space
4-Velocity U =vy(c,u) Gamma, Velocity

4-Momentum P = (E/c,p) = (mc,p) Energy:Mass, Momentum

4-WaveVector K= (w/c,k) = (w/c,wﬁ/vphase) Frequency, WaveNumber

4-Gradient d = (d/c,-V) Temporal Partial, Space Partial
4-VectorPotential A = (¢/c,a) Scalar Potential, Vector Potential
4-TotalMomentum P, = (E/ctqg/c,ptga) Energy-Momentum inc. EM fields
4-TotalWaveVector K., = (w/ct(a/h)e/ck+(g/n)a) Freq-WaveNum inc. EM fields

4-CurrentDensity J=(cp,j)=qJ Charge Density, Current Density

prob

4-ProbabiltyCurrentDensity J = (cp ) QM Probability (Density, Current Density)

i)
can have complex values prob prob™“prob

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar
(1,1)-Tensor T* or T,* | SR 4-CoVector:OneForm (0.0)-Tensor S or S,
0,2)-Tensor T, 0,1)-Tensor V, = (Vo,-V orentz Scala
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of Physical 4-Vectors

SR 4-Vector
4-Position
4-\elocity
4-Momentum
4-WaveVector
4-Gradient

4-VectorPotential
4-TotalMomentum
4-TotalWaveVector
4-CurrentDensity

4-Probability
CurrentDensity

4-Vector SRQM Interpretation
of QM

SRQM:
More SR 4-Vectors Explained _ i

Empirical Fact
R = (ct,r)

U =dR/dt

P = moU = (Eo/c?)U
K = P/h = (wo/c?)U
d = -iK

A = (p/c,a) = (¢./c*)U
Ptot =P+qA

K_ =K+ (a/MnA
J=pU=0qJ
JJ =0

= (Cpprob’j

prob

)

prob prob

od =0

prob

http://scirealm.org/SRQM.pdf

What it means...
SpaceTime as Single United Concept

Velocity is Proper Time Derivative
Mass-Energy-Momentum Equivalence
Wave-Particle Duality

Unitary Evolution of States
Operator Formalism, Complex Waves

Potential Fields...
Energy-Momentum inc. Potential Fields
Freg-WaveNum inc. Potential Fields

ChargeDensity-CurrentDensity Equivalence
CurrentDensity is conserved

QM Probability from SR
Probability Worldlines are conserved
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SR — QM 4-Vector SRQM Interpretation

Al Minimal Coupling = Potential Interaction
»  Klein-Gordon Eqn — Schrodinger Eqn e

http://scirealm.org/SRQM.pdf

o—@

A Tensor Study
of Physical 4-Vectors

SciRealm.org

Pr=P+Q=P+gA

K=id
P=hK
P =iho

P=(E/cp) =Pr- gA =
d = (d/c,-V)=or+ (ig/h)A = (

89 = (3/c)? - V2 = -(muc/h)? :
P-P = (E/c)? - p*> = (m,C)*:

E? = (moc?)? +c’p?:
E ~ [ (mo,c?) + p*/2m, ] :

(E+-q9)’ = (MoC?)* + c*(pr-qa)* :
(Er-q@) ~ [ (moc?) + (pr-ga)’/2m, | :

(ihdr-q@)® = (M.c?)* + c*(-ihVr-qa)?:

(iNdr-q@) ~ [ (Mc?) + (-iVr-ga)?/2m, | :

(ihdr) ~ [ g +(Moc?) + (iIhVr+qa)?/2m, ] :

(iRdr) ~ [V + (ihVr+qa)/2m, | :
(ihder) ~ [V - ("Vr)2/2m, | :

(iRd)|W> ~ [V - (WVr)22m, ]|¥> :

Minimal Coupling: Total = Dynamic + Charge_Coupled to 4-(EM)VectorPotential
Complex Plane-Waves

Einstein-de Broglie QM Relations

Schrédinger Relations

) = hK = ihd
) =-iK = (-ilh)P

The Klein-Gordon RQM Wave Equation (relativistic QM)
Einstein Mass:Energy:Momentum Equivalence

Relativistic
Low velocity limit { |v] << ¢ } from (1+x)" ~ [1 + nx + O(x?)] for |x|<<1

Relativistic with Minimal Coupling
Low velocity with Minimal Coupling

The better statement is that the Schrodinger Eqgn is the
limiting low-velocity case of the more general KG Egn,
not that the KG Eqn is the relativistic generalization of
the Schrédinger Eqn

Relativistic with Minimal Coupling
Low velocity with Minimal Coupling

Low velocity with Minimal Coupling

V = q@ +(moc?)
Typically the 3-vector_potential a ~ 0 in many situations

The Schrodinger NRQM Wave Equation (non-relativistic QM)
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Af SRQM: Once one has a

] | - |
o4 Relativistic Wave Egn
EEE John B. Wilson
A Tensor Study SciRealm@aol.com
of Physical 4-Vectors http://scirealm.org/SRQM.pdf

Klein-Gordon Equation: 8-@ = (d/c)* - V-V = (-im.c/h)? = -(m.c/h)* = -(w,/c)*
Once we have derived a RWE, what does it imply?

The KG Eqgn. was derived from the physics of SR plus a few empirical facts. It is a
2" order, linear, wave PDE that pertains to physical objects of reality from SR.

Just being a linear wave PDE implies all the mathematical techniques that have
been discovered to solve such equations generally: Hilbert Space, Superpositions,
<Bra|,|Ket> notation, wavevectors, wavefunctions, etc. These things are from
mathematics in general, not only and specifically from an Axiom of QM.

Therefore, if one has a physical RWE, it implies the mathematics of waves, the
formalism of the mathematics, and thus the mathematical Principles and
Formalism of QM. Again, QM Axioms are not required — they emerge from the
physics and math...

SR 4-Tensor

SR 4-Vector
2,0)-Tensor T# 1,0)-Te Vi=V SR 4-Scalar i -
(1, 1() TgnsorT or T, 'SR 4-CoVectors OneF(Zm‘Q SRQM: A treatise of SR—QM by John B. Wilson
2)- . 1)- - orentz Scala
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4-Vector SRQM Interpretation

SR—»AZM4 SRQM: of QM
£4, Once one has a Relativistic Wave Eqn... ...,

- - — __John B. Wilson
C e . Examine Photon Polarization ....crengsen
From the Wikipedia page on [Photon Polarization]

Photon polarization is the quantum mechanical description of the classical polarized sinusoidal plane electromagnetic
wave. An individual photon can be described as having right or left circular polarization, or a superposition of the two.
Equivalently, a photon can be described as having horizontal or vertical linear polarization, or a superposition of the
two.

The description of photon polarization contains many of the physical concepts and much of the mathematical machinery
of more involved quantum descriptions and forms a fundamental basis for an understanding of more complicated
quantum phenomena. Much of the mathematical machinery of quantum mechanics, such as state vectors, probability
amplitudes, unitary operators, and Hermitian operators, emerge naturally from the classical Maxwell's equations in the
description. The quantum polarization state vector for the photon, for instance, is identical with the Jones vector, usually
used to describe the polarization of a classical wave. Unitary operators emerge from the classical requirement of the
conservation of energy of a classical wave propagating through lossless media that alter the polarization state of the
wave. Hermitian operators then follow for infinitesimal transformations of a classical polarization state.

Many of the implications of the mathematical machinery are easily verified experimentally. In fact, many of the
experiments can be performed with two pairs (or one broken pair) of polaroid sunglasses.

The connection with quantum mechanics is made through the identification of a minimum packet size, called a photon,
for energy in the electromagnetic field. The identification is based on the theories of Planck and the interpretation of
those theories by Einstein. The correspondence principle then allows the identification of momentum and angular
momentum (called spin), as well as energy, with the photon.

SR 4-Tensor SR 4-Vector

2,0)-T Thv 1,0)-T VE=V = (VO SR 4-Scalar . .
(1,§)_Tgn:0”f$p§ or T,y AN (TN ol | SRQM: A treatise of SR—QM by John B. Wilson

0,1)-Tensor V, = (Vo,-v orentz Scala
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SR — QM A S RQ M : 4-Vector SRQM Interpre;?téol\r/l‘n
Ai Principle of Superposition:

John B. Wilson

AlensorStucy From the mathematics of waves .., srenemsen

Klein-Gordon Equation: 9:9 = (d/c)* - V-V = (-im.c/h)? = -(m,c/h)* = -(wo/c)*

The Extended Superposition Principle for Linear Equations

Suppose that the non-homogeneous equation, where L is linear, is solved by some particular u,
Suppose that the associated homogeneous problem is solved by a sequence of u..

L(u,)=C; L(u)=0, L(uy)=0, L(uz)=0 ...

Then u, plus any linear combination of the u, satisfies the original non-homogeneous equation:
L(u, + 2 a, u,) = C,

where a, is a sequence of (possibly complex) constants and the sum is arbitrary.

Note that there is no mention of partial differentiation. Indeed, it's true for any linear equation,
algebraic or integro-partial differential-whatever.

QM superposition is not axiomatic, it emerges from the mathematics of the Linear PDE
The Klein-Gordon Equation is a 2"-order LINEAR Equation.
This is the origin of superposition in QM.

SR 4-Tensor SR 4-Vector TG
2,0)-Tensor T+ 1,0)-Te W=V = (V° -Scalar ; -
(1,‘?)-T<;nsor T or T, (SR Zl-gtr::?lzrctor:Onelgzrr‘:]) (0,0)-Tensor S or S, SRQM: A treatise of SR—QM by John B. Wilson

0,1)-Tensor V, = (Vo,-v orentz Scala
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4-Vector SRQM Interpretation

SFZM \ S RQM . L
LA Klein-Gordon obeys

John B. Wilson

] ] ] ] .
A s S o Principle of Superposition s oam @zl com

Klein-Gordon Equation: 2-0 = (8/c)* - V-V = (-im.c/h)? = -(mec/h)* = -(w,/c)*

K-K = (w/c)? - k-k = (w./c)*: The particular solution (w rest mass)
KoK, = (wn/c)? - ka'kn = 0 : The homogenous solution for a (virtual photon?) microstate n
Note that K,*K, = 0 is a null 4-vector (photonic)

Let W, = Ae?-i(K-X), then 8-9[¥,] = (-)2(K-K)W, = -(w./c)*¥,
which is the Klein-Gordon Equation, the particular solution...

Let W, = A,e™i(Kqy-X), then 9-9[W.] = (-)(KaKn)Wh = (0)W,
which is the Klein-Gordon Equation homogeneous solution for a microstate n

We may take W =W, + 2, ¥,

Hence, the Principle of Superposition is not required as an QM Axiom, it follows from SR and our empirical facts which
lead to the Klein-Gordon Equation. The Klein-Gordon equation is a linear wave PDE, which has overall solutions
which can be the complex linear sums of individual solutions — i.e. it obeys the Principle of Superposition.

This is not an axiom — it is a general mathematical property of linear PDE's.

This property continues over as well to the limiting case { |v|<<c } of the Schrédinger Equation.

SR 4-Tensor SR 4-Vector TG
2,0)-Tensor T+ 1,0)-Te V=V calar . .
(1,1()-TgnsorT~V or T, SR 4-Covestor: OneF(Zm‘Q SRQM: A treatise of SR—QM by John B. Wilson
. . 1)- - orentz Scala
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4-Vector SRQM Interpretation

AA SRQM:
L QM Hilbert Space:

John B. Wilson

Alensorsudy From the mathematics of waves ....cnes:=n

Klein-Gordon Equation: 9:9 = (d/c)* - V-V = (-im.c/h)? = -(m,c/h)? = -(wo/c)?

Hilbert Space (HS) representation:

if |[¥Y> € HS, then c|¥> ¢ HS, where c is complex number

if [¥Y+> and |W.> € HS, then |W>+|W,> € HS

if [¥> = cq|W1>+c,|Wo>, then <®|W> = ¢<P|W>+C,<P|W,> and <W| = c*<W|+c"<Wy|
<P|P> = <Y |D>

<Y|¥Y>>=0

if <W|W¥> =0, then |[¥>=0

etc.

Hilbert spaces arise naturally and frequently in mathematics, physics, and engineering, typically as infinite-
dimensional function spaces. They are indispensable tools in the theories of partial differential equations, Fourier
analysis, signal processing, heat transfer, ergodic theory, and Quantum Mechanics.

The QM Hilbert Space emerges from the fact that the KG Equation is a linear wave PDE — Hilbert spaces as
solutions to PDE's are a purely mathematical phenomenon — no QM Axiom is required.

Likewise, this introduces the <bral,|ket> notation, wavevectors, wavefunctions, etc.

Note:

One can use Hilbert Space descriptions of Classical Mechanics using the Koopman-von Neumann formulation.
One can not use Hilbert Space descriptions of Quantum Mechanics by using the Phase Space formulation of QM.
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. SRQM Study:

“# .6 Canonical Commutation Relation:

s Viewed from standard QM
Standard QM Canonical Commutation Relation: ./ 1 = j

The Standard QM Canonical Commutation Relation is simply an
axiom in standard QM.
It is just given, with no explanation. You just had to accept it.

| always found that unsatisfactory.

There are at least 4 parts to it:

Where does the commutation ([ , ]) come from?

Where does the imaginary constant (i) come from?

Where does the Dirac:reduced-Planck constant (h) come from?
Where does the Kronecker Delta (§) come from?

See the next page for SR enlightenment...

The SR Metric is the source of “quantization”.

SR 4-Tensor

SR 4-Vector

SR 4-Scalar

OEIIEE® | SRQM: A treatise of SR—QM by John B. Wilson

orentz Scala

(2,0)-Tensor T (1,0)-Tensor V¥ = V = (V°,v)
(1,1)-Tensor T", or T, il SR 4-CoVector:OneForm

0,2)-Tensor T, 0,1)-Tensor V, = (Vo,-V
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SR — QM S RQ M D iag ram : 4-Vector SRQM Interpre;?t(igohr/}
“# <o Canonical QM Commutation Relation _
e Derived from standard SR

o 9-X=0. X =4 Lorentz ’ [&, X"]=0"[X"]=n""
: SpaceuTime A[X"]=0X"[oX=N", [8.X]=a[X]=n""
4-Displacement ,

AX=(cAt,Ax) [Dimension Transform —Diag[1,-1,-1,-1]=Diag[1,-5"]

Let (f) be an arbitrary SR function
X[f] = Xf, af[f] = o[f]
X, function or not, has no effect on (f)

0=9| ] is definitely an SR function:operator dt dx A 4 Gradient Non-Zerl\gi%ig)r;vr?\ﬁtgﬂtggcRelation
X[3[f]] = Xaf] az(ar?C,l_evn) = via natural SR 4-Gradient
d[Xf] = o[X]f + Xa[f] ’

8[Xf] - Xa[f] = a[X]f ®  bopertime -[KX con.

a[X[ﬂ] - X[a[ﬂ] = a[X]f ) ) Derivative Proper Time " Plane-waves

Recognize this as a commutation relation U-9=d/dt=yd/dt - K=io

[ ) , X ]f = a[X]f Derivative

[0,X]=0[X] Manifestly Invariant 4-WaveVector i[9, X]=[i0,X]=[K,X]=in"

= 0"[X] K=(wick) Non-Zero Commutation Relation
= )(ct,x)] . via SR 4-WaveVector
’ ’ Wave Velocity
= (alc, ict.x.y.2)] N
= Diag{1, } = Diag[1,-5"] U=y(c,u) Eo/w, Eineta Eo/wo
= n" = Minkowski Metric ®------ > Pezhrlgg s

[0",X"] =n" Tensor form:true for all observers : ——
[P¥.X"] = ihn® Independently true from empirical constants (i),(h) 4-Momentum [ihd,X]=["K,X]=[P.,X]=ihn

[p* ] = -ihd¥ [p°x°] = [E/c,ct] = [E ] = ih P=(r=nc_:ép[)%=(E/]C,p) Non-Zero Commutation Relation

S A . T via SR 4-Momentum
_ osition:Momentum — ime:Energy . — .
[X,p] = iN&"™ am Commutation Relation [HE] = =INCT) omlcammuizions S {P = hK} and {K = id} are empirical SR relations

action

SR 4-Tensor
(2,0)-Tensor T+ (1,0)-Tensor V* = V = (V°,v)

1,1)-Tensor T", or T, il SR 4-CoVector:OneForm
0,2)-Tensor T, 0,1)-Tensor V, = (Vo,-V

SR 4-Vector

Trace[T"] = N T =TH =T

4 o?$ 4-ScaSIar S Existing SR Rules VAV = VIV = [(VO)2 - vev] = (V%)
,0)-Tensor S or S, * - = WV = - = (V%
orentz Scala Quantum Principles = Lorentz Scalar

(
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o SRQM Study:
“#++0 Canonical Commutation Relation: . .
A Tenscr Sy o Viewed from SRQM wipisoream@ecl oo

Standard QM Canonical Commutation Relation: [X,p*] = ih

As we have seen, this relation is generated from simple SR math.
[0, X]=[0"X"]=0[X] = d"[X"] = (d/c,-V)[(ct,x)] = (d/c, (ct, )] = Diag{1, } = Diag[1,-0"] = n" = Minkowski Metric

[0",X"] = n™
[P*,X"] = ihn" : This is the more general 4D version, with the Standard QM version being just the

One of the great misconceptions on modern physics is that since QM is about “tiny” things, that ALL things should be built up from it.
That paradigm of course works well for many things:

Compounds are built-up from smaller molecules.

Molecules are built-up from smaller elements.

Elements are built-up from smaller atoms.

Atoms are built-up from smaller protons, neutrons, and electrons.

Protons and neutrons are built-up from smaller quarks.

And all experiments to-date show that electrons and quarks appear to be point-like, with wave-type properties giving extent.

So, one can mistakenly think that “SpaceTime” must be made up of smaller “quantum” stuff as well.

However, that is not what the math says. The “quantization” paradigm doesn’t apply to SpaceTime itself, just to <events>.

All of the “quantum”-sized things above, electrons and quarks, are material things, <events>, which move around “within” SpaceTime.
Their “quantization” comes about from the properties of the math and metric of SR.

The math does *NOT™* say that SpaceTime itself is “quantized”. It says that SR Minkowski SpaceTime is the source of “quantization”.

SR 4-Vector

SR 4-Tensor

2,0)-Tensor T+ 1,0)-Te W=V = (V° SR 4-Scalar ) :
PR TE e SNSRI (ISEME P, | SRQM: A treatise of SR—QM by John B. Wilson
0,2)-Tensor T, 0,1)-Tensor V, = (Vo,-v orentz Scala
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A Tensor Study
of Physical 4-Vectors

SRQM Study:

GEE'D)

Invariant Calculus
4-Displacement dR-6 = (cdt,dr)-(6,/c,-V)
AR=(cAt,Ar) dRMn,(¢") = dR¥(8,) = dR¥(d/0R¥) = (dto,+ dr-V)
=dt(d/ot)+dx(d/ox)+dy(d/dy)+dz(d/dz)
Total Derivative Chain Rule

SR:
Lorentz
Transform

Minkowski bbbkl
Metric AR] = ORTIGRT= A" paceTime SRQM:

OR=0.R" =4 Tensor Zero
NNy =1ty =8 Dimerwsion Exterior Product
M\'e\s = Nap 3R = #R-O'R
. Det[A])? = 1 = - = W
= Diag[1,-¢' — TA-
{in Cartegign fotm}:’l Ny = (A 1)"”
"Particle Physics” Convention Ao\ =4
{nue} = 140"}
Tr[n"] =4

9[R] = &R’ =

—Diag[1,-1,-1,-1]

Rotations
Boosts
CPT

SR 4-Tensor
(2 0)-Tensor T+

SR 4-Vector
(1, O)-Tensor V”

4-Position and 4-Gradient

il

4-Vector SRQM Interpretation
of QM

SciRealm.org

John B. Wilson
SciRealm@aol.com
http://scirealm.org/SRQM.pdf

nvariant d’Alembertian
Wave Equation
0:9=(0, /c)z-V-V=(6t [c)?
-Gradient
9=ad"=(0/c,-V)
=(at/c,-ax,-ay,-az)
=d/0R

SRQM:
Non-Zero
Commutation
[0,R] = [¢",R"]
=d"R"-R"o"
= r]“"

Trace[T"] = N T =TH =T
V-V = Vo, VY = [(V)P - vev] = (Vo)
= Lorentz Scalar
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4-Vector SRQM Interpretation
SRQM:
A -

SciRealm.org

L4 Heisenberg Uncertainty Principle: |
A Tenscr Sy o Viewed from SRQM wipisoream@ecl oo

Heisenberg Uncertainty { 0%.0% } >= (1/2)|<[A,B]>| } We can also note that:
arises from the non-commuting nature of certain operators. [f)=F|¥)and|g)=G|¥)
The commutator is [A,B] = AB-BA, where A & B are functional “measurement” operators. Thus,
The Operator Formalism arose naturally from our SR — QM path: [ 9 = -iIK ]. KE|g)P=[(WIF*GIWY)+ (W|G*FIWY)RPFP+[(WI|F*G|W¥)- (W I|G*F| ¥ )/(2)]
The Generalized Uncertainty Relation: oPo,” = (AF) * (AG) >= (1/2)|( i[F,G] )| For Hermetian Operators...
*=+F, G*=+G
The uncertainty relation is a very general mathematical property, which applies to both
classical or quantum systems. From Wikipedia: Photon Polarization: "This is a purely For Anti-Hermetian (Skew-Hermetian) Operators...
mathematical result. No reference to a physical quantity or principle is required.” F*=-F G*=-G
The Cauchy—Schwarz inequality asserts that (for all vectors f and g of an inner product Assuming that F and G are either both Hermetian, or both anti-Hermetian...
space, with either real or complex numbers): [(F1G)E=[(( W [(RFGI W) + (W [(£)GF| W)))F + [(( W [@)FG| W) - ( W |(£)GF| ¥ ))/(2i)
oo’ =[(f|f)(glgN>=|(flg)f [CFIg)P =) WIFGI W)+ (WI|GF|WMW(2)P + [()(( ¥ [FG| ¥> - ( W |GF| ¥ )(2))F
But first, let's back up a bit; Using standard complex number math, we have: We can write this in commutator and anti-commutator notation...
;f_aa* 'ti’b [CF 1)l = (&)W {EGH WOY()F + [(2)(( W IIF.GIl W ))(2i)
Re(z) =a=(z +2")/(2) Due to the squares, the (z)'s go away, and we can also multiply the commutator by an ( i?)
Im(z) = b = (z - z*)/(2i)
2z = |z’ = a* + b* = [Re(2)F’ + [Im(2)* = [(z + z*)/(2))* + [(z - z*)/(2i))* [CF] @) = [(( W KF.GY W ))2P + [(( W |i[F.G]| W ))2)?
or
|zI* = [z + Z)/(2)F + [z - Z")/(2i) |CF1 g7 = [(({F.G}))2F + [((i[F.G] ))/2)?
Now, generically, based on the rules of a complex inner product space we can arbitrarily The Cauchy—Schwarz inequality again...
o ofo? =[(F1f)(glg)l >= [(f]g)P=[({F.G})V2P + [((ilF.G] ))2F
z=(flg)z=(glf)

. . Taking the root:
Which allows us to write: ofay? >= (1/2)|(i[F,G] )|

ICF1g)P =[(flg)+ (gl TP +I(flg)-(glf)2)

Which is what we had for the generalized Uncertainty Relation.

*Note* This is not a QM axiom - This is just pure math. At this stage we already see the
hints of commutation and anti-commutation.
It is true generally, whether applying to a physical or purely mathematical situation.
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A’ SRQM:
AL} Heisenberg Uncertainty Principle:

John B. Wilson

ﬁfEﬁ;ggztz?\);ectors S I m u Ita n e O u s Vs S e q u e n t I a I http://scirgglinlj.e<)a:'lg;r/1§®-|/?a‘('3||\-/I(fg(ri?c

Heisenberg Uncertainty { 0%x0% >= (1/2)|<[A,B]>| } arises from the non-commuting nature of certain operators.
[0",X"] = 9[X] = n* = Minkowski Metric
[P¥,X"] = [ihe",X"] = ih[e",X"] = iAN™

Consider the following:

Operator A acts on System |W> at SR Event A: A|Y> —|¥'>
Operator B acts on System |¥'> at SR Event B: B|W'> —|¥">
or BA|W> = B|WY'> = |Y">

If measurement Events A & B are space-like separated, then there are observers who can see {A before B, A
simultaneous with B, A after B}, which of course does not match the quantum description of how Operators act on
Kets

If Events A & B are time-like separated, then all observers will always see A before B. This does match how the
operators act on Kets, and also matches how |W> would be evolving along its worldline, starting out as |¥>,
getting hit with operator A at Event A to become |¥'>, then getting hit with operator B at Event B to become [¥">.

The Uncertainty Relation here does NOT refer to simultaneous (space-like separated) measurements, it refers to
sequential (time-like separated) measurements. This removes the need for ideas about the particles not having
simultaneous properties. There are simply no “simultaneous measurements” of non-zero commuting properties
on an individual system, a single worldline — they are sequential, and the first measurement places the system in
such a state that the outcome of the second measurement will be altered wrt. if the order of the operations had
been reversed.

SR 4-Tensor SR 4-Vector TG
2,0)-Tensor T+ 1,0)-Ta V=V calar . .
(1,1()-TgnsorT~V or T, SR 4-Covestor: OneF(Zm‘Q SRQM: A treatise of SR—QM by John B. Wilson
. . - orentz Scala
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Ai Pauli Exclusion Principle: |
s, REQUIFrES SR for the detailed explanation  ..oneas,

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

The Pauli Exclusion Principle is a result of the empirical fact that nature uses identical (indistinguishable) particles, and this
combined with the Spin-Statistics theorem from SR, leads to an exclusion principle for fermions (anti-symmetric, Fermi-
Dirac statistics) and an aggregation principle for bosons (symmetric, Bose-Einstein statistics). The Spin-Statistics Theorem
is related as well to the CPT Theorem.

For large numbers and/or mixed states these both tend to the Maxwell-Boltzmann statistics. In the {kT>>(g-u)} limit, Bose-
Einstein reduces to Rayleigh-Jeans. The commutation relations here are based on space-like separation particle
exchanges. Exchange operator P, P2 = +1, Since two exchanges bring one back to the original state. P thus has two
eigenvalues ( =1 ) and two eigenvectors { |[Symm> , |[AntiSymm> }

P|Symm> = +|Symm>

P|AntiSymm> = -|AntiSymm>

Spin-Symmetry Particle Type Quantum Statistics Classical { kT>>(g-p) }

spin:(0,1,...,N) Indistinguishable, Bose-Einstein: Rayleigh-Jeans: frome*~ (1 +x +...)
bosons Commutation relation ni=gi/[e&T-1] ni=gi/ [ (&-M)/KT]
symmetric [a,b] = ab-ba = -[b,a] = constant aggregation principle

(ab =ba) if commutes

| Limit as e&WkT >>1 |

Multi-particle Mixed Distinguishable, or high temp, or Maxwell-Boltzmann: Maxwell-Boltzmann:
low density n=g/[es +0 ] ni=gi/[e& ]

1 Limit as e&WkT >>1 1
spin:(1/2,3/2,...,N/2) Indistinguishable, Fermi-Dirac:
fermions Anti-commutation relation n=gi/[e&Wk +1]

anti-symmetric {a,b} = ab+ba = +{b,a} = constant exclusion principle
(ab = - ba) if anti-commutes
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SR — QM 4-Vector SRQM Interpretation

) SRQM:

A 4-Vectors & Minkowski Space Review

P Complex 4-Vectors e
Complex 4-vectors are simply 4-Vectors where the components may be complex-valued

A=A"=(a,a)=(a, ) — (3, )
B=B"=(b,b)=(b, ) — (b, )

Examples of 4-Vectors with complex components are the 4-Polarization and the 4-
ProbabilityCurrentDensity

SciRealm.org

Minkowski Metric g"' — n"' = n, — Diag[1, ] = Diag[1,-1 ],
which is the {curvature~0 limit = low-mass limit} of the GR metric g"".

Applying the Metric to raise or lower an index also applies a complex-conjugation *

Scalar Product = Lorentz Invariant — Same value for all inertial observers
AB=n A'B'=A'B'=AB*= (@”*b® — a*-b) using the Einstein summation convention

This reverts to the usual rules for real components
However, it does imply that A-B = B-A

SR 4-Tensor SR 4-Vector

2,0)-T Thv 1,0)-T VE=V = (VO SR 4-Scalar . .
(1,§)_Tgn:;f%2 i (ARG (TSEmMr sy | SRQM: A treatise of SR—QM by John B. Wilson

0,1)-Tensor V, = (Vo,-v orentz Scala
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SR —- QM

/ SRQM:
i CPT Theorem

o—@

A Tensor Study
of Physical 4-Vectors

The Phase is a Lorentz Scalar Invariant — all observers must agree on its value.
K-X = (w/c,k)-(ct,x) = (wt — k-x) = -®: Phase of SR Wave

o'R=4

We take the point of view of an observer operating on a particle at 4-Position X,
which has an initial 4-WaveVector K. The 4-Position X of the particle,

the operation's event, will not change: we are applying the various

operations only to the particle's 4-Momentum K.

4-Displacement

AR=(cAt,Ar)
Note that for matter particles K = (w./c)T,

where T is the Unit-Temporal 4-Vector T = y(1,B), 4-Position
which defines the particle's worldline at each point. R=(Ct I')
The gamma factor ( y ) will be unaffected in the following operations, J

since it uses the square of B: y=1/Sqrt(1-B-B). [}

For photonic particles, K = (w/c)N,

where N is the “Unit”-Null 4-Vector N = (1,n) and n is a unit-spatial 3-vector.

All operations listed below work similarly on the Null 4-Vector.

ProperTime
Derivative

Do a Time Reversal Operation: T
The particle's temporal direction is reversed & complex-conjugated:

It is only the combination of all three ops: {C,P,T}, or
TT = _T* = ,Y(_1 ‘B)* y p { }

pairs of singles: {CC},{PP},{TT}
that leave the Unit-Temporal 4-Vector, and thus the

Do a Parity Operation (Space Reflection): P Ehese, InvErEm.

Only the spatial directions are reversed:
To = 1(18)

Do a Charge Conjugation Operation: C

Charge Conjugation actually changes all internal quantum #'s:
charge, lepton #, etc.

Feynman showed this is the equivalent of

a world-line reversal & complex-conjugation:

Te = y(-1,-B)*

Matter-like

T=y(1,8)
T-T = y(1,8)*v(1,B) = v*(1% - B-B) = 1: It's a temporal 4-vector

To'To = y(-1,-8)v(-1,-B)* = v*((-1)° - (-B)-(-B)) = y*(1* - B-B) = 1
TeTe = y(1,-8)v(1,-B) = v’(1? - (-B)-(-B)) = v*(1” - B-B) = 1
TrTr = y(-1,8)(-1.8) = ¥*((-1)° - (B)(B)) = v*(1*- B-B) = 1

They all remain temporal 4-vectors

Pairwise combinations:

Tre = Ter = Tc = y(-1,-B)"

Trc=Ter=Te = y(1,-B)

Tec = Tep = Tr = y(-1,B)*, a CP event is mathematically the same as a T event
Trr=T=y(18)

Teer =T =v(1,8)
Teer =T =v(1,8) TeprTepr= T-T = 1
SR 4-Tensor
(2,0)-Tensor T+

Tee=T=y(1,8) Ter=T=7v(1,8)

SR 4-Vector

(1,0)-Tensor V* = V = (V°,v)
SR 4-CoVector: OneForm (0,0)-Tensor S or S,
orentz Scala

(1,1)-Tensor T*, or T,

Phase Connection, Lorentz Invariance

d[R]=n"—Diag[1,-1,-1,-1]

4-UnitTemporal

4-Vector SRQM Interpretation
of QM

SciRealm.org

John B. Wilson
SciRealm@aol.com
http://scirealm.org/SRQM.pdf

4-Gradient
8=(3/c,-V)

Minkowski Metric

4-Acceleration
A=y(cy’,y'u+ya)

ProperTime
Derivative

4-"Unit’Null
N=(1,n

Limitas B — 1

(T7-1
<>

4-UnitSpatial

S=(A-B,n),

Light-like/Photonic
N = (1,n)
N:-N = (1,n)*-(1,n) = (12 - n-n) = (1-1) = 0: It's a null 4-vector

Nc-Ne = (-1,-n)-(-1,-n)* = ((-1)* - (-n)-(-n)) = (1 - n-n) = (1-1) =
Np-Ne = (1,-n)*+(1,-,n) = (1% - (-n):(-n)) = (12 - n-n) = (1-1) = 0
NrNr = (-1,n)-(-1,n)* = ((-1)* - (n)(n)) = (1* - n-n) = (1-1) = 0
They all remain null 4-vectors

Ncer = N = (1,n)
Ncpr*Neer= N-N = 0

Trace[T"] = N T =TH =T
V-V = Vo, VY = [(V)P - vev] = (Vo)
= Lorentz Scalar
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SR — QM 4-Vector SRQM Interpretation

) SRQM: CPT Theorem

- (Charge) vs (Parity) vs (Time)

A Tensqr Study SciRealm@aol.com
of Physical 4-Vectors http://scirealm.org/SRQM.pdf

4-Vector ‘

Lorer]tz _ After (CPT)
Identity Parity-Inversion
Transform 4-\lector Transform
ANv—n'y =1, Bl B=B=(b’,b) NP, R EEARESTEAR by

No mixing Charge

Original

4-\ector
B=B'=(b’b)

) 170
_ (CPT)
Def{F"] -(cTP)
= - =(PCT
=(PTC)
=(TCP)

Identical 4-Vector Parity-Inverted 4-Vector Time-Reversed 4-Vector
A=A"=n" A"=(a”,a’) A=A"=P" A'=(a”,a’) A=A"=T" A'=(a”,a’)
=(a’,a)=A =(a’-a) =(-a’,a)*

Charge-Conjugated 4-Vector BE=re=e))
A=A"=C" A'=(a”,a’)
=(_aO,_a)*

Lorentz
Charge-Conjugation

Lorentz Lorentz
Identity Parity-Inversion
Transform Transform
A\ —n¥, N —P¥,

Transform
e v_’Cp v

Classical SR Time-Reversal neglects spin and charge.
SRQM includes these effects. After (PP) or (TT) or (CC)

Then one gets (CC),(PP),(TT), & (CPT) transforms Original 4-Vector Identity and Space-Parity are Unitary
all leading back to the Identity (1). A=A'=(a’,a) Time-Reversal and Charge-Conjugation are Anti-Unitary.

SR 4-Tensor SR 4-Vector T Wo— TH —
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar V_VT;a\(;?[TV]V _= ?("V";I-)Z -_V-rvij ; 2\-/0 ?
(1,1)-Tensor T or T,* | SR 4-CoVector:OneForm K (0.0)-Tensor S or S, rl“‘l’_ & Scal o
(0,2)-Tensor T, (0,1)-Tensor V, = (Vo,-V) Lorentz Scalag = Loren calar



mailto:SciRealm@aol.com
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SRQM Transforms: Venn Diagram
Poincaré = Lorentz + Translations

SciRealm.org
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Poincaré Transformation Group aka. Inhomogeneous Lorentz Transformation
Lie group of all affine isometries of SR:Minkowski D (preserve quadratic form ny)
General Linear,Affine Transform X* = A¥, XY + AX" with Det[A",] = +1
(6+4=10)
Lorentz Transform Translation Transform -AngularMomentum M* = X* A P¥ = X¥PY - X'P*
4-Tensor {mixed type-(1,1)} 4-Vector enerator of Lorentz Transformations (6)
- N I-rv_’RI-llv + /\pvv_’Bp'v
Discrete Continuous Discrete Continuous
Time-reversal 4-LinearMomentum P*
= Generator of Translation Transformations (4)
O SpatialFlipCombos = { AX"—(cALO) + AX"—(0,Ax)
_) -
time parity Det[N‘:v] = +1 for Proper Lorentz Transforms
anti-unitary Xlylz} — -iXly|z} ot Temporal Det[A¥,] = -1 for Improper Lorentz Transforms
' ' unitary otation . _
Parity-Inversion P Lorentz Matrices can be generated by a matrix M
: At with Tr[M]=0 which gives: THA¥ J={-0..+20)
Identlty L) Xy | Xz | yz { N=e*M=e" (+9J B ;K) } =I_|:oren¥2:|;ra;sfol:r;’1 Type
r—-r : Spatial {(N'=(Ee*"M)'=e M}
spac:parity ) eanelon WYY SR YRY SR:Lorentz Transform
unitary Jue bl Boost a,[R"] = oR"/OR" = \¥,
unitary 008 Ax | Ay | Az M = +0-J - TK AP, = (NP S AVAS, = P, = 6
B[] = eN(-LK) IR AL IR
harge-Conjugation R[6] = e7(+8-J) N\'s = Neg
tx |ty |tz A=erM=eA (+0-J - TK 1@’@
R R* CPT Symmetry
> R,9—>-q {Charge} Rotations Ji = -em\M™/2, Boosts Ki = Mjp
charge parity : .
ISk {Partiy} Isotropy Homogeneity
anti-unitary {Time}  ({same all directions} {same all points} R— -R*) ] 0 : ply 9— -q
S d < eloerg erpretatio
o o O odereo ore a0 O Ode



mailto:SciRealm@aol.com

SR — QM 4-Vector SRQM Interpretation

) Hermitian Generators °
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- NOether's Theorem - Continuity &%
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The Hermitian Generators that lead to translations and rotations via unitary operators in QM...

These all ultimately come from the Poincaré Invariance — Lorentz Invariance that is at the heart of SR and Minkowski
Space.

Infintesimal Unitary Transformation
U(G) =1+ieG

Finite Unitary Transformation
U.(G) = e?(iaG)

letG =P/h=K
let a=Ax

Uax(P/M)W(X) = er(iAx-P/h)¥(X) = eM(-Ax-d)¥(X) = W(X - Ax)

Time component: lAJéct(P/h)LP(ct) = eMIAtE/h)W(ct) = eM(-At 0)W(ct) = W(ct - cAt) = cWP(t - At)
Space component: Ua(p/h)W(x) = e?(iAx-p/h)¥(x) = eM(Ax-V)¥(x) = W(x + Ax)

By Noether's Theorem, this leads to 8-K = 0
We had already calculated

(0-9)[K-X] = ((a/c)’ - V-V)(wt - k-x) = 0
(0-9)[K-X] = 0-(9[K-X]) =o-K =0

Poincaré Invariance also gives the Casimir invariants of mass and spin, and ultimately leads to the spin-statistics theorem
of RQM.
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SR — QM A S RQ M : 4-Vector SRQM Interpre;?téo'\r/l’n
/) QM Correspondence Principle:

o—@

u = John B. Wilson
.. Analogous to the GR and SR limits ..o

Basically, the old school QM Correspondence Principle says that QM should give the same results as classical physics in
the realm of large quantum systems, i.e. where macroscopic behavior overwhelms quantum effects. Perhaps a better way
to state it is when the change of system by a single quantum has a negligible effect on the overall state.

SciRealm.org

There is a way to derive this limit, by using Hamilton-Jacobi Theory:
(ihdr)|W> ~ [V - (hV1)?2m, ]|W> : The Schrodinger NRQM Equation for a point particle (non-relativistic QM)

Examine solutions of form W = W.e/(id)= W,e”(iS/h), where S is the QM Action
W] = (i/h)Wa[S] and o,[W¥] = (i/n)Wo,[S] and VW] = (iM)WYV?[S] - (W/M?)(V[S])*

(ih)(I/M)WALS] = VW - (h?*/2m,)((ilh)¥V?[S] - (Y/M*)(VI[S])?)
(i)(I)Wa[S] = VW - ((ih/2m,)¥V?[S] - (W/2m,)(VI[S])?)
A{S] = -V + (ih/2m.)V?[S] - (1/2m,)(V[S])?

a[S] + [V+(1/2m,)(V[S])? ] = (ih/2m,)V?[S] : Quantum Single Particle Hamilton-Jacobi
a[S] + [V+(1/2m,)(V[S])* ] = 0 : Classical Single Particle Hamilton-Jacobi

Thus, the classical limiting case is:
V] << (V[®])?

AVZ[S] << (V[S]y

AV-p << (p-p) V-k << (k'k)
(PMV-p << (p-p)

SR 4-Tensor SR 4-Vector

2,0)-Tensor T+ 1,0)-Te W=V = (V° SR 4-Scalar ; :
(1,1( )-Tgnsor T*, or T, SEORPIARIEY] (TNEME Y | SRQM: A treatise of SR—QM by John B. Wilson

0,1)-Tensor V, = (Vo,-v orentz Scala
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g QM Correspondence Principle:

~—+ Analogous to the GR and SR limits
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a[S] + [V+(1/2m,)(V[S])? ] = (ih/2m,)V?[S] : Quantum Single Particle Hamilton-Jacobi

a[S] + [V+(1/2m.)(V[S])* ] = 0 : Classical Single Particle Hamilton-Jacobi
Thus, the quantum—-classical limiting-case is: {all equivalent representations}
hvz[saction] << (V[Sactlon])2 VZ[CDPhase] << (V[Q)Phase])z

hv-V[Saction] (V[Sactmn]) v-V|:q>phase:| << (V[q)Phase])z

nV-p << (p'p) Vk << (k'k)

(PHV-p << (pp)

with

P= (E/C’p) = -a[Saction] = -(atlc’-v)[saction] = (-atlc’v)[sacﬁon]
K= (wick) = -2, 1=-@/c -V, 1= (3/cVIP, ]

It is analogous to GR — SR in limit of low curvature (low mass), or SR — CM in limit of low velocity { |v|<<c }.
It still applies, but is now understood as the same type of limiting-case as these others.

*Note* The commonly seen form of (c—<,h—0) as limits are incorrect!

¢ and h are universal constants — they never change.

If c—<, then photons (light-waves) would have infinite energy { E = pc }. This is not true classically.

If h—0, then photons (light-waves) would have zero energy { E = hw }. This is not true classically.
Always better to write the SR Classical limit as { |v|<<c }, the QM Classical limitas { VA [® ]1<<(V[®_ 1}

phase phase

Again, it is more natural to find a limiting-case of a more general system than to try to unite two separate theories which may or may not
ultimately be compatible. From logic, there is always the possibility to have a paradox result from combination of arbitrary axioms, whereas
deductions from a single true axiom will always give true results.

SRQM: A treatise of SR—QM by John B. Wilson
orentz Scala

SR 4-Tensor
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v)
(1,1)-Tensor T*, or T, § SR 4-CoVector: OneForm

SR 4-Vector



mailto:SciRealm@aol.com
mailto:SciRealm@aol.com

SR — QM 4-Vector SRQM Interpretation

* SRQM: 4-Vector Quantum Probability
. Conservation of ProbabilityDensit

of Physical 4-Vectors
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Conservation of Probability : Probability Current : Charge Current
Consider the following purely mathematical argument
(based on Green's Vector Identity):

o-(fag]l-0alf]g)="fao-alg] - 0-dlf] g
with (f) and (g) as SR Lorentz Scalar functions

Proof:

o-(falg]-alflg)
“(folgl)-o-(alfl9)

0
(f 8-a[g] + aIf]-a[g]) - (e[f]-a[g] + &-a[f] 9)
fa-ag] - o-alfl g

We can also multiply this by a Lorentz Invariant Scalar Constant s
s (fo-a[g] - -alf] g) = s a-(f alg] - o[f] g ) = a-s(f a[g] - alf] g )

Ok, so we have the math that we need...

SR 4-Tensor
(2,0)-Tensor T+

SR 4-Vector
(1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar
(1,1)-Tensor T* or T,* | SR 4-CoVector:OneForm (0.0)-Tensor S or S,
, orentz Scala

Now, on to the physics... Start with the Klein-Gordon Eqn.
9-9 = (-imec/h)? = -(moc/h)?
9-9 + (m,c/h)* =0

Let it act on SR Lorentz Invariant function g
0-9[g] + (msc/M)’[g] = O [g]

Then pre-multiply by f

[fle-a[g] + [f] (m.c/h)?[g] = [f] O [g]

[fle-a[g] + (moc/M)[fllg] = 0

Now, subtract the two equations

{[f] 8-a[g] + (moc/n)?[fl[g] = O} - { &-alfllg] + (m.c/n)’[f][g] = O}
[f] 8-a[g] + (mec/nY’[f][g] - &-8[f][g ]- (Mec/n)?[f][g] = O

[f] 0-a[g] - 2-2[f][g] = O

And as we noted from the mathematical Green'’s Vector identity at the start...
[f] 2-0[q] - @-alf][g] = &-(fa[g] - 2[f|g) =0

Therefore,
so-(fag]l-aflg)=0
o-s(falg]-alflg)=0

Thus, there is a conserved current 4-Vector, Jorob = S( f 0[g] - 9[f] g ), for which 9-Jpron = 0,
and which also solves the Klein-Gordon equation.

Do similarly with SR Lorentz Invariant function f
0-9[f] + (mec/N)’[f] = O [f]

Then post-multiply by g

0-9[fl[g] + (moc/M)?[fllg] = O [fllg]

0-alfllg] + (m.c/h)?[flig] = 0

Let's choose as before (@ = -iK) with a plane wave function f = ae’-i(K-X) = y,
and choose g = f* = ae?i(K-X) = y* as its complex conjugate.

At this point, | am going to choose s = (ih/2m,), which is Lorentz Scalar Invariant, in order to make
the probability have dimensionless units and be normalized to unity in the rest case.

SRQM: A treatise of SR—QM by John B. Wilson
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4-ProbabilityCurrentDensity, a.k.a. 4-ProbabilityFlux
Joon = (€0 ) = (IM2mo)(wrolw]-o[w*]w) = (P, 0)U = (P

prob

with 4-Divergence of Probability { 3-meb

The reason for s = (ih/2m,) becomes more clear by examining our diagram:
Start at the 4-Gradient and follow the arrows toward the 4-ProbabilityFlux M- >
You immediately see where the (ih/m,) factor comes from.
The ppob_o is then a function of the y’s divided by 2.

prob0 prob

4-\WWaveVector
K=(w/c,k
K-K=(w./c)?

o-(folg]l-o[fl g)="fa-9[q] - 2-9[f] g: Green’s Vector Identity K-K=(m.c/h)’

9-9 + (m,c/h)? = 0: KG RQM Eqgn

Wave Velocit

. Einstein
4L—'\_/eI00|ty ngup*vphase=c2 de Broglie
@ _Y(C’u) ( R ) P =hK
Rest Number $ E=mc? @ - >
Density 0

Prrove = X*‘If) 4-Momentum
1/l [2 P=(mc,p)=(E/c,p)
vl Born @ EM

Probability Rule

LP-P=(m,c)*=(EJ/c

- - -
4-NumberFlux

.t -

N=(nc,n)=n(c,u)
4-ProbCurrentDensity

4-ProbabilityFlux
J=Pl 1)
=(in/2mo)(w*olwl-oly*Iw)

4-ChargeFlux
4-CurrentDensity

J=(pc,j)=p(c,u)

o>

©
prob:(
Corr;p\ex N-N=(n°c)2

Jprob'Jprob:(ppmboC B a'J =O

Conservation of

0-N=0 : 3'Jprob=

Conservation of

) 4-Vector Quantum Probability
4-ProbabilityFlux, Klein-Gordon RQM Eqn

a2 7(C:1) = (¥R 0)(C:1) = (P

prob

= 0 } by construction via Green’s Vector Identity and the Klein-Gordon RQM Eqn.

4-Vector SRQM Interpretation
of QM

SciRealm.org
John B. Wilson
SciRealm@aol.com
http://scirealm.org/SRQM.pdf

0-9=(9, c)y*-V-V
d’Alembertian

)(©0)

9-9= -(moc/h)
Klein-Gordon

4-Gradient
a=(at/c,-V)

~.[K‘R
..[-d)hase] Complex A
: Plane-waves
Q) K=io

Examine the temporal component, the Relativistic Probability Density
pprob n (ih/zmocz)(w* at[l'p]'al[l'p*] ll»')

Assume wave solution in following general form:

{w=Af[K e(-iwt) }

{y*=A"f[K]" e(+iwt) }

then

{ 2lw] = (-iw)Af [k] e(-iwt) = (-iw)y }

{ W] = (+iw)A™ f [K]* e(+iwt) = (+iw)y™ }

then

B, e = (I/2Mec?)(w* 8[y] - Aw*] )

o = (N2MC?) (W)™ - (+iw)y'y)

= (ih/2mC?)((-2iw)y*w)

= (nw/moc?)(w*w)

= (Frywo/moc®)(Ww*y)

By = NWW) = ()P, 10)

Finally, multiply by charge (q) to get standard SR EM
4-CurrentDensity = 4-ChargeFlux = J = (cp,j) = qJ

prob a q(cpprob’jprob)

Particle # : Probabilt
SR 4-Tensor

(2,0)-Tensor T+
(1,1)-Tensor T*, or T,

SR 4-Vector

(1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar
SR 4-CoVector:OneForm [k (0,0)-Tensor S or S,
, , orentz Scala

Existing SR Rules
Quantum Principles

Trace[T"] = N T =TH =T
V-V = Ve VY = [(VO)? - vev] = (Vo)
= Lorentz Scalar
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) 4-Vector Quantum Probability
44, 4-ProbabilityFlux, Klein-Gordon RQM Eqn .......
sfrﬁ;;;;tmm with Minimal Coupling

4-ProbabilityCurrentDensity, a.k.a. 4-ProbabilityFlux aj;ﬁ;:;iﬁ:
J =0 i )= (h2mo)(wralyl-alw ) = (o, U = (B, o(c:1) = (1R, o)(e:1) = (B, )(C,1) o= {machy
ein-Goraon

with 4-Divergence of Probability { d-J
If we include minimal coupling:

= 0 } by construction via Green’s Vector Identity and the Klein-Gordon RQM Eqn.

prob

4-Gradient
e * * * o= 6/c,—V
Joon = (C0, o)) = (iR2mo)(wra[yl-o[w™]w) + (a/mo) (W w)A M- > | Complex .
Start at A on the chart 4-WaveVector Plane-waves
Follow past (q) factor to get to Q = K=(wlc, K=ia
Minimal Coupling allows passage back to P with no factors m
Follow back past (1/m,) to get to U Wi An alternate way would be to take A to U via the direct route:
Velocit *
Follow past Born Rule (y*y) @ W OCC' 4 Einstein + l(wt':zil(pTO)(wldqf)Ad -
Now have the additional factor: ERELY Youp Vorse ‘ﬂb de Broglie which wou'd e
+ (g/mo)(W*y)A U=y(c,u) (h ¥ p =pK P — (NWW) + (N(@/Pro)(W W) = (V)1 + Po/Pra](W* )
@ E=mc? with potential due to particle (¢,) typically much less than the
Rest Number, o -
Densit 0 potential due to the whole field (¢r)
¥ Porope = X*W) 4-Momentum (o) << (¢ro)
P=(mc,p)=(E/c,p)
=Iodw)l® Born @ ‘
e . robaviity Rue (@ EM . N
4-NumberFlux ¥ - > [IH44- » SR VomentumField
N=(nc.n)=n{c.u) - 4—EMVectorPotentiaI P=(E/c
4-ProbCurrentDensity 4_%3?:;%%2'#;,[ EM Charge LH ~(E/c.p,)
4-ProbabilityFlux " Q- -urrentbensity AA=(¢o/c)’ I q ) L Q-Q=(U./c)* ]
J o= Jo)=p () J=(pc,j)=p(c,u
. prob prob I w .
=(iv/2mo )(walyl-alw*y)+ (a/mo)(W*w)A . '
Complex a-J=0
| N-N=(n.c)? Conservation of €
9-N=0 : 9"Jprob=0 R Jyron'Jprav=(P_oC) Charge
Conservation of 2 L

Particle # : Probabilt
SR 4-Tensor SR 4-Vector

(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar
(1,1)-Tensor T*, or T,¥ | SR 4-CoVector: OneForm (0,0)-Tensor S or S,
, , , orentz Scala

nv] = W = TH =
Existing SR Rules TracelT ] = e
— V-V = Vi, V= (V)7 - vev] = (Vo)
Quantum Principles = Lorentz Scalar
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SR — QM 4-Vector SRQM Interpretation

A 4-Vector Quantum Probability

(@ — N t - L - - t SciRealm.org
John B. Wil
A Tensor Study eW O n I an I m I SCiReZ'r?']@aO'.ICSOOFE
of Physical 4-Vectors http://scirealm.org/SRQM.pdf
4- Probab|I|tyCurrentDenS|ty = (c (. jpmb) = (ih/2mo)(w*o[w]-d[w*]w) + (a/mo)(w*w)A

Examine the temporal component:
Py = (IN/2MC?)(W* B[W1-0{W*] W) + (/M) (W w)(@/c?)
P = MWW) + (1)(AP/MoC?)(W ) = (7)[1 + aPo/Eo](W*y)

prob

Typically, the particle EM potential energy (q@.) is much less than the particle rest energy (E.), else it could generate new particles.
So, take (q@. << E,), which gives the EM factor (q@./Eo) ~ 0

o) for |v|<<c

Now, taking the low-velocity limit (y — 1), p Py = =y[1 + ~0l(w*p), p_. — (WP*W) = (p

prob p rob

The Standard Born Probability Interpretation, (y*y) = (pprob), only applies in the low-potential-energy & low-velocity limit

This is why the {non-positive-definite} probabilities and {|probabilities| > 1} in the RQM Klein-Gordon equation gave physicists fits,
and is the reason why one must regard the probabilities as charge conservation instead.

The original definition from SR is Continuity of Worldlines, a-meb = 0, for which all is good and well in the RQM version.
The definition says there are no external sources or sinks of probability = conservation of probability.

The Born idea that (pprob) — Sum[(p*y)] = 1 is just the Low-Velocity QM limit.
Only the non-EM rest version (pprobo) = Sum[(y*y)] = 1 is true.
It is not a fundamental axiom, it is an emergent property which is valid only in the NRQM limit

We now multiply by charge (q) to instead get a
4-"Charge”CurrentDensity J = (cp, j) = qumb = q(cppmb, jprob), which is the standard SR EM 4-CurrentDensity

SR 4-Tensor

SR 4-Vector

(o,o?ﬁetssoﬁaslagr 5y | SRQM: A treatise of SR—QM by John B. Wilson

orentz Scala

(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v)
(1,1)-Tensor T*, or T, § SR 4-CoVector: OneForm
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SR — QM 4-Vector SRQM Interpretation

) SRQM 4-Vector Study:
LA The QM Compton Effect
oo e Compton Scattering s SR

Electron e initial ~ Photon y initial Compton Scattering Derivation : Compton Effect SR=n"" | 4-Gradient
4-Momentum of e’ P-P = (m.c)? g?nerally —>20 for phzotonsA (mM,=0) i ) Minkowski Metric 4| 9=(8/c,-V)
P_=(m_c,p_)=(E_/c.p,) K,=(w /ck ) Pphm-Pphotz =h K1-K2 = (h w1(t)2/c )(1- n1-n2) = (h w1w2/c )(1-cos[a]) ] I
TEE b PP TP = (WO)(1A)-(ElCP) = (wie)(Elo - Ap) = (WE/) = (Mwm.) (RNl RESSIIY @t
P + =P +P :4-MomentumConservation in Photon-Mass Interaction R=(ct r) T[..
. Ehjt mass phot mass 5 |
4-Momentum of = v o—p -
a P =(m Om:nEu;n ° Y: hK Pphot + Pmass -P phot =P mass'rearrange Wave Velocity .
i ( C:P i) ( /CP i) (R) i ' 2 ' 2 * 3 4-Ve|OC|ty
ST e 2 (Pphot + Pmass -P phot) =(P mass) :square to get scalars Vo Vanase— C U=
4-TotalMomentum of e+y Initial P, P +2P -P -2P P +P P -2P_-P' +P'_ P )=(P' ) =y(c,u)
P =(E./ =(H/ phot  phot phot mass phot phot mass mass mass phot phot phot mass
w=(Edlepr)=(Hle.p,) O 0P P 2P P (o= 2P P +0) = (meo)
=Pei+p_ i P P phot rPnass P' phot_ Pphot .P' mass phot K-K=(wo/c)2 m_ ) > Energy:Mass
v" phot- mass- mass- phot B phot phot =(moc/(h))2 E= mC2
(=) Electron:Photon (hwmo) - (hw'ms,) = (MPww'/c?)(1 - cos[a]) 4-WaveVector
nerecion I (w-w)(ww) = (V1 - coslal) K=(w/c,k)=(1/cF,A/)
fe+ (1/w' - 1/w) = (A/m.c*)(1 — cos[e]) : i P-P=(m,c)?
4-|T=Ot=a(||'¥I oén e?i?ﬂ/é’ e) ! {wo=0} — {K-U=0}  {Kiis null} Q&S ®--->
i T/_PYp:-P Pr A = (X - X) = (Wmoc)(1 — cos[a]) = A (1 — cos[a])
ot The Compton Effect:Compton Scattering Einstein ° 4-Momentum
4-Momentum of y : de Broglie P=(mc,p)=(E/c,p)
with P =hK {m,=0} & {P-U=0} < {P is null}

P,=(m,C.P,)=(E,/c.p )= (MK, A=A /21 = (h/m.c) = Reduced Compton Wavelength
A =(h/mc)=C ton Wavelength t t- length, but th length of a phot
@@ﬁ ®» A, =(h/mcc) = Compton Wavelength (not a rest-wavelength, but the wavelength of a photon Consai of®

with the energy equivalent to a massive particle of rest-mass m,) 4-TotalMomentum
5 i’Mome”tL_”TEOf € 4-V¥a\:(aa)/eccto|: ‘;fV Calculates the wavelength shift of a photon scattering from an electron (ignoring spin) 4-TotalMomentum
—(m.c.p )=(E jcp,) o (W, /CK,, Proves that light does not have a “wave-only” description, photon 4-Momentum required P.=(E./c,p.)=(H/c,p.)
Electron e final Photon Y final E/w = ’YEO/’Y(.OO =E/w, =" Kphoton = ((.L)/C)(1 ,n) = null {(A))( =vA = C} for photons T T T T

SR 4-Tensor

W] = W= TH =
(2,0)-Tensor T+ Trace[T™] = nu T =T

Existing SR Rules
. V-V = V", V' = 0)2 _ vuy] = o0 2
Quantum Principles Vi ZpLorerEt(Z %ca?;;'] (Vo)

(1,1)-Tensor T*, or T,

SR 4-Vector
(1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar
SR 4-CoVector:OneForm [k (0,0)-Tensor S or S,
, , orentz Scala
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SR —- QM

. SRQM 4-Vector Study:
A The QM Aharonov-Bohm Effect
ATensor Study QM Potential Aq)pot - _(q/ h ).[ pathA.dX SciReaim@aol.com

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

AB Potential
Aharonov-Bohm Effect YR, A-dX=(pdt-a-dx paceTime S yrepm—
Quantum EM Potential —_— o-X=4 __
The EM 4-VectorPotential gives the Aharonov-Bohm Effect. 4-Displacement BireEs Minkowski Metric 9=(9/c,-V)
CDpot = -(g/h)A-X = -KPOt-X AX=(cAtAx) Bropert'_l'ime u-a[..
dX=(cdt dx erivative it ]
i i i 4-Position

gzbtaklzn? (’i:]/?])txffg;?ntlal... Wave Velocity |

it Vgroup*vphase= Cz 4'Ve|OCity

U=y(c,u)
over a path... /
— Rest Ang est Scala

ACD|oot = '[pathdcbpot Frequency Potential
A(Dpot = -(q/h)fpathA'dX 4-WaveVector Rest IH{4- »
ACDp = —(q/’ﬁ)fp HL(@/c)(cdt) - a-dx] K=(w/c,k)=(w/c,wilv_ ) Energy:Mass _

lo] a = m02 =
AD = -(q/h)]__ (@dt - a-dx) @ A(oca)

pot path K X=(wt-k x) EMQ -

, . =Kayn X+Kpor X Charge I.l_ >

Note that both the Electric and Magnetic effects =K-X+(q/R)A-X Q> hil
come out by using the 4-Vector notation. =(wt-k-x)+(q/h)(pt-a-x) (1/h) 4-Momentum 4-PotentialMomentum

=Kdyn'x'i'Kpot'X By P=(mC,p)=(E/C,p) Q=(U/C'q)=qA
n . = _ = -0 namicT -O otential Einstein ini
Electric AB effect: A® (q/h)fpath(cpdt) i phas:* il o [+ ?;A(',r:,';ﬁg
Magnetic AB effect: A®_ =+ (q/h)] _ (a-dx) D P =hK P+Q
S i 4-WaveVectorincField 4-MomentumIncField
Proves that the 4-VectorPotential A is more fundamental than A R A ‘( (1/h )’ P=(E/c,p)=P+Q=P+qA
e and b fields, which are just components of the Faraday EM Tensor

SR 4-Tensor

SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V* = V = (V°,v) SR 4-Scalar
1,1)-Tensor T*, or T," || SR 4-CoVector:OneForm K (0.0)-Tensor S or S,
0,2)-Tensor T,, 0,1)-Tensor V, = (Vo,-V orentz Scala

Trace[T"] = N T =TH =T
V-V = Vo, VY = [(V)P - vev] = (Vo)
= Lorentz Scalar

(

Existing SR Rules
Quantum Principles
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SR — QM 4-Vector SRQM Interpretation

SRQM 4-Vector Study:
Ai The QM Josephson Junction Effect = SuperCurrent
EM 4-VectorPotential A = -(n/q)9[AD ] o Wison

SciRealm@aol.com

of Physical 4-Vectors http://scirealm.org/SRQM.pdf
| ——— AB Potential
osephson Effec A-dX= .
AnarenofEg dX—((pdt-a o . "X ]=n" 4-Gradient
The EM 4-VectorPotential gives the Aharonov-Bohm Effect. QuantUmiBHN e el OR=2 B \linkowski Metric | 2=(8/c,-V)
Phase ® =-(g/h)A-X=-K -X 4-Displacement . -
pot pot AX=(cAt,Ax) ProperTime U3
: : X= dt’ d Derivative [-]
Rearrange the equation a bit: dX=(cdt,dx d/dt[..]
A-AX = -(h/q)ACme X=(ct,x VWanVVelicgz/ S—
d/de]A-AX] = didd-(W/q)AD_ ] = d/dr[A]-AX + A-d/dt[AX] = d/dr[A]-AX + A-U g L_J=$((c):C|IJ§/
Assume that ( d/dt[A]-AX ~0)  Which explains Josephson Effect criteria : Rest Ang ggtsetnstig?la
[A-U] = d/de[-(W/q)AD_ ] AX ~ 0: small gap Frequency
[U-A] =(U-8)[-(WQ)AP_] d/dt[A] ~ O: “critical curr('ar;t’; & no voltage 4-WaveVector Rest [IH{4- »
[A] =-(h/q)(@)AD ] d/dt[A]-AX ~ orthogonal: ?7 K=(w/c,k)=(w/c,whlv, Energy:Mass 4-VectorPotential |
. pot: E = mc?
A =-(h/q)o[Ad_] A = (h/q)K; K = (w/c k) = (g/h)A = (g/h)(¢/c,a)
(¢/c,a) = -(hq)(d/c,-V)IAD, ] Chalrzl\ga Rl
=Kayn"X+Kpor X ®---» 9 ‘Q |-} -
e (uot= t)é:((g//g))?¢:(a X) % 4-Momentum 4 PotentiaIMontum
EM ScalarPotential ¢ = -(h/q)(3)[AD ], w = (g/h SEELE -ar 1/n - )
¢ = -Pa)NAAP, I w = (aM)e =Kayn X+Kpor P=(mc,p)=(E/c.p) |  Q=(Ulc,q)=qA
= 'q)dynamic+ 'q)potential Einstein Minimal

If the charge (q) is a Cooper-electron-pair: { g = -2e } = -®t paco de Broglie ° Coupling
I = P =hK
Voltage VI(t) = o(t) = (/2e)(@/etA®_ T AngFreq w = -2eV/h PG

4-WaveVectorincField .
This is the superconducting phase evolution equation of the Josephson Effect K=(w/c,k)=K+(q/n)A ‘@ 4-MomentumincField

P=(E/c,p,=P+Q=P+qA

(h/2e) is defined to be the Magnetic Flux Quantum @,

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ §(1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar
(1,1)-Tensor T*, or T," | SR 4-CoVector: OneForm (0,0)-Tensor S or S,
, , , orentz Scala

1/h

Trace[T"] = N TV =TH =T
V-V = Vi, VY = [(V)? - vev] = (V)2
= Lorentz Scalar

Existing SR Rules
Quantum Principles
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SR — QM S RQ M Sym m Etl"i es : 4-Vector SRQM Interpre;?gol\r/l’n

\ : : e :
A; Hamilton-Jacobi vs Relativistic Action

o—e Josephson vs Aharonov-Bohm SeiReamorg

A Tensor Study

of Physica &-Vectors Differential (4-Vector) vs Integral (4-Scalar) iwiccreamorsham s

Differential Formats : 4-Vectors : HJ Notice the Symmetry: Integral Formats : 4-Scalars : Action

SR Hamilton-Jacobi Equation SR Action Equation

Pr=P+qgA=P+Q = 'é[ASaction] = -0[NADynase]

> AS.cion = 'IpathPT -dX = 'Ipath(P+qA)'dX = '.[path(P+Q)'dX
= 'a[h(Achhase,dyn"' Aq)phase,potential)] =

hAchhase = h(Aq>phase,dyn + Aq)phase,potential

Dynamic Part

4-M0mentum(free part) ACtion(free part) /0

P = 'a[ASact,dynamic] ASact,dynamic = hAq)phase,dynamic
-a[hA(Dphase_dynamic] = -,[path(P)'dX 1-TotMomentum Conservation

(7)) P, = (P+Q) = (P+qA)
Minimal Coupling

4-WaveveCt0I' SR Phase(free part) P = (PT'qA) = (PT'Q)

K = 'a[ASact,dync]/F| Aq)phase,dyn = Asact,dyn/h

Potential Part -a[A(Dphase’dynamic] = 'J.path(K)'dX Potential Part

4-PotentialMomentum Action potential part)
Q = qA = 'a[ASact,potentiaI] < @ ASact,pot = IﬁAq)phase,potential =
'a[hAq)phase,potential] _Ipath(qA).dX = _Ipath(Q).dX

Dynamic Part

4-TotMomentum Conservation
P, = (P+Q) = (P+qA)

Minimal Coupli ?
N o)

Technically, the standard Josephson Junction uses just
the temporal part { A = (¢/c,a) } & Cooper-pair-electrons
{q=-2e}

giving V(t) = @ = (h/2e)d/ot[ADpe].

Josephson Junction Relation There should be a spatial part as well.
= -(7/Q)A[ADscrental] u PR Aharonov-Bohm Relation

- '(1/q)a[ASact pot] @ Aq)potential = '(q/h)jpathA'dX

= '(1/h)IpathQ'dX
SR 4-Tensor SR 4-Vector .
(2 0)-Tensor T (1 0)-Tensor A (V°,v) SR 4-Scalar Existing SR Rules
(0. Olrziqioécig S Quantum Principles

=ASact,pot/];.I
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SR — QM 4-Vector SRQM Interpretation

) SRQM Symmetries:
A ¥ Schrédinger Relations

John B. Wilson

st GycClic Imaginary Time < Inv Temp wesnmssis

=[[P,-dR

actlon

4-Gradient __'[[PT Uldz

f}_WaveVector 3=9r=0/8R,="=(3/c,-V/) =-J[(H/c,p,)v(c,u)ldt
KK S(Wiek)S (‘*’O/C) —(8/c,-9,-0,,-0,) =-Jly(H-p,ulde
=(9/cat,-0 ax, -2l ay, 0l oz) =-J[Ho]dt
[1/m]

.’ | Einstein-de Broglie: P = hK — { : }
- Complex Plane-Wave: K = i0 — { : }

Schrédinger Relations: P = ihd — { : }

Wick Rotation: R = -iRim — { : }
CyclicTemp: Rim = hO— { : }

4-Position 4-lmaginaryPosition Covariant 4-ThermalVector
R=R"=(ct,r)=<Event> EEEJELEL I peee wee 4-Inverse TemperatureMomentum
—(ct,x,y,2) Wick Rotation Rimn=Rin"=i(ct,r) ~ Inv Temp 0 ©"=(6°0)= (c/kBT u/kBT) (6./c)U
alt. notation X=X" [EASRLEY =(ict,ir)=(cr,ir) Rim = O

Boltzmann Distribution
P-O = (E/c,p)-(c/ksT,0)

= (E/keT-p-8) = (Eo/keT,)

SR 4-Tensor Trace[TpV] - r]va”V = Tup = T

2,0)-Tensor T+ - - -
( r Note that the temperature here is relativistically direction-specific, unlike in the V-V =Vin, V' = [(Vo)2 -vv] = (Voo)2

classical use of temperature. = Lorentz Scalar
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4-Vector SRQM Interpretation

b o SRQM Symmetries:
o— Wave-Particle

A Tensor Study SciRealm@aol.com
of Physical 4-Vectors http://scirealm.org/SRQM.pdf

P-P = (m.c)’= (Ed/C

4-Momentum Treating motion like a particle @
- i P=(mc,p)=(E/c,p) Moving particles have a 4-Velocity

P= _ ) ) : ) . ’
[P-dR = S, ionee Rest Mass:Energy P actionfree 4 Momgntum |s.the negative 4-Gradient of the SR AC|on (S)
Emsteln Hamilton-Jacobi SpaceTime
= E=yEq=ymac’=mc @ P=-oS,, ] A Y oR=4
Y ®----Pp action,free ."l Dimension
4-Position I 4-Velocity 4-Gradient W SR =" Diagl1 -1 -1 -1
R=(ct,r) a=(at/c,-V)H(at/c,-ax,-ay,-az) Minkowski Metric

d’Alembertian
= (8,/c)?-V-V = (8./c

ProperTime

N\ ¥ U-9=d/dT=yd/dt

Wave Velocity Q qDphase,plan ’

* =

K-dR = - group * phase K= -3[¢phase'plane] Derivative
phase,plane RestAngFrequency 4A-WaveVector WaveVector Gradient
N\ | K=(w/c,k)=(wlc,whilv Treating motion like a wave W _____ >
K=-9[® ] Moving waves have a 4-Velocity
h

phase,plane

4-WaveVector is the negative 4-Gradient of the SR Phase (®P)

See Hamilton-Jacobi Formulation of Mechanics See SR Wave Definition

for info on the Lorentz Scalar Invariant SR Action. for info on the Lorentz Scalar Invariant SR WavePhase.

{P = (E/c,p) =-9[S] = (-d/cat[S], )} {K = (w/c,k) = -9[D] = (-d/cat[D], )}

{temporal component} E = -0/dt[S] = -9[S] = | {temporal component} w = -9/dt[®] = -3 [D]

{ component} { component}

**Note** This is the Action (Sacion) for a free particle. **Note** This is the Phase (®) for a single free plane-wave.
Generally Action is for the 4-TotalMomentum P+ of a system. Generally WavePhase is for the 4-TotalWaveVector K; of a system.

SR 4-Tensor SR 4-Vector

(2,0)-Tensor T+ (1,0)-Tensor V* = V = (v",v) Existing SR Rules Trace[T*1 =Nl "= T =T "
(1,1)-Tensor T% or T, | SR 4-CoVector: OneForm Quantum Principles V-V = Vi VY= [(V)° - vev] = (Vo)

= Lorentz Scalar
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SR—»QMA SRQM Symmetries: 4-Vector SRQM Interpre;?t(ilol\r/l’n
As Relativistic Euler-Lagrange Equation |
s THe Easy Derivation (U=(d/dt)R)—(0r=(d/d1)dy) ..cmere

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

Relativistic Dynamics Eqn (4-Vector)

Note Similarity: U = (d/doR
= T

4-Velocity is ProperTime °® Classical limit, spatial component (3-vector) @------- >
Derivative of 4-Position " ; Natural
U= (d/d)R [m/s] = [1/s][m] 4-Position Or[..] 4-Vector

.y R=(ct,n) yd/dt[..] (1,0)-Tensor
Relativistic Euler-Lagrange Eqgn
dr = (d/dv)dy [1/m] = [1/s]*[s/m] du[U]=n**—Diag[1,-1,-1,-1]
The differential orm just inverses it Minkowski Metric TR nterestingy, ths has its own
the dimensional units, so the A _ Ty ’ ;
placement of the R and U switch. U 3RESr{gﬁv—evd/dt :I/rgrllelr;rg/lgtrse relations.

=n°k i -9 &9 o _
That is it: so simple! aR[R]Mr.] k—)DIE'glu ’t1.’ Il dt =ydt
Much, much easier than how o -4Ll-p INKOWSKI VIEtriC A
| was taught in Grad School. "
4-VelocityGradient 4-PositionGradient:4-Gradient [ISSEISRRS
4 . g d,F=du=0/0U=(du/c,-Vu) ~ 9.P=0r=0/0R=0=(d/c,-V)) Form
o complete the process an

- tFr)\e Equations of Motion, [maCAAAIRAD ISR UD AU —(dlact,-0/0x,-0ldy,-0/0z) 41-\660_’:_0r
one just applies the base form Relativistic Euler-Lagrange Eqn (1,0)-Tensor
to a Lagrangian. n°® dr = (d/d1)dy I
This can be: Raise inde 9/oR = (didrje/ol Raise inde
a classical Lagrangian d[L])/oR = (d/d7)d[L]/oU - :
a relativistic Lagrangian VelocityGradient One-Form ROl Nt e R el - ositionGradient One-Form
a Lorentz scalar Lagrangian 9,a=(8u/c,Vu) d[L]/ar = (d/dt)d[L)/du Grad|e'1t One-Form OnelEot
a quantum Lagranglan a[L]/ax = (d/dt)a[l_]/au 3Ru—(3t/C,V) (0,1 )-Tensor

SR 4-Tensor SR 4-Vector W] = W= TH =
(2,0)-Tensor T (1,0)-Tensor V* = V = (V°,v) SR 4-Scalar va;a\c/:s[T\‘;]\/ B ?(“\‘;;r)z ) V-rvij _ 2\-/0 Y
(1,1)-Tensor T or T,* | SR 4-CoVector:OneForm K (0.0)-Tensor S or S, rl“" °
= orentz Scala = Lorentz Scalar

0,2)-Tensor T,, 0,1)-Tensor V, = (Vo,-v
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4-Vector SRQM Interpretation

SRQM Symmetries: of QM
Lorentz Transform Connection Map — Trace Identification

CPT, Big-Bang, (Matter-AntiMatter), Arrow(s)-of-Time Jon B, Wison

A Tensor Study SciRealm@aol.com
of Physical 4-Vectors http://scirealm.org/SRQM.pdf

All Lorentz Transforms have Tensor Invariants: Determinant = +1 and InnerProc

However, one can use the Tensor Invariant Trace to Identify CPT Symmetry & Ant Norénall\/:atter
00sis

Tr[ NM-Rotate ] = { } Tr[NM-Identity] Tr[NM-Boost] = { :
NormalMatter :

Identity

NormalMatter

Discrete NormalMatter (NM) Lorentz Transform Type \ o T

Minkowski-ldentity : R I %
# NormalMatter ™,

Flip-t=TimeReversal, Flip-x, Flip-y, Flip-z {  Rotations

Flip-xy=Rotate-xy(1r), Flip-xz=Rotate-xz(1r), Flip-yz=Rotate-yz(1)

Flip-xyz=Paritylnverse

Flip-txyz=ComboPT

SR:Lorentz Transform Two interesting properties of (1,1)-Tensors, of which the Lorentz Transform is an example:

P [Ru'] = ORY/ORY = \¥ Trace = Sum (Z) of EigenValues : Determinant = Product (II) of EigenValues
0 v EEW 0 G v v " < As 4D Tensors, each Lorentz Transform has 4 EigenValues (EV’s).
A = (N AN =ty = 8Y \ Create an Anti-Transform which has all EigenValue Tensor Invariants negated.

= AN 3[-(EV’s)] = -Z[EV’s]: The Anti-Transform has negative Trace of the Transform. :
- M[-(EV’s)] = (-1)*TI[EV’s] = IT[EV’s]: The Anti-Transform has equal Determinant. v

={-c0_ +0o} =Lorentz Transform Type The Trace Invariant identifies a “Dual” Negative-Side for all Lorentz Transforms.
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The h Connection

S RQ M 4 -Ve cto r Stu d y : 4-Vector SRQM Interpre;?t(igoﬁ
Einstein-de Broglie
The (h) Connection

| X =n" 4-Gradient
4-Dicol , Minkowski Metric 0=(9/c,-V)
. : : -Displacemen :

P = hK: Basic Einstein-de Broglie i ProperTime et

AX=(cAt,Ax) P U-ar..]
P+Q=P +Q dX=(cdt,dx )

yn X=(ct,x Wave Velocity
+Q = + * =
P+Q h(Kdyn Kl_’°t) Vorunt et 4-Velocity
Sum over n particles: Pr =  (P+Q),Kr = Zn(Kdyn+Kpot) @ =y(c,u) Hamilton-
Pr = hK; Rest Ang R
P:-X = AKX Frequency Potential
(P+X)= h(K+X) 4-WaveVector Rest [IH{1- >
'Saction = -hq)phase K=(w/c,k)=(w/c,wh/ Vonase Energy:Mass 4-VectorPotential |\~
= hod E= mc@ A=(¢/c,a)
action phase
crare IR O
- = o arge AN
a[Saction] ha[q)phase] =K-X+(qg/(h))A-X ‘ > lll |
P: = hKr =(wt-kx)+(q/(R))(ot-a-x) X (TGN 4-PotentialMomentum
{SR Hamilton-Jacobi} = h{QM Complex Plane-Waves} =Kayn X+Kpor X P=(mc,p)=(E/c,p) Q=(U/c,q)=qA
= '¢dynamic+ 'q)potential Einstein . M|n|mal
= '¢f7phase de Broglie ° Coupling
I P =hK P+Q

The SR Hamilton-Jacobi Equation, 4-WaveVectorincField 4-MomentumIncField
and the QM idea of Complex Plane-Waves, K=(w/ck,)=K+(q/(h))A ‘% P=(E/c,p.)=P+Q=P+qA Complex
are related by a simple constant (h) relation. ()

SR 4-Tensor SR 4-Vector
(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v)

(1,1)-Tensor T*, or T,' il SR 4-CoVector:OneForm

Plane-Waves
Kr = -9[®P]

Trace[T"] = N T =TH =T

Existing SR Rules e e S
Quantum Principles - Vzp;_orerEt(Z%ca?;:’] (V%)

SR 4-Scalar
(0,0)-Tensor S or S,
orentz Scala
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! SRQM 4-Vector Study:

4-Vector SRQM Interpretation
of QM

Dimensionless Physical Objects

of Physical 4-Vectors

Dimensionless Physical Objects

SciRealm@aol.com
http://scirealm.org/SRQM.pdf

HMX]=nt 4-Gradient @:0) —
. i - e i B (3:0)A-0(8-A)=pod
Minkowski Metric 4 (at/c’ V) Maxwell EM Wave Eqn

There are a number of dimensionless physical objects in SR 4-Displacement
that can be constructed from Physical 4-Vectors. AX=(cAt,Ax)

ProperTime EM
Derivative Constants

9-X=4: SpaceTime Dimension
d"[X]=n": The SR Minkowski Metric

Most are 4-Scalars, but there are few 4-Vector and 4-Tensors. dX=(cdt,dx U-al[..]
4-UnitTemporal d/dr[..]
=(ct, T=y(1,B) |

T-T= 1: Lorentz Scalar Magnitude? of the 4-UnitTemporal
T-S= 0: Lorentz Scalar of 4-UnitTemporal with 4-UnitSpatial
S-S= -1: Lorentz Scalar Magnitude? of the 4-UnitSpatial

K-X=(wt-k-x) = -® : Phase of an SR Wave

phase_dyn
used in SRQM wave functions y=a*e"-(K-X)

(P-©) = (Eo/ksT,): 4-Momentum with 4-InvThermalMomentum
used in statistical mechanics particle distributions
F(state) ~ e*-(P-O) = e™-(Eo/ksTo)

a = (1/41e,)(e?/hc) = (uo/41T)(ce?/h): Fine Structure Constant
constructed from Lorentz 4-Scalars, which are themselves
constructed from 4-Vectors via the Lorentz Scalar Product.
ex. h=(P-X)/(K-X); g=(Q-X)/(A-X) —e for electron; c=(T-U)
Mo={(2-9)[A]-X}/(J-X) when (2-A)=0

{y*}: Dirac Gamma Matrix (“4-Vector”) {4 component}
{o*}: Pauli Spin Matrix (“4-Vector”) {2 component}
Components are matrices of numbers, not just numbers

SR 4-Tensor SR 4-Vector

(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar
(1,1)-Tensor T or T,* | SR 4-CoVector:OneForm K (0.0)-Tensor S or S,
, orentz Scala

4-WaveVector Rest Ang || EE B —Saml 4-Inverse TempMomentum
K=(w/c,k)=(w/c,whlv, Frequency

Rest Charge 0 -

4-ChargeFlux
4-C

Density

@) A=uic @ 4-Velocity

U=y(c,u)

4-UnitSpatial
S=ys.(RA-B,N

Yor(-B,11) Rest Scalar
Potential@ Bo

4-ThermalVector

4-VectorPotential B2 (8.8)=(c/ksT.u/ksT)

Rest@ A=(¢p/c.a) ' RestlInverse
1
Energy:Mass _ TemperatureEnergy
£l EM Ollr ' B=1/ksT in this case, not v/c

E= 2 |
@ - @ ---» Charge h.l |} =% Unfortunate notational clash
(1/h)

4-Momentum 4-PotentialMomentum
Einstein P=(mc,p)=(E/c,p) Q=(U/c,q)=qA
de Broglie Minimal
PSR ° Coupling
P+Q

4-MomentumlIncField

Trace[T"] = N T =TH =T
V-V = Vo, VY = [(V)P - vev] = (Vo)
= Lorentz Scalar

Existing SR Rules
Quantum Principles
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/! SRQM: QM Axioms Unnecessary
- QM Principles emerge from SR _ &

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

QM is derivable from SR plus a few empirical facts — the “QM Axioms” aren't necessary
These properties are either empirically measured or are emergent from SR properties...

3 “QM Axioms” are really just empirical constant relations between purely SR 4-Vectors:
Particle-Wave Duality [(P) = h(K)]
Unitary Evolution [0 = (-)K]
Operator Formalism [(9) = -iK]

2 “QM Axioms” are just the result of the Klein-Gordon Equation being a linear wave PDE:
Hilbert Space Representation (<bra|,|ket>, wavefunctions, etc.) & The Principle of Superposition

3 “QM Axioms” are a property of the Minkowski Metric and the empirical fact of Operator Formalism
The Canonical Commutation Relation
The Heisenberg Uncertainty Principle (time-like-separated measurement exchange)
The Pauli Exclusion Principle (space-like-separated particle exchange)

1 “QM Axiom” only holds in the NRQM case
The Born QM Probability Interpretation — Not applicable to RQM, use Conservation of Worldlines instead

1 “QM Axiom” is really just another level of limiting cases, just like SR — CM in limit of low velocity
The QM Correspondence Principle ( QM — CM in limit of {V?[¢] << (V[$])?} )

SR 4-Tensor SR 4-Vector TG
2,0)-Tensor T+ 1,0)-Te V=V calar . .
(1,1()-T<insorT~V or T, SR 4-Covestor: OneF(Zm‘Q SRQM: A treatise of SR—QM by John B. Wilson
. . 1)- - orentz Scala
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Wi SRQM Interpretation:

(@ — = SciRealm.org
A Tensor Study Re I atl o n al Q M & E P R SciR;Zrn:(gé\é\I/.”csoonq

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

The SRQM interpretation fits fairly well with Carlo Rovelli's Relational QM interpretation:

Relational QM treats the state of a quantum system as being observer-dependent, that is, the QM State is the relation
between the observer and the system. This is inspired by the key idea behind Special Relativity, that the details of an
observation depend on the reference frame of the observer.

All systems are quantum systems: no artificial Copenhagen dichotomy between classical/macroscopic/conscious objects
and quantum objects.

The QM States reflect the observers' information about a quantum system.
Wave function “collapse” is informational — not physical. A particle always knows it's complete properties. An observer has
at best only partial information about the particle’s properties.

No Spooky Action at a Distance. When a measurement is done locally on an entangled system, it is only the partial
information about the distant entangled state that “changes/becomes-available-instantaneously”. There is no superluminal
signal. Measuring/physically-changing the local particle does not physically change the distant particle.

ex. Place two identical-except-for-color marbles into a box, close lid, and shake. Without looking, pick one marble at
random and place it into another box. Send that box very far away. After receiving signal of the far box arrival at a distant
point, open the near box and look at the marble. You now instantaneously know the far marble’s color as well. The
information did not come by signal. You already had the possibilities (partial knowledge). Looking at the near marble color
simply reduced the partial knowledge of both marble’s color to complete knowledge of both marbles’ color. No signal was
required, superluminal or otherwise.

ex. The quantum version of the same experiment uses the spin of entangled particles. When measured on the same axis,
one will always be spin-up, the other will be spin-down. It is conceptually analogous. Entanglement is only about
correlations of system that interacted in the past and are determined by conservation laws.
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W SRQM Interpretation:
~—s |Interpretation of EPR-Bell Experiment s
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Einstein and Bohr can both be “right” about EPR:
Per Einstein: The QM State measured is not a “complete” description, just one observer's point-of-view.
Per Bohr: The QM State measured is a “complete” description, it's all that a single observer can get.

The point is that many observers can all see the “same” system, but see different facets of it. But a single
measurement is the maximal information that a single observer can get without re-interacting with the system,
which of course changes the system in general. Remember, the Heisenberg Uncertainty comes from non-zero
commutation properties which *require separate measurement arrangements*. The properties of a particle are
always there. Properties define particles. We as observers simply have only partial information about them.

Relativistic QM, being derived from SR, should be local — The low-velocity limit to QM may give unexpected
anomalous results if taken out of context, or out of the applicable validity range, such as with velocity addition
V12 = Vi+V,, Where the correct formula should be the relativistic velocity composition viz = (V4+V2)/[1+vV2/c?]

These ideas lead to the conclusion that the wavefunction is just one observer’s state of information about a
physical system, not the state of the physical system itself. The “collapse” of the wavefunction is simply the
change in an observer’s information about a system brought about by a measurement or, in the case of EPR, an
inference about the physical state.

EPR doesn’t break Heisenberg because measurements are made on different particles. The happy fact is that
those particles interacted and became correlated in the causal past. The EPR-Bell experiments prove that it is
possible to maintain those correlations over long distances. It does not prove superluminal (FTL) signaling

SR 4-Tensor SR 4-Vector TG
2,0)-Tensor T+ 1,0)-Ta V=V calar . .
(1,1()-T<insorT~V or T, SR 4-Covestor: OneF(Zm‘Q SRQM: A treatise of SR—QM by John B. Wilson
. . - orentz Scala
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Vi SRQM Interpretation:
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- Range-of-Validity Facts & Fallacies . .

. SciRealm@aol.com
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We should not be surprised by the “quantum” probabilities being correct instead of “classical” in the EPR and Bell Inequalities experiments.
Classical thinking (in both CM and QM) has a number of fallacies when it is mistakenly applied outside of its range-of-validity.

Examples

*Classical Physics as the limit of h—0 {
his a Lorentz Scalar Invariant and Fundamental Physical Constant. It never becomes 0. {Fact}

*The classical commutator being zero [p*,x] = 0 { }:
[P¥,X"] = ihn® ; [p* ] = -ihdY ; [p°x°] = [Elc,ct] = [E 1] = ih; Again, it never becomes 0 {Fact}

*Using Maxwell-Boltzmann (distinguishable) statistics for counting probabilities of (indistinguishable) quantum states { }:
Must use Fermi-Dirac statistics for Fermions:Spin=(n+1/2); Bose-Einstein statistics for Bosons:Spin=(n) {Fact}

*Using sums of classical probabilities on quantum states { }:
Must use sums of quantum probability-amplitudes {Fact}

*Ignoring phase cross-terms and interference effects in calculations { %
Quantum systems and entanglement require phase cross-terms {Fact}

*Assuming that one can simultaneously “measure” non-commuting properties at a single spacetime event { I

Particle properties always exist. However, non-commuting ones require separate measurement arrangements to get information about the properties.
The required measurement arrangements on a single particle/worldline are at best sequential events, where the temporal order plays a role; {Fact}
However, EPR allows one to “infer (not measure)” the other property of a particle by the separate measurement of an entangled partner. {Fact}

This does not break Heisenberg Uncertainty, which is about the order of operations (measurement events) on a single worldline. {Fact}

In the entangled case, both/all of the entangled partners share common past-causal entanglement events, typically due to a conservation law. {Fact}
Information is not transmitted at FTL. The particles simply carried their normal respective “correlated” properties (no hidden variables) with them. {Fact}

*Assuming that QM is a generalization of CM, or that classical probabilities apply to QM { }:
CM is a limiting-case of QM for when changes in a system by a few quanta have a negligible effect on the whole/overall system. {Fact}
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We should not be surprised by the “quantum” probabilities being correct instead of “classical” in the EPR and Bell Inequalities experiments.
Classical thinking (in both CM and QM) has a number of fallacies when it is mistakenly applied outside of its range-of-validity.

{from Wikipedia}

No-Communication Theorem/No-Signaling:

A no-go theorem from quantum information theory which states that, during measurement of an entangled quantum state, it is not possible for one observer, by making
a measurement of a subsystem of the total state, to communicate information to another observer. The theorem shows that quantum correlations do not lead to what
could be referred to as "spooky communication at a distance". SRQM: There is no FTL signaling/communication.

No-Teleportation Theorem:

The no-teleportation theorem stems from the Heisenberg uncertainty principle and the EPR paradox: although a qubit |¢> can be imagined to be a specific direction on
the Bloch sphere, that direction cannot be measured precisely, for the general case |p>. The no-teleportation theorem is implied by the no-cloning theorem.

SRQM: Ket states are informational, not physical.

No-Cloning Theorem:
In physics, the no-cloning theorem states that it is impossible to create an identical copy of an arbitrary unknown quantum state. This no-go theorem of quantum

mechanics proves the impossibility of a simple perfect non-disturbing measurement scheme. The no-cloning theorem is normally stated and proven for pure states;
the no-broadcast theorem generalizes this result to mixed states. SRQM: Measurements are arrangements of particles that interact with a subject particle.

No-Broadcast Theorem:

Since quantum states cannot be copied in general, they cannot be broadcast. Here, the word "broadcast" is used in the sense of conveying the state to two or more
recipients. For multiple recipients to each receive the state, there must be, in some sense, a way of duplicating the state. The no-broadcast theorem generalizes the
no-cloning theorem for mixed states. The no-cloning theorem says that it is impossible to create two copies of an unknown state given a single copy of the state.
SRQM: Conservation of worldlines.

No-Deleting Theorem:

In physics, the no-deleting theorem of quantum information theory is a no-go theorem which states that, in general, given two copies of some arbitrary quantum state, it
is impossible to delete one of the copies. It is a time-reversed dual to the no-cloning theorem, which states that arbitrary states cannot be copied.

SRQM: Conservation of worldlines.

No-Hiding Theorem:

the no-hiding theorem is the ultimate proof of the conservation of quantum information. The importance of the no-hiding theorem is that it proves the conservation of
wave function in quantum theory.

SRQM: Conservation of worldlines. RQM wavefunctions are Lorentz 4-Scalars (spin=0), 4-Spinors (spin=1/2), 4-Vectors (spin=1), all of which are Lorentz Invariant.
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! SRQM Interpretation: °
— Quantum Information e

We should not be surprised by the “quantum” probabilities being correct instead of “classical” probabilities in the EPR/Bell-Inequalities experiments.

Classical thinking (in both CM and QM) has a number of fallacies when it is mistakenly applied outside of its range-of-validity.

{from Wikipedia}

Quantum information (qubits) differs strongly from classical information, epitomized by the bit, in many striking and unfamiliar ways. Among these are the following:

A unit of quantum information is the qubit. Unlike classical digital states (which are discrete), a qubit is continuous-valued, describable by a direction on the Bloch
sphere. Despite being continuously valued in this way, a qubit is the smallest possible unit of quantum information, as despite the qubit state being continuously-
valued, it is impossible to measure the value precisely.

A qubit cannot be (wholly) converted into classical bits; that is, it cannot be "read". This is the no-teleportation theorem.

Despite the awkwardly-named no-teleportation theorem, qubits can be moved from one physical particle to another, by means of quantum teleportation. That is, qubits
can be transported, independently of the underlying physical particle. SRQM: Ket states are informational, not physical.

An arbitrary qubit can neither be copied, nor destroyed. This is the content of the no-cloning theorem and the no-deleting theorem. SRQM: Conservation of worldlines.

Although a single qubit can be transported from place to place (e.g. via quantum teleportation), it cannot be delivered to multiple recipients; this is the no-broadcast
theorem, and is essentially implied by the no-cloning theorem. SRQM: Conservation of worldlines.

Qubits can be changed, by applying linear transformations or quantum gates to them, to alter their state. While classical gates correspond to the familiar operations of
Boolean logic, quantum gates are physical unitary operators that in the case of qubits correspond to rotations of the Bloch sphere.

Due to the volatility of quantum systems and the impossibility of copying states, the storing of quantum information is much more difficult than storing classical
information. Nevertheless, with the use of quantum error correction quantum information can still be reliably stored in principle. The existence of quantum error
correcting codes has also led to the possibility of fault tolerant quantum computation.

Classical bits can be encoded into and subsequently retrieved from configurations of qubits, through the use of quantum gates. By itself, a single qubit can convey no
more than one bit of accessible classical information about its preparation. This is Holevo's theorem. However, in superdense coding a sender, by acting on one of two
entangled qubits, can convey two bits of accessible information about their joint state to a receiver.

Quantum information can be moved about, in a quantum channel, analogous to the concept of a classical communications channel. Quantum messages have a finite
size, measured in qubits; quantum channels have a finite channel capacity, measured in qubits per second.
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/! Minkowski still applies in local GR

QM is a local phenomenon
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The QM Schrodinger Equation is not fundamental. It is just the low-energy limiting-case of the RQM
Klein-Gordon Equation. All of the standard QM Axioms are shown to be empirically measured constants
or emergent properties of SR. It is a bad approach to start with NRQM as an axiomatic starting point and
try to generalize it to RQM, in the same way that one cannot start with CM and derive SR. Since QM
*can* be derived from SR, this partially explains the difficulty of uniting QM with GR:

QM is not a “separate formalism” outside of SR that can be used to “quantize” just anything...

Strictly speaking, the use of the Minkowski space to describe physical systems over finite distances
applies only in the SR limit of systems without significant gravitation. In the case of significant gravitation,
SpaceTime becomes curved and one must abandon SR in favor of the full theory of GR.

Nevertheless, even in such cases, based on the GR Equivalence Principle, Minkowski space is still a
good description in a local region surrounding any point (barring gravitational singularities). More
abstractly, we say that in the presence of gravity, SpaceTime is described by a curved 4-dimensional
manifold for which the tangent space to any point is a 4-dimensional Minkowski Space. Thus, the
structure of Minkowski Space is still essential in the description of GR.

So, even in GR, at the local level things are considered to be Minkowskian:
i.,e. SR — QM “lives inside the surface” of this local SpaceTime, GR curves the surface.

SR 4-Tensor SR 4-Vector

2,0)-Tensor T+ 1,0)-Te V=V SR 4-Scalar - :
R ] e o,,eF(Z,,,‘:,) (OSSR | SRQM: A treatise of SR—QM by John B. Wilson
. . 1)- - orentz Scala
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/! SRQM Interpretation: Main Result

N QM is derivable from SR!

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

Hopefully, this interpretation will shed light on why Quantum Gravity has been so elusive. Basically, QM rules of “quantization” don’t apply to GR.
They are a manifestation-of/derivation-from SR. Relativity *is* the “Theory of Measurement” that QM has been looking for.

This would explain why no one has been able to produce a successful theory of Quantum Gravity,
and why there have been no violations of Lorentz Invariance, CPT, or of the Equivalence Principle.

If quantum effects “live” in Minkowski SpaceTime with SR,
then GR curvature effects are at a level above the RQM description, and two levels above standard QM.
SR+QM are “in” SpaceTime, GR is the “shape” of SpaceTime...

Thus, this SRQM Treatise explains the following:

. Why GR works so well in it's realm of applicability {large scale systems}.

. Why QM works so well in it's realm of applicability {micro scale systems and certain macroscopic systems}.
i.e. The tangent space to any point in GR curvature is locally Minkowskian, and thus QM is typically found in small local volumes...

. Why RQM explains more stuff than QM without SR {because QM is just an approximation: the low-velocity limiting-case of RQM}.

. Why all attempts to "quantize gravity" have failed {essentially, everyone has been trying to put the cart (QM) before the horse (GR)}.

. Why all attempts to modify GR keep conflicting with experimental data {because GR is apparently fundamental — passed all tests to-date}.
. Why QM works perfectly well with SR as RQM but not with GR {because QM is derivable from SR, hence a manifestation of SR rules}.

. How Minkowski Space, 4-Vectors, and Lorentz Invariants play vital roles in RQM, and give the SROM Interpretation of Quantum Mechanics.

SR 4-Tensor

SR 4-Vector
2,0)-Tensor T+ 1,0)-Te V=V SR 4-Scalar - :
™, 1()-TgnsorT~V or T, (SRZl CoVector: OneF(Zm‘Q SRQM: A treatise of SR—QM by John B. Wilson
orentz Scala
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Vi SRQM Chart:
£, Special Relativity — Quantum Mechanics .
s SR—QM Interpretation Simplified ...coonesen

SRQM: The [SR—QM] Interpretation of Quantum Mechanics

Special Relativity (SR) Axioms: Invariant Interval + LightSpeed (c) as Universal Physical Constant lead to SR,
although technically SR is itself the Minkowski-SpaceTime low-curvature:“flat” limiting-case of GR.

{c,7,m,,h,i} = {c:SpeedOfLight, t:ProperTime, m,:RestMass, h:Dirac/PlanckReducedConstant(h=h/21r), i:lmaginaryNumber\[-1]}:
are all Empirically Measured SR Lorentz Invariant Physical Constants and/or Mathematical Constants

Standard SR 4-Vectors: Related by these SR Lorentz Invariants:

4-Position R = (ct,r) = (R'R) = (CT)

4-\elocity U = y(c,u) = (U-9)R=("/4)R=dR/dt (U-U) = (c)?

4-Momentum P = (E/c,p) =m,U (P-P) = (m.c)®

4-WaveVector K= (w/c,k) = P/h (K-K) = (moc/h)? KG Equation: vl<<c
4-Gradient d=(d/c,-V) = -iK (9-9) = (-imoc/h)* = -(m,c/h)? = QM Relation —- RQM — QM

SR + Empirically Measured Physical Constants lead to RQM via the Klein-Gordon Quantum Eqn, and thence to QM
via the low-velocity limit { |[v| << ¢}, giving the Schrodinger Egn. This fundamental KG Relation also leads to the other

Quantum Wave Equations: RQM (massiess) RQM QM

{lv|]=c:m,=0} {0<=|v|]<c:m,>0} {0<=|v|]<<c:m,>0}
spin=0 boson field = 4-Scalar: Free Scalar Wave (Higgs) Klein-Gordon Schrodinger (regular QM)
spin=1/2 fermion field = 4-Spinor: Weyl Dirac (w/ EM charge) Pauli (w/ EM charge)
spin=1 boson field = 4-Vector: Maxwell (EM photonic) Proca

SR 4-Tensor SR 4-Vector

2,0)-Tensor T+ 1,0)-T V=V SR 4-Scalar ) :
R ] e ARLAY (Esai ol | SO A treatise of SR—QM by John B. Wilson
u orentz Scala

,1)-Tensor V, = (vo,-v
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SR—»ALQ‘MA S RQ M D iag ra m : 4-Vector SRQM Interpre;?tiQo,\;l\
£4; Special Relativity — Quantum Mechanics __,
sy RoadMap of SR—QM g

*START HE%E*: 4-Position=Location of SR <Events>in SpaceTime

4-Gradient=Alteration of SR <Events>
SR SpaceTime Dimension=4

SR SpaceTime “Flat” 4D Metric VAR , , 4-Position R¥ . .
SR Lorentz Transforms o A[RYI=NAY, R=(ct.r)=<E . h i 4-Velocity=Motion
SR Action — 4-Momentum S Lorentz 2LV Sl e e oL SShl
SR Phase — 4-WaveVector M'&Z‘i;’,\’:k' R-R=(ct)*-rr It?oipsgft-ilc-:lg: gswaves
. N ,
e e DY
8-8=(9,/c)>-V-V 4-Gradient ¢" ProperTime 4-Velocity U*
= {(Moc/N)? = ~(Wy/C)? 33=3@Ru « U-a=d/dr=yd/dt T U=1(c,)=dR/dt
o o - G = -i . . * =
= (81/(:)2 ( : ) Derlvatlve -K.R=¢phase,free -P-R=Saction,free \éjg;q Al"flhgat;a:: UIU:YZ(CZ-u.u)

SR d’Alembertian & '3[]=K @ RANRIEEE SR Action . = (C)Z

Klein-Gordon Relativistic 4-WaveVect Hamilton-Jacobi Phase & Action

Quantum Wave Relation C?)\r/:péi o Py = -9[S] Lorentz Scalars Einstein

Schrodinger QWE is . Plane-Waves @ E = mc? = ymqc? = yE,

Rest Mass mq:Rest Energy E,

{Iv]<<c} limit of KG QWE | Kr = 6[¢]
**[ SR — QM |** ('» @
e

4-\WWaveVector=Substantiation

of SR Wave <Events> 4-WaveVector K"

4-Momentum=Substantiation

oscillations proportional to K=(w/c,k)=(w/c,wn/Vpnas) 4-Momentum P* of SR Particle <Events>
mass:energy & 3-momentum =(1/cF,A/x)=(wo/c?)U=P/h SR - e e i P=(mc,p)=(E/c,p)=m, mass:energy & 3-momentum
Dirac:Planck Constant h=h/2m
K-K=(w/c)*-k-k P =K G, P-P=(E/c)-p-p

= (moc/h)? = (wo/c)? = (1/cT,)? % = (m.c)’ = (E./c)?
1/h

SR 4-Tensor SR 4-Vector
— . —_r Trace[T"] =N T" =T =T
(2,0)-Tensor T+ (1,0)-Tensor V* = V = (\°,v) SR 4-Scalar _ N ol
(1,1)-Tensor T or T, | SR 4-CoVector: OneForm (0,0)-Tensor S or S, sditlne RRUIeS V-V = Vi, VY = [(V)F - vev] = (V)2
, 1) p orentz Scala ( QM Principles ) = Lorentz Scalar
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SR —- QM

A SRQM Di a gr am: 4-Vector SRQM Interpre;?go'\r/}
/4, Special Relativity — Quantum Mechanics ___
s RoadMap of SR—QM (in EM Potential),, srows

http://scirealm.org/SRQM.pdf

4-Gradient=Alteration of SR <Events> *START HERE*: 4-Position=Location of SR <Events>/in SpaceTime
SR SpaceTime Dimension=4 R'R = (Ct) -r-r
SR SpaceTime “Flat” 4D Metric
SR Lorentz Transforms

SR Action — 4-Momentum

SR Phase — 4-WaveVector

7 ) ™" 00 = ) EM Faraday

: : ) = -u- UAV VA He UV
2R I=N", —(ct. 7% 0 FA-5'A=F

d"[R]=n" Lorentz = i 4-Tensor

SR Proper Time Derivative Minkowski . 4-Ve|ocity=l§lotion of SR

SR & QM Invariant Waves U4-\(/eIO§:ItleRulij <Events>|iniSpaceTime as
=y(C,u)= ] both particles & waves

SR — RQM Kilein-Gordon IReIEY 133 4o U-a=d/dt=yd/dt R=S

Relativistic Quantum NT\= i R R=D fred Mattfr Wave2 :

Particle in EM Potential Derivative R=D R=S,; Varow Vphase C @ : "H'I- -
d’Alembertian Wave Equation i Rest Angular EM .

Fo= (at/C)Z_v.% Frequengy wo 4-EMVectorPotential A"
= (dr+(ig/h)A)-(o++(ig/h)A) Lorentz Scalars A=(p/c,a)=(p./c?)U
= _(Wo/C)? = ~(Mac/h)? o PR Harilor @ coey
» — g ME: - instein
= (81/0)2 ‘(;')’4 Vgi\r/r?;gtor lP Jacobi E = mc? = ym.c®= yE, =Y o :
Limit: { |v|<<c Plane-Waves ) ]_ P = -9IS] oesg L } -
: - - {

(Ider) ~ [ GO + (Mec?) + (INVr+qa)/(2my) ] K= -a®], K = ia\ /- - o> ol

q - . 9 -
\(,:/Fi‘tiﬂg)otér:/ﬁ; ('thv;ﬁ)(ﬁfgc)’)] 4-WaveVector K 4-Momentum P* 4-PotentialMomentum Q"
=Schrédinger QM Equation (EM potential) K=(w/c,k)=(wJ/c?)U=P/n Einstein, de Broglie P=(mc,p)=(E/c,p)=m,U Q=(V/c,q)=q(p/c,a)=qA
*[ SR — QM |** PRI (+)

i 1/h 4-TotMomentum Conservation Minimal Coupli

4-WaveVector=Substantiation KK = (w/c)-k'k (10h) P-P = (E/c)*-p-p P,= (P+Q)= (P+qA) P = (P-qA)= (P.-Q)
o) Slll? }[{Vave <Evert1_t8> " . (KT-(q/h)Az).(KT-(q/h2)A) 4-Momentum=Substantiation = (PT-qA)-(PT-qA) 4-TotalMomentum PT”
oscillations proportional to = (moc/h)* = (wo/c of SR Particle <Events> = 2 = 2
mass:energy & 3-momentum ( F = Woe) mass:energy & 3-momentum (mec)” = (Bo/C) P_=(E./c,p,)=((E+qe)/c,p+tqa)=P+Q

SR 4-Tensor SR 4-Vector Trace[T"] = N T = T4, =T

V-V =V, VY = [(V)? - vev] = (V0P
= Lorentz Scalar

Existing SR Rules
Quantum Principles

(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v) SR 4-Scalar
(1,1)-Tensor T*, or T," | SR 4-CoVector: OneForm (0,0)-Tensor S or S,
, , , orentz Scala



mailto:SciRealm@aol.com

SR — QM 4-Vector SRQM Interpretation

- SRQM Diagram: SRQM 4-Vectors and
.~ Lorentz Scalars | Physical Constants _ -

SciRealm@aol.com
of Physical 4-Vectors http://scirealm.org/SRQM.pdf

—e fS J0'R=4 : Minkowski & Lorentz e |
. peaii=n SpaceTlme 4-Acce:|e,rat|on 4-Polarization EyHES J[R]="[R']=n"§ a.[R"]=A", _ A 4-Gradient
4-Displacement A=y(cy,y'u+ya) E=(c%€)=(¢-B,c) EUEY Metric ansformg

AR=(cAt,Ar)
dR=(cdt.d

oJ=(d/c,-

an outcome of paceTime Dim . : ( e V)
Poincaré Invariance, M =4= pv -0 ,=0 ,=

s’.s)=(s'B,s) ¥V A=A . Xy -z

- . Conservation of Complex  Hamilton-
= = ol.. . .. Polarization:Spin ---.p A-TotalWaveVector Plane-Waves Jacobi
° I, B . Kl is Rest Spatial Sum of Plane-Waves K, =-d[PLK=id P, =-9[S]
nvariant In
. 4-\WaveVector 4-TotalWaveVector
. @ K=(w/c,k)=(w/c,wn/vphase) @ K.=(w,/c,k,)
4- Un|tha1moraI Wave Velocity  fuy,=0} o {K-U=0} o {K is null} =-9[®pnase] ]
_Y e group Vphase= Y
Speed
Time: SpaCe@ Oprlght 4'Ve|OC|t Rest AngFrequency Ei . M
Orthogonal y Einstein®( f instein (h)
'T-S=0_ U=y(c,u) de Broglie — . F=y(E/c,f=p) geg:'&?“e
SeSt 'Tumber =dR/dt @ P =hK o v i T 4-TotalMomentum
@ ensi ‘!I!B i s _ _

, . Y E=mc? 4-M n _ _—v P.=(E,/c,p,)=(H/c,p,)
4-UnitSpatial . Rest Energy:Mass omentum ProperTime >} - —3iS
S=yg(A-B,N). Pprope = X \p Rest Charge P=(mc,p)=(E/c,p) Derivative . —r =-0[ Saction]

- \|2 Density u P . onservation o
=) Peorm @ EM @ {Me=0} < {P-U=0} < {P is null} 4-TotalMomentum @
‘ Sood Probability Rule : Rest Scalar ||H | } > Sum of Momenta
g Rest Prob By - Reloys Minimal @ 4-Momentum|ncFieId
_ 4-EMVectorPotential Coupling =(E/c,p,)=P+Q=P+gA
N=(nc,n)=n(c,u SVt 4-ChargeFlux EM Charge P=(E/C.p) 9

_ P+Q
4-ProbCurrDensity a 4-CurrentDensity A=(¢/c,a)

4-ProbabilityFlux J=(pc.j)=p(c,u) {9o=0} < {A-U=0} <> {A is null} 0 4-EMPotentialMomentum SESIale]YEsiErTEN
J_=( ) Q=(U/c,q)=qA
pro ’

SR 4-Vector

SR 4-Tensor
(2,0)-Tensor T+ (1,0)-Tensor V* = V = (V°,v)
(1,1)-Tensor T*, or T,' § SR 4-CoVector: OneForm

SR 4-Scalar Existing SR Rules Trace[T"] = nn 1™ = T8, =T
W = \JH — [0V _ eyl = (\0 \2
(O‘Ozgrzenqioécilgr Se Quantum Principles V'V = Vinn Ve = [(v) SR

= Lorentz Scalar
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SR — QM 4-Vector SRQM Interpretation

/! Special Relativity —~ Quantum Mechanics
N The SRQM Interpretation: Links

A Tensor Study SciRealm@aol.com
of Physical 4-Vectors http://scirealm.org/SRQM.pdf

See also:

nttp://scirealm.org/SRQM.html (it discussion)
nttp://scirealm.org/SRQM-RoadMap.html (main sram website)
nttp://scirealm.org/4Vectors.html (-vector study)
nttp://scirealm.org/SRQM-Tensors.html rensor & 4-vector Calculator)
nttp://scirealm.org/SciCalculator.html (complex-capable RPN Calculator)

or Google “SRQM”

http://SCireaIm.Org/S RQM pdf (this document: most current ver. at SciRealm.org)

SR 4-Tensor SR 4-Vector T
2,0)-T T 1,0)-Te W=V = (V0 -Scalar . .
(1,1( )-Tgn:c?rsgv or T, 'SR 4-Covector:OneForm: SRQM: A treatise of SR—QM by John B. Wilson
. . orentz Scala

,1)-Tensor V, = (vo,-v
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http://scirealm.org/SRQM-Tensors.html
http://scirealm.org/SciCalculator.html
https://www.google.com/search?q=srqm
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SR — QM 4-Vector SRQM Interpretation

/|t The 4-Vector SRQM Interpretation
o QM is derivable from SR!

of Physical 4-Vectors http://scirealm.org/SRQM.pdf

The SRQM or [SR—QM] Interpretation of Quantum Mechanics
A Tensor Study of Physical 4-Vectors

quantum
relativity

L ¢
4 4
/ | N ,
v J
SRQM = SciRealm QM? A happy coincidence... :) Ambigrams

SR 4-Vector

SR 4-Tensor

(2,0)-Tensor T+ (1,0)-Tensor V¥ = V = (V°,v) ] . .
(1.1)-Tensor T or T, | SR 4-CoVector:OneForm SRQM: A treatise of SR—QM by John B. Wilson
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